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A B S T R A C T

Precise spatial information on soil properties in plantation forests is needed to improve soil nutrient management
and to sustain productivity. Soil nitrogen, phosphorus, potassium, organic matter, carbon and boron are impor-
tant determinants and indicators of soil fertility and quality. Particularly in forests, these soil properties are highly
variable in space and time. In this study, soils were sampled from three plantation forest sites in a dry sub-humid
region near Blenheim, New Zealand. Thirty sampling points were selected, and samples were collected from the
three sites across a range of slope and aspect strata. Soil samples were analysed for total carbon (totC), total nitro-
gen (totN), total phosphorus (totP), extractable potassium (exK) and hot-water extractable boron (exB). All exam-
ined soil properties varied significantly (p < 0.05) within sites. A set of fine-scale (5 m resolution) topographic
surfaces, that might explain this variability, were then interpolated or derived in geographic information system
software. Topographic surfaces included elevation, aspect, slope, profile and plan curvature, topographic position
index (TPI), topographic wetness index (TWI), wind exposition index (WEI), and morphometric protection index
(MPI). A generalised linear mixed-effect model was applied to develop predictive models. The study found all soil
properties were positively correlated with MPI and negatively correlated with the WEI. This indicated that soil
properties were correlated with shelter from surrounding relief and wind. Interestingly, within-site boron levels
were correlated with both profile curvature (PrCurv) and topographic wetness index, indicating boron movement
through the surface with the movement of soil moisture. The modelling approach in this study has potential for
application to sustainable management of plantation forests using spatially-precise estimates of soil fertility.

1. Introduction

Soil is a dynamic resource for growing crops which, in its nature and
properties, varies both spatially and temporally (Armson, 1977). The
spatial variability of soil properties can occur due to a variety of factors,
including pedogenic processes, climate, parent material, topography and
biotic and anthropogenic influences (Burrough, 1983; Trangmar et
al., 1986). There is copious published literature describing soil variabil-
ity, including nutrients, on different spatiotemporal scales (Boehm and
Anderson, 1997; Burrough, 1983; O'Rourke et al., 2015; Thomp-
son et al., 1997). Despite this, knowledge about local-scale variability
of soils is still sparse and requires further investigation. In particular,
there is a need to quantify soil variability within sites, the level at which
land managers make decisions such as choice of crop species and fer-
tiliser regimes

In some countries, production forestry is moving towards a preci-
sion approach that is used in agriculture (Bhakta et al., 2019; Dyck,
2003). Precision forest management requires fine-scale data covering
all aspects of forested ecosystems (Salekin et al., 2019). However,
one of the main hindrances to precision forestry is acquiring fine-scale
soil data, as soil surveys have traditionally overlooked variability within
map units (Basayigit and Senol, 2008; Lin et al., 2005). Soil map-
ping typically partitions the soil in the landscape into discrete enti-
ties using map units and field observations that are made using for-
mal knowledge and intuitive judgment (Lin et al., 2005). Conse-
quently, on a soil map, the map unit boundaries are clear lines, but of-
ten the quantitative variations within individual map units are described
vaguely (Lin et al., 2005). For example, in New Zealand, the Funda-
mental Soil Layers (FSL) are national-scale soil descriptions in which
a coarse polygon-based boundary delineates different soil units, each
polygon nominally containing homogeneous soil properties. But the FSL
are often erroneous, especially when they are used to describe fine-
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scale quantitative values of different physical and chemical properties
(Barringer et al., 2016; Pearse et al., 2015).

An alternative approach to national or regional soil surveying is digi-
tal soil mapping (DSM) (Lagacherie and McBratney, 2006; Minasny
and McBratney, 2016), which involves:

a. Inputs–field and laboratory observations, including legacy soil obser-
vations or soil maps, and new data from statistically-based sampling
techniques.

b. Processing–building mathematical or statistical models relating soil
observations with their environmental covariates or “scorpan” factors
(McBratney et al., 2003).

c. Outputs–spatial soil information systems, which can include outputs
in the form of rasters of prediction along with the uncertainty of pre-
diction.

“scorpan” factors are specified by the equation,
Sa = f (s, c, o, r, p, a, n) + ewhere Sa is a soil attribute which is a

function of soil (s), climate (c), organisms (o), relief (r), parent material
(r), age (a) and spatial position (n), and ‘e’ is spatially correlated residu-
als (McBratney et al., 2003). “scorpan” includes the five soil-forming
factors proposed by Jenny (1994) but allows for additional information
from ‘soil’ (prior knowledge of the soil, such as legacy soil observations)
as well as spatial position of the soil in the landscape.

