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ABSTRACT 

     This paper investigates how and under which conditions the lamella of an impacting droplet 

is punctured by the presence of a small occlusion. Better understanding the conditions which 

lead to the rupture of the lamella is critical to produce defect free coating layers in the context 

of spray coating, for example. An analytical model based on surface energy analysis is 

proposed to obtain the critical thickness below which the liquid layer above the occlusion is 

unstable and lamella rupture occurs. Furthermore, we have developed a three dimensional 

multiphase lattice Boltzmann code to confirm the surface energy analysis and study the 

influence of key parameters like size of the occlusion, impact velocity and wettability of 

substrate on hole formation. Results show that a hole is more likely to appear as the diameter 

of the occlusion, the impact velocity, and the hydrophobicity of the surface increase. 

KEY WORDS: Droplet impact, surface texture, hole formation, surface energy analysis, lattice 

Boltzmann method 

1. INTRODUCTION 

     Many industrial applications involve the impact of a droplet on a substrates. Examples 

include spray painting and coating, food, agriculture, inject printing and spray cooling (Yarin, 

2006; Andrade et al., 2013; Massinon and Lebeau, 2012; Castrejón-Pita et al., 2008 and Kim, 

2007). Recently, Josserand and Thoroddsen (2015) have conducted an exhaustive review of the 

research related to the dynamics of wetting after impact on smooth and rough surfaces.  Better 

understanding how the droplet wets the solid surface after impact is critical to obtain a better 

control in practical applications. For example, one may wish to avoid lamella break-up and the 

production of satellite droplets post-impact in the application of pesticide on foliage. Much is 

known about the wetting of a smooth surface. How surface texture affects this wetting is much 

less understood. Notwithstanding the fact that simple models are crucial to understand how the 

wetting front interacts with topographic features, only a few studies are available regarding 

droplet impact on smooth surfaces with isolated topographies (Josserand et al., 2005; de Jong 
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et al., 2015; Ellis et al., 2011; Sellier, 2015). For example; Josserand et al. (2005) studied 

experimentally and numerically the impact of a droplet on a substrate which features a single 

step topography and revealed that the step triggers a splash. de Jong et al. (2015) experimentally 

observed three various wetting outcomes including splash, air bubble and jet for a droplet 

impact close a millimetre-sized pit and two different wetting outcomes containing splash or no 

splash for a droplet impact close to a millimetre-sized pore. Ellis et al. (2011) compared the 

spreading rate computed analytically and numerically of a droplet impacting on various rough 

surfaces featuring a single step, a double-step, a two-sided steps and a periodic structure. Sellier 

(2015) investigated numerically how the contact line of a liquid film draining down on a 

vertical surface is influenced by an occlusion.  

     Hole formation in a thin sheet of liquid has fascinated many researchers in recent decades 

(Paddy, 1970; Taylor and Michael, 1973; Redon et al., 1991; Kheshgi and Scriven, 1991; 

Moriarty and Schwartz, 1993; Lopez et al., 2001; Bankoff et al., 2003 and Sellier et al., 2015). 

This dry spot which may lead to a rupture in a liquid film can be observed as the thickness of 

thin liquid film is decreased to a given threshold (Sharma and Ruckenstein, 1989). In the 

context of coating applications, the formation of hole in the lamella is considered a defect and 

therefore undesirable. Experiments have shown that the thin liquid film which is generated by 

a droplet impacting on a solid surface with an intermediate contact angle (around 100°) ruptures 

for a range of impact velocities, while the film rupture only occurs for the highest impact 

velocity when the substrate is either hydrophilic or super-hydrophobic (Dhiman and Chandra, 

2010).  

     In spite of its obvious practical relevance, the problem of the wetting of a small occlusion 

by the lamella resulting from a droplet impact has not to date been investigated in a rigorous 

and systematic way. The goal of this study is to investigate how the presence of an occlusion 

can create a hole in the lamella of an impacting droplet. Once the contact line passes over the 

occlusion, the lamella thickness reduces to a minimum at maximum spread, thus a hole may 

form into the lamella on top of the occlusion as the thickness of the lamella becomes smaller 

than a critical film thickness.  It can be anticipated that this critical film thickness is dependent 

on several parameters such as the impact velocity, the surface properties and the size of 

occlusion. We propose here an analytical model using surface energy analysis to demonstrate 

this hypothesis which we prove using numerical simulations.  

