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Abstract 9 

The effect of micronized copper azole type C (MCA-C) treatment on rolling shear (RS) 10 

strength and RS modulus of cross-laminated timber (CLT) was evaluated. The CLT test 11 

specimens were either constructed with untreated 2 x 6 (38 mm x 140 mm) No. 2. southern 12 

yellow pine (the United States grown) laminations or MCA-C treated laminations. The shear-free 13 

modulus of elasticity (Esf) and longitudinal-radial shear modulus (GLR) of the laminations were 14 

non-destructively measured prior to CLT manufacturing. The average Esf and GLR of the 15 

untreated lumber were 11.08GPa and 231.42MPa, respectively, while those of the treated lumber 16 

were 9.60GPa and 236.01MPa, respectively. Four-point bending test described in EN 16351 17 

standard along with the Shear analogy method was adopted to measure the RS properties. The 18 

preservative treatment decreased the mean RS strength, while it increased the mean RS modulus. 19 

However, the differences in the means were not significant based on one-way analysis of 20 

variance and Kruskal-Wallis H test, respectively. The experimentally obtained bending stiffness 21 

of the CLT test specimens and the RS strength estimated using the simplified method described 22 

in the CLT Handbook were compared against the values obtained based on the Shear analogy. 23 

The agreement between these two approaches indicates that the short-span test setup 24 



implemented in this study and the simplified method can be used for measuring bending stiffness 25 

and estimating RS strength of 3-ply CLT.  26 

1. Introduction 27 

Cross-laminated timber (CLT) is a wooden panel product consisting of orthogonally 28 

oriented timber laminations typically bonded by structural adhesives. The use of cross-29 

laminations in CLT provides some level of homogeneity in mechanical properties and high in-30 

plane dimensional stability. Since the development of commercial CLT product in early 1990s, it 31 

has successfully penetrated the European construction market [1]. The first North American CLT 32 

standard, ANSI/APA PRG 320, was developed by APA-The Engineered Wood Associations and 33 

FPInnovations in 2011, which was accredited by the American National Standards Institute 34 

(ANSI) [2]. The scope of this standard applies to structural CLT products used in dry service 35 

conditions [3]. However, the demand for industrial applications such as ground protection and 36 

site accesses, where exposure to biodeterioration is inevitable, has been the one of the major 37 

drivers of the North American CLT market [4]. Also, additional protection against biological 38 

degradation will be required when CLT is used in places with high humidity, such as tropical 39 

regions, or environments with high risks of insect infestation. One of the effective methods 40 

against the biodegradation risks is to manufacture CLT using preservative-treated laminations 41 

[5]. 42 

As CLT is made out of timber laminations, it inherits strength and weakness of timber 43 

such as low rolling shear (RS) strength and stiffness. In some building applications, RS 44 

properties may govern the design of CLT when subjected to high out-of-plane bending or 45 

concentrated loading [6]. Thus, RS properties of CLT should be well understood [7]. In 46 

European standard EN 16351 [8], for edge-glued CLT manufactured by common softwood, 47 



characteristic RS strength (fv,R) of 1.1 MPa is specified. In North America, fv,R =1.2 MPa is 48 

specified for CLT made out of southern pine [3]. 49 

There are multiple test methods for determining RS properties of CLT [9]. Fellmoser and 50 

Blass [6] used the beam vibration method to determine RS modulus (GR) of spruce which lies 51 

between 40 MPa and 80 MPa. It was found that shear deformation contributed significantly to 52 

the total CLT beam deflection with decreasing span-to-depth (l/d) ratios due to low GR of timber. 53 

Zhou et al. [10] used two-plate shear tests to measure the fv,R and GR of visually graded No. 3 54 

black spruce (Picea mariana) wood which were found to be 1.09 MPa and 136 MPa, 55 

respectively. A torsional shear testing method was implemented to evaluate fv,R of  spruce-pine-56 

fir (SPF) CLT in which cross layers were machined to have an annular cross-section to facilitate 57 

RS failure mechanism [11,12]. Meanwhile, the RS property evaluation methods found in the 58 

European and North American CLT standards are short-span bending tests. The bending tests 59 

results are analyzed with theoretical models such as the Shear analogy [13] and Gamma [14] 60 

methods. For instance, center-point bending tests along with the Shear analogy method were 61 

conducted on Radiata pine CLT to evaluate its fv,R of and the influence of different lamination 62 

aspect ratios on such property [15,16]. Several studies have confirmed that Shear analogy 63 

method is more accurate in deriving fv,R than other analytical models including the Gamma 64 

method, Timoshenko beam theory, and Composite theory [17–19].  65 

Previous studies on CLT mechanical properties were mainly focused on untreated CLT 66 

[20], and very little research has been conducted to study the mechanical properties of 67 

preservative treated CLT. It is well recognized that preservative treatments often adversely affect 68 

mechanical properties of wood. The degrees of changes in mechanical properties depend on 69 

several factors including species, chemistry of preservatives, and size of material [21]. 70 



