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Abstract

Background

Cardiac elastances are highly invasive to measure directly, but are clinically useful due to the amount of
information embedded in them. Information about the cardiac elastance, which can be used to estimate it, can be
found in the downstream pressure waveforms of the aortic pressure (Pao) and the pulmonary artery (Ppa).
However these pressure waveforms are typically noisy and biased, and require processing in order to locate the
specific information required for cardiac elastance estimations. This paper presents the method to algorithmically
process the pressure waveforms.

Methods

A shear transform is developed in order to help locate information in the pressure waveforms. This transform
turns difficult to locate corners into easy to locate maximum or minimum points as well as providing error
correction.
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Results

The method located all points on 87 out of 88 waveforms for Ppa, to within the sampling frequency. For Pao, out
of 616 total points, 605 were found within 1%, 5 within 5%, 4 within 10% and 2 within 20%.

Conclusions

The presented method provides a robust, accurate and dysfunction-independent way to locate points on the aortic
and pulmonary artery pressure waveforms, allowing the non-invasive estimation of the left and right cardiac
elastance.

Background

In an Intensive Care Unit (ICU), cardiac disturbances are difficult to diagnose and treat, which can lead to poor
management [1, 2]. Inadequate diagnosis can be common, and plays a significant role in increased length of stay
and death [3–5], despite access to many different cardiac measurements and metrics. Currently, internal
measurements are only possible at the locations where catheters are placed. This limited set of data can severely
restrict clinical diagnostic capability, and thus these catheters are not necessarily associated with improved
outcomes [6–8]. Overall, a lot of data currently available to ICU clinicians, that could have significant clinical
value, is under utilised.

Using modelling techniques, this limited set of data can be expanded to estimate a much greater set of clinically
relevant data to enable more accurate diagnosis. For example, acute cardiovascular dysfunction, like pulmonary
embolism (PE) and septic shock, severely alter cardiovascular system (CVS) hemodynamics around the heart.
These changes can be seen by catheter measurements as a change in the balance of preload and afterload, resulting
in an altered cardiac energetic state [9, 10]. Detailed cardiac energetics are too invasive to measure in an ICU
setting. However, if the relevant energetics could be captured from a nearby catheter, the clinical potential of such
measurements could be realised. To date, no such method achieves this aim.

Time-varying cardiac elastance (TVE) is defined [11]:

e(t) = Pv(t)
Vv(t) − Vd

(1)

where, Vd is assumed to be equal to V0 for simplicity, V0 is the intercept of the end-systolic pressure-volume
relation (ESPRV) with the volume axis [12], Pv(t) is the ventricle pressure and Vv(t) is the ventricle volume. It thus
provides a measure of heart function and energetics ( [13–15]). The waveform e(t) is typically normalised to a
value of 1.0 [13], and can also be used as the input or driver function in lumped parameter CVS models ( [16–20]).

There have been several attempts to estimate TVE [14, 21–24]. However, none have estimated it for its own sake.
Most studies present a method using the TVE to estimate a specific parameter, most commonly end-systolic
elastance (Ees) [14,23,24] and ejection fraction [22]. However, their validation is based on these metrics, not on the
resulting TVE waveform.

This research is unique in that the end goal is to produce the TVE function in its own right, validating the TVE
waveform on its own accuracy for eventual use as a diagnostic tool. It is unclear to date how much specific
information can be obtained from the TVE waveform, other than the highly sought-after Ees [25] (although this
cannot be found from the normalised TVE waveform). However, TVE features are highly correlated to clinical
parameters [26] and contain similar information to pressure-volume (PV) loops, which are known to contain
information on cardiac function [27] including cardiac work [28, 29], contractility [13, 30], O2
consumption [29, 31], and all the states of filling, contraction ejection and relaxation [1]. Thus, a TVE waveform
reflects cardiac state, cardiac output or blood volume, and net preload and afterload, all of which change with
cardiac dysfunction. Hence, the ability to easily and non-invasively obtain TVE waveforms could enable clinically
useful diagnostics and metrics.

This paper presents the first step in estimating TVE from already available measurements, namely aortic (Pao) and
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pulmonary artery (Ppa) pressure. This research develops algorithms to process these pressure waveforms to extract
specific features and points, which, in turn, allow the estimation of the end goal, the TVE waveform. The Pao and
Ppa pressure waveforms, as typically measured, are noisy and/or biased, which can significantly effect this process.
Hence, a method is presented for automatically processing the pressure waveforms to robustly and accurately locate
the points required by the correlations, that enable accurate, not additionally invasive cardiac elastance estimation
and construction.

