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flux in steady-state heat conduction problems. The thermal conductivity of a heat conducting 
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measured temperature distribution on part of the boundary is related to the variable heat flux 

imposed on a different part of the boundary through incorporating the variable thermal 

conductivity components into the sensitivity coefficients. To do so, a body-fitted grid generation 
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to compute the sensitivity coefficients through derived expressions. The main novelty of the 

study lies in the sensitivity analysis in which all sensitivities can be obtained in only one direct 

solution at each iteration, irrespective of the number of unknown parameters. The conjugate 

gradient method along with the discrepancy principle is used in the inverse analysis to minimize 

the objective function and achieve the desired solution.  
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NOMENCLATURE: 

(k)d            direction of descent at iteration k 

qɺ    heat flux 
2

W
( )
m

  

h            heat transfer coefficient 
2

W
( )
m . C�  

Ja            Jacobian matrix 

J    Jacobian of transformation 

J    objective function 

T
k    thermal conductivity of the solid body 

W
( )
m. C�

 

n              outward drawn unit vector 

T    temperature ( C)�  

m
T               measured outer surface temperature ( C)�  

T
∞   ambient temperature ( C)�  

,x y            Cartesian coordinates in the physical domain 

Greek symbols 

, ,α β γ   metric coefficients in 2-D elliptic grid generation 

(k)β    search step size at iteration k  

Γ   boundary 

(k)γ    conjugation coefficient at iteration k  

Ω    domain 

,ξ η    Cartesian coordinates in the computational domain 

Subscripts 

i    grid index in ξ - direction 

j    grid index in η - direction 

M    number of grid points in the ξ - direction 

N    number of grid points in the η - direction 

Superscript 

k   iteration number 

 



3 

 

1. Introduction 

Nowadays, due to the ever-increasing power of high-speed computers, the numerical 

treatment of inverse heat transfer problems (IHTP) has received much attention among 

mathematicians and engineers. IHTPs are ill-posed which makes them difficult to solve. 

The ill-posed problems are extremely unstable in that a small error in measurement can 

lead to a significant error in the estimated variable. There exist different methods to 

overcome the instabilities associated with the solution of IHTPs. Among such methods 

are the iterative regularization methods in which there is no need to modify the original 

objective function. In these gradient-based methods, the discrepancy principle may be 

used as a criterion to terminate the iteration and obtain a reasonably stable solution. In 

direct heat transfer problems, the known boundary conditions, the thermo-physical 

properties, the geometrical configuration of the heated body, and the applied heat flux 

on some part of the boundary are used to obtain the temperature distribution over the 

heated body. However, in inverse heat transfer problems, the measured temperature 

distribution on some part of the boundary of the heat conducting body is used to 

determine the boundary conditions, the thermo-physical properties, the geometrical 

configuration of the heated body, and the applied heat flux [1-3]. Inverse analysis has 

been employed to determine the thermo-physical properties such as the thermal 

conductivity and the convection heat transfer coefficient [4-35] , the heat flux [36-41], 

and the boundary shape of bodies [42-47]. 

In our recent works [16-19, 44-46], a novel sensitivity analysis scheme is proposed to 

compute the sensitivity coefficients in only one direct solution, without the need for the 

solution of the adjoint equations. In our studies, the determination of the geometrical 

configuration and the boundary conditions is performed by assuming a constant thermal 

conductivity. Only in [17], a variable (temperature-dependent) thermal conductivity is 

considered to estimate the variable thermal conductivity itself. The steady-state heat 

conduction equation is a nonlinear one when the thermal conductivity is not constant 

which makes the heat transfer equation difficult to solve. In this study, the applied heat 

flux is recovered using an inverse analysis. A novel method to obtain the sensitivity 

analysis expressions is presented in which the chain rule and differentiation are used to 

develop a relation between the measured temperatures and the imposed heat flux. As 

the measurement of temperature and application of the heat flux are not usually on the 
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same parts of the boundary (for example, on reentry into the atmosphere, the 

temperature of the surface of the thermal shield of a space vehicle is so high that it 

cannot be measured directly with temperature sensors), the components of the thermal 

conductivity (not itself) can be used to establish a relation between the measured 

temperatures and the imposed heat flux. The reason for not being able to use the 

thermal conductivity itself is that it changes at each node. In other words, the 

magnitude of the thermal conductivity at the boundary surface where the temperature 

is measured is not equal to the one at the boundary surface where the heat flux is 

applied.  

