UC Home > Library > UC Research Repository > College of Science > Science: Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10092/5459

Title: Kinematics of the Paparoa Metamorphic Core Complex, West Coast, South Island, New Zealand.
Authors: Schulte, Daniel
Keywords: Paparoa Range
core complex
fission tracks
structural Geology
Buckland Granite
New Zealand
Issue Date: 2011
Abstract: The Paparoa Metamorphic Core Complex developed in the Mid-Cretaceous due to continental extension conditioning the crust for the eventual breakup of the Gondwana Pacific Margin, which separated Australia and New Zealand. It has two detachment systems: the top-NE-displacing Ohika Detachment at the northern end of the complex and the top-SW-displacing Pike Detachment at the southern end of the complex. The structure is rather unusual for core complexes worldwide, which are commonly characterised by a single detachment system. Few suggestions for the kinematics of the core complex development have been made so far. In this study structural-, micrographic- and fission track analyses were applied to investigate the bivergent character and to constrain the kinematics of the core complex. The new results combined with reinterpretations of previous workers’ observations reveal a detailed sequence of the core complex exhumation and the subsequent development. Knowledge about the influence and the timing of the two respective detachments is critical for understanding the structural evolution of the core complex. The syntectonic Buckland Granite plays a key role in the determination of the importance of the two detachment systems. Structural evidence shows that the Pike Detachment is responsible for most of the exhumation, while the Ohika Detachment is a mere complexity. In contrast to earlier opinions the southwestern normal fault system predates the northeastern one. The Buckland Pluton records the ceasing pervasive influence of the Pike Detachment, while activity on the Ohika Detachment had effect on the surface about ~8 Ma later. Most fission track ages are not related to the core complex stage, but reflect the younger late Cretaceous history. They show post core complex burial and renewed exhumation in two phases, which are regionally linked to the development of the adjacent Paparoa Basin and the Paparoa Coal Measures to the southwest and to the inception of seafloor spreading in the Tasman Sea in a larger context.
Publisher: University of Canterbury. Geological Sciences
Degree: Master of Science
URI: http://hdl.handle.net/10092/5459
Rights: Copyright Daniel Schulte
Rights URI: http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
Appears in Collections:Science: Theses and Dissertations

Files in This Item:

File Description SizeFormat
thesisdanielschulte.pdf35.81 MBAdobe PDFView/Open


Items in UC Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback