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Abstract—We develop a novel differential spatial modulation
(DSM) scheme for amplitude phase shift keying (APSK) modula-
tion, which can either improve throughput or performance over
DSM for PSK. Then we investigate the impact of time-varying
fading on DSM. We find performance degrades if the fading is too
fast due to differential detection. The impact of a long outer error
control code (ECC) is also considered. Its performance is limited
by the slowly varying channel required for differential detection.
We consider using reconfigurable antennas to periodically change
the channel conditions and hence significantly improve coded
performance for DSM systems.

Index Terms—Spatial modulation, APSK, differential modula-
tion, fading channel, reconfigurable antennas, LDPC code.

I. INTRODUCTION

Spoatial modulation (SM) improves energy efficiency and re-
duces the number of RF chains required compared to multiple
input multiple output (MIMO) transmission (by transmitting
from one or a small subset of available antennas at any
given time) [1], [2]. Differential SV (DSM) avoids the need
for channel state information (CY) at the transmitter or
receiver, at the cost of performance. In [3], [4] a differential
spatial modulation (DSM) approach was proposed for equal
energy constellations, namely M-ary phase shift keying (M-
PK). The transmit antennas take turns transmitting M -PSK
symbols, where each symbol is chosen using log, (M) bits.
In [4], [log,(N!)| additional information bits are coded
into the order that antennas are used with transmission de-
fined over N, symbol periods, where N, is the number of
transmit antennas. This increases the spectral efficiency to
(Nilogy (M) + |logy(N!)])/Ny bis’Hz. Another DSM ap-
proach was proposed for A/-PSK in [5] using a set of sparse,
complex valued antennaindex matrices. Repetition of symbols
in the DSM encoder was used to achieve diversity gains at the
cost of throughput. It subsumes the DSM system of [3] and
differential space-time shift keying (STK) [6], [7] as specia
cases. Star-QAM STSK was aso proposed in [7].

Amplitude phase shift keying (APK) or star-QAM is known
to perform well on fading channels and has been successfully
used for differential modulation [7]-{10]. In this letter, we
extend the work of [3] to M-M APSK constellations (con-
sisting of 2M points), which can be viewed as two concentric
M-PSK constellations with different amplitude levels. Thisis
quite different to the STSK approach in [7]. We achieve a
spectral efficiency of (N¢logy(M) + [logo(Ne!)] + Ni)/Ny
b/s/Hz, where the ‘+ N;’ comes from the choice of amplitude
ring of the APSK congtellation at each symbol period. This
assumes N, transmit antennas and N; symbol periods (only
one active antenna per symbol period). We also consider

fixing the amplitude level over the DSM matrix resulting in
(Nilogy (M) + |logy(Ne!) | +1)/Ny bis’Hz. Asin [3], no CSI
isavailable at the transmitter or receiver. Our goa isto achieve
better throughput than DSM-M-PSK and better performance
than DSM-2M-PSK using DSM M -MAPSK.

Unlike [3], [5], [6], we consider the impact of time-
varying fading on performance. As the fading becomes faster,
the channel variation during differential detection increases,
degrading performance. In [11], the use of reconfigurable
antennas and faster fading was shown to improve performance
of space-time codes employing long outer error control codes
(ECCs), namely low density parity check (LDPC) codes. In
this work, we consider the impact of a long outer ECC on
DSM performance. There is a tradeoff between fast fading for
the LDPC code and slow fading for DSM detection.

Finally, we investigate using reconfigurable antennas to in-
crease the effective fade rate experienced by the ECC without
increasing the fade rate seen by the differential detector. The
drawback is a dlight reduction in rate due to periodicaly re-
sending DSM initialization matrices. This approach allows
diversity gains and enables the error control decoder to sig-
nificantly enhance performance. This is quite different to the
way diversity is achieved in [5] as our redundancy (protection)
is added using a powerful ECC rather than using repetition
of symbols in the DSM matrix. Our work on outer codes
and reconfigurable antennas in time-varying fading could be
applied to the DSM schemes of [3], [5]. In [12], they propose
using a single reconfigurable antenna with multiple states in
STSK instead of multiple transmit antennas for transmission.
In contrast, we use multiple reconfigurable antennas at both
transmitter and receiver in order to vary the channel over the
length of the outer ECC.

This letter is organised as follows. Section Il describes
the DSM-PSK scheme of [3], our proposed DSM-APSK
scheme, the outer ECC and the proposed reconfigurable an-
tenna switching scheme. In Section |1l simulation results are
given and conclusions are drawn in Section 1V.

