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Abstract 9 

10 

The fate of the carbon from degraded pollutants in biofiltration is not well understood. The issue of missing 11 

carbon needs to be addressed quantitatively to better understand and model biofilter performance. Elucidating 12 

the various carbon end-points in various phases should contribute to the fundamental understanding of the 13 

degradation kinetics and metabolic pathways as a function of various environmental parameters. This article 14 

reviews the implications of key environmental parameters on the carbon end-points. Various studies are 15 

evaluated reporting carbon recovery over a multitude of parameters and operational conditions with respect to 16 

the analytical measurements and reported distribution of the carbon end-points. 17 
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1 Introduction 21 

Biofiltration provides a clean, cost effective, and environmentally friendly technology using mass transfer and 22 

microbial oxidation to degrade organic pollutants (Devinny et al., 1999; Kennes, 2012). The biofiltration 23 

process is used effectively for treating large streams of air contaminated with low concentrations (<1000 ppm) 24 

of pollutants (Iranpour et al., 2005). Biofilters are packed bed bioreactors degrading pollutants through a 25 

complex and mixed culture of microorganisms forming a pollutant-degrading biofilm on the porous bed 26 

medium. It has been successfully applied to treat a wide spectrum of organic and inorganic pollutants as well as 27 

a means to abate odours (Gallastegui et al., 2011; Girard et al., 2011; Mudliar et al., 2010; Ryu et al., 2009). 28 

Biofilms are often growth restricted (e.g. - nutrient limited, etc.) especially in soil and various industrial 29 

processes such as biofiltration but possess the inherent ability to break down organic pollutants (Jorio et al., 30 

2000a; Li et al., 2002; Xi et al., 2006). Biofilms proliferating in these dynamic environmental conditions are 31 

commonly unsaturated, operating at the air/solid interface. Many attempts have been made to close the carbon 32 

balance in these systems; however 10-50% of the degraded carbon often remains untracked (Avalos Ramirez et 33 

al., 2008; Cox et al., 2001; Deshusses, 1997b; Girard et al., 2011; Morales, 1998; Song and Kinney, 2000). In 34 

spite of the importance of these growth restricted, unsaturated biofilm processes in engineered systems, certain 35 

aspects of their activity/metabolism remain unclear, particularly the ultimate fate of carbon entering these 36 

systems. 37 
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Commonly assumed carbon end-points for organic carbon substrates are CO₂, active biomass and extracellular 38 

polymeric substances (EPS) .Other plausible carbon end-points include soluble microbial products (Jiang et al., 39 

2010; Meng et al., 2009; Ni and Yu, 2011), soluble metabolites (Díaz et al., 2008), internal storage polymers 40 

(Reis et al., 2003) and volatile substances such as carbon monoxide (Haarstad et al., 2006). A common 41 

assumption is that the untracked carbon is utilised for microbial growth (biomass) but carbon extraction studies 42 

have not corroborated this hypothesis (Fürer and Deshusses, 2000; Song and Kinney, 2000; Vance et al., 1987). 43 

Accumulation of missing carbon within the system as biomass could clog up the reactor bed which is contrary to 44 

reports in non-growth systems (Deshusses, 1997b; Singh et al., 2006). Whilst microbes undoubtedly convert a 45 

portion of the organic substrates into soluble microbial products and other metabolites, their identities and 46 

relation to biodegradation of substrates remain to be fully investigated (Díaz et al., 2008; Kim et al., 2005b; 47 

Magbanua  and Bowers, 2006). In the gaseous effluents, no other compounds other than CO₂ and untreated 48 

substrates are normally reported. There are limited reports of carbon monoxide reported in the off gas of some 49 

biodegradation processes (Haarstad et al., 2006; Hellebrand and Schade, 2008), and the possibilities of other 50 

unreported biogenic emissions cannot be ruled out. Thus, the carbon balance in these systems is yet to be closed 51 

conclusively and the identity of the unaccounted carbon remains elusive. This review presents a compilation of 52 

the various investigations tracking carbon and presents a link to the critical environmental parameters 53 

influencing the conversion to different degradation end-points.  54 

2 Carbon balance and fate of pollutants 55 

The biofilms in oxidative microbial processes in the waste gas treatment industry degrade waste organic 56 

compounds (CxHy) to CO₂, biomass and other metabolites (Deshusses, 1997a). The particular biochemical 57 

reaction catalyzed by the microorganisms proceeds via different pathways depending on the pollutant and 58 

nutrient availability. Under nutrient-limited conditions, a typical oxidation reaction for a hydrocarbon leads to 59 

the production of CO2, water and heat which can be represented as follows: 60 

CxHy + bO2  x CO2 + c H2O + Heat       (1)61 

      62 

However, in the presence of sufficient nutrients, pollutant oxidation results in the formation of biomass along 63 

with other degradation products (Delhomenie et al., 2005) : 64 

aCxHy + bO2  + cNH3   CH1.8N0.2O0.5  +  dH2O + Heat + eCO2        (2)65 

             66 

Where, CH1.8N0.2O0.5   represents a generic formula for biomass. 67 

CO₂ production is often a good indicator of the biological activity of the microbes, and it complements the 68 

tracking of pollutant degradation for the evaluation of a biofilter’s performance efficacy (Bester et al., 2011; 69 

García-Peña et al., 2008). So it is common practice to monitor CO2 production but limited success has been 70 

achieved in exhaustively pinning down the carbon flux through the system to its final end-points in different 71 

phases. Usually CO2 measurement is for optimizing operating parameters to improve stability and process 72 

efficacy. Attempts to close the carbon balance is uneven, with 10 - 50 % of the degraded carbon missing 73 



 

 

(Avalos Ramirez et al., 2008; Cox et al., 2001; Deshusses, 1997b; Girard et al., 2011; Morales, 1998; Song and 74 

Kinney, 2000).  75 

A major portion of the degraded organic carbon is released as CO₂ (Jiménez et al., 2016; Jorio et al., 2000a; Li 76 

et al., 2002; Wang et al., 2012; Xi et al., 2006). From the CO2 measurements, the remaining carbon fraction is 77 

often assumed to be biomass and is estimated based on the difference between the degraded pollutant and the 78 

CO2 produced. This is because biomass measurements in operating biofilters are difficult. Researchers have 79 

estimated the carbon tied up in biomass directly through whole bed measurements combined with assumptions 80 

about the water content of wet biomass, representative sampling of the bed combined with the carbon content of 81 

cells, yield on nitrogen and chemical oxygen demand (COD)/carbon conversion etc. (Bester et al., 2011; Cox 82 

and Deshusses, 1999; Elmrini et al., 2004; Kroukamp and Wolfaardt, 2009). Therefore, the estimate of the 83 

carbon content of the biomass involves experimental uncertainties and assumptions, and the carbon mass 84 

balance closure in these highly complex systems remains difficult. Hence, there is a pressing need to track the 85 

unaccounted carbon in these biofilm processes through a holistic approach.  86 

Most biofilter research performs a molecular balance on the pollutant (e.g. toluene, methane) and explicitly 87 

focusses on the Consumption term (e.g. elimination capacity) as a function of a variety of system inputs. As 88 

there is rarely any generation term for the pollutant, the mass balance for the pollutant simplifies to: 89 

 Consumption = Input ­ Output                      (3) 90 

Measuring the CO2 allows an estimate of the accumulation of carbon in a biofilter by comparing the molar rate 91 

of CO2 production to the molar rate of carbon degraded for the pollutant (i.e. – a carbon balance). This assumes 92 

no carbon is leaving the biofilter in the liquid phase or in the gas phase in a compound other than the pollutant 93 

or CO2. 94 

 Carbon accumulation = x[a(C)in - b(C)out] –  xc(CO2)                                                                       (4) 95 

 a(C)in = molar flow rate of the pollutant entering the biofilter 96 

 b(C)out = molar flow rate of the pollutant exiting the biofilter 97 

 c(CO2) = molar flow rate of CO2 exiting the reactor (corrected for any CO2 present in the feed 98 

stream). 99 

 x = the number of carbon atoms in the molecular structure of the pollutant (1 in the case of CO2) 100 

It is this type of balance that is often used for estimates of biomass accumulation as compared to direct 101 

measurements.  Tracking the carbon fraction in all three phases should account for the carbon end-points in the 102 

system encompassing the degradation products as a whole. An illustration of how the carbon entering the system 103 

exits or accumulates within the system in the solid, gas and liquid phase is presented in Fig. 1. 104 

Figure 1: Flow chart identifying plausible carbon end-points in the system after toluene degradation. 105 



2.1 Gas phase end-points 106 

In the biofiltration process, the exiting gas stream is often analysed for CO₂ and un-reacted pollutants. The 107 

commonly used methods to analyse effluent gas streams includes gas chromatography with various detectors 108 

(TCD, FID) and CO₂ analysers. A few studies have attempted to analyse gas phase components by mass 109 

spectrometry but have seldom reported anything other than CO₂ and un-degraded organic pollutants (Domeño et 110 

al., 2010; Kastner and Das, 2005; Matteau and Ramsay, 1997; Møller et al., 1996). 111 

CO2 recoveries from various studies have ranged from 40-90% as a function of the mode of operation (nutrient-112 

limited or nutrient-addition) and variable operational parameters (Deshusses, 1997b; Grove et al., 2009; Jorio et 113 

al., 2005; Wang et al., 2012). Cox et al. (2001) reported higher mineralization of ethanol to CO2 at thermophilic 114 

conditions (60%) than for a mesophilic biofilter (46%). Carbon recovery as CO2 was 58% for the biofiltration of 115 

binary mixtures of BTEX compounds compared to degradation of single BTEX compounds which ranged from 116 

31-53% (García-Peña et al., 2008). Competitive inhibition for these closely related molecules could potentially 117 

impact the catabolic/anabolic pathways. Hence, the CO2 production pattern is an important component in 118 

defining the product ratios of degraded carbon end-points. However, the possibility of other unreported biogenic 119 

emissions in these systems cannot be ruled out. 120 

The effluent gas stream could possibly contain C-containing intermediates and dissolved. Carbon monoxide 121 

formation during solid organic waste degradation has been reported (Haarstad et al., 2006; Hellebrand and 122 

Schade, 2008). Normal mass spectrometry in biofiltration would easily miss this compound due to the similar 123 

molecular weight as N2.   124 

2.2 Solid Phase end-points 125 

In biofiltration, the pollutants enter the biofilm and are utilized by the acclimatized microbial community as a 126 

carbon and/or energy source (Cabrol et al., 2012). The carbon substrate, apart from being mineralized to CO₂ 127 

and water for energy production, is partially diverted towards microbial growth and some non-growth associated 128 

products (Leson and Winer, 1991). These constituents form the solid phase accumulation in the system.  129 

Studies delving into a carbon balance often assume the unaccounted carbon from the system is incorporated into 130 

the biomass or associated polymers and polysaccharides without robust quantification. But if the missing carbon 131 

reservoir were solely biomass or polysaccharides, this would cause clogging of the reactor beds which is not 132 

typically reported in growth-limited systems (Deshusses, 1997b; Singh et al., 2006). In nutrient-limited 133 

conditions, maintenance metabolism assumes significance, which means no net increase in active biomass 134 

(Cherry and Thompson, 1997). In actively growing systems with nutrient addition, bioreactor clogging is 135 

common and has been extensively covered in the literature (Delhoménie et al., 2003; Dorado et al., 2012; 136 

Maestre et al., 2007; Weber and Hartmans, 1996; Xi et al., 2006; Yang et al., 2010). However, limited clogging 137 

is occasionally reported indicating possible biological equilibrium between primary and secondary degraders 138 

(Diks et al., 1994). Although, surprisingly little quantitative knowledge exists on the composition of the biofilm 139 

components proliferating in these bioreactor systems.  140 



 

 

Biomass yield forms an important parameter in model development which can be quantified from carbon 141 

recovery estimates (Bordel et al., 2008; Grove et al., 2009). Various studies which assumed the fraction of 142 

degraded pollutant not appearing as CO2  was going to biomass reported biomass yields in the range of 0.17 – 143 

0.43 g biomass per g pollutant (Deshusses, 1997b; Grove et al., 2009; Jorio et al., 2000b; Singh et al., 2006). 144 

However, there is no exhaustive quantification and characterization of these carbon end-points.  145 

When a reactor is running on maintenance requirements under nutrient-limited conditions, a complete 146 

conversion of substrate into CO₂ is expected (Weber and Hartmans, 1996). However, the CO₂ fraction is 147 

invariably less than the theoretical estimate and carbon may be assimilated by the biomass in some form. 148 