Chromated Copper Arsenate (CCA) treatment can reduce short-term bending strength of 71 

southern pine lumber but has a negligible effect on the bending strength for 12-week duration at 72 

the stress level of  40% of short-term strength [22]. Micronized copper azole (MCA) treatment 73 

decreased bending strength of rubberwood as the preservative retention increased while its effect 74 

on bending stiffness was not evident [23]. Preservatives can also chemically and physically 75 

interfere with adhesives during bonding processes [24,25]. Interactions between preservatives, 76 

adhesives, and wood fibers are complex, which makes experimental evaluation of bonding 77 

performance compulsory for development of preservative treated wood composites. Thus, prior 78 

to the presented study, the authors conducted an experimental study to determine the most 79 

compatible adhesive system for manufacturing CLT composed of MCA-type C (MCA-C) treated 80 

southern yellow pine (SYP) laminations[26]. 81 

This experimental study investigates the effect of MCA-C treatment on RS properties, fv,R 82 

and GR, of SYP CLT by conducting the four-point bending tests recommended by EN 16351 83 

standard [8]. Basic properties of timber laminations are pre-assessed before the manufacturing of 84 

the CLT specimens. The RS properties of untreated CLT specimens as a control group are also 85 

evaluated by the same test setup. The Shear analogy method for composite beams is used to 86 

evaluate the RS properties of the treated and untreated CLT specimens. In addition, the validity 87 

of a simplified method for fv,R estimation was examined. 88 

2.  Materials 89 

Two lumber stacks, each consisting of 128 pieces of 3 m-long visually graded No. 2 2×6 90 

(38 mm x 140 mm) SYP lumber, were supplied by Shuqualak Lumber Co. located in 91 

Mississippi. One lumber stack was commercially treated with MCA-C preservative system, 92 

which is composed of 96.1% copper, 1.95% propiconazole, and 1.95% tebuconazole [27], using 93 

a modified full-cell treatment process at a commercial facility (Tri-state Lumber Co., Fulton, 94 



MS), while another stack was stored indoors. The modified full-cell treatment is essentially the 95 

same as the full-cell treatment except that it comprises a low-intensity initial vacuum cycle and 96 

an additional final vacuum cycle [28]. The lumber were preservative-treated to a target retention 97 

level of 2.40 kg/m3, which is required for UC4A (ground contact or fresh water) applications 98 

[27]. Following the AWPA Standard A9-18 [29], the retention level was measured using X-ray 99 

fluorescence spectroscopy, which came out to be 2.88 kg/m3. The preservative treated lumber 100 

were kiln-dried at the maximum dry-bulb temperature of 65ºC which was lower than the 101 

threshold post-treatment kiln-drying temperature of 74ºC specified in Wood Handbook [30]. The 102 

dry-bulb temperature was gradually raised from ambient to 65ºC in the first 5 hours, maintained 103 

for 11 hours, and ramped down to 54ºC in the last 8 hours, while the wet-bulb temperature was 104 

ramped from ambient to 43ºC in the first 2 hours, maintained for 3 hours, ramped down to 27ºC 105 

in the following 11 hours, and maintained for the last 8 hours. Then, the treated lumber were 106 

stored indoors for at least two weeks prior to CLT manufacturing. The untreated and treated 107 

lumber were visually inspected to discard the ones with significant distortions (bow, crook, or 108 

twist), which would cause large variations in the results of the non-destructive bending tests 109 

described in the next section. A total of 81 untreated and 80 treated lumber were selected and cut 110 

to two 1.37 m-long pieces for shear-free modulus of elasticity (Esf) and longitudinal-radial shear 111 

modulus (GLR) measurements. Also, a 26 mm x 26 mm x 38 mm block was cut for moisture 112 

content (MC) and oven-dry specific gravity (SGoven-dry) measurements in accordance with ASTM 113 

D4442 [31] and ASTM D2395 [32] standards, respectively. The summary statistics of MC and 114 

SGoven-dry of the untreated and treated lumber are provided in Table 1. The average MC and 115 

SGoven-dry of the untreated lumber were 10.87% and 0.50, respectively, while those of the treated 116 

lumber were 9.18% and 0.49, respectively. The MC or SGoven-dry means were not significantly 117 



different (p>0.05) from each other based on the ANOVA test described in a later section. This 118 

statistical analysis results confirmed the consistency in quality of the lumber. These average MCs 119 

were within the optimum MC range of 12±3% recommended in the CLT Handbook [33]. 120 

Table 1. Summary statistics of MCs and SGs of untreated and treated lumber 121 

Condition Sample 

size (n) 

MC  SGoven-dry  

Mean (%) COV (%)  Mean COV (%)  

Untreated 81 10.87 7.71  0.50 11.04  

Treated 80 9.18 5.61  0.49 9.39  

After conducting the non-destructive tests described in the next section, 13 of each 122 

untreated and treated panels were manufactured to the final dimensions of 1370 mm (length) × 123 

305 mm (width) × 105 mm (depth) made using 113 and 112 lumber, respectively. The lumber 124 

were planed to a lamination of final dimensions of 35 mm (thickness) x 137 mm (width). EN 125 

16351 [8] standard, which was adopted for the CLT bending tests, requires at least two 126 

laminations in the face layers, while ANSI/ APA PRG 320 [3] suggests the net width of a face 127 

lamination not to be less than 1.75 times its thickness. The width of the CLT panels was 128 

determined to be 305 mm which is the minimum width specified in ANSI/ APA PRG 320  129 

Standard [3]. Thus, two thirds of the surface laminations were cut to 84 mm in width, while the 130 

cross laminations were cut to 305 mm in length. Each layer of the CLT specimens was composed 131 

of laminations with similar apparent modulus of elasticity (Eapp) to avoid significant variations in 132 

mechanical properties between the laminations. Each CLT panel was composed of 6 surface 133 

laminations and 10 cross laminations as illustrated in Fig. 1. A commercial primer solution [34] 134 

diluted at 5% with water by weight was applied at a rate of 20 g/m2 to gluing faces of the 135 

lamination planed within six hours. One component polyurethane (1C-PUR) adhesive supplied 136 

by Henkel was applied at a single-face rate of 150 g/m2 to the gluing faces 30 minutes after the 137 

primer application. Then, the laminations were pressed under 690 kPa for two hours following 138 



the adhesive product specifications [35,36]. The manufactured CLT panels were stored indoors 139 

for at least a week before conducting the bending tests described in the next section.  140 

