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3

Abstract4

The ability of cells to undergo collective movement plays a fundamental role in tissue repair,5

development and cancer. Interactions occurring at the level of individual cells may lead to the6

development of spatial structure which will affect the dynamics of migrating cells at a population7

level. Models that try to predict population-level behaviour often take a mean-field approach, which8

assumes that individuals interact with one another in proportion to their average density and ignores9

the presence of any small-scale spatial structure. In this work, we develop a lattice-free individual-10

based model (IBM) that uses random walk theory to model the stochastic interactions occurring11

at the scale of individual migrating cells. We incorporate a mechanism for local directional bias12

such that an individual’s direction of movement is dependent on the degree of cell crowding in13

its neighbourhood. As an alternative to the mean-field approach, we also employ spatial moment14

theory to develop a population-level model which accounts for spatial structure and predicts how15

these individual-level interactions propagate to the scale of the whole population. The IBM is used16

to derive an equation for dynamics of the second spatial moment (the average density of pairs of17

cells) which incorporates the neighbour-dependent directional bias and we solve this numerically for18

a spatially homogeneous case.19
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1 Introduction22

The ability of cells to migrate as a collective, either to local sites or distant parts of the body, is23

fundamental for tissue repair [1], development [2] and the immune response [3]. Pathologies such as24

cancer can arise when the regulatory mechanisms controlling movement are disrupted [4]. A desire25

to understand how large numbers of individuals are able to coordinate their movement has fuelled26

extensive studies into the interactions occurring between migrating cells [5–7]. Some interactions act27

as attractive forces to drive cells towards one another, for example the physical coupling28

of neighbouring cells [8] or the release and detection of diffusible chemoattractant signals29

which give rise to chemotaxis [9,10]. Alternatively, movement in response to a cell-secreted30

chemorepellant can have a repulsive effect where cells are biased to move away from their31

nearest neighbours [11, 12]. Other interactions affecting cell motility include crowding32

effects which can occur at high cell densities. One such effect is contact inhibition of33

locomotion whereby, after colliding with another individual, a moving cell will slow down34

then alter its direction of movement in an attempt to avoid future collisions [5, 13].35

The short-range interactions experienced by cells often lead to self-generated spatial36

structure which can in turn have a significant impact on the dynamics of the cell pop-37

ulation [14–16]. For instance, many cell types are known to form clusters or aggregates38

as a result of attractive interactions [17, 18]. Examples include breast cancer cells [19]39

and hepatocyte-stellate aggregates [17]. Others, such as retinal neurons [12, 20], arrange40

themselves into patterns that minimise their proximity to neighbouring cells. This be-41

haviour can be observed in cell populations cultured in vitro, however it is not always42

obvious which underlying mechanisms are responsible for pattern formation, particularly43

when multiple types of interaction are involved [17]. Therefore there is good motivation for44

the development of techniques that give more insight into the effects of these mechanisms.45

Mathematical modelling can offer explanations to problems for which an experimental approach46

alone is insufficient [21–23]. The strategy of using random walks [24] to describe cell movement at the47

scale of individual cells has been discussed extensively in the literature [25–28]. Stochastic models for48

simulating the movement of large numbers of individuals have been developed. These include individual-49

based models (IBMs) or agent-based models where each cell is represented as an individual agent and50

the movements of all agents are tracked over time [29, 30]. Factors such as cell-cell adhesion [19] or a51

directional bias [11] can also be incorporated. Lattice-free IBMs allow cells to wander freely across a52

continuous space, thus avoiding the constraints associated with a lattice-based framework where agent53

locations are restricted to discrete grid sites. For instance, lattice-free IBMs have been shown to result in54

more realistic spatially-irregular configurations of cells than in equivalent lattice-based approaches [31,32].55

Recent research has highlighted the importance of volume exclusion, the concept that the cells56

themselves occupy space in the domain and may obstruct other individuals from occupying the same57

space [33, 34]. In lattice-free models volume-exclusion can be incorporated in a number of ways, for58

example by defining individuals as hard spheres with fixed diameter around which may lie an exclusion59

area that other individuals cannot occupy [31,35].60

Simulations of IBMs produce synthetic data that can be compared to experimental61

images [36] and may shed some light on the underlying mechanisms responsible for emerging62

spatial structure [17], however they are quite intractable mathematically. Deriving a formal63
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mathematical representation gives more insight into the population-level dynamics of such64

systems and provides scope for a more rigorous analysis [37]. For simplicity, models describing65

collective movement at the scale of a population often neglect the effects of spatial structure. They66

typically deal with a density of individuals that has been averaged over space and explore the evolution67

of this average density over time. Such models are termed ‘mean-field’ and assume that individuals68

are well-mixed or undergo long-range interactions. ‘Local mean-field’ models, such as reaction-diffusion69

equations, allow the average density of individuals to be expressed as a function of the location in70

space however they still tend to ignore the effects of small-scale spatial structure on the population [37].71

For example, the Fisher-Kolmogorov equation [38, 39] has been used to describe both cell migration,72

incorporated in a diffusion term, and proliferation in the form of a logistic growth function [21,36].73

As mean-field models do not account for local interactions they do not always provide a good rep-74

resentation of real behaviour [40]. Spatial moment theory, originally developed in statistical75

physics [41–44], can be used to investigate the effect of spatial structure on population-76

level dynamics [37,40,45]. The average density of individuals dealt with in mean-field models is the77

first spatial moment which holds no information on small-scale spatial structure. One way to access such78

information is to consider the second spatial moment, the average density of pairs of cells, expressed as79

a function of the distance r between them. The second moment is often dealt with as a pair correlation80

function (PCF) C(r) in which it is normalised by the square of the first moment such that in the absence81

of spatial structure C(r) ≈ 1. Figure 1 shows the PCF for three spatial point patterns. Figures 1(a)-(c)82

can each be considered as a snapshot in time from a realisation of an IBM. Figure 1(a) describes a spatial83

Poisson point process (sometimes referred to as complete spatial randomness) in which all locations of84

individuals are independent of one another. For this case C(r) ≈ 1 and no spatial structure is present85

(Fig. 1(d)). Figure 1(b) shows a cluster pattern, in which pairs of cells are more likely to be found in86

close proximity. This corresponds to C(r) > 1 for short distances r as shown in Figure 1(e). The opposite87

effect can also arise, whereby cells are less likely to be found close together resulting in a regular pattern88

(Fig. 1(c)). Figure 1(f) shows that C(r) < 1 at short distances r for this type of spatial structure [46].89