Progress in digital soil mapping (DSM) has been driven by recent
developments in remote sensing and geospatial technologies. Impor-
tantly, it is now possible to acquire high-resolution land surface and
topographic data through digital terrain models (DTM) which show
fine-scale topographic relief, a critical “scorpan” variable. The poten-
tial for applying DTMs to make spatially-based predictions of soil prop-
erties was identified several decades ago by a number of authors (e.g.
Gessler et al., 1995; Moore et al., 1993). Digital terrain models
have been used to study: 1) large-scale spatial heterogeneity of differ-
ent soil characteristics in forest areas (Bogunovic et al., 2017; Liu et
al., 2011; Wang et al., 2009); 2) spatial variability of important soil
chemical characteristics, such as soil pH (Liu et al., 2013), organic car-
bon (Martín et al., 2016; Patton et al., 2019), apparent electrical
conductivity (ECa) (Bogunovic et al., 2017), and nitrogen and phos-
phorus content (Liu et al., 2013; Wang et al., 2009); and 3) effects
of different land-use management practices on various soil properties
(Martín-Peinado et al. 2016; Ade et al. 2018). Together, these studies
highlight the utility of remote sensing and geo-spatial analysis for digital
soil mapping.

In contrast to the large-scale studies reported above, research stud-
ies focussing on within-site variability of soil properties for both agricul-
tural and forest soils are infrequent. However, the potential for applying
DTMs to make spatially-based predictions of forest soil properties has
been identified for some time now (Thwaites and Slater, 2000). Using
DTMs, Ryan et al. (2000) empirically tested the effects of topography
and environment on soil carbon and phosphorus at both the small-catch-
ment (270 ha) scale and regional scale in south-eastern Australia. Sim-
ilarly, Murphy et al. (2011) analysed within-catchment variability of
forest soil properties in a 40 ha catchment in Alberta, Canada.

An important constraint to studying soil properties in forests is the
cost and difficulty of both soil sampling and sample analysis. Typically,
forest areas have poor access, mainly due to topography and under-
growth. Therefore, it is time-consuming to carry out intensive field soil
sampling. In addition, forests are often located in hill country and steep-
lands, with a high degree of variation in soil properties across a land-
scape. Altogether these result in a high cost of sampling, to which is
added the cost of processing and analysing soil samples (Dai et al.,
2018; Martín-Peinado et al., 2016). Furthermore, conventional soil
survey methods are biased towards agricultural sites, and do not ac

count for issues such as sampling sites obstructed by large rocks and
woody roots, and localised effects of individual trees on soil properties
(O’Connell et al., 2000). There is a need for methods that allow spa-
tial predictions of forest soil properties to be made from relatively few,
because expensive and difficult, samples.

Most studies of spatial variability of soil nutrients are based on em-
pirical and geostatistical approaches (Bogunovic et al., 2017; Guan
et al., 2017; Martín et al., 2016). Geostatistical approaches such as
ordinary and co-kriging have proven useful in previous studies (Guan
et al., 2017; Moore et al., 1993; Nourzadeh et al., 2012); how-
ever, they rely on large datasets of intensively measured values over
the area of interest. The requirement for intensively measured large
datasets can be challenging in studies of forest soils due to the aforemen-
tioned high costs and sampling difficulties. In addition, geostatistical ap-
proaches are limited by their underlying datasets and do not account for
any prior knowledge of land management or soil-forming processes that
determine soil fertility. For these reasons, geostatistical methods requir-
ing large datasets are not easily applicable to forested landscapes. Nor
do approaches such as ordinary and co-kriging explain the underlying
processes determining soil variability, specifically at finer spatial scale.
Therefore, such approaches have little or no predictive capability for a
forested site.

There is a need, especially in forest management, for an alternative,
cost-effective model that can explain and predict the relationship be-
tween soil fertility and easily-measured site-specific topographic vari-
ables at a finer, within-site spatial scale. As such, the main research ob-
jectives of this study were to:

i. Determine whether a correlation exists between within-site topo-
graphic variables and soil properties, including soil nutrient (nitro-
gen, phosphorus, potassium, and boron) concentrations and also con-
centrations of soil carbon and organic matter.

ii. Provide a modelling framework, for predicting levels of soil nutrients
and soil carbon and organic matter based on fine-scale topography.

