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INTRODUCTION

Recently, Baker et al. [1] conducted a programme of furniture calorimeter experiments of a
mock-up armchair made of polyurethane (PU) foam. In three repeated experimental runs the
ignition time and the heat release rate of the armchair were recorded. A gas burner with 100 kW
output at a distance of 300 mm was used as ignition source. The objective of this research
is to model the ignition and burning behaviour of the armchair using the pyrolysis model of
FDS 6.0.1 [2]. In order to obtain the kinetic and thermophysical parameters which are inputs
of the pyrolysis model, the kinetic parameters were derived from thermogravimetric analysis
(TGA) experiments, and the thermophysical parameters were optimized based on heat release
rate from cone calorimeter experiments. This research utilized the experimental results of TGA
and cone experiments from Pau’s research which describes the burning and pyrolysis behaviour
of various types of PU foam on material scale, small scale and medium scale [3].

For the parameter optimization we make use of the increasing number of physical processes
involved in the different experiments. Small-scale experiments with limited complexity allow
some physical phenomena and model parameters, respectively, to be neglected. From iterative
comparison of experimental and model TGA results, the best-fit kinetic parameters - activation
energy, E, and pre-exponential factor, A, of the Arrhenius equation - were determined. Kinetic
parameters which were not iteratively varied include reaction order, n, and the heat of reac-
tion, ∆hr. The values of these parameters are based on assumptions made and other literature
sources [4]. The heat transfer to and within the sample, which is affected by thermophysical
parameters, is negligible in modelling because of the lumped capacitance nature of the sample
in TGA.

Second, the modelling was carried out for the cone experiments where thermophysical param-
eters such as emissivity, ε, thermal conductivity, k, and specific heat, cp were optimized based
on the 1-dimensional heat transfer mode of the experiment. The kinetic parameters iteratively
determined from TGA experiments remained unchanged during the optimization process. In
the third and last stage of the investigation, the estimated kinetic and thermophysical properties
from TGA and cone experiments were used to model the 3-dimensional flame spread of the
free-burn armchair experiment. Table 1 gives an overview of the relevant physical phenomena
and model parameters for the different scales of experiment. More detailed explanation of the
parameters are provided in other sections of this paper.



Table 1: Overview of phenomena and parameters with effect on the decomposition and burning
behaviour of the material. C 1 and C 2 denote the different material components.

Thermogravimetric
analysis

Cone
calorimeter

Furniture
calorimeter

Mass fraction (C 1) 5 5 5

Mass fraction (C 2) 5 5 5

Activation energy, E (C 1) 5 5 5

Activation energy, E (C 2) 5 5 5

Pre-exponential factor, A (C 1) 5 5 5

Pre-exponential factor, A (C 2) 5 5 5

Emissivity, ε (C 1) 5 5

Emissivity, ε (C 2) 5 5

Specific heat, cp (C 1) 5 5

Specific heat, cp (C 2) 5 5

Thermal conductivity, k (C 1) 5 5

Thermal conductivity, k (C 2) 5 5

Flame radiation 5

Convective heat transfer 5

Radiative feedback 5

3-D thermal conduction 5

The ability to use small-scale experimental data in simulations of larger-scale experiments
could reduce the costs and effort for experimental testing significantly. For instance the de-
termination of the heat release rate of a train carriage would no longer require costly and im-
practical large-scale experiments. Instead it would be sufficient to conduct several smaller
experiments involving the most significant fuel load of the carriage. Once the refined model
parameters are obtained, the burning behaviour of the whole train could be simulated. How-
ever, due to the inherent complexity of the phenomena involved, the nonlinear dependencies
of the fire spread on temperature (especially with regard to radiation), the variety of fuel load
in a real fire, and the limitations of current fire models this approach is far from being easy
applicable, if at all possible. Therefore it should be noted that even for a simplified furniture
item, like that examined in this study, a good agreement between experiment and model results
cannot necessarily be expected.

