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Abstract.

Objective. The detection of microsleeps in a wide range of professionals working in

high-risk occupations is very important to workplace safety. A microsleep classifier

is presented that employs a reservoir computing (RC) methodology. Specifically,

echo state networks (ESN) are used to enhance previous benchmark performances

on microsleep detection. Approach. A clustered design using a novel ESN-based leaky

integrator is presented. The effectiveness of this design lies with the simplicity of

using a fine-grained architecture, containing up to 8 neurons per cluster, to capture

individualized state dynamics and achieve optimal performance. This is the first study

to have implemented and evaluated EEG-based microsleep detection using RC models

for the detection of microsleeps from the EEG. Main results. Microsleep state detection

was achieved using a cascaded ESN classifier with leaky-integrator neurons employing

60 principal components from 544 power spectral features. This resulted in a leave-

one-subject-out average detection in performance of φ = 0.51 ± 0.07 (mean ± SE),

AUC-ROC = 0.88 ± 0.03, and AUC-PR = 0.44 ± 0.09. Significance. Although

performance of EEG-based microsleep detection systems is still considered modest,

this refined method achieved a new benchmark in microsleep detection.

Keywords: EEG, microsleep, reservoir computing, classification

1. Introduction

Microsleeps are brief (≈ 0.5–15 s) involuntary lapses in consciousness in which a person

has a complete suspension of performance due to falling asleep, momentarily. The

neural dynamics of sleep transition, as seen in both the EEG spectral power and

task performance measures in drowsy individuals performing an active task, such as
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driving, usually vary rapidly between periods of wakefulness and sleep [1]. Despite the

prevalence and dangers of these microsleeps in everyday life [2–5], a complete system-

wide understanding of the brain mechanisms underlying microsleeps remains elusive

[6].

Over the past 15 years, our research group has carried out several studies using

electrophysiological and behavioural tests to investigate the nature and causes of lapses

of responsiveness [2, 6–12]. Using experimental data from these studies, several state-of-

the-art techniques have been, and continue to be, developed to automatically identify,

characterize, detect, and predict microsleeps.

In a previous study, EEG recordings were used from electrodes at 16 scalp locations,

while the subjects performed a 1-D continuous visuomotor tracking task for 1 hour, in

two separate sessions [2, 7, 8, 13]. Microsleeps were defined operationally as the presence

of either a video-microsleep and/or a tracking flat spot. Video-based microsleeps were

identified by prolonged eye-lid closure, head nodding, and/or terminated by waking

head jerks. The gold standard for identifying microsleeps was generated by manually

inspecting the tracking task and the facial video.

Peiris et al [2] reported that during microsleeps, an increase in EEG power in the

delta, theta, and alpha spectral bands, and a decrease in the beta and gamma bands

was observed. They also reported that 14 of the 15 subjects had at least one microsleep,

with an overall mean rate of 39.3 per hour and mean duration of 3.4 s [2]. Linear

discriminant analysis (LDA) was used to form detection models based on individual

subject data and stacked generalization was utilized to combine the outputs of multiple

classifiers to obtain the final prediction [8]. The best performance achieved used an LDA

and stacked generalization-based technique on EEG-power spectral features [8]. This

major focus of our research has continued to be the development of a state-of-the-art

microsleep detection system.

The motivation for this research was to investigate classification performance on

this earlier microsleep study using a new recurrent neural network architecture, based

on reservoir computing (RC). Our approach employs a novel fine-grained architecture

for feature classification. Performance results using our method are compared to four

commonly-used classifier configurations. This study presents and evaluates architectural

enhancements, based on RC structure, that advances the case for an RC microsleep

classifer.

2. Methods

2.1. Data

2.1.1. Subjects The data in the current study were recorded in an earlier study [2], in

which there were 15 healthy male participants (mean age 26.5 years, range 18-36). Visual

acuities were 6/9 or better in each eye. All subjects had slept normally the previous

night (mean = 7.8 h, min = 5.1 h) and were considered non-sleep-deprived. Ethical
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approval for the study had been obtained from the Canterbury Ethics Committee.

2.1.2. Procedure Subjects performed a visuomotor tracking task for 1 h while EEG,

facial video, and tracking performance were recorded. The 1-D tracking task had a

continuous pseudo-random preview target (bandwidth 0.164 Hz, 8-s preview) [14, 15]

and a steering wheel, sampled at 64 Hz, to control a cursor near the bottom of the

screen. Head and facial features were recorded from a video camera 1 m in front of

the subject (frame rate 25 Hz). The time-synchronized video provided an independent

measure of the presence of microsleeps.