2. Materials and methods

2.1. Experimental sites

The three experimental sites were ex-pasture land situated in a
sub-humid climate zone near Blenheim, in the South Island of New
Zealand (Fig. 1). Sites A, B, and C have areas of 4.7, 3.7 and 2.2 ha
respectively. They are planted with Eucalyptus globoidea (Blakely) (Site
A) and Eucalyptus bosistoana (F. Muell) (Sites B and C) in monocultural
stands. Trees were established respectively in 2011, 2009 and 2012.
Therefore, at the time of this study they were 6, 8 and 5 years old, with
mean heights of 1.54 m, 4.88 m and 2.11 m, correspondingly. At time
of planting, the landscape was covered by low-producing pasture, which
was controlled with herbicide applied in 1-m diameter spots around
each tree immediately after establishment.

The study region is sheltered by high country to the west, south and
in some areas to the east, and it is one of the sunniest regions of New
Zealand (NIWA, 2017). Warm, dry and settled weather predominates
during summer, while winter days often begin with a frost, but are usu-
ally mild overall. Typical summer daytime maximum air temperatures
range from 20 °C to 26 °C but occasionally rise above 30 °C. Typical
winter daytime maximum air temperatures range from 10 °C to 15 °C
(NIWA, 2017). Predominant wind directions vary with local topogra-
phy and proximity to the coast (Chappell, 2016). High temperatures
are frequent in Blenheim and may be accompanied by dry Foehn winds
from the northwest. Mean annual rainfalls are 550 mm (near Sites A and
B) and 650 mm (near Site C) (NIWA, 2017).
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Fig. 1. Study site locations in the South Island of New Zealand.

The soils at these sites are Flaxbourne and Wither Hill soils and are
classified as Pallic soils under the New Zealand Soil Classification (Table
1). Pallic soils occur predominantly in the seasonally dry eastern parts
of the North and South Islands and the Manawatu region, and cover
approximately 12% of New Zealand (Hewitt, 2010). Parent materials
are commonly loess derived from schist or greywacke. Pallic soils have
pale-coloured, poorly-structured or massive subsoils, due to low con-
tents of iron oxides. Consequently, soils often have slow drainage and
limited rooting depth (Manaaki Whenua-Landcare Research, 2020)
which can be a limitation for growth of deep-rooting species such as
trees.

According to Watt et al. (2021), the trial sites are considered to
have low productivity for plantation forest growth, due mainly to soil
water deficits in summer and early autumn.

Table 1
Soil classification and representative profile description of three sites according to the New
Zealand Soil Classification (NZSB, 1968; Hewitt, 2010).

Sites Soil series
Class
name Representative profile description

A
and
B

Flaxbourne
Hill soils

Typic
Argillic
Pallic

15 cm dark-grey friable silt loam over 40 cm
olive-brown firm clay loam on pale olive-brown
clay loam, very hard when dry, overlying
mudstones

C Wither hill
soils

Argillic-
sodic
Fragic
Pallic

12 cm grey-brown firm-friable silt loam over
18 cm brown-yellow–brown massive silt loam,
firm, overlying gravels in a silt matrix.

2.2. Topographic data acquisition and processing

Digital terrain models for all sites were produced by carrying a
real-time kinetic geo-positioning system (RTK-GPS) on regularly-spaced
transect lines across each site. The system collected coordinates and el-
evations at five-metre intervals along the transects. The elevation points
were interpolated into a DTM of 5 m resolution, using an optimised in-
terpolation algorithm in ArcGIS (ESRI, Redlands, CA), as in Salekin et
al. (2018).

Next, surfaces for topographic variables were derived from the DTM
(Salekin et al., 2019). Each of these topographic variables are different
ways of describing the structure and shape of the topographic relief. The
topographic variables included elevation, aspect and slope (Travis et
al., 1975), profile and plan curvature (Heerdegen and Beran, 1982;
Zevenbergen and Thorne, 1987); topographic position index (TPI)
(Weiss, 2001); topographic wetness index (TWI) (Beven and Kirkby,
1979; Moore et al., 1991); wind exposition index (WEI) (Gerlitz
et al., 2015); and morphometric protection index (MPI) (Yokoyama
et al., 2005). All surfaces were interpolated or derived using ArcGIS
v.10.4 (ESRI, 2012) or the System for Automated Geoscientific Analysis
(SAGA) (Conrad et al., 2015). All the topographic variables for spe-
cific points are described in Table 2. In addition, detailed site-by-site
descriptive statistics of these variables are provided in Table S3.
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Table 2
Description of topographic variables used as independent explanatory variables for mod-
elling. Descriptions are based on Harris and Baird (2018), and the SAGA-GIS Tool Library
Documentation (v7.6.2).

