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ABSTRACT

A method is proposed to construct simultaneous confidence intervals for multiple linear com-

binations of generalized linear model parameters, that uses a multivariate normal- or t-distribution

together with the signed likelihood root statistic. In an application to a case study simultaneous

confidence bands for logistic regression are calculated. A simulation study based on the example

evaluation suggests superior performance compared to the common Wald-type approaches. The

proposed methods are readily implemented in the R extension package mcprofile.

1. INTRODUCTION

Generalized linear models (McCullagh and Nelder, 1989) are a well established family of mod-

els with a wide range of application. With a sample of observations under assumption of a distribu-

tion from the exponential family and a set of explanatory covariates, parameters can be estimated

and predictions for a new set of input variables can be obtained. For example, logistic regression

or models for count data are prominent areas of application, assuming either a Binomial or a Pois-

son distributed response, or a generalization of these distributions with additional parameters in

the variance function. When doing inference for parameters of a generalized linear model, one
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ACCEPTED MANUSCRIPT

can rely on large sample approximations if sufficiently large data is available. To provide accurate

inference at small sample sizes, profile likelihood methods and higher order asymptotics (Brazzale

and Davison, 2008) are a prominent way to construct confidence intervals for a single parameter

in the model.

In this article the focus is set on inference based on a set of profile statistics, controlling the

family-wise error rate (FWER), that is, the probability of falsely rejecting at least one true null

hypothesis, at a specified level. Instead of providing adjusted p-values and simultaneous confi-

dence intervals directly for the model parameters, inference for derived parameters is considered,

specifying linear combinations of parameters by providing a matrix of contrast coefficients.

2. GENERALIZED LINEAR MODELS

First, a brief overview of parameter estimation in generalized linear models is given. For more

detailed information the reader is referred e.g. to the book of McCullagh and Nelder (1989). A

vector of i = 1, . . . , n observationsy = (y1, . . . , yn)T is assumed to be a realization of a random

variableY, where each component ofY is assumed to have a distribution in the exponential family.

The systematic component of a generalized linear model is defined as

g() = η = Xβ

with a link functiong(∙), a p-dimensional vector of parametersβ = (β1, . . . , βp)T , and a (np) matrix

X = (xT
1 , . . . , x

T
n )T with n row vectors of design covariates for each observation. Given the vector of

predictor variables, the log-likelihood can be written as the sum of the logarithmic density function

evaluated at each of then observationsl(; y) =
∑n

i=1 log fi(yi; i). Instead of the likelihood function,

the scaled deviance

D(y; ) = 2l(y; y) − 2l(; y)

can be used as a goodness-of-fit criterion. To estimate a coefficient vectorβ̂ an iteratively re-

weighted least squares (IRWLS) algorithm can be applied (McCullagh and Nelder, 1989) for find-
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ACCEPTED MANUSCRIPT

ing the minimum of the deviance function.

In many applications the experimental questions are specified throughk = 1, . . . , q linear

combinations of the model parameters,ϑ = Aβ, which are defined by a (qp) contrast matrix

A = (aT
1 , . . . , a

T
q )T , where each of theq row-vectorsak contains predefined constants to define a

single contrast parameterϑk. When constructing simultaneous confidence intervals or hypotheses

tests, the multiple comparison problem of testing all hypotheses at a nominal level ofα, the overall

type I error rate, has to be considered. A unifying simultaneous inference framework for these lin-

ear combinations of parameters in general parametric models is presented in Hothorn et al. (2008).

They consider the general linear hypothesis (Searle, 1971, p.110):

H0 : ϑ = m

wherem = (m1, . . . ,mq) is a vector of specified constants defining the test margins. This global

hypothesis is partitioned into theq different sub-hypotheses, testing eachϑk separately, but main-

taining the global type-I-error rate. The key factor of this single-step inference is the assumption

of a multivariate normal-distribution of the standardized estimatorϑ̂ with a correlation structure,

which is directly obtained from the (pp) observed information matrix at the parameter estimates

j(β) = − ∂
2l(;y)
∂β∂βT .

3. TEST STATISTICS

A single elementϑk of the vectorϑ, corresponding to a single rowak = (a1, . . . , aq) of the (qp)

contrast matrixA is used to introduce different test statistics to test an elementary null-hypothesis.

