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Abstract

Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS) is an analytical measure-

ment technology for the real-time quantification of volatile organic compounds

in gaseous samples. This technology has current and potential applications in

a wide variety of industries, although the focus of this research is in medical

science. In this field, SIFT-MS has potential as a diagnostic device, capable

of determining the presence of a particular disease or condition. In addition,

SIFT-MS can be used to monitor the progression of a disease state, or predict

deviations from expected behaviour. Lastly, SIFT-MS can be used for the iden-

tification of biomarkers of a particular disease state. All these possibilities are

available non-invasively and in real-time, by analysing breath samples.

SIFT-MS produces an extensive amount of data, requiring specific mathe-

matical methods to identify biomarker masses that differ significantly between

populations or time-points. Two classification methods are presented for the

analysis of SIFT-MS mass scan data. The first method is a cross-sectional clas-

sification model, intended to differentiate between the diseased and non-diseased

state. This model was validated in a simple test case. The second method is a

longitudinal classification model, intended to identify key biomarkers that change

over time, or in response to treatment.

Both of these classification models were validated in 2 clinical trials, inves-

tigating renal function in humans and rats. The first clinical trial monitored

changes in breath ammonia, TMA and acetone concentrations over the course of

dialysis treatment. Correlations with the current gold standard plasma creati-

nine, and blood urea nitrogen were reported. Finally, biomarkers of renal function

were identified that change predictably over the course of treatment.

The second trial induced acute renal failure in rats, and monitored the change
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in renal function observed during recovery. For comparison and validation of

the result, a 2-compartment model was developed for estimating renal function

via a bolus injection of a radio-labelled inulin tracer, and was compared with

the current gold standard plasma creatinine measurement, modified using the

Cockcroft-Gault equation for rats. These two methods were compared with SIFT-

MS monitoring of breath analytes, to examine the potential for non-invasive

biomarkers of kidney function. Results show good promise for the non-invasive,

real-time monitoring of breath analytes for diagnosis and monitoring of kidney

function, and, potentially, other disease states.



Chapter 1

Introduction

Selected Ion Flow Tube - Mass Spectrometry (SIFT-MS) is a relatively new an-

alytical technique for the real-time quantification of volatile organic compounds

(VOCs) [Smith and Spanel, 1996]; [Freeman and McEwan, 2002]. It relies on

chemical ionisation of trace gas molecules in air or breath samples introduced

into a helium carrier using H3O
+, NO+ and/or O2

+• precursor ions. Hence, the

identity of a sample VOC can be found by comparison of the mass of the product

ions with an existing database. The sensitivity of the instrument is currently

around 100 parts per trillion in real time [Milligan et al., 2007].

The SIFT-MS system can offer unique capability in the early and rapid de-

tection of a wide variety of diseases, infectious bacteria and patient conditions.

This outcome can be achieved by creating disease and normal mass scan datasets

using SIFT-MS, and developing classification methods to identify an unknown pa-

tient as normal or diseased. By identifying which masses (and therefore VOCs)

contribute most strongly towards a successful classification, biomarkers for a par-

ticular disease state can be discovered. Longitudinal studies can also be carried

out in which the concentration of a particular analyte can be monitored over time

to potentially infer the progression of the disease state.



2 CHAPTER 1 INTRODUCTION

1.1 Selected Ion Flow Tube-Mass Spectrometry

1.1.1 Principles of SIFT-MS

SIFT-MS is a quantitative mass spectrometric method that exploits the chemical

ionisation of positively charged precursor ions that react with the VOCs in an

air or breath sample. In particular, H3O
+, NO+ and O2

+• precursor ions are

typically used, since they do not react with the main compounds found in air

or breath (N2, O2, CO2 and Ar). The process steps are summarised below, and

illustrated in Figure 1.1.

1. Precursor ions are generated by passing water vapour through a microwave

discharge;

2. A quadrupole mass filter is used to select the required precursor ion based

on its mass/charge ratio;

3. The precursor ion is injected into a fast-flowing inert carrier gas (helium),

which carries the precursor ion along the flow tube;

4. The sample for analysis is introduced into the flow tube via a calibrated

capillary;

5. The precursor ion reacts with the VOCs from the sample to form product

ions;

6. A representative proportion of the product ions then pass through a small

orifice at the downstream end of the flow tube, and into a differentially

pumped quadrupole mass spectrometer that filters ions according to mass;

7. The selected product ions pass to the channeltron particle multiplier/detector

where they are counted;

8. Knowledge of the concentration of the product ion and the rate of the

reaction allows identification and quantification of the reactant compound.
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Figure 1.1 Schematic of analyte quantification via SIFT-MS, Smith and Spanel [2005]

1.1.2 Precursor Reactions

Most organic ions, M , react with the H3O
+ precursor via simple proton transfer,

in which usually only 1 or 2 product ions are formed.

H3O
+ + M → MH+ + H2O (1.1)

When ions are introduced into humid air, such as in breath, clustering of the

water molecules occurs. The reaction thus takes place as described by Equation

(1.2), where X is a third body such as a helium atom that stabilises the cluster

ion against unimolecular dissociation, [Smith and Spanel, 2005]. When the hy-

drated precursor ion encounters a reactant trace gas molecule such as ammonia,

the reaction proceeds via ligand switching, as seen in the second part of Equa-

tion (1.2). If this reaction is sufficiently exothermic, the water molecule can be

released, leaving the pronated reactant ion, as seen in the third part of Equation

(1.2).
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H3O
+ + nH2O + X → H3O

+(H2O)n + X (1.2)

⇒ H3O
+(H2O)n + M → MH+.(H2O)n + H2O

→ MH+ + (n + 1)H2O

Reactions with the NO+ precursor also produce only 1 or 2 product ions.

However, they can proceed via charge transfer, ion transfer, or ion-molecule

association. Aromatic hydrocarbons react with the NO+ precursor via charge

transfer, as seen in Equation (1.3) for toluene, to produce radical cations.

NO+ + C6H5CH3 → C7H
+•
8 + NO• (1.3)

Hydride ion transfer occurs when saturated aldehydes, ethers and primary or

secondary alcohols react with the NO+ precursor, as seen in Equation (1.4) for

acetaldehyde. Hydroxide ion transfer occurs in reactions of NO+ with tertiary

alcohols, as shown for 2-methyl-2-propanol in Equation (1.5).

NO+ + CH3CHO → CH2CHO+ + NHO (1.4)

NO+ + (CH3)3COH → (CH3)3C
+ + NHO2 (1.5)

Ion-molecule association is very common in reactions between NO+ and polar

organic molecules such as carboxylic acids, esters, and ketones [Smith and Spanel,

2005]. The reaction proceeds as shown in Equation 1.6 for acetone, where helium

acts as a stabilising body.

NO+ + CH3COCH3 + He → NO+CH3COCH3 + He (1.6)

Most reactions with the O2
+• precursor proceed via non-dissociative charge

transfer to produce the radical cation M+•, or by dissociative charge transfer to

produce 2 or more product ions, as seen in Equation (1.7) for acetone.
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O+•
2 + CH3COCH3 → CH3COCH+•

3 + O2 (60%) (1.7)

→ CH3CO+ + CH•
3 + O2 (40%)

Analysis of trace gas molecules by all three precursors described above helps

ensure the correct identification and quantification of the reactant. If the reactant

reacts with 2 or more precursors, then it should appear in each mass spectra in the

same concentration. From these analyses and a (correct) identification, analysis

for biomarkers and/or clinical diagnosis can begin.

1.1.3 Mode of Operation

SIFT-MS can operate in 2 different modes:

1. Selected Ion Monitoring Mode (SIM)

2. Mass Scan Mode

SIM scans are performed to determine the concentration of a specific analyte(s)

with known product masses, using one or more of the 3 precursor ions described.

In this mode, only the precursor ion masses and product ions masses are counted

with the channeltron particle multiplier/detector. Each of these masses is counted

for 25-50ms before counting the next mass. A typical SIM scan output is shown

in Figure 1.2.

In mass scan mode, all masses, or more accurately, mass-to-charge ratios,

m/z, over the instrument detection range are sampled and counted with a chosen

precursor. In the experiments described in this thesis, all 3 precursor ions were

utilised in the reactions, and masses 10-180m/z were monitored. Results are

given in counts per second, a concentration obtained from the counts recorded

by the channeltron multiplier over a specified sampling interval.

Identification of the product peaks in the mass spectra are then related back

to the reactant sample. Mass scan mode is useful when the identity of the VOCs
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Figure 1.2 Typical SIM scan output

in a sample are unknown, for example, when investigating new biomarkers of a

particular disease state. A typical mass scan output is shown in Figure 1.3.
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Figure 1.3 Typical mass scan output

1.1.4 Applications

SIFT-MS has current and potential applications in many different industries, such

as environmental, agriculture and food sciences, homeland security, and medical

science. Specific applications include:

• Monitoring VOC exposure in the home or workplace, such as polluted town

air, cigarette smoke, industry solvents, etc.
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• VOC identification in exhaust gases

• VOC identification in soil samples for the farming industry

• Monitoring food freshness and preparation

• Detection of illicit substances such as drugs, tobacco or explosives for Home-

land Security

• Medical applications such as detection of diseases, infectious bacteria, can-

cers, and other patient conditions

• Monitoring medical conditions such as the progression of a disease state, or

the onset of renal failure

This research focuses on the use of SIFT-MS as a tool for identifying and moni-

toring disease states by analysis of breath analytes. Such an application requires

knowledge of the physiology and biochemistry of respiration in the mammalian

lung, which is discussed further in the next section.

1.2 Breath Sampling

1.2.1 Breath Metabolites

Human breath consists mostly of nitrogen, oxygen, carbon dioxide, water and

inert gases, as well as numerous trace components, such as ammonia, acetone,

isoprene and ethanol. Volatile substances in breath can be absorbed from the en-

vironment, or generated endogenously from the body as a product of metabolism.