However, due to the general applicability of the proposed method, its advantages go beyond
the parameter optimization for pyrolysis modelling. Apart from the proposed application in
this study, such optimization techniques can be useful in different areas of fire safety engineer-
ing, such as forensic analyses, or the determination of critical states when designing fire safety
systems. For the automated parameter optimization of the cone calorimeter experiments we
use a coupling of FDS with Dakota (Design Analysis Kit for Optimization and Terascale Ap-
plications) [5], an open source software toolkit that amongst other things includes algorithms
for design optimization, parameter estimation, and sensitivity analysis. This approach seems
advantageous, because – once FDS is coupled with Dakota – the whole range of optimization
schemes can easily be applied to the problem being investigated.



A = 1.07 x 1012 1/s 
E = 1.50 x 105 J/mol 

A = 5.90 x 1012 1/s 

E = 1.85 x 105  J/mol 

Component #1 (foam) 
Mass fraction: 22 % 
Density: 31 kg/m3 

Heat of reaction: 891 J/g  

Component #2 (melt) 
Mass fraction: 67 % 
Density: 1019 kg/m3 

Heat of reaction: 233 J/g 

Component #3 
Mass fraction 11 % 

non reactive 

Fuel gas 
Toluene Diisocynanate 

Fuel gas 
Toluene Diisocynanate 

Polyurethane foam 

Figure 1: Reaction scheme for the pyrolysis modelling of polyurethane with FDS

MODELLING OF THERMOGRAVIMETRIC ANALYSIS – DERIVATION OF
KINETIC PARAMETERS

Due to the controlled conditions of TGA the modelling in FDS is straightforward. For a small
sample of the material a time-dependent increase in temperature is prescribed. Processes in the
gas phase as well as heat transfer to the sample are negligible because the prescribed increase in
temperature is small and the sample is a lumped capacitance model. As such, only the mass loss
rate is relevant, which is controlled by the applied pyrolysis model depending on the sample
temperature. In this study the reaction rate, r, at a temperature, Ts, of a material undergoing a
single reaction without oxidation is defined by Equation 1 [2]:

r = A Y ns
s exp

(
− E

R Ts

)
with Ys =

ρs
ρs(0)

; R = 8.314
J

mol K
(1)

Where Ys is the ratio of the density of the material component to the initial density of the
sample. The reaction order, ns, is set to 1, which is the recommended assumption, if the exact
value is unknown [2].

The reaction rate of the decomposition of PU foam in TGA experiments at heating rate of
5 K/min has two clearly distinguishable reaction regions. The first region ranges from around
200 °C to 300 °C and leads to a mass loss of one quarter of the total sample mass. In the
second region from around 310 °C to 400 °C most of the remaining material decomposes.
Such decomposition behaviour can mean that either the material undergoes two reactions at
different temperatures, it consists of at least two components reacting at different temperatures,
or the first reaction leaves behind a residue, which again reacts at a higher temperature. In
accordance with the different decomposition schemes studied by Pau [3], this research further
investigated the application of the multi reactions scheme, the mass fraction scheme and the
residue formation scheme.

In this study the mass fraction scheme was chosen for the modelling, as depicted in Figure 1.
For this scheme 22 percent of the material is considered to be component 1 with a density of
virgin foam, 67 percent is considered to be component 2 with a density of melted foam and the
remaining 11 percent of the material is non reactive or inert. Toluene diisocynanate (TDI) was
chosen as the pyrolysate as it is one of the main raw materials for the production of polyurethane
[6]. The heat of reaction is set to 891 J/g for component 1 and 233 J/g for component 2 and
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Figure 2: Comparison between experimentally determined and modelled mass loss rate of PU
in TGA analysis. The sample was heated constantly at a rate of 5 K/min.

the effective heat of combustion for the gas phase combustion is set to 24.9 MJ/kg. The heat
of reaction and effective heat of combustion were determined by Pau [3], who also investigated
five different modelling approaches for the decomposition of PU foam. As part of this research
the multi reactions scheme and the residue formation scheme were also investigated, both of
which performed worse for either the modelling of the TGA or cone calorimeter experiments.