EEG was recorded from electrodes at 16 scalp locations, bandpass filtered (0.1 −
100 Hz), and digitized at 256 Hz. Electrodes were placed according to the international

10-20 system. Bipolar derivations were used in feature calculations: Fp1-F7, F7-T3,

T3-T5, T5-O1, Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F4,

F4- C4, C4-P4, and P4-O2.

Each subject attended two sessions, at least one week apart (mean 17 days, range

7-50 days), held following lunch between 12.30 pm and 5.00 pm.

2.1.3. Behavioural Analysis - Microsleeps Occurrences of microsleeps (previously

termed ‘lapses’ [2, 7, 8], plus determination of their start and end points with a time

resolution of 1.0 s, were determined off-line from flatspots in tracking response (excluding

when target velocity was approximately zero) and/or prolonged eye-closure, rated

subjectively from facial video. A subset of behavioural and EEG data from the 8

subjects who had at least one unequivocal microsleep comprising a concomitant flatspot

AND prolonged eye-closure over the two sessions was selected for the current study, due

to its focus on EEG-based detection, as opposed to behavioural characterization, of

microsleeps. The subset of 8 subjects had a total of 917 microsleeps [8], i.e., an average

microsleep rate of 57.3 /h.

2.2. System overview

An overview of our microsleep detection system is shown in Figure 1. The microsleep

detection system incorporates pre-processing/conditioning, feature extraction, feature

selection/reduction, and pattern classification stages. Signals from eye movements,

eye blinks, ECG, EMG, and line noise can be orders of magnitude larger than brain-

generated EEG and are the main sources of artefacts in EEG data. In order to overcome

this problem, a comprehensive set of pre-processing methods were implemented on raw

EEG data, and this followed the approach taken by Peiris et al [8].

Pre-processing of the dataset comprised stages encompassing EEG data acquisition,

artefact removal, mean removal, rescaling, data filtering, and feature matrix generation.

For example, independent components analysis (ICA) was used to remove eye blink

artefacts [16]. The artefact-free signal was then filtered to remove 50 Hz mains power-

line interference using an infinite-impulse response notch filter with a Q-factor of 35.
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Figure 1. Microsleep detection system.

The mean and standard deviation of the first 2 min of the signal were calculated and

z-scores relative to the baseline of the signal were used to allow comparisons to be made

between subjects and over multiple sessions. Epochs of 2 s containing samples with an

absolute z-score > 3.0 were rejected as artefacts and excluded from analysis [8].

EEG feature reduction algorithms generate meta-features from original features,

using, for example, PCA, so as to minimize and optimize the number of features

passed to the classifier with minimal loss of significant information from the feature

sets. Consequently, the pattern classification stage assigns class labels to given input

values based on the training algorithm. In this study all classifiers were trained on

concatenated data of seven training subjects and this was tested on data from an eighth

(test) subject using the leave-one-subject-out (LOSO) method. Results were taken from

each test subject and candidate test subjects were rotated across all 8 subjects, thus

forming an average classifier result. The generation of meta-features is discussed in

detail by Ayyagari [17].

Validation of training and testing data required properly-labelled states indicating

a microsleep. Behavioural metrics of microsleeps were decimated to a resolution of 1

Hz. The presence of a microsleep was treated as a binary state, where “1” indicated the

presence of a microsleep at any point in time within the 1 s epoch and “0” indicated the

responsive or baseline state. Data rated by human experts served as the gold standard

for training and gauging performance of automated classifiers.

2.3. Signal processing

In order to eliminate electrode-pop artefacts, each derivation was normalized into z-

scores. The z-scores of each epoch were computed using the mean and standard deviation

of the first 2-min of each 1-hour-long record of data of the same session. To exclude

unacceptably noisy data, 1-s epochs with absolute z-scores over 3.0 were deleted and

removed from further analysis. This process resulted in pruning 580 epochs of the 7200

epochs across both 1-h sessions per subject on average. Corresponding gold standard

events were also excluded from analysis at an average of 26 flat-spot epochs and 34

video-lapse epochs per subject in both sessions.

Thirty four spectral features per derivation (13 spectral power + 12 normalized
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power + 9 power ratios) were calculated for each of the 16 channels using a 2-s sliding

window function, stepping at 1-s intervals, resulting in 34 × 16 = 544 spectral features

over the 16 channels. Provision was incorporated to ensure that the 2 s window did not

overlap the discontinuities.