In previous studies, PCFs have been calculated from experimental images to quantify90

the extent of spatial structure in live cell populations which adopt Poisson [47], cluster or91

regular patterns [18,48] to varying degrees. For instance, time-lapse imaging of in vitro cell92

migration assays, such as circular barrier assays [47] and scratch assays [49], generates data93

in two spatial dimensions. Image analysis techniques can then be employed to measure94

the distances between cell pairs and this data used to calculate a PCF. PCFs have also95

been used alongside experimental data to give insight into the mechanisms responsible for96

pattern formation [17].97

Exploring the dynamics of the second moment can provide insight into how the spatial structure is98

changing over time and whether the state of the system converges. The dynamics of the third moment,99

the average density of triplets, can be derived to provide further information still, and so on up to100

the n-th moment however the descriptions of the dynamics become increasingly complex for higher101

moments [40, 45]. In order to solve the dynamical system a suitable closure is also required because the102

dynamics of each moment depend on the next moment in the hierarchy. Mean-field models employ a103

first order closure (the mean-field assumption) in which the second moment is assumed to equal the first104

moment squared. In other words, it is assumed that individuals encounter one another in proportion to105

their average density. Thus, in the mean-field assumption any spatial information that was held in the106
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Figure 1: Three different spatial patterns in two-dimensional homogeneous space (a)-(c) and the pair

correlation functions C(r) for each pattern (d)-(f). (a) Poisson spatial pattern (or complete spatial

randomness) in which there is no spatial structure present; (b) Cluster spatial pattern; (c) Regular

spatial pattern.

second moment is lost. However, models which close the dynamics at higher orders retain the spatial107

information held by the second moment. At second order a number of different closures are possible, for108

example the Kirkwood superposition approximation [50,51].109

The types of local interactions inherent to migrating cell populations are also of importance in other110

contexts, for example in animal or plant communities. Many of the modelling tools that employ spatial111

moment theory were developed for ecological problems [52–55]. Models for dynamics of the second112

moment which incorporate mechanisms for birth, growth, death and movement (either in isolation or113

combination) have been derived. In particular they have been used to explore the effects of small-scale114

spatial structure on plant populations [40, 52], including the relationship between spatial arrangement115

and plant size distribution [56]. Models for animal populations undergoing movement have been derived116

both for the case where movement is dependent on local neighbourhood and the independent case [45,57].117

These have also been extended to describe the role of spatial structure in predator-prey relationships [57].118

Spatial moment models often assume a homogeneous spatial distribution (the pattern is stationary119

over space). Here we use the term spatially homogeneous to refer to a situation where the probability of120

finding an individual in a given small region does not depend on the location in space. This is the same121

as assuming that the spatial structure observed in a small window within a larger space is independent122

of the position of the window, i.e. it has translational invariance. In terms of spatial moments this123

corresponds to a first moment that is constant over space, while the second and third moments can be124

expressed in terms of displacements between pairs of agents as opposed to agent locations [37, 46, 58].125

4



In some cases of collective cell movement it is necessary to consider a non-homogeneous setting, where126

the average density of cells is higher or lower in certain regions. For example, a non-homogeneous initial127

condition would be required for the modelling of cell invasion assays in which moving fronts of cells128

are formed [36, 59]. However, while moment models incorporating terms for density-dependent birth,129

death and movement have been derived for a spatially non-homogeneous case, solving the dynamics up130

to at least second order is more complicated and as a result has received significantly less attention than131

simpler homogeneous systems [37].132

In this paper we will describe a lattice-free one-dimensional IBM for collective cell movement. We133

incorporate short-range interactions by allowing an individual’s rate and direction of move-134

ment to depend on the degree of crowding in its neighbourhood. This local directional135

bias is representative of attractive or repulsive forces occurring between cells, such as in136

response to a chemoattractant or repellant, and generates spatial structure in the popu-137

lation. Finally, we derive a corresponding description in terms of the dynamics of spatial moments.138

Cell movement models incorporating a local directional bias, or similar crowding effects, have previously139

been discussed in the literature both in a lattice-based framework [10] and lattice-free [31,34]. Similarly,140

the application of spatial moment theory to modelling lattice-free population-level dynamics of moving141

individuals has been explored [37,45,57]. However, the incorporation of a neighbour-dependent142

directional bias into a second order spatial moment model for lattice-free cell movement143

was not considered until recently [60] and there is scope for further work in this area. We144

assume a setting in which spatial structure is homogeneous, although we will derive equations for the145

first and second moment which could be applied in a non-homogeneous case.146

In reality, motile cell types possess dynamic cytoskeletons which enable them to change their shape147

and flex around neighbouring cells [13, 61]. For this reason, cells rarely form perfect spheres and it can148

be difficult to accurately estimate their average diameter. Therefore, we choose not to use a hard-core149

approach to account for volume exclusion but instead represent the location of a cell by its coordinates150

in space. Rather than explicitly excluding neighbours from the space surrounding an individual, we151

consider a kernel (a Gaussian function) which weights the strength of an individual’s interaction with its152

neighbours. The kernel width corresponds to the range over which an individual will affect other cells in153

its neighbourhood and can be considered a proxy for average cell diameter.154

The majority of cell biology experiments are carried out in two or three spatial dimensions. However,155

numerically solving the moment dynamics up to second order can become quite complicated in higher156

dimensions and so here we consider a simpler case of movement through one-dimensional space. We157

show that the one-dimensional model can still capture the qualitative traits of spatial structure inherent158

to populations in which short-range interactions are important, i.e. clustering and regular patterns159

observable in cell populations cultured in vitro. We will also demonstrate that in most cases our160

model provides a good approximation to the behaviour that is predicted by averaging results obtained161

by running repeated realisations of the IBM.162

2 Individual-Based Model163

We consider the collective movement of n individuals through a one-dimensional continuous finite domain164

with periodic boundaries at x = xl and x = xr. Our model is a continuous time Markov process model165
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in which the state of the system x(t) at time t is166

x(t) = (x1(t), x2(t), . . . , xn(t))T , (1)

where xi is a coordinate representing the location of cell i. A movement event occurs to cell i as167

xi 7→ xi + r. (2)

The rate density (i.e. the rate) of this transition is ψi(x)µ(xi, xi + r), where ψi is the movement rate per168

unit time of cell i and µ(xi, xi + r) is a probability density function (PDF) for movement by a distance169

r. We simulate this stochastic process using the Gillespie algorithm [62]. In the following description we170

make choices for the functions ψi and µ(xi, xi + r), however these can be easily adapted to suit different171

experimental situations.172

The movement rate ψi has dimensions T−1 and comprises two terms: an intrinsic motility rate m,173

i.e. the rate at which an isolated cell would move, and a neighbour-dependent component. The latter174

term sums a contribution w(z) from each of the other cells in the population, where w(z) is a kernel175

weighting the strength of interaction between a pair of cells displaced by z. Therefore the movement176

rate for an individual at xi with n neighbours at xj is177

ψi = max(0, m+

n∑
j=1
i 6=j

w(xj − xi)). (3)