 141 
Fig. 1. Orthographic views of a CLT panel 142 

3. Methods 143 

3.1 Non-destructive bending test 144 

Non-destructive edge-wise four-point bending tests were conducted to measure the 145 

lamination Esf and GLR properties following ASTM D198 [37]. The 1.37 m-long lumber selected 146 

for the CLT manufacturing were tested at a span-to-depth ratio of 9 with a support span (l), 147 

loading span, and shear free span (lsf) of 1.26 m, 0.65 m, and 0.53 m, respectively, as shown in 148 

Fig. 2. Linear Variable Differential Transformers (LVDTs) were placed 57 mm away from the 149 

loading heads towards the center of the test specimen to avoid the influence of stress 150 

concentration on shear-free deflection (∆sf) measurements. The global deflection (∆g) was 151 

measured using a deflectometer placed at the midspan. The maximum load (Fest.max) of the 152 

lumber was estimated to be 37.4MPa based on the median modulus of rupture (MOR) of No. 2 153 

2× 6 southern pine lumber at MC of 15%, which was reported by Dahlen et al. [38]. The lumber 154 

were tested at a loading rate of 1.78 mm/min until the load reached 40% of Fest.max (i.e. 12.2 kN) 155 

to ensure that the lumber did not undergo permanent deformations before the CLT 156 

manufacturing. The changes in ∆sf and ∆g between 10% and 40% of Fest.max were used to calculate 157 



Esf and GLR of each tested lumber, respectively, using the flexure formulas provided in ASTM 158 

D198 [37].  159 

 160 

Fig. 2. Non-destructive edge-wise four-point bending test set-up  161 

3.2 Bending test of CLT panels 162 

A four-point bending test setup was implemented to evaluate rolling shear (RS) strength 163 

(fv,R) and RS modulus (GR) of the CLT specimens as described in EN 16351 [8]. The beam 164 

support span was 1.26 m with a span-to-depth ratio of 12, while its shear span, loading span, and 165 

shear-free span were 0.63m, 0.63m and 0.53m, respectively. The CLT specimens were simply 166 

supported with an overhang of 55mm from each end, and the loads were applied through two 167 

loading heads at a constant rate of 1.27 mm/min as shown in Fig. 3. LVDTs were located at 168 

center and each end of the shear-free span to measure global (∆g) and shear-free (∆sf) deflections, 169 

respectively, along the neutral axis of the specimen, which were used to estimate GR. The 170 

untreated and treated CLT specimens were loaded to 40% of the estimated maximum loads of 171 

76.3kN and 53.4kN, respectively, before the LVDTs were removed. Then, the tests were 172 

resumed until failure. The estimated maximum load of the untreated CLT was calculated based 173 

on the 5th percentile MOR of No. 2 2× 6 southern pine lumber reported by Dahlen et al. [38], 174 



which was 22.2MPa, while that of the treated CLT was calculated based on 70% of the reference 175 

MOR of the untreated CLT considering potential strength reduction reported by Barnes [39]. 176 

These loads were calculated using Eq. (1) derived based on the simplified method described in 177 

CLT Handbook [33]. The panel cross-sections were assumed to be symmetric along their neutral 178 

axes and composed of the surface-layers with average Esf parallel to grain presented in Table 2 179 

and the core-layers with Esf perpendicular to grain equal to 1/30 of the Esf parallel to grain [3].   180 

𝑃𝑒𝑠𝑡.𝑚𝑎𝑥 =  
4𝐹𝑏𝐸𝐼𝑒𝑓𝑓 

𝐸1ℎ 𝑎
                                                                                                                (1) 181 

where Fb is the reference MOR of the outermost layer (i.e. 22.2MPa and 15.5MPa for the 182 

untreated and treated CLTs, respectively); E1 is the is the modulus of elasticity of the outermost 183 

layer; h is the thickness of panel; a is the one-half of the shear span; EIeff is the effective bending 184 

strength calculated using Eq. (2). 185 

 186 
Fig. 3. Four-point CLT bending test setup  187 

3.2.1 Rolling shear modulus and strength calculation according to the Shear analogy method 188 

The Shear analogy method developed by Kreuzinger [13] was implemented for 189 

estimating the shear properties of the CLT specimens. The details of this method are provided in 190 

numerous publications [40,41]. This method idealizes a CLT panel as a composite system 191 

consists of two virtual beams (i.e. Beam A and B) rigidly connected to each other, which 192 



displace equally upon out-of-plane loads. Beam A takes the contribution of the flexural stiffness 193 

of individual layers into account, while Beam B is responsible for the shear stiffness and the 194 

Steiner’s component of the moment of inertia of each layer. Thus, the method estimates an 195 

effective bending stiffness (EIeff) of a CLT panel using Eq. (2).  196 

𝐸𝐼𝑒𝑓𝑓 =  ∑ 𝐸𝑖𝑏𝑖
ℎ𝑖

3

12

𝑛
𝑖=1 + ∑ 𝐸𝑖𝑏𝑖ℎ𝑖

𝑛
𝑖=1 𝑧𝑖

2                                                                                   (2) 197 

where n is the number of layers, Ei is the Esf of the ith layer; bi is the width of the ith layer; hi is 198 

the depth of the ith layer; zi is the distance from the neutral axis of a cross-section to the centroid 199 

of ith layer. 200 

Since the method assumes that the effective shear stiffness (GAeff) of the composite 201 

system comes from Beam B only, it can be calculated using Eq. (3).  202 

𝐺𝐴𝑒𝑓𝑓 =
𝑑2

ℎ1
2𝐺1×𝑏1

+∑
ℎ𝑖

𝐺𝑖×𝑏𝑖

𝑛−1
𝑖=2 + 

ℎ𝑛
2𝐺𝑛×𝑏𝑛

                                                                                                              (3) 203 

where d is the distance between the centroids of the outermost layers; Gi is the shear modulus of 204 

the ith layer. 205 

GAeff can be also experimentally obtained using Eq. (4), which is established by 206 

reorganizing the flexural formula for shear-free MOE provided in ASTM D198.  207 

𝐺𝐴𝑒𝑓𝑓 =
3(𝑃1 − 𝑃2)

