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ABSTRAar. Most supertree methods use just leaf-labelled phylogenetic trees 
to infer the resulting supertree. In this paper, we describe several new su­
pertree algorithms that extend the allowable information that can be used for 
phylogenetic inference. These algorithms have been recently implemented and 
we describe here two illustrative applications. 

1. INTRODUCTION 

A supertree is a rooted phylogenetic tree that is the result of combining a collec­
tion of smaller rooted phylogenetic trees on overlapping subsets of species. There are 
now many techniques ('supertree methods') for constructing supertrees. However, 
for almost all of these methods, the input is restricted to leaf-labelled phylogenetic 
trees (without branch lengths or interior node labels or dates), in which case any 
other related information is ignored. In this paper, we describe several new, and 
recently implemented, supertree methods which extend the typical input to include 
some of this additional information. 

The new supertree methods divide into two groups depending upon the type of 
additional information being used as input. The first group allows the input to 
include ancestral divergence dates which may be either relative or explicit. For 
example, in this group the input could include information such as whether one 
particular divergence event on one side of a tree occurred before or after a divergence 
event on the other side of the tree, or actual time estimates of certain divergence 
events. The second group of supertree algorithms takes as its input rooted trees in 
which some of the interior vertices as well as all of their leaves are labelled. This 
allows the inclusion of nested taxa in the input. 

All of the new supertree algorithms described in this paper have been imple­
mented in Java (and are thus platform independent) and are available for applica­
tions at 

http://darwin.zoology.gla.ac.uk/Nrpage/supertree/ 
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2 SEMPLE ET AL. 

The implementation requires the input trees to be given in the Newick format1. 

Any tree that is returned by these algorithms is also in the Newick format. All of 
the algorithms run quickly (that is, require just polynomial time) in the size of the 
input. 

The paper is organised as follows. Each of the new algorithms can be viewed as 
a variation of BUILD, one of the oldest supertree algorithms. Indeed, the general 
approach used in each of the algorithms is similar to that used by BUILD. This 
approach is outlined in the next section. In Sections 3 and 4, we describe the new 
algorithms for ancestral divergence dates and nested taxa, respectively, and include 
two applications of these algorithms to some data sets. 

We end this section by noting that the formal details of the algorithms described 
in this paper, including their correctness, are not included here as these details are 
to appear as chapters [3, 4] of a soon-to-be published book on supertrees [2]. 

2. THE BUILD APPROACH 

Originally designed for other purposes, BUILD [1] is an exact algorithm in that 
it outputs a tree precisely if the input collection satisfies a particular compatibility 
criteria. A rooted phylogenetic tree T displays a rooted phylogenetic tree T' if 
the label set X' of T' is a subset of the label set of T and, up to suppressing 
degree-two vertices, T' is a refinement of the minimal rooted subtree of T that 
connects the labels in X'. For the purposes of this paper, 'up to suppressing degree­
two vertices' essentially means 'overlooking degree-two vertices'. A collection P of 
rooted phylogenetic trees is compatible if there exists a rooted phylogenetic tree 
that displays each of the trees in P. Intuitively, P is compatible if there is a rooted 
phylogenetic tree that, up to polytomies, preserves all of the ancestral relationships 
described by the trees in P. In particular, if the most recent common ancestor of 
a and b is a descendant of the most recent common ancestor of a and c in a tree in 
P, then this relationship is also preserved in T. 

The algorithms we present in this paper are variations of BUILD. Each algorithm 
is exact and outputs a tree precisely if the input collection satisfies some particular 
compatibility criteria. Furthermore, like BUILD, the descriptions of the algorithms 
take the following form. Each algorithm attempts to construct a tree T that satisfies 
the compatibility criteria by constructing the set of clusters of T. In all cases, this 
is done by starting with the cluster that is the union of the labels of the trees in 
P and successively breaking it down into disjoint subclusters. How the clusters 
are broken down is determined by an associated graph at each iteration. For each 
algorithm, this graph as well as the process for breaking up clusters is different. 
The process continues provided the graph at each iteration satisfies some condition. 
Eventually, either 

(i) the algorithm outputs a tree that satisfies the compatibility criteria, or 
(ii) outputs a statement indicating that the input collection does not satisfy this 

criteria. 

1See for example http: //evolution. genetics. washington. edu/phylip/newicktree. html 
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FIGURE 1. A ranked phylogenetic tree. 

3. SUPERTREE ALGORITHMS FOR ANCESTRAL DIVERGENCE DATES 

We first describe a supertree algorithm that incorporates relative divergence 
times. This algorithm is called RANKEDTREE. An extension of this algorithm to 
include absolute divergence times or intervals on these times is also possible and 
this is mentioned at the end of this section. 