This definition ensures that ψi ≥ 0. For simplicity, the interaction kernel w(z) is a Gaussian function178

w(z) = αexp

(
− z2

2σ2
1

)
, (4)

where α and σ2
1 determine strength and range of interaction respectively.179

This choice of kernel means that cells interact strongly with near neighbours but are not influenced by180

those further afield. For α > 0, cell i’s motility ψi is increased by the presence of close-lying neighbours.181

This type of interaction is relevant from a biological perspective, for example in collective movement182

involving cell types which release motility-enhancing diffusible signalling factors into their environment.183

The high concentrations of signals found at high cell densities can result in increased motility rates for184

cells in crowded regions [63]. On the other hand if α < 0 then the presence of close-lying neighbours185

will reduce ψi. For instance, crowding effects such as contact inhibition of locomotion reduce motility at186

high local cell densities [13,64].187

When a cell undergoes a movement event it takes a step of displacement r from x to y, drawn from a188

movement PDF µ(x, y). In the unbiased case where an individual’s direction of movement is not affected189

by the presence of neighbouring cells, we define µ(x, y) to be a Laplace distribution190

µ(x, y) =
λr
2

exp (−λr|y − x|) , (5)

where the mean step length taken by a cell is 1/λr. This means cells are more likely to take short steps191

than undergo large jumps across the space and so is biologically reasonable [5].192

The model described so far allows simulation of collective movement in which an individual’s motility193

is influenced by the cell density in its local neighbourhood, as can be observed experimentally [5,22]. We194

now incorporate a directional bias b(x) such that the presence of neighbouring cells affects the direction195
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of movement of an individual at x. Each neighbour contributes v′(z) to the movement of the individual196

as follows:197

b(x) =

n∑
j=1

v′(xj − x) , (6)

where v′(z) denotes the derivative of v(z) with respect to z. In theory v′(z) could be replaced by any198

real-valued kernel which weights the strength of interaction between a cell pair displaced by z. We choose199

v(z) to be a Gaussian function200

v(z) = βexp

(
− z2

2σ2
2

)
, (7)

with dimension L. This means v′(z) has positive and negative values across its domain and the distinction201

in sign determines direction of movement.202

In order to visualise the total neighbour-dependent effect in b(x) more easily, consider the example203

in Figure 2 where β > 0. It shows the total effect of interactions
∑10

j=1 v(xj − x), from 10 neighbours204

located at xj on a cell at x. To understand why we take a derivative of the interaction kernel v(z) it205

helps to think of the total weighting function as a ‘crowding surface’ which a cell at x can use as a means206

of measuring the extent of crowding in its neighbourhood. In Figure 2, −b(x) is the gradient of this207

‘surface’ and cells are biased to move down the gradient in the direction of reduced crowding. Consider,208

for example, the arrangement of cells shown in Figure 2(a). Say the cell indicated by the arrow is about209

to undergo a movement event. At this location the gradient is positive so b(x) < 0 which corresponds210

to a bias for movement in the left direction, away from the crowded region on the individual’s right.211

Thus, the sign of the gradient holds information about the direction in which crowded regions exist. In212

addition, steep gradients occur at locations on the edges of clusters while shallow or zero gradients occur213

either within clusters or in sparsely occupied regions. Therefore the magnitude of the gradient provides214

a measure for the degree of crowding in a location x. The bias b(x) allows us to tap into the information215

held by the gradient of a ‘crowding surface’, for a particular arrangement of cells, and use it to determine216

the direction of movement for an individual at x.217

Due to our choice of v(z), the effect of a neighbour located at y on the direction of movement for218

a cell at x is greater for small distances |y − x|, while for larger distances the effect is negligible. The219

strength of interaction is determined by the constant β. The variance σ2
2 is a measure of spread for220

v(z), affecting the range of displacements over which a pair of cells interact. In Figure 2 we consider221

two different values of σ2
2 . When σ2

2 is large, v(z) will have a wide spread that will influence outlying222

cells as shown in Figure 2(a). On the other hand for small σ2
2 , v(z) will be a narrow kernel and only223

neighbouring cells in close proximity to the individual will be affected by its presence (Fig. 2(b)).224

As a means of relating the bias to an individual’s direction of movement, we use b(x) to determine the225

probability of moving right pr(b) for a cell at x. Its complement (1 − pr(b)) determines the probability226

of moving left. For simplicity, we define pr(b) to be a logistic function227

pr(b) =
1

1 + exp(−b)
. (8)

so that for large b(x) > 0 a cell at x is strongly biased to move right, while for large b(x) < 0 the bias to228

move left is strong. When b(x) = 0 there is no bias from neighbours (i.e. the cell is either isolated or in229

the centre of a cluster).230
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Figure 2: A function
∑10

j=1 v(xj − x) (blue line) for the total weighting on a cell at x, of interactions

from 10 neighbours located at xj for j = 1, . . . , 10 (blue dots). The gradient of this function is −b(x)

and cells are biased to move down the gradient. The interaction strength is β = 1.5 and we compare σ2
2

for different values (a) σ2
2 = 0.2, and (b) σ2

2 = 0.02. The arrow in (a) marks the location of an individual

that is biased to move left.

Finally, we incorporate the directional bias into the movement PDF µ(x, y) to give a piecewise function231

µ(x, y) =

λrexp (−λr|y − x|) pr(b(x)) if y − x > 0

λrexp (−λr|y − x|) (1− pr(b(x))) if y − x < 0,
(9)

with dimensions L−1.232

In a biological context v(z) could be representative of, say, the extent to which an individual responds233

to a concentration of chemical signal secreted by a neighbouring cell. Then b(x) would describe the234

total strength of a cell’s response to signals from all neighbours and pr(b) the mechanism by which235

these interactions change the cell’s direction of movement. The sign of β determines the nature of the236

directional bias. When β > 0, as shown in Figure 2, cells are biased to move away from close-lying237

neighbours. This type of behaviour facilitates movement of individuals out of crowded regions. For238

example some cell types release chemorepellents which have a repulsive effect on neighbouring cells [11].239

Conversely, when β < 0 the directional bias will drive cells towards one another as may occur in the240

presence of a cell-secreted chemoattractant [10]. If we set β = 0 the resulting probability of moving241

right is 1/2 and the direction of movement is unbiased. As µ(x, y) is a PDF we have the constraint that242 ∫
µ(x, y)dy = 1.243