Hence, in a healthy subject, concentrations of these trace elements in breath are

dependent on environmental conditions, and can vary with circadian rhythms,

exercise, and food consumption.

For example, acetone, produced by lipid peroxidation, is increased during

fasting. Another example is isoprene, produced during cholesterol synthesis,

which is at a maximum level around 6am, and at a minimum at 6pm [Miekisch

et al., 2004]. Finally, levels of ammonia are increased after a high-protein red

meat meal. These examples briefly show the potential range of possibilities for
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disease diagnosis and monitoring, as well as the potential for confounding varia-

tion.

Certain disease states can interfere with the biochemical balance in the body,

resulting in measurable changes in blood chemistry. Gas exchange between the

blood, lung epithelia and alveolar gas means that analytes measured in breath

contain readily accessible information about a subjects physiological state. For

example, ammonia levels increase significantly during hepatic or renal impair-

ment, when removal of ammonia from the blood via conversion to urea or via

excretion is limited. However, as noted, such levels may be skewed due to diet or

other factors, presenting a difficult classification and diagnosis problem.

1.2.2 Respiratory Physiology

Air enters the lungs through the oral cavity or nasal passages, which join in

the pharynx. The pharynx gives rise to the trachea, which is supported by

cartilage rings to prevent collapse as the pressure changes during the breathing

cycle. The trachea subdivides to form bronchi and bronchioles, which branch

repeatedly, leading eventually to terminal and respiratory bronchioles that are

directly connected to alveoli. Alveoli are surrounded by a dense capillary network,

providing a site for gas exchange. Substances diffusing into the blood, must

cross an aqueous film, or surfactant, the alveolar epithelial cells, an interstitial

space, and the endothelial cells of the blood capillaries. The structure of the gas

exchange surface is shown in Figure 1.4 [Purves et al., 1995].

Three types of cell make up the lung epithelium:

• Type I cells are squamous epithelial cells with a thin, plate-like structure;

• Type II cells have a laminated body within the cell and surface villi for

producing surfactants;

• Type III cells are rich in mitochondria and have numerous microvilli for

active transport from the lung fluid.

Ventilation occurs by contraction of the diaphragm, which increases the vol-

ume of the thoracic and pleural cavities, creating a negative pressure which causes
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Figure 1.4 Gas exchange in the alveolus, Purves et al. [1995]

the lungs to expand as air is drawn in. When the diaphragm stops contracting,

the lungs recoil forcing the air back out. Hence, inhalation is an active process,

with muscle contraction, and exhalation is usually passive [Randall et al., 2002].

Details of the anatomy are shown in Figure 1.5.

 

Figure 1.5 Lung anatomy with detail of pleural cavity, Randall et al. [2002]

The amount of air moved into and out of the lungs at each breath is referred

to as the tidal volume. To reach the gas exchange surface in the alveoli, air must
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first pass through the upper airways not involved in gas transfer. At the end of

inhalation, the air in these tubes will be filled with ambient air, and will be the

first to be exhaled with the next breath. This volume of air not involved in gas

transfer is called the anatomic deadspace. In addition, some air may be supplied

to non-functional alveoli, or alveoli perfused at too high a rate, thus increasing

the volume of air not involved in gas exchange. This latter volume is referred to

as the physiological deadspace, and it includes the anatomic deadspace.

The rate of blood perfusion of the respiratory surface depends on the re-

quirements of the tissues for gas transfer and the gas-transport capacity of the

blood. To ensure sufficient oxygen delivery to the respiratory surface to saturate

the blood with oxygen, the rate of ventilation, V̇A, is optimised to the rate of

perfusion, Q̇. Any changes in the oxygen content of the inspired air or in the

oxygen requirements of the tissues, requires a corresponding change in ventila-

tion. Hence, oxygen is provided to the respiratory surface at such a rate as the

blood is capable of carrying it away, thus promoting diffusion across the surface

at the highest possible rate.

As well as carrying oxygen to the tissues, blood must also carry away metabolic

wastes such as carbon dioxide and other VOCs. Such wastes can be excreted by

the kidneys in the urine, through the skin by sweating, via the digestive system

in the faeces, or by exhalation in the breath. Excretion and uptake of VOCs in

the breath depends on the ventilation/perfusion ratio in the lung, and the con-

centration gradients of the substances across the respiratory surface. Therefore,

a subject breathing in an environment with a low VOC concentration will mea-

sure different alveolar VOC concentrations to the same subject breathing in a

high VOC environment because of the different concentration gradient for diffu-

sion. Similarly, when the external VOC concentration becomes higher than the

endogenous concentration, the VOC will diffuse into blood instead of appearing

in the exhaled breath.

1.2.3 Sample Collection

Breath can be sampled either directly into the SIFT-MS instrument, or collected

remotely in Tedlar bags and brought to the machine. Remote collection has its

difficulties, particularly when measuring water-soluble compounds like ammonia
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which readily adsorb onto the bag surface. This effect can be moderated by keep-

ing the bag warm [Neilson, 2006], however, direct breath remains the preferred

method of breath sampling when possible.

The 2 other main variations in breath sampling relate to the fraction of

breath that is collected. Most studies use mixed expiratory sampling, which in-

cludes deadspace air and hence artificially dilutes (for endogenous substances),

or concentrates (for external contaminants) the measured analyte. However, if

background air is also sampled, and the deadspace volume can be accounted for,

the alveolar fraction of the breath can be extracted. The other main approach

is alveolar sampling, in which the first (deadspace) portion of the breath is dis-

carded, and only the alveolar air exchanged from the blood, is sampled [Lad,

2006].

To determine endogenous concentrations of analytes, correction for back-

ground inspiratory air must be performed. Several different approaches have

been adopted to account for this problem, however the validity of subtraction

methods is questionable [Schubert et al., 2005]. Such approaches include:

• Assuming a constant background analyte concentration, and performing a

relative, rather than an absolute, analysis;

• Subtracting inspired air from expired air concentrations to determine alve-

olar gradients [Phillips, 1997];

• Eliminating ambient concentrations by having the subject breath pure air

prior to measurement [Risby and Sehnert, 1999].

1.3 Summary

SIFT-MS is a quantitative mass spectrometric method that exploits the chemi-

cal ionisation of positively charged precursor ions that react with the VOCs in

gaseous samples. Certain disease states can interfere with the biochemical bal-

ance in the body, resulting in measurable changes in blood chemistry, which can

be measured in the breath using SIFT-MS. Hence, the SIFT-MS system can offer

unique capability in the early and rapid detection of a wide variety of diseases,
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infectious bacteria and patient conditions, as well as the ability to monitor the

progression of a disease state, non-invasively, and in real-time.



Chapter 2

Cross-sectional Classification Models

This chapter presents new classification methods and tests for the classification

of cross-sectional sets of mass scan data. This process is broken into four steps:

1. Pre-processing to remove noise from the raw mass scan data;

2. Creating probability distributions for each of the 2 test classification groups;

3. Obtaining a classification and a reliability measure for that classification;

4. Identifying useful biomarkers.

Two cases are presented. The first case is a simple direct validation study that

aimed to differentiate dry nitrogen samples from wet nitrogen samples to clearly

test and prove the methods developed. The second case study used the classi-

fication model in a clinical setting to determine the differences between dialysis

patients before and after treatment, thus examining kidney function, which has

direct application in critical care and drug dosing, among other arenas. The clas-

sification model is also able to determine which masses are most useful in this

classification and therefore those compounds that act as biomarkers for kidney

function.

2.1 Experimental Design

The study methodology is divided into three sections:
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1. Experimental design for the validation study and dialysis case study;

2. Pre-processing of mass scan raw data;

3. Statistical analysis, including classification, prediction error estimation, re-

liability, and sensitivity/specificity analysis.

They are presented in this order to construct the algorithms and methods

in the context of these case studies. This approach can better highlight specific

processing issues that arise.

2.1.1 Validation Study: Nitrogen (N2) in Tedlar Bags

A simple test study was conducted to validate the statistical classification model

developed. Samples of gas collected remotely from the SIFT-MS device were

collected in a Tedlar bag composed of polyvinyl fluoride, which the manufacturers

claim to be chemically inert [Dupont, 1995]. Before using the tedlar bags, the

manufacturers recommend flushing the bags with purified air or nitrogen.

However, other studies have shown using Solid Phase Micro-extraction (SPME)

that the Tedlar bags emit 15 different VOCs into samples stored in the bags for

24 hours, as detailed in Table 2.1 [Parker et al., 2003]. Phenol, acetone and acetic

acid are persistently present even after purging the bags with purified nitrogen

[Parker et al., 2003]. Hence, one outcome of this study is determining the ability

to detect and account for these effects in this common form of breath sample

collection.

In this study, multiple samples of N2 in Tedlar bags were tested by performing

mass scans over a range of 10-150 atomic mass units (amu) using the precursors

H3O
+, NO+ and O2

+. The bags were new and all flushed at least three times

prior to testing directly from the bag.

N2 in Tedlar bags was also vented to sterile glass bottles filled with water using

a sterile stainless steel needle, and a polytetrafluoroethylene (PTFE) permeable

septum. The gas in the bottles was then tested by performing mass scans. 25

Dry Nitrogen samples (Nitrogen in a tedlar bag) and 25 Wet Nitrogen samples

(Nitrogen in tedlar bag vented to bottle) were tested.
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Table 2.1 VOCs detected by SPME in samples of N2 stored in Tedlar bags for 24 hours
(modified from Parker et al. [2003])

VOC No Purge Purge Bag

Acetone + +
Acetaldehyde + -
Decane + -
Octane + -
Toluene + -

2,3-Butadione + -
Ethyl Benzene + -
Nonane + -
Isoprene + -
Tridecane + -

Dodecane + -
Tetradecane + -
Acetic Acid + +
Pentadecane + -
Phenol + +

The specific objectives of this first study were as follows:

1. Determine what VOCs are added when venting to a Tedlar bag containing

purified nitrogen;

2. Determine which VOCs or their water clusters increase or diminish when

passed through sterile glass bottles filled with water;

3. Differentiate between the 2 test groups;

4. Validate the classifier using this presumably clean system.

2.1.2 Case Study: Dialysis

One patient with impaired kidney function underwent dialysis treatment on seven

separate occasions, with breath mass scans performed one hour into the treatment

and after 4 hours of treatment. These mass scans were taken over a range of 10-

150 amu using the precursors H3O
+, NO+ and O2

+. The specific aims of this

study were:
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• To develop probability density profiles for the pre- and post-dialysis groups;

• To determine if it is possible to reliably differentiate between the 2 sample

groups;

• To identify possible new biomarkers for kidney function.