     To provide a greater understanding of the relation between hole formation in the lamella 

with the control parameters, the multiphase lattice Boltzmann method (LBM), a popular 



mesoscopic numerical method, is implemented in this study. We have developed a three-

dimensional multiphase lattice Boltzmann code following the Shan-Chen model (Shan and 

Chen, 1994) to simulate the behaviour of the lamella in the presence of the occlusion. 

Moreover, the centre of gravity of the droplet is tracked in our simulations to quantify the 

impact dynamics.  

     The remainder of the paper is structured as follows. Section 2 describes the multiphase 

lattice Boltzmann method in details. Then, we describe in section 3 the problem and propose 

the analytical surface energy model. As a validation case, we compare the thickness of the 

lamella at maximum spread which can be calculated through mass and momentum balance to 

our simulations as a crucial parameter in this study. Moreover, we present our numerical results 

and discuss the effects of control parameters on the dynamic wetting in this section. Finally, 

section 4 presents concluding remarks. 

2. COMPUTATIONAL ALGORITHM 

     In the multiphase lattice Boltzmann method, a complex flow is modelled on a solution 

domain which is divided into lattices. Each lattice is occupied by either a fluid (liquid or gas) 

node or a solid node. For fluid nodes, an initial velocity 𝑢0 needs to be assigned as well as an 

initial density 𝜌0 which is either the gas density 𝜌𝑔 and the liquid density 𝜌𝑙. To obtain the 

interaction between the fluids and the solid, the solid nodes possess an artificial wall density 

𝜌𝑤 where 𝜌𝑔 ≤ 𝜌𝑤 ≤ 𝜌𝑙 (Benzi et al., 2006). In fact, with the aid of the parameter 𝜌𝑤, different 

wall properties can be achieved and as a consequence various contact angles as demonstrated 

in (Rashidian and Sellier, 2017).   

     Discrete velocities models which play an essential role in the lattice Boltzmann method are 

specified as DnQm, where n denotes the space dimension and m denotes the number of 

velocities. The typical D3Q19 lattice arrangement is implemented in this study. This velocity 

model involves nineteen microscopic velocity vectors 𝒆𝑘 in three space dimensions. The 

directions, k, are numbered like k = 0, 1,…, 18 and correspond to 𝒆𝑘. For this velocity model, 

all the variables which need to be initialized are given as following: 

[𝒆0, 𝒆1, 𝒆2, 𝒆3, 𝒆4, 𝒆5, 𝒆6, 𝒆7, 𝒆8, 𝒆9, 𝒆10, 𝒆11, 𝒆12, 𝒆13, 𝒆14, 𝒆15, 𝒆16, 𝒆17, 𝒆18]                            (1) 

= 𝑐 [
0 1 −1
0 0 0
0 0 0

     
0 0 0
1 −1 0
0 0 1

     
0 1 −1
0 1 1

−1 0 0
    

1 −1 1
−1 −1 0
0 0 1

    
−1 1 −1
0 0 0
1 −1 −1

    
0 0 0
1 −1 1
1 1 −1

    
0

−1
−1

] 



     In the above, 𝑐 denotes the lattice speed which is given by 𝑐 =
𝛥𝑥

𝛥𝑡
 where 𝛥𝑥 and 𝛥𝑡 are the 

lattice unit (𝑙𝑢) and the time step (𝑡𝑠), respectively. Furthermore, the sound speed is determined 

as 𝑐𝑠
2 =

𝑐2

3
 and the lattice weights are given by: 

𝜔𝑘 = {

1/3 𝑘 = 0
  1/18             𝑘 = 1,2, … ,6
  1/36               𝑘 = 7,8, … ,18

                                                                                              (2)                                                                                                                 

     The kinematic viscosity which is related to the relaxation time is defined as: 

𝜐 = 𝑐𝑠
2(𝜏 − 0.5)∆𝑡                                                                                                                      (3) 

where 𝜏 denotes the relaxation time and is adjusted to 1.    