3 Spatial Moment Model244

The local interactions taking place between cells at the level of individuals give rise to larger scale effects245

at the population level. In the following sections we introduce a description of the first, second and third246

moments in terms of the probabilities of individuals being found in given regions. The definitions for the247

moments given here are equivalent to those given by Illian, et al [46]. We then use our IBM to derive a248

population-level model in terms of the dynamics of the first and second spatial moments. The following249
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Figure 3: First, second and third spatial moments in (a) two-dimensional space, and (b) one-dimensional

space. Small regions δx, δy and δz, of size h (length h in one dimension and area h in two

dimensions), are centred on locations x, y and z, respectively. As we are considering a case where

cells are distributed homogeneously throughout space, the second and third moment can be expressed

in terms of the displacements ξ = y − z and ξ′ = z − x.

notation and method are consistent with the generalised derivation proposed by Plank and Law [37],250

however we have derived new terms to describe the effect of a neighbour-dependent directional bias.251

3.1 Spatial Moments252

The first, second and third spatial moments are the average densities of single cells, pairs and triplets,253

respectively. The concept is better explained by considering the geometry of three small regions δx, δy254

and δz centred on x, y and z, respectively. Each region has size h (length h in one dimension, area255

h in two dimensions, and volume h in three dimensions) and it is assumed that the probability of256

finding multiple cells within a single region is O(h2). For ease of visualisation these regions are depicted257

in Figure 3(a) in two-dimensional space, however the same principles apply in one dimension (Fig. 3(b)).258

259

The spatial moments are functions of time as well as space but for now we will drop the argument260

t for ease of notation. The first spatial moment Z1(x) is expressed in terms of the probability of a cell261

being found in a small region δx, centred on x and of size h, at time t as follows:262

Z1(x) = lim
h→0

P (I(x) = 1)

h
. (10)

I(x) is an indicator variable such that I(x) = 1 if there is a cell in δx centred on x and I(x) = 0 if there263

is no cell in δx.264

The second spatial moment Z2(x, y), the average density of cell pairs, involves the probability of cells265

being found in the small regions δx and δy as follows:266

Z2(x, y) = lim
h→0

P (I(x) = 1 & I(y) = 1)

h2
. (11)

For simplicty, we assume that δx and δy cannot overlap and so (11) excludes the case where267

x = y. A more rigorous definition which accounts for and removes the effect of such self-pairs268

(that would otherwise create a Dirac-delta peak in Z2(x, y) at x = y) is discussed by Plank269

and Law [37]. The second spatial moment has a two-fold symmetry such that Z2(x, y) = Z2(y, x) [37].270
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The third spatial moment, the density of triplets in the small regions δx, δy and δz, is defined as271

Z3(x, y, z) = lim
h→0

P (I(x) = 1 & I(y) = 1 & I(z) = 1)

h3
, (12)

excluding the cases where x = y, x = z and y = z as we assume that δx, δy and δz cannot overlap. Again,272

a more detailed description which allows for such non-distinct triplets is given by Plank and Law [37].273

The third moment has been shown to have a six-fold symmetry [50]. Similarly, we can define the nth274

spatial moment Zn as the expected number of n-tuples of cells per unit (length)Dn, for a D-dimensional275

space.276

It is also useful to define some conditional probabilities. The probability of a cell being found in277

δy conditional on the presence of a cell in δx is P (I(y) = 1|I(x) = 1). We can use the fact that278

P (A|B) = P (A&B)/P (B) along with Eqs. (10), (11) and (12) to rewrite this conditional probability as279

follows:280

P (I(y) = 1|I(x) = 1) =
Z2(x, y)h

Z1(x)
+O(h2). (13)

Similarly, we can write the probability of a cell being found in δz conditional on the presence of a cell in281

δx and a cell in δy as282

P (I(z) = 1|I(x) = 1 & I(y) = 1) =
Z3(x, y, z)h

Z2(x, y)
+O(h2). (14)

3.2 First Spatial Moment283

The following derivation can be used to describe moment dynamics in a non-homogeneous space, where284

the first moment is dependent on x. While the equations are relatively simple to derive, solving them285

numerically for the non-homogeneous case is not straightforward and so we only solve for a homogeneous286

space. In addition, as the IBM does not incorporate cell proliferation or death events the first moment287

is also stationary in time, i.e. its rate of change is zero. However, deriving the equation for the first288

moment dynamics acts as a good stepping stone to the more complicated second moment dynamics and289

we include its derivation here.290

We derive corresponding descriptions for movement rate ψi and PDF µ(x, y) in terms of spatial mo-291

ments. In the IBM, the movement rate of individuals comprises an intrinsic component and a neighbour-292

dependent component which describes the contribution of neighbouring cells to a cell’s motility. In the293

spatial moment dynamics this corresponds to an integration over y of the probability of a cell at y condi-294

tional on a cell being present at x. Using the conditional probability in Eq. (13), the expected movement295

rate (from hereafter simply referred to as movement rate) for a single cell at x is296

M1(x) = m+

∫
w(y − x)

Z2(x, y)

Z1(x)
dy . (15)

The maximum formula which ensured a non-negative movement rate in (3) is not incor-297

porated in the spatial moment description because we only consider solutions in which298

negative expected movement rates do not arise.299

When a cell moves, it travels from an original location x to a destination y drawn from the PDF300

µ1(x, y) =

λrexp (−λr|y − x|) pr(b1(x)) if y − x > 0

λrexp (−λr|y − x|) (1− pr(b1(x))) if y − x < 0.
(16)
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The neighbour-dependent bias term b1(x) sums a contribution v′(y − x) from all possible neighbours at301

y to the direction of movement of the cell at x. We therefore describe b1(x) as an integration over y of302

the probability of a neighbour at y conditional on the presence of a cell at x, weighted by an interaction303

kernel v′(y − x):304

b1(x) =

∫
v′(y − x)

Z2(x, y)

Z1(x)
dy. (17)

When solving for the spatially homogeneous case, M1(x) is a constant and µ1(x, y) can be expressed305

in terms of the displacement from x to y.306

3.3 Dynamics of the First Spatial Moment307

For the dynamics of the first spatial moment Z1(x) we consider the probability that a cell will be present308

in the small region δx centred on x at a time t+ δt, where δt is a short period of time. For this situation309

to arise, a cell could have been present in δx at time t and waited. Alternatively, a cell located elsewhere310

in the space could have moved into δx. Movement events occur over time as an inhomogeneous Poisson311

process and so the probability of more than one event occurring in δt is O(δt2). We can combine these312

possibilities into a single statement313

P (cell in δx at t+ δt) = P (cell in δx at t)P (cell waited in [t, t+ δt])

+ P (cell absent in δx at t)P (cell moved into δx in [t, t+ δt]) . (18)