[I. DIFFERENTIAL SPATIAL MODULATION (DSM)
A. DSM-PXK

The differential transmission matrix for DSM-PSK [3] is
defined by
S(r+1)=8S(nX(r+1), Q

where S(0) isaknown N; x N, initialization matrix spanning
N, antennas and N; symbol periods, X (7+1) € G is selected
using Ny log, (M) + |log, (N¢!) | input bits [4]. The final input



bit selects the order of antenna use (i.e.. which matrix in G is
employed). For example, for N, = 2 the set G is given by [3]

. S1 0 0 S9
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where M-PSK constellation points s, s, are selected by
log, (M) bits each.

The received signal matrix for DSM-PSK in [4] over time
intervals Nyt to N;(t + 1) — 1 is given by

Y (r) = H(r)S(r) + N(7) (©)
and over time intervals N, (¢t + 1) and N(t +2) — 1 by
Yr+1)=H(r+1)S(r+1)+ N(r+1), (4

where S(7) is the N; x N, transmitted DSM code matrix,
N (7) isthe N, x N, additive white Gaussian noise (AWGN)
matrix over Nt and N,(t+1)—1, H(7) isa N, x N, fading
channel matrix and N, is the number of receive antennas. For
quasi-static (QS) fading H(r + 1) = H(7) is constant over
two consecutive matrix transmissions.

In order to be able to consider atime varying fading channel
we extend the received signal notation of [4] in (3) to

Y (r)=H(7)S(r) + N (1), ©)
where H(7) = [H(Nyt), -, H(N(t + 1) — 1)], H(Nt)
is the N, x N, channel matrix at time N, S(r) =
diag(s(Ntt), cee ,S(Nt(t + 1) — 1)), and S(Ntt + b) is the
(b+1)*" column vector (N, x 1) of S(7),b€0,---,N; — 1.
The variation between H(N;t) and H(N:(t + 1) — 1) will
depend on the fade rate, fpT', where fp is Doppler frequency
and T is symbol period.

The order that transmit antennas are used in the encoded
DSM matrix changes with time. This means a given transmit
antenna (and associated sub-channel) will be used again after
1to 2N, —1 symboal periods. The maximum number of symbol
periods, 2N, — 1, quickly increases with N;. This increases
variation for some sub-channels between consecutive DSM
matrices going into the differential detector. Channel variation
degrades detection performance. This should be taken into
account when designing DSM matrix sets, G, for time varying
channels.

The differential detector estimates the data matrix X (7 +1)
using an exhaustive search over s; and s, according to [3]

X(r+1)=arg min ||[Y(r+1) - Y (1) X||%, (6)
vXeg
where || - || 7 is the Frobenius norm.

B. DSM-APXK

Now we extend the DSM-PSK scheme of [3] to APSK
modulation, DSM-APSK, based on the differential APSK
(DAPSK) methodology? of [10]. We differentially encoded
both amplitude and phase. We can think of the M — M APSK
constellation of Fig. 1 astwo concentric M -PSK constellations
with respective amplitude levels? of rx and ..

1Although, the contexts are quite different, the methodology can be applied.

2We use aring ratio ry /r;, = 2 asin [9], [10]. Having the same number
of points in each ring makes differential encoding easier. We focus on two
levels, but extension beyond this is possible.
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Fig. 1. 8-8 APSK constellation (r;, = 0.632, ry = 1.265 and Es = 1).

Method 1: Constant M-M APSK amplitude level over
S(7). This offers (N;log, (M) + |log, Ni!| + 1)/N; bls/Hz
with log, (M) bits per M-PSK symbol, |log,(N;!)| antenna
order bits [4] and 1 APSK level hit.

The simple recursion of (1) must now be extended to include
a differential amplitude/ level encoding. Now (1) becomes

S(t+1)=a,S(1)X(T+1), (7)
where
1, if blevel(T) =0
ar = TH/’I’L, if blevel(T) =landa,_; =g, (8)
TL/THv if blevel(T) =1and Ar_1 =TH

and b;..e (7) isthe bit for block 7 defining the amplitude level.
Note we initially send S(0) with amplitude level .