In Hothorn et al. (2008) the Wald-type statistic

w(ϑk) =
(
ϑ̂k − ϑk

)
j

1
2 (ϑ̂k)

is used, wherej−1(ϑ̂k) = ak j−1(β̂)aT
k is the inverse of the observed information of the contrast

parameter. As the observed information is fixed at the maximum likelihood estimates for anyϑk,
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the statisticw(ϑk) is a linear function, and therefore approximates the deviance by a quadratic

function w2(ϑk), which holds exactly for a Gaussian linear model. For a non-Gaussian response

the quadratic approximation might be inadequate at small sample sizes, especially if the parameter

space is bounded. Hence, the performance of the Wald-type statistic highly depends on the choice

of the link function, as lower and upper confidence interval limits based on this statistic will have

equal distance to the maximum likelihood estimate on the scale of the linear predictor.

To improve the asymptotic properties of the test, the signed root deviance statistic (Chen and

Jennrich, 1996)

q(ϑk) = sign
(
ϑ̂k − ϑk

)
√

D(y; )̂ − D(y; )̃
φ

can be applied as an alternative to the Wald-type statistic.ˆ is the linear predictor at the maximum

likelihood estimates of the parametersβ̂. ˜denotes the linear predictor at the restricted parameter

estimates̃β, obtained under the linear constraintakβ = ϑk.

φ is a dispersion parameter, which accounts for extra variation in the data. This parameter is

fixed at 1 e.g. for a Binomial or Poisson model, but can also be estimated from the data, like the

residual error in a Gaussian linear model. As the deviance function is an essential part of the test

statistic in comparison of just using the quadratic approximation, improving this approximation

comes at the cost, that the model has to be refitted several times to obtain the deviance values

in the neighborhood of the maximum likelihood estimate. These model updates are additionally

complicated, as interest lies in the derived parametersϑ instead of the parameter vectorβ.

To obtaiñ, the weighted least squares step in the IRWLS algorithm can be modified by using a

weighted regression, which allows to apply linear equality constraints on the regression parameters

at each iteration. A quadratic programming algorithm, e.g. the dual method by Goldfarb and

Idnani (1983), can be used to obtain the restricted parameter estimates. An application of a related

algorithm for fitting shape constraint generalized linear models is presented in Meyer (2012).

For higher order density approximations, a modified likelihood root is given in Barndorff-
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Nielsen (1983), which can be extended to general linear hypotheses by

r(ϑk) = q(ϑk) +
1

q(ϑk)
log

(
w(ϑk)ρ(ϑk, ϑ̂k)

q(ϑk)

)

,

with ρ(ϑk, ϑ̂k) =
√
| jλλ(β̂)|
| jλλ(β̃)|

. | jλλ(∙)| denotes the determinant of a subset of the observed information

matrix to summarize the information about the nuisance parameters that are not subject to the linear

constraint. In terms of inference for a contrast parameter, the nuisance parameters correspond

to contrast coefficients of zero. Additional to the likelihood root, the observed information is

evaluated at the maximum likelihood estimatesβ̂ and the restricted estimatesβ̃ under the linear

constraintakβ = ϑk. The observed information matrix for the equality-constraint parameters can

be obtained, according to Liew (1976), by

j(β̃) =
(
M̂Σ̂M̂

T
)−1

, M̂ = I − Σ̂aT
k

(
akΣ̂aT

k

)−1
ak, Σ̂ = j−1(β̂).

As the variance-covariance matrix of the restricted parameters might be singular due to the equality

constraints, an eigenvalue or singular value decomposition might be used to compute the determi-

nant of interest, based on eigenvalues larger than zero. A further difficulty arises, as the statistic

r(ϑk) is not defined at the maximum likelihood estimates.

4. SIMULTANEOUS INFERENCE

We now consider to test each of theq null hypotheses individually under control of the family-

wise error rate, either using the statisticsw(ϑk), q(ϑk), or r(ϑk). To maintain the FWER, the global

null hypothesis is rejected, if at least one elementary hypothesis is rejected; thus, focus is set on the

maximum of test statistics. The distribution of this maximum evaluated at the specific test margins

mk can be specified for a two-sided testing procedure as

P(max|w(mk)| ≤ t) �
∫ t

−t
∙ ∙ ∙

∫ t

−t
ϕ
(
x1, . . . , xq; R, ν

)
dx1 . . . dxq = gν(R, t)

for any t ∈ R. ϕ is either the multivariate normal- ort-distribution function, given a residual error

degree of freedomν, which is assumed when the dispersion parameterφ is estimated from the
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data. The correlation structureR is obtained by standardizing the variance-covariance matrix of

the contrast parameters,

R̂ = D̂
−1/2

Ψ̂D̂
−1/2
, where D̂ = diag

(
Ψ̂

)
I q, and Ψ̂ = A j−1(β̂)AT

using the estimates from the data and treat them as if it were the true correlation matrix. Efficient

approaches to approximate these multiple integrals are discussed in Bretz et al. (2001).