Bacteria produce extracellular polymeric substances (EPS) which make up a major fraction of biofilms and play 149 

a very important part in biofilm structure, activity and performance (Sutherland, 2001). The major EPS 150 

components are comprised of polysaccharides and proteins in varying fractions but also include nucleic acids 151 

and lipids (Flemming and Wingender, 2010). EPS are secreted by the cells to enhance adhesion to substrates, 152 

contribute to the biofilm structure and influence microbial activity.  153 

Biofilms as dynamic systems respond to environmental conditions physiologically which leads to variations in 154 

EPS composition (Schmitt et al., 1995). The origins and composition of EPS are very complex. Therefore a 155 

number of factors may affect the EPS composition and quantity, such as the type of limiting substrate (electron 156 

donor and acceptor), nitrogen and phosphorous limitation, and desiccation (Nielsen et al., 1997). The C/N ratio 157 

of the influent also influences the composition of EPS in terms of carbohydrates and proteins (Durmaz and 158 

Sanin, 2003). Thus EPS has been related to the macro-scale characteristics of biofilms describing its microbial 159 

and structural properties (Ras et al., 2011) and its production is also linked to microbial growth and substrate 160 

utilization (Laspidou and Rittmann, 2002). Moreover EPS can be degraded by bacteria as a source of carbon and 161 

energy under substrate-limited conditions (Kommedal et al., 2001). However, carbon extraction studies of 162 

microbial biomass in these systems are limited but seldom show significant carbon accumulation in the biofilms 163 

(Fürer and Deshusses, 2000; Song and Kinney, 2000; Vance et al., 1987). In addition, microbes also 164 

accumulates internal storage polymers as cellular reserves often driven by environmental conditions (Poblete-165 

Castro et al., 2012; Reis et al., 2003; Xavier and Foster, 2007). Nutrient-limited systems rarely plug up which 166 

begs the question of other possible carbon sinks for biofilms in stationary phase degrading pollutants.  167 

2.3 Liquid phase end-points 168 

In addition to making active biomass and EPS, bacteria also convert a fraction of the organic substrate into 169 

soluble microbial products (SMPs) (de Silva and Rittmann, 2000; Namkung and Rittmann, 1986). SMPs are 170 

defined as soluble organic matter resulting from intermediates or end-products of substrate degradation and 171 

endogenous cell decomposition (Barker and Stuckey, 1999; Boero et al., 1991; Magbanua  and Bowers, 2006). 172 

They have a wide molecular weight distribution, structure and function (Barker and Stuckey, 1999; Magbanua  173 

and Bowers, 2006; Rosenberger et al., 2006). A fractionation study by Jiang et al. (2010) studying SMPs in an 174 

activated sludge membrane system found proteins and carbohydrates as the major components of SMPs. These 175 

SMPs are important because they are ubiquitously present and contribute to the soluble organic matter in 176 

biological treatment system effluent (de Silva and Rittmann, 2000; Rosenberger et al., 2006). 177 



 

 

The majority of SMP research has been done with pure cultures or wastewater treatment systems. A few waste 178 

gas biofiltration studies which attempted closing the carbon balance have also reported inorganic and organic 179 

carbon in the effluent liquid of the reactor, albeit at a variable percentage (3-39 %) depending on the mode of 180 

operation (growth and nutrient limited) (Bester et al., 2011; Cox et al., 1998; Girard et al., 2011; Kim et al., 181 

2005b). However, their identities and the relationship between substrate biodegradation and SMPs are yet to be 182 

determined conclusively in biofiltration. The accumulation of metabolic intermediates during volatile organic 183 

carbon (VOC) treatment can inflict a detrimental effect on the process culture and in some cases results in a 184 

more toxic form then the parent VOC being treated (Bordel et al., 2007). Duetz et al. (1994) described the 185 

toluene-catabolic (TOL) pathway for toluene in strains with the pWWO plasmids that results in toluene being 186 

first methyl-oxidized into benzyl alcohol which then leads to benzaldehyde, benzoic acid and catechol, these are 187 

then further cleaved at the meta-position. These metabolites have the potential to effect performance efficacy as 188 

they can be toxic to microbial communities (Ren and Frymier, 2002). Previously benzyl alcohol has been 189 

reported of having mutagenic effects on Pseudomonas putida 54G resulting in loss of toluene degradation 190 

capacity (Mirpuri et al., 1997).  191 

Furthermore, oxygen limitation within the biofilm can shift metabolism, leading to products other than CO2 192 

(Kim et al., 2005b; Wilshusen et al., 2004; Yang et al., 2002). Oxygen limitations in overloaded biofilms can 193 

lead to partially oxidized by-products such as carboxylic acids (Devinny and Hodge, 1995). Metabolic by-194 

products during anaerobic degradation of toluene have also been demonstrated but further studies are warranted 195 

in aerobic biofilters in identifying transient intermediates (Beller et al., 1992). CO₂ can also be retained in the 196 

liquid phase as carbonate (Gallastegui et al., 2011; Morales, 1998; Singh et al., 2006). However, the identities of 197 

the carbon fractions in the liquid phase of the reactor are yet to be ascertained quantitatively in a controlled 198 

situation, and therefore could be a significant sink for the degraded carbon in engineered systems.  199 

Thus, it is evident from the literature thus far, for carbon balances conducted on biofilters, a variable percentage 200 

of carbon remains unaccounted for in the system. Usually the emphasis has been largely on process optimization 201 

and this fundamental question has met with limited success in the sporadic attempts made in the literature. Table 202 

1 presents a compilation of the literature encompassing biofiltration of various VOCs, where the carbon mass 203 

balance has received attention.  204 

  205 



Table 1: Compilation of the literature encompassing carbon mass balance studies in biofiltration of various pollutants. 206 

 207 

No Pollutant Biofiltration 
Mode 

Packing 
 

Microbes Variables 
 

Carbon Balance: 
Endpoints (gC) 

Analytical Methods 
 

Reference 

1. 1 Methyl ethyl 
ketone 
(MEK) 

Biofilter: Non-
growth 

Compost + redwood 
chips + horse 
manure 

Indigenous 
 C-CO2: 82 ± 10 % Gas Phase: GC FID, 

CO2:  Chemosorb 
column with TCD. 

(Deshusses, 1997b) 

2. 2 Toluene Biotrickling: 
Growth 

Pall rings  P.corrugata ,  T. 
pyriformis , Vorticella 
microstoma, Klebsiella 
pneumoniae 

 C- CO2: 68 %, 
Biomass: 21 % 
Liquid: 6 % 

Gas Phase: GC FID & 
TCD, Biomass: 
Weighing of wet 
packing + elemental 
balance, Liquid: TOC 

(Cox and Deshusses, 
1999) 

3. 3 Toluene Biofilter: 
Growth 

Peat enriched with 
nutrients 

Acinetobacter lwoffi, 
Pseudomonas fluorescens, 
Pseudomonas putida, and 
Cla vibacter michigenense 

Toluene loads, 
ammonia 
addition 

C-CO2: 44.5 %, 
Carbonates: 14.3 %, 
Polymers: 32 %, 
Biomass: 9.2  % 

Gas Phase: GC TCD, 
Biodegradable fractions 
were analysed through 
a digestion protocol. 

(Morales, 1998) 

4. 4 Toluene Biofilter: Non-
growth 

Compost + bark and 
lava rocks 

Inoculated with 
recycled liquid from a 
toluene degrading 
biotrickling filter 

 C- CO2: 70 % C14 toluene: 
scintillation, Gas Phase: 
GC FID &TCD, 

infrared CO₂ analyser 

(Fürer and Deshusses, 
2000) 

5. 8 Toluene Vapour phase 
Bioreactor 
(VPB): 
Growth 

Porous silicate pellets Heterotrophic 
microbial population 
adapted to toluene 
 

Air flow: 
Unidirectional 
(UD), 
Directionally 
switching (DS) 

C- CO2: 63-66 %, 
Biomass: 34-37 % 
Liquid : >1  % 

Gas Phase: GC-FID 

and CO₂ analyser. 
Biofilm analysis: COD 

(Song and Kinney, 
2000) 

6.  Toluene, 
Benzene 

Biofilter: Non- 
growth 

Cylindrical activated 
carbon (CAC) 

Heterotrophic 
population: bacilli, 
spore bacilli, fungi 

Inlet load (IL) 
and gas flow rate 

Toluene - CO2: 64 % 
Benzene- CO2: 51 % 
Assumption: Biomass 
and solute 

Gas Phase: GC FID & 
HPLC, CO2 analyser 
and bacterial counts 

(Li et al., 2002) 



 

No Pollutant Biofiltration 
Mode 

Packing 
 

Microbes Variables 
 

Carbon Balance: 
Endpoints (gC) 

Analytical Methods 
 

Reference 

7.   
Ethanol 

 
Biofilter: 
Growth 

 
Polypropylene pall 
rings 

Mixed microbial 
consortia from 
active green 
waste and food 
compost. 

 
Temperature 

 
C-CO2: 60 % 

C-biomass: 14 % 
Unaccounted: 26 % 

 
Gas Phase: GC FID & 
TCD, 
Biomass: dry weight, 
TOC 

 
(Cox et al., 2001) 

8.  Toluene 
and 
acetone 

Trickle bed air 
biofilter 
(TBAB): 
Growth 

Coal particles Activated sludge Inlet load (IL) and Gas 
flow rate 

C- CO2: 90 % 
Biomass: 10 % 

Gas Phase: GC/FID, 
THC, and CO2 analyzer 
Biomass: SCOD 

(Chang and Lu, 2003) 

9.  Ethanol Biofilter: 
Growth 

Sugarcane bagasse  Candida utilis Inlet load (IL) and Gas 
flow 

C- CO2 : 16-76.3 % 
C-biomass: 2.8-5.7 % 
Acetaldehyde:1-7.8 %  
Ethyl acetate: 14-20 % 

CO2 : GC with TCD 
Cell # for biomass 
calculation 

(Christen et al., 2002) 

10.  Xylene Biofilter: 
Growth 

Spherical peat Microbial 
activated 
consortium 

Inlet load (IL) and Gas 
flow  

C-CO2: 82% 
Unaccounted: Assumed 
as biomass and solute 

Gas Phase: THA and 
CO2 analyser 

(Elmrini et al., 2004) 

11.  Styrene Biofilter: 
Growth 

Peat and Ceramic Pseudomonas sp. 
SR-5  

Inlet load (IL) and Gas 
flow 

CO2 and other 
degradation products: 
90.4 % 
Biomass: 9.2 % 
 

Gas Phase: GC/MS 
and FID, 
Biomass: Viable cell 
count and elemental 
analysis of carbon 
content 

(Jang et al., 2004) 

12.  Toluene TBAB: 
Growth 

Inorganic Aerobic 
microbial culture 
sourced from 
activated sludge  

Non-use /backwashing C-CO2: 63.2 % 
C-Liquid :15.5 % 
Unaccounted: 20.9 % 

Gas Phase: GC FID 
and TOC 

(Kim et al., 2005a) 



 

No Pollutant Biofiltration 
Mode 

Packing 
 

Microbes Variables 
 

Carbon Balance: 
Endpoints (gC) 

Analytical Methods 
 

Reference 

13.  Toluene, 
styrene, methyl 
ethyl ketone 
and methyl 
isobutyl ketone 

TBAB: 
Growth. 

Pelletized 
diatomaceous 
Earth 

Indigenous Interchanging VOC’s C_CO2: 63 % 
C-Liquid: 20 % 
Unaccounted: 15 % 

Gas Phase: GC FID 
and TCD. 
Liquid: TOC 

(Kim et al., 2005b) 

14.  Toluene Biofilter: 
Growth 

Wood chips + 
propylene spheres  

Activated sludge Inlet load (IL) and Gas 
flow 

CO₂: 83% approx. 
Explicit balance not 
attempted 

Gas Phase: GC FID 
and TCD, Leachate: 
TOC 
 

(Xi et al., 2006) 

15.  Octane Biofilter: 
Growth 

Compost and 
perlite 50/50(v/v) 

Mixed consortia 
adapted to 
Octane 

Inlet concentration 
plus a shutdown period 

CO2 recovery: 25 % 
Remaining carbon 
assumed as biomass. 

