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ABSTRACT 

We describe a framework to synthesize geothermal data streams by joint inversion. Geothermal production robustness, a non-

probabilistic metric of geothermal prospectivity, is defined as the amount that uncertain model parameters can deviate from nominal, 

best-fit values and still produce simulations that meet geothermal production criteria. Larger parameter deviations indicate greater 

robustness in geothermal prospectivity. Results are automatically presented as 3D robustness maps using the open-source visualization 

software ParaView allowing interactive interpretation of the results. 

 

1. INTRODUCTION 

Determining the robustness of decisions to develop, explore, or enhance a geothermal resource from available data is a challenge. A 

variety of expertise is required to collect, process, and analyze hydrological, geological, geochemical, and geophysical indicators of 

geothermal prospectivity. The individuals tasked with making geothermal development decisions cannot be experts in all areas of 

geothermal sciences and technology. Therefore, geothermal energy development decisions require the synthesis and distillation of these 

disparate geothermal indicators into an accessible format. This requires additional forms of expertise involving data visualization, 

uncertainty quantification, model calibration, and decision analysis.  

Geothermal data streams come from many sources with varying degrees of fidelity. For example, direct borehole temperatures are often 

considered high fidelity measurements and provide hard constraints on hydrothermal reservoir models. Geophysical surveys, such as 

seismic and MT, requiring a degree of expert interpretation, are considered to be of lower fidelity but often have higher spatial coverage 

providing less-precise large-scale constraints. Regional geological and gravity surveys often provide locations of faults and pyroclastic 

rock formations. Geochemical data such as dissolved silica and Na-Ca-K provide estimates of maximum reservoir temperatures. Robust 

decision analysis in geothermal exploration and development requires a synthesis of these data streams. 

The development of approaches to jointly invert geothermal data streams is a current research challenge. The predominant approach has 

been to use some form of selective sampling scheme based on Bayesian inference to identify model realizations that are consistent with 

available data streams. For example, Jardani and Revil (2009) invert permeabilities using borehole temperature and self-potential data. 

Mellors et al. (2013) describe a framework for joint inversion of geothermal data streams using Bayesian inference through a Markov 

Chain Monte Carlo (MCMC) sampling scheme. McCalman et al. (2014) describe another framework that uses Bayesian inference to 

invert multiple geothermal data streams.  

Similar to previously described approaches above, we utilize sampling schemes to collect parameter combinations. However, while the 

sampling scheme may use Bayesian inference to direct the sampling towards more “likely” parameter combinations, Bayesian inference 

is not a requirement in our framework. We have applied the framework simply using Latin Hypercube Sampling as well. Of course, 

sampling economy will increase with directed sampling schemes. Our approach uses concepts from information gap theory (Ben-Haim, 

2001; Harp and Vesselinov, 2013) to post-process the sampling. The approach produces a non-probabilistic, set-based, spatially defined 

metric of robustness, or geothermal prospectivity. The concept behind our analysis approach is to quantify the robustness (i.e., 

confidence against failure) of alternative geothermal decisions without requiring probabilistic assumptions. 

2. METHOD 

Given the opacity of the Earth, the expense of exploratory drilling, and the limited ability to uniquely interpret geophysical surveys, 

geothermal data streams are often sparse, ambiguous, and/or low-resolution. Geothermal data streams are often highly uncertain and are 

better described as containing serious gaps in information. We therefore utilize a non-probabilistic approach to facilitate geothermal 

development decisions in cases involving gaps in information, which, in our estimation is true in many if not most geothermal 

investigations. 

mailto:dharp@lanl.gov
mailto:ylin@lanl.gov
mailto:bill.glassley@geo.au.dk
mailto:d.dempsey@auckland.ac.nz
mailto:satkarra@lanl.gov
mailto:markaustinperson@gmail.com
mailto:rsm@lanl.gov


Harp, Lin, Glassley, Dempsey, Karra, Person, and Middleton 

 2 

Probabilistic Bayesian inference, implemented through algorithms such as MCMC (Gilks, 2005), is an extremely powerful approach to 

selectively sample parameter combinations to a joint posterior distribution that produces simulations that are consistent with 

observations. Prior distributions of parameters containing beliefs or existing information are updated using the data to produce a joint 

posterior distribution. In cases where little or no information exist to define a prior, it is conventional to use a uniform distribution. In 

information theory (Reza, 1961), a uniform distribution has maximum entropy, indicating that the random variable has maximum 

uncertainty, and hence minimal information. This information-theoretic logic is often applied to justify the use of uniform prior 

distributions when there is a lack of information. In fact, a uniform prior is commonly referred to as an uninformative or non-

informative prior. A problem arises when this information-theoretic logic is applied to cases where there are legitimate gaps in 

information. The uniform distribution does not represent a gap in information, but a lack of certainty. In fact, the probability for each 

possible value of the random variable is precisely defined as equal to other values in a uniform distribution; hence, incapable of 

representing gaps in information. Bayesian inference results are sensitive to prior distribution (Berger, 1990; Lavine, 1991; Vanpaemel, 