The study was based on the fact that dialysis takes a patient from a state

of kidney failure to functional status, artificially. Hence, dialysis provides a

built in comparison for analysing kidney function and investigating potential

biomarkers. Ethics approval was granted as part of a larger separate trial for the

collection and use of this data by the Upper South B Regional Ethics Committee

(URB/05/12/178).

2.2 Pre-processing

In this study, SIFT-MS mass scans measured the concentration of products at

each 0.2 of a mass unit to obtain results. However, there was a significant amount

of machine and precursor noise, as shown in Figures 2.1 and 2.2. The data con-

tained noise, anomalous electronic signals produced by the SIFT-MS instrument,

which had to be filtered before analysis.
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Figure 2.1 Typical mass scan over 10-100 amu
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Figure 2.2 Typical mass scan focused on 17-22amu

Any filtering process must result in an accurate reading of concentration at

each whole number mass unit. A normal peak from a mass scan is usually centred

around a whole mass unit. At half its height, it is usually 0.8 mass units wide, as

shown in Figure 2.3. However, as seen in Figure 2.4, this definition of a standard

peak is not always seen in practice, except at masses with large concentrations.

The actual peaks in Figure 2.4 are considered to be at the positions indicated by

crosses.
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Figure 2.3 Typical mass scan peak at 19 amu

Figure 2.4 was obtained using the H3O
+ precursor. The H3O

+ precursor

has mass 19, thus accounting for the off-the-scale peak seen at this mass. The

H3O
+ precursor will also generate peaks at masses 37, 55 and 73, due to H3O

+

forming clusters with H2O in humid samples. A large concentration of precursor

ion is used in SIFT-MS, to ensure complete reaction of the VOCs in the sample.
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Figure 2.4 Noise in the raw data at 18, 20 and 21 amu

Thus, the mass scan should always show maximum peaks at the precursor-related

masses. A non-precursor related peak that is greater than the maximum precursor

peak indicates an erroneous result because the particular VOC present in the

sample would have swamped the precursor signal. Because a different amount

of precursor ion is used for each reaction, mass scans were normalised to the

sum of the product precursor peaks. For example, for the H3O
+ precursor, this

normalising factor is the sum of the peaks at masses 19, 37, 55 and 73.

Pre-processing steps for mass scan data therefore involve:

• Normalising each data point to the sum of the precursor ion peaks, allowing

comparisons to be drawn between samples that receive a different amount

of reactant precursor ion;

• Removing large erroneous peaks greater than the precursor peaks, and data

points that cause a peak to rise too sharply. This process eliminates machine

errors, and samples with high concentrations of compounds that swamp the

precursor signal;

• Finding the tip of the peak, by looking at concentrations before and after

the whole mass unit, and determining if a suspected peak exists in reality

by considering the number of non-zero readings within 1 mass unit;

• Reducing the concentration matrix to include only whole mass values for

analysis.
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2.3 Statistical Classification Analysis

The goal of classification is to compare the concentrations obtained at each mass

in the mass scan of an unknown sample with a previously established database.

The end result is a classification of the unknown sample into one of the database

groups. As well as the classification, an estimate of the prediction error and a re-

liability measure are required. Biomarkers can be obtained by determining which

masses in the mass scan were most useful in classifying the unknown sample.

2.3.1 Classification

Kernel density estimates are used for the classification of mass scan data [Hastie

and Friedman, 2001]. Test datasets of known classification are used to develop

probability density profiles for each of the two datasets: Groups j and k. An

unknown sample is then tested against the datasets, with the result being a

classification into either Group j or Group k. In a diagnostic analysis, j and k

would be the non-disease and diseased states.

After pre-processing the raw mass scan data, each sample is left with a vector

of concentration values at each whole mass unit. With mass scans performed

over a range of 10-150 amu, the resulting vector has length 141. For each mass, a

mixed distribution made up of a kernel density and a Dirac delta function is used

to develop a density profile from each group using each sample’s concentration

value at that mass. Stronger, generally smoother density profiles are obtained

with greater numbers of different mass scan samples. Typical density profiles

fitted to two datasets are shown in Figure 2.5.

When a mass scan from an unknown sample is obtained, pre-processing is

used to create a vector of concentration values at each of the 141 masses. For

each mass, the probability densities for groups j and k at the concentration of the

unknown sample are compared. Let x0 denote the concentration of the unknown

sample at the given mass, and fj(x0) and fk(x0) denote the probability densities

of groups j and k respectively at the concentration of the unknown sample. This

situation is illustrated in Figure 2.6, where the plot shown would be useful for

classification as given by the minimal overlap of distributions.
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Figure 2.5 Fitting Probability density profiles to raw data

 

Figure 2.6 Probability densities for a given mass

For each mass, Equation (2.1) gives the probability of the given sample being

from Group j, given the concentration value obtained at that mass is x0.

P̂ r(j|x0) =
π̂j f̂j(x0)

π̂kf̂k(x0) + π̂j f̂j(x0)
(2.1)
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where π̂ is the prior probability (prior) of the sample being in that group. When

no information is known about the data, the priors (π̂j, π̂k) are set to 0.5. If the

ratio in Equation (2.1) is greater than a specified threshold, q, then the sample

is classified as being in the numerator group (Group j), otherwise it is classified

as being in Group k.

The log-odds ratio is defined as the natural log of the probability of a group

j classification divided a group k classification, Equation (2.2).

Log − odds Ratio = ln
P̂ r(j|x0)

P̂ r(k|x0)
(2.2)

Equation (2.2) can be broken down into Equation (2.3), where the log-odds ratios

are effectively summed over all masses to result in a final log-odds ratio over all

masses.

ln
P̂ r(j|x0)

P̂ r(k|x0)
= ln

π̂j

π̂k

+
m∑

m=1

ln
f̂j(x0., m)

f̂k(x0., m)
(2.3)

A final log-odds ratio greater than ln[q/(1−q)], where q is the threshold described

above, and indicates the sample is in the numerator group (Group j). Otherwise,

it is in the denominator group (Group k).

2.3.2 Bootstrap Method for Estimating Prediction Error

Once density profiles have been created for the two datasets, the stratified boot-

strap method is used to estimate the prediction error of the classification model.

Bootstrap samples are created by choosing with replacement from the original

sample until a bootstrap sample is created that is the same size as the original

sample [Hastie and Friedman, 2001]. For example, if Group j contained 20 sets of

mass scans, and Group k contained 25 sets of mass scans, each bootstrap sample

would contain 20 Group j scans and 25 Group k scans, with some scans included

more than once, and some completely left out as the sampling was done with

replacement. This process is repeated B times, producing B bootstrap datasets,
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where B is sufficiently large to ensure that all patients (of 45 in the example

above) are left out of at least 1 bootstrap dataset.

The bootstrap estimate of the classification error is defined in Equation (2.4),

Ê(1) =
1

N

N∑
i=1

1

|C−i|
∑

bε|C−i|

I(ŷb(xi) 6= yi) (2.4)

where N is the total number of samples, |C−i| is the number of bootstrap samples

that do not contain sample i, ŷb is the classifier trained on bootstrap sample b,

I(ŷb(xi) 6= yi) equals 1 if sample i is classified incorrectly and 0 otherwise.

The kernel classifier is trained with bootstrap datasets that do not contain

sample i as the training set, and then use sample i as the test set. This process

is repeated for all bootstrap samples that do not contain sample i. The total

of incorrect classifications is summed and divided by the number of bootstrap

samples that did not contain sample i. This overall process is repeated for each

sample. It concludes by averaging the number of incorrect classifications over all

samples, giving Ê(1).

The bootstrap estimate is biased upward as an estimate of the true classifica-

tion error, suffering from training-set-size bias. This limitation is alleviated using

the 0.632 estimator [Hastie and Friedman, 2001], as defined in Equation (2.5),

Ê(0.632) = 0.368ē + 0.632Ê(1) (2.5)

where ē is the biased error, calculated using all the data as the training set, and

testing each sample against this set. The biased error, ē, is biased downward

of the true error because the test data is also found in the training set. Hence,

Equation (2.5) is combination of the upwards biased Ê(1) and the downwards

biased ē.

The overall prediction error should be compared with random classification,
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for which the overall error rate, P ∗, is given by Equation (2.6).

P ∗ = pj(1− π̂j) + (1− pj)π̂j (2.6)

With a prior probability set at 0.5, the overall error rate for a random classifier

is 50%, regardless of group proportions (pj and pk) in the sample.

2.3.3 Reliability

Density profiles of the log-odds ratio obtained from the bootstrap method can

be plotted for each group, and a reliability curve can be generated, as shown in

Equation (2.7) and Figure 2.7,

P̂ r(S = j|λ) =
f̂(λ|S = j)P̂ r(S = j)

f̂(λ|S = j)P̂ r(S = j) + f̂(λ|S = k)P̂ r(S = k)
(2.7)

where P̂ r(S = j|λ) is the probability of the sample, S, being in Group j given the

log-odds ratio, λ; f̂(λ|S = j) is the probability of the log-odds ratio for Group j;

P̂ r(S = j) is the probability that the sample is in group j.

This situation is illustrated in Figure 2.7. A good dataset will have minimal

overlap between the two density profiles because where a significant difference is

detected between sample groups, a large log-odds ratio should always be obtained.