Gas Phase: GC FID 

and CO₂ analyzer 

(Grove et al., 2009) 

16.  Methane Biotrickling: 
Growth 

Inorganic packing NA* CH₄ and nitrate CO2 recovery: 82 % 
Biomass: 15 % 

Gas Phase:  THC and 

CO₂ analyzer 
Lixiviate: Ion 
chromatograph, UV 
detector, TOC 

(Girard et al., 2011) 

17.  Toluene and       
p-xylene 

Biofilter Inert material NA* Inlet load (IL) p-xylene - CO2: 89 % 

Toluene - CO2: 91 % 

Accumulation based on 
conversion of an 
empirical biomass 
formula to carbon 
accumulation rate: 5-8 % 

Gas Phase: GC FID 
and total hydrocarbon 
analyzer 
CO2: NDIR CO2 
analyzer, 
Leachate: TOC 
analyzer 
 

(Gallastegui et al., 
2011) 

18.  Toluene Biotrickling: 
Growth 

Granular activated 
carbon (GAC) 

Activated sludge Concentration, gas 
flow rate and 
temperature (55 ᵒ C 
and ambient) 

C in CO2: 69 % 
C in biomass: 30.5 % 

Gas Phase: GC FID 

and CO₂ analyzer. 
Leachate: TOC 
analyzer 
Fluorescence 
spectroscopy 

(Wang et al., 2012) 



 

No Pollutant Biofiltration 
Mode 

Packing 
 

Microbes Variables 
 

Carbon Balance: 
Endpoints (gC) 

Analytical Methods 
 

Reference 

19.  Formaldehyde Biotrickling: 
Growth 

Perlite Leachate from 
previously 
degrading 
formaldehyde 
biofilter 

Inlet load (IL) and 
ozone addition 

CO2: 27 % 
Leachate: 2.7 % 
Biomass: 2.2 % 

Gas Phase: GC FID 
Liquid: TOC analyzer and  
GC/MS/SPME 
Solid: TOC analyzer 
 

Maldonado-Diaz 
and Arriaga, 
2015) 

20.  Toluene Biotrickling: 
Growth 

Perlite  Activated sludge Inlet load (IL) CO2 : 76.3 % 
Leachate: 1 % 
Biomass: 8.9 % 

Gas Phase: GC FID & TC 
Liquid: TOC anlyzer 
Solid: Volatile solids 

combustion method (550C) 
 

(Jiménez et al., 
2016) 

21.  Cumene Biotrickling: 
Growth 

Loofa sponge Indigenous soil 
microbes from 
petroleum site 

Inlet load (IL) CO2 : 0.12 % 
Leachate: 70 % 
Biomass: 12.9 % 

Gas Phase: GC FID 
Liquid: TOC analyzer and  
GC-MS 
Solid: TOC analyzer 
 

(Shahi et al., 
2016) 

22.  Methane Biotrickling: 
Growth 

Inert packing  Activated sludge Pseudo steady state, 
transient state (shock 
loads), and starvation 
conditions. 
 

CO2 : 66-88 % 
 

Gas Phase: Hydrocarbon 
analyzer and CO2 analyzer. 
 

 (Ferdowsi et al., 
2016) 
 

23.  Tricholorethylene 
(TCE) and 
Methanol 

Biotrickling: 
Growth 

Diatomaceous 
earth pellets                

Fungi Biofilter I- (70% 
methanol to 30% 
TCE)  
Biofilter II- (80% 
methanol to 20% 
TCE) 

Carbon recovery: 
Biofilters I - 
88.45% ± 4.63% 
Biofilters II 
86.5% ± 4.35% 

Gas Phase: GC FID  and 
TC 
Liquid: TOC anlyzer 
Solid: Volatile solids 
combustion (Standard 
Methods 2540G) 
 

(Chheda and 
Sorial, 2017) 

24.  Toluene Differential 
Biofilter: 
Non -growth 

Soil and 
Biofilm 

Pseudomonas 
putida, 
endogenous soil 
micromes 

Bed configuration 
(Biofilm vs soil) 

Biofilm:  
CO2 : 79 ± 0.6  % 
Leachate: 10 ± 0.5% 
Biomass: 7.7 ± 1.5 % 
Soil: 
CO2 : 81 ± 3 % 
 

Gas Phase: GC FID 
Liquid: TOC analyzer  
Solid: TOC analyzer 
 

(Bordoloi and 
Gostomski, 2018) 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/diatomite
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/diatomite


 

3 Influence of environmental parameters on carbon-endpoints 208 

3.1 Temperature 209 

Like any biological system, temperature is a critical operational parameter for the biofiltration process 210 

(Delhoménie and Heitz, 2005; Mudliar et al., 2010). Temperature is a defining factor for microbial activity both 211 

in terms of proliferation and biodegradation rates in engineered systems (Devinny et al., 1999; Jin et al., 2007; 212 

Vergara-Fernández et al., 2012). The majority of the biofiltration reports are in the 15-40 °C temperature range 213 

(Delhomenie et al., 2005; Jin et al., 2007; Shareefdeen et al., 2009; Vergara-Fernández et al., 2012). 214 

Thermophilic biofiltration, while less well studied, has reported higher activity over the 45-70 °C range 215 

(Luvsanjamba et al., 2007; Mohammad et al., 2007; Montes et al., 2014). As biofilters are often exposed to 216 

fluctuating temperatures, tracking the temperature-mediated impact on degradation end-products provides a vital 217 

link to the mechanistic understanding of the microorganism’s physiological response. 218 

3.1.1 Temperature mediated response on substrate utilization 219 

Temperature variations in biofilters have a profound effect on the physical, biological and chemical aspects of 220 

biofiltration process parameters (Darlington et al., 2001; Veiga and Kennes, 2001). Temperatures below the 221 

optimal range inhibits microbial growth. It can structurally affect the lipids in the cell membrane hampering 222 

membrane transport machinery (D'Amico et al., 2003; Nedwell, 1999). Darlington et al. (2001) found a greater 223 

effect on substrate affinity than microbial activity at 20 °C. Higher temperatures can lead to drier conditions due 224 

to excess evaporation of bed moisture (Mohammad et al., 2007). Dry conditions can also favor fungal 225 

proliferation over bacteria (Nikolova and Nenov, 2005). Another potential problem is a  temperature increase 226 

can decrease the solubility of pollutants and oxygen  (Zhu et al., 2004). Zamir et al. (2014) reported a significant 227 

decrease in removal efficiency from 70-100% at 35 °C to 25% at 40 °C attributed to a decreased solubility of n-228 

hexane at high temperature. High temperature can also induce protein denaturation and cell death as observed by 229 

Kong et al. (2013). However, limited knowledge exists on the effect of temperature on microbial community 230 

and metabolic pathways for biodegradation of volatile organic compounds. Most biofiltration research focuses 231 

on the impact of temperature on activity and performance without correlating it to the degradation product 232 

ratios. 233 

Usually higher mineralization to CO2 at increased temperatures may be coupled with maintenance requirements 234 

which are expected to take precedence in a nitrogen-limited system with the assumption of no active growth. 235 

The flow of electrons from the substrate leads to energy generation with a part of it dissipated as heat (Xiao and 236 

VanBriesen, 2006). In a nutrient-limited system with a continuous source of carbon/energy, the active 237 

population can be driven by the requisite energy for maintenance without any active growth. The performance 238 

of two reactors degrading ethanol at mesophilic and thermophilic temperature was monitored by Cox et al. 239 

(2001). Although the removal efficiencies were similar for both the reactors, there was marked difference in the 240 

amounts of CO₂ production and biomass accumulation. Higher temperature showed greater mineralization to 241 

CO2 (60 %) as opposed to 46 % at ambient conditions. In another study treating toluene, 70% of the toluene was 242 

mineralized to CO2 at an operating temperature of 55 °C, which was higher than the 53% observed at ambient 243 

temperatures (20-30 °C) (Wang et al., 2012).  244 



 

 

Although temperature increases the metabolic activity of microbes, it can also simultaneously increase the 245 

maintenance requirements of the process culture (Cox et al., 2001). The microbes, as postulated to be in 246 

maintenance mode, must have sufficient energy to expend on maintenance requirements for the cells to survive 247 

through catabolic conversions. Without the supplement of nitrogen, the metabolic pathways are likely to be 248 

directed towards more energy generation unless there is an apparent advantage for the microbes to produce EPS. 249 

This is reflected in the higher CO2 recovery at the highest temperatures. 250 

Variation in mineralization pattern suggests microbial adaptation to different temperatures indicating a change 251 

in metabolic pathways which could affect the fate of carbon in the system. Tracking the temperature mediated 252 

response to degradation end-products could provide a vital link to the mechanistic understanding of the 253 

microorganism’s physiological response. Temperatures not favourable to the degraders may result in decreased 254 

substrate affinity and/or impaired microbial activity putting stress on the microbes (Kong et al., 2013; Zamir et 255 

al., 2014). Various stress response for microbes have been elucidated which includes production of internal 256 

storage polymers like PHA’s under nutrient limited conditions (Poblete-Castro et al., 2012). This could 257 

essentially alter the carbon endpoints in various phases. These difference in carbon recoveries as a function of 258 

temperature imply changing metabolic pathways for substrate utilization.  259 

3.1.2 Link between temperature and community to degradation products. 260 

In addition, variations in temperature can also affect the community structure evolution in a biofilter (Nadarajah 261 

et al., 2007; Wang et al., 2012) which can ultimately influence the various degradation end-products. Change in 262 

community structure after long term operations at different operating temperature has been reported 263 

(Mohammad et al., 2007). This suggests a significant effect of operating parameters such as temperature on 264 

microbial activity changes the dominant degrading community leading to temporal change in community 265 

structure. Kong et al. (2013) found differences in the microbial metabolic characteristics and  microbial 266 

community between thermophilic and mesophilic biofilters degrading toluene. However, the dissimilarity 267 

decreased with time over longer-term operation of up to 296 days. It was suggested that long term exposure can 268 

help in the proliferation of an aptly adapted community. Estrada et al. (2013) reported variations in 269 

mineralization for bacterial and fungal biofilters degrading a VOC mixture at similar conditions. Bacteria had a 270 

higher fraction of mineralization (63 %) compared to fungi (43 %). This could translate into different specific 271 

degradation rates across communities which are also likely to influence the fate of degradation products.  272 

Lu et al. (1999) found rod-shaped bacteria as the dominant community at 15 °C which changed to a 273 

predominance of bacilli and cocci at 50 °C in a biofilter treating BTEX vapors. Cox et al. (2001) found rod-274 

shaped bacteria, yeasts and fungi in moderate concentration at the high temperature biofilter operating at 53 °C 275 

implying the presence of thermophilic ethanol degrading community. They also observed greater microbial 276 

diversity in the biofilters at ambient temperature than at higher temperatures. The biofilter mineralised 60% of 277 

the ethanol at 53 °C as opposed to 46% at ambient temperature. Gallastegui et al. (2013) attributed a two-fold 278 

higher mineralization to CO2 for toluene than ethylbenzene to the dominant degrading community in the 279 

biofilter speculated to be fungi. However, the individual contribution of bacteria and fungi was not ascertained. 280 

They postulated a synergistic interaction between the bacteria and fungi which was previously reported to 281 

influence the mineralization of aromatic hydrocarbons (You-Qing et al., 2008). These adaptations to 282 



 

 

temperature can influence a change in community structure with substrate degrading capability. Evolution of a 283 

different community would imply different metabolic pathways, which could affect the fate of carbon. Kong et 284 

al. (2013) found lower metabolic activities in thermophilic biofilters compared to mesophilic biofilters during 285 

the early phases but showed comparable values over long term operation (181 days). This study gave interesting 286 

insights on the temperature-microorganism dynamics in biofilters. These temperature-mediated attributes have 287 

illustrated a direct impact on the eventual degradation of the pollutants by the microbial adaptation to the 288 

changing temperature. The limited results available show that higher temperatures increase VOC mineralisation. 289 

This indicates a temperature-driven phenomenon of regulating the diversion of substrate degradation end-points. 290 

However, detailed knowledge on the intrinsic relationship of temperature with other environmental parameters 291 

on the fate of the degraded carbon is still limited. 292 

 293 

3.2 Water 294 

Sufficient water availability is required for all  bioremediation including biofiltration (Coronado et al., 2014). In 295 

biofiltration, water availability in the bed can be measured using water potential (ψ). This is the energy status of 296 

the water in a system and is cumulatively comprised of osmotic potential (ψπ), matric potential (ψm), 297 

gravitational potential (ψg), pressure potential (ψp) and overburden potential (ψΩ) (Papendick and Campbell, 298 