Methods

Concept

The specific approach presented defines a representative set of points on the TVE waveforms. These points allow a
continuous waveform to be constructed that adequately follows the shape of a true (invasively measured) TVE,
capturing the necessary dynamics. Correlations between these representative points and the points or properties on
the typically measured waveforms, Pao and Ppa, enable construction of continuous beat-to-beat estimations of TVE
with knowledge only of the Pao and Ppa waveforms and the pre-defined correlations. It thus uses typically available
data to construct what would otherwise require a highly invasive added test. A high level view of this approach is
presented in Figure 1, which shows the formation and use of the correlations to generate and estimated cardiac
elastance waveform. This paper is focused on the left half of Figure 1, that of producing the correlations for later
use. A brief overview of the whole method is given for clarity:

1. locate points on Pao and Ppa (this paper)
2. correlate points of the pressure waveforms to points on the measured cardiac elastance
3. use these correlations to estimate the points on the cardiac elastance
4. create a continuous function e(t) through the estimated points with (2)-(4)
5. compare the estimated elastance waveform to the measured elastance waveform

e(t) =


Fα(t) 0 < t < cα
(1−x2)(t−cα)

cβ−cα
+ x2 cα < t < cβ

Fβ(t) cβ < t < period
(2)

where:

Fi = ai · e−bi(t−ci)
2

(3)

and the coefficients of (3), also seen in (2), are fitted for a specific waveform, and are defined:

aα = x2

bα = − log(x1/x2)

exp(log(−log(x1/x2) · 2 · (x1/ẋ1)) · 2)

cα = − log(x1/x2) · 2 · x1 − ẋ1 · t1
ẋ1

(4)

where aβ , bβ and cβ are similarly defined by replacing subscript 1 with 3 and setting x2 = 1.

Figure 1 Overview. The figure shows a conceptualised overview of the process described in this paper and further
implications. From the many measured left cardiac elastance (e(t)) waveforms, alone with many aortic pressure
(Pao) waveforms, correlations are derived (the information flow is shown through the large grey arrow). Once these
correlations are known, they can be used along with the aortic pressure waveform (from a patient), to arrive at an
estimation of their cardiac elastance waveform. The equivalent for the right cardiac elastance is also shown, with
the pulmonary artery pressure (Ppa)

Figure 2 shows an illustrative mapping between points on Pao and TVE. However, this approach is useful if and
only if it is possible to automate the detection of the required points, defined in (5), on the Pao and Ppa waveforms,
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shown in Figures 3 and 4.

Figure 2 Illustrative elastance estimation. As an example of what can be done with the identified points on the
aortic pressure, and example of the formation of the estimated cardiac elastance is shown here, while the terms are
defined in (5). This figure is not part of the method of this paper, rather as a illustration of what the method as a
whole leads to

Figure 3 Aortic pressure waveform and relevant points. A representative aortic pressure waveform over one
heart beat with relevant points (defined in (5)) marked on it. The two dashed circles, MN and RS are used only in
locating other points

Figure 4 Pulmonary artery pressure waveform and relevant points. A representative pulmonary artery pressure
waveform over one heart beat with relevant points (defined in (5)) marked on it. The dashed circle, MX is only used
to help find other points

This paper focuses on the robust capturing of the points on the pressure waveforms and leaves the specific
correlations and methodology of creating the TVE waveforms to a paper in review. The details contained in this
paper about the formulation of the correlations and there use are illustrative only, and are assumed to correct for the
purposes of demonstrating a potential use for this research.

For describing the methods in this paper, a naming convention is defined:

e(t) ≡ time varying cardiac elastance
Pao ≡ aortic pressure
Ppa ≡ pulmonary artery pressure

DMPG ≡ driver maximum positive gradient
MN ≡ minimum point

MPG ≡ maximum positive gradient
LS ≡ left shoulder

MX ≡ maximum
RS ≡ right shoulder

MNG ≡ maximum negative gradient
DN ≡ dicrotic notch

(5)

Shear Transform

This paper uses a shear transform to extract features from the Pao and Ppa waveforms, defined:

S ≡ (t, X(t)) → (t, ϕshear(X(t))) (6)

where:

ϕshear (X(t)) = X(t) + mt + c, t0 < t < tend (7)
X(t) ≡ descrete, time valued data (8)

and the parameters t0 and tend are set depending on the region or period of interest. The parameters m and c are
chosen such that:

ϕshear(X(t0)) = X(t0) = ϕshear(X(tend)) (9)
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Equation (9) leads to:
X(t0) + m · t0 + c = X(t0)

X(tend) + m · tend + c = X(t0)
(10)

Solving (10), for m and c yields:

m = X(t0) − X(tend)

tend − t0
c = −m · t0

(11)

To better visualize how this transformation operates, imagine a line from A to C in Figure 5, representing a portion
of the waveform in Figure 3, rotated about A so that end points align horizontally, while time remains unchanged.
Hence, it is a rotation and contraction that projects the line onto a horizontal axis (time). The effect of this
transformation is to transform the difficult to find “shoulder” point B into an easily found peak of a curve, or for the
reflection of A → B in x, a minimum or the curve. A “shoulder” is defined as a point at which two near linear lines
with different slopes meet, such as the point LS in Figure 3. Thus, the use of this transform makes it far easier to,
algorithmically, locate aspects of the waveforms which can be otherwise difficult to find.

Figure 5 Shear transform. An illustration of the shear transformation of (6), turning a hard to locate “shoulder”
(B) points into an easily found maximum point (B̄)

The transform, S, is used in two ways. First it is used to locate a point of interest based on the maximum or
minimum point of S. This use is demonstrated in Figure 5. Hence, a desired point P is defined:

P = Smax or Smin (12)

Both local maximum, Smax(local), and minimum, Smin(local), are also required. Smax(local) exists and is the maximum
point of S, if and only if, there exists a maximum stationary point that does not fall at the temporal boundary of S,
and similarly for Smin(local).

The second way the shear transform of (6) is used relates to the verification of a particular point given an initial
guess. For example, the first guess of the point MN is the global minimum of the waveform, after which this point
is verified using the shear transformation, resulting in confirmation of the point or a new point to use instead.

This works by locating the maximum of minimum point of the shear transform, P2, over a given range, t, near the
first guess, P1, and also defining a threshold time, D. If the point P2 lies temporally within tP1 ± D, then the correct
point is the initial guess P1, otherwise the correct point is P2.

The choice of Smax or Smin, the range of time, t, and the threshold time, D, are defined for the type of point under
consideration. The specific values, listed in Section Point location method, are chosen empirically, based on what
features that appear close to the point of interest and the temporal variation that has been observed in these features.

These two situations are graphically shown in Figure 6 and Figure 7 for positive values of D. However the same
applies for negative values, for which the real point lies before the point P1, instead of after it. The complete
process is defined:

P =
{

P1 if tP2 lies temporally within tP1 ± D
P2 otherwise (13)

where:
P1 ≡ initial point to be checked
P2 ≡ Smax or Smin (chosen separately)
D ≡ threshold time
t ∈ {t : t0 < t < tend}

(14)

Combined these two methods of use, shown in Figure 5 - 7, create a robust and computationally fast method for
locating certain hard to find points on a waveform.
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Figure 6 Use of the shear transform, A. The desired point for MN is P. However, in this example the global
minimum of the waveform is P1, which is the initial guess for MN. A shear transform of the pressure waveform
between P1 and MX reveals a minimum (P2) outside the range of D, and hence the time of P2 is taken as the time of
MN

Figure 7 Use of the shear transform, B. This example is the other situation in the process of finding MN to Figure
6, i.e. the initial guess of the global minimum for MN is correct. Here, the minimum of the shear transform from P1
to MX falls within the range of D and hence the P1 is taken as MN

Point location method

The method for finding the points is described in Figure 8 along with the following two sections (Finding DMPG
and Finding DN). Figure 8 gives the full text, reproducible and ordered method except for the points DMPG and
DN (which are described in the next two sections) along with a graphical illustration. The graphical illustrations are
the out-working of the method for a representative waveform, and are only intended to aid the reader in their
understanding of the method, and not to formally describe the method itself. Due to the complexity of the method
for the points DMPG and DN, these two have been described in Figure 8 only for the simplest (as well as the and
most common) case, with the full method described in a separate sections with relevant figures.