As shown in Figure 2.7, if an unknown sample is classified with a log-odds ratio,

λ, of +200, one can be approximately 100% certain that classification is correct.

This result occurs because at a log-odds ratio of +200, the probability that the

sample is in group k is approximately 0. Therefore, by Equation 2.7, the reliability

reduces to unity, represented here as 100% on the Reliability scale. However, the

log-odds ratio obtained where group j and k profiles overlap (at approximately

-5 in Figure 2.7), has a reliability of 50%, indicating an equally likely probability

of correct as incorrect classification.
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Figure 2.7 Reliability curve showing the reliability of a given classification based on its log-
odds value

2.3.4 Biomarkers

Any sample to be classified, is done so by summing the log-odds ratios at each

mass, to give an overall log-odds ratio. With a classification threshold of 0 for

Equation (2.3), a positive log-odds ratio indicates the sample is in Group j, and a

negative log-odds ratio indicates that the sample is in Group k. The two examples

shown in Figure 2.8 display relatively large log-odds ratios, with each mass’s ratio

generally consistently displaying the same sign (positive or negative). Therefore,

one can be confident of the final classification. Those masses that contribute

large log-odds ratios towards the final classification may be considered as useful

biomarkers.

Biomarkers are found by determining which masses have log-odds density

profiles with minimal overlap. Density profiles are created, as described previ-

ously, for each individual mass. The area of overlap is shaded in the schematic

of Figure 2.9 and is calculated using the Trapezoid Rule. The masses with the

smallest areas of overlap are the best biomarkers.
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Figure 2.8 Piecewise classification, showing the log-odds ratios obtained at each mass that
combine to form the final log-odds ratio used for classification

 

Figure 2.9 Biomarkers schematic with Log-odds ratio

2.4 Results and Discussion

2.4.1 Validation Study: Nitrogen in Tedlar Bags

Using the 0.632 bootstrap estimator method to estimate prediction error, with

B = 500 bootstrap samples, there was 0% classification error over all precursors,

indicating excellent differentiation between sample groups. All results for this

validation study are shown for the H3O
+ precursor only. In addition, concentra-

tions shown were normalised to the sum of the precursor value, as described in

Section 2.2.
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2.4.1.1 Probability Density Profiles

Density profiles including log-odds ratios are shown in Figure 2.10 for a selection

of the biomarkers noted in the next section. Excellent separation was evident

between density profiles for the two groups. Note that the squares indicate the

concentrations of the raw data, and the corresponding curves are the probability

density profiles fitted to that raw data. It is clear in the figure that the raw data

is well separated between the two groups being compared.

 

Figure 2.10 Selected probability density profiles using H3O
+ precursor
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2.4.1.2 Biomarkers

The classification model found that the masses indicated in Table 2.2 were most

useful in aiding towards a correct classification, and they are ranked with the best

biomarker having the smallest overlap between density profiles. Their log-odds

density profiles are shown in Figure 2.11.

Table 2.2 Biomarkers for H3O
+ classification in validation study

Precursor ions Product Explanation Rank
Mass

H3O
+ and its 19, 55, The wet nitrogen group showed much 3, 4,

water clusters 73 higher concentrations at masses 55 5
(and 73), corresponding to the
water clusters of H3O

+.

Isotope of H3O
+ 57 The wet nitrogen group showed 2

and its water higher concentrations at mass 57,
clusters corresponding to the water clusters

of H3O
+, (and lower concentrations

at mass 21, corresponding to the
mass of the H3O

+ isotope (D3O
+)

with no water cluster).

C4H9NO.H+ 88 Due to the solubility of C4H9NO.H+ 7
(product of in water, by venting the nitrogen
N,N-dimethyl through the water bottle, the
acetamide) concentration at mass 88 decreased

dramatically, (and increased at mass
106 - its water cluster).

C6H6O.H+ 95 Due to the solubility of C6H6O.H+ 6
(product of in water, by venting the nitrogen
phenol) through the water bottle, the

concentration at mass 95 decreased
dramatically.

N2H
+.H2O 47 Water cluster of N2H more prevalent 1

when N2 passes through water.
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Figure 2.11 Log-odds density profiles for biomarker selection in validation study

2.4.1.3 Reliability

Density profiles were created from the log-odds values obtained from each boot-

strap sample entry for each of the test groups, with Dry Nitrogen represented

as Group j and Wet Nitrogen represented as Group k. It is observed in Figure
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2.12 that there is excellent separation between the two profiles, with consistently

large log-odds values obtained. The relatively flat gradient of the reliability curve

indicates that if an unknown sample were classified with a small log-odds ratio,

the reliability of correct classification would be relatively low. The model is

highly sensitive and highly specific, with an area under the Receiver Operating

Characteristic (ROC) curve of 0.9998, as shown in Figure 2.13.

 
Figure 2.12 Reliability curve for validation study classification model

 

Figure 2.13 ROC curve for validation study classification model

It should be noted that these ideal results are the expectation for this model

classification validation study. Hence, the results match the expectation set in

designing this test. Thus, the method appears suitable for a more rigorous test.
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2.4.2 Dialysis Proof-Of-Concept Study

Seven repeat mass scans were taken of one dialysis patient over the course of 6

months. These mass scans were taken at time t = 1 hour and t = 4 hours into

dialysis treatment. Mass scans were analysed for key biomarkers that aid in a

classification between the pre and post -dialysis datasets. A sample size of seven

was much smaller than desired, but sufficient to test the classifier concept.

With B = 1000 using the H3O
+ precursor, the overall prediction error was

estimated at 11.2%, with error in classifying pre-dialysis readings contributing

16.7%, error in classifying post-dialysis readings contributing 18.8%, and biased

error contributing 0%. Due to the equal sample sizes in the pre and post dialysis

groups and the zero biased error, the overall estimated prediction error in Equa-

tion (2.5) reduces to 0.632 x average of the pre and post dialysis errors. Using

the NO+ precursor, the overall prediction error was 26.0%, with pre-dialysis,

post-dialysis, and biased errors contributing 19.3%, 46.4%, and 14.3%, respec-

tively. Using the O2
+ precursor, the overall prediction error was 18.2%, with

pre-dialysis, post-dialysis, and biased errors contributing 19.8%, 37.8%, and 0%,

respectively.

2.4.2.1 Probability Density Profiles

Density profiles including log-odds ratios are shown in Figure 2.14 for a selection

of the biomarkers indicated in the following section. It can be seen that the

density profiles were relatively strong for the 4-hour dialysis group (Group j),

because after dialysis treatment, levels of ammonia (masses 18, 36 and 54) and

other VOCs fall to normal levels. Depending on factors such as diet and the length

of time since the last dialysis treatment, VOC levels can vary dramatically prior

to treatment, as seen by the spread of data in the 1-hour dialysis group (Group

k).

Note that the density profiles of the 1 hour data at mass 89 and the 4 hour

data at mass 35 are undistinguishable in the figure. This issue occurs because

all repeat mass scans had the same zero concentration reading for these masses

at those time points, and the density profiles are therefore spikes on the y axis.

Overall, it should be observed that the result is considerably less clean than the
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Nitrogen validation study. Note that all density profiles are shown for the H3O
+

precursor only.

 

Figure 2.14 Probability density profiles obtained using H3O
+ precursor on dialysis concen-

tration data

2.4.2.2 Biomarkers

The classification model found that the masses indicated in Table 2.3 were most

useful in aiding towards a correct classification, and they are ranked accordingly.
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A selection of their log-odds density profiles obtained using the H3O
+ precursor

are shown in Figure 2.15. Note that smoother profiles would be obtained with

a greater sample size than what was available in this limited clinical proof-of-

concept test case.

It is observed that masses relating to ammonia and its water clusters are

most useful in distinguishing between pre- and post- dialysis datasets. This result

is expected since it is well documented that ammonia concentration is seen to

decrease during dialysis treatment [Narasimhan et al., 2001], as further evidenced

by the fact that it is the urea reduction ratio (URR) that is used to measure

dialysis efficacy.

Table 2.3 Biomarkers for classification in Dialysis study

Precursor ions Product Mass Explanation Rank

H3O
+ 18, 36, 54 Ammonia and its water clusters 2, 1, 5

35, 17 Unknown 3, 4
89 Acetaldehyde 6
47 Ethanol 7

NO+ 18, 36 Ammonia 2,3
47 Unknown 1

O2
+ 53 Ammonia, isoprene 1

17, 18, 35, 36, 53, 54 Ammonia and clusters 4,3,6,5,1,2
77, 58 Acetone 7,8

2.4.2.3 Reliability

Density profiles were created from the log-odds values obtained from each boot-

strap sample entry for each of the test groups. Post-dialysis (4 hours) was rep-

resented as Group j and Pre-dialysis (1 hour) was represented as Group k. It is

observed in Figure 2.16 that there was a much greater overlap in the two density

profiles compared with the Nitrogen validation study, and an absolute log-odds

value of approximately 50 must be obtained to classify with 90% certainty in

Figure 2.16. As indicated by the ROC curve in Figure 2.17, the model classified

significantly better than random, with an ROC area of 0.89.
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Figure 2.15 Log-odds density profiles for biomarker selection in the dialysis study
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Figure 2.16 Reliability Curve for Dialysis Study Classification Model

 

Figure 2.17 ROC Curve for Dialysis Study Classification Model

2.5 Experimental Discussion and Conclusions

A method was presented for the classification of unknown samples. This method

was initially validated in a simple study in which saturated nitrogen in tedlar bags

was differentiated from dry nitrogen in tedlar bags. There was a 0% predicted
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estimation error in classification using the bootstrap error prediction method with

500 bootstrap samples. All expected biomarkers were identified, with the most

reliable being N2H
+.H2O, and isotopes and water clusters of H3O

+. In addition,

phenol and N,N-dimethyl acetamide products were found to be present in the

tedlar bags despite flushing, although levels were reduced in saturated nitrogen

samples, presumably related to the solubility of these compounds in water.