     The main variable in the lattice Boltzmann method is the density distribution function 

𝑓𝑘(𝒙, 𝑡)  which represents the state of a fluid parcel. A fraction of the distribution propagates 

with the lattice velocities 𝒆𝒌 from a lattice position x to its neighbouring lattice 𝒙 + 𝒆𝑘𝛥𝑡 via 

certain directions or lattice links 𝑘 at the following time step 𝛥𝑡. This process is called the 

streaming step and can be expressed by: 

𝑓𝑘(𝒙 + 𝒆𝒌∆𝑡, 𝑡 + ∆𝑡) =  𝑓𝑘(𝒙, 𝑡 + ∆𝑡)                                                                                      (4) 

Note that for the lateral sides of the bounding box, periodic boundary conditions are applied 

for which the distribution functions carry on the opposite wall once they reach the end of the 

region. 

     On the other hand, a portion of other particles is moving from various directions to the same 

lattice simultaneously and therefore the collision step will take place at this lattice. The 

collision process which affects the numbers of original particles in each direction can be 

simplified to the Bhathagar-Gross-Krook (BGK) single relaxation time approximation 

(Bhathagar, Gross and Krook, 1954): 

𝑓𝑘(𝒙, 𝑡 + ∆𝑡) =  𝑓𝑘(𝒙, 𝑡) +
1

𝜏
(𝑓𝑘

𝑒𝑞(𝒙, 𝑡) − 𝑓𝑘(𝒙, 𝑡))                                                               (5)                                               

where 𝑓𝑘
𝑒𝑞

 denotes the equilibrium distribution function. To solve the above equation, the 

equilibrium distribution function needs to be calculated as:  

𝑓𝑘
𝑒𝑞 = 𝜔𝑘𝜌[1 +

𝒆𝑘.𝒖

𝑐𝑠
2 +

1

2
(

𝒆𝑘.𝒖

𝑐𝑠
2 )

2

−
𝒖 .𝒖

2𝑐𝑠
2]                                                                                    (6) 

where 𝜌 and 𝒖 denote the fluid density and velocity, respectively. The following initial 

assumption can be applied as the relaxation time is unity: 

𝑓𝑘(𝒙, 𝑡 = 0) =  𝑓𝑘
𝑒𝑞(𝒙, 𝑡 = 0) = 𝑓𝑘

𝑒𝑞(𝜌0, 𝒖0)                                                                               (7) 



     In the collision step, we also consider bounce-back boundary conditions at the solid-liquid 

interface as the known distribution functions from the streaming process hit the wall and scatter 

back to the fluid via its incoming lattice link. 

     To calculate the equilibrium distribution function, we first need to obtain the macroscopic 

quantities from the density distributions. Accordingly, 

𝜌 = ∑ 𝑓𝑘
18
𝑘=0                                                                                                                              (8) 

𝒖 =  
1

𝜌
 ∑ 𝑓𝑘

18
𝑘=0 𝒆𝑘                                                                                                                        (9) 

     The centre of gravity is determined according to:   

𝒛 =  
∑ 𝒛𝟎(𝜌−𝜌𝑔)

∑(𝜌−𝜌𝑔)
                                                                                                                        (10) 

where 𝒛 is the centre of gravity and 𝒛𝟎 denotes the distance from the origin.  

     Shan and Chen (1994) introduced an alternative velocity named the equilibrium velocity for 

calculating the equilibrium distribution function: 

𝒖𝑒𝑞 = 𝒖 +
𝑭 𝜏

𝜌
                                                                                                                         (11) 

where 𝒖𝑒𝑞 replaces u in the equilibrium distribution function equation. 𝑭 denotes the inter-

particle force which can be obtained as: 

𝑭(𝒙, 𝑡) = −𝐺𝜓(𝒙, 𝑡) ∑ 𝜔𝑘𝜓(𝒙 + 𝒆𝒌∆𝑡, 𝑡)𝒆𝑘
18
𝑘=1                                                                          (12) 

where 𝐺 denotes the strength controlling parameter and creates the liquid-gas interface with 

constant surface tension, density gradient and interface thickness. ψ denotes an pseudopotential 

term and is a function of density such that (Yuan and Schafer, 2006):  