5(
(∆𝑔1−∆𝑔2)

𝑎
− 

 (3𝑙2−4𝑎2)(𝑃1 − 𝑃2)

48 𝐸𝐼𝑒𝑓𝑓
)

                                                                                            (4) 208 

where P1 is the 40% of Pest.max calculated using Eq. (1); P2 is the 20% of Pest.max; ∆g1 is the global 209 

deflection corresponds to the P1; ∆g2 is the global deflection corresponds to the P2.  210 

Thus, rolling shear modulus, GR , of a three-layered CLT can be calculated using Eq. (5). 211 

𝐺𝑅 =
ℎ2

𝑏2(
𝑑2

𝐺𝐴𝑒𝑓𝑓
 − 

ℎ1
2𝐺1×𝑏1

 − 
ℎ3

2𝐺3×𝑏3
)

                                                                                                      (5) 212 



where GAeff is obtained using Eq. (4); G1 and G3 are longitudinal-tangential shear modulus (GLT) 213 

of the first and third layers, respectively, which are assumed to be the same as the GLR values 214 

obtained from the non-destructive bending test described in the previous section [30]  215 

Rolling shear strength, fv,R, of a three-layered CLT can be calculate using Eq. (6), which 216 

is derived according to the Shear analogy method as described in details by Winter et al. [41].  217 

𝑓𝑣,𝑅 =
𝑉𝐴

𝐵𝐴
𝐸2 (

𝑧2
2

2
−

ℎ2
2

8
) +

𝑉𝐵

𝐵𝐵
𝐸1𝑧1ℎ1                                                                                            (6) 218 

where BA and BB are the bending stiffness of Beam A and Beam B, respectively; VA and VB are 219 

the shear forces distributed to Beam A and Beam B, respectively.   220 

3.2.2 Rolling shear strength calculation according to the simplified method using 221 

experimentally obtained EIeff 222 

The four-point bending test setup allows to measure ∆sf , which can be used to directly 223 

assess EIeff,exp using the flexure formula Eq. (7) in ASTM D198 [37], instead of using the Shear 224 

analogy method.  225 

𝐸𝐼𝑒𝑓𝑓,𝑒𝑥𝑝 =  
(𝑃1 − 𝑃2) 𝑎𝑙𝑠𝑓

2

(∆𝑠𝑓1−∆𝑠𝑓2)16
                                                                                                             (7) 226 

where P1 is the 40% of Pest.max calculated using Eq. (1); P2 is the 20% of Pest.max; ∆sf1 is the shear-227 

free deflection corresponding to the load P1; ∆sf2 is the shear-free deflection corresponding to the 228 

load P2.  229 

As thoroughly described in CLT Handbook [33], the simplified method can be 230 

implemented to calculate effective (Ib/Q) using Eq. (8). 231 

(𝐼𝑏/𝑄)𝑒𝑓𝑓 =  
𝐸𝐼𝑒𝑓𝑓

∑ 𝐸𝑖ℎ𝑖𝑧𝑖
𝑛/2
𝑖=1

                                                                                                                (8) 232 

where Q is the first moment of area; z of the layer that consists the neutral axis of the CLT is the 233 

distance from the neutral axis to the centroid of the layer’s cross section above the neutral axis. 234 



 Then, the rolling shear strength, fv,R,sm can be calculated using Eq.(9) based on the shear 235 

formula. 236 

𝑓𝑣,𝑅,𝑠𝑚 =  
𝑃𝑚𝑎𝑥

2(𝐼𝑏/𝑄)𝑒𝑓𝑓
                                                                                                                       (9) 237 

where Pmax is the maximum load recorded from the four-point bending test. 238 

3.3 Statistical Analysis 239 

The effects of MCA-C preservative treatment on the mechanical properties of 2x6 SYP lumber 240 

and three-layered CLT were analyzed using SPSS version 25.0 [42]. The assumptions on 241 

normality and homogeneity of variance of the collected data were confirmed by implementing 242 

Shapiro-Wilk and Levene’s tests, respectively, at  = 0.05. If the assumptions were met, one-243 

way analysis of variance (ANOVA) was performed to compare the means of the data sets. 244 

Otherwise, the Kruskal-Wallis H test, a non-parametric equivalent of one-way ANOVA, was 245 

performed. Both types of analyses were performed at  = 0.05. 246 

4. Results and discussions 247 

4.1 Effect of MCA-C treatment on bending and shear stiffness of lumber 248 

 Table 2 provides the summary statistics of the four-point bending test results presented in  249 

Figs. 4 and 5. of the untreated and the MCA-C treated SYP lumber used as the laminations of the 250 

CLT specimens. The average Esf, Eapp, and GLR of the untreated lumber were 11.08GPa, 7.11GPa, 251 

and 231.42MPa, respectively, while those of the treated lumber were 9.60GPa, 6.46GPa, and 252 

236.01MPa, respectively. Based on the Kruskal-Wallis H test, the mean ranks of Esf were 253 

significantly different (p < 0.001) from each other, while those of GLR were not (p = 0.225). 254 

Thus, the MCA-C treatment significantly decreased Esf of the SYP lumber, while it did not 255 

significantly affect GLR. The GLR/Esf ratios of both types of lumber were less than 0.027 on 256 



average. In this research we assumed that GLR ≈ GLT [30], and thus the measured shear modulus 257 

values can be used as inputs for determining GR of the CLT specimens using Eq. (5). 258 