Because of the lack of data at low log-odds ratios due to the very distinct sam-

ple groups, the reliability curve showed that log-odds ratios of approximately 50

and 70 were required for 90% reliability in classifying saturated and dry nitrogen

respectively. However, with 500 bootstrap samples, the minimum log-odds ratios

obtained were 70 and 85 for saturated and dry nitrogen respectively. Hence, the

high reliability observed. The area under the ROC curve was found to be an

expected ideal of 1.00, showing that the classification model was highly sensitive

and highly specific in this test case.

After initial validation, the classification model was employed to differentiate

patient breath samples after one and four hours of dialysis treatment, thus esti-

mating or measuring kidney function. The sample size of seven was much smaller

than desired, but sufficient for this first proof-of-concept. Using 1000 bootstrap

samples, estimated prediction errors were found to be 11.2%, 26.0% and 18.2%

for the H3O
+, NO+ and O2

+ precursors, respectively. Density profiles were rela-

tively strong for the 4-hour dialysis group because after dialysis treatment, levels

of ammonia and other VOCs fall to normal levels.

Depending on factors such as diet and the length of time since the last dialysis

treatment, VOC levels can vary dramatically prior to treatment, as observed by

the spread of data in the 1-hour dialysis group. Biomarkers for classification

were ammonia, acetaldehyde, ethanol, isoprene and acetone. An absolute log-

odds value of approximately 50 must be obtained to classify with 90% certainty.

As indicated by the ROC curve, the model classified significantly better than

random, with an ROC area of 0.89.
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2.6 Classification User Interface

A graphical user interface (GUI) was created in MATLAB for use in the classifi-

cation of cross-sectional sample studies in the Syft laboratory. The GUI is shown

in Figure 2.18.

 

Figure 2.18 Cross-sectional Classification User Interface

The GUI consists of 3 parts:

1. Import Data

2. Prediction Error and Biomarkers

3. Unknown Sample
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The Import Data block imports data from a specific layout in an excel spread-

sheet. The mass scan range (usually 10-180amu) must be specified as well as the

step size, which refers to the size mass unit sampled. Options for step size are

0.1 mass unit, 0.2 mass units, or 1 mass unit. However, since the creation of

this interface, mass scans are nearly always performed by sampling every whole

mass unit. The precursor ion is selected, and the user has the option to filter out

the noise, as described in Section 2.2. Lastly, the Data Type is selected, where

Standard refers to a standard cross-sectional classification. The other option is

Longitudinal, for use in paired datasets, such as the before and after situation

in a dialysis trial. Clicking the Import Data button imports and sorts the data,

storing it as a .MAT file.

The Prediction Errors and Biomarkers block does just that: determines the

prediction error when classifying 2 distinct groups, and identifies the key biomark-

ers used in that classification. Probability density profiles can be displayed, as

selected by the user, and these can be selected either by analyte, by mass, or by

top biomarker. For example, the user could decide to see density profiles for all

masses associated with ammonia. Alternatively, they could request to see the

density profiles of the top n biomarkers. The prediction error, ROC curve, and

classification/reliability plot are displayed, if selected by the user.

Unknown Sample allows classification of a single unknown dataset into Group

j or Group k, with a determined reliability. A previously established classification

database is selected, and the log-odds ratio of the unknown sample is determined.

The classification/reliability plot is displayed, hi-lighting the position of the un-

known sample, and quoting the reliability of the classification as a percentage.





Chapter 3

Longitudinal Classification Models and Dialysis

Study I

The cross-sectional classification model described in the previous chapter is ideal

for classifying between two distinct groups: normal and diseased, where the nor-

mal datasets are reasonably similar, and the diseased datasets express a deviation

from that normal state. However, when an analysis is performed on longitudinal

data, such as for the dialysis proof-of-concept in the previous chapter, the paired

nature of the data can be exploited, thus allowing biomarker identification across

patient groups.

When monitoring the progression of a disease state, there is no baseline,

normal starting point (or end-point), and when considering inter-patient popu-

lations, one cannot simply take all the before samples and classify them against

the after samples, because, depending on patient specific variables and degree of

sickness, starting points and responses to treatment can vary dramatically. In

addition, a single patient dataset cannot be considered on its own, because there

is usually insufficient data to perform a statistically rigid classification. Hence,

an appropriate normalisation method is required to allow interpatient biomarker

identification.

This chapter presents a longitudinal classification model, which was validated

on a clinical dialysis study.
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3.1 Paired Classification Model

3.1.1 Normalisation

The mass scan analysis is interested simply in the magnitude of the relative and

absolute change in VOC concentration between two timepoints. Two normalisa-

tion methods were considered for the analysis of mass scan data for biomarker

detection and evaluation. The first method effectively considers a relative change

in VOC concentration. Let Cj refer to the concentration matrix (concentration

values at a series of masses) at the healthier timepoint (post-dialysis group in this

example), and Ck refer to the concentration matrix at the more unwell timepoint

(pre-dialysis group in this example). The data is normalised to twice the average

of the two concentrations, as illustrated in Equation (3.1).

Cj,norm =
Cj

Cj + Ck

Ck,norm =
Ck

Cj + Ck

(3.1)

Hence, the concentration data is bounded between [0 1], with values of Ck,norm

greater than 0.5 representing a decrease in concentration over the course of the

dialysis treatment, and values less than 0.5 representing an increase in concen-

tration. This results occurs, because when Ck,norm is greater than 0.5, Ck must

be greater than Cj, indicating that the analyte concentration decreases from Ck

to Cj, over the course of dialysis treatment.

The second method effectively considers a normalised absolute change in VOC

concentration. This value is measured by shifting the data such that the average

of the two timepoint states is at 0. Thus, if the 2 concentrations were 0.2 and

0.4 at sequential time-points Ck and Cj, these values would be replaced by -0.1

and +0.1. This situation is represented in Equation (3.2).

Cj,norm =
Cj − Ck

2

Ck,norm =
Ck − Cj

2
(3.2)
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Normalising by Equation (3.2) results in data that is bounded between (−∞∞),

since Cj and Ck can have any value, and Cj can be less than or greater than Ck.

Using this method, a value of Ck,norm greater than 0 represents a decrease in

concentration over the course of the dialysis treatment, and a value less than

0 represents an increase in concentration. This results occurs because a posi-

tive Ck,norm indicates that Ck is greater than Cj, such that VOC concentration

decreases from Ck in the predialysis state, to Cj in the postdialysis state.

These two normalisation methods allow all patients’ data to be combined,

thus increasing the sample size for classification, as illustrated by the following

example. Consider the artificially generated data in Table 3.1, where concentra-

tion data is displayed for 3 patients, DS01-DS03. In this example, DS01 and DS02

have 3 repeat dialysis sessions, and DS03 has 1 dialysis session. Rows a and b

display the raw concentration data obtained for a single mass value measured for

all patient sessions. It is observed that one sample (DS02-3) shows an increase in

concentration from Ck to Cj, while the rest show a decrease. Note also, that the

Cj postdialysis concentration for some patients is higher than the Ck predialysis

concentration of other patients (DS01-2 and DS03-1). This example is typical of

the raw data obtained. Rows c and d, show the relative change in concentration,

calculated using Equation (3.1), and rows e and f show the absolute change is

concentration, calculated using Equation (3.2).

Table 3.1 Artificially generated longitudinal concentration data for an individual mass, over
repeat dialysis sessions in 3 patients

Patient DS01 DS02 DS03
Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 Day 1

a Ck 0.6 0.4 0.5 0.2 0.25 0.15 0.9
b Cj 0.25 0.2 0.2 0.1 0.15 0.3 0.5

c Ck,rel 0.705 0.665 0.715 0.665 0.625 0.335 0.645
d Cj,rel 0.295 0.335 0.285 0.335 0.375 0.665 0.355

e Ck,abs 0.175 0.1 0.15 0.05 0.05 -0.075 0.2
f Cj,abs -0.175 -0.1 -0.15 -0.05 -0.05 0.075 -0.2

Using the sets of numbers in Table 3.1, Figure 3.1 is obtained, which demon-

strates classifier performance using both non-normalised and normalised tech-

niques. The left figure displays probability density profiles derived from the 6

raw concentration datapoints in rows a and b. The centre figure displays prob-

ability density profiles derived from the relative normalisation in rows c and d.
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Lastly, the right figure displays probability density profiles derived from the ab-

solute normalisation data in rows e and f . It is observed that more meaningful

results, with greater separation of density profiles between states, can be obtained

with a carefully chosen normalisation method. Probability density profiles such

as that shown in Figure 3.1, left, are not useful for classification or biomarker

detection, since the profiles in the pre and post dialysis states overlap signifi-

cantly. However, the density profiles shown in Figure 3.1 centre and right, show

much better separation and can therefore be much more useful in classification

and biomarker identification. 

Figure 3.1 Normalisation Illustration: Left-no normalisation; Centre-Relative normalisation,
Equation (3.1); Right-Absolute normalisation, Equation (3.2)

Top biomarkers can be identified using the classification method described in

Chapter 2 and [Moorhead et al., 2008], with groups Cj,norm and Ck,norm, where

the best biomarkers are those with minimal log-odds density overlap profiles.

Classification can be performed using all masses, or using only a selection of

masses as biomarkers, thus providing a measure of the sensitivity and specificity

for a particular biomarker or group. For example, it is known that masses 18, 36

and 54 found using the H3O
+ precursor relate to ammonia. Thus, the classifier

model can be run using just those 3 masses to determine the sensitivity and

specificity of ammonia as a biomarker for this particular disease progression or

to monitor dialysis treatment.

3.1.2 Visualisation of Results

To obtain a result that allows easier and more visual identification of biomark-

ers, a variation to the method presented in Section 3.1.1 is presented, in which

biomarkers are displayed visually on an image plot using the difference between
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the group datasets. A relative change in analyte concentration, ∆rel, is described

by Equation (3.3).