2.4. Feature reduction

An EEG feature was defined as an arbitrary time series extracted from a single EEG

derivation using a given signal processing algorithm [8]. A feature vector was a vector

of all feature values for a particular data instance.

Data in each epoch were detrended to remove any DC shifts and the spectrum

was estimated using a 40th-order Burg model. Thirty-four spectral features, comprising

13 spectral power (SP), 12 normalized spectral power (NSP), and 9 power ratio (PR)

features listed in Table 1 were calculated for each of the 16 derivations, giving a total

of 544 spectral features.

Table 1. Spectral features calculated from each EEG derivation.

Frequency

Feature band (Hz)

Mean spectral power (normalized values)

Delta (δ) 1.0 – 4.5

Theta (θ) 4.5 – 8.0

Alpha 1 (α1) 8.0 – 10.5

Alpha 2 (α2) 10.5 – 12.5

Alpha (α) 8.0 – 12.5

Beta 1 (β1) 12.5 – 15.0

Beta 2 (β2) 15.0 – 25.0

Beta (β) 12.5 – 25.0

Gamma 1 (γ1) 25.0 – 35.0

Gamma 2 (γ2) 35.0 – 45.0

Gamma (γ) 25.0 – 45.0

High > 45.0

Overall 0.1 – 100

Spectral power ratios (absolute values)

θ/β, θ/α, α/β, δ/θ, α/δ, β/δ, β2/α, β1/β2

Ten feature reduction techniques were evaluated in this study, with principal

components analysis (PCA) proving to be the best overall feature reducer [17]. Of

the 544 spectral features secured, 60 principal components were used from all of the 8

subjects to train and test a suitable classifier for microsleep detection.
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2.5. Classification methods

Several classifiers were considered for comparison with a new artificial neural network

from a family known as a reservoir computing, for the detection of microsleeps. A

key requirement is to capture the dynamics of input signals. Typically, this requires

a complex training process. However, capturing the fidelity of such features to ensure

accurate classification is a key question that will be addressed in this article. Three,

relatively-diverse classifiers were used in this study, one resulting in 5 sub-types.

2.5.1. Linear discriminant analysis Linear discriminant analysis (LDA) was used to

determine which continuous variables could discriminate between two or more groups

[18]. LDA assumes that the group memberships of the initial cases (training set) are

known correctly. This analysis yields information which can then be used to classify

a future case with an unknown group membership into a group. LDA maximizes the

ratio of between-class variance to the within-class variance in any particular data set,

thereby achieving maximal linear separability [18].

LDA was used by Peiris et al [8] to form classification models capable of detecting

microsleeps and was set as the baseline for the other classifier models.

2.5.2. Support vector machines Support Vector Machines (SVM) are a set of supervised

learning techniques used for regression, classification, and outlier detection based on

the concept of decision planes, which define decision boundaries [19]. SVM performs

classification tasks by constructing hyperplanes in a multidimensional space that

separates cases of different class labels [20]. Support vectors turn high dimensionality

problems into linear classification problems. SVM algorithms are also well equipped to

handle multiple continuous and categorical variables.

SVMs with linear and Gaussian kernel functions have previously been used for

microsleep detection [21–23]. More recently, LaRocco [24] applied SVMs for microsleep

detection on the same dataset used in this research. Mediocre performance was reported

for an SVM with a polynomial kernel, and poor performance was reported with a

Gaussian kernel.

SVMs, however, provide a unique solution, since their optimality problem is convex

[25]. This is an advantage compared to neural network schemes, which have multiple

solutions associated with local minima, and for this reason may not offer a robust

solution over different samples.

2.5.3. Reservoir computing Reservoir computing (RC) denotes a specialised family of

recurrent neural networks that support a sparse, randomly-connected ‘reservoir’ that can

realise a dynamical system. Two RC structures are the liquid state machine (LSM) and

echo state network (ESN). LSMs are biologically-inspired recurrent networks, whereas

ESNs are fashioned as a general engineering tool [26]. Both RC members support a

simplified training structure, where recurrent nodal pathways can be used to enhance
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system dynamics that can be captured to a memory structure for separation using a

supervised training set [27].

2.6. Reservoir computing approaches

ESNs have been used in neuroengineering for detection of epileptic seizures [28].

Furthermore, advanced variations of ESN architectures have been shown to predict cues

within preprocessed EEG, such as microsleeps [29, 30]. In this subsection, the basic

structure of two RC architectures is outlined, whereas a leaky approach to prolong

the ‘echo’ quality of ESNs for application to relatively low-frequency EEG signals, is

described in Subsection 2.6.3.