By using manual adjustments to the activation energy, E, Arrhenius pre-exponential factor,
A, and the mass fractions of the two components a good agreement with experimental mea-
surements was achieved, as shown in Figure 2. Due to the rather straightforward effect of the
relevant parameters, a sophisticated optimization strategy was not necessary at this stage.

MODELLING OF CONE CALORIMETER EXPERIMENTS – OPTIMIZATION OF
THERMOPHYSICAL PARAMETERS

The parameter set that was derived based on TGA experiments is now used for the modelling of
cone calorimeter experiments. The objective at this stage is the optimization of thermophysical
parameters, which have been negligible before.

Simulation set-up

In a cone calorimeter, the PU foam sample is exposed to heat flux from a conical heater situated
above the sample. For the simulations in this study the incident heat flux is prescribed as a
boundary condition on the top surface of the sample. In this manner the radiative heat transfer
can be controlled more precisely than by modelling the conical heater itself, especially for
coarse meshes. The simulated computational domain is 200 mm × 200 mm × 600 mm with
all sides and the top boundary defined as open, as seen in Figure 3. The backing of the sample
is prescribed as void and the stretch factor for the mesh cells within the solid is set to 1, which
results in a uniform solid phase mesh within the sample for solving heat transfer into the solid.
According to Pau [3] a uniform solid phase mesh reduces the simulation noise in the heat
release rate, which is the crucial result for the comparison of simulation and experiment.



(a) In experiment (b) In simulation

Figure 3: Cone calorimeter in experiment and simulation. In the model a mesh resolution of
25 mm is used and the sample is exposed to a prescribed heat flux on the top surface.

For several reasons a coarse resolution of 25 mm is chosen for the gas phase mesh. First of all it
guarantees the same resolution can also be used for the simulation of the furniture calorimeter.
This is important to eliminate any additional source of uncertainty when transferring the opti-
mized parameter set from the cone to the furniture calorimeter. A coarse mesh is also beneficial
to minimize computation time for the optimization process, which is based on many repeated
simulations of the cone calorimeter. However a grid sensitivity study is carried out using results
from experiments conducted at an incident heat flux of 50 kW/m2 to investigate the influence
of different mesh resolutions on the heat release rate. Figure 4 shows that a finer mesh leads to
a slightly higher maximum heat release rate (HRR) and a more rapid growth of the heat release
rate. However, the differences are small. Regardless of the resolution, the simulation is not
reproducing the typical two-stage burning behaviour of PU foam.

Automated parameter optimization workflow

At this stage the thermophysical parameters emissivity, specific heat, and thermal conductivity
for foam and melt respectively are optimized. As mentioned before, the kinetic parameters,
which have been derived using the TGA experiments, are kept constant. Here the crucial values
for the comparison of simulations with experiments are the heat release rates for different heat
fluxes. In our study we used two representative heat fluxes (30 kW/m2 and 50 kW/m2), which
means, for the testing of one parameter set, two simulations had to be done.

To be able to compare model and experimental heat release rates quantitatively, we calculated
the euclidean relative difference between the heat release rate from each simulation and the
corresponding experimental measurement. This method of functional analysis treats a series of
measurements over time as a multi-dimensional set of vectors in the same manner as Peacock et
al. in 1999 [7]. The euclidean relative difference as determined by Equation 2 is a scalar value
that gives an indication of the overall agreement of two time-dependent curves. The vectors E
and m represent the experimental and simulated data respectively, Ei and mi are experimental
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Figure 4: Grid study for cone calorimeter simulations with 50 kW/m2 heat flux. The simulation
results are smoothed with a moving average of 3 s.

and simulated values at the time i.