The differential detector is based on concepts in [3], [10].
We use a modified version of (6), which exhaustively searches
over al possible antenna order values, APSK amplitude levels
and PSK symbols. The symbols are estimated using

{X(r4+1),d,} =arg min ||Y(7+1)—aY (1) X]||%. (9)
vXeg\Va

The two possible values of a depend on the previous estimate
ar—1 (from (8) either ¢ € {1,rgy/rr} ora € {1,rL/ru}).
Method 2: Change the APSK amplitude level for sym-
bols s, through sy, independently using N, bits. This gives
throughput (N, log, (M )+ |logy N¢! |+ N¢)/N; bls/Hz as there
arenow N, level bits. The transmission matrix of (7) becomes

S(tr+1)=AF+ 1S X(1+1), (20)

where A(T+1) = diag(a1(t+1),--- ,an,(7+1)) and each
a;(7) is selected according to (8). The detector uses
. far 0
A= [0 ] 1)
Where&z S {1,7’H/7’L} if CALZQT) =T and CALAz c {1,7’L/7’H} if
a;(17) = rg. The estimated X (7 + 1) and A(r + 1) matrices
are chosen using

{X(r+1),A(T+1)} = arg M(A, X), (12)

_ in
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where
MAX) =Y (r+1) - Y (N5 (NAS()X|[%, (13)

S(r) is the previously estimated S(r) matrix and ASJF(T) is
the pseudo-inverse of S(7). Using X (7 + 1) and A(7 + 1),
the N, log, (M) + |log, N¢!| + N, bits can be determined.



C. Outer Error Control Code (ECC)

Outer ECCs are often added to systems to reduce error
rates. We consider a LDPC code followed by a bit interleaver.
The interleaved encoded bit stream is fed to the DSM-APSK
modulator. In the receiver, we demodulate using the DSM-
APSK differential detector before LDPC decoding. However,
now we need to find the maximum metric, (13), for the most
likely bit found using (12) and the competing bit value. Then
a scaled approximate log-likelihood ratio (LLR) is calculated
(using the max-log MAP assumption) as

Mi1— Mo
202 ’

where o2 is the AWGN variance and M, ;, is the best metric
calculated in (12) and (13) with the i** encoded interleaved
bit equal to b € {0,1}. Note that a bit ‘0’ is most likely
when LLR; is positive and large. The LLR, then needs to be
deinterleaved before being passed to the LDPC decoder. The
interleaving is used to break up any error bursts due to the
channel or error propagation (from the differential detector).
If the parity checks fail, then the LLR of (14) is normalized
to a mean of 2, deinterleaved and re-decoded.

LLR; = (14)

D. Reconfigurable antennas

Reconfigurable antennas are able to change the manner in
which they radiate, by altering properties such as fregquency,
polarization and radiation pattern [13], producing different
radiation states. Changing the radiation state also changes
the channel characteristics experienced in the communication
system [13]. It was found in [11] that the performance of
a space-time coding scheme employing long ECCs was able
to achieve the superior performance of faster fading by peri-
odically or adaptively switching channel conditions (antenna
state) over the length of the LDPC codeword. They assumed
perfect CSI, while we have no CSI available. Therefore, we
propose switching all antenna states at either the transmitter
or receiver (or both) S times during the transmission of an
LDPC codeword. This is done in a pre-determined manner
(timing and order of states). Each time the states change, the
channel changes and the DSM initialization matrix is re-sent
and differential detection restarts. This only dightly reduces
throughput. This work could also be applied to the DSM
schemes of [3], [5].

Let us assume the fade rate is fpT'(1), but we want the
error control decoder to experience channel variation expected
of fade rate fpT'(2) (assuming the same transmission format).
We need to switch antenna states approximately every

0.3
foT(2)

symbol periods [11]. We assume L is the number of symbol
periods spanned by the outer ECC and that al reconfigurable
antenna states are independent (correlation will degrade perfor-
mance, but still allow gains). We denote the number of recon-
figurable transmit and receive antenna states (per antenna) as
S¢ and S, respectively. This allows S;.S,- independent channel

Tepan <

(15)

—A— DSM 16-PSK, 4.5bps
—B— DSM 8-8APSK 4bps
—e— DSM 8-8APSK 4.5bps
—<— DSM 8-PSK, 3.5bps
—%— 8-8DAPSK, 4bps
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Fig. 2. BER of DAPSK and DSM with PSK [3] and APSK for QS channel.

matrices. The resulting rule of thumb from [11] is to use
sufficient states to satisfy

fpT(2)L

03
This is good for QS fading or an unknown fp7T'(1). For time
varying fading with known fpT'(1) we can use the natura
variation of the channel (and antenna state reuse) to reduce
the number of antenna states required. We can reuse previous
antenna states when their conditions should be sufficiently
uncorrelated. This results in a more modest S;.S, value, but
requires a rough estimate of the fade rate to be known at
transmitter and receiver. In this case we have

foT(2)
fpT (1)’
but change states every T mq Symbol periods, (15).