Topographic
variables Description

Elevation
Aspect

Elevation above sea level in meters.
Compass direction in degrees.

Slope Steepness in degrees.
Profile
curvature
(PrCurv)

Curvature in the vertical (down-slope) plane. For the cell,
value < 0 when the surface is convex, >0 when the surface is
concave, zero when the surface is linear.

Plan
curvature
(PlCurv)

Curvature in the horizontal (cross-slope) plane. For the cell,
value < 0 when the surface is convex, >0 when the surface is
concave, zero when the surface is linear.

Topographic
Position Index
(TPI)

Value > 0 when the cell is higher than its surroundings, zero when
in a flat area or mid-slope and < 0 when lower than its
surroundings.

Topographic
Wetness
Index (TWI)

Greater values correspond to increasing surface wetness Values are
relative to rest of study area, can be < 0

Wind
Exposition
Index (WEI)

Value < 1 indicates wind-shadowed areas, value > 1 indicates
areas exposed to wind.

Morphometric
Protection
Index (MPI)

Analyses the immediate surrounding of each cell up to a given
distance and evaluates how the relief protects it. Value > 0 when
the cell is protected and < 0 when it is not.

2.3. Soil analysis sampling and data preparation

To cover a wide range of site characteristics, a stratified random sam-
pling design was employed. Each of the three experimental sites was
stratified by a combination of aspect and slope. Mainly, classifying by
top, middle and toe slope, and then masking with associated dominant
aspects, resulting in three main strata for each site. Then, a total of thirty
sample collection points (ten points at each site) was randomly assigned
to those strata. The stratification and random point generation were un-
dertaken in ArcGIS (ESRI, Redlands, CA). Point locations were exported
to a geographic positioning system (GPS) receiver, which was then used
to locate the sampling locations at each of the three experimental sites.

At each sampling location, a 1-m pit was dug in July 2017 as part
of a wider soil study (pictures of typical profiles are in the supplemen-
tary material Figure S1 and S2). To collect the soil samples used in
this study, the organic litter layer was carefully removed, and then sam-
ples were collected from 0 to 10 cm depth. This depth was chosen to
allow comparison of soil analysis results with published New Zealand
studies of soil quality (e.g. Sparling et al., 2002). Three independent
soil samples of 500gm were taken at each sampling location, placed
in a light-proof plastic bag, stored in an insulated container and sent
to Hill Laboratories (https://www.hill-laboratories.com) for analysis im-
mediately after collection. The analyses included total carbon (totC, %
of soil dry weight), total nitrogen (totN, % of dry weight), total phos-
phate (totP, mg/kg soil dry weight), extractable potassium (exK, me/
100 g soil dry weight), and hot-water extractable boron (exB, mg/kg soil
dry weight) (details of analytical procedures are provided in the supple-
mentary material, Table S1).

2.4. Data preparation and description

Topographic variables (Table 3) and soil analysis (Fig. 2, Table 4)
were extracted for each sampling point location. Both sets of data were
processed and grouped for subsequent analysis into response and ex-
planatory variables. Here, the three soil samples data from each point
were averaged and the mean values of soil analyses were used as re

Table 3
Descriptive statistics of topographic attribute variables (n = 30) *.

Topographic variables, units Min. Max. Mean Std. Dev.

Aspect (°) 0.9 356.9 109.0 130.6
Slope (°) 7.7 30.4 21.5 6.3
Elevation (m. asl) 1.0 269.1 135.2 95.2
PrCurv −0.09 1.24 0.04 0.23
PlCurv −1.15 1.65 0.01 0.37
TPI −13.90 11.98 −2.22 6.52
TWI −1.98 6.90 1.70 2.46
WEI 0.89 1.18 1.02 0.08
MPI 0.04 0.15 0.12 0.03

*Min: minimum; Max: maximum; SD: standard deviation.

sponse variables, and the topographic variables were used as quantita-
tive explanatory variables.