2.6.1. Liquid state machines The basic principle behind liquid state machines (LSMs)

is that the period between neural firing is not constant, as they decode the time between

spikes, which is thought to be the main source of information transfer between neurons.

LSMs are based on a spiking neural network model [31]. Their main properties are

recurrency and that neurons have spiking activity, usually based on a complex synaptic

model. The recurrent weights in an LSM are not trained in a supervised manner, unlike

recurrent neural networks (RNNs). LSMs are also used in computational neuroscience

to study functional properties of neural circuits by abstraction [32].

2.6.2. Echo state networks Characteristically, echo state networks have a simplified

training structure and provide a “reservoir of rich dynamics” [33]. Based on a set

of discretized, time-varying inputs, a fixed sparse matrix WDR is used to implement

a recurrent network with enhanced spectral diversity, where a linear readout Wout is

trained to produce an output. The state vector x(n) maintains the relationship between

the input vector u(n) and output vector y(n), which can be expressed as

x(n) = ϕ
(
Win u(n)T + WDR x(n-1)T + Wback y(n-1)T

)
, (1a)

y(n) = Ψ
(
Wout x(n)T

)
, (1b)

where WDR is the dynamic reservoir matrix, Wback is the feedback matrix, ϕ(·) and

Ψ(·) are input and output activation functions, respectively, Wout is the output weight

matrix, and n ∈ {1, 2, · · · , N}.
With reference to the architecture shown in Figure 2, the operation of an ESN can be

described as follows. The input vector u(n) is mapped into state space x(n) through the

echo state property supported by a sparsely connected recurrent matrix, WDR. Linear

regression is used to train the ESN output matrix Wout to facilitate recombination of

output data. Input and optional feedback matrices Win and Wback, respectively, are

dense randomly-connected matrices that facilitate the distribution of inputs and output

data to the dynamic reservoir. Lastly, as with most ANNs, an activation function ϕ(·)
is supported to ensure data remains bound and provides non-linear output capability.

In essence, the network is acting as a set of finely-tuned, matched filters.
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Figure 2. A basic form of the echo state network (ESN) architecture.

2.6.3. ESNs with leaky neurons A disadvantage of echo state networks is that they

do not have a time constant which means that their dynamics cannot be ‘slowed

down’, as can be performed, for example, in the dynamics of a differential equation.

Therefore, given the relatively slow dynamic of EEG signals, such as low frequency

sinusoidal waveforms, the leaky-integrator ESN model [33] was used. By employing

leaky-integrator ESNs, the temporal characteristics of a learning task can be exploited

by using the individual state dynamics of the system [33].

A leaky integrator neuron network can be interpreted from Jaeger et al [34] as,

ẋ =
1

τ

(
− αx + ϕ

(
Winu + WDRx + Wbacky

))
, (2)

y = Ψ

(
Wout[x; u]

)
, (3)

where τ is the time constant, α is the leak decay rate, functions ϕ(·) and Ψ(·) use

non-linear and linear activations, respectively, and where the semicolon in [x; u] is used

to represent the conjoining of input vector u with state vector x. Thus, reservoir states

are extended with input vector u to essentially ‘feeding’ output units y [35].

For a discrete time-sampled system, Equations 2 and 3 can be represented as

difference equations with step-size δ as

x(n+ 1) =
(

1− δα

τ

)
x(n)+

δ

τ

(
ϕ
(
Winu

(
(n+ 1)δ

)
+ WDRx(n) + Wbacky(n)

))
,

(4)

y(n) = Ψ
(
Wout[x(n); u(nδ)]

)
. (5)
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To achieve optimal classification performance, consolidation, in terms of network

state dynamics was an important requirement. To achieve, this we introduced a fine-

grained ESN architecture.

2.7. Fine-grained echo state networks

Echo state networks transform the information at the input to an excited state, where

the outputs represent various class hypotheses formulated from the information in state

vectors [33, 35]. This is performed through operations and interconnections of the output

matrix to inputs, and subsequently, reservoir units to an output weight vector. Following

this, linear regression of targets on the input matrix is computed. Using this method

as a basis, an enhanced ESN architecture was developed, which achieved a high-level of

classification performance.