S.S, > (16)

S¢Sy >

(17)

I1l. SIMULATION RESULTS

We now present simulation results for DSM using PSK
and APSK. We assume N; = N, = 2 antennas with NN,
independent sub-channels. We initially consider a QS channel
constant over a frame of N = 128 symbol periods (or 64
DSM matrices) and varying independently between frames.
We aso consider a time-varying Rayleigh fading channel with
fade rate, fpT. We plot performance against data bit energy
divided by noise spectral density, E},/Nj.

In Fig. 2 we show the uncoded bit error rate (BER)
performance on a QS channel for 8-8 DAPSK (no SM, 4
b/s’Hz), DSM 8-PSK (3.5 b/gHz) and DSM 16-PSK (4.5
b/s/Hz) using the scheme of [3], as well as the proposed DSM
8-8APSK (4 b/s/Hz for method 1 and 4.5 b/s'Hz for method
2 depending on whether the APSK level changes for each
matrix or each symbol). The 8-8APSK curves fall between
those for 8-PSK and 16-PSK. However, 8-8APSK has higher
throughput than 8-PSK, and better performance than 16-PSK
for the same throughput. Method 2 offers higher throughput
than method 1 at the cost of performance. DSM APSK offers
higher throughput or better performance than DAPSK. This
advantage is expected to increase with Ny N,. [4].

The uncoded BER and frame error rate (FER) for various
faderatesare shown in Fig. 3 for DSM 8-8 APSK (4.5 b/5Hz).
For the simulated block length (V = 128), the fpT = 0.001
and QS results are similar. As the fade rate becomes faster,
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Fig. 3. BER and FER of DSM 8-8APSK method 2 for QS and time varying
fading channels.

the channel variation degrades high £,/ N, performance of the
differential detector. By fpT = 0.05 it is unusable.

Now we look at the performance for along outer ECC with
and without reconfigurable antennas. We consider a powerful
(4096, 1844) LDPC code spanning 455 DSM matrices® (L =
910 and overall system rate 2.02b/s/Hz), but other codes could
be used. As expected [11], without reconfigurable antennas
the coded DSM results show little improvement over uncoded
DSM for dow fading due to long error bursts over the LDPC
codeword. In addition, results are poor in fast fading due to
the differential detection errors.

We now incorporate reconfigurable antennas and switch
antenna states S = 16 (or 32) times over the LDPC code
transmission (meaning fp7'(2) = 0.005 (or 0.01), S;:S, = 16
(or 32) and the channel changes every 56 — 58 (or 28 — 30)
symbol periods). Theinitial DSM matrix, S(0), is sent at each
switch and differential detection is restarted. The overall rate
becomes 1.96 (or 1.89)b/s/Hz. As can be seen in Fig 4, there
is a significant slope gain from changing channel conditions
(using reconfigurable antennas) over the length of the LDPC
code (SW = 16 or 32). This agrees with findings in [11], but
for the very different case of differential encoding. A criticism
of reconfigurable antenna schemes has been the increased
channel estimation requirements, but the use of differential
encoding and detection avoids this. Simply reinitializing with
no state change (16init) can provide most of the gain of
SW =16 when fpT(1) = fpT(2) = 0.005, but significantly
less gain for slower channels (eg. fp7'(1) = 0.001).

IV. CONCLUSIONS

We proposed a new DSM-APSK scheme, which improved
performance or increased throughput compared to DSM-PSK.
We also investigated the degradation in DSM performance
with increasing fade rate. In addition, we considered the
impact of an outer ECC. The tradeoff between fade rate
for detection and ECC decoding was considered in detail.
A reconfigurable antenna scheme was proposed to increase
channel variation over the length of the ECC. This signifi-
cantly improved performance at the cost of complexity and
throughput. The N, > 2 case is part of ongoing research.

3See [11] for details on the LDPC code. Only 4095 bits are required for
the 455 DSM matrices, meaning one bit is not transmitted. Maximum of 100
decoding iterations, with early termination when a codeword is found.
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Fig. 4. BER and FER for DSM 8-8APSK method 2, (4096, 1844) LDPC
code with (SW = 16, 32) and without (SW = 1) reconfigurable antenna
switching. " 16init” uses non-reconfigurable antennas with 16 reinitializations.
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