1981). In biofiltration, matric potential tends to dominate at wet conditions but at low water contents osmotic 299 

potential can have an influence. Mobile water is held in the packing by capillary forces and gravitational forces. 300 

At saturation, the pores are completely filled with water resulting in zero matric potential (ψm) (Papendick and 301 

Campbell, 1981). As the water potential (ψ) decreases, water is drained out of the pores generating drier 302 

conditions and making it more difficult for the microorganism to utilize the water for their metabolic activity.  303 

3.2.1 Transient water content dynamics in biofiltration 304 

The water content of the packing material is critical to the microbial community and pollutant abatement in 305 

biofiltration. A change in water content in the packing materials is driven by both operational parameters and 306 

microbial kinetics. Both organic and inorganic packing materials have been used in biofiltration with varying 307 

hydrodynamic properties. Organic materials offers the advantage of residual inorganic nutrients and better water 308 

holding capacities whereas inorganic packing are more robust and possess higher surface areas (Dorado et al., 309 

2010). Drying of the packing material can occur due to incomplete humidification of inlet air stream or 310 

microbial heat generation (Morales et al., 2003). Sakuma et al. (2009) reported drying at the inlet port of a 311 

biofilter reduced its performance. Microbial oxidation is an exothermic process; the metabolic heat generated 312 

from pollutant oxidation can increase the bed temperature thereby lowering the bed water content (Gostomski et 313 

al., 1997; Mysliwiec et al., 2001). Thus maintaining optimal water content is vital to the microbial process as 314 

water related stress can induce physiological responses that can be detrimental to process efficacy. 315 

 316 

 317 



 

 

3.2.2 Microbial response to water stress 318 

Microbes exhibit an intricate set of physiological adaptions to transient hydration dynamics in unsaturated 319 

media like soil. Lower water potential can result is a drastic change to osmotic potential which directly affects 320 

the osmoregulation and cell turgor pressure. Cellular dehydration can also cause protein denaturation and 321 

structural damage to DNA. Drier conditions can also impair nutrient flux as water serves as a transport medium 322 

for nutrients to cells(Or et al., 2007a). Most bacteria produce extracellular polysaccharides (EPS) for their 323 

increased water holding capacity in low water content habitats (Holden et al., 1997; Van De Mortel and 324 

Halverson, 2004). Schimel et al. (2007) illustrated the microbial response via allocation of resources upon 325 

decreasing water potential. They proposed that during stressed conditions, microbes are compelled to produce 326 

protective molecules such as osmolytes and chaperones to maintain cellular integrity. 327 

Various studies have linked water stress response to specific gene expressions. Pseudomonas putida induces 328 

alginate synthesis in response to an imposed water stress of -0.04 MPa along with genes responsible for 329 

trehalose biosynthesis (Gülez et al., 2012). Johnson et al. (2011) found that for Sphingomonas wittichi strain 330 

RW1 at a lower water potential (-0.25 MPa), the expression of genes involved with trehalose and 331 

exopolysaccharide biosynthesis increased and the expression of genes responsible for flagella biosynthesis 332 

decreased. They also found significant changes in membrane fatty acid components. Dmitrieva and Burg (2007) 333 

illustrated damage to the protein and DNA synthesis pathways as direct response to water stress. 334 

Changing water potential influences the microbial community depending on the inherent acclimatization 335 

machinery at its disposal (Harris, 1981). Often water stress can shift the community structure with time. Sun et 336 

al. (2002) found an increase in bacterial population with increasing moisture content while the actinomycetes 337 

and moulds decreased. Lower surface colonization by P. putida KT2440 at negative water potentials was 338 

reported by Descene et al. (2008). They attributed this to limited bacterial motility due to shallow liquid films at 339 

the surface of the pores in the experimental system. Prenafeta-Boldú et al. (2012) reported sustained biofilter 340 

degradation by a mixed bacterial and fungal community in xerophilic conditions (water content was ~20%) 341 

dominated by fungi, especially Exophiala oligosperma. Fungi are known to thrive in low moisture conditions, 342 

which can influence the degradation end-products as the metabolic responses vary among different groups of 343 

microbial communities. 344 

3.2.3 Effect of matric potential on degraded carbon end-points 345 

Variation in CO2 recovery fractions with changing matric potential implies changing metabolic pathways due to 346 

the imposed water stress. Lower matric potential brings in physical constraints like impaired solute diffusivity 347 

and microbial motility owing to reduction in hydrated pathways (Or et al., 2007b). This could render the process 348 

biologically limited due to reduced water availability for cellular function. At the optimal matric potential 349 

requisite cellular functions for maintenance can be easily met through catabolic energy generation process 350 

leading to higher pollutant mineralization to CO2. This shift in substrate degradation products towards non-351 

mineralized fractions as a function of matric potential could have immense significance in elucidating carbon-352 

endpoints.  353 



 

 

Water stress could potentially trigger a stress response maintaining intracellular osmolyte concentration to 354 

maintain cell turgor pressure (Van De Mortel and Halverson, 2004). Carbon from the substrate is required for 355 

production of osmolytes. The generation of osmolytes has been well documented as a mechanism induced in 356 

response to environmental stress. But at lower matric potential, the drier environment can drier conditions could 357 

cause a temporary surge in accumulation and osmolyte production  (Kakumanu and Williams, 2014). In 358 

response to the  drier environment, the  microorganisms induce genes for producing important solutes like 359 

ectoine (LeBlanc et al., 2008), and  protective proteins like chaperonin (Katoh et al., 2004). 360 

Drier conditions at lower matric potentials can also facilitate fungal proliferation in biofilters because of their 361 

ability to thrive under such conditions (Gallastegui et al., 2013; Prenafeta-Boldú et al., 2008). It underlines the 362 

effect on microbial activity in response to transient gradients in water content in unsaturated surfaces commonly 363 

encountered in soils (Long and Or, 2009). However, the fate of degraded carbon is dependent on the dominant 364 

degrading community which dominates over time. Estrada et al. (2013) did a comparative study with a VOC 365 

mixture on bacterial and fungal biofiltration. They found higher VOC mineralization by bacteria (~63%) 366 

compared to fungi (~43%). Thus, the eventual fate of the degraded carbon was influenced by variations in 367 

matric potential and its associated effects on the microenvironment such as the microbial community. 368 

3.3 Effect of substrate concentration on the fate of degraded carbon 369 

Higher substrate concentrations can influence the active degrading community due to substrate toxicity(Song 370 

and Kinney, 2005). Kim et al. (2005b) found impaired degradation capability at higher inlet concentrations 371 

which can simultaneously alter microbial metabolism especially in a nutrient-limited system. Higher residual 372 

toluene can increase the stress on the process culture, which can lead to variation in degradation products from 373 

CO2 recovery to other non-mineralized fractions. Various stress responses for microbes have been elucidated 374 

which includes production of internal storage polymers like PHAs under nutrient limited conditions (Poblete-375 

Castro et al., 2012). Also, higher substrate concentrations might affect the non-degrading community if the 376 

concentrations are beyond the inhibitory range. Under favourable environmental conditions, they can contribute 377 

to increased mineralization by predation (Bhaskaran et al., 2008; Cox and Deshusses, 1999; Woertz et al., 378 

2002). 379 

Tracking the influence of interaction between environmental parameters on the fate of various degraded 380 

fractions can help to understand the process culture’s metabolic response. Under nutrient-limited conditions, the 381 

assumption is there is no net biomass growth in biofilters (Cherry and Thompson, 1997). Since CO2 recovery is 382 

never 100% as reported in the literature, it suggests a diversion of degraded carbon towards other products as 383 

influenced by the environmental parameters. For a nutrient-limited system, a plausible sink would be 384 

accumulation of EPS, storage polymers and soluble microbial products (SMP).  385 

The C/N ratio of the influent also influences the composition of EPS in terms of carbohydrates and proteins 386 

(Durmaz and Sanin, 2003). Moreover EPS can be degraded by bacteria as a source of carbon and energy under 387 

substrate limited conditions (Kommedal et al., 2001). However, carbon extraction studies of microbial biomass 388 

in these systems are limited but seldom show significant carbon accumulation in the biofilms (Fürer and 389 

Deshusses, 2000; Song and Kinney, 2000; Vance et al., 1987). Nutrient limited systems rarely plug up which 390 



 

 

begs the question of other possible carbon sinks for biofilms in stationary phase degrading pollutants using 391 

maintenance kinetics. There are also reports of microbes producing more EPS at lower temperatures (Le Bihan 392 

and Lessard, 2000). Less CO2 recovery is an indication of the culture possibly producing EPS and other internal 393 

storage polymers for survival and associated benefits of nutrient pooling (Xavier and Foster, 2007). This further 394 

illustrates the interdependence and effect of multiple environmental parameters on the fate of degraded carbon 395 

in these engineered systems. 396 

3.4 Physiological implications of non-mineralized fractions/biomass production 397 

Maintenance metabolism assumes significance over active growth in a biofilters which are nutrient limited 398 

(Grove et al., 2009). Changing environmental conditions can significantly impact maintenance requirements 399 

which can increase under stress conditions. Several studies have reported lower biomass yields at higher 400 

temperatures, attributing it to increased cellular maintenance requirements with temperature (Cho et al., 2007; 401 

Cox et al., 2001; Luvsanjamba et al., 2007). Nasrin et al. (2011) reported that lower matric potential also impairs 402 

biomass yield and can initiate a change in microbial community structure. So these stress conditions may affect 403 

the metabolic pathways by either a reduction in the fraction of the active community or impaired activity itself 404 

at specific set of conditions. Simultaneously, there can be a shift in community structure with changes in 405 

environmental parameters (Bhaskaran et al., 2008; Cabrol et al., 2012; Kong et al., 2013; Wallenstein and Hall, 406 

2012).  407 

For both growth and maintenance, the bioenergetics in the cells is mediated through the catabolic and anabolic 408 

reactions which happen separately. But they are intricately coupled with the total energy expenditure which is 409 

partitioned into biomass and maintenance functions (Russell and Cook, 1995). However cells are not capable of 410 

utilizing all the energy for cellular functions. Xiao and VanBriesen (2006) estimated a 60% average energy 411 

capture efficiency. The rest of the energy is dissipated into the system as heat. But this energy capture efficiency 412 

is not constant and is subject to change with different substrates, strains and environmental conditions. (Von 413 

Stockar et al., 2006) suggested that for low growth systems, only a small amount of biomass is formed per 414 

substrate consumed as opposed to a high growth system where biomass formed per substrate consumed would 415 

be high. Zafar et al. (2014) correlated the variance in maintenance energy expenditure to changing specific 416 

growth rates and yields cumulatively comprising of biomass and PHB production.  417 

Good empirical results identifying variance in biomass yields can also be interpreted through the energy 418 

dependent kinetics. At certain environmental conditions, more precisely at lower matric potential, higher 419 

substrate concentrations or higher temperature, the additional stress can increase the maintenance requirements. 420 

Without any driving force for biomass growth in the absence of nitrogen, resource allocation is most likely 421 

diverted towards metabolic pathways for production of storage polymers. So the variance in non-mineralized 422 

yield can be possibly attributed to the influence and interactions of environmental parameters which make it 423 

imperative for the microbial community to adapt to changing conditions. The observed yield changes can 424 

involve a shift in community structure with the predominance of a single community or co-existence of a 425 

diverse active community degrading toluene. Further metagenomics work is required to conclusively determine 426 

if there is a change in the active community fractions with changing conditions.  427 



 

 

 428 

 429 

4 Conclusions 430 

Knowledge of the carbon end-points could bridge the connection between functionalities, community 431 

structure and metabolic response if coupled with high throughput molecular biology techniques. It can be 432 

deduced from the literature that conclusive quantification of the fate across the range of pollutants is often 433 

lacking. Further review of the environmental parameters of the various studies provided a critical link to the 434 

variations in carbon end-points as a key component in regulating the degradation pathways. Robust empirical 435 

data on carbon recovery should serve as good framework for monitoring and deciding operating conditions 436 

based on the prior knowledge of factors influencing the end-points for stable and improved system efficacy. The 437 

influence of key parameters should reflect on the fate of the degradation products in response to the metabolic 438 

pathways of the active degrading community. So, unravelling the various facets of substrate utilization, carbon 439 

end-points in particular could lead to a better understanding of the fate of pollutants in the biofiltration of waste 440 

gases. In addition, insights on the interactions of various environmental parameters on substrate metabolism 441 

pertaining to various end products could help solve operational problems like clogging and start-up times.  442 
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Abstract 9 