The probability that a cell waited in [t, t+ δt] is314

P (cell waited in δx in [t, t+ δt]) = 1−M1(x)δt+O(δt2) . (19)

The probability that a cell moved into δx in [t, t+ δt] can be written as a probability that a cell moved315

from u into δx, integrated over all possible starting locations u as follows:316

P (cell moved into δx in [t, t+ δt]) = hδt

∫
µ1(u, x)M1(u)Z1(u, t)du+O(δt2) , (20)

where M1(u)Z1(u, t) is the movement rate per unit area at location u. By making use of the Taylor317

expansion of Z1(x, t+ δt) then taking the limit h, δt→ 0, we can use (10), (19) and (20) to write (18) as318

dZ1(x, t)

dt
= −M1(x)Z1(x, t) +

∫
µ1(u, x)M1(u)Z1(u, t)du (21)

This equation depends on the second spatial moment, incorporated in the movement rate term M1(x).319

The first term in (21) describes movement out of x while movement into x is accounted for in the second320

term as an integration over all possible starting locations u.321

3.4 Second Spatial Moment322

For the second moment dynamics, we describe a movement rate function M2(x, y) for a cell at x con-323

ditional on the presence of a cell at y. Recall that the neighbour-dependent component of movement324

rate for a single cell M1(x) was conditional on the presence of a second cell. Similarly, the neighbour-325

dependent component for M2(x, y) is conditional on the presence of a third cell at z and requires the326

third spatial moment. We use Eq. (14) to write M2(x, y) as follows:327

M2(x, y) = m+

∫
w(z − x)

Z3(x, y, z)

Z2(x, y)
dz + w(y − x). (22)
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The third term here accounts for the direct effect of the cell at y on the cell at x. Because the regions328

δz and δy do not overlap, the third moment does not account for the case where z = y and we add this329

interaction as a separate term.330

In the dynamics of the second moment, a cell at x moves to a new location at y drawn from a PDF331

µ2(x, y, z), where the third argument accounts for the fact that x is in a pair with a cell at z:332

µ2(x, y, z) =

λrexp (−λr|y − x|) pr(b2(x, z)) if y − x > 0

λrexp (−λr|y − x|) (1− pr(b2(x, z))) if y − x < 0.
(23)

The neighbour-dependent bias term b2(x, y) represents the contribution of all possible neighbours to333

the direction of movement of the cell at x in a pair with a cell at y. It is an integration over z of the334

probability of a third neighbour at z conditional on the presence of a cell at x and a cell at y, weighted335

by the kernel v′(z − x). Thus, we have336

b2(x, y) =

∫
v′(z − x)

Z3(x, y, z)

Z2(x, y)
dz + v′(y − x). (24)

As in Eq. (22), the direct effect of a cell at y on a cell at x must be added as a separate term because337

the third moment does not account for the degenerate case where y = z.338

3.5 Dynamics of the Second Spatial Moment339

To derive an equation for the rate of change of the Z2(x, y), we consider the probability of finding a cell340

in δx and a cell in δy at a time t+ δt:341

P

(
cell in δx & cell

in δy at t+ δt

)
= P

(
cell in δx & cell

in δy at t

)
P

(
both cells waited

in [t, t+ δt]

)

+ P

(
cell in δy but

not in δx at t

)
P

(
cell in δy waited &

cell moved into δx

)

+ P

(
cell in δx but

not in δy at t

)
P

(
cell in δx waited &

cell moved into δy

)

+ P

(
cell absent at

δx and δy at t

)
P

(
cell moved into δx &

cell moved into δy

)
. (25)

The probability of cells being present in both δx and δy can be written in terms of Z2(x, y) from Eq.342

(11):343

P (cell in δx & cell in δy at t) = Z2(x, y, t)h2 +O(h3). (26)

Using (10) and (11), the probability of a cell being present in δx and absent from δy is344

P (cell in δy but not in δx at t) = Z1(y, t)h− Z2(x, y, t)h2 +O(h3). (27)

The probability of both cells waiting in [t, t+ δt] in written in terms of (22):345

P

(
both cells waited

in [t, t+ δt]

)
= 1− (M2(x, y) +M2(y, x))δt+O(δt2). (28)

This is comparable to Eq. (19) for the first moment dynamics.346

12



The probability of a cell in δy waiting and a cell moving into δx in [t, t + δt] is equivalent to the347

conditional probability that a cell arrives in δx given that there is a cell in δy. As in (20), we integrate348

over all possible starting locations u for the cell arriving in δx. However, the probability of a cell being349

located at u is conditional on the presence of a cell at y. Therefore we have350

P

(
cell in δy waited &

cell moved into δx

)
= hδt

∫
µ2(u, x, y)M2(u, y)

Z2(u, y, t)

Z1(y, t)
du+O(δt2). (29)

Finally, the probability that a cell moved into δx and a cell moved into δy is O(δt2) because this would351

involve two Poisson events occurring during [t, t+ δt]. Similarly, the higher order terms in Eqs. (28) and352

(29) arise from probabilities involving more than one cell undergoing a movement event in a time δt.353

We substitute Eqs. (26)-(29) into (25) and make use of the 2-fold symmetry of Z2(x, y, t). Using a354

Taylor expansion of Z2(x, y, t + δt), expanding terms, then letting h, δt → 0 which removes the higher355

order terms, gives356

dZ2(x, y, t)

dt
= − (M2(x, y) +M2(y, x))Z2(x, y, t)

+

∫
µ2(u, x, y)M2(u, y)Z2(u, y, t)du

+

∫
µ2(u, y, x)M2(u, x)Z2(u, x, t)du. (30)

Here, the first negative term describes movement out of x, conditional on the presence of a cell at y. The357

first integral term represents movement into x from a starting location u, conditional on the presence of a358

cell at y. The remainder are symmetric terms for movement out of and into y. For notational simplicity,359

from here on we will drop the t from the spatial moment notation.360

Equation (30) depends on the third moment and we need to close the system before361

solving. To achieve this we use the Kirkwood superposition approximation given by362

Z̃3(x, y, z) =
Z2(x, y)Z2(x, z)Z2(y, z)

Z1(x)Z1(y)Z1(z)
, (31)

however other choices of closure are also possible [50]. For a Poisson spatial pattern the363

third moment is Z3(x, y, z) = Z3
1 and the approximation in (31) has perfect accuracy.364

4 Results365

We now compare some numerical results to measure how effectively our spatial moment model approxi-366

mates the behaviour predicted by the IBM. Numerical techniques are described in the Appendix. This367

includes a description of how the spatial moments can be expressed in terms of pair displacements (as in368

Fig. 3) because we are solving for a spatially homogeneous case. To obtain spatial information from the369