𝜓(𝜌) = √2(𝑃−𝑐𝑠 
2𝜌)

6𝐺
                                                                                                                    (13) 

where 𝑃 denotes the pressure and is determined from the following equation of state for a non-

ideal fluid which makes a liquid-gas separation possible:  

𝑃 = 𝜌𝛾𝑇
1+

𝛽𝜌

4
+(

𝛽𝜌

4
)2−(

𝛽𝜌

4
)3

(1−
𝛽𝜌

4
)3

− 𝛼𝜌2                                                                                             (14) 

According to Yuan and Schafer (2006) and Huang et al. (2011), T which denotes the 

temperature can be obtained by 𝑇 = 0.0943𝑇0 as α =1 𝑙𝑢5 (𝑚𝑢. 𝑡𝑠2⁄ ), β =4 𝑙𝑢3 𝑚𝑢⁄  and γ 

=1 𝑙𝑢2 (𝑡𝑠2⁄ . 𝑡𝑢). Note that 𝑚𝑢 and 𝑡𝑢 are the mass unit and the temperature unit, respectively. 



After collision, a new collection of density distribution functions can leave this collision lattice 

and another streaming step starts. These steps are performed until a final desired time is 

reached. Finally, the density contours can be plotted to show the liquid behaviour during its 

interaction with the gas and the solid. The computational algorithm is summarized in Figure 1. 

In our simulation, the effect of gravity is neglected as it is assumed to be negligible compared 

to inertia and surface tension. 

 

Figure 1. Schematic of the computational algorithm. This algorithm which has been developed following the Shan-Chen 

model consists of three main parts: firstly initialising variables and nodes, secondly a main loop involving the collision step, 

the streaming step, applying boundary conditions, calculating macroscopic quantities and the centre of gravity, determining 

pressure, pseudopotential term and forces and then obtaining the equilibrium velocity to update distribution functions in the 

next loop and finally a post-processing stage including plotting the density contours. 



3. RESULTS AND DISCUSSION 

     Here we consider a spherical droplet which is initially located at the centre of a domain with 

size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑍 = 260 (𝑙𝑢) × 260 (𝑙𝑢) × 90 (𝑙𝑢). The droplet impacts and spreads onto a 

substrate which features a cylinder-shape occlusion as illustrated in Figure 2. The diameter of 

the droplet is D = 65 𝑙𝑢 and the liquid and gas density are set to 𝜌𝑙 = 0.285 (𝑚𝑢
𝑙𝑢3⁄ ) and 𝜌𝑔 =

0.0285 (𝑚𝑢
𝑙𝑢3⁄ ) , respectively. The distance from the impact point to the centre of the 

occlusion is kept constant (L = 53 𝑙𝑢) and the size of the occlusion including the height (H) and 

the radius (r) are varied. During spreading, the lamella touches the occlusion and extends 

beyond it. At maximum spread, the occlusion may create a hole into the liquid film. We will 

show in the following that when the thickness of the liquid film on top of the occlusion is 

gradually reduced to reach a critical thickness ( ℎ𝑐), a hole is likely to form in the lamella (see 

Figure 3).  

 

Figure 2. Simulation domain. A spherical droplet with a given diameter 𝐷 = 65 and an initial velocity 𝑉 impacts and spreads 

onto a substrate with a cylinder-shape occlusion with diameter 2𝑟 and height  𝐻 . The distance from the impact point to the 

centre of the occlusion is L = 53 𝑙𝑢. 

     To obtain the critical thickness below which hole is likely to appear in the liquid film, a 

surface energy analysis is presented for both the lamella and the hole following Sharma and 

Ruckenstein (1989). Several assumptions are taken into account to simplify the analysis: the 

size of droplet, impact velocity and liquid properties are constant. Furthermore, the shape of 

the hole is a cylinder with a diameter equivalent to 2r. Thus, the surface energy of the lamella 

becomes: 

𝐸𝑙𝑎𝑚𝑒𝑙𝑙𝑎 = 𝛾𝑙𝑔𝐴 + 𝛾𝑠𝑙𝐴´                                                                                                           (15) 

𝑳 

𝑫 

𝟐𝒓 

𝑯 

𝑽 



where 𝛾𝑠𝑙 and 𝛾𝑙𝑔 denote the interfacial tension between solid-liquid and liquid-gas 

respectively. 𝐴 is the surface area at the lamella-air interfaces and 𝐴´ represents the surface area 

between the lamella and the substrate.  