2.7.1. Fine-grained re-sequenced states A set of small leaky-integrator ESN modules

are generated, comprising p neurons, where p is the number of neurons (5 in this case)

and K sequences (K = 3), is considered an individual classifier. Initial observations

showed that 8 or less neurons of a modified cascaded-leaky-integrator structure presented

markedly different dynamic properties across their random instantiations. This is not

the case for larger ESNs, where inter-network differences became insignificant with

growing network size [36].

To consolidate the results from collections of small fine-grained leaky-integrator

modules, a cascaded leaky-integrator approach was employed. This required

segmentation of a single, large state matrix into a set of segregated K state sequences

of equal size, where K is a small integer. Each sequence reflects a few, equally-spaced

‘snapshot’s of state vector development when the ESN reads a sample. The regression

weights in output matrix Wout ( Eq. 5) are first computed for all segregated states and

form class hypotheses.

Class hypotheses H i
m are generated from 60 power spectral features, where m ∈

{1, · · · , 7} employed from training ensembles comprising 7 of 8 subjects used in our

study and over i ∈ {1, · · · , L} samples. This training structure was required for the

leave-one-subject-out (LOSO) cross validation training method, which was applied to

all classifiers used in this study.

Each K segregated training sample represented a sequence vector that was

concatenated to form a single state vector, where the number of mappings (connections)

from each K sequence to the final state vector was determined by m, where m is

the replication factor. Replication of state vector sequences provide a means whereby

key dynamic sequences can be more adequately accessed throughout the network, as

compared to basic leaky ESN structures. Given the coarse granularity of the sampled

input, which may be reflected in terms of phase errors resulting in misclassification of

feature vectors, we propose that small replicated (and distributed) state vector sequences

can reduce the incidence of misclassifications by introducing small temporal offsets to
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capture complete cues, resulting in improved performance.

Rather than use the entire state vector, dimensionality was further reduced through

the use of segmentation and re-sequencing of the state vector and input sequences.

This allowed smaller, fine-grain networks to compensate for ESNs short-term memory

capacity. A schematic of this segmentation and re-sequencing is depicted in Figure 3.
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x
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K2 (m = 2)

K3 (m = 1)

Re-
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x
3
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Figure 3. Schematic representation of the state vector x[n] and its reconstruction,

x′[n], using segmented sequences, K1, K2, and K3.

Therefore, each reservoir in the cascaded-leaky-integrator ESN structure can be

considered an individual detector for random, p-dimensional, non-linear, dynamic

features of the input signals. Consequently, joining all K extended state vectors creates

a series of p-neuron ESNs which can transform an input sequence into a static (p +

m) × K-dimensional feature. Here, m is the output vector of dimension M , and is the

contribution of all reservoir state components that vary across each of these network

instantiations.

The major advantage of this innovative architecture is that small networks,

i.e., those of order 5–8 cascaded-leaky-integrator-neuron structures, are capable of

outperforming nodal structures that are considerably larger in size. However, a

disadvantage of this approach is that, by increasing architectural complexity, the

possibility exists of over-fitting the network. This is particularly the case if global

network parameters and reservoir size are not chosen carefully.

2.7.2. Optimization and global network parameters The cascaded-leaky-integrator-

ESN formulation uses 5 parameters, 3 of which include scaling parameters to the

randomly-generated connection weights in the reservoir. The leakage factor or leaking

rate is the fourth and the most crucial optimization parameter for this model. Apart

from the scaling parameters and the leakage rate, the reservoir size can also be considered

as a fifth parameter that must be determined [37].
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Three scaling parameters are required for optimization: bias scaling, input scaling,

and spectral radius. Bias scaling is used to push the reservoir states closer to -1 or

+1, which corresponds to the non-linear region of the hyperbolic tangent function.

Therefore, for the higher values of the bias scaling, the reservoir tends to move towards

non-linearity [38]. Usually, scaling values set for the bias are either 0, 0.1, and 1.

Similar to the bias parameters, the leakage rate can have a substantial effect on the

fading of the reservoir dynamics and can push reservoirs with a spectral radius greater

than 1 into more stable conditions. Leakage rate is highly dependent on the input

frequency. For example, an input signal with a frequency component substantially

below the system cut-off frequency will not be dampened in a linear reservoir [39].

Lastly, reservoir size is related to the network memory and network model

complexity. It is identified as one of the most important factors which can influence

the overall performance of the system. These disadvantages can be overcome with the

use of the leaky-integrator neuron ESN structures as they can scale the reservoir size

quadratically. Therefore, a reservoir size is usually selected at a point where increasing

the size has little or no effect on the overall performance of the network.