 10 

The fate of the carbon from degraded pollutants in biofiltration is not well understood. The issue of missing 11 

carbon needs to be addressed quantitatively to better understand and model biofilter performance. Elucidating 12 

the various carbon end-points in various phases should contribute to the fundamental understanding of the 13 

degradation kinetics and metabolic pathways as a function of various environmental parameters. This article 14 

reviews the implications of key environmental parameters on the carbon end-points. Various studies are 15 

evaluated reporting carbon recovery over a multitude of parameters and operational conditions with respect to 16 

the analytical measurements and reported distribution of the carbon end-points. 17 

 18 
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 20 

1 Introduction 21 

Biofiltration provides a clean, cost effective, and environmentally friendly technology using mass transfer and 22 

microbial oxidation to degrade organic pollutants (Devinny et al., 1999; Kennes, 2012). The biofiltration 23 

process is used effectively for treating large streams of air contaminated with low concentrations (<1000 ppm) 24 

of pollutants (Iranpour et al., 2005). Biofilters are packed bed bioreactors degrading pollutants through a 25 

complex and mixed culture of microorganisms forming a pollutant-degrading biofilm on the porous bed 26 

medium. It has been successfully applied to treat a wide spectrum of organic and inorganic pollutants as well as 27 

a means to abate odours (Gallastegui et al., 2011; Girard et al., 2011; Mudliar et al., 2010; Ryu et al., 2009). 28 

Biofilms are often growth restricted (e.g. - nutrient limited, etc.) especially in soil and various industrial 29 

processes such as biofiltration but possess the inherent ability to break down organic pollutants (Jorio et al., 30 

2000a; Li et al., 2002; Xi et al., 2006). Biofilms proliferating in these dynamic environmental conditions are 31 

commonly unsaturated, operating at the air/solid interface. Many attempts have been made to close the carbon 32 

balance in these systems; however 10-50% of the degraded carbon often remains untracked (Avalos Ramirez et 33 

al., 2008; Cox et al., 2001; Deshusses, 1997b; Girard et al., 2011; Morales, 1998; Song and Kinney, 2000). In 34 

spite of the importance of these growth restricted, unsaturated biofilm processes in engineered systems, certain 35 

aspects of their activity/metabolism remain unclear, particularly the ultimate fate of carbon entering these 36 

systems. 37 
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Commonly assumed carbon end-points for organic carbon substrates are CO₂, active biomass and extracellular 38 

polymeric substances (EPS) .Other plausible carbon end-points include soluble microbial products (Jiang et al., 39 

2010; Meng et al., 2009; Ni and Yu, 2011), soluble metabolites (Díaz et al., 2008), internal storage polymers 40 

(Reis et al., 2003) and volatile substances such as carbon monoxide (Haarstad et al., 2006). A common 41 

assumption is that the untracked carbon is utilised for microbial growth (biomass) but carbon extraction studies 42 

have not corroborated this hypothesis (Fürer and Deshusses, 2000; Song and Kinney, 2000; Vance et al., 1987). 43 

Accumulation of missing carbon within the system as biomass could clog up the reactor bed which is contrary to 44 

reports in non-growth systems (Deshusses, 1997b; Singh et al., 2006). Whilst microbes undoubtedly convert a 45 

portion of the organic substrates into soluble microbial products and other metabolites, their identities and 46 

relation to biodegradation of substrates remain to be fully investigated (Díaz et al., 2008; Kim et al., 2005b; 47 

Magbanua  and Bowers, 2006). In the gaseous effluents, no other compounds other than CO₂ and untreated 48 

substrates are normally reported. There are limited reports of carbon monoxide reported in the off gas of some 49 

biodegradation processes (Haarstad et al., 2006; Hellebrand and Schade, 2008), and the possibilities of other 50 

unreported biogenic emissions cannot be ruled out. Thus, the carbon balance in these systems is yet to be closed 51 

conclusively and the identity of the unaccounted carbon remains elusive. This review presents a compilation of 52 

the various investigations tracking carbon and presents a link to the critical environmental parameters 53 

influencing the conversion to different degradation end-points.  54 

2 Carbon balance and fate of pollutants 55 

The biofilms in oxidative microbial processes in the waste gas treatment industry degrade waste organic 56 

compounds (CxHy) to CO₂, biomass and other metabolites (Deshusses, 1997a). The particular biochemical 57 

reaction catalyzed by the microorganisms proceeds via different pathways depending on the pollutant and 58 

nutrient availability. Under nutrient-limited conditions, a typical oxidation reaction for a hydrocarbon leads to 59 

the production of CO2, water and heat which can be represented as follows: 60 

CxHy + bO2  x CO2 + c H2O + Heat       (1)61 

      62 

However, in the presence of sufficient nutrients, pollutant oxidation results in the formation of biomass along 63 

with other degradation products (Delhomenie et al., 2005) : 64 

aCxHy + bO2  + cNH3   CH1.8N0.2O0.5  +  dH2O + Heat + eCO2        (2)65 

             66 

Where, CH1.8N0.2O0.5   represents a generic formula for biomass. 67 

CO₂ production is often a good indicator of the biological activity of the microbes, and it complements the 68 

tracking of pollutant degradation for the evaluation of a biofilter’s performance efficacy (Bester et al., 2011; 69 

García-Peña et al., 2008). So it is common practice to monitor CO2 production but limited success has been 70 

achieved in exhaustively pinning down the carbon flux through the system to its final end-points in different 71 

phases. Usually CO2 measurement is for optimizing operating parameters to improve stability and process 72 

efficacy. Attempts to close the carbon balance is uneven, with 10 - 50 % of the degraded carbon missing 73 



 

 

(Avalos Ramirez et al., 2008; Cox et al., 2001; Deshusses, 1997b; Girard et al., 2011; Morales, 1998; Song and 74 

Kinney, 2000).  75 

A major portion of the degraded organic carbon is released as CO₂ (Jiménez et al., 2016; Jorio et al., 2000a; Li 76 

et al., 2002; Wang et al., 2012; Xi et al., 2006). From the CO2 measurements, the remaining carbon fraction is 77 

often assumed to be biomass and is estimated based on the difference between the degraded pollutant and the 78 

CO2 produced. This is because biomass measurements in operating biofilters are difficult. Researchers have 79 

estimated the carbon tied up in biomass directly through whole bed measurements combined with assumptions 80 

about the water content of wet biomass, representative sampling of the bed combined with the carbon content of 81 

cells, yield on nitrogen and chemical oxygen demand (COD)/carbon conversion etc. (Bester et al., 2011; Cox 82 

and Deshusses, 1999; Elmrini et al., 2004; Kroukamp and Wolfaardt, 2009). Therefore, the estimate of the 83 

carbon content of the biomass involves experimental uncertainties and assumptions, and the carbon mass 84 

balance closure in these highly complex systems remains difficult. Hence, there is a pressing need to track the 85 

unaccounted carbon in these biofilm processes through a holistic approach.  86 

Most biofilter research performs a molecular balance on the pollutant (e.g. toluene, methane) and explicitly 87 

focusses on the Consumption term (e.g. elimination capacity) as a function of a variety of system inputs. As 88 

there is rarely any generation term for the pollutant, the mass balance for the pollutant simplifies to: 89 

 Consumption = Input ­ Output                      (3) 90 

Measuring the CO2 allows an estimate of the accumulation of carbon in a biofilter by comparing the molar rate 91 

of CO2 production to the molar rate of carbon degraded for the pollutant (i.e. – a carbon balance). This assumes 92 

no carbon is leaving the biofilter in the liquid phase or in the gas phase in a compound other than the pollutant 93 

or CO2. 94 

 Carbon accumulation = x[a(C)in - b(C)out] –  xc(CO2)                                                                       (4) 95 

 a(C)in = molar flow rate of the pollutant entering the biofilter 96 

 b(C)out = molar flow rate of the pollutant exiting the biofilter 97 

 c(CO2) = molar flow rate of CO2 exiting the reactor (corrected for any CO2 present in the feed 98 

stream). 99 

 x = the number of carbon atoms in the molecular structure of the pollutant (1 in the case of CO2) 100 

It is this type of balance that is often used for estimates of biomass accumulation as compared to direct 101 

measurements.  Tracking the carbon fraction in all three phases should account for the carbon end-points in the 102 

system encompassing the degradation products as a whole. An illustration of how the carbon entering the system 103 

exits or accumulates within the system in the solid, gas and liquid phase is presented in Fig. 1. 104 

Figure 1: Flow chart identifying plausible carbon end-points in the system after toluene degradation. 105 



2.1 Gas phase end-points 106 

In the biofiltration process, the exiting gas stream is often analysed for CO₂ and un-reacted pollutants. The 107 

commonly used methods to analyse effluent gas streams includes gas chromatography with various detectors 108 

(TCD, FID) and CO₂ analysers. A few studies have attempted to analyse gas phase components by mass 109 

spectrometry but have seldom reported anything other than CO₂ and un-degraded organic pollutants (Domeño et 110 

al., 2010; Kastner and Das, 2005; Matteau and Ramsay, 1997; Møller et al., 1996). 111 

CO2 recoveries from various studies have ranged from 40-90% as a function of the mode of operation (nutrient-112 

limited or nutrient-addition) and variable operational parameters (Deshusses, 1997b; Grove et al., 2009; Jorio et 113 

al., 2005; Wang et al., 2012). Cox et al. (2001) reported higher mineralization of ethanol to CO2 at thermophilic 114 

conditions (60%) than for a mesophilic biofilter (46%). Carbon recovery as CO2 was 58% for the biofiltration of 115 

binary mixtures of BTEX compounds compared to degradation of single BTEX compounds which ranged from 116 

31-53% (García-Peña et al., 2008). Competitive inhibition for these closely related molecules could potentially 117 

impact the catabolic/anabolic pathways. Hence, the CO2 production pattern is an important component in 118 

defining the product ratios of degraded carbon end-points. However, the possibility of other unreported biogenic 119 

emissions in these systems cannot be ruled out. 120 

The effluent gas stream could possibly contain C-containing intermediates and dissolved. Carbon monoxide 121 

formation during solid organic waste degradation has been reported (Haarstad et al., 2006; Hellebrand and 122 

Schade, 2008). Normal mass spectrometry in biofiltration would easily miss this compound due to the similar 123 

molecular weight as N2.   124 

2.2 Solid Phase end-points 125 

In biofiltration, the pollutants enter the biofilm and are utilized by the acclimatized microbial community as a 126 

carbon and/or energy source (Cabrol et al., 2012). The carbon substrate, apart from being mineralized to CO₂ 127 

and water for energy production, is partially diverted towards microbial growth and some non-growth associated 128 

products (Leson and Winer, 1991). These constituents form the solid phase accumulation in the system.  129 

Studies delving into a carbon balance often assume the unaccounted carbon from the system is incorporated into 130 

the biomass or associated polymers and polysaccharides without robust quantification. But if the missing carbon 131 

reservoir were solely biomass or polysaccharides, this would cause clogging of the reactor beds which is not 132 

typically reported in growth-limited systems (Deshusses, 1997b; Singh et al., 2006). In nutrient-limited 133 

conditions, maintenance metabolism assumes significance, which means no net increase in active biomass 134 

(Cherry and Thompson, 1997). In actively growing systems with nutrient addition, bioreactor clogging is 135 

common and has been extensively covered in the literature (Delhoménie et al., 2003; Dorado et al., 2012; 136 

Maestre et al., 2007; Weber and Hartmans, 1996; Xi et al., 2006; Yang et al., 2010). However, limited clogging 137 

is occasionally reported indicating possible biological equilibrium between primary and secondary degraders 138 

(Diks et al., 1994). Although, surprisingly little quantitative knowledge exists on the composition of the biofilm 139 

components proliferating in these bioreactor systems.  140 



 

 

Biomass yield forms an important parameter in model development which can be quantified from carbon 141 

recovery estimates (Bordel et al., 2008; Grove et al., 2009). Various studies which assumed the fraction of 142 

degraded pollutant not appearing as CO2  was going to biomass reported biomass yields in the range of 0.17 – 143 

0.43 g biomass per g pollutant (Deshusses, 1997b; Grove et al., 2009; Jorio et al., 2000b; Singh et al., 2006). 144 

However, there is no exhaustive quantification and characterization of these carbon end-points.  145 

When a reactor is running on maintenance requirements under nutrient-limited conditions, a complete 146 

conversion of substrate into CO₂ is expected (Weber and Hartmans, 1996). However, the CO₂ fraction is 147 

invariably less than the theoretical estimate and carbon may be assimilated by the biomass in some form. 148 