In the literature, there exist some limitations on numerical treatment of inverse heat 

conduction problems. Some of these limitations can be summarized as follows: 

- the applicability of the direct solver to rectangular or circular heated bodies only 

(using traditional finite-difference method) and inability to consider a general 2D 

domain.  

- the inability to handle a variety of boundary conditions. Most of the boundary 

conditions in the literature include a constant temperature (Dirichlet boundary 

condition) or insulated case. 

- assuming a constant thermal conductivity in estimation of boundary conditions. 

Thus in numerical treatment of the inverse heat transfer problems with a general 2D 

domain, a general methodology for accurate estimation of boundary conditions in the 

presence of a variable thermal conductivity is required. This paper deals with a two 

dimensional inverse steady-state heat conduction problem. The objective of this study is 

to estimate a variable (space-dependent) heat flux in an irregular body in the presence 

of a variable (temperature-dependent) thermal conductivity.  

The proposed numerical approach takes advantage of the elliptic grid generation 

technique to generate a mesh over the irregular body and then solve for the nonlinear 

steady-state heat conduction equation using the finite-difference method, a nonlinear 

least square formulation to define the objective function, a novel, efficient, and accurate 

sensitivity analysis scheme to compute the sensitivity coefficients, and a gradient based 

optimization method. 
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The most innovative aspect of the numerical approach is its very efficient and accurate 

sensitivity analysis scheme. The sensitivity analysis scheme is formulated to compute 

the sensitivity of the temperatures to variation of the variable heat flux. The conjugate 

gradient method is employed to minimize the difference between the computed 

temperature on part of the boundary and the simulated measured temperature. As will 

be shown, this numerical methodology does not require the solution of an adjoint 

problem. Explicit expressions for the sensitivity coefficients are derived which allow for 

the computation of the sensitivity coefficients in one single solve only.  

The proposed solution method introduced here is sufficiently general and can be 

employed for the estimation of a variable (space-dependent) heat flux applied on part of 

the boundary of a general two-dimensional region as long as the general two-dimensional 

region can be mapped onto a regular computational domain. Moreover, there is no 

limitation on the type of the boundary conditions. In other words, Dirichlet, Neumann, 

and Robin boundary conditions can be imposed on the domain boundary. 

 

2. Governing Equation 

The mathematical formulation for the steady state heat conduction problem with 

linearly temperature - dependent thermal conductivity is given by (see Fig. 1a)  

 ( ) ( ) 0 in physical domain 
T T

T T
k k

x x y y

∂ ∂ ∂ ∂
+ = Ω

∂ ∂ ∂ ∂
  (1) 

subject to the boundary conditions 

 
1

 on boundary surface 
T

T q

n k

∂
= Γ

∂

ɺ
  (2) 

 ( - ) on boundary surface , 2, 3, 4
i i

i
i

T

hT
T T i

n k Γ ∞

∂
= − Γ =

∂
  (3) 

where ( )
T
k T a bT= +  ( a  and b  are constants and 0b ≠ ) and 

1 11 1 2 3
( )q a a X a Y

Γ Γ
Γ = + +ɺ  (

1
a , 

2
a , and 

3
a  are constants). 
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a)                                               b) 

Fig. 1 Arbitrarily shaped two dimensional heat-conducting body (physical domain) subjected to convective heat 

transfer on surfaces , 2, 3, 4
i
iΓ =  and a space-dependent heat flux 

1
( )q Γɺ  on surface 

1
Γ  (a) and the corresponding 

computational domain (b). The thermal conductivity of the body, ( )
T
k T , is a temperature-dependent variable. 