 259 

Fig. 4. Cumulative Distribution Function (CDF) plots of the Eapp and Esf values of the untreated 260 

and preservative-treated lumber 261 

 262 



Fig. 5. Cumulative Distribution Function (CDF) plots of the GLR values of the untreated and 263 

preservative-treated lumber 264 

Table 2. Summary statistics of bending and shear stiffness of untreated and treated lumber 265 

Condition Sample 

size (n) 

Esf  Eapp  GLR 

Mean 

(GPa) 

COV 

(%) 

 Mean 

(GPa) 

COV 

(%) 

 Mean 

(MPa) 

COV 

(%) 

Untreated 113 11.08 22.14  7.11 14.38  231.42 27.36 

Treated 112 9.60 25.26  6.46 16.87  236.01 26.09 

 266 

4.2 Effect of MCA-C treatment on RS modulus and strength of CLT 267 

The bending stiffness (EIeff), shear stiffness (GAeff), RS modulus, (GR), and RS strength 268 

(fv,R) of the untreated and the treated CLT specimens are presented in Tables 3 and 4, 269 

respectively, along with the summary statistics. These mechanical properties were calculated 270 

according to the Shear analogy method using Eqs. (2) and (4-6).  271 

Table 3. Mechanical properties of the untreated CLT specimens 272 

Specimen 

No. 

EIeff GAeff GR fv,R 

(109 N mm2/m) (106 N /m) (MPa) (MPa) 

C1 1281.65 9.42 100.85 1.96 

C2 954.70 9.52 101.37 1.72 

C3 1354.42 12.14 150.22 2.44 

C4 967.32 12.64 144.74 2.68 

C5 934.01 14.06 181.34 2.35 

C6 918.65 10.87 116.90 2.02 

C7 862.76 10.25 104.48 1.78 

C8 1316.13 12.54 140.39 2.79 

C9 1078.68 11.26 116.74 1.70 

C10 1231.87 10.67 103.17 2.17 

C11 1035.88 12.67 134.90 2.50 

C12 821.25 14.78 163.31 1.95 

C13 652.14 14.42 159.08 1.96 

Mean 1031.50 11.94 132.11 2.16 

COV 20.55% 14.99% 20.36% 16.90% 

 273 

Table 4. Mechanical properties of the MCA-C treated CLT specimens 274 



Specimen 

No. 

EIeff GAeff GR fv,R 

(109 N mm2/m) (106 N / m) (MPa) MPa 

T1 974.37 10.15 122.52 1.62 

T2 887.03 12.82 181.39 1.76 

T3 996.68 8.96 94.69 1.33 

T4 729.67 13.82 172.12 1.81 

T5 724.73 16.52 246.36 1.58 

T6 1069.07 13.24 157.93 2.06 

T7 943.77 9.50 98.26 1.61 

T8 900.86 15.59 174.39 1.87 

T9 768.84 10.97 115.07 2.24 

T10 1028.69 10.92 107.82 1.55 

T11 1255.61 7.86 80.89 2.00 

T12 865.98 9.48 108.20 2.41 

T13 781.59 19.32 260.79 2.51 

Mean 917.45 12.24 147.72 1.87 

COV 16.55% 27.53% 38.91% 18.98% 

 275 

As expected from the non-destructive test results of the lumber, the mean EIeff of the 276 

untreated CLT specimens (1031.50 x 109 N mm2/m) was higher than that of the treated CLT 277 

specimens (917.45 x 109 N mm2/m). However, the preservative treatment increased the mean 278 

GAeff from 11.94 x 106 N / m to 12.24 x 106 N / m. The mean GR of the untreated CLT specimens 279 

was 132.11 MPa, which is greater than the GR range of Norway spruce (i.e. 40 to 80MPa) 280 

reported by Fellmoser and Blass [6] and close to the one of edge-glued 38mm-thick black spruce 281 

cross layer (i.e. 136MPa) [10]. In general, GR values of the MCA-C treated specimens were 282 

greater than those of the untreated specimens, which were characterized with a relatively large 283 

coefficient of variation (COV). The mean fv,R of the untreated CLT specimens was 2.16 MPa, 284 

which sits between the fv,R values of 3-ply SYP CLT obtained from center-point load bending 285 

tests (1.83 MPa) and two-plate shear tests (2.34 MPa) reported by Cao et al. [40]. The MCA-C 286 

treatment reduced the mean fv,R by 13% to 1.87 MPa, which is still greater than the fv,R of 3-ply 287 

Radiata pine CLT composed of cross laminations with an aspect ratio of 4.1 [16]. Despite the 288 



described differences between the shear properties of the untreated and the treated CLT 289 

specimens, the preservative treatment did not significantly affect either GR (p = 0.11) base on the 290 

Kruskal-Wallis H test or fv,R (p = 0.06) based on the one-way ANOVA analysis. Also, these 291 

experimental results confirmed that the Allowable Stress Design reference GR of 60.33MPa and 292 

fv,R of 0.38 MPa provided in the ANSI/APA PRG 320 standard [3] are conservative.  293 

4.3 A simplified approach for RS strength calculation 294 

The EIeff,exp and fv,R,sm of the untreated and the treated CLT specimens obtained using Eqs. 295 

(7) and (9) are presented in Tables 5 and 6, respectively, along with their comparisons against the 296 

ones calculated using the Shear analogy method. 297 

Table 5. Experimentally obtained bending stiffness and RS strength of the untreated CLT 298 

specimens following the simplified method  299 

Specimen 

No. 