Bacteria produce extracellular polymeric substances (EPS) which make up a major fraction of biofilms and play 149 

a very important part in biofilm structure, activity and performance (Sutherland, 2001). The major EPS 150 

components are comprised of polysaccharides and proteins in varying fractions but also include nucleic acids 151 

and lipids (Flemming and Wingender, 2010). EPS are secreted by the cells to enhance adhesion to substrates, 152 

contribute to the biofilm structure and influence microbial activity.  153 

Biofilms as dynamic systems respond to environmental conditions physiologically which leads to variations in 154 

EPS composition (Schmitt et al., 1995). The origins and composition of EPS are very complex. Therefore a 155 

number of factors may affect the EPS composition and quantity, such as the type of limiting substrate (electron 156 

donor and acceptor), nitrogen and phosphorous limitation, and desiccation (Nielsen et al., 1997). The C/N ratio 157 

of the influent also influences the composition of EPS in terms of carbohydrates and proteins (Durmaz and 158 

Sanin, 2003). Thus EPS has been related to the macro-scale characteristics of biofilms describing its microbial 159 

and structural properties (Ras et al., 2011) and its production is also linked to microbial growth and substrate 160 

utilization (Laspidou and Rittmann, 2002). Moreover EPS can be degraded by bacteria as a source of carbon and 161 

energy under substrate-limited conditions (Kommedal et al., 2001). However, carbon extraction studies of 162 

microbial biomass in these systems are limited but seldom show significant carbon accumulation in the biofilms 163 

(Fürer and Deshusses, 2000; Song and Kinney, 2000; Vance et al., 1987). In addition, microbes also 164 

accumulates internal storage polymers as cellular reserves often driven by environmental conditions (Poblete-165 

Castro et al., 2012; Reis et al., 2003; Xavier and Foster, 2007). Nutrient-limited systems rarely plug up which 166 

begs the question of other possible carbon sinks for biofilms in stationary phase degrading pollutants.  167 

2.3 Liquid phase end-points 168 

In addition to making active biomass and EPS, bacteria also convert a fraction of the organic substrate into 169 

soluble microbial products (SMPs) (de Silva and Rittmann, 2000; Namkung and Rittmann, 1986). SMPs are 170 

defined as soluble organic matter resulting from intermediates or end-products of substrate degradation and 171 

endogenous cell decomposition (Barker and Stuckey, 1999; Boero et al., 1991; Magbanua  and Bowers, 2006). 172 

They have a wide molecular weight distribution, structure and function (Barker and Stuckey, 1999; Magbanua  173 

and Bowers, 2006; Rosenberger et al., 2006). A fractionation study by Jiang et al. (2010) studying SMPs in an 174 

activated sludge membrane system found proteins and carbohydrates as the major components of SMPs. These 175 

SMPs are important because they are ubiquitously present and contribute to the soluble organic matter in 176 

biological treatment system effluent (de Silva and Rittmann, 2000; Rosenberger et al., 2006). 177 



 

 

The majority of SMP research has been done with pure cultures or wastewater treatment systems. A few waste 178 

gas biofiltration studies which attempted closing the carbon balance have also reported inorganic and organic 179 

carbon in the effluent liquid of the reactor, albeit at a variable percentage (3-39 %) depending on the mode of 180 

operation (growth and nutrient limited) (Bester et al., 2011; Cox et al., 1998; Girard et al., 2011; Kim et al., 181 

2005b). However, their identities and the relationship between substrate biodegradation and SMPs are yet to be 182 

determined conclusively in biofiltration. The accumulation of metabolic intermediates during volatile organic 183 

carbon (VOC) treatment can inflict a detrimental effect on the process culture and in some cases results in a 184 

more toxic form then the parent VOC being treated (Bordel et al., 2007). Duetz et al. (1994) described the 185 

toluene-catabolic (TOL) pathway for toluene in strains with the pWWO plasmids that results in toluene being 186 

first methyl-oxidized into benzyl alcohol which then leads to benzaldehyde, benzoic acid and catechol, these are 187 

then further cleaved at the meta-position. These metabolites have the potential to effect performance efficacy as 188 

they can be toxic to microbial communities (Ren and Frymier, 2002). Previously benzyl alcohol has been 189 

reported of having mutagenic effects on Pseudomonas putida 54G resulting in loss of toluene degradation 190 

capacity (Mirpuri et al., 1997).  191 

Furthermore, oxygen limitation within the biofilm can shift metabolism, leading to products other than CO2 192 

(Kim et al., 2005b; Wilshusen et al., 2004; Yang et al., 2002). Oxygen limitations in overloaded biofilms can 193 

lead to partially oxidized by-products such as carboxylic acids (Devinny and Hodge, 1995). Metabolic by-194 

products during anaerobic degradation of toluene have also been demonstrated but further studies are warranted 195 

in aerobic biofilters in identifying transient intermediates (Beller et al., 1992). CO₂ can also be retained in the 196 

liquid phase as carbonate (Gallastegui et al., 2011; Morales, 1998; Singh et al., 2006). However, the identities of 197 

the carbon fractions in the liquid phase of the reactor are yet to be ascertained quantitatively in a controlled 198 

situation, and therefore could be a significant sink for the degraded carbon in engineered systems.  199 

Thus, it is evident from the literature thus far, for carbon balances conducted on biofilters, a variable percentage 200 

of carbon remains unaccounted for in the system. Usually the emphasis has been largely on process optimization 201 

and this fundamental question has met with limited success in the sporadic attempts made in the literature. Table 202 

1 presents a compilation of the literature encompassing biofiltration of various VOCs, where the carbon mass 203 

balance has received attention.  204 

  205 



Table 1: Compilation of the literature encompassing carbon mass balance studies in biofiltration of various pollutants. 206 

 207 

No Pollutant Biofiltration 
Mode 

Packing 
 

Microbes Variables 
 

Carbon Balance: 
Endpoints (gC) 

Analytical Methods 
 

Reference 

1. 1 Methyl ethyl 
ketone 
(MEK) 

Biofilter: Non-
growth 

Compost + redwood 
chips + horse 
manure 

Indigenous 
 C-CO2: 82 ± 10 % Gas Phase: GC FID, 

CO2:  Chemosorb 
column with TCD. 

(Deshusses, 1997b) 

2. 2 Toluene Biotrickling: 
Growth 

Pall rings  P.corrugata ,  T. 
pyriformis , Vorticella 
microstoma, Klebsiella 
pneumoniae 

 C- CO2: 68 %, 
Biomass: 21 % 
Liquid: 6 % 

Gas Phase: GC FID & 
TCD, Biomass: 
Weighing of wet 
packing + elemental 
balance, Liquid: TOC 

(Cox and Deshusses, 
1999) 

3. 3 Toluene Biofilter: 
Growth 

Peat enriched with 
nutrients 

Acinetobacter lwoffi, 
Pseudomonas fluorescens, 
Pseudomonas putida, and 
Cla vibacter michigenense 

Toluene loads, 
ammonia 
addition 

C-CO2: 44.5 %, 
Carbonates: 14.3 %, 
Polymers: 32 %, 
Biomass: 9.2  % 

Gas Phase: GC TCD, 
Biodegradable fractions 
were analysed through 
a digestion protocol. 

(Morales, 1998) 

4. 4 Toluene Biofilter: Non-
growth 

Compost + bark and 
lava rocks 

Inoculated with 
recycled liquid from a 
toluene degrading 
biotrickling filter 

 C- CO2: 70 % C14 toluene: 
scintillation, Gas Phase: 
GC FID &TCD, 

infrared CO₂ analyser 

(Fürer and Deshusses, 
2000) 

5. 8 Toluene Vapour phase 
Bioreactor 
(VPB): 
Growth 

Porous silicate pellets Heterotrophic 
microbial population 
adapted to toluene 
 

Air flow: 
Unidirectional 
(UD), 
Directionally 
switching (DS) 

C- CO2: 63-66 %, 
Biomass: 34-37 % 
Liquid : >1  % 

Gas Phase: GC-FID 

and CO₂ analyser. 
Biofilm analysis: COD 

(Song and Kinney, 
2000) 

6.  Toluene, 
Benzene 

Biofilter: Non- 
growth 

Cylindrical activated 
carbon (CAC) 

Heterotrophic 
population: bacilli, 
spore bacilli, fungi 

Inlet load (IL) 
and gas flow rate 

Toluene - CO2: 64 % 
Benzene- CO2: 51 % 
Assumption: Biomass 
and solute 

Gas Phase: GC FID & 
HPLC, CO2 analyser 
and bacterial counts 

(Li et al., 2002) 



 

No Pollutant Biofiltration 
Mode 

Packing 
 

Microbes Variables 
 

Carbon Balance: 
Endpoints (gC) 

Analytical Methods 
 

Reference 

7.   
Ethanol 

 
Biofilter: 
Growth 

 
Polypropylene pall 
rings 

Mixed microbial 
consortia from 
active green 
waste and food 
compost. 

 
Temperature 

 
C-CO2: 60 % 

C-biomass: 14 % 
Unaccounted: 26 % 

 
Gas Phase: GC FID & 
TCD, 
Biomass: dry weight, 
TOC 

 
(Cox et al., 2001) 

8.  Toluene 
and 
acetone 

Trickle bed air 
biofilter 
(TBAB): 
Growth 

Coal particles Activated sludge Inlet load (IL) and Gas 
flow rate 

C- CO2: 90 % 
Biomass: 10 % 

Gas Phase: GC/FID, 
THC, and CO2 analyzer 
Biomass: SCOD 

(Chang and Lu, 2003) 

9.  Ethanol Biofilter: 
Growth 

Sugarcane bagasse  Candida utilis Inlet load (IL) and Gas 
flow 

C- CO2 : 16-76.3 % 
C-biomass: 2.8-5.7 % 
Acetaldehyde:1-7.8 %  
Ethyl acetate: 14-20 % 

CO2 : GC with TCD 
Cell # for biomass 
calculation 

(Christen et al., 2002) 

10.  Xylene Biofilter: 
Growth 

Spherical peat Microbial 
activated 
consortium 

Inlet load (IL) and Gas 
flow  

C-CO2: 82% 
Unaccounted: Assumed 
as biomass and solute 

Gas Phase: THA and 
CO2 analyser 

(Elmrini et al., 2004) 

11.  Styrene Biofilter: 
Growth 

Peat and Ceramic Pseudomonas sp. 
SR-5  

Inlet load (IL) and Gas 
flow 

CO2 and other 
degradation products: 
90.4 % 
Biomass: 9.2 % 
 

Gas Phase: GC/MS 
and FID, 
Biomass: Viable cell 
count and elemental 
analysis of carbon 
content 

(Jang et al., 2004) 

12.  Toluene TBAB: 
Growth 

Inorganic Aerobic 
microbial culture 
sourced from 
activated sludge  

Non-use /backwashing C-CO2: 63.2 % 
C-Liquid :15.5 % 
Unaccounted: 20.9 % 

Gas Phase: GC FID 
and TOC 

(Kim et al., 2005a) 



 

No Pollutant Biofiltration 
Mode 

Packing 
 

Microbes Variables 
 

Carbon Balance: 
Endpoints (gC) 

Analytical Methods 
 

Reference 

13.  Toluene, 
styrene, methyl 
ethyl ketone 
and methyl 
isobutyl ketone 

TBAB: 
Growth. 

Pelletized 
diatomaceous 
Earth 

Indigenous Interchanging VOC’s C_CO2: 63 % 
C-Liquid: 20 % 
Unaccounted: 15 % 

Gas Phase: GC FID 
and TCD. 
Liquid: TOC 

(Kim et al., 2005b) 

14.  Toluene Biofilter: 
Growth 

Wood chips + 
propylene spheres  

Activated sludge Inlet load (IL) and Gas 
flow 

CO₂: 83% approx. 
Explicit balance not 
attempted 

Gas Phase: GC FID 
and TCD, Leachate: 
TOC 
 

(Xi et al., 2006) 

15.  Octane Biofilter: 
Growth 

Compost and 
perlite 50/50(v/v) 

Mixed consortia 
adapted to 
Octane 

Inlet concentration 
plus a shutdown period 

CO2 recovery: 25 % 
Remaining carbon 
assumed as biomass. 