 

Here the discretization of the physical domain and approximation of the derivatives of 

the field variable (temperature) by algebraic ones are performed by using the elliptic 

grid generation method. In this method, the irregular physical domain is mapped from 

the x  and y  physical plane onto the ξ  and η  computational plane (Fig. 1b). Then the 

heat conduction equation and the boundary conditions (Eqs. (1) to (3)) are transformed 

from the x  and y  physical plane to the ξ  and η  computational plane. More  details  

on  the  implementation  of  the  elliptic  grid  generation  technique  and solution 

procedure for the steady-state heat conduction equation can be found in [48, 49]. Here 

since the thermal conductivity is not constant and is a linearly temperature-dependent 

variable, we can expand Eq. (1) as follows  

 (( ) ) (( ) ) 0
T T

a bT a bT
x x y y

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
  

 
2 2

2 2

2 2
( ) ( ) ( ) 0

T T T T
a bT b

x yx y

   ∂ ∂ ∂ ∂   + + + + =   ∂ ∂∂ ∂    

  (4) 

heat conducting body

W

( )
T

k a bT= +
W

2
G

1
G

3
G

4
G

A B

C D

1
( )q& G
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,h T
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,h T
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,h T
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we can substitute for 
x
T , 

y
T , 

xx
T , and 

yy
T , using the transformation relationships and 

finite difference expressions [49]: 

 2 2

2 2 2

1 1 1
( ) ( 2 ) ( ) ( ) 0a bT T T T b y T y T x T x T

J J J
ξξ ξη ηη η ξ ξ η η ξ ξ η

α β γ
   
   + − + + − + − + =
   
   

  

 2 2( ) ( 2 ) 2 0a bT T T T b T TT T
ξξ ξη ηη ξ ξ η η

α β γ α β γ  + − + + − + =     
      

, 1, , 1, 1, 1 1, 1 1, 1 1, 1

1 1 1 1
( ) ( 2 ) 2 ( )

4 4 4 4i j i j i j i j i j i j i j i j
a bT T T T T T T Tα β

+ − + + − + + − − −


+ − + − − − +

 

) 2
, 1 , , 1 1, 1, 1, 1,

1 1 1 1
( 2 ) ( ) 2 ( )

2 2 2 2i j i j i j i j i j i j i j
T T T b T T T Tγ α β

+ − + − + −


+ − + + − − −  

 2
, 1 , 1 , 1 , 1

1 1 1 1
( ) ( ) 0
2 2 2 2i j i j i j i j
T T T Tγ

+ − + −

− + − =
  (5) 

where  

 2 2x y
η η

α = +   

 x x y y
ξ η ξ η

β = +   

 2 2x y
ξ ξ

γ = +   (6) 

are the coefficients obtained from the elliptic grid generation method. By having the 

values for a  and b , Eq. (5) may be solved to obtain an expression for 
,i j
T . Eq. (5) is a 

quadratic one and an algebraic software such as Maple may be used to solve the 

equation in terms of 
,i j
T . The boundary condition equations also can be expanded and 

solved in a similar way. The variable heat flux imposed on the boundary surface 
1
Γ  is 

1 2 ,1 3 ,1i i
q a a x a y= + +ɺ  ( 1, ,i M= … ) which is known by having the constants 

1
a , 

2
a , and 

3
a  and 

,1i
x  and 

,1i
y  ( 1, ,i M= … ) from the grid generation step. The direct heat 

conduction problem can be numerically solved to obtain the temperature distribution in 

the heat conducting body. By having the temperature values at any grid nodes as well 
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as a  and b , the thermal conductivity 
,T i j

k a bT= +  can be calculated at any grid nodes 

( , )i j .  

 

3. The inverse analysis  

3.1 Objective function  

Here the inverse analysis is used to estimate the variable heat flux 

1 11 1 2 3
( )q a a X a Y

Γ Γ
Γ = + +ɺ  (using the estimation of 

1
a , 

2
a , and 

3
a ) so that the square of 

the difference between the computed temperature of the outer surface 
2
Γ  and the 

measured temperature of the same surface is minimized. This can be mathematically 

expressed as 

 
2

1

2

 on 

min : : Eq .(1) in ,  BCs in Eqs.(2)-(3)
m

q

T T
Γ

Γ

   = − Ω 
   ɺ

J   (7) 

where 
m
T  is the measured temperature. The aim of the inverse analysis is to minimize 

the following objective function expression using optimization of the value of 
1
a , 

2
a , 

and 
3
a : 

 
1

2
, ( , )

2

( )
m

M

i N i N
i

T T
−

=

= −∑J   (8) 

 

3.2 Sensitivity analysis 

Since the proposed method is concerned with a gradient-based optimization method 

(here, conjugate gradient method), the required computation of derivative of the 

objective function with respect to the unknown variables (
1
a , 

2
a , and 

3
a ) is performed 

as follows 

 
1

,
, ( , )