Now, when a hole is present on top of the occlusion, the surface energy is given by: 

𝐸ℎ𝑜𝑙𝑒 =  𝛾𝑙𝑔(𝐴 − 𝜋𝑟2) + 𝛾𝑠𝑙(𝐴´ − 𝜋𝑟2) + 𝛾𝑙𝑔2𝜋𝑟ℎ + 𝛾𝑠𝑔𝜋𝑟2                                                    (16) 

The total change in the surface energy is therefore given by:  

𝛥𝐸 = 𝐸ℎ𝑜𝑙𝑒 − 𝐸𝑙𝑎𝑚𝑒𝑙𝑙𝑎 =  𝜋𝑟2(−𝛾𝑙𝑔 − 𝛾𝑠𝑙 + 𝛾𝑠𝑔) + 2𝜋𝑟ℎ𝛾𝑙𝑔                                              (17) 

At this stage, we can substitute Young’s equation (Quéré, 2008) which is 𝛾𝑠𝑔 − 𝛾𝑠𝑙 = 𝛾𝑙𝑔 𝑐𝑜𝑠 𝜃 

into Equation 17 and therefore:  

𝛥𝐸 = 𝛾𝑙𝑔(−𝜋𝑟2 + 𝜋𝑟2 𝑐𝑜𝑠 𝜃 + 2𝜋𝑟ℎ)                                                                                            (18)                 

During retraction, if 𝛥𝐸 < 0 then the hole grows in the lamella to break up around the occlusion 

and if 𝛥𝐸 > 0 then the hole closes spontaneously. When 𝛥𝐸 = 0, the critical thickness of the 

lamella on top of the occlusion to create the hole can be determined: 

ℎ𝑐 =
𝑟(1−𝑐𝑜𝑠 𝜃)

2
                                                                                                                         (19) 

(a) (b) 

Figure 3. At maximum spread, the thickness of the liquid film on top of the occlusion, ℎ, is gradually decreased to reach a 

critical thickness,  ℎ𝑐,. (a) A hole is unlikely to exist as ℎ >  ℎ𝑐  and (b) is likely to appear as ℎ <  ℎ𝑐. 

Consider a cylindrical shape for the lamella at maximum spread, the thickness of lamella at 

maximum spread (ℎ𝑙) can be determined by a mass balance of the droplet before impact and at 

maximum spread: 

ℎ𝑙 =
2𝐷

3𝜉2                                                                                                                                    (20) 

where 𝐷 is the diameter of the droplet before impact and  𝜉 denotes the maximum spreading 

factor which is given by: 



𝜉 =
𝐷𝑚𝑎𝑥

𝐷
                                                                                                                                       (21) 

where 𝐷𝑚𝑎𝑥 denotes the maximum spreading diameter. Scheller and Bousfield (1995) reported 

an empirical relationship based on the Reynolds and Weber numbers to obtain the maximum 

spreading factor:  

𝜉 = 0.61 𝑅𝑒1/5 (𝑊𝑒 𝑅𝑒−2/5 )1/6                                                                                              (22) 

where the Reynolds and Weber numbers represent the ratio of inertia force to viscous and 

capillary forces, respectively. These dimensionless numbers are defined below: 

𝑅𝑒 =
𝜌𝑙𝑉𝐷

𝜇
                                                                                                                                 (23) 

𝑊𝑒 =
𝜌𝑙𝑉2𝐷

𝜎
                                                                                                                                 (24) 

where 𝜎 denotes the surface tension of the liquid. Finally, the thickness of the lamella on top 

of the occlusion can be predicted as: 

ℎ = ℎ𝑙 − 𝐻                                                                                                                              (25) 

     The centre of gravity of the droplet on the z-axis (𝒛) during impact, spreading and retraction 

is computed during our lattice Boltzmann simulations of the droplet impact. This parameter 

can help us calculate the thickness of the lamella at maximum spread time. The centre of gravity 

for three different cases with various Reynolds and Weber numbers are plotted in Figure 4. 