2010; Müller, 2012). If they were not, their use as a means to incorporate existing beliefs and information would be flawed. Attempts to 

obtain robust Bayesian inferences have been developed that require evaluating the results of multiple priors (Berger et al., 1994; Insua 

and Ruggeri, 2012), a strategy that can lead to infeasible computational cost.  

An alternative approach in cases with recognized information limitations is to use concepts from information gap theory. We have 

implemented such an approach into the framework and describe it below. 

 

Figure 1: Framework flow diagram. 

2.1 Framework 

The workflow of the framework is illustrated in Figure 1. The workflow is similar to existing frameworks (Mellors et al., 2013; 

McCalman et al., 2014) in that simulations are compared with available data. A significant difference in our framework is the non-

probabilistic analysis of these comparisons. After a sampling scheme has collected an ensemble of simulations that are consistent with 

observations, geothermal robustness (prospectivity) is calculated as described below. Results, including the most likely (i.e. most 

consistent with observations) and robustness metric are automatically opened in ParaView for 3D interactive exploration. If the results 

provide decision makers with enough confidence in the viability of the potential geothermal system, the results can be used to develop a 

geothermal development plan. Otherwise, the results may be used to determine where and what types of additional data should be 

acquired. 

Hydrothermal and geophysical simulators are incorporated in the framework as Python functions. Execution of non-Python simulators 

(compiled executables or simulators written in other interpreted languages) is handled by system calls from the Python function. 

Creation of external model input files is facilitated in a similar fashion to other model analysis packages using template files (e.g., PEST 

(Doherty et al., 2006) and Dakota (Adams et al., 2009)).  

The framework is comprised of a Python module written specifically for this framework, that leverages other freely available, open-

source Python modules. The main leveraged Python module is the Model Analysis ToolKit (MATK; http://matk.lanl.gov). MATK 
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facilitates model analysis setup (e.g. model function, parameter and observation definitions), external simulator input file generation, 

access to Python model analysis algorithms, and concurrent execution of simulations. Other leveraged Python modules, either directly 

or indirectly through MATK, include NumPy (Van Der Walt et al., 2011), SciPy (Jones et al., 2014), emcee (Foreman-Mackey et al., 

2013), lmfit (Newville et al., 2014), and pyvtk (https://github.com/pearu/pyvtk). The framework outputs analysis results (e.g. 

geothermal robustness) in VTK format using pyvtk and facilitates the automatic execution, data loading and visualization formatting of 

the open-source visualization tool ParaView (Hendersen et al, 2004).  

2.2 Models 

The framework is simulator agnostic, simply expecting that all models are python functions. Automated input file generation is 

facilitated using MATK functionality. System calls can be handled using existing Python modules (e.g. the system method in the os 

module or the call or popen methods in the subprocess module). The model functions are expected to return a list or dictionary of 

simulation results. An example of this type of function can be viewed at http://matk.lanl.gov/example_fehm.html.   

To date, two hydrothermal reservoir simulators have been used in the framework: the Finite Element Heat and Mass transfer code 

(FEHM; https://fehm.lanl.gov; Zyvoloski, 2007), via the PyFEHM Python module (http://pyfehm.lanl.gov), and PFLOTRAN code 

(http://www.pflotran.org; Lichtner et al., 2013), via the PyFLOTRAN Python module (https://bitbucket.org/satkarra/pyflotran-release-

v1.0.0). PyFEHM and PyFLOTRAN facilitate setting up models in the form of Python function. FEHM is a finite-volume multi-phase, 

multi-component flow and transport simulator that has been developed at Los Alamos National Laboratory for over 30 years. FEHM 

was originally developed for the Hot Dry Rock test site at Fenton Hill, New Mexico (Kelkar et al, 1986). PFLOTRAN is a massively 

parallel subsurface and reactive transport simulator. PFLOTRAN is also a finite-volume multi-phase, multi-component simulator. Both 

FEHM and PFLOTRAN can be used in the framework to produce simulations that can be compared with observations of temperatures, 

pressure, and chemical concentrations.  