2

2 ( )
m

M
i N

i N i N
il l

T
T T

a a

−

=

∂∂
= −

∂ ∂
∑

J
  (9) 
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where 1,2, 3l = . In Eq. (9), ,i N

l

T

a

∂

∂
 ( 1,2, 3l = ) are called the sensitivity coefficients. To 

obtain an algebraic expression for the sensitivity coefficients, we can use the chain rule 

to relate the temperature distribution on the surface 
2
Γ , 

,i N
T , to the variable heat flux 

(imposed on the surface 
1
Γ ) components (

1
a , 

2
a , and 

3
a ) as follows 

 

,

,

i N

i N

l l

T
T

a

a a

a

∂
∂ ∂=
∂ ∂

∂

  (10) 

where 1,2, 3l =  and a  is the thermal conductivity constant (
T
k a bT= + ). To obtain 

an algebraic expression for the first term, ,i N
T

a

∂

∂
, from the boundary condition of the 

heat conduction equation at the surface 
2
Γ , Eq. (3),  we have 

 
2 2conduction convection

| |q q
Γ Γ
=ɺ ɺ    

 
2 22

2

( )
T

T
k h T T
n Γ ∞

∂
− = −

∂
   

 
2 2, 2

2

( ) ( )
i N

T
a bT h T T

n Γ ∞

∂
− + = −

∂
  (11) 

The term 
T

n

∂

∂
 at a boundary surface in the physical domain is related to 

T

ξ

∂

∂
 and/or 

T

η

∂

∂
 at the corresponding transformed boundary surface in the computational domain. 

At surface 
2
Γ  we have  

 
2 2 2

1
| | ( ) |

T T
T T

n J
η ξ

γ β
η γ

Γ Γ Γ

∂ ∂
= = −

∂ ∂
  (12) 

where the coefficients α , β , γ  are defined in Eq. (6) and J  is the Jacobian of 

transformation, J x y x y
ξ η η ξ

= − . Using the finite difference method, the T
η
 and T

ξ
 at 



10 

 

every boundary surface with Neumann and Robin conditions can be discretized. By 

substituting Eq. (12) and the finite difference expressions for T
ξ
 and T

η
 into Eq. (11), 

we get  

 ( )
2

, , 1 , 2 1, 1,
, 2 ,

3 41
( )

2 2

i N i N i N i N i N

i N i N

T T T T T
a bT h T T

J
γ β

γ

− − + −
∞

  − + −  − + − = −      

 (13) 

Eq. (13) is a quadratic equation in terms of 
,i N
T . Using an algebraic software, one can 

obtain an expression for the term ,i N
T

a

∂

∂
 by differentiating the obtained expression for 

,i N
T  with respect to a . To obtain an explicit expression for the second term, l

a

a

∂

∂
, from 

the boundary condition at the surface 
1
Γ , Eq. (2), we have 

 

at 1

T

T
q k

n
Γ

∂
= −

∂
ɺ   

 

1

1 2 ,1 3 ,1 ,1

at 

( )
i i i

T T
a a x a y a bT

J

η ξ
γ β

γ
Γ

−
+ + = − +   (14) 

At surface 
1
Γ , we can write, for example  

 1,1 1,1

2

i i
T T

T
ξ

+ −
−

=   

 ,1 ,2 ,3
3 4

2

i i i
T T T

T
η

− + −
=   

Using an algebraic software, we can solve Eq. (14) in terms of 
l
a  ( 1,2, 3l = ):  

2
1 2 ,1 3 ,1 ,1 ,1 ,2 ,1 ,3 ,1 1,1 ,1 1,1

1 1
(2 2 3 4

2 i i i i i i i i i i i
a a x J a y J bT bT T bT T bT T bT T

J
γ γ γ γ γ β β

γ
− +

= − + − + − + −

 

 
,1 ,2 ,3 1,1 1,1

3 4 )
i i i i i

aT aT aT aT aTγ γ γ β β
− +

− + − + −   (15) 
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2
2 3 ,1 ,1 ,1 ,2 ,1 ,3 ,1 1,1 ,1 1,1

,1

1 1
(2 3 4

2 i i i i i i i i i i

i

a a y J bT bT T bT T bT T bT T
J x

γ γ γ γ β β
γ

− +
= − − + − + −

 