Maximum spread occurs as the centre of gravity hits a minimum. The thickness of the lamella 

is assumed to be twice the distance between centre of gravity and the substrate.  As a validation 

case, we compare the thickness of the lamella determined using the centre of gravity with the 

corresponding results when using the Scheller and Bousfield correlation (Equations 20-22). As 

Table 1 illustrated, a good agreement is found between the Lattice-Boltzmann simulation 

results and the correlation so that the error is less than 1%. 



 

Figure 4. This plot demonstrates the location of the centre of gravity on the z-axis (𝑧) as the droplet falls, impacts, spreads 

and retracts on the substrate without occlusion. At maximum spread, the centre of gravity hits a minimum. The minimum 

amount of 𝑧 shows for each graph. The thickness of the lamella is assumed to be twice this minimum. 

Table 1. Comparision of the lamella thickness at maximum spread between Scheller and Bousfield correlation (using 

Equations 20-22) and the numerical solution (using centre of gravity in z-axis)  

Re We 𝒉𝒍 analytical solution (𝒍𝒖) 𝒉𝒍 numerical solution (𝒍𝒖) 

78 68 8.92 8.95 

117 160 6.02 6 

156 271 4.68 4.69 

3.1 Effect of the occlusion size 

     Equation 19 illustrates that an increase in the diameter of the occlusion leads to an increase 

of the thickness threshold. To demonstrate this expected correlation, several simulations are 

carried out for a constant height of the occlusion (𝐻 = 5 𝑙𝑢 ) but varied diameters. The 

equilibrium contact angle is adjusted to 𝜃 = 90° , the Reynolds and Weber number are set to 

117 and 160, respectively. We will first consider ℎ𝑙 = 6 𝑙𝑢 such that the thickness of lamella 

on top of the occlusion is 1 𝑙𝑢. For 𝑟 = 4 𝑙𝑢, once the lamella reaches maximum spread, a hole 

is created (as shown in Figure 5a) as the thickness of the liquid film on top of the occlusion 

(ℎ = 1 𝑙𝑢) is less than its critical thickness (ℎ𝑐 = 2 𝑙𝑢). During retraction, the hole is growing 



until a break-up occurs around the occlusion (Figure 5b) and then the droplet recoil to a steady 

state condition with a contact angle of 90°(Figure 5c). 

   

(a) (b) (c) 

Figure 5. Simulation results for the first case as 𝑟 = 4 𝑙𝑢 and 𝜃 = 90°. (a) The hole is created as ℎ < ℎ𝑐  at maximum 

spread of lamella:  (b) During retraction a break-up occurs in the lamella around the occlusion. (c) The droplet steadies at 

the impact point with its equilibrium contact angle.  

     We consider next a set of conditions for which the thickness of the liquid film on top of the 

occlusion and the critical thickness are identical. Thus, for the second case, we consider 𝑟 =

2 𝑙𝑢 and consequently ℎ =  ℎ𝑐 = 1 𝑙𝑢. The simulation results are depicted in Figure 6. It can 

be seen that a hole is created at maximum spread (figure 6a); however, this hole closes 

spontaneously during retraction since the film thickness on top of the occlusion becomes larger 

than the threshold value (Figure 6b). In fact, the surface energy of the lamella which was 

defeated by the surface energy of the hole at maximum spread (𝛥𝐸 ≤ 0) overcomes the hole 

energy during retraction (𝛥𝐸 > 0) due to the thickness of liquid film on top of the occlusion 

exceeding the critical value ℎ𝑐 = 1 𝑙𝑢. Therefore, the hole is unable to grow, the liquid film 

“heals” and eventually retraction occurs without break-up (figure 6c).    