Essentially, RANKEDTREE is an extension of BUILD and its input consists of 
rooted phylogenetic trees as well as information detailing the order in which the 
divergence events of certain different pairs of species occurred. We call the latter 
type of input a relative divergence date and such information is based, for example, 
on fossil data or molecular dating techniques. Formally, this type of input takes the 
form 'div(c, d) predates div(a, b)' which is interpreted as, 'for species a, b, c, and d, 
the divergence of species c and d predates the divergence of species a and b'. 

To include both types of input on a single supertree, we extend the concept of 
a rooted phylogenetic tree. A ranked phylogenetic tree T is a rooted phylogenetic 
tree in which the interior vertices are assigned a positive integer so that if v1, v2 

are interior vertices and v2 is a descendant of vi, then the integer assigned to v1 

is less than the integer assigned to v2 • Such an assignment of positive integers is a 
called a ranking of the interior vertices of T. An example of a ranked phylogenetic 
tree is shown in Fig. 1. Ranking the interior vertices of T in this way corresponds 
to an ordering of the speciation events associated to these vertices. Note that two 
different interior vertices may be assigned the same positive integer, in which case, 
it is inferred that there is no particular ordering on the associated speciation events. 

A relative divergence date 'div(c, d) predates div(a, b)' is preserved by a ranked 
phylogenetic tree T if a, b, c, d are leaf labels of T, and the rank assigned to the 
interior vertex of T corresponding to the most recent common ancestor of c and d 
is less than the rank assigned to the interior vertex of T corresponding to the most 
recent common ancestor of a and b. Thus, for example, the ranked phylogenetic tree 
shown in Fig. 1 preserves the relative divergence date 'div(e, b) predates div(c, f)'. 
A collection P of rooted phylogenetic trees and a collection V of relative divergence 
dates are compatible if there is a ranked phylogenetic tree T such that the discrete 
topology of T displays each of the trees in P and the ranking of the interior vertices 
of T preserves all of the relative divergence dates in V. 
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The algorithm RANKEDTREE decides whether or not collections of rooted phy­
logenetic trees and relative divergence dates are compatible. Furthermore, if these 
collections are compatible, then RANKEDTREE returns a ranked phylogenetic tree 
that displays each of the rooted phylogenetic trees and preserves each of the relative 
divergence dates. To illustrate RANKEDTREE, consider the two ranked phylogenetic 
trees shown in Fig. 2(a) [5, Figure 6] and (b) [9, Figure 30], each of which is a phylo­
genetic tree of the cat family. The species labels are the 3-letter abbreviations used 
in these references. The branch lengths of the source trees have been translated into 
rankings and added to the interior vertices of these trees. (These branch lengths 
are also shown.) Observing that species 'LPA', 'PON', and 'CCR' are common to 
both trees, the ranked phylogenetic tree shown in Fig. 2(c) is the result of applying 
RANKEDTREE to these two trees. Note that the branch lengths of the resulting 
ranked phylogenetic tree do not reflect real time. 
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FIGURE 2. An application of RANKEDTREE. 

An extension of RANKEDTREE allows for time bounds on speciation events as 
well as rooted phylogenetic trees and relative divergence dates in its input. A 
divergence time bound for species a and bis either an upper or lower bound ( or both) 
on the number of years ago a and b diverged. To include this information as well 
as the other information provided by the other inputs, we use a dated phylogenetic 
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T T' 

FIGURE 3. Two semi-labelled trees. 

tree. Such a tree is similar to that of a ranked phylogenetic tree in that values are 
assigned to the interior vertices except that these values now represent the number 
of years ago the corresponding speciation events occurred. Compatibility for this 
extended input is defined in the obvious way and RANKEDTREE can be modified 
to solve this compatibility problem also. 

4. SUPERTREE ALGORITHMS FOR NESTED TAXA 

For supertree algorithms that take as their input collections of rooted phyloge­
netic trees and only return rooted trees that are leaf-labelled, it is implicit that, as 
a whole, the leaves of the trees in the input collection represent non-nested taxa. 
Thus, for example, Rattus rattus and 'mammal' cannot be represented by two dis­
tinct leaves in such a collection as the former is nested inside the latter. This is 
somewhat limiting in the choice of trees for our input collection. In this section, 
we describe two supertree algorithms for combining rooted trees in which all of the 
leaves as well as some of the interior vertices are labelled. These trees are called 
rooted semi-labelled trees and the interior labels of such trees represent taxa at a 
level higher than that of their descendants. Two semi-labelled trees are shown in 
Fig. 3. 

The two algorithms for combining collections of rooted semi-labelled trees are 
called SEMI-LABELLEDBUILD and ANCESTRALBUILD. Both algorithms allow a leaf 
of one of the input trees to represent a taxa that is represented by an interior label 
of another tree. The motivation for both algorithms came from a problem posed 
by Page (7]. 