EIeff,exp fv,R,sm EIeff 

/EIeff,exp 

fv,R  
/fv,R,sm (109 N mm2/m) MPa 

C1 1086.94 2.33 1.18 0.84 

C2 918.39 1.81 1.04 0.95 

C3 1377.36 2.06 0.98 1.18 

C4 948.62 2.38 1.02 1.13 

C5 940.33 2.27 0.99 1.04 

C6 826.73 2.16 1.11 0.94 

C7 856.40 1.77 1.01 1.01 

C8 1231.26 2.68 1.07 1.04 

C9 921.03 2.22 1.17 0.77 

C10 1213.26 2.16 1.02 1.01 

C11 944.28 2.38 1.10 1.05 

C12 859.93 1.90 0.96 1.03 

C13 684.30 2.09 0.95 0.94 

Mean 1010.38 2.17 1.05 1.00 

COV 18.91% 11.69% 7.12% 11.01% 

 300 

Table 6. Experimentally obtained bending stiffness and RS strength of the MCA-C treated CLT 301 

specimens following the simplified method  302 



Specimen 

No. 

EIeff,exp fv,R,sm EIeff 

/EIeff,exp 

fv,R  
/fv,R,sm (109 N mm2/m) MPa 

T1 896.35 1.84 1.09 0.88 

T2 873.44 1.84 1.02 0.96 

T3 901.13 1.54 1.11 0.87 

T4 767.93 1.76 0.95 1.03 

T5 730.79 1.59 0.99 0.99 

T6 1008.95 2.26 1.06 0.91 

T7 804.70 1.96 1.17 0.82 

T8 922.36 1.87 0.98 1.00 

T9 728.61 2.44 1.06 0.92 

T10 1308.78 1.27 0.79 1.23 

T11 1148.03 2.35 1.09 0.85 

T12 777.80 2.82 1.11 0.86 

T13 899.17 2.22 0.87 1.13 

Mean 905.74 1.98 1.03 0.94 

COV 18.61% 21.33% 10.34% 12.46% 

 303 

Although the test setup was recommended for examining shear properties of CLT [8], the 304 

EIeff,exp values of both treated and untreated CLT specimens were in a good agreement with those 305 

obtained using the Shear analogy method as presented in Tables 3 and 4. The differences 306 

between the EIeff,exp and EIeff values of 85% of the untreated and treated CLT specimens were less 307 

than 15%, while the differences between their mean values were 2.09% and 1.29% for the 308 

untreated and treated CLT specimens, respectively. Similarly, the differences between the fv,R,sm 309 

and fv,R values of 77% of the untreated and treated CLT specimens were less than 15%, while the 310 

differences between their mean values were 0.59% and 5.43% for the untreated and treated CLT 311 

specimens, respectively. Also, based on one-way ANOVA analysis, the mean EIeff,exp and fv,R,sm 312 

values were not significantly different from EIeff and fv,R, respectively. Thus, the test setup 313 

adopted in this study can be reliable for measuring effective bending stiffness and estimating 314 

rolling shear strength of 105mm-thick 3-ply CLT along with the simplified method.  315 

4.4 Failure modes 316 



The core layers within the shear zones of all untreated and treated CLT specimens 317 

experienced typical RS failure as shown in Fig. 6, which progressively occurred following the 318 

general sequence described in Cao et al.[40]. As illustrated in Fig. 7 and Fig. 8, the load-319 

deflection curves of the untreated and the treated CLT specimens were linear up to 320 

approximately 70% of their maximum loads. Then, the curves became nonlinear as shear cracks 321 

formed in the core layers at inclined angles. The nonlinearity became more severe as the shear 322 

cracks propagated towards the glue lines. Eventually, the wood fibers surrounding the cracks 323 

fractured in a brittle manner, which caused the sudden load drops.   324 

 325 
Fig. 6. Rolling shear failures at the shear zones of untreated CLT test specimen C5 326 



 327 
Fig. 7. Load-deflection curves of the untreated CLT specimens 328 

 329 
Fig. 8. Load-deflection curves of the MCA-C treated CLT specimens 330 

Five untreated CLT specimens experienced bending failure at their loading points 331 

simultaneously with the rolling shear failure described above. C6, C7, and C8 specimens had 332 

tensile failures in the edge laminations of their bottom layers, while the edge lamination of C12 333 



specimen’s top layer experienced compressive failure as shown in Fig. 9a to 9d, respectively. 334 

C13 specimen had compressive failure on its top surface layer and tensile failure on its bottom 335 

layer as shown in Fig. 9e. Stress concentrations below the loading heads and natural defects (i.e. 336 

knot and pocket) primarily caused such failure modes. Also, increased load distributions to the 337 

surface layers due to the fracture of the core layers would possibly cause these secondary failure 338 

modes as well.  339 

a) b) 

c) d) 



e) 

Fig. 9. Bending failures of untreated CLT specimens: a) C6, b) C7, c) C8, d) C12 and e) C13.   340 

5. Conclusions 341 

The effects of MCA-C treatment on RS properties of 3-ply SYP CLT were investigated 342 

by conducting four-point bending tests. The preservative treatment reduced the mean RS strength 343 

from 2.16 MPa to 1.87 MPa, while it increased the mean RS modulus from 132.11 MPa to 344 