 
1 ,1 ,2 ,3 1,1 1,1

2 3 4 )
i i i i i

a J aT aT aT aT aTγ γ γ γ β β
− +

+ − + − + −   (16) 

2
3 2 ,1 ,1 ,1 ,2 ,1 ,3 ,1 1,1 ,1 1,1

,1

1 1
(2 3 4

2 i i i i i i i i i i

i

a a x J bT bT T bT T bT T bT T
J y

γ γ γ γ β β
γ

− +
= − − + − + −

 

 
1 ,1 ,2 ,3 1,1 1,1

2 3 4 )
i i i i i

a J aT aT aT aT aTγ γ γ γ β β
− +

+ − + − + −   (17) 

The terms l
a

a

∂

∂
 ( 1,2,3l = ) can now be obtained by differentiating the obtained 

expressions for 
l
a  ( 1,2,3l = ) with respect to a , as follows 

 ,1 ,2 ,3 1,1 1,11
3 4

2

i i i i i
T T T T Ta

a J

γ γ γ β β

γ

− +
− + − +∂

=
∂

  (18) 

 ,1 ,2 ,3 1,1 1,12

,1

3 4

2

i i i i i

i

T T T T Ta

a x J

γ γ γ β β

γ

− +
− + − +∂

=
∂

  (19) 

 ,1 ,2 ,3 1,1 1,13

,1

3 4

2

i i i i i

i

T T T T Ta

a y J

γ γ γ β β

γ

− +
− + − +∂

=
∂

  (20) 

Thus the sensitivity coefficients, Eq. (10), can be computed in only one single direct 

problem solution without the need for solving the adjoint equation. The sensitivity 

matrix Ja  can be explicitly written as 

 
1 2 3

2, 2, 2,

1 2 3

3, 3, 3,

1 2 3

1, 1, 1,

1 2 3( 2) 1 ( 2) 1

, ,

N N N

N N N

a a a

M N M N M N

M M

T T T

a a a

T T T

a a a

T T T

a a a

− − −

− × − ×

     ∂ ∂ ∂     
     ∂ ∂ ∂     
     ∂ ∂ ∂     
     

= = =∂ ∂ ∂     
     
     
     
∂ ∂ ∂     
    
    ∂ ∂ ∂     

Ja Ja Ja

⋮ ⋮ ⋮

( 2) 1M− ×




  (21) 
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3.3 The Conjugate Gradient Method (CGM) 

In this study, the conjugate gradient optimization method, a powerful gradient-based 

optimization method, is used to solve the inverse heat transfer problem. The objective 

function given by Eq. (8) is minimized by searching along the direction of descent (k) d

 using a search step size (k)  β .  

 (k 1) (k) (k) (k)ff dβ+ = −   (22) 

where 
1 2 3
, ,f a a a≡ . The direction of descent of the current iteration is obtained as a 

linear combination of the direction of descent of the previous iteration and the gradient 

direction (k) ∇J . Therefore,  

 (k) (k) (k) (k 1)d dγ −= ∇ +J   (23) 

The Polak-Ribiere formula [50] is employed to calculate the conjugation coefficient: 

 

T T
(k) (k) (k 1) (k) (k) (k 1)

(k)

(k 1) 2 T
(k 1) (k 1)

( ) ( )
γ

− −

−
− −

   ∇ ∇ −∇ ∇ ∇ −∇      = =
∇  ∇ ∇  

��

J J J J J J

J J J

  (24) 

The search step size is given as follows [3] 

 
( ,

(k) (k) T
,

(k) (k) T (k)

)(k

k

)

( )

[ ] [ ]
  

[ ] [ ]

m
i Ni N

d T T

d d
β

−
=
Ja

Ja Ja

  (25) 

3.3.1 Optimization algorithm 

The following algorithm represents the direct and inverse analysis steps used to estimate 

the space-dependent heat flux in steady-state heat conduction problems in the presence 

of the temperature-dependent thermal conductivity: 

1. Specify the physical domain, the boundary conditions, and the measured outer 

surface temperature. 
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2. Generate the boundary-fitted grid using the elliptic grid generation method. 

3. Solve the direct problem of finding the temperature values at any grid points of the 

physical domain using an initial variable heat flux (initial guess for 
1 2 3
, ,a a a ). 