∆rel =
Cj − Ck

max(Cj, Ck)
(3.3)

Note in Equation (3.3), that an increase in concentration over treatment from

Ck to Cj results in a ∆rel value that is equal and opposite to the ∆rel value

obtained for the reciprocal decrease in concentration. The absolute change in

analyte concentration, ∆abs, is defined:

∆abs = Cj − Ck (3.4)

Density profiles are created from the means of successful bootstrap samples

using ∆rel and ∆abs, and are combined into an image plot. A typical image

plot is shown in Figure 3.2. Because the distribution of the mean is the same as

the distribution of the raw data [Hastie and Friedman, 2001], the density profiles

can be created from the means, making key biomarkers more identifiable in the

image plot.
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Figure 3.2 Typical image plot highlighting top biomarker masses by probability density
profiles created from the mean to standard deviation ratio of subsequent bootstrap datasets.
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For comparison, the best biomarkers are those with the highest mean to stan-

dard deviation ratio. In an image plot, these good biomarkers are recognised as

those masses with a narrow distribution centered far from the increase/decrease

interface. A distribution profile that crosses the increase/decrease interface indi-

cates that sometimes the concentration of that mass is seen to increase and other

times to decrease, which is not useful in a biomarker.

3.2 Introduction to Dialysis

When renal function is impaired, the kidneys lose the ability to effectively filter

and excrete wastes. Hence, salts, water and metabolic wastes accumulate in the

blood. The management of chronic renal failure typically involves restricting

water, salt and dietary protein intake to reduce the strain on the urinary system

by reducing the volume of urine produced and the generation of nitrogenous

wastes. Acidosis is commonly encountered with renal failure and can be countered

in mild cases with bicarbonate ingestion to restore acid/base homeostasis.

However, if chronic renal failure can not be controlled by diet or drugs, the

blood must be artificially filtered using a dialysis machine to regulate the compo-

sition of the blood. In haemodialysis, a patient’s blood flows through an artificial

dialysis chamber consisting of a dialysis fluid separated from the blood by a

semipermeable membrane. This membrane contains pores large enough to allow

the diffusion of ions, but small enough to prevent plasma proteins escaping. The

cleansed blood, is then returned to the body. The composition of the dialysis fluid

is extremely important, and can be modified for each patient. The concentration

of phosphate ions, sulphate ions, urea, creatinine and uric acid must be lower in

the dialysis fluid to allow these substances to diffuse out of the blood. Similarly,

the concentrations of bicarbonate ions and glucose must be higher in the dialysis

fluid so that they can diffuse into the blood. The concentrations of all other

electrolytes must remain the same between the dialysis fluid and blood. Dialysis

can also adjust the patient’s blood volume, by altering the osmotic pressure of

the dialysis fluid, ie the water concentration. Figure 3.3 shows a circuit diagram

for the dialysis system [Martini, 2006].
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Figure 3.3 Dialysis circuit diagram illustrating external filtering of wastes from the blood in
patients with renal failure Martini [2006]

Dialysis treatment can maintain patients suffering from a temporary kidney

dysfunction, or those patients awaiting a kidney transplant. However, there are

risks and drawbacks associated with this treatment:

• Typically 3-4 dialysis sessions are required per week, each lasting up to 5

hours;

• Hypotension can result due to fluid loss during dialysis;

• There is an increased risk of exposure to blood borne infections;

• There is a risk of embolism if air bubbles in the tubing get into the body.

Dialysis efficacy is most simply measured by the Urea Reduction Ratio (URR),

which is a measure of the relative change in Blood Urea Nitrogen (BUN) over the

course of the dialysis treatment. BUN decreases over the course of dialysis, as

urea diffuses out of the blood and into the dialysis fluid. To calculate the URR,
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blood samples must be taken and sent to the laboratory for analysis. As such,

results cannot be provided quickly enough or sufficiently frequently to define indi-

vidual responses to treatment or spontaneous clinical changes [Narasimhan et al.,

2001].

SIFT-MS can offer potential benefits in dialysis treatment via the ability to

measure dialysis efficiency non-invasively, and in real time, with a simple breath

test to determine the reduction ratio of key analytes. By observing specific patient

trends, one can determine the timing of the next required dialysis treatment, and

thus avoid secondary organ failure due to delayed treatment. SIFT-MS can also

be used to calculate the optimal time for dialysis treatment, to minimise patient

time and maximise machine availability for others. Lastly, SIFT-MS can be used

to identify key markers of renal function, as dialysis treatment effectively takes a

patient from a sick to a healthy state over a few hours.

Several others have attempted to correlate breath markers with kidney func-

tion via a variety of techniques, with mixed results. [Handelman et al., 2003]

measured breath ethane in patients undergoing peritoneal and haemodialysis via

Gas Chromatography Mass Spectrometry (GC-MS). They reported that breath

ethane was not was not altered by a single dialysis session. [Capodicasa et al.,

1999] also found that ethane was not altered during dialysis, and also reported no

change in propane, butane, and pentane. However, they did report an increase in

breath isoprene, a finding repeated by [Davies et al., 2001], who used SIFT-MS

to demonstrate elevated breath isoprene concentrations in predialysis patients

compared to normal controls. Isoprene was then found to increase further during

dialysis, with statistical significance.

[Davies et al., 1997] and [Narasimhan et al., 2001] analysed breath ammo-

nia in patients with a renal impairment. [Davies et al., 1997] reported that

breath ammonia, as measured by SIFT-MS is substantially elevated in uremia.

[Narasimhan et al., 2001] attempted to correlate reduction in breath ammonia

with the reduction in BUN and Creatinine using laser spectroscopy. Good corre-

lation was observed, but inter-patient results varied substantially. Lastly, [Bain

et al., 2006] monitored TMA and TMNO in patients with end-stage renal dis-

ease undergoing haemodialysis, and found that TMA and TMNO accumulate

between dialysis sessions but are efficiently reduced to normal levels during a

single haemodialysis session.
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3.3 Dialysis Clinical Study Design

A clinical study was designed to monitor the change in key breath analytes as

measured by SIFT-MS over the course of dialysis treatment, and correlate these

changes with the simplest gold standard for dialysis efficacy, the URR, and the

current gold standard for kidney function, the plasma creatinine concentration. In

addition, mass scans were performed on the breath samples in order to determine

possible new biomarkers of kidney function in comparison to these gold standards.

Key analytes monitored in SIM scan mode were ammonia, TMA and acetone.

Ammonia is mostly formed from the catabolism of proteins. Ingested and cellular

proteins are hydrolysed to form a pool of amino acids. Any amino acids not

used in protein production are catabolised to ammonia, which is either excreted,

or converted to urea via the Urea Cycle in the liver. When renal function is

compromised, blood ammonia increases.

Acetone is formed in the liver by decarboxylation of excess acetyl-CoA. It is

derived from acetoacetate, a product of lipid peroxidation. Lipid peroxidation

occurs when the body uses fats instead of sugars for energy. Hence, acetone

increases when fasting or suffering uncontrolled diabetes mellitus when the body

cannot ulitise glucose. Acetone is excreted in the urine as a ketone body. In

chronic kidney disease, acetone cannot be excreted and its concentration in the

blood increases.

TMA is a nitrogenous base, normally produced by gut bacteria and oxidised

in the liver to produce TMNO, which is excreted in the urine [Tjoa and Fennessey,

1991]. Elevated TMA can therefore be due to increased bacterial proliferation in

the gut, or to lack of excretion. Thus, TMA may serve, if it can be measured

accurately enough in breath, as a useful marker of kidney function.

This study was carried out in two parts over two years, with Study I carried

out on the older V oice100TM SIFT-MS instrument. Advances in the SIFT-MS

instrument lead to the development of the smaller, quieter, portable V oice200 R©

SIFT-MS instrument, which was used in Study II. The remainder of this chapter

describes the initial study, and chapter 4 presents the improved methodology and

results from the second dialysis study.
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Patients from the acute haemodialysis unit of Christchurch Hospital were

recruited to this clinical study, as approved by the Upper South B Regional

Ethics Committee (URB/05/12/178). All dialysis sessions commenced between

8 and 9 am, and were 5 hours in duration. The goal was to obtain datasets from

5 dialysis sessions for each patient, however due to the volatility of the study

population, many patients were lost to the study due to:

• Renal transplantation

• Intercurrent illness

• Changing from haemodialysis to peritoneal dialysis

• Home dialysis training

• Death

• Loss of vascular access

The exclusion criteria for these studies were:

• Critically unstable patients

• Patients with inconsistent vascular access

• Patients still adjusting to haemodialysis

• Patients unlikely to be available for 5 sessions (criterium added part-way

through clinical trial)

• Patients who did not consent

The relative change biomarker identification method (∆rel and Equation

(3.3)) was considered the most appropriate technique for the identification of

biomarkers. This method allowed identification of significant changes in VOC

concentrations that occurred at high, as well as low, concentrations detectable by

SIFT-MS. This choice was considered reasonable since dialysis efficiency is usually

determined by the Urea Reduction Ratio (URR), which is effectively a relative

change. Mass scans results are shown using the relative change biomarker iden-

tification method (Equation (3.3)), the classification method on the normalised
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data, (Equation (3.1)), and the classification method on the raw data. All these

approaches are shown for comparison and completeness in evaluating their met-

rics.

3.3.1 Dialysis Study I Methodology

Table 3.2 shows those patients recruited to the study. The study population was

made up of males and females of mixed ethnicity, mixed age (26-78 years), mixed

cause of end stage renal failure, and mixed comorbidities. All patients had been

undergoing haemodialysis treatment for between 6 months and 2 years.