147.72 MPa. However, the differences in the RS properties of the untreated and the treated CLT 345 

specimens were not statiscally significant. Besides, the preservative treatment significantly 346 

decreased Esf of the SYP lumber, but the effect was less evident for EIeff of CLT specimens due 347 

to the large dispersion in their data. All treated and untreated CLT specimens failed in rolling 348 

shear, while secondary bending failure modes were observed only in the untreated CLT 349 

specimens near their loading locations. 350 

The RS strength values estimated using the simplified method of the CLT Handbook 351 

based on the experimentally obtained bending stiffness (EIeff,exp) were in a good agreement with 352 

those calculated based on the Shear analogy method. The EIeff,exp values obtained using the short-353 

span test setup described in the EN 16351 standard were also agreed well with the EIeff values 354 

estimated based on the non-destructively measured Esf of the CLT laminations using the Shear 355 

analogy method. Thus, the bending test setup adopted in this study, along with the simplified 356 



method, can be implemented to examine the bending stiffness and RS strength of 3-ply CLT over 357 

the Shear analogy method. 358 

Acknowledgment 359 

The authors wish to acknowledge the support of U.S. Department of Agriculture 360 

(USDA), Research, Education, and Economics (REE), Agriculture Research Service (ARS), 361 

Administrative and Financial Management (AFM), Financial Management and Accounting 362 

Division (FMAD) Grants and Agreements Management Branch (GAMB), under Agreement No. 363 

58-0204-6-001 and McIntire-Stennis project under accession number 1014025. This publication 364 

is also a contribution of the Forest and Wildlife Research Center, Mississippi State University. 365 

The authors also would like to thank Shuqualak Lumber Co., Henkel, and Hexion Inc. for 366 

providing materials and Tri-State Lumber Co. for treating the lumber.  367 

References 368 

[1] R. Brandner, G. Flatscher, A. Ringhofer, G. Schickhofer, A. Thiel, Cross laminated timber 369 

(CLT): overview and development, Eur. J. Wood Wood Prod. 74 (2016) 331–351. 370 

doi:10.1007/s00107-015-0999-5. 371 

[2] B. Yeh, S. Gagnon, T. Williamson, C. Piruu, C. Lum, D. Kretschmann, The North 372 

American Product Standard for Cross- Laminated Timber, Wood Des. Focus. 22 (2012) 373 

13–21. 374 

[3] ANSI/APA PRG 320, Standard for Performance-Rated Cross-Laminated Timber, APA - 375 

The Engineered Wood Association, Tacoma, 2018. 376 

[4] G. Schwarzmann, Establishing New Markets for CLT - Lessons Learned, Oregon State 377 

University, 2017. 378 

https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/41687p08g. 379 



[5] J.Y. Wang, R. Stirling, P.I. Morris, A. Taylor, J. Lloyd, G. Kirker, S. Lebow, M.E. 380 

Mankowski, H.M. Barnes, J.J. Morrell, Durability of Mass Timber Structures : a Review 381 

of the Biological Risks, Wood Fiber Sci. 50 (2018) 110–127. 382 

[6] P. Fellmoser, H. Blaß, Influence of rolling shear modulus on strength and stiffness of 383 

structural bonded timber elements, CIBW18 Meet. (2004) 1–8. 384 

[7] S. Gagnon, C. Pirvu, CLT Handbook-Canadian Edition, Libr. Arch. Canada Cat. Publ. 385 

Quebec, Canada. (2011). 386 

[8] EN 16351, Timber Structures - Cross Laminted Timber - Requirements, European 387 

Committee for Standardization (CEN), Belgium, 2015. 388 

[9] T. Ehrhart, R. Brandner, Rolling shear: Test configurations and properties of some 389 

European soft- and hardwood species, Eng. Struct. 172 (2018) 554–572. 390 

doi:10.1016/j.engstruct.2018.05.118. 391 

[10] Q. Zhou, M. Gong, Y.H. Chui, M. Mohammad, Measurement of rolling shear modulus 392 

and strength of cross laminated timber fabricated with black spruce, Constr. Build. Mater. 393 

64 (2014) 379–386. doi:10.1016/j.conbuildmat.2014.04.039. 394 

[11] M. Li, F. Lam, Y. Li, Evaluating Rolling Shear Strength Properties of Cross Laminated 395 

Timber by Torsional Shear Tests and Bending Tests, in: Proc. 13th World Conf. Timber 396 

Eng., Quebec City, Canada, Canada, 2014. 397 

[12] F. Lam, Y. Li, M. Li, Torque loading tests on the rolling shear strength of cross-laminated 398 

timber, J. Wood Sci. 62 (2016) 407–415. doi:10.1007/s10086-016-1567-2. 399 

[13] H. Kreuzinger, Platten, scheiben und schalen - Ein berechnungsmodell für gängige 400 

statikprogramme (in German), Bau. Mit Holz. 1 (1999) 34–39. 401 

[14] EN 1995-1-1, Eurocode 5: Design of timber structures - Part 1-1: General - Common rules 402 



and rules for buildings, European Committee for Standardization (CEN), Brussels, 403 

Belgium, 2004. 404 

[15] M. Li, Evaluating rolling shear strength properties of cross-laminated timber by short-span 405 

bending tests and modified planar shear tests, J. Wood Sci. 63 (2017) 331–337. 406 

doi:10.1007/s10086-017-1631-6. 407 

[16] M. Li, W. Dong, H. Lim, Influence of Lamination Aspect Ratios and Test Methods on 408 

Rolling Shear Strength Evaluation of Cross-Laminated Timber, J. Mater. Civ. Eng. 31 409 

(2019) 1–11. doi:10.1061/(ASCE)MT.1943-5533.0002977. 410 

[17] I.P. Christovasilis, M. Brunetti, M. Follesa, M. Nocetti, D. Vassallo, Evaluation of the 411 

mechanical properties of cross laminated timber with elementary beam theories, Constr. 412 

Build. Mater. 122 (2016) 202–213. doi:https://doi.org/10.1016/j.conbuildmat.2016.06.082. 413 

[18] J. Zhou, Y.H. Chui, M. Gong, L. Hu, Elastic properties of full-size mass timber panels: 414 

Characterization using modal testing and comparison with model predictions, Compos. 415 