The optimal global parameters used for the cascaded leaky-integrator ESN model

used for microsleep detection are given in Table 2.

Table 2. Cascaded leaky-integrator ESN global parameters for

optimal microsleep detection.

Parameter Value Parameter Value

Spectral radius 0.88 Leakage rate 0.05

Input scaling 0.2 Neurons/cluster 5–10

Bias scaling 0.5

The memory capacity of a network is strongly associated with the non-linearity of

the system [39]. The more non-linear the reservoir, the shorter the memory. Hence,

classification tasks that require a long memory usually require a very large reservoir or

a linear reservoir.

2.8. An ESN classifier for microsleep detection

To overcome the disadvantages associated with large, single-structure ESNs for complex

classification problems, we proposed an alternative solution for microsleep detection.

This includes the fusion of multiple, fine-grained individual networks into a combined

classifier model. Accordingly, class hypotheses from each classifier are combined and the

mean of the individual votes calculated for each classifier. Calculating the mean of the

vote combination is performed, as it averages vote fluctuations due to single classifier

biases [40].

Extending the fine-grained ESN methodology outlined in Subsection 2.7.1, a

combined (i.e., multiple) classifier approach is taken, with the aim of enhancing
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classification performance. The architecture shown in Figure 4 can be described as

follows.

Input 

vector 
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vector
 

Classifier 1

Classifier 2

Classifier v

∑
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ŷ1
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ŷ1
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Figure 4. Schematic of a combined classifier model of the cascaded leaky-integrator

ESN.

Artefact-removed EEG features discussed in Section 2.2 form the basis of input

vector u[n]. A series of baseline classifiers are formed from fine-grained ESN structures

during training. Each classifier used a discrete leaky ESN, as defined by Equations 4 and

5, and where the sigmoidal and linear activation functions were used for recurrent nodes

and readout layers, respectively. Integration and re-ordering of state vectors described

in Section 2.7 provides the basis for this refinement. For each classifier output m, vector

ŷmC is formed, where m ∈ {1 . . .M} and C ∈ {1 · · ·K}. This level-0 process is refined

using a stacking model, where combined outputs are passed to a meta-learner before

being combined to form output, ŷ[n], as shown in Figure 4.

The stacking framework depicted in Figure 5 consists of level-0 and level-1

generalizers. The level-0 models are formed by base classifiers which are trained using

the input data and the target output. The level-0 outputs are then presented as an

input to the level-1 generalizer (meta-learner) which is also trainable.
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Figure 5. Schematic of a level-0 classifier model of the cascaded leaky-integrator ESN.

The classification phase of the stacking system is shown in Figure 6. New

classification cases are generated for level-0 models, each producing a classification

value at their output. Subsequently, the resulting base model predictions are passed

to the level-1 model and combined linearly. The linear combination scales the output

of each model according to its weight, adds the new scaled model outputs, and applies

a threshold to the added model output to maximize classification performance.
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Figure 6. The internal structure of the meta-learner used in the stacking framework.

The outputs of the classifiers are denoted by C and m represent the number of level-0

models passed to the meta-learner before combining them to form an overall prediction.

In this stacking framework, some of the test data are held back and used to train

the level-1 model, while the level-0 models are trained on the rest of the data. Only after

all of the level-0 models are trained, the data that was held out is classified using the

level-0 models, which then form the training data for the subsequent level-1 model. As

the held-out data is not used to train the level-0 models, their predictions are unbiased

and, therefore, the level-1 training data accurately reflects the true performance of the

level-0 models.

For the classification phase of the stacking system, new cases are generated for level-

0 models, each producing a classification value at their output. Subsequently, resulting

base model predictions are passed to the level-1 model and are combined linearly. The

linear combination scales the output of each model according to its weight, sums outputs

of the new scaled model, and applies a threshold to the summed model output to obtain

an overall prediction.

Lastly, an 8-fold cross-validation approach has been adopted which ensures that all

of the training data are used to train the level-1 model. Therefore, each instance of the

training data is used in one test-fold of the cross-validation and predictions from the

models built from the corresponding training fold are used to build the level-1 training

set, thus generating a level-1 training set for each level-0 training set.

3. Results

Table 3 summarizes microsleep state detection performances of standard ESN, LSM,

stacked LDA, SVMP, and cascaded-leaky-integrator ESN classifiers, trained using PCA

meta-features on both the pruned and unpruned Study-A EEG datasets. These results

are averages of individual detection performances (phi correlation coefficient, φ) for each
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of the 8 subjects. The corresponding ROC and precision-recall graphs for the cascaded-

leaky ESN are shown in Figures 7 and 8, respectively.