4. Using Eq. (8), compute the objective function ( (k)J ). 

5. If value of the objective function obtained in step 4 is less than the specified stopping 

criterion, the optimization is finished. Otherwise, go to step 6. 

6. Compute the sensitivity matrices 
1a

Ja , 
2a

Ja , and 
3a

Ja  from Eq. (21) 

7. Compute the gradient directions (k)

la
∇J ( 1,2,3l = ) from Eq. (9), respectively. 

8. Compute the conjugation coefficients (k)

la
γ  ( 1,2,3l = ) from Eq. (24). For k 0= , set 

(0) 0γ = .  

9. Compute the directions of descent (k)

la
d  ( 1,2,3l = ) from Eq. (23). 

10. Compute the search step sizes (k)

la
β  ( 1,2,3l = ) from Eq. (25). 

11. From Eq. (22), evaluate the new values for 
l
a  ( 1,2,3l = ) separately, namely 1

1
(k )a + ,  

1
2
(k )a + , 1

3
(k )a + .      

12. Set the next iteration (k = k +1) and return to the step 2. 

 

3.4 stopping criterion 

If the problem involves no measurement errors, the traditional check condition is 

specified as 

 (k) ε<J   (26) 
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where ε  is a small specified number. In this study, for the case of no measurement 

error, 1210ε −= . However, the measured temperatures will contain errors. In this case, 

the objective function value will not be zero at the end of the iterative process. As the 

computed temperatures approach the measured temperatures containing errors, during 

the minimization of the objective function (Eq. (8)), large oscillations may appear in the 

inverse problem solution resulting in an ill-posed character for the inverse problem. 

However, the conjugate gradient method may become well-posed if the Discrepancy 

Principle is used to stop the iterative procedure. In the Discrepancy Principle, the 

solution is assumed to be sufficiently accurate when the difference between computed 

and measured temperatures is of the order of magnitude of the measurement errors, that 

is, 

 
computed measured
T T σ− ≈   (27) 

where σ  is the standard deviation of the measurement errors, which is assumed 

constant in the present analysis. We can obtain the following value for ε  by 

substituting Eq. (27) into Eq. (8) (objective function definition)  

 2( 2)Mε σ= −   (28) 

Then the iterative procedure is stopped when the following criterion is satisfied [3] 

 (k) ε<J   (29) 

 

4. Results 

The following test case is given to demonstrate the accuracy and efficiency of the 

proposed inverse analysis in the numerical treatment of inverse heat conduction 

problems involving variable (space-dependent) heat flux and variable (temperature-

dependent) thermal conductivity. It is first assumed that the variable heat flux qɺ  is 

known, the heat conduction problem is solved using the given boundary conditions to 

obtain the temperature distribution on the surface 
2
Γ . Then the computed temperature 

distribution 
,i N
T  ( 2, , 1i M= −… ) is used as the simulated measured temperatures for 

inverse analysis to recover the initially used variable heat flux qɺ . To do so,  the steady-
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state heat conduction problem is initially solved using the known values for the linearly 

temperature-dependent thermal conductivity of the body 
,

W
0.15 0.03  ( )

m.CT i j
k T= + , the 

constant heat transfer coefficients 
2

W
5 ( )

m .C
i
h =  imposed on the surfaces 

i
Γ  ( 2,3,4i =

), and the space-dependent heat flux 
,1 ,1 2

W
1000.0 1.5 0.5  ( )

m
i i

q x y= + +ɺ  applied on the 

surface 
1
Γ  to obtain the temperature distribution on the outer surface 

2
Γ  (

,i N
T , 

2, , 1i M= −… ). To facilitate the computation of the sensitivity matrix coefficients 

using the central finite-difference relations, the grid nodes (1, )N  and ( , )M N on corners 

of the outer surface 
2
Γ  are excluded from computing the temperature distribution. Then 

the resulting outer surface temperature distribution is used as the simulated measured 

temperatures in the inverse analysis to recover the initially used values for three 

parameters 
1

1000.0a = , 
2

1.5a = , and 
3

0.5a = . To do so, the square of the difference 

between the temperature distribution of the outer surface 
2
Γ  (obtained from the 

solution the direct problem at each iteration) and the simulated measured temperature 

distribution of the same surface (
2
Γ ) is to be minimized. It is worth noting that the 

measured temperatures and applied heat flux are on two different surfaces 
2
Γ  and 

1
Γ , 

respectively, and the relation between them is made through thermal conductivity 

component a  (or b ) in sensitivity analysis scheme.  