Table 3.2 Dialysis Study I Sample Population

Study Gender Age Ethnicity Years since # completed
ID commencing dialysis

dialysis sessions

DS101 Male 50 NZ European 0.5 5
DS102 Female 45 NZ European 1 6
DS103 Male 78 NZ European 0.5 1
DS104 Male 48 NZ European 0.5 1
DS105 Male 69 NZ European 0.5 1

DS106 Male 67 NZ Maori 2 1
DS107 Male 52 NZ Maori 1 1
DS108 Male 28 Chinese 0.5 1
DS109 Male 39 NZ European 0.5 1
DS110 Female 26 NZ Maori 0.5 1

DS111 Male 77 NZ European 0.5 4
DS113 Male 37 NZ European 0.5 5
DS114 Male 73 NZ European 0.5 5
DS115 Male 43 NZ Maori 0.5 5

Prior to dialysis, 30mins post-dialysis, and at hourly intervals during dial-

ysis, patients filled a 1L tedlar bag with as few breaths as required. Each bag

was delivered to the V oice100TM for mass scan and SIM scan analysis within 5

minutes of being inflated. For comparison, blood specimens were collected for

creatinine and BUN analysis prior to commencing dialysis and at the completion

of the treatment.

SIM scans monitored the concentration of ammonia, acetone and TMA over



50CHAPTER 3 LONGITUDINAL CLASSIFICATION MODELS AND DIALYSIS STUDY I

the course of treatment, with the concentration of each sample determined as the

average concentration in the bag as recorded over a 30 second sampling time. In

the mass scan mode, masses 10-150 were monitored at every 0.2 of a mass unit,

requiring filtering to extract the concentration at each integer value, as described

in Section 2.1.

3.4 Dialysis Study I Results

3.4.1 SIM Scans

SIM scan results monitoring concentrations of ammonia, acetone and TMA for

patients with repeat dialysis sessions (DS101, DS102, DS111 and DS113-DS115)

are shown in Figures 3.4 to 3.9.
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Figure 3.4 DS101 SIM Scan
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Figure 3.5 DS102 SIM Scan
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Figure 3.6 DS111 SIM Scan
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Figure 3.7 DS113 SIM Scan
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Figure 3.8 DS114 SIM Scan
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Figure 3.9 DS115 SIM Scan

Three patterns were observed with the ammonia concentration time profiles:

1. Exponential decline, as best described by DS115

2. Increase until 1 hour followed by progressive decline, best described by

DS102

3. Oscillatory pattern, best described by DS114

It is postulated that patients who have a low starting ammonia concentration

tend to oscillate and finish low because they are near their equilibrium concen-

tration. Patients that have a high starting concentration have more ammonia to

clear from the blood and thus will have a high ammonia reduction ratio (ARR).

The reason for the rise in ammonia concentration in DS102 is unclear. These

intra-patient differences observed between sessions could be due to diet, and

time since the last dialysis session. For example, ammonia concentrations are

usually higher on Mondays when no dialysis sessions have been performed over

the weekend. Similarly, a high-protein meal prior to dialysis can raise the starting

concentration.

Acetone appeared to decrease during dialysis for most patients, with DS114

being the exception. Acetone tends to increase as the time since the last meal

increases. However, in this study it was not recorded which patients were eating

during treatment. This shortfall was remedied in Study II.

TMA concentration appeared to be extremely variable both between dialysis
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sessions and between patients, although the general pattern was a steady increase.

However, this result could be due to sampling error introduced particularly at

low concentrations.

The correlations of breath ammonia, TMA and acetone are shown in Table

3.3. It was observed that only 2 datasets showed statistically significant correla-

tion. Absolute change in breath ammonia was correlated with absolute change in

BUN with a p-value of 0.027. Absolute change in breath acetone was negatively

correlated with absolute change in BUN, with a p-value of 0.009.

Table 3.3 Dialysis Study I Correlation

Creatinine Ammonia TMA Acetone

BUN Relative 0.9346* 0.0963 0.2521 0.0554
Absolute 0.5281** 0.4250† 0.1477 -0.4954‡

Creatinine Relative 1.0000 0.1312 0.2414 0.0884
Absolute 1.0000 0.3052 -0.1145 -0.3187

∗ p<<0.001 ∗∗ p< 0.005 † p<0.03 ‡ p<0.01

It is postulated that creatinine and BUN have different re-equilibration dy-

namics at the completion of dialysis to ammonia measured in breath. Thus, a

blood sample taken while the patient was still connected to the dialysis machine

would have been a more appropriate comparison. In addition, hourly sampling

appeared to be insufficient to define patients trends. Hence, 30 minute sampling

was introduced in Study II.

3.4.2 Mass Scans

Mass scan analysis was performed on all bagged breath samples. However, re-

sults here compare the concentrations between the predialysis state and the last

measurement whilst on dialysis, referred to here as the postdialysis state. These

states would correlate to state k and j, in Section 3.1, respectively. Mass scans

results are shown using the classification method on the raw data (Chapter 2), the

classification method on the normalised data, (Equation (3.1)), and the relative

change biomarker identification method (Equation (3.3)), for comparison.

Top biomarkers identified using each method and each precursor are shown
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in Table 3.4, where top biomarkers with the classification method have minimal

overlap between log-odds density profiles and thus a low score. In contrast,

top biomarkers with the biomarker identification method have a high mean to

standard deviation ratio, and thus a high score.

Table 3.4 Dialysis Study I Top Biomarkers

Classification Method Biomarker ID
Raw Data Relative Data Method

Mass Score Mass Score Mass Score

H3O
+ 18 0.4709 36 0.0866 36 16.92

Precursor 36 0.4710 18 0.1055 18 16.65
17 0.5023 54 0.2785 54 8.31
54 0.5268 59 0.4289 17 6.27
35 0.5278 77 0.4415 78 5.85

NO+ 36 0.5016 18 0.2126 18 10.07
Precursor 18 0.5215 36 0.3848 36 6.87

47 0.5500 88 0.4919 47 5.04
77 0.6290 47 0.5400 88 4.48
59 0.7034 63 0.5698 63 3.40

O2
+ 17 0.4305 17 0.1259 17 15.57

Precursor 35 0.5786 36 0.1463 54 13.83
53 0.5840 54 0.1580 36 11.49
54 0.6019 53 0.1662 35 10.07
18 0.6088 35 0.1672 53 9.41

3.4.2.1 H3O
+

Using the H3O
+ precursor, Figure 3.10 was obtained from classification from the

raw data. A 18.58% classification error and a ROC area of 0.781 was observed

with a bootstrap sample size of 200.

The overlap of log-odds density profiles occured largely because the method

does not take into account the paired nature of the data. When the relative

change method was employed (Equation (3.1)), Figure 3.11 was obtained, with a
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Figure 3.10 Classification on raw data over all masses with the H3O
+ precursor, as deter-

mined by Equation (2.3)

2.04% classification error and a 0.994 ROC area with a bootstrap sample size of

200.
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Figure 3.11 Classification on normalised data over all masses (Equation (3.1) with the H3O
+

precursor, as determined by Equation (2.3)

Using the biomarker identification method, which displays the density profiles

of the means of 200 bootstrap samples (Equation (3.3)), Figure 3.12 was obtained.

The top 3 biomarkers corresponding to ammonia and its water clusters are shown

in Figures 3.13-3.15. The left plot shows the density profile of the raw data. The

centre plot shows the density profile of the normalised data. The right plot shows

the density profile of the log-odds ratio of the normalised data. The reaction with

H3O
+ proceeds as shown in Equation (3.5) for masses 18, 36 and 54.
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Figure 3.12 Biomarker identification in Dialysis Study I with the H3O
+ precursor

NH3 + H3O
+ → NH3 ·H+ (m/z 18) + H2O

NH3 ·H+ + H2O → NH3 ·H+ ·H2O (m/z 36)

NH3 ·H+ ·H2O + H2O → NH3 ·H+ · 2H2O (m/z 54) (3.5)

0 0.02 0.04 0.06 0.08
0

50

100

150

200

250

300

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 

0 0.5 1 1.5 2
−6

−4

−2

0

2

4

6

Normalised Concentration

 

 
logodds
Postdialysis
Predialysis

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

Logodds Ratio

 

 
AOL=0.1055

Figure 3.13 Probability density profiles for Mass 18 obtained via raw and normalised, pre
and post dialysis datasets. Log-odds probability density profile for identification of biomarkers
is shown, right with Area of Overlap (AOL) indicating the degree of overlap of the density
profiles.
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Figure 3.14 Probability density profiles for Mass 36 obtained from raw and normalised, pre
and post dialysis datasets.
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Figure 3.15 Probability density profiles for Mass 54 obtained from raw and normalised, pre
and post dialysis datasets.

3.4.2.2 NO+

Using the NO+ precursor, Figure 3.16 was obtained from classification off raw

data. A 19.72% classification error and a ROC area of 0.791 was observed with

a bootstrap sample size of 200.

Again, an improvement was observed when classification was carried out on

the normalised data, as seen in Figure 3.17, where the classification error was

9.82% and the ROC area was 0.940 with a bootstrap sample size of 200. Using

the biomarker identification method which displays the density profiles of the

means of 200 bootstrap samples (Equation (3.3)), Figure 3.18 was obtained.
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Figure 3.16 Classification on raw data over all masses with the NO+ precursor, as deter-
mined by Equation (2.3)
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Figure 3.17 Classification on normalised data over all masses (Equation (3.1) with the NO+

precursor, as determined by Equation (2.3)

It is observed in Figure 3.18 that no biomarkers stand out in the image plot.

This result was expected, since ammonia, the only biomarker to stand out in

this study, cannot be detected with the NO+ precursor. This result was further

highlighted by the relatively larger overlap in density profile in Figure 3.17, and

the higher classification error of 9.82%, even when normalisation was used.
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Figure 3.18 Biomarker identification in Dialysis Study I with the NO+ precursor

3.4.2.3 O2
+

Using the O2
+ precursor, Figures 3.19 and 3.20 were obtained from classification

from the raw and normalised data, respectively. Using a bootstrap sample size

of 200 in both cases, a 24.79% classification error and 0.651 ROC area, and a

2.67% classification error and a 0.992 ROC area were observed from the raw and

normalised data, respectively. Using the biomarker identification method, which

displays the density profiles of the means of 200 bootstrap samples (Equation

(3.3)), Figure 3.21 was obtained.