Part B Eng. 112 (2017) 203–212. doi:https://doi.org/10.1016/j.compositesb.2016.12.027. 416 

[19] T. Bogensperger, G. Silly, G. Schickhofer, Comparison of Methods of Approximate 417 

Verification Procedures for Cross Laminated Timber, Institute for Timber Engineering 418 

and Wood Technology Management. Holzbau Forschungs gmbh, Graz, Austria, 2012. 419 

[20] X. Sun, M. He, Z. Li, Novel engineered wood and bamboo composites for structural 420 

applications: State-of-art of manufacturing technology and mechanical performance 421 

evaluation, Constr. Build. Mater. 249 (2020) 118751. 422 

doi:10.1016/j.conbuildmat.2020.118751. 423 

[21] J.E. Winandy, Effects of Waterborne Preservative Treatment on Mechanical Properties: A 424 

Review, in: Proc. 91st Annu. Meet. Am. Wood-Preservers’ Assoc., 1995: pp. 17–34. 425 



[22] L. Soltis, J. Winandy, Long-term strength of CCA-treated lumber, For. Prod. J. 39 (1989) 426 

64–68. 427 

[23] S.R. Shukla, J. Zhang, D.P. Kamdem, Pressure treatment of rubberwood (Heavea 428 

brasiliensis) with waterborne micronized copper azole: Effects on retention, copper 429 

leaching, decay resistance and mechanical properties, Constr. Build. Mater. 216 (2019) 430 

576–587. doi:10.1016/j.conbuildmat.2019.05.013. 431 

[24] D.C. Maldas, D.P. Kamdem, Surface characterization of chromated copper arsenate 432 

(CCA)-treated red maple, J. Adhes. Sci. Technol. 12 (1998) 763–772. 433 

doi:10.1163/156856198X00281. 434 

[25] L.F. Lorenz, C. Frihart, Adhesive bonding of wood treated with ACQ and copper azole 435 

preservatives, For. Prod. J. 56 (2006) 90–93. 436 

[26] H. Lim, S. Tripathi, J.D. Tang, Bonding performance of adhesive systems for cross-437 

laminated timber treated with micronized copper azole type C (MCA-C), Constr. Build. 438 

Mater. 232 (2020). doi:10.1016/j.conbuildmat.2019.117208. 439 

[27] AWPA P62-16, Standard for micronized copper azole type C (MCA-C), American Wood 440 

Protection Association, Birmingham, AL, 2018. 441 

[28] S.T. Lebow, Chapter 15: Wood preservation, in: Wood Handb.  Wood as an Eng. Mater., 442 

FPL-GTR-19, U.S. Department of Agriculture, Forest Service, Forest Products 443 

Laboratory, Madison, WI, 2006: p. 508. doi:10.2737/FPL-GTR-190. 444 

[29] AWPA A9-18, Standard Method for Analysis of Treated Wood and Treating Solutions by 445 

X-ray Spectroscopy, American Wood Protection Association, Birmingham, AL, 2018. 446 

[30] D.E. Kretschmann, Chapter 05: Mechanical Properties of Wood, in: Wood Handb.  Wood 447 

as an Eng. Mater., FPL-GTR-19, U.S. Department of Agriculture, Forest Service, Forest 448 



Products Laboratory, Madison, WI, 2010: p. 508. doi:10.2737/FPL-GTR-190. 449 

[31] ASTM D4442-16, Standard Test Methods for Direct Moisture Content Measurement of 450 

Wood and Wood-Based Materials, ASTM International, West Conshohocken, PA, 2016. 451 

[32] ASTM D2395-17, Standard Test Methods for Density and Specific Gravity (Relative 452 

Density) of Wood and Wood-Based Materials, ASTM International, West Conshohocken, 453 

PA, 2017. 454 

[33] FPInnovations, CLT Handbook U.S. Edition, FPInnovations, pointe-Claire, 2013. 455 

[34] Purbond, Application instructions: Bonding of SOUTHERN PINE wood with primer 456 

LOCTITE PR 3105 and PURBOND HB X adhesives, Sempach Station, Switzerland, 457 

2017. 458 

[35] Purbond, PURBOND HB E452 Single-component polyurethane adhesive for the 459 

manufacutre of engineered wood products, 2009. 460 

[36] Henkel, Technical Data Sheet LOCTITE HB X102 PURBOND, Bridgewater, NJ, USA, 461 

2018. 462 

[37] ASTM D198-15, Standard Test Methods of Static Tests of Lumber in Structural Sizes, 463 

ASTM International, West Conshohocken, PA, 2015. 464 

[38] J. Dahlen, P.D. Jones, R.D. Seale, R. Shmulsky, Bending strength and stiffness of wide 465 

dimension southern pine No. 2 lumber, Eur. J. Wood Wood Prod. 72 (2014) 759–768. 466 

doi:10.1007/s00107-014-0848-y. 467 

[39] H.M. Barnes, Effect of steaming temperature and CCA retention on mechanical properties 468 

of southern pine, For. Prod. J. 35 (1985) 31–32. 469 

[40] Y. Cao, J. Street, M. Li, H. Lim, Evaluation of the effect of knots on rolling shear strength 470 

of cross laminated timber (CLT), Constr. Build. Mater. 222 (2019) 579–587. 471 



doi:10.1016/j.conbuildmat.2019.06.165. 472 

[41] S. Winter, H. Kreuzinger, P. Mestek, Teilprojekt 15 Flächen aus Brettstapeln, 473 

Brettsperrholz und Verbundkonstruktionen (in German), Fraunhofer IRB Verlag, 474 

Stuttgart, 2009. 475 

[42] IBM Corp., IBM SPSS Statistics for Windows, Version 25.0, (2017). 476 

 477 