Under assumption of a linear model with normal distributed residuals, the signed root deviance

statistics equal the Wald-type statistic (Bates and Watts, 1988, p. 205), leading to exact statistical

inference as the correlation structure of the multivariatet-distribution is defined only by the known

contrasts and design covariates. In a more general setting, a second-order approximation to the

deviance is used (Lindsey, 1996, p. 209), calculating the correlation structure, using the observed

information at the maximum likelihood estimates similar to the Wald-type statistic. The marginal

distributions of theq test statistics follow asymptotically a standard normal ort-distribution (Braz-

zale and Davison, 2008), hence the approximated correlation structure will only influence the

degree to which the tests are adjusted for multiplicity.

Adjusted p-values controlling the FWER are calculated as

pk = 1− gν(R̂, |tk|)

wheretk is the observed statistic, either usingw(mk), q(mk), or r(mk).

Instead of using adjusted p-values, confidence intervals are defined by inverting the hypothesis

test as

I = {ϑk : −c1−α ≤ w(ϑk) ≤ c1−α}

with a critical valuec1−α. Analogously,w(ϑk) can be substituted by the different profile statistics

q(ϑk) andr(ϑk). As the confidence limits are found separately for each of theq linear combinations

of parameters, the combined set of confidence limits describes a rectangular confidence set in aq-
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dimensional space.

The critical valuec1−α should be chosen in a way that the FWER is controlled, considering

the correlation between the derived parameters. Similar to the testing procedure, the control of

the global error rate is maintained by focusing on the maximum of theq elementary hypotheses,

where the statistics, analogous to Hothorn et al. (2008), are assumed to follow aq-variate normal

or t-distribution. In order to assign the same weight or error level to each of theq hypotheses an

equicoordinate quantilec1−α is calculated from thisq-dimensional distribution (Bretz et al., 2001).

For an effective search for the confidence limits, the strategy of Venables and Ripley (2002, p.

221) is adopted, establishing a grid of values for each of theϑk around the maximum likelihood

estimates, and interpolating the resultingq(ϑk) or r(ϑk) by a cubic spline function. The confidence

limits are found by evaluating the inverse of this interpolating function at−c1−α andc1−α. As an

alternative, a simple bisection method can be utilized to search for each confidence limit directly,

but missing the opportunity of gaining additional insights by a graphical representation of the

profiled parameter.

5. APPLICATION TO A CASE STUDY

In a dose-response experiment the lethal effect of an insecticide is tested. The data example is

artificially generated, based on an excerpt of a real experiment, featuring very small sample sizes.

The generated data is shown in Table I.

5.1 ESTIMATING THE LETHAL DOSE

The objective in this experiment is the detection of a lethal dose of the insecticideLD(p),

affecting a specific fractionp [%] of the tested subjects. The dose-response curve is modeled by a

logistic regression model with

yi ∼ Binomial(ni , i), ηi = g(i) = log

(
i

1− i

)

, ηi = β1 + log(xi)β2.

The LD(p) can be obtained by inverse regression, estimating the dose level, which corresponds
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to the linear predictor at the cutoff fraction p. A confidence interval for theLD(p) is obtained by

searching for the dose corresponding to the confidence limits of the linear predictor at the same

cutoff value. Therefore, a first step will be the calculation of simultaneous confidence bands for

the logistic regression curve, which can be obtained by specifying a suitable contrast matrix.

The transformed parameter vectorϑ = Aβ will represent predictions for new, unobserved dose

levels by choosing a contrast matrixA which resembles a design matrix for a new dataset with

column vectors with design coefficients for the interceptak1 and for pre-specified dose levelsak2.

TheLD(p) and corresponding confidence limits are found by searching for the dose levels at which

g−1(ϑ) = p and the projection of corresponding confidence limits for neighboringϑ at levelg(p).

These projections of cutoff intersections are illustrated in Figure 1 for the lower confidence limit

of theLD(25).

With a large number of rows already in the contrast matrixA, corresponding to a dense grid

of dose levelsak2, only a marginal change in the global type-I-error rate can be expected with a

further increase of the density of the grid, as the test statistics based on two neighboring dose levels

can be assumed to be highly correlated. Hence, the error rate of falsely rejecting at least one null-

hypotheses corresponding to anyLD(p) within the range ofak2 can be controlled by specifying

an adequate grid of dose levels covering the dose range of interest. The effect of controlling the

FWER with the proposed plugin-method in comparison to the control of the comparison-wise error

rate and a common Bonferroni adjustment is presented in Figure 2. The proposed method results

in confidence limits with only a small distance to the unadjusted confidence limits, whereas the

Bonferroni adjustment results in much wider intervals.