Test Case: Numerical values of the coefficients involved in this test case are listed in 

Table 1. The temperature distribution in the body (using a grid size of 40 30× ) and the 

simulated measured temperature distribution on the outer surface 
2
Γ , 

( , )mi N
T , are 

demonstrated in Fig. 2a and Fig. 2b, respectively. The distribution of the space-

dependent heat flux imposed on the surface 
1
Γ  is shown in Fig. 3. 

( , )mi N
T  will be used in 

the inverse analysis to recover the initial values of 
1 2 3
, ,a a a . Using an inverse analysis, 

the known (desired) values of 
1

1000.0
d

a = , 
2

1.5
d

a = , and 
3

0.5
d

a =  are to be recovered 

by utilizing three different initial guesses: 
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initial initial initial1 1 1

1 2 3
200.0,   -1.004,   -5.08a a a= = =   

 
initial initial initial2 2 2

1 2 3
750.0,   10.7,   5.2a a a= = =    

initial initial initial3 3 3
1 2 3

500.0,   0.04,   0.001a a a= = =
 

 

2

W
( )
m
qɺ  

W
( )
m.CT

k  
2

W
( ), 2,3,4
m .C

i
h i =  

( C), 2, 3, 4
i

T i°
∞

=   

,1 ,1
1000.0 1.5 0.5

i i
x y+ +  

,
0.15 0.03

i j
T+  5  30   

Table 1 Data used for Test Case 1. 

  

  

a)                                                            b) 

Fig. 2 Temperature distribution in irregular physical domain (a) and on outer surface 2
Γ (used as 

m
T  for inverse 

analysis) (b). 
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Fig. 3 Distribution of variable heat flux on the outer surface 
1
Γ . 
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a)                                                            b) 

Fig. 4  Estimation of 
1
a , 

2
a , 

3
a  (

1 2 ,1 3 ,1i i
q a a x a y= + +ɺ ) and objective function versus iteration number for initial 

heat flux 
initial1

2
,1 ,1

200.0 1.004 5.08 (W/ m )
i i

q x y= − −ɺ  (a), and comparison of initial, optimal, and desired 

(simulated measured) heat flux distributions (b). 
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Initial guess 2: 
initial2

,1 ,1 2

W
750.0 10.7 5.2 ( )

m
i i

q x y= + +ɺ   

 

 

a)                                                            b) 

Fig. 5  Estimation of 
1
a , 

2
a , 

3
a  (

1 2 ,1 3 ,1i i
q a a x a y= + +ɺ ) and objective function versus iteration number for initial 

heat flux 
initial2

2
,1 ,1

750.0 10.7 5.2 (W/ m )
i i

q x y= + +ɺ  (a), and comparison of initial, optimal, and desired 

(simulated measured) heat flux distributions (b). 
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Initial guess 3: 
initial3
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m
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a)                                                            b) 

Fig. 6  Estimation of 
1
a , 

2
a , 

3
a  (

1 2 ,1 3 ,1i i
q a a x a y= + +ɺ ) and objective function versus iteration number for initial 

heat flux 
initial3

2
,1 ,1

500.0 0.04 0.001 (W/ m )
i i

q x y= + +ɺ  (a), and comparison of initial, optimal, and desired 

(simulated measured) heat flux distributions (b). 
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T T ωσ= +   (30) 

where ω  is a random variable with normal distribution, zero mean, and unitary 

standard deviation. Assuming 99% confidence for the measured temperature, ω  lies in  

the range 2.576 2.576 ω− ≤ ≤  and it is randomly generated by using MATLAB. σ  is 
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initial4
,1 ,1 2

W
100.0 0.0002 0.0001 ( )

m
i i

q x y= + +ɺ  is considered to initiate the optimization 

process. 