IBM we calculate a PCF CIBM(ξ) (see Appendix) by averaging the results of repeated realisations. The370

PCF predicted by the spatial moment model is given by CSM(ξ) = Z2(ξ)/Z2
1 such that CSM(ξ) = 1 in371

the absence of spatial structure. The second moment is isotropic (i.e. it has symmetry about the origin)372

and therefore we only show CSM(ξ) for ξ ≥ 0.373

In each realisation of the IBM we distribute the cells at t = 0 according to a spatial Poisson process on374

[xl, xr] with intensity n/L. Therefore, initially there is no spatial structure present. The corresponding375

initial condition for the spatial moment model is to set Z2(ξ) = Z2
1 at t = 0. Results from both models376
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are compared at time t = 25, by which point the system has converged to steady state in the majority377

of cases.378

In the complete absence of interactions, movement rate is determined by the intrinsic component379

alone and direction of movement is unbiased. It is straightforward to show analytically that the steady380

state solution for Z2(ξ) is a constant for this case. Numerical solutions and IBM simulations confirm381

this.382

4.1 Neighbour-Dependent Motility383

We first consider a case with neighbour-dependent motility but in the absence of neighbour-dependent384

directional bias. Figure 4 shows results for different values of α where interaction strength increases385

from left to right. We choose α < 0 to be sufficiently small such that the sum of the motility rate’s386

intrinsic and neighbour-dependent components will give rise to ψi > 0 with high probability. Due to the387

stochastic nature of the IBM it is possible that negative motility rates may occur by chance, however388

the definition of ψi given in Eq. (3) ensures that ψi = 0 for such rare chance events.389

In Figures 4(a)-(c) for α > 0, C(ξ) < 1 at short displacements which corresponds to a regular spatial390

pattern. When α < 0 (Figs. 4(d)-(f)), C(ξ) > 1 at short displacements indicating a cluster spatial391

pattern. Increasing the magnitude of α (i.e. the strength of interaction) increases the extent of spatial392

structure. The magnitude of α required to generate clustering is less than that needed to form a regular393

pattern. For example, α = 10 gives C(0) ≈ 0.6 (Fig. 4(c)) while α = −2.5 gives C(0) ≈ 1.4 (Fig. 4(f)),394

a similar magnitude of departure from a Poisson spatial pattern at C(ξ) = 1.395

CSM(ξ) provides a good approximation to CIBM(ξ) except for α < 0 when |α| is large. For α = −2396

and α = −2.5, CSM(ξ) has converged to a steady state by t = 25 but CIBM(ξ) continues to increase over397

time at short displacements. The discrepancy between CSM(ξ) and CIBM(ξ) can likely be attributed to398

the increased occurrence of negative motility rates (set to ψi = 0 as previously discussed), which can399

accumulate during simulation of the IBM when the magnitude of α < 0 is sufficiently large. The chance400

occurrence of many pairs being found at short displacements, while reasonably rare for the chosen values401

of α, may cause a positive feedback reaction whereby the motility rate is reduced for these pairs to an402

extent where they are very unlikely to undergo further movements. Any cells that move into the resulting403

cluster will also have their motility rates drastically reduced causing the effect to propagate. The spatial404

moment model does not account for these rare events as it deals only with average behaviour.405

For instance, in the stochastic simulations for α = −1 none of the motility rates that arose were406

negative and CSM(ξ) matched CIBM(ξ) well. However for α = −2 and α = −2.5 at t = 25 negative407

motility rates represented 0.1% and 1% of all motility rates respectively. Increasing t beyond this time408

caused the incidences to further increase. In contrast, the average motility rate M2(ξ) predicted by409

the spatial moment model remained positive for all time. While the 0.1% incidence when α = −2 was410

sufficiently low as to be of little or no consequence for CIBM(ξ), Figure 4(f) shows that even a relatively411

low incidence of 1% can lead to a mis-match between CIBM(ξ) and CSM(ξ). Further increasing the412

magnitude of α < 0 causes a significant increase in the incidences of ψi < 0 and the fit between CSM(ξ)413

and CIBM(ξ) deteriorates to an even greater extent.414
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Figure 4: Migration with neighbour-dependent motility but in the absence of neighbour-dependent di-

rectional bias (β = 0). Collective movement of 200 cells in a domain of length L = 500 therefore

Z1 = 0.4. The PCF CIBM(ξ) (blue solid) for 300 averaged realisations of the IBM is plotted against the

PCF CSM(ξ) (red broken) predicted by the spatial moment model at time t = 25. Blue dotted lines

indicate the interquartile range of IBM results, i.e. 50 % of realisations yield a PCF in the

region between the blue dotted lines. σ2
1 = σ2

2 = 0.08, λr = 5,m = 10. (a) α = 1, (b) α = 5, (c)

α = 10, (d) α = −1, (e) α = −2, and (f) α = −2.5.

4.2 Neighbour-Dependent Directional Bias415

We now consider a case of migration in the absence of neighbour-dependent motility but in the presence416

of neighbour-dependent directional bias. We first assume that cells are biased to move away from crowded417

regions which corresponds to β > 0. Figures 5(a)-(c) show results for three different values of β > 0. C(ξ)418

decreases at small displacements with increasing interaction strength β. In Figure 5(c) for β = 10 there419

is a peak in both the CIBM(ξ) and CSM(ξ) around ξ = 1. This peak arises because the strong directional420

bias is forcing cells to be displaced as far as possible from their nearest neighbours. This leads to an421

extreme case of regular spatial pattern in which nearly all cells are separated by approximately the same422

displacement; the peak in C(ξ) corresponds to this common displacement. The effect of setting β < 0423

such that cells are biased to move towards their neighbours is shown in Figures 5(d)-(f). The magnitude424

of β required to generate clustering is less than that needed to form a regular spatial pattern.425

In Figure 5, CSM(ξ) provides a good approximation to CIBM(ξ). However, greater magnitudes of426

β < 0 lead to disparities between CSM(ξ) and CIBM(ξ). For example when β = −0.5, CIBM(0) ≈ 3.6 at427
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Figure 5: Migration with neighbour-dependent directional bias but in the absence of neighbour-dependent

motility (α = 0). Collective movement of 200 cells in a domain of length L = 500 therefore Z1 = 0.4. The

PCF CIBM(ξ) (blue solid) for 300 averaged realisations of the IBM is plotted against the PCF CSM(ξ)

(red broken) predicted by the spatial moment model at time t = 25. Blue dotted lines indicate

the interquartile range of IBM results, i.e. 50 % of realisations yield a PCF in the region

between the blue dotted lines. σ2
1 = σ2

2 = 0.08, λr = 5,m = 10. (a) β = 0.1, (b) β = 1, (c) β = 10,

(d) β = −0.1, (e) β = −0.2, (f) β = −0.25.