2.5. Data analysis

First, an exploratory statistical analysis was carried out. Minimum
(Min), maximum (Max), mean, median, and standard deviation (SD) val-
ues were calculated for both dependent and explanatory variables. The
Kolmogorov-Smirnov (K-S) test together with skewness and kurtosis val-
ues were applied to test the assumption of normal variance of depen-
dent variables (Webster and Oliver, 2007). To assess skewness and
kurtosis, Kim (2013) and Mayers (2013) suggested a threshold of
z=±1.96 be used for samples smaller than 50, in conjunction with vi-
sual assessments.

Then an assessment for multicollinearity was performed for all ex-
planatory variables by using the variance inflation factor (VIF) (Fox and
Weisberg, 2018). A strong correlation was observed between eleva-
tion, slope and aspect, on one hand, and the other potential independent
variables on the other hand. Thus, procedures outlined by Cook and
Weisberg (2009) were employed to determine whether or not these
variables added any statistically significant information. Finally, eleva-
tion, slope and aspect did not add any such significant information, and
showed strong multicollinearity; therefore, they were excluded from the
model-building procedure.

Next, response variables were regressed against independent ex-
planatory variables. The dataset had a hierarchical structure (sampling
points were nested within sites) hence spatial autocorrelation was ex-
pected. The dataset was unbalanced as it had a non-normal distribution.
Therefore, a Generalised Linear Mixed-effects Model (GLMM) (Agresti,
2013; Pinheiro and Chao, 2006) was employed by partitioning unex-
plained variance and assuming a gamma distribution of errors with an
inverse link function. A restricted maximum-likelihood (REML) method
was used to estimate the GLMM parameters (Breslow and Clayton,
1993). Also, the Satterthwaite (1946) method was applied to de-
termine approximate denominator degrees-of-freedom for unbalanced
data. Study sites were considered as the random effect in the mixed
model. The inclusion of explanatory variables in the final models was
based on likelihood ratio tests, comparing the null model (i.e. that ex-
cluding all predictors) against final models in terms of the Bayesian in-
formation criterion (BIC) (Schwarz, 1978). The BIC indicates the sta-
tistical magnitude of difference between models, with lower BIC val-
ues indicating stronger empirical support for a model (Hoeting et al.,
1999). All the explanatory variables, as well as some interactions, were
included and tested on a rational basis.

Once the final models had been generated for each of the soil analy-
sis variables, linear regressions with zero intercept were performed be
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Fig. 2. Measured soil analysis values at three different sites. Box-whisker plots show median of data, half-violin plots show data distribution and red-lines indicate minimum crop require-
ment thresholds (Kay and Hill, 1998; Salekin et al., Unpublished data; Sparling et al., 2008). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 4
Descriptive statistical analysis for soil analysis variables.*

Nutrients
(Unit) Min. 25% Median 75% Max. Mean SD

totN (%) 0.14 0.16 0.20 0.22 0.35 0.20 0.05
totP (mg/kg) 183 367.3 425.0 491.3 534 423.3 83.0
exK (me/100 g) 0.18 0.51 0.84 1.01 1.26 0.77 0.32
totC (%) 0.93 1.37 1.80 2.36 4.27 2.09 0.89
exB (mg/kg) 0.27 0.50 0.66 0.76 1.30 0.65 0.23

*Min: minimum; Max: maximum; SD: standard deviation.

tween observed and predicted values and their slope and coefficient of
determination (R2) were used to measure biases of the models (with
an unbiased model having a slope of 1). The root mean square error
(RMSE), as a measure of goodness-of-fit (Huber, 2004; Stone, 1974),

was used as a ‘leaving-one-out’ or ‘jackknife’ method of cross-validation
(LOOCV) (Arlot and Celisse, 2010).

All statistical analyses were performed in the R statistical environ-
ment (R Development Core Team, 2020) by using RStudio as Inte-
grated Development Environment (IDE) (R Studio Team, 2020), “tidy-
verse” for data wrangling and plotting (Wickham, 2017), and “Metrics”
packages for model evaluation (Hamner et al., 2018). GLMMs were
obtained by using the “glmer” function from the “lme4” package (Bates
et al., 2014).

3. Results

3.1. Descriptive statistics

Descriptive statistics for the topographic attributes are shown in
Table 3. Mean aspect was 109.0°, indicating that study sites tended to-
wards easterly aspects (a random distribution of aspects would tend to-
wards a mean of 180°). Sites covered a range of altitudes and slopes,

5
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from near sea-level to over 250 m.asl and from gently rolling (7.7°) to
steep (30.4°).