 

  

a)                                                            b) 

Fig. 7  Estimation of 
1
a , 

2
a , 

3
a  (

1 2 ,1 3 ,1i i
q a a x a y= + +ɺ ) and objective function versus iteration number for initial 

heat flux 
initial4

2
,1 ,1

100.0 0.0002 0.0001 (W/ m )
i i

q x y= + +ɺ  by considering measurement error ( 0.1σ = )  (a), and 

comparison of initial, optimal, and desired (simulated measured) heat flux distributions (b). 
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a)                                                            b) 

Fig. 8  Estimation of 
1
a , 

2
a , 

3
a  (

1 2 ,1 3 ,1i i
q a a x a y= + +ɺ ) and objective function versus iteration number for initial 

heat flux 
initial4

2
,1 ,1

100.0 0.0002 0.0001 (W/ m )
i i

q x y= + +ɺ  by considering measurement error ( 0.2σ = )  (a), and 

comparison of initial, optimal, and desired (simulated measured) heat flux distributions (b). 
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a

=

=

=
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a

a
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=
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Table 2 Results for the estimation of the variable heat flux components 
1
a , 

2
a , and 

3
a .  
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Here the inverse analysis is examined using three different initial guesses which are 

selected so that they can reflect the accuracy, efficiency, and robustness of the inverse 

analysis. As shown in Fig. 4 to Fig. 6, a 100% reduction in the objective function and 

complete recovering of the values for 
1
a , 

2
a , and 

3
a  (the variable heat flux 

components) are achieved by starting the optimization process from all three different 

initial guesses. Despite the large number of iterations for recovering the unknown 

variables, short time optimization for all three initial guesses reveals the efficiency of the 

proposed method. The details of the results, including the initial and final values for 
1
a , 

2
a , and 

3
a , the initial and final values of the objective function, the computation time, 

the number of iterations, and the percentage of the decrease in the objective function, 

are given in Table 2 (for both cases of no measurement error and measurement error). 

In case of the measurement error ( 0.1σ =  and 0.2σ = ), there is also an approximately 

100% reduction in the objective function. As shown in Table 2 and Fig. 7a and Fig. 8a, 

the error in recovering the parameter 
1
a  (constant component of the heat flux) is 

insignificant whereas the errors in recovering the parameters 
2
a  and 

3
a  are significant. 

Nevertheless, the distribution of retrieved heat flux in the presence of the measurement 

error is in very good agreement with the desired one (Fig. 7b and Fig. 8b). The errors 

between the recovered and desired heat flux distributions on the boundary surface 
1
Γ  at 

node ,1i  ( 1, ,i M= … ) for the measurement errors of standard deviation of 0.1σ =  and 

0.2σ =  are demonstrated in Fig. 9a and Fig. 9b, respectively. It can be seen that 

max
error 1%

i
=  for 0.2σ = . To facilitate the computation of the sensitivity matrix 

coefficients using the central finite difference relations, the grid nodes (1, )N  and ( , )M N

on corners of the outer surface 
2
Γ  are excluded from computing the temperature 

distribution. The results are obtained by a FORTRAN compiler and computations are 

run on a PC with Intel Core i7 and 16G RAM. A tolerance of 710−  is used in iterative 

loops to increase the accuracy of results. 
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a)                                                            b) 

Fig. 9  Error in estimation of heat flux 
,1i
qɺ  ( 1, ,i M= … ) for 0.1σ =  (a) and 0.2σ =  (b). 

 

 

5. Conclusion 

This paper presented an accurate, easy to implement, and very efficient sensitivity 

analysis scheme in determination of space-dependent heat flux imposed on a part of the 

boundary of a heat conducting body under specified boundary conditions and variable 

(temperature-dependent) thermal conductivity. The two-dimensional irregular heat-

conducting body was transformed into a regular computational domain to perform all 

computations related to the direct and inverse heat conduction solution. Then an elliptic 

grid generation scheme was used to generate a grid over the irregular body. An accurate 

and very efficient sensitivity analysis scheme was used to calculate sensitivity 

coefficients needed in a gradient-based optimization method. The explicit expressions for 

the sensitivity coefficients were derived through the use of chain rule and differentiation 

with respect to the components of the variable heat flux which allow for the 

computation of the sensitivity coefficients in one single solve only (at each iteration), 

regardless of the number of unknown quantities. The conjugate gradient method was 

used as an optimizer to minimize the objective function expressed in the least squares 

sense and retrieve the desired quantities. The obtained results revealed that the 

proposed algorithm is very accurate and efficient. 
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