Gas Phase: GC FID 

and CO₂ analyzer 

(Grove et al., 2009) 

16.  Methane Biotrickling: 
Growth 

Inorganic packing NA* CH₄ and nitrate CO2 recovery: 82 % 
Biomass: 15 % 

Gas Phase:  THC and 

CO₂ analyzer 
Lixiviate: Ion 
chromatograph, UV 
detector, TOC 

(Girard et al., 2011) 

17.  Toluene and       
p-xylene 

Biofilter Inert material NA* Inlet load (IL) p-xylene - CO2: 89 % 

Toluene - CO2: 91 % 

Accumulation based on 
conversion of an 
empirical biomass 
formula to carbon 
accumulation rate: 5-8 % 

Gas Phase: GC FID 
and total hydrocarbon 
analyzer 
CO2: NDIR CO2 
analyzer, 
Leachate: TOC 
analyzer 
 

(Gallastegui et al., 
2011) 

18.  Toluene Biotrickling: 
Growth 

Granular activated 
carbon (GAC) 

Activated sludge Concentration, gas 
flow rate and 
temperature (55 ᵒ C 
and ambient) 

C in CO2: 69 % 
C in biomass: 30.5 % 

Gas Phase: GC FID 

and CO₂ analyzer. 
Leachate: TOC 
analyzer 
Fluorescence 
spectroscopy 

(Wang et al., 2012) 



 

No Pollutant Biofiltration 
Mode 

Packing 
 

Microbes Variables 
 

Carbon Balance: 
Endpoints (gC) 

Analytical Methods 
 

Reference 

19.  Formaldehyde Biotrickling: 
Growth 

Perlite Leachate from 
previously 
degrading 
formaldehyde 
biofilter 

Inlet load (IL) and 
ozone addition 

CO2: 27 % 
Leachate: 2.7 % 
Biomass: 2.2 % 

Gas Phase: GC FID 
Liquid: TOC analyzer and  
GC/MS/SPME 
Solid: TOC analyzer 
 

Maldonado-Diaz 
and Arriaga, 
2015) 

20.  Toluene Biotrickling: 
Growth 

Perlite  Activated sludge Inlet load (IL) CO2 : 76.3 % 
Leachate: 1 % 
Biomass: 8.9 % 

Gas Phase: GC FID & TC 
Liquid: TOC anlyzer 
Solid: Volatile solids 

combustion method (550C) 
 

(Jiménez et al., 
2016) 

21.  Cumene Biotrickling: 
Growth 

Loofa sponge Indigenous soil 
microbes from 
petroleum site 

Inlet load (IL) CO2 : 0.12 % 
Leachate: 70 % 
Biomass: 12.9 % 

Gas Phase: GC FID 
Liquid: TOC analyzer and  
GC-MS 
Solid: TOC analyzer 
 

(Shahi et al., 
2016) 

22.  Methane Biotrickling: 
Growth 

Inert packing  Activated sludge Pseudo steady state, 
transient state (shock 
loads), and starvation 
conditions. 
 

CO2 : 66-88 % 
 

Gas Phase: Hydrocarbon 
analyzer and CO2 analyzer. 
 

 (Ferdowsi et al., 
2016) 
 

23.  Tricholorethylene 
(TCE) and 
Methanol 

Biotrickling: 
Growth 

Diatomaceous 
earth pellets                

Fungi Biofilter I- (70% 
methanol to 30% 
TCE)  
Biofilter II- (80% 
methanol to 20% 
TCE) 

Carbon recovery: 
Biofilters I - 
88.45% ± 4.63% 
Biofilters II 
86.5% ± 4.35% 

Gas Phase: GC FID  and 
TC 
Liquid: TOC anlyzer 
Solid: Volatile solids 
combustion (Standard 
Methods 2540G) 
 

(Chheda and 
Sorial, 2017) 

24.  Toluene Differential 
Biofilter: 
Non -growth 

Soil and 
Biofilm 

Pseudomonas 
putida, 
endogenous soil 
micromes 

Bed configuration 
(Biofilm vs soil) 

Biofilm:  
CO2 : 79 ± 0.6  % 
Leachate: 10 ± 0.5% 
Biomass: 7.7 ± 1.5 % 
Soil: 
CO2 : 81 ± 3 % 
 

Gas Phase: GC FID 
Liquid: TOC analyzer  
Solid: TOC analyzer 
 

(Bordoloi and 
Gostomski, 2018) 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/diatomite
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/diatomite


 

3 Influence of environmental parameters on carbon-endpoints 208 

3.1 Temperature 209 

Like any biological system, temperature is a critical operational parameter for the biofiltration process 210 

(Delhoménie and Heitz, 2005; Mudliar et al., 2010). Temperature is a defining factor for microbial activity both 211 

in terms of proliferation and biodegradation rates in engineered systems (Devinny et al., 1999; Jin et al., 2007; 212 

Vergara-Fernández et al., 2012). The majority of the biofiltration reports are in the 15-40 °C temperature range 213 

(Delhomenie et al., 2005; Jin et al., 2007; Shareefdeen et al., 2009; Vergara-Fernández et al., 2012). 214 

Thermophilic biofiltration, while less well studied, has reported higher activity over the 45-70 °C range 215 

(Luvsanjamba et al., 2007; Mohammad et al., 2007; Montes et al., 2014). As biofilters are often exposed to 216 

fluctuating temperatures, tracking the temperature-mediated impact on degradation end-products provides a vital 217 

link to the mechanistic understanding of the microorganism’s physiological response. 218 

3.1.1 Temperature mediated response on substrate utilization 219 

Temperature variations in biofilters have a profound effect on the physical, biological and chemical aspects of 220 

biofiltration process parameters (Darlington et al., 2001; Veiga and Kennes, 2001). Temperatures below the 221 

optimal range inhibits microbial growth. It can structurally affect the lipids in the cell membrane hampering 222 

membrane transport machinery (D'Amico et al., 2003; Nedwell, 1999). Darlington et al. (2001) found a greater 223 

effect on substrate affinity than microbial activity at 20 °C. Higher temperatures can lead to drier conditions due 224 

to excess evaporation of bed moisture (Mohammad et al., 2007). Dry conditions can also favor fungal 225 

proliferation over bacteria (Nikolova and Nenov, 2005). Another potential problem is a  temperature increase 226 

can decrease the solubility of pollutants and oxygen  (Zhu et al., 2004). Zamir et al. (2014) reported a significant 227 

decrease in removal efficiency from 70-100% at 35 °C to 25% at 40 °C attributed to a decreased solubility of n-228 

hexane at high temperature. High temperature can also induce protein denaturation and cell death as observed by 229 

Kong et al. (2013). However, limited knowledge exists on the effect of temperature on microbial community 230 

and metabolic pathways for biodegradation of volatile organic compounds. Most biofiltration research focuses 231 

on the impact of temperature on activity and performance without correlating it to the degradation product 232 

ratios. 233 

Usually higher mineralization to CO2 at increased temperatures may be coupled with maintenance requirements 234 

which are expected to take precedence in a nitrogen-limited system with the assumption of no active growth. 235 

The flow of electrons from the substrate leads to energy generation with a part of it dissipated as heat (Xiao and 236 

VanBriesen, 2006). In a nutrient-limited system with a continuous source of carbon/energy, the active 237 

population can be driven by the requisite energy for maintenance without any active growth. The performance 238 

of two reactors degrading ethanol at mesophilic and thermophilic temperature was monitored by Cox et al. 239 

(2001). Although the removal efficiencies were similar for both the reactors, there was marked difference in the 240 

amounts of CO₂ production and biomass accumulation. Higher temperature showed greater mineralization to 241 

CO2 (60 %) as opposed to 46 % at ambient conditions. In another study treating toluene, 70% of the toluene was 242 

mineralized to CO2 at an operating temperature of 55 °C, which was higher than the 53% observed at ambient 243 

temperatures (20-30 °C) (Wang et al., 2012).  244 



 

 

Although temperature increases the metabolic activity of microbes, it can also simultaneously increase the 245 

maintenance requirements of the process culture (Cox et al., 2001). The microbes, as postulated to be in 246 

maintenance mode, must have sufficient energy to expend on maintenance requirements for the cells to survive 247 

through catabolic conversions. Without the supplement of nitrogen, the metabolic pathways are likely to be 248 

directed towards more energy generation unless there is an apparent advantage for the microbes to produce EPS. 249 

This is reflected in the higher CO2 recovery at the highest temperatures. 250 

Variation in mineralization pattern suggests microbial adaptation to different temperatures indicating a change 251 

in metabolic pathways which could affect the fate of carbon in the system. Tracking the temperature mediated 252 

response to degradation end-products could provide a vital link to the mechanistic understanding of the 253 

microorganism’s physiological response. Temperatures not favourable to the degraders may result in decreased 254 

substrate affinity and/or impaired microbial activity putting stress on the microbes (Kong et al., 2013; Zamir et 255 

al., 2014). Various stress response for microbes have been elucidated which includes production of internal 256 

storage polymers like PHA’s under nutrient limited conditions (Poblete-Castro et al., 2012). This could 257 

essentially alter the carbon endpoints in various phases. These difference in carbon recoveries as a function of 258 

temperature imply changing metabolic pathways for substrate utilization.  259 

3.1.2 Link between temperature and community to degradation products. 260 

In addition, variations in temperature can also affect the community structure evolution in a biofilter (Nadarajah 261 

et al., 2007; Wang et al., 2012) which can ultimately influence the various degradation end-products. Change in 262 

community structure after long term operations at different operating temperature has been reported 263 

(Mohammad et al., 2007). This suggests a significant effect of operating parameters such as temperature on 264 

microbial activity changes the dominant degrading community leading to temporal change in community 265 

structure. Kong et al. (2013) found differences in the microbial metabolic characteristics and  microbial 266 

community between thermophilic and mesophilic biofilters degrading toluene. However, the dissimilarity 267 

decreased with time over longer-term operation of up to 296 days. It was suggested that long term exposure can 268 

help in the proliferation of an aptly adapted community. Estrada et al. (2013) reported variations in 269 

mineralization for bacterial and fungal biofilters degrading a VOC mixture at similar conditions. Bacteria had a 270 

higher fraction of mineralization (63 %) compared to fungi (43 %). This could translate into different specific 271 

degradation rates across communities which are also likely to influence the fate of degradation products.  272 

Lu et al. (1999) found rod-shaped bacteria as the dominant community at 15 °C which changed to a 273 

predominance of bacilli and cocci at 50 °C in a biofilter treating BTEX vapors. Cox et al. (2001) found rod-274 

shaped bacteria, yeasts and fungi in moderate concentration at the high temperature biofilter operating at 53 °C 275 

implying the presence of thermophilic ethanol degrading community. They also observed greater microbial 276 

diversity in the biofilters at ambient temperature than at higher temperatures. The biofilter mineralised 60% of 277 

the ethanol at 53 °C as opposed to 46% at ambient temperature. Gallastegui et al. (2013) attributed a two-fold 278 

higher mineralization to CO2 for toluene than ethylbenzene to the dominant degrading community in the 279 

biofilter speculated to be fungi. However, the individual contribution of bacteria and fungi was not ascertained. 280 

They postulated a synergistic interaction between the bacteria and fungi which was previously reported to 281 

influence the mineralization of aromatic hydrocarbons (You-Qing et al., 2008). These adaptations to 282 



 

 

temperature can influence a change in community structure with substrate degrading capability. Evolution of a 283 

different community would imply different metabolic pathways, which could affect the fate of carbon. Kong et 284 

al. (2013) found lower metabolic activities in thermophilic biofilters compared to mesophilic biofilters during 285 

the early phases but showed comparable values over long term operation (181 days). This study gave interesting 286 

insights on the temperature-microorganism dynamics in biofilters. These temperature-mediated attributes have 287 

illustrated a direct impact on the eventual degradation of the pollutants by the microbial adaptation to the 288 

changing temperature. The limited results available show that higher temperatures increase VOC mineralisation. 289 

This indicates a temperature-driven phenomenon of regulating the diversion of substrate degradation end-points. 290 

However, detailed knowledge on the intrinsic relationship of temperature with other environmental parameters 291 

on the fate of the degraded carbon is still limited. 292 

 293 

3.2 Water 294 

Sufficient water availability is required for all  bioremediation including biofiltration (Coronado et al., 2014). In 295 

biofiltration, water availability in the bed can be measured using water potential (ψ). This is the energy status of 296 

the water in a system and is cumulatively comprised of osmotic potential (ψπ), matric potential (ψm), 297 

gravitational potential (ψg), pressure potential (ψp) and overburden potential (ψΩ) (Papendick and Campbell, 298 