Efforts have been undertaken to incorporate a seismic model into the framework. Geophysical methods can be used to measure the 

physical properties that are sensitive to temperature and fluid content of the geothermal reservoir. According to the relationship between 

the physical parameters and the geothermal reservoir, geophysical methods can be further differentiated into two categories: indirect 

methods (seismic methods, magnetic methods, etc.) and direct methods (geoelectrical methods etc.). Indirect methods are those methods 

inferring geophysical properties that reveal the characteristics of a geothermal reservoir, while the direct methods yield information on 

parameters that are influenced by the geothermal activity. The major advantage of indirect methods over the direct method is its 

accuracy and its capability to delineate the detailed image of the subsurface structure.  

The seismic module can be incorporated with other modules within the framework. We can employ the seismic method to infer various 

geophysical properties within the subsurface, such as seismic-wave velocities, density, etc. As an example, fault zone location is an 

important piece of information in characterization of the geothermal reservoirs. It provides guidance for operators to locate geothermal 

resources and site wells. Incorporation of a seismic module allows obtaining inversion results of parameters defining fault zone location 

and extent using seismic measurements. 

2.3 Prospectivity definition 

Since the robustness metric is non-probabilistic, it does not quantify a probability of success. It is our belief that in many geothermal 

analyses, the quantity and quality of information will not justify such claims. Utilizing concepts from information-gap theory (Ben-

Haim, 2001; http://info-gap.com), the approach is based on nested sets of uncertainty as opposed to distributions of uncertainty. The 

robustness of a spatial location within the model domain is calculated relative to the parameter combination that is most consistent with 

observations (e.g., smallest sum-of-squared residuals, most likely, etc.). These parameters are considered the nominal parameters, in 

other words, the parameters that a decision would be based upon. The robustness is calculated as the normalized amount that all 

parameters can deviate from nominal, and the simulated temperature and production at the location still exceed the desired quantities. 

Robustness therefore quantifies confidence against failure based on the extent that our nominal parameters can be incorrect and the 

decision is still a good one. There is an implicit requirement in the analysis that a decision is to be made, as the uncertainty is quantified 

relative to the nominal decision parameter values. While the distinction of information gap analysis versus optimal or Bayesian decision 

analysis may seem esoteric, it does represent a significant paradigm shift in the manner in which uncertainty involving gaps in 

information are handled in a decision analysis.   

The following provides a formal definition of our geothermal robustness metric. If we consider 𝜽 ̃ as the vector of nominal parameters, 

𝝈𝜽 the vector of parameter standard deviations, and 𝛼 as the uncertainty parameter, often referred to as the horizon of uncertainty, we 

can define an expanding set of uncertain parameter combinations as 

𝜽 ∈ 𝜽̃ ± 𝛼𝝈𝜽, 𝛼 ≥ 0 

Based on this definition of nested expanding sets of uncertain parameter combinations, we can define associated sets of system 

responses as 

𝑆𝑇(𝛼, 𝜽̃, 𝒙) = {𝑇(𝜽, 𝒙): ∀ 𝜽 ∈ 𝜽̃ ± 𝛼𝝈𝜽}, 𝛼 ≥ 0 

and 

𝑆𝑄(𝛼, 𝜽̃, 𝒙) = {𝑄(𝜽, 𝒙): ∀ 𝜽 ∈ 𝜽̃ ± 𝛼𝝈𝜽}, 𝛼 ≥ 0 

https://github.com/pearu/pyvtk
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where 𝑇(𝜽, 𝒙) and 𝑄(𝜽, 𝒙) are the simulated temperature and production, respectively, at location x given parameter vector 𝜽, and 

variable 𝛼 defines the horizon of uncertainty.  

Linguistically, the robustness 𝛼̂ can be defined as 

𝛼̂(𝒙) = max{𝛼: minimum requirements are always satisfied} 

Using the set definitions above, the temperature and production robustness can be defined as 

𝛼̂𝑇(𝒙) =  max {𝛼: (min 𝑆𝑇(𝛼, 𝜽̃, 𝒙)) ≥ 𝑇𝐶} 

and 

𝛼̂𝑄(𝒙) =  max {𝛼: (min 𝑆𝑄(𝛼, 𝜽̃, 𝒙)) ≥ 𝑄𝐶} 

respectively, where TC and QC are the specified minimum temperature and production required for a viable geothermal system. The total 

robustness can be calculated as the minimum of the temperature and production robustness’s as 

𝛼̂(𝒙) =  min (𝛼̂𝑇(𝒙), 𝛼̂𝑄(𝒙)) 

 

2.4 Analysis description 

The preliminary development of the framework used borehole temperature data from the Salton Sea Geothermal Field  (Tiedeman et al., 

2011). Other modeling conceptualizations are simple abstractions of a hypothetical geothermal resource solely developed to aid in the 

development of the framework. While the modeling scenario was integral in the development of the framework, the results are not to be 

taken as informative for the Salton Sea Geothermal Field. A more detailed analysis incorporating geologic information from the field 

can be found in Mellors et al. (2013).  