Figure 8 The method. The step by step method for finding the points on Pao and Ppa, as labelled on the right. The
graphics beside each step are for illustration only and are not meant to be part of the definition of the method, rather
to see the method in operation on a representative Pao waveform. Note that the methods described here for DMPG
and DN are note complete as these require a more complex method, refer to Sections Finding DMPG and Finding
DN for the complete method for these two points

Finding DMPG
There are some cases, where DMPG, see Figure 3, is equivalent to MN. These cases occur when:

(tMX − tMN) < period · 0.25 (15)

When (15) is not true, DMPG is found as the Smax(local) from 3
4 · tMN to MN, see Figure 9. However, there are a few

cases, for both sepsis and pulmonary embolism, in which a local maximum of S does not exist except at the
boundaries of the region, which is not acceptable if an automated detection method is desired. In this case, a point
P2, is defined as the Smin from 3

4 · tMN to MN. If Smax(local) from P2 to MN exists, this is taken as DMPG, see
Figure 10, otherwise DMPG is defined as Smax(local) from 3

4 · tMN to P2, see Figure 11. If this final local maximum
does not exist, DMPG is defined as 3

4 · tMN . These cases occur due to noise, variability and dysfunction and are part
of what makes robust algorithmic or automated processing difficult.

Figure 9 Finding DMPG, A. A straight forward case for finding DMPG, where P1 of (17) exists, hence
DMPG ≡ P1

Figure 10 Finding DMPG, B. A less common case for finding DMPG, where P1 of (17) does not exist, but P3
does, hence DMPG ≡ P3

Figure 11 Finding DMPG, C. A less common case for finding DMPG, where P1, and P3 of (17) do not exist, but
P4 does, hence DMPG ≡ P4
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This process is defined:

P =


P1 if ∃ P1
P3 if ∃ P3
P4 if ∃ P4
3
4 · tMN otherwise

(16)

where:
P1 ≡ Smax(local), t ∈ {t :

3
4

· tMN < t < tMN}

P2 ≡ Smin(local), t ∈ {t :
3
4

· tMN < t < tMN}
P3 ≡ Smax(local), t ∈ {t : tP2 < t < tMN}
P4 ≡ Smax(local), t ∈ {t :

3
4

· tMN < t < tP2}

(17)

Finding DN
The general approach to find the point DN, see Figure 3, is to find Smin between tMX and tend (or period). However,
in a number of cases this approach fails due to oscillations towards the end of the waveform, see Figure 12. Also,
using only the first local minimum (as is the case in Figure 12) works only in a few cases and therefore is not a
robust solution either. Hence a more specific algorithm is required.

Figure 12 Finding DN. An example of where the first local minimum of the shear transform is the correct time for
the point DN

A second maximum point is defined:

MX2 ≡max point of Pao(t),

t ∈ {t : tMN + period
5

< t < period} (18)

and two more intermediate points are defined:

DN1 ≡ (lowest) Smin(local), t ∈ {t : tMX2 < t < period} (19)
DN2 ≡ first Smin(local), t ∈ {t : tMX2 < t < period} (20)

From DN1 and DN2, the real DN is chosen, defined:

DN =
{

DN1 if (CA ∧ CB) ∨ (CC ∧ CD)

DN2 otherwise (21)

where:
CA ≡ DN2 > MX2

CB ≡ (tDN2 − tMX2) < 0.15 · period

CC ≡ DN2 − DN1

Pao(tMX)
> 0.02

CD ≡ (tDN2 − tMX2) < 0.11 · period

(22)

While using a measured Ppa waveform, DN is defined:

DN = DN1 (23)

Validation Test
The method presented was developed on a set of five pigs (51 waveforms) that were induced with pulmonary
embolism [32, 33], and then independently tested on a further five pigs (37 waveforms) induced with septic shock,
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and treated with haemofiltration [34, 35].

The points for all waveforms (see Figures 3-4) were identified or checked individually by eye. The two gradients
(MPG and MNG) were first located through simple computation, and then individually checked by eye and
corrected were necessary. Due to the nature and location of these points (maximum gradient of a sigmoidal
function), they are the two easiest and most reliable to find algorithmically, and in fact the algorithmic approach is
more accurate than hand selection. The two shoulders (LS and RS) were first located through the algorithm
developed prior to that which is described in this paper, after which each point was individually checked and
corrected. Because there is no formal definition for the location of these “shoulder” points, it was left to an
algorithmic definition. For a validation test this definition is self fulfilling. However, as LS (RS is only used to aid in
finding MNG , and is hence not included in the validation results) is found as an intermediate step to the estimation
of the cardiac elastance, its full and more formal validation would be the results of the cardiac estimation which is
not in the scope of this paper. All the remaining points were hand selected.