The estimatedLD(p) at p ∈ {25,50,75} are found at{1.81,2.89,4.60}. The lower simultaneous

confidence limits for these parameters can be found in Table II. Especially at smallp, the profiling

methods show a smaller distance of the lower limit to the point estimate. In this case, the higher

order approximations can be seen as a compromise between Wald-type and the first order profile

confidence intervals.
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5.2 MULTIPLE COMPARISONS TO A CONTROL

To illustrate the advantages and the limits of the profile methods, multiple comparisons of the

success rates at each dose level to the control dose are performed. A similar model as in Section

5.1 is assumed, with the linear predictorηi = β j, where j = 1, . . . , n, estimating the success rates

individually for each dose levelxi. In this model the distances between each dose level is not

considered, as the design matrix is just the identity matrix.

Simultaneous confidence intervals and tests are calculated based on the contrasts

A =




−1 1 0 0 0 0

−1 0 1 0 0 0

−1 0 0 1 0 0

−1 0 0 0 1 0

−1 0 0 0 0 1




with comparisons of rates at each dose level to the control dose. Simultaneous confidence intervals

for ϑk and multiple tests of the null hypothesesH(k)
0 : ϑk = 0 are provided.

The problem for the particular data at hand is the success rate of 0 out of 10 at the second dose

level and 10 out of 10 at the last dose. Adding the number of non-zero contrast coefficients divided

by the number of model parameters, that is 2/6, as pseudo-events to the successes and failures in

each dose group, according to Price and Bonnett (2004), allows to make inference about theϑk in

spite of observing unadjusted rates at the border of the parameter space.

The estimated lower and upper simultaneous confidence limits and the adjusted p-values are

shown in Table III. When comparing rates at higher dose levels to the control, the profile method

obtains smaller p-values and likewise compatible lower confidence limits with a larger distance to

zero.

6. SIMULATION STUDY

To evaluate the performance of the methods, the simultaneous coverage probability of the in-
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tervals is examined by simulation. The simulation settings are related to the data example, per-

forming a logistic regression with support atxi = (0,1,2,3,4), parameterized byβ1 = −2.197

andβ2 = 1.099 with g(i) = ηi = β1 + xiβ2, resulting in a vectori = (0.1,0.25,0.5,0.75,0.9).

Data is generated from a Binomial distribution,yi ∼ Binomial(ni , i), for different numbers of

ni ∈ {3,4, . . . , 25}. At each sample size settingni, 100,000 simulation runs are performed. At

extremely small sample sizes, the constrained estimation algorithm might not converge; when no

confidence limit can be obtained at a simulation run, this limit is fixed at the border of the parameter

space.

In a first part of the simulation, the coverage probability of simultaneous (1− α) = 0.95 confi-

dence intervals forg−1(ϑk) with ϑ = Aβ is examined, where

A =




1 1

1 2

1 3




.

The simulation results are shown in Figure 3. The Wald-type intervals are showing a conservative

behavior, especially at small sample sizes, whereas the signed root deviance profile results in anti-

conservative intervals, but reaching the nominal level a bit faster than the Wald approach with

increasing sample sizes. The best performance is given by the higher order approximation; only at

ni ≤ 5 some numerical problems occur, which are influencing the simulation results.

Instead of confidence intervals fori, the confidence intervals forLD(p) are of interest in

the data example. In order to evaluate the performance of these intervals a second simulation

study is conducted. Rather than calculating confidence intervals at support coordinates ofak2 =

(1,2,3), a whole range of 50 equally spaced coordinates from−10 to 15 are chosen (ak2 =

(−10,−9.49, . . . , 15)). The coverage probability of simultaneous confidence intervals is simulated

for 50 LD(p) parameters in a range between 1 and 3 based on 10,000 runs at eachni setting. The

simulation results are presented in Figure 4. Due to numerical instabilities at the border of the pa-
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rameter space, the simulated coverage probabilities are far below the nominal level for all methods

at very small sample sizes. But at aroundni ≥ 20 the coverage probabilities converge at a level

slightly higher than the nominal level. As a single error rate is controlled for nearly allLD(p)

parameters within a certain range, all approaches show a slightly conservative behavior; hence the

in other respects anti-conservative performance of the profile approach is beneficial in this certain

situation.