   

 

(a) (b) (c)  

Figure 6. Simulation results for the second case as 𝑟 = 2 𝑙𝑢 and 𝜃 = 90°. (a) At maximum spread of lamella: the thickness 

of lamella on top of the occlusion and the critical thickness (ℎ = ℎ𝑐 = 1𝑙𝑢) and therefore hole is created. (b) But the hole 

closes spontaneously due to ℎ > ℎ𝑐 during retraction. (c) The lamella pass over the occlusion during retraction without 

break-up. 

     In the third case, 𝐻 is reduced from 5 𝑙𝑢 to 3 𝑙𝑢 and other parameters are kept the same as 

case 1 to confirm that an increase in the thickness of the lamella on top of the occlusion by an 

amount greater than the critical thickness leads to the absence of hole generation during 

spreading and retraction. The simulation results demonstrate that a hole does not form for this 



case during spreading and retraction because to ℎ >  ℎ𝑐 (see Figure 7a). The results of this 

section are summarized in Table 2.  

Table 2. Dynamic wetting status of the occlusion for three different cases with various sizes of the occlusion (𝑟 and 𝐻) as 𝜃 =
90°, Re=117 and We=160. For these equilibrium contact angle, Reynolds and Weber numbers, the thickness of the lamella at  

maximum spread is  ℎ𝑙 = 6 𝑙𝑢 and therefore the thickness of the lamella on top of the occlusion (ℎ) is determined using 

Equation 26. The critical thickness is calculated using Equation 20.   

Case 𝑟 (𝑙𝑢) 𝐻 (𝑙𝑢) ℎ (𝑙𝑢)  ℎ𝑐 (𝑙𝑢) status 

1 4 5 1 2 Hole formation 

2 2 5 1 1 Hole formation occurs only at maximum spread  

and then the hole closes during retraction 

3 4 3 3 2 No hole formation 

3.2 Effect of the impact velocity 

     In this section, two other cases are investigated to show the influence of the impact velocity 

on hole formation. Firstly, in case 3 of section 3.1 for which we did not observe any hole the 

impact velocity is increased until the Reynolds number and the Weber number becomes 156 

and 271, respectively. As illustrated in Table 1,  ℎ𝑙 is determined to be 4.7 𝑙𝑢 from both the 

analytical solution and the numerical solution. According to Equation 27, the thickness of the 

lamella on top of the occlusion yields ℎ = 1.7 𝑙𝑢 . As shown in Figure 7b, a hole is observed 

for that case because ℎ is now smaller than  ℎ𝑐 at maximum spread .The increase in the impact 

velocity leads to a smaller lamella thickness and the likely appearance of a hole as intuitively 

expected. Secondly, in the case 1 of section 3.1 for which we did observe the formation of a 

hole, the impact velocity is reduced until the Reynolds and Weber numbers becomes 100 and 

111, respectively and therefore ℎ𝑙 is calculated to be 7.9 𝑙𝑢. In this case, ℎ is larger than its 

threshold and thus no hole is created as confirmed by Figure 7c.  

   

 

(a) (b) (c)  

Figure 7. Simulation results (a) the hole is not created as 𝑟 = 4 𝑙𝑢 and 𝐻 = 3 𝑙𝑢 (Re=117 and We=160) due to ℎ > ℎ𝑐 . (b) 

With increase the impact velocity (𝑅𝑒 =156 and 𝑊𝑒 =271) the hole forms on top of the occlusion due to ℎ < ℎ𝑐 . (c) In this 

case the Reynolds and Weber numbers of the case 1 in section 4.1 (𝑟 = 4 𝑙𝑢 and 𝐻 = 5 𝑙𝑢 ) are decreased to 𝑅𝑒 =100 and 

𝑊𝑒 =111 and therefore the hole is not created due to  ℎ > ℎ𝑐 . 



3.3 Effect of the substrate wettability  

     In this section, the diameter of the occlusion is kept constant and 𝜃 is varied to investigate 

the influence of the substrate wettability on hole formation. As Equation 19 shows, the critical 

thickness reduces with increased wettability of the surface and vice-versa. The critical film 

thickness  ℎ𝑐 for hydrophobic surfaces is larger than  ℎ𝑐 for hydrophilic surfaces and thus hole 

formation is more likely to occur for increasing hydrophobicity. The simulation results also 

confirm this correlation. For instance; for a same parameters as those of case 3 in section 4.1, 

when 𝜃 increases from 90° to 135°, the critical thickness becomes 3.4 𝑙𝑢 and therefore hole 

formation occurs during spreading because ℎ <  ℎ𝑐 , while no hole formed when 𝜃 = 90°. 