Table 3. Detector performances of microsleep states on pruned and unpruned datasets

for standard ESN, stacked LDA, LSM, SVMP, and cascaded-leaky integrator ESN-

based classifiers.

Classifier Microsleeps

Unpruned EEG Study-A dataset, φ(Mean ± SE)

Standard ESN 0.30 ± 0.09

Stacked LDA 0.35 ± 0.05

LSM 0.38 ± 0.04

SVMP 0.42 ± 0.03

Cascaded-leaky ESN 0.44 ± 0.06

Pruned EEG Study-A dataset, φ(Mean ± SE)

Standard ESN 0.31 ± 0.09

LSM 0.40 ± 0.03

Stacked LDA 0.41 ± 0.06

SVMP 0.44 ± 0.06

Cascaded-leaky ESN 0.51 ± 0.07

The nonparametric Wilcoxon signed-rank test also confirmed that microsleep

detection by the cascaded-leaky-integrator ESN was statistically superior to that of

the previous LDA-based approach reported by Peiris [8] for the pruned Study A dataset

(Phi = 0.51 vs. 0.39, z = 2.54, p = 0.012 (2-tail)).

In summary, the model showed a mean correlation of φ = 0.51 ± 0.07 (AUC-ROC

= 0.91 ±0.04; AUC-PR = 0.47 ±0.09) and this result is the best achieved in this study.

4. Discussion

This is the first study to use an ESN architecture for detection of microsleep states.

Furthermore, using a novel modified ESN architecture we achieved an unparalleled

detection performance for microsleep detection on pruned data.

The results in Table 3 indicate that the detection performance of the cascaded-

leaky-integrator ESN classifier is higher than any other classifier scheme evaluated

for microsleep state detection (φ = 0.51). Standard ESN classifiers recorded the

lowest performance, which was somewhat expected due to the relatively low frequencies

characteristic of EEG signals. Furthermore, we found that the cascaded-leaky-integrator

ESNs had a lower value of φ on the unpruned datasets (φ = 0.44) than has been achieved

using joint entropy (φ = 0.50) [41]. Joint entropy was also used to achieve a 0.25-s

prediction of microsleep states at a mean of φ = 0.47 [12].
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Figure 7. This graph illustrates the ROC analysis, in terms of sensitivity and false

positive rate, plotted on the Y- and X-axis, respectively, and is based on the PCA

feature selection for a cascaded-leaky-integrator ESN classifier. The vertical bars

indicate standard error, and the colour bar on the right indicates which classification

threshold results at a certain point on the curve, i.e., from a pair of sensitivity and

false positive rate values.

Recall

0.0           0.2           0.4           0.6           0.8           1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
re

c
is

io
n

2
0

-
2

-
4

Figure 8. This graph indicates the AUC-PR analysis precision and recall, plotted

on the Y- and X-axis respectively, for the PPCA-based leaky integrator ESNs. The

vertical bars indicate standard error on both graphs. The colour scale on the right hand

side of the graph indicates which classification threshold results in a certain point on

the curve, i.e., from a pair of precision or recall values.

From the initial observations, it appeared that certain subjects had consistently

low detection values across multiple system configurations (3 classifiers and 6 feature
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reduction schemes). Even across the Study-A feature sets, certain subjects consistently

scored higher or lower than the average Phi values. Understanding the reasons for

successful individual subject classification was thought to provide insights into improving

overall detection performance. Consequently, 8-fold cross-validation was used to validate

within-subject classifier models on individual subjects. In this type of cross-validation

scheme, the data set is divided into 8 subsets and the holdout method was repeated 8

times. Each time, one of the 8 subsets was used as the test set and the other 7 subsets

were put aside to form a training set. Finally, the average error across all 8 trials is

computed.

Figure 9 provides a within-subject summary of system performance of a stacked-

LDA classifier using PCA for microsleep detection on the pruned Study-A EEG dataset.

This shows the effect of within-subject classifier variances on the overall lapse detection

system. The correlation values for each of the 8 subjects are depicted in terms of phi.

The highest phi values across all of the subjects on the pruned Study-A dataset were

seen in Subject 804 (φ = 0.78), while the lowest phi values were seen on Subject 810 (φ

= 0.09). Overall, there were 5 subjects (804, 809, 814, 817, and 820) who consistently

scored higher phi values than the mean phi of the overall lapse detector. The detection

performances on the remaining 3 subjects (810, 811, and, 819) was found to be sub-

optimal across all of the classifier modules evaluated.
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Figure 9. Comparison of within-subject mean detection performances for (a) Phi,

and (b) AUC-ROC, on the pruned dataset for the LDA classifier used in this study.