As mentioned above, the analysis assumes that directly measured temperatures are available from three boreholes, represented as Ti, 

where i = 1,…57 is the measurement index including measurements from all three boreholes. The lithostratigraphy is assumed to be 

known and represented by zonation heterogeneity in the model with three zones. Permeabilities are assumed to be uniform within each 

zone but with uncertain values, represented as ki, i = 1,2,3, where i indicates the zone. It is assumed that the basal heat flow is 

heterogeneous, but that its distribution is unknown. Basal heat flow at each node along the bottom of the model are parameterized as 

uncertain parameters represented by Qi, i = 1,…,12, where i indicates the bottom node index. Therefore, the parameter vector contains 

the uncertain zonal permeabilities and basal heat flows as 𝜽 = {𝒌, 𝑸}, where k and Q are vector representations of ki and Qi, 

respectively. We developed an FEHM hydrothermal model parameterized with 𝜽.   

We obtained an ensemble of parameter combinations biased towards those producing FEHM simulated temperatures (𝑇𝑖̂, 𝑖 = 1, … ,57 ) 
that are more consistent with measured borehole temperatures using an MCMC algorithm (Foreman-Mackey et al., 2013). We then 

perform production simulations at each node of the model with each parameter combination of the ensemble. For computational 

efficiency, we use the Theis solution (Theis, 1935) as our production model. The materials surrounding each location determine Theis 

solution properties. A numerical simulator could be used in this step at significantly greater computational expense. Geothermal 

production performance metrics are defined as 𝑄(∆𝑡𝑝, 𝒙𝑝) ≥ 𝑄𝐶 = 0.01 kg/s and 𝑇(𝑡 = 0, 𝒙𝑝) ≥ 𝑇𝐶 = 100℃ where ∆𝑡𝑝 = 0 - 20 years 

and xp is the production location. Therefore, it is required that the geothermal system can be produced at 0.01 kg/s or greater for 20 

years and that the current temperature is at least 100℃.     

The nominal parameter values, 𝜽̃, were determined as the parameter combination most consistent with measurements (i.e. lowest sum-

of-squared errors, Σ𝑖
𝑁(𝑇̂𝑖 − 𝑇𝑖)2). Parameter uncertainties must be standardized in the calculation of the robustness metric described 

above. We use the parameter standard deviations across the ensemble, 𝝈𝜽 = {𝜎𝑘1
, 𝜎𝑘2

, 𝜎𝑘3
, 𝜎𝑞1

, … , 𝜎𝑞12
}, to standardize the parameter 

uncertainties. The ensemble production simulations are then used to determine 𝑆𝑇(𝛼, 𝜽̃, 𝒙) and 𝑆𝑄(𝛼, 𝜽̃, 𝒙), which allow the calculation 

of 𝛼̂𝑇(𝒙) and 𝛼̂𝑄(𝒙), respectively, and ultimately 𝛼̂(𝒙). 

3. RESULTS 

The framework exports results to VTK files and automatically loads the results in ParaView as shown in Figure 1. 
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Figure 1: Screenshot of automatically loaded results in ParaView. Vertical lines represent measured borehole temperatures in 

Celsius. 

Model results from the most likely scenario are also loaded automatically in ParaView. The flow vectors for the most likely scenario are 

shown in Figure 2 as arrows colored by the magnitude of their vertical component. 

 

Figure 2: Flow vectors for the most likely scenario are presented along with the measured borehole temperatures colored by 

their vertical component in kg/s. 

Surfaces extracted from the model colored by robustness are presented in Figure 3 with the more robust locations for geothermal 

prospectivity are red, less robust locations are blue. The measured borehole temperatures provide reference. 
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Figure 3: Model cross-sections colored by geothermal robustness with measured borehole temperatures for reference. 

4. SUMMARY 

We developed a framework for geothermal decision analysis and visualization. The framework is novel in its use of a non-probabilistic 

metric of prospectivity, defined as geothermal robustness, and its integration with open-source visualization software. The basic 

functionality of the framework, including directed sampling (identification of a set of parameter combinations consistent with 

observations), production simulations, calculation of geothermal robustness, and automatic visualization have been described and 

demonstrated.   
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