Figure 8 shows the simulations for 𝜃 = 135° and it can be seen that a hole is created at 

maximum spread time (Figure 8a). The hole then grows towards the centre of liquid film during 

retraction and a break-up occurs around the occlusion (Figure 8b). Finally the droplet recoils 

to a spherical cap configuration centered at the impact point with its equilibrium contact angle 

(Figure 8c). 

   

(a) (b) (c) 

Figure 8. Simulation results (a) In case 3 of section 4.1 (𝑟 = 4 𝑙𝑢 and 𝐻 = 3 𝑙𝑢), with increasing the equilibrium contact 

angle of the substrate from 𝜃 = 90° to 𝜃 = 135° , a hole forms on top of the occlusion because ℎ < ℎ𝑐 . (b) During 

retraction, the lamella around the occlusion breaks up (see the size of the hole once the break-up occurs). (c) Finally, the 

droplet sits at the impact point with equilibrium contact angle of 135°. 

     Moreover, we carried out another simulation for which all parameters are the same as case 

1 in section 4.1 and only 𝜃 is reduced from 90° to 45°. For 𝜃 = 90° we observed that the hole 

was created, whereas for 𝜃 = 45° no hole is observed (see Figures 9a) and as a consequence 

further confirm that a hole is unlikely to appear as surface wettability increased. It also 

interesting to note that when the surface wettability is enhanced, the droplet likes to adhere to 

the occlusion during retraction (Figure 9b). Thus, the droplet centre of gravity moves from the 

impact point to a new location closer to the occlusion and adheres to it at its equilibrium contact 

angle (Figure 9c). 

 



   

(a) (b) (c) 

Figure 9. Simulation results (a) In case 1 of section 4.1 (𝑟 = 4 𝑙𝑢 and 𝐻 = 5𝑙𝑢), no hole can be observed as the wettability 

of the substrate decreases from 𝜃 = 90° to 𝜃 = 135°  . (b) During retraction, the droplet sticks to the occlusion (c) The 

droplet moves from the impact point to the occlusion position and sits alongside of the occlusion at its equilibrium contact 

angle. 

4. CONCLUSION 

     In this study, we have performed a surface energy analysis and numerical simulations to 

investigate how an occlusion may form a hole into the liquid film which is generated by an 

impacting droplet. This hole formation has been observed as the thickness of the liquid film on 

top of the occlusion (ℎ) is reduced to reach a critical thickness ( ℎ𝑐). Based on our analytical 

investigation which involves several simplifying assumption, this critical film thickness depends 

on the diameter of the occlusion and the wettability of the substrate. Furthermore, the impact 

velocity plays an essential role on hole formation because the thickness of the lamella (ℎ𝑙 ) is reduced 

when the impact velocity increases. This reduction in ℎ𝑙 leads to a decrease ℎ to a value smaller than 

 ℎ𝑐 and therefore a hole is likely to appear in the lamella. 

     To confirm these expected trends, we have developed a multiphase lattice Boltzmann code 

in three-dimensional space following the Shan-Chen model. In our code, ℎ𝑙  at maximum 

spread was assumed to be twice the distance between the centre of gravity and the substrate. 

As a validation case, we compared the numerical results for ℎ𝑙 with the corresponding 

correlation of Scheller and Bousfield (1995). The results showed a very good agreement hence 

confirming the correct implementation of the algorithm. Then, the effect of various control 

parameters on hole formation was investigated numerically. The numerical simulations 

demonstrated that the hole is more likely to form as the diameter of the occlusion, the impact 

velocity and hydrophobicity of the substrate increase, as one would expect. It has been also 

observed that with increasing the wettability of substrate, the droplet endeavour to stick to the 

occlusion during retraction opening up interesting opportunity to control droplets on surfaces 

after impact 
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