t = 25 while CSM(0) ≈ 11.5 and neither PCF has reached steady state. Over time, the cluster pattern428

becomes stronger and the disparity between the two approximations deteriorates because CSM(0) is429

increasing at a faster rate than CIBM(0).430

4.3 Neighbour-Dependent Motility and Directional Bias431

Now that we have a better understanding of the independent effects of neighbour-dependent motility and432

directional bias we will consider the case where both are incorporated together. Figure 6 shows results433

for four different combinations of α and β. We choose values of α and β that would lead to approximately434

the same magnitude of departure from a Poisson spatial pattern (C(ξ) = 1) at ξ = 0 if the neighbour-435

dependent effects were acting in isolation as in sections 4.1 and 4.2. Figures 6(a) and 6(d) show that436

when the neighbour-dependent motility and directional bias are working cooperatively to promote spatial437

structure this results in a greater magnitude of departure from a Poisson spatial pattern than would occur438

when considering either interaction in isolation. However, when the neighbour-dependent interactions439
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Figure 6: Migration with both neighbour-dependent motility and a directional bias. Collective movement

of 200 cells in a domain of length L = 500 therefore Z1 = 0.4. The PCF CIBM(ξ) (blue solid) for 300

averaged realisations of the IBM is plotted against the PCF CSM(ξ) (red broken) predicted by the

spatial moment model at time t = 25. Blue dotted lines indicate the interquartile range of IBM

results, i.e. 50 % of realisations yield a PCF in the region between the blue dotted lines.

σ2
1 = σ2

2 = 0.08, λr = 5,m = 10. (a) α = 5, β = 0.15, (b) α = 5, β = −0.1, (c) α = −2, β = 0.15, (d)

α = −2, β = −0.1.

are working in opposition (Figs. 6(b)-(c)), they counteract one another and very little spatial structure440

develops over time as indicated by CSM(ξ) ≈ 1. CSM(ξ) is a good approximation to CIBM(ξ) except in441

Figure 6(d). In this case, the slight mis-match near ξ = 0 is likely due to the fact that the two forms442

of interaction working together promote clustering to such a degree that incidences of negative motility443

rate (approximately 0.8%) in the IBM become important.444

The results discussed so far have explored collective movement for Z1 = 0.4. However, the spatial445

structure that arises due to short-range interactions will depend largely on this average density. We have446

explored the effect that changing average density Z1 has on the dynamics of spatial structure. Increasing447

Z1 leads to a decrease in the magnitude of local spatial structure. For very high densities, C(ξ) ≈ 1 for all448

values of ξ indicating an absence of spatial structure. The effect of changing the width of the interaction449

kernels has also been explored. If we interpret 2σ (two standard deviations) as the approximate range450

over which a cell interacts, this can be used as a proxy for the space occupied by a cell and we can give451

a sense of scale to the spatial domain. It can be shown analytically that there is an equivalence between452

varying kernel width σ2 and varying Z1. A horizontal stretch in the kernels by a factor c leads to the453

same spatial structure as would increasing Z1 by a factor c. The second moment Z2(ξ) is increased by a454

factor c2 and horizontally stretched by a factor c. Thus, increasing the range of cell-cell interactions is455
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equivalent to increasing the average density.456

5 Discussion457

The IBM enables us to simulate the stochastic behaviour of cells undergoing collective movement and our458

numerical results demonstrate how individual-level interactions give rise to the development of spatial459

structure in the population. To obtain an accurate description of average behaviour we either simulate460

movement for a large number of cells or average the results from many realisations of the model. This461

approach becomes computationally intensive when cell abundance is high because the interactions be-462

tween each individual and all of its neighbours must be calculated before every movement event. In463

addition, IBMs are not directly amenable to mathematical analysis. Therefore there is464

good motivation for a population-level model in terms of spatial moment dynamics which465

provides mechanistic insight into how local directional bias gives rise to spatial structure466

and creates scope for a more formal analysis of the underlying stochastic process [37].467

Unlike models which employ the mean-field assumption, our spatial moment model takes into account468

the effects of local spatial structure on the dynamics of the population. The second moment predicted469

by the model, expressed as a PCF, provides a measure of this structure and can be directly470

compared to PCFs calculated from images of in vitro cell migration experiments [18]. Our471

numerical results show that the moment model can provide a good approximation of the spatial structure472

predicted by the IBM when the distribution of cells is homogeneous throughout space. In the case where473

interactions affect neighbour-dependent motility but not the direction of movement, the two models474

mostly match very well both when motility rate is increased in close proximity to neighbours or when it475

is decreased. However, when interactions that decrease cell motility are strong the moment model tends476

to under-predict the second moment. This is likely due to it not accounting for the higher incidence of477

negative motility rates that can arise by chance in the IBM.478

When interactions determine only direction of movement and do not affect motility rate the two479

models again correspond well except when cells are strongly biased to move towards one another. In this480

case, the spatial moment model over-predicts the second moment. As the motility rate is constant, a rise481

in negative motility rates can not be causing the disparity in this case. Instead, it is possible that our482

choice of closure might not be suitable for approximating the third moment when the second moment is483

large at short displacements. If this is the case, the spatial moment model may also be over-predicting484

the second moment in the case where strong interactions with close neighbours reduce motility rate and485

generate clustering. However it is possible that the high average pair densities that arise in the IBM due486

to the increased incidences of negative motilities could be masking the effect. Using a different closure,487

for example a power-2 closure, may improve our approximation of the second moment.488

When interactions influence both motility rate and directional bias, the results from the IBM and489

the spatial moments still correspond well in most cases. The two models only start to disagree when the490

second moment is large for short displacements. In this case the mechanisms that we have seen cause491

disparity between CSM(ξ) and CIBM(ξ) when interactions affecting motility rate and directional bias are492

considered in isolation, may both contribute to the mis-match in results. However, we have shown that493

in general our spatial moment model provides a good approximation to the underlying IBM and only494

starts to break down when the spatial pattern becomes strongly clustered.495

As we are primarily interested in the long-term effects of interactions, our main focus is with the496
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spatial structure of the system at steady state. The time taken to reach steady state depends on both497

the movement rate and the initial distribution of cells. For ease of comparison between the different types498

and strength of interactions we considered only a case where cells are initially distributed according to499

a spatial Poisson process. However, choosing an alternative initial condition, for example a strongly500

clustered or regular spatial pattern, does not affect the steady state solution approximated by either501

model.502

A similar cell movement model incorporating a local directional bias and employing the503

second spatial moment was previously derived by Middleton et al. [60]. Their IBM is also504

lattice-free but is based on Langevin equations describing individual cell velocities. The way505

in which the directional bias acts is also slightly different. A cell’s velocity is taken to be506

the sum of the interaction forces from all neighbours plus a noise term. In contrast, in our507