The results for each of the remaining four classifiers used in this comparison, as shown

in Table 3, showed consistent variances between subjects.

The ROC analysis presented interesting results as several of the classifier modules

with low phi values had reasonably high AUC-ROC values. This can be mostly

attributed to the large microsleep-responsive imbalance in the data, resulting in

reasonably high sensitivities and specificities (hence high AUC-ROC values) but lower

precisions due to false detections (hence lower AUC-PR values). For instance, although

demonstrating the lowest phi values across all the subjects, Subject 810 reported higher

true positive rates (TPR = 0.85) than subjects such as 817, 819 and 820 (TPR = 0.30,
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0.47 and, 0.71, respectively). Overall, the highest ROC values were reported in Subject

814 (AUC-ROC = 0.92) and the lowest in Subject 819 (AUC-ROC = 0.63).

All five of the classifiers evaluated used a stacking framework and showed a

substantial increase in phi values compared to their base (level-0) models. Stacked LDA

modules reported the second greatest increase in detector performance after cascaded-

leaky ESNs, with mean phi correlation of 0.41 compared to mean phi of 0.31 on the

single classifier modules.

Using eight level-0 models and a meta-learner, the cascaded-leaky-integrator ESN

model resulted in a mean phi correlation of 0.51, whereas lumping all the features

from seven subjects to create a single model and validating the lumped model on the

eighth subject resulted in a mean phi of 0.38. A reason for the performance of the

cascaded-leaky-integrator ESNs to be higher than any other model is considered to be

due to the leaky ESN approach was built into a multiple classifier scheme (similar to

mini-bagging) depicted in Figure 6. The individual classifier output from the cascaded-

leaky-integrator structures Figure 4 was later applied to the stacking framework shown

in Figure 5, making the overall classifier model robust. Therefore, the predictive outputs

of the cascaded-leaky ESN models are much stronger due to rigorous learning that occurs

due to these meta-learner models.

Generally, lumping of data prior to model formation resulted in the model being

biased towards certain subjects, particularly the ones with the most lapses, resulting

in a loss of generalisation ability. Therefore, to prevent such bias, a stacking approach

was applied. The stacking approach resulted in improved performance, as the level-0

models were adjusted by the meta-learner according to how well they generalized over

the training set. It was also expected that the mean detector performance would increase

proportionally with the size of the training set.

In summary, we believe the effectiveness of our classification approach is due to:

i) the type of neuron used, where principal features have relatively slow timescales

that are more compatible (“tuneable”) using leaky-integrator ESNs, ii) the remapping

of the state vector to provide each fine-grained network access to specific microsleep

features as a function of input vectors, i.e. “snapshots”, based on a set of hypotheses,

iii) the use of multiple, feature-based, fine-scaled networks which helps support sharp

adaptation to a training set, and iv) by effectively combining small (fine-gain) networks

from various layers within the stacking framework, such that a “cloud” vote will more

likely be directed towards the correct hypothesis.

5. Conclusion and Future Work

Results have been presented for microsleep detectors which were trained using the meta-

features from both linear techniques, non-linear techniques, and combinations thereof

for our pruned and unpruned Study A EEG dataset. The best detector performance (in

terms of the highest mean φ) was achieved using the detector model created using fine-

grained cascaded-leaky-integrator ESN models with 60 principal spectral components
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from the PCA for pruned data.

Ongoing and future work includes the development of a real-time microsleep

detection system and predicting the onset of microsleeps, as distinct to state detection.
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[37] M. Lukoševičius and H. Jaeger. On self-organizing reservoirs and their hierarchies. Technical

Report, Jacobs University, 2010.

[38] H. Jaeger. Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the

“echo state network” approach. GMD Report, 159, 2002.

[39] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An experimental unification of

reservoir computing methods. Neural Netw., 20(3):391 – 403, 2007.

[40] R. P. W. Duin. The Combining Classifier: To Train or Not to Train? In Proc. 16th Int. Conf.

Pattern Recogn., volume 2, pages 765–770, 2002.

[41] A. B. Buriro. Prediction of microsleeps using EEG inter-channel relationships. PhD thesis,

Electrical & Computer Engineering, University of Canterbury, 2018.