Plan and profile curvatures (PlCurv, PrCurv) varied from somewhat
concave to convex, with means close to zero indicating that both types
of profile curvature were represented in the data. Similarly, Topographic
Position Index (TPI) covered a range of values, with the mean of close
to zero indicating a spread of both elevated and low-lying sites.

TWI ranged from −1.98 to 6.90, suggesting presence of steep ridge
sites as well as accumulation areas (basins, gullies). WEI and MPI values
suggest that many sites had some protection from exposure to wind, al-
though there were exposed sites with WEI > 1 and MPI close to zero.

The descriptive statistics for all soil analysis variables (totN, totP,
totK,totC and exB) over all three sites are shown in Table 4 and Fig. 2.
Fig. 2 and standard deviation values in Table 4 suggest a wide range
of variability, which was confirmed by the Kolmogorov-Smirnov test
(p ≤ 0.05) (Table S2). High skewness and kurtosis values confirmed the
non-normal distribution of the data (Table S2).

3.2. Nitrogen, phosphorus and potassium variability

Different topographic variables used here were found to correlate
with soil analysis variables. Total nitrogen (totN) was positively corre-
lated with MPI and TPI but negatively correlated with WEI (Table 5).
Total phosphorus (totP) was similarly correlated with MPI and WEI but
not with TPI. Extractable potassium (exK) was also negatively correlated
with WEI as well as with the PlCurv, which is an indicator of the hori-
zontal alignment of the surface curvature (Table 5).

3.3. Hot water extractable boron and total carbon

As with totN, totP and exK, topographic variables contributed to exB
and totC variability models. Total carbon (totC) was positively corre-
lated with MPI (Table 6). On the other hand, exB availability was sig-
nificantly influenced by an interaction between TWI and PrCurv (Table
6). A topographic location with a higher profile concavity presented a
strong correlation between exB and TWI. However, this relationship be-
came weaker with increasing profile convexity (Fig. 3).

3.4. Generalised linear Mixed-effect models (GLMMs)

All the models estimating using the GLMM procedure performed
with high precision and low bias. Only models for totN and exB soil
analysis values showed a negative bias: −4.751 and −1.060, respec-
tively. This means that all other soil analysis models were slightly over-
predicting, whereas the totN and exB models were underpredicting. Be-
sides, RMSE of almost all the soil analysis models indicated minimal
errors, except exK, which doubled from fitting (1.239) to validation
(3.203) (Table 7). Most of the models predicting soil analysis variables
showed a percentage of variance in data (i.e. R2) that was higher than
50%. However, an R2 of 0.336 and RMSE value of 431.113 indicated the
totP model did not adequately predict soil analysis values. Overall, the
effect of topographic variables was important in explaining within-site
variation in soil analysis variables (Table 7).

Table 5
Coefficients of generalised linear mixed-effect models for nitrogen, phosphorus and potassium. See Table 2 for abbreviations.

Target
Fixed effects Nitrogen (totN) Phosphate (totP) Potassium (exK)

Est. SE t Sig. Est. SE t Sig. Est. SE t Sig.

Intercept 4.99215 1.02 4.88 *** 0.0024785 0.01 6.16 *** 3.043168 0.72 4.25 ***
MPI 28.88354 6.60 4.37 *** 0.0090198 0.01 3.12 ** – – – –
TPI 0.04681 0.02 2.07 * – – – – −0.017045 0.01 −1.78 NS
WEI −3.28001 1.04 −3.14 ** −0.0010229 0.01 −2.63 ** −0.953393 0.37 −2.55 *
PlCurv – – – – – – – – 4.161528 2.09 1.99 *
Random effect
Site intercept 0.19746 0.028 – – 3.831e -08 2.470e -02 – – 0.1867 0.06 – –

Note: Est. = Estimate; SE = Standard Error; Sig. = Significance level (*** = p < 0.001; ** = p < 0.01; * = p < 0.05; NS = p ≥ 0.05).

Table 6
Coefficients of generalised linear mixed-effect models for organic matter, total carbon and hot-water extractable boron. See Table 2 for abbreviations.

Target
Fixed effects Carbon (totC) Boron (exB)

Est. SE t Sig. Est. SE t Sig.