The automated method was applied to the waveforms and the identified points assessed against the known points
for accuracy in time. The use of separate data with different cardiac dysfunction to design and test the method
ensures the robustness of the validated method.

Results

For the points (MN and DN) required when using Ppa (Figure 4), the method located both points in 87 of the 88
waveforms to within the sample frequency of 200Hz (0.005 sec), missing DN, from one waveform. This missed
point is in a waveform at the start of the third pig of the sepsis cohort and is unique to the data set, both in the
measured TVE and Ppa, as shown in Figure 13, compared to the more typical Ppa waveform in Figure 4. The
failure is due to the unusual second peak of Ppa, and the early decay of the TVE.

Figure 13 Where the method fails. Ppa alongside the matching TVE. The automatic or algorithmic method failed
to capture the correct DN point (circle), the real DN and associated MX are marked by squares

For each Pao waveform, the method locates eight points, MX, MN, DMPG, LS, MPG, DN, RS, MNG. However, RS
and MN are only used to aid the location of other points. These two points were both located sufficiently to enable
the method to progress in all 88 waveforms. Results for the other six points are shown in Table 1. Of 616 total
points, 605 were found within 1%, 5 within 5%, 4 within 10% and 2 within 20%.

Table 1 The error data for each location, grouped by number of points found per error band for each location
< 1% 1 − 5% 5 − 10% 10 − 20%

DMPG 84 1 3 0
MPG 88 0 0 0

LS∗ 86 1 1 0
MX 88 0 0 0

MNG 87 0 0 1
DN 86 2 0 0

TOTAL 605 5 4 2
Accuracy of the method: number of points grouped by absolute error (of 88 total points). ∗ note that the validation
LS here is partially self fulfilling and only included here for completeness.

Discussion

The automated, algorithmic method presented enables the mapping between aortic pressure (Pao), pulmonary artery
pressure (Ppa), and the ventricle TVE (erv(t) and elv(t)), by accurately processing the Pao and Ppa waveforms to
identify specific points. Once combined, they enable a very useful tool, for clinicians to obtain very accurate TVE
without further invasive or risky sensors or procedures.

There are other ways to locate the points on the pressure waveforms, most notably a derivative and second
derivative method. However, this becomes problematic in practice due the noise inherent in the waveforms. The
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method that has been developed in this paper, was designed to work with the level of noise that is typically seen on
these measurements, and is therefore more involved than a simple derivative method.

The method presented was robust to the typical and significant variation and noise in Pao and Ppa waveforms. The
method was developed on five pigs induced with pulmonary embolism, and then tested independently with data
from another set of five pigs induced with septic shock. The results give confidence that this method will generalize
to a wider set of disease states and to human data.

However, while the results were very good, this research needs further validation on a wider cohort of pigs and
types of dysfunction to further quantify the limits and accuracy of this approach. Direct validation on humans is the
ultimate goal. However, the results appear robust, and justify and enable a wide range of further more in-depth
validation studies of both the method and its potential uses when reconstructing TVE for monitoring and diagnosis.

Clinically, it must be noted that for this method to work a Swan-Ganz catheter is assumed. If radial artery pressure
was measured instead, there would be more oscillations in the waveform, potentially requiring modifications.
However, Swan-Ganz catheters are still commonly used, and this application would add value to their use, which is
otherwise sometimes contested [6–8].

The method developed in this paper shows promise for gaining clinical insight and improving diagnosis. It can
enable clinicians to get more information about the current patient state, without the use of more invasive
measurements, as well as beat-to-beat tracking of this information. This level of detail is far more than currently
available and could potentially lead to better and earlier diagnosis of dysfunction, as well as better knowledge of
response to treatment, non-invasively, as it needs no further procedures or sensors required.

Conclusions

This paper has presented a robust, potentially dysfunction-independent method to find the waveform points
necessary to use proven methods to non-invasively and automatically estimate the otherwise unavailable left and
right ventricle TVEs with accuracy well within measurement error. This capability is enabled using standard
measurements that are already commonly used in an intensive care setting, thus involving no additional risk to the
patient. The results thus justify prospective validation of these conclusions.
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