‖E−m‖
‖E‖

=

√∑n
i=1 (Ei −mi)

2∑n
i=1 (Ei)

2 (2)

For the automated parameter optimization, FDS was coupled with Dakota. The method to
couple the two programs is called a loosely-coupled or ”black-box” approach, meaning Dakota
has no information about the internal structure of the simulation program. The communication
between the programs is based on data files. Dakota writes a file containing a parameter sample
and waits for the simulation program to return a loss function value that indicates the quality
of this very parameter set. The same procedure is repeated for several samples (up to ~100)
while Dakota applies optimization techniques in order to determine the minimum of this loss
function, i.e. finding the best fitting parameter set. In our study the loss function, L, is the sum
of the squared euclidean relative differences.

L(ERD30kW , ERD50kW ) = ERD2
30kW + ERD2

50kW (3)

For the coupling of FDS and Dakota it is necessary to set up a framework that is able to

• implement the material parameters given by Dakota into a template of an input file,

• create an input file for each heat flux and start the FDS simulations,

• compute the euclidean relative difference to the experiment for each simulation,

• calculate the loss function and return the value to Dakota.

The overall workflow and the execution of FDS is controlled by a shell script. The automated
generation of FDS input files based on XML (Extensible Markup Language) and the evaluation
of the simulation results are based on Python scripts. Figure 5 illustrates the workflow that was
used for this study.
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Figure 5: Automated parameter optimization workflow using a coupling of FDS and Dakota.

The optimization strategy we used is called efficient global optimization. It is a gradient-based
global method, which is capable of handling nonsmooth response functions. Compared to
other strategies such as surrogate based global optimization or an optimization based on nu-
merical gradients it led to the best results. For more information about different strategies see
the Dakota manual [5]. The parameter bounds that were prescribed for the optimization with
Dakota are very wide. That is why the resulting best fit parameters should be considered to be
model and scenario-specific. Unless the model being used is perfect, they are not the same as
real material parameters. Despite the wide parameter bounds, some of the optimized param-
eters lie on the boundary. This is an indication, that there are still issues with the modelling
approach. The chosen parameter bounds and the best fit parameter set are shown in Table 2.

Results

Figure 6 shows the agreement between simulation and experiments [3]. For low incident heat
fluxes a good agreement is achieved, however with increasing heat flux the similarity between
the simulation and experimental results reduces. In the experiments a characteristic two stage
burning behaviour can be observed. The first stage coincides with the release of volatile py-
rolysate and the collapse of the foam structure. The second stage occurs after the formation of
a burning layer of melt in the sample holder, which behaves like a pool fire [8]. The difference
between experimental and model results is probably due to the inability of the chosen decom-
position scheme to appropriately model this physical behavior. As a result the heat release rate
is overestimated during the first half and underestimated during the second half of the burning
process for high heat fluxes. The overall burning time as well as the average heat release rate
is a good match to the experimental results.
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(b) Heat flux: 40 kW/m2
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(c) Heat flux: 50 kW/m2
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(d) Heat flux: 60 kW/m2

Figure 6: Results of cone calorimeter simulations with different heat fluxes using the best fitting
parameter set. The simulation results are smoothed with a moving average of 3 s.

Table 2: Overview over parameter bounds and the best fit parameter set.
Unit Lower bound Upper bound Best fit

Mass fraction (C 1) − - - 0.22
Mass fraction (C 2) − - - 0.67
Activation energy, E (C 1) kJ/kmol - - 1.50× 105

Activation energy, E (C 2) kJ/kmol - - 1.85× 105

Pre-exponential factor, A (C 1) 1/s - - 1.07× 1012

Pre-exponential factor, A (C2) 1/s - - 5.90× 1012

Emissivity, ε (C 1) − 0.70 1.00 0.70
Emissivity, ε (C 2) − 0.70 1.00 0.78
Specific heat, cp (C 1) kJ/(kg·K) 1.50 4.00 3.17
Specific heat, cp (C 2) kJ/(kg·K) 1.50 3.00 3.00
Thermal conductivity, k (C 1) W/(m·K) 0.01 0.15 0.01
Thermal conductivity, k (C 2) W/(m·K) 0.15 0.23 0.23



(a) In experiment (b) In simulation

Figure 7: Representation of armchair in experiment and simulation.