To investigate the performance of comparisons to a control, corresponding to the application

in Section 5.2, thei related to 6 different dose groups are generated from a uniform distribution

i ∼ U(0,1); hence, a wide range of different response profiles are summarized within 100,000 sim-

ulation runs. In a second simulation thei are sampled from a Beta distributioni ∼ Beta(5,5), omit-

ting extremei at the border of the parameter space. Analogously to the previous simulations, the

response vector is generated byyi ∼ Binomial(ni , i), for different numbers ofni ∈ {5,10, . . . , 100}.

The response vector is adjusted for small sample sizes by adding 2/6 pseudo-events to the suc-

cesses and failures in each dose group according to Price and Bonnett (2004).

When generating the group level proportions from aU(0,1) distribution, the likelihood root

methods show similar characteristics as the Wald-type statistic (Figure 5). Due to computational

instabilities, when estimating the profile statistics at smalli, no reliable confidence limits can be

obtained; hence, the limits are set to [−∞,∞], resulting in conservative coverage properties. This

problem at extremei is pointed out, when omitting the problematic parameter region by sampling

from theBeta(5,5) distribution. The results in Figure 6 show, that both likelihood root methods

are reaching the nominal coverage level much faster with increasing sample sizes compared to the

Wald-type statistic.

7. DISCUSSION

At small sample sizes, the use of likelihood profiles can improve the properties of simultaneous

confidence intervals compared to the Wald-type approach, proposed by Hothorn et al. (2008). Es-
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pecially, at the border of the parameter space, more accurate and useful inference can be obtained,

at which the Wald-type intervals just remain completely uninformative. As the Wald approach

relies on a quadratic approximation to the log-likelihood function, an adequate choice of the link

function will certainly improve the approximation by a quadratic function. As a further advantage

of the profile statistics, the performance of the confidence intervals is not as dependent on an ad-

equate choice of a link function compared to the Wald approach, as the log-likelihood function is

a major part of the profile statistic itself. Only the calculation of the critical valuec1−α is based on

the estimated covariance matrix of the model parameters, which is dependent on the chosen link

function.

A certain disadvantage is the increased computational effort, as the construction of a profile re-

quires additional constrained parameter estimation steps. Together with the search for the equico-

ordinate quantilec1−α this might increase the computation time, dependent on the complexity of the

model and the number of contrast parameters (only dimensions≤ 1,000 available). A software im-

plementation is available as an R package mcprofile (http://cran.r-project.org/web/packages/mcprofile/index.html),

using the existing generalized linear modeling functions in R.
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Table I: Dose-response data, investigating the mortality of insects with increasing dose levels of

an insecticide.

Dose (xi) No. of dead insects (yi) Total (ni)

0 1 10

0.625 0 9

1.25 1 10

2.5 2 10

5 9 10

10 10 10

Table II: LD(p) simultaneous lower confidence limits, controlling the FWER at a type-I-error

level of (1− α) = 0.95.

p [%]

Method 25 50 75

likelihood root 0.97 1.74 3.27

Wald-type 0.71 1.73 3.01

modified lik. root 0.94 1.93 3.30
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Table III: Simultaneous confidence intervals and adjusted p-values for comparing rates for each

dose to the control on the logit link. At missing entries no confidence limit could be calculated.

Wald-type likelihood root modified likelihoodroot

comparison estimate lower upper p-value lower upper p-value lower upper p-value

0.625 - 0 -1.38 -6.43 3.66 0.95 3.10 0.92 3.19 0.96

1.25 - 0 0.00 -3.32 3.32 1.00 -3.88 3.88 1.00 -3.76 3.76 1.00

2.5 - 0 0.67 -2.33 3.68 0.98 -2.35 4.42 0.97 -2.35 4.25 0.98

5 - 0 3.89 0.58 7.21 0.01 1.08 8.17 < 0.01 1.01 7.95 < 0.01

10 - 0 5.38 0.34 10.42 0.03 1.78 < 0.01 1.64 < 0.01
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Figure 1: Pointwise simultaneous confidence bands for the logistic regression example and LD(25)
estimates.

Figure 2: Comparing methods for multiplicity adjustment of pointwise simultaneous confidence
bands for the logistic regression example.
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Figure 3: Simulated coverage probabilities of confidence intervals for specific ?i with increasing
sample sizes ni.

Figure 4: Simulated coverage probabilities of confidence intervals for specific LD(p) with increas-
ing sample sizes ni.
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Figure 5: Simulated coverage probabilities of confidence intervals for comparisons to a control
with increasing sample sizes ni, generating rates from a U(0,1) distribution.

Figure 6: Simulated coverage probabilities of confidence intervals for comparisons to a control
with increasing sample sizes ni, generating rates from a Beta(5,5) distribution.
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