Intercept 0.3892 0.13 2.94 ** 2.08983 0.55 3.79 ***
MPI 1.3279 0.74 1.79 NS
TWI – – – – −0.03722 0.06 −0.65 NS
PrCurv – – – – 1.88086 4.66 0.40 NS
TWI × PrCurv – – – – 2.49192 0.85 2.93 **
Random effect
Site intercept 0.007319 0.06 0.12966 0.05

Note: Est. = Estimate; SE = Standard Error; Sig. = Significance level (*** = p < 0.001; ** = p < 0.01; * = p < 0.05; NS = p ≥ 0.05).
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Fig. 3. Effect of interaction of profile curvature with topographic wetness index on within-site boron (exB) availability.

Table 7
Generalised linear mixed-effect model goodness-of-fit and validation statistics.

Soil Analysis Values Fitting Validation

Statistics Slope (bias) R 2 RMSE BIC Slope (bias) R 2 RMSE

totN (%) −4.751 0.520 4.823 −95.587 −4.733 0.452 4.795
totP (mg/kg) 423.319 0.337 431.113 358.143 421.124 0.337 429.057
exK (me/100 g 0.759 0.709 1.239 −0.918 1.732 0.708 3.203
exB (mg/kg) −1.060 0.594 1.290 −12.015 −1.061 0.596 1.292
totC (%) 1.564 0.615 1.849 60.200 1.591 0.555 1.872

Note: R 2 = coefficient of determination; RMSE = root mean square error; BIC = Bayesian Information Criterion.

4. Discussion

4.1. Within-site topographic factors

The soil analyses values of all the soil nutrients and carbon were in-
fluenced by topographic variables, which is consistent with the role of
relief as a “scorpan” factor in digital soil mapping. For example, Unger
et al. (2010) found that macro-nutrients varied with elevation transects
in tropical moist forests in north-eastern Ecuador. Zhang et al. (2016)
reported N variation in the central Sichuan Basin, China, and Guan et
al. (2017) found high spatial dependency of macro-nutrients in a bam-
boo forest, in Yong’an City, China.

However, there was still a significant amount of variation in soil
analysis values that was not explained by the topographic variables
or the random site effects in the model. There are a number of other
factors that can contribute to fine-scale variation in soil fertility. For
example, Dai et al. (2018) and Murphy et al. (2011) reported
that vegetation (forest type), anthropogenic (forest harvesting and slash
burning) and hydrological factors played a more important role than
topographic variables in the spatial variability of N, P and K availabil-
ity. All three sites in our study were located in retired pasture lands;

hence, within-site nutrient level variability may also be linked with his-
torical pasture growth or soil erosion (Hunter and Smith, 1995).

Most of the soil analysis variables driven by topography relate to
topographic shelter and drainage, for example, MPI, TPI, WEI, plan
and profile curvature. These variables represent spatial variation in mi-
cro-topographical conditions and their associated catenary processes
(Milne, 1936; Moore et al., 1993; Patton et al., 2019; Zeven-
bergen and Thorne, 1987), including erosion, transport and deposi-
tion of surficial material as well as mineralisation, leaching, transloca-
tion and accumulation of solutes in soil (Hall and Olson, 1991). So,
the topographic features in this study were indicative of underlying cate-
nary processes that can affect the measured soil parameters. For exam-
ple, soil carbon (which is directly correlated with soil organic matter
(OM)), had higher values at locations sheltered from the surrounding
relief (MPI). Cambardella et al. (1994) reported that surface spatial
structure determined soil OM levels in central Iowa soils, and similarly,
Patton et al. (2019) described finer-scale soil organic carbon distrib-
ution as a function of aspect and hillslope in a semi-arid catchment in
Idaho, USA; both results are in line with this study. This may have oc-
curred from the transport and deposition of OM by catenary processes,
for example, wind, or surface erosion. It may also reflect a higher rate
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of primary productivity and therefore OM accumulation in sheltered
lower slopes (Burke et al., 1995).

Similarly, soil nitrogen and phosphorus values were greater in lo-
cations with low WEI and high MPI, representing sites with lower ele-
vation and higher topographic shelter from wind. Millner and Kemp
(2012a); Millner and Kemp (2012b) observed variability in foliar
nutrients at local scales for plantations of several different Eucalyptus
species in New Zealand’s hill country and explained these as a result
of micro-climatic impacts on soil nutrient mineralisation processes. It is
possible that spatial variation in soil nutrient concentrations in our study
was driven partly by similar effects of micro-climate on weathering and
mineralisation in the soil.