COMPARISON WITH FURNITURE CALORIMETER EXPERIMENTS

Simulation set-up

When tested under the furniture calorimeter the mock-up armchair was ignited by a gas burner
with a continuous heat output of 100 kW. For the experiments relevant to this study the center
of the burner was located 300 mm from the side-face of the armchair, see Figure 7. Again the
crucial information for the comparison between experiment and simulation is the heat release
rate, which is measured by the oxygen depletion technique in the experiments. In order to
assess the variability, three experiments with an identical set-up were carried out.

For the simulation of the furniture calorimeter with FDS a 25 mm grid resolution is used as for
the cone calorimeter simulations. Furthermore two simulations with mesh sizes of 50 mm and
12.5 mm are examined to evaluate the sensitivity of the heat release rate to the mesh resolution.
The overall domain size is 1.5 m × 0.8 m × 1.8 m with all sides and the top boundary defined
as open.

Results

Figure 8 shows a comparison of heat release rates from the experiments and simulations. The
100 kW heat output of the ignition source is already subtracted in both cases. For the sim-
ulations different grid resolutions of 50 mm, 25 mm and 12.5 mm are used. During the first
120 s the simulation is similar to the experimental measurements. The side-face of the armchair
starts to pyrolyse and burns with a heat release rate of up to 70 kW. However, the flame does not
spread to other parts of the armchair and the heat release rate eventually decreases, until after
200 s the simulated flame on the armchair has extinguished completely. This outcome is similar
to Pau’s findings [3], who investigated the 2-dimensional flame spread behaviour on a horizon-
tally aligned slab of PU foam. The author used a multi reactions scheme with FDS 5 and a set
of kinetic and thermopyhsical parameters optimized based on cone calorimeter experiments.
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truncated at 600 s.

CONCLUSIONS

The objective of this work was to investigate an optimization method for kinetic and thermo-
physical parameters based on small-scale experiments, i.e. TGA and cone calorimeter exper-
iments. The ultimate goal was to model the ignition and burning behaviour of a mock-up
armchair made of PU foam using the pyrolyis model of FDS 6. The modelling of the TGA that
is used for the derivation of kinetic parameters shows promising results. By using a pyrolysis
scheme with a material consisting of three different components, it was possible to accurately
reproduce the decompostion of PU foam with temperature.

On the next scale, the cone calorimeter experiments, a sophisticated strategy was required
for the optimization of additional thermophysical parameters. In order to couple FDS 6 with
Dakota an automated workflow for the generation, execution and evaluation of FDS simulations
was set up. The coupling proved to work seamlessly and could also be used for other questions
regarding parameter optimization or sensitivity analysis in conjunction with FDS. However,
the chosen pyrolysis scheme with FDS was not able to reproduce the typical two-stage burning
behaviour of polyurethane for higher heat fluxes. For lower heat fluxes around 30 kW/m2, a
good agreement was achieved between the experimental and simulated heat release rates.

The simulation of the burning mock-up armchair under the furniture calorimeter fail to predict
the flame spread seen in the experiments. Although the armchair started burning initially in the
simulations and its heat release rate develops similarly to the experiments over the first 120 s
it is not fully ignited and stops burning after 200 s. This finding supports similar results from
a former study [3]. The cause for this burning behaviour could not be investigated completely,
however the grid sensitivity study implies a higher mesh resolution might promote the propa-
gation of flames. Further research is needed to investigate this question and improve the ability
of simulation tools such as FDS.
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