IBM the sum of interactions with neighbours dictates the probability of a cell moving in a508

certain direction and its movement rate can be determined by an independent mechanism.509

The choice of interaction kernel is also different to that employed here. Despite these510

differences our results correspond well with those of Middleton et al. [60], i.e. we see the511

same qualitative trends in the second moment due to local repulsive or attractive forces.512

The closure for the third moment is only an approximation and different closures may perform better513

under different conditions. For instance, power-2 closures generally perform well but have the potential514

to violate the positivity constraint which is required because an average density of triplets can never be515

negative [50]. While it is important to keep this in mind, an exhaustive analysis of moment closures516

is outside the scope of this work. Other methods for describing the dynamics of spatial point517

processes, which do not require a closure assumption, are also discussed in the literature.518

For instance stochastic differential equations, such as Langevin-type equations, capture519

fluctuations arising due to short-range interactions via a noise term and can be used to520

investigate spatio-temporal patterns at different scales [65]. Blath et al. [66] analysed a521

stochastic, lattice-based model using stochastic differential equations to explore whether522

spatial structure could give rise to coexistence between two competing species. A closed523

system of equations for the whole hierarchy of moments was derived by Ovaskainen et524

al. [67] using techniques from Markov evolutions and a perturbation expansion around the525

spatial mean-field model. Bruna and Chapman [35] employed a perturbation method to526

describe the dynamics of moving particles by using matched asymptotic expansions in a527

small parameter ε� 1 to derive a nonlinear diffusion equation.528

As our model does not incorporate volume exclusion, for example through the representation of529

cells as hard objects, there is the possibility that cell locations may arise in very close proximity in the530

IBM. The use of an interaction kernel which is concentrated around short pair displacements provides531

a mechanism for generating a regular spatial pattern and thus allows us to reduce the likelihood of two532

cells being found close together. However, this approach is probabilistic and does not altogether exclude533

the possibility of such an occurrence.534

It is appealing to consider the collective movement of cells in one dimension from a theoretical per-535

spective, in particular because it simplifies the derivation and numerical solution of the spatial moments536

description. Solving the differential equation in two dimensions is considerably more computationally537

intensive as it involves double integrations in both the x- and y- direction. While the majority of ex-538

perimental data is two- or three-dimensional, our results suggest that a one-dimensional model could539
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still prove useful for quantifying the behaviour of moving cells. In one dimension we observe traits in540

the second moment that we would expect to see in a live population of cells, namely the development of541

clusters or regular spatial patterns. However, as a cell moving through two-dimensional space is inter-542

acting with neighbours in all directions, not just those on either side, it is possible that this could have a543

more profound impact on spatial structure than is predicted by our one-dimensional model. Therefore,544

an important goal of future work will be to extend our model to two dimensions.545
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Appendix A549

Calculating a PCF550

The PCF C(r) provides a means of extracting information about spatial structure from the configurations551

of agents that arise in realisations of an IBM. To calculate the PCF for a particular configuration of agents,552

a reference agent at xi is chosen and the distance between xi and a neighbour at xj is measured, for553

n neighbours. We measure across periodic boundaries such that the distance between a pair of agents554

displaced by ξ = xj − xi is555

r =

|ξ| if |ξ| < L
2

L− |ξ| if |ξ| > L
2 .

(32)

Another reference agent is then chosen and the process repeated until each agent in the population556

has been selected as a reference once. Once all possible pair distances, excluding self-pairs, have been557

measured C(r) can be generated by counting the number of distances that fall within an interval [r, r+δr].558

Normalising by 2δrn2/L ensures C(r) = 1 in the absence of spatial structure.559

Numerical Methods560

To solve Eq. (30) for the dynamics of the second moment numerically it is beneficial to reduce the561

number of variables. For a spatially homogeneous distribution of cells, the second moment Z2(x, y)562

depends only the displacement y − x which can now be treated as a single variable. As shown in Figure563

3, the displacement from x to y is denoted ξ and the displacement from x to z is denoted ξ′. For the564

movement PDF µ2(u, x, y), we denote the displacement from u to x as ξ′′. The first spatial moment is565

required for Z̃3(x, y, z) and in the homogeneous case Z1 is a constant.566

We rewrite (30) in terms of the displacements between pairs as follows:567

dZ2(ξ)

dt
= − (M2(ξ) +M2(−ξ))Z2(ξ)

+

∫
µ2(ξ′′, ξ′′ + ξ)M2(ξ′′ + ξ)Z2(ξ′′ + ξ)dξ′′

+

∫
µ2(ξ′′, ξ′′ − ξ)M2(ξ′′ − ξ)Z2(ξ′′ − ξ)dξ′′. (33)
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The movement rate M2(x, y) of a cell at x in a pair with a cell at y given in (22) is now expressed in568

terms of the displacement ξ between x and y:569

M2(ξ) = m+

∫
w(ξ′)

Z3(ξ, ξ′)

Z2(ξ)
dξ′ + w(ξ). (34)

The movement PDF given in (23) becomes570

µ2(ξ, ξ′) =

λrexp (−λr|ξ|) pr(b2(ξ′)) if ξ > 0

λrexp (−λr|ξ|) (1− pr(b2(ξ′))) if ξ < 0,
(35)

with neighbour-dependent bias571

b2(ξ) =

∫
v′(ξ′)

Z3(ξ, ξ′)

Z2(ξ)
dξ′ + v′(ξ). (36)

The interaction kernels were previously expressed in terms of a single variable in (4) and (7) and these572

definitions still hold here. The closure for the third moment is573

Z̃3(ξ, ξ′) =
Z2(ξ)Z2(ξ′)Z2(ξ′ − ξ)

Z3
1

. (37)

The boundary condition is as follows:574

Z2(ξ)→ Z2
1 as ξ →∞. (38)

Equation (33) was solved using the method of lines with MATLAB’s in-built ode45 solver. This involved575

a discretisation of ξ with grid spacing ∆ = 0.1 over the domain |ξ| ≤ ξmax, where ξmax was large576

enough so that Z2(ξ) ≈ Z2
1 at |ξ| = ξmax. Required values of Z2(ξ) that lay outside of the computable577

domain were set to the value of Z2(ξ) at the boundary. The integral terms in (33) were approximated578

using the trapezoidal rule with the same discretisation. In addition, the PDF for movement µ2(ξ, ξ′)579

was normalised numerically using the trapezoidal rule such that
∫
µ2(ξ, ξ′)dξ = 1. The results were580

insensitive to a reduction in grid spacing ∆.581
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