Soil extractable potassium values decreased with higher WEI and
increased with higher plan curvature. Plan curvature represents hori-
zontal surface curvature, suggesting that potassium is transported from
higher relief and accumulates downslope. Guan et al. (2017) reported
similar findings, where a “nugget-to-still” ratio was applied to explain
the underlying catenary process of nitrogen, phosphorus and potas-
sium accumulation in Yong’an city, China. Furthermore, profile curva-
ture and topographic wetness index influenced boron availability inter-
actively within the site. Ahmad et al. (2012) and Moraghan and
Mascagni (2018) reported several factors influencing boron movement
along the soil surface, including moderate to heavy precipitation and
mass flow. This may be explained in the context of this study, where
boron moves through vertical curvatures (gullies) during wet periods
and was deposited as its bioavailability ceased under dry conditions
(Barber, 1995; Chang et al., 1983).

4.2. Generalised linear mixed-effect models

The GLMM is a conditional approach for hierarchical datasets where
error structure is partitioned based on the parameters, namely fixed and
random effects (Lee and Nelder, 2001). As the study’s data had a hi-
erarchical structure, the GLMM was applied by assigning fixed (topo-
graphic variables) and random (sites) effects at a finer spatial scale. In
addition, all the models in this study were validated through the LOOCV
procedure, which gives extra confidence and ensures model quality (Mi-
nasny et al., 2013). However, LOOCV cannot provide perfectly unbi-
ased estimates (Brus et al., 2011), and the limitation of having only
30 sample points cannot be ignored. A random-effects model with mar-
ginally specified regression structure can result from small sample num-
bers, which is more susceptible to bias and less precision (Heagerty and
Kurland, 2001). This may be the case for the totP model’s inadequate
prediction. Other than totP, the R2 values of the totN and exK models
were in line with those reported by Guan et al. (2017).

4.3. Soil chemical properties and precision silviculture

This study provided useful insights into properties and chemical
composition of forest soils at a finer spatial scale. This field-scale infor-
mation can contribute to soil management within the context of preci-
sion silviculture (Rubilar et al., 2018). This is particularly the case
for Eucalyptus plantations such as those growing on the three sites used
in this study. Eucalyptus species are widely cultivated as forest planta-
tions in many temperate, subtropical and temperate parts of the world,
and nutrient deficiencies have been recorded in almost all regions where
commercial Eucalyptus plantations have been established. The most fre-
quent deficiencies are in nitrogen, phosphorus and potassium but boron
and copper may also limit tree productivity and health (Dell et al.,
2001).

In this study, soil analysis results suggested that for many samples,
soil nutrients and carbon were at or below the threshold levels defined

for productive forest tree growth (Kay and Hill, 1998; Salekin et al.,
Unpublished data; Sparling et al., 2008). Prediction of where these
deficiencies occurred within the study areas would allow targeted ap-
plications of fertiliser, woody residue conservation after harvesting, and
other soil management techniques in order to remedy these deficiencies.
They can also assist with forest management decisions such as matching
of tree species to site conditions, or even the decision as to whether the
site is suitable for planting in trees.

5. Conclusion

Enhanced understanding of within-site variation in soil properties
at a finer spatial scale is useful for diverse and precise field applica-
tions. Generally, the variability of soil nutrients is dictated by complex
soil-forming processes, shaped in part by relief or topography. The mod-
els developed in this study suggested that soil nutrient variability as a
function of location in the landscape at a fine spatial scale deserves fur-
ther investigation. Moreover, causes of variability were shown to range
from micro-climatic conditions at the local scale, to the localised effects
of differential subsurface water flow caused by relief. The majority of
the variability in totN, exK, exB, totC and totP occurred as a result of
shelter from surrounding relief and exposure to wind in certain posi-
tions.

Despite the small size of the sample data, this study provided clear
and rational understanding of variability in soil analysis values, at a
fine-scale resolution. However, this study and the presented results are
site-specific. Therefore, further investigation by including a wider range
of soil types and regional climates needs to be considered to render these
results more generalisable.

Finally, all the nutrients and carbon are subject to similar processes
of leaching or accumulation and erosion or deposition. Nevertheless,
they respond to different sets of topographic variables, which needs fur-
ther investigation.
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