UC Home > Library > UC Research Repository > College of Engineering > Engineering: Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10092/7130

Title: High Temperature Superconducting Partial Core Transformers
Authors: Lapthorn, Andrew Craig
Keywords: Transformers
High Temperature Superconductors
Partial Core
Transformer Modelling
Transformer Testing
Issue Date: 2012
Abstract: The thesis begins by providing an introduction to transformer theory. An ideal transformer is examined first, followed by full core transformer theory. The partial core transformer is then introduced and compared to the full core design. An introduction to superconductors is then presented where a simplified theory of superconductivity is given. High temperature superconductors are then examined including their physical structure, superconducting properties and the design of the superconducting wire. The early development of high temperature superconducting partial core transformers at the University of Canterbury is then examined. Early partial core development is discussed followed by some material testing at cryogenic temperatures. This work lead into the development of the first high temperature superconducting partial core transformer. This transformer failed during testing and an examination of the failure mechanisms is presented. The results of the failure investigation prompted an alternative winding insulation design which was implemented in a full core superconducting transformer. The modelling used to design a high temperature superconducting partial core transformer is then presented. Based upon the reverse design method, the modelling is used to determine the components of the Steinmetz equivalent transformer circuit. The modelling includes a combination of circuit theory and finite element analysis. An ac loss model for high temperature superconductors is also presented. A new 15 kVA, 230-230V high temperature superconducting partial core transformer was designed, built and tested. The windings are layer wound with first generation Bi2223 high temperature superconductor. The modelling was used to predict the performance of the transformer as well as the ac losses of the high temperature superconductor. A series of electrical tests were performed on the transformer including open circuit, short circuit, resistive load, overload, ac withstand voltage and fault ride through tests. The test results are compared with the model. The transformer was found to be 98.2% efficient at rated power with 2.86% voltage regulation.
Publisher: University of Canterbury. Electrical and Computer Engineering
Degree: Doctor of Philosophy
URI: http://hdl.handle.net/10092/7130
Rights: Copyright Andrew Craig Lapthorn
Rights URI: http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
Appears in Collections:Engineering: Theses and Dissertations

Files in This Item:

File Description SizeFormat
Lapthorn_Use of thesis form.pdf131.48 kBAdobe PDFView/Open
thesis_fulltext.pdf9.95 MBAdobe PDFView/Open


Items in UC Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback