Two generalisations of the wheels-and-whirls theorem.

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Mathematics
Degree name
Doctor of Philosophy
Publisher
Journal Title
Journal ISSN
Volume Title
Language
English
Date
2023
Authors
Toft, Gerry
Abstract

One of the most famous results in matroid theory is Tutte’s Wheels-and-Whirls Theorem. It states that every 3-connected matroid has an element which can either be deleted or con- tracted while retaining 3-connectivity, except for two families of matroids: the eponymous wheels and whirls. The Wheels-and-Whirls Theorem is a powerful tool for inductive argu- ments on 3-connected matroids. We consider two generalisations of the Wheels-and-Whirls Theorem.

First, what are the k-connected matroids such that the deletion and contraction of every element is not k-connected? Motivated by this problem, we consider matroids in which every element is contained in a small circuit and a small cocircuit, and, in particular, when these circuits and cocircuits have a cyclic structure. The first part of this thesis is concerned with matroids in which have a cyclic ordering σ of their ground set such that every set of s − 1 consecutive elements of σ is contained in an s-element circuit and every set of t − 1 consecutive elements of σ is contained in a t-element circuit. We show that these matroids are highly structured by proving that they are “(s, t)-cyclic”, that is, their s-element circuits and t-element cocircuits are consecutive in σ in a prescribed way. Next, we provide a characterisation of these matroids by showing that every (s, t)-cyclic matroid is a weak-map image of a particular (s, t)-cyclic matroid.

Secondly, what are the 3-connected matroids such that such that the deletion and con- traction of every 2-element subset is not 3-connected? In the second part of this thesis, we find all such matroids. Roughly speaking, these matroids can be constructed in one of four ways: by attaching fans to a spike, by attaching fans to a line, by attaching particular matroids to M (K3,m), or by attaching particular matroids to each end of a fan.

Description
Citation
Keywords
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
All Right Reserved