4.1. SEMI-LABELLEDBUILD, We say that a rooted semi-labelled tree T perfectly 
displays a rooted semi-labelled tree T' if the label set X' of T' is a subset of the 
label set of T and, up to suppressing degree-two vertices, T' is the minimal rooted 
subtree of T that connects the labels in X'. Intuitively, T perfectly displays T' if T 
preserves all of the ancestral relationships described by T' exactly. In particular, T 
preserves all of the most recent common ancestor relationships described by T'. A 
collection P of rooted semi-labelled trees is perfectly compatible if there is a rooted 
semi-labelled tree T that perfectly displays each of the trees in P. 

e 
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For a collection P of rooted semi-labelled trees, SEMI-LABELLEDBUILD decides 
whether or not P is perfectly compatible. Moreover, if P is perfectly compat­
ible, then SEMI-LABELLEDBUILD returns a rooted semi-labelled tree that per­
fectly displays each of the trees in P. Figure 4 shows an application of SEMI­
LABELLEDBUILD. The input consists of the two rooted semi-labelled trees shown 
in Fig. 4(a) and (b). Both input trees describe the evolution of spiders and were 
obtained from study Slx6x97c14c42c30 in TreeBASE. There are taxa common to 
both trees and it is of particular interest to note that the taxon Araneoclada labels 
a leaf in the tree in (a), but an inte~ior vertex in the tree in (b). The rooted semi­
labelled tree resulting from applying SEMI-LABELLEDBUILD to the two input trees 
is shown in Fig. 4(c). 

(a) 
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Ausltwhll!daa 

~-- Araneoelada 

(b) 

Araneoolada 
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FIGURE 4. An application of SEMI-LABELLEDBUILD. 

4.2. ANCESTRALBUILD, The criteria of perfectly displays is very strong as a col­
lection P of rooted semi-labelled trees is perfectly compatible precisely if there is a 
rooted semi-labelled tree T that preserves all of the most recent common ancestor 
relationships described by the collection. Thus SEMI-LABELLEDBUILD does not 
allow for the resolution of polytomies. The compatibility criteria and the associ­
ated algorithm we describe next relaxes this criteria and allows for the resolution 
of polytomies. 

A rooted semi-labelled tree T ancestrally displays a rooted semi-labelled tree T' 
if the following properties hold: 

(i) the label set X' of T' is a subset of the label set of T; 



SUPERTREE ALGORITHMS FOR ANCESTRAL DIVERGENCE DATES AND NESTED TAXA7 

(ii) up to suppressing degree-two vertices, T' is a refinement of the minimal rooted 
subtree of T that connects the labels in X'; and 

(iii) for all labels in X', 
(a) if a is a proper ancestor of bin T', then a is a proper ancestor of bin T, 

and 
(b) if a is neither an ancestor nor a descendant of b in T', then a is neither 

an ancestor nor a descendant of b in T. 

To illustrate ancestrally displays and compare it with perfectly displays, in Fig. 3, 
T ancestrally displays T', but T does not perfectly display T'. 

One can think of ancestrally displays as preserving all of the ancestor-descendant 
relationships. However, observe that it does not preserve the most recent common 
ancestor relationships. For example, if the most recent common ancestor of a and b 
is c in T', then, although c is an ancestor of both a and bin T, and neither a nor b 
is an ancestor of each other in T, c need not be the most recent common ancestor of 
a and bin T. A collection 'P of rooted semi-labelled trees is ancestrally compatible 
if there is a rooted semi-labelled tree T that ancestrally displays each of the trees 
in 'P. The algorithm ANCESTRALBUILD determines the ancestral compatibility of 
a collection of rooted semi-labelled trees, in which case, it outputs a rooted semi­
labelled tree that ancestrally displays each of the trees in this collection. 

5. CONCLUSION 

Supertree methods have attracted much interest recently, particularly in the light 
of well-funded 'Tree of Life' initiatives, and studies that have combined large num­
bers of trees to construct phylogenies on hundreds, or even thousands of species. 
This has led to some vigorous argument both for and against the use of supertree 
(versus supermatrix) approaches for phylogeny reconstruction, as well as the emer­
gence of some new techniques as alternatives to the standard MRP ( matrix recoding 
with parsimony) approach. In this paper we have describes some further new meth­
ods, that allow for additional types of information to be incorporated-information 
that would be difficult to include directly using a traditional MRP analysis. 

It is important to note that all of the algorithms described in this paper are 
'all-or-nothing' algorithms. Each algorithm either returns a supertree with certain 
desirable properties relative to the input or returns a statement indicating that there 
is no such supertree. In practice, this limits their use. However, such algorithms 
are important first steps in developing supertree algorithms that always return 
a supertree and whose input includes information that goes beyond leaf-labelled 
phylogenetic trees. Indeed, for each of the algorithms described in this paper, we 
believe that there is a MINCUTSUPERTREE type algorithm (see [6] and [8]) that 
overcomes this limitation. 
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