1981). In biofiltration, matric potential tends to dominate at wet conditions but at low water contents osmotic 299 

potential can have an influence. Mobile water is held in the packing by capillary forces and gravitational forces. 300 

At saturation, the pores are completely filled with water resulting in zero matric potential (ψm) (Papendick and 301 

Campbell, 1981). As the water potential (ψ) decreases, water is drained out of the pores generating drier 302 

conditions and making it more difficult for the microorganism to utilize the water for their metabolic activity.  303 

3.2.1 Transient water content dynamics in biofiltration 304 

The water content of the packing material is critical to the microbial community and pollutant abatement in 305 

biofiltration. A change in water content in the packing materials is driven by both operational parameters and 306 

microbial kinetics. Both organic and inorganic packing materials have been used in biofiltration with varying 307 

hydrodynamic properties. Organic materials offers the advantage of residual inorganic nutrients and better water 308 

holding capacities whereas inorganic packing are more robust and possess higher surface areas (Dorado et al., 309 

2010). Drying of the packing material can occur due to incomplete humidification of inlet air stream or 310 

microbial heat generation (Morales et al., 2003). Sakuma et al. (2009) reported drying at the inlet port of a 311 

biofilter reduced its performance. Microbial oxidation is an exothermic process; the metabolic heat generated 312 

from pollutant oxidation can increase the bed temperature thereby lowering the bed water content (Gostomski et 313 

al., 1997; Mysliwiec et al., 2001). Thus maintaining optimal water content is vital to the microbial process as 314 

water related stress can induce physiological responses that can be detrimental to process efficacy. 315 

 316 

 317 



 

 

3.2.2 Microbial response to water stress 318 

Microbes exhibit an intricate set of physiological adaptions to transient hydration dynamics in unsaturated 319 

media like soil. Lower water potential can result is a drastic change to osmotic potential which directly affects 320 

the osmoregulation and cell turgor pressure. Cellular dehydration can also cause protein denaturation and 321 

structural damage to DNA. Drier conditions can also impair nutrient flux as water serves as a transport medium 322 

for nutrients to cells(Or et al., 2007a). Most bacteria produce extracellular polysaccharides (EPS) for their 323 

increased water holding capacity in low water content habitats (Holden et al., 1997; Van De Mortel and 324 

Halverson, 2004). Schimel et al. (2007) illustrated the microbial response via allocation of resources upon 325 

decreasing water potential. They proposed that during stressed conditions, microbes are compelled to produce 326 

protective molecules such as osmolytes and chaperones to maintain cellular integrity. 327 

Various studies have linked water stress response to specific gene expressions. Pseudomonas putida induces 328 

alginate synthesis in response to an imposed water stress of -0.04 MPa along with genes responsible for 329 

trehalose biosynthesis (Gülez et al., 2012). Johnson et al. (2011) found that for Sphingomonas wittichi strain 330 

RW1 at a lower water potential (-0.25 MPa), the expression of genes involved with trehalose and 331 

exopolysaccharide biosynthesis increased and the expression of genes responsible for flagella biosynthesis 332 

decreased. They also found significant changes in membrane fatty acid components. Dmitrieva and Burg (2007) 333 

illustrated damage to the protein and DNA synthesis pathways as direct response to water stress. 334 

Changing water potential influences the microbial community depending on the inherent acclimatization 335 

machinery at its disposal (Harris, 1981). Often water stress can shift the community structure with time. Sun et 336 

al. (2002) found an increase in bacterial population with increasing moisture content while the actinomycetes 337 

and moulds decreased. Lower surface colonization by P. putida KT2440 at negative water potentials was 338 

reported by Descene et al. (2008). They attributed this to limited bacterial motility due to shallow liquid films at 339 

the surface of the pores in the experimental system. Prenafeta-Boldú et al. (2012) reported sustained biofilter 340 

degradation by a mixed bacterial and fungal community in xerophilic conditions (water content was ~20%) 341 

dominated by fungi, especially Exophiala oligosperma. Fungi are known to thrive in low moisture conditions, 342 

which can influence the degradation end-products as the metabolic responses vary among different groups of 343 

microbial communities. 344 

3.2.3 Effect of matric potential on degraded carbon end-points 345 

Variation in CO2 recovery fractions with changing matric potential implies changing metabolic pathways due to 346 

the imposed water stress. Lower matric potential brings in physical constraints like impaired solute diffusivity 347 

and microbial motility owing to reduction in hydrated pathways (Or et al., 2007b). This could render the process 348 

biologically limited due to reduced water availability for cellular function. At the optimal matric potential 349 

requisite cellular functions for maintenance can be easily met through catabolic energy generation process 350 

leading to higher pollutant mineralization to CO2. This shift in substrate degradation products towards non-351 

mineralized fractions as a function of matric potential could have immense significance in elucidating carbon-352 

endpoints.  353 



 

 

Water stress could potentially trigger a stress response maintaining intracellular osmolyte concentration to 354 

maintain cell turgor pressure (Van De Mortel and Halverson, 2004). Carbon from the substrate is required for 355 

production of osmolytes. The generation of osmolytes has been well documented as a mechanism induced in 356 

response to environmental stress. But at lower matric potential, the drier environment can drier conditions could 357 

cause a temporary surge in accumulation and osmolyte production  (Kakumanu and Williams, 2014). In 358 

response to the  drier environment, the  microorganisms induce genes for producing important solutes like 359 

ectoine (LeBlanc et al., 2008), and  protective proteins like chaperonin (Katoh et al., 2004). 360 

Drier conditions at lower matric potentials can also facilitate fungal proliferation in biofilters because of their 361 

ability to thrive under such conditions (Gallastegui et al., 2013; Prenafeta-Boldú et al., 2008). It underlines the 362 

effect on microbial activity in response to transient gradients in water content in unsaturated surfaces commonly 363 

encountered in soils (Long and Or, 2009). However, the fate of degraded carbon is dependent on the dominant 364 

degrading community which dominates over time. Estrada et al. (2013) did a comparative study with a VOC 365 

mixture on bacterial and fungal biofiltration. They found higher VOC mineralization by bacteria (~63%) 366 

compared to fungi (~43%). Thus, the eventual fate of the degraded carbon was influenced by variations in 367 

matric potential and its associated effects on the microenvironment such as the microbial community. 368 

3.3 Effect of substrate concentration on the fate of degraded carbon 369 

Higher substrate concentrations can influence the active degrading community due to substrate toxicity(Song 370 

and Kinney, 2005). Kim et al. (2005b) found impaired degradation capability at higher inlet concentrations 371 

which can simultaneously alter microbial metabolism especially in a nutrient-limited system. Higher residual 372 

toluene can increase the stress on the process culture, which can lead to variation in degradation products from 373 

CO2 recovery to other non-mineralized fractions. Various stress responses for microbes have been elucidated 374 

which includes production of internal storage polymers like PHAs under nutrient limited conditions (Poblete-375 

Castro et al., 2012). Also, higher substrate concentrations might affect the non-degrading community if the 376 

concentrations are beyond the inhibitory range. Under favourable environmental conditions, they can contribute 377 

to increased mineralization by predation (Bhaskaran et al., 2008; Cox and Deshusses, 1999; Woertz et al., 378 

2002). 379 

Tracking the influence of interaction between environmental parameters on the fate of various degraded 380 

fractions can help to understand the process culture’s metabolic response. Under nutrient-limited conditions, the 381 

assumption is there is no net biomass growth in biofilters (Cherry and Thompson, 1997). Since CO2 recovery is 382 

never 100% as reported in the literature, it suggests a diversion of degraded carbon towards other products as 383 

influenced by the environmental parameters. For a nutrient-limited system, a plausible sink would be 384 

accumulation of EPS, storage polymers and soluble microbial products (SMP).  385 

The C/N ratio of the influent also influences the composition of EPS in terms of carbohydrates and proteins 386 

(Durmaz and Sanin, 2003). Moreover EPS can be degraded by bacteria as a source of carbon and energy under 387 

substrate limited conditions (Kommedal et al., 2001). However, carbon extraction studies of microbial biomass 388 

in these systems are limited but seldom show significant carbon accumulation in the biofilms (Fürer and 389 

Deshusses, 2000; Song and Kinney, 2000; Vance et al., 1987). Nutrient limited systems rarely plug up which 390 



 

 

begs the question of other possible carbon sinks for biofilms in stationary phase degrading pollutants using 391 

maintenance kinetics. There are also reports of microbes producing more EPS at lower temperatures (Le Bihan 392 

and Lessard, 2000). Less CO2 recovery is an indication of the culture possibly producing EPS and other internal 393 

storage polymers for survival and associated benefits of nutrient pooling (Xavier and Foster, 2007). This further 394 

illustrates the interdependence and effect of multiple environmental parameters on the fate of degraded carbon 395 

in these engineered systems. 396 

3.4 Physiological implications of non-mineralized fractions/biomass production 397 

Maintenance metabolism assumes significance over active growth in a biofilters which are nutrient limited 398 

(Grove et al., 2009). Changing environmental conditions can significantly impact maintenance requirements 399 

which can increase under stress conditions. Several studies have reported lower biomass yields at higher 400 

temperatures, attributing it to increased cellular maintenance requirements with temperature (Cho et al., 2007; 401 

Cox et al., 2001; Luvsanjamba et al., 2007). Nasrin et al. (2011) reported that lower matric potential also impairs 402 

biomass yield and can initiate a change in microbial community structure. So these stress conditions may affect 403 

the metabolic pathways by either a reduction in the fraction of the active community or impaired activity itself 404 

at specific set of conditions. Simultaneously, there can be a shift in community structure with changes in 405 

environmental parameters (Bhaskaran et al., 2008; Cabrol et al., 2012; Kong et al., 2013; Wallenstein and Hall, 406 

2012).  407 

For both growth and maintenance, the bioenergetics in the cells is mediated through the catabolic and anabolic 408 

reactions which happen separately. But they are intricately coupled with the total energy expenditure which is 409 

partitioned into biomass and maintenance functions (Russell and Cook, 1995). However cells are not capable of 410 

utilizing all the energy for cellular functions. Xiao and VanBriesen (2006) estimated a 60% average energy 411 

capture efficiency. The rest of the energy is dissipated into the system as heat. But this energy capture efficiency 412 

is not constant and is subject to change with different substrates, strains and environmental conditions. (Von 413 

Stockar et al., 2006) suggested that for low growth systems, only a small amount of biomass is formed per 414 

substrate consumed as opposed to a high growth system where biomass formed per substrate consumed would 415 

be high. Zafar et al. (2014) correlated the variance in maintenance energy expenditure to changing specific 416 

growth rates and yields cumulatively comprising of biomass and PHB production.  417 

Good empirical results identifying variance in biomass yields can also be interpreted through the energy 418 

dependent kinetics. At certain environmental conditions, more precisely at lower matric potential, higher 419 

substrate concentrations or higher temperature, the additional stress can increase the maintenance requirements. 420 

Without any driving force for biomass growth in the absence of nitrogen, resource allocation is most likely 421 

diverted towards metabolic pathways for production of storage polymers. So the variance in non-mineralized 422 

yield can be possibly attributed to the influence and interactions of environmental parameters which make it 423 

imperative for the microbial community to adapt to changing conditions. The observed yield changes can 424 

involve a shift in community structure with the predominance of a single community or co-existence of a 425 

diverse active community degrading toluene. Further metagenomics work is required to conclusively determine 426 

if there is a change in the active community fractions with changing conditions.  427 



 

 

 428 

 429 

4 Conclusions 430 

Knowledge of the carbon end-points could bridge the connection between functionalities, community 431 

structure and metabolic response if coupled with high throughput molecular biology techniques. It can be 432 

deduced from the literature that conclusive quantification of the fate across the range of pollutants is often 433 

lacking. Further review of the environmental parameters of the various studies provided a critical link to the 434 

variations in carbon end-points as a key component in regulating the degradation pathways. Robust empirical 435 

data on carbon recovery should serve as good framework for monitoring and deciding operating conditions 436 

based on the prior knowledge of factors influencing the end-points for stable and improved system efficacy. The 437 

influence of key parameters should reflect on the fate of the degradation products in response to the metabolic 438 

pathways of the active degrading community. So, unravelling the various facets of substrate utilization, carbon 439 

end-points in particular could lead to a better understanding of the fate of pollutants in the biofiltration of waste 440 

gases. In addition, insights on the interactions of various environmental parameters on substrate metabolism 441 

pertaining to various end products could help solve operational problems like clogging and start-up times.  442 
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