The top 3 biomarkers correspond to ammonia and its water clusters, and

are shown in Figures 3.22-3.27. The reaction with O2
+ proceeds as shown in

Equations (3.6) and (3.7), resulting in the observed peaks at 17, 18, 35, 36, 53

and 54 amu.

NH3 + O+
2 → NH+

3 (m/z 17) + O2

NH+
3 + H2O → NH+

3 ·H2O (m/z 35)

NH+
3 ·H2O + H2O → NH+

3 · 2H2O (m/z 53) (3.6)
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Figure 3.19 Classification on raw data over all masses with the O2
+ precursor, as determined

by Equation (2.3)
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Figure 3.20 Classification on normalised data over all masses (Equation (3.1) with the O2
+

precursor, as determined by Equation (2.3)

O2
+ + H2O → H2O

+ + O2 ⇒ H2O
+ + H2O → H3O

+ + OH

NH3 + H3O
+ → NH3 ·H+ (m/z 18) + H2O

NH3 ·H+ + H2O → NH3 ·H+ ·H2O (m/z 36)

NH3 ·H+ ·H2O + H2O → NH3 ·H+ · 2H2O (m/z 54) (3.7)
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Figure 3.21 Biomarker identification in Dialysis Study I with the O2
+ precursor
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Figure 3.22 Probability density profiles for Mass 17 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 3.23 Probability density profiles for Mass 18 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 3.24 Probability density profiles for Mass 35 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 3.25 Mass Probability density profiles for Mass 36 obtained from raw and normalised,
pre and post dialysis datasets using the O2

+ precursor.
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Figure 3.26 Mass Probability density profiles for Mass 53 obtained from raw and normalised,
pre and post dialysis datasets using the O2

+ precursor.
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Figure 3.27 Mass Probability density profiles for Mass 54 obtained from raw and normalised,
pre and post dialysis datasets using the O2

+ precursor.

3.5 Summary

A method was presented for biomarker identification using longitudinal classifica-

tion models. The model exploits the paired nature of the data by normalisation

to a relative change of the time course of the treatment. Ethics approval was

obtained to carry out a clinical trial, which was carried out in two parts, the first

of which was presented in this chapter.

The clinical trial monitored the change in ammonia, TMA and acetone as

measured by SIFT-MS over the course of dialysis treatment. In renal failure, the

kidney fails to effectively excrete metabolic wastes and hence these accumulate in

the blood, and can be measured in the breath. The relative and absolute changes

in analyte concentration were compared with the changes in BUN and creatinine,

the gold standards of kidney function.

Mass scan analysis was performed on breath samples collected in tedlar bags,

for the purpose of detecting biomarkers of kidney function revealed when com-

paring the predialysis and postdialysis breath samples. Since dialysis efficacy is

reported as the URR, a reduction ratio, mass scan analysis was performed using

the relative change in states between the beginning and end of dialysis treatment.

The only key biomarker identified was ammonia, with a log-odds density profile

overlap of 0.0866 and a biomarker score of 16.92, as measured with the H3O
+

precursor. Estimated prediction errors ranged from 2-10% over the 3 precursors.





Chapter 4

Dialysis Study II

Advances in the SIFT-MS instrument led to the development of the smaller,

quieter, portable V oice200 R© SIFT-MS instrument, which was used in Dialysis

Study II. This portability meant that the SIFT-MS instrument could be taken to

the home dialysis training unit, allowing direct breath sampling in the SIM scan

mode. Because this trial was carried out in the home dialysis training unit, a more

stable patient cohort was ensured. Lastly, more frequent breath monitoring was

carried out, to allow better determination of patient trends. Exclusion criteria

were the same in Study II as for Study I.

4.0.1 Dialysis Study II Methodology

The introduction of the V oice200 R© SIFT-MS instrument allowed direct breath

sampling for SIM scan analysis during dialysis treatment. With the use of a

mouth piece and biological filter, the patient could breath directly into the ma-

chine, making collection into tedlar bags unnecessary. However, direct breath

sampling for mass scan analysis was not possible and thus tedlar bags were still

required in this instance. The patient cohort is described in Table 4.1.

Breath samples for mass scan analysis were collected into tedlar bags prior to

dialysis, at hourly intervals during dialysis and 30 minutes after the completion of

dialysis. The V oice200 R© instrument analysed samples at 1.0 integer mass units

from mass 15-200. SIM scan analysis was performed on direct breath samples

collected every 30 minutes during dialysis, as well as prior and 30 minutes after.

Blood samples were analysed for creatinine and BUN before and after treatment,

as previously.
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Table 4.1 Dialysis Study II Sample Population

Study Gender Age Ethnicity Months since # completed
ID commencing dialysis

dialysis sessions

DS201 Female 54 NZ European 4 4
DS202 Male 39 NZ European 4 3
DS203 Male 53 NZ European 59 5
DS204 Male 75 European 8 3
DS205 Male 73 NZ European 1 3

4.1 Dialysis Study II Results

4.1.1 SIM Scans

SIM scan results monitoring concentrations of ammonia, acetone and TMA for

patients DS201-DS205 are shown in Figures 4.1 to 4.5.
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Figure 4.1 DS201 SIM Scan

It was observed that there were different patterns of behaviour between pa-

tients, which was largely dependent on the starting analyte concentration. For

ammonia, these starting values ranged from 600 to 17000ppb. Higher starting

concentrations generally occurred on days when there was a longer time since

the previous dialysis session, as expected. Starting concentrations higher than

5000ppb, such as patients DS201-DS203, displayed an exponential decline with a

bouncing ball effect part way through treatment as the concentration rose slightly.
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Figure 4.2 DS202 SIM Scan
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Figure 4.3 DS203 SIM Scan
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Figure 4.4 DS204 SIM Scan
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Figure 4.5 DS205 SIM Scan

At initial concentrations lower than 1000ppb, such as in patients DS204 and

DS205, and the next day sessions of DS203, an oscillatory pattern was observed,

where the average ammonia concentration did not change significantly over treat-

ment. DS202 displayed a profile in at least one session whereby the ammonia

concentration was seen to rise for the first 30-60 minutes after the onset of treat-

ment and to subsequently fall to a lower concentration, a pattern that was also

observed in Study I, for patient DS102.

Starting concentrations of acetone ranged from 450 to 1700ppb. Again, most

patients showed a decline over the course of treatment, although the relative

size of the decline varied between patients. Several patients had an increase

in concentration in the sample 30 minutes after the completion of dialysis, as

re-equilibration occurred.

TMA appeared to be the most repeatable measure over subsequent dialysis

sessions, with starting concentrations varying from 100 to 1000ppb. In addi-

tion, equilibrium concentrations were relatively constant for each patient, with

no intra-dialysis rises. Correlation results are shown in Table 4.2.

Table 4.2 Dialysis Study II Correlation of breath ammonia, TMA and acetone with gold
standard BUN and Creatine values

Creatinine Ammonia TMA Acetone

BUN Relative 0.8760* 0.5755† 0.6581** 0.3352
Absolute 0.7378* 0.8046* 0.2792 -0.0633

Creatinine Relative 1.0000 0.6758** 0.5302† 0.3086
Absolute 1.0000 0.4978† -0.1313 -0.2285

∗ p<<0.001 ∗∗ p< 0.005 † p<0.05
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The reduction ratios of breath ammonia and TMA correlated, statistically

significantly, with the reduction ratios of BUN and creatinine. In addition, the

absolute decrease in breath ammonia correlated significantly with the absolute

decrease in BUN and creatinine. The correlation with these results was much

greater than in Study I. This improvement could be due to the use of direct

breath measurements rather than those collected in tedlar bags, greater accuracy

of the V oice200 R© over the V oice100TM , improved sampling techniques, or a

more stable patient cohort due to the patients being in home dialysis training

rather than the acute unit.

4.1.2 Mass Scans

Mass scan analysis was performed on all bagged breath samples, but results here

compare the concentrations between the predialysis state and the last measure-

ment whilst on dialysis, referred to here as the postdialysis state. These 2 states

are thus the k and j states, respectively, from Section 3.1. Mass scans results are

shown using the classification method on the raw data (Chapter 2), the classifi-

cation method on the normalised data, (Equation (3.1)), and the relative change

biomarker identification method (Equation (3.3)), for comparison.

4.1.2.1 H3O
+

Using the H3O
+ precursor, Figure 4.6 was obtained from classification off raw

data. A 9.9% classification error and a ROC area of 0.936 was observed with a

bootstrap sample size of 200.

The overlap of log-odds density profiles occurred largely because the method

does not take into account the paired nature of the data. When the relative

change method was employed (Equation (3.1)), Figure 4.7 was obtained, with a

0% classification error and a 0.999 ROC area with a bootstrap sample size of 200.

Using the biomarker identification method, which displays the density profiles

of the means of 200 bootstrap samples, (Equation (3.3)), Figure 4.8 was obtained.
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Figure 4.6 Classification from raw data over all masses using the H3O
+ precursor
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Figure 4.7 Classification from normalised data over all masses using the H3O
+ precursor
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Figure 4.8 Biomarker identification using the H3O
+ precursor
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A summary of the top biomarkers identified using each method is shown

in Table 4.3, with their respective scores. Using the classification method, top

biomarkers have minimal overlap between log-odds density profiles and thus a

low score. Using the biomarker identification method, top biomarkers have a

high mean to standard deviation ratio, and thus a high score.

Table 4.3 Dialysis Study II Top Biomarkers with H3O
+ precursor

Classification Method Biomarker ID
Raw Data Relative Data Method

Mass Score Mass Score Mass Score

80 0.0950 78 0.0000 97 27.67
62 0.1173 121 0.0000 79 23.59
97 0.1199 118 0.0001 80 23.41
43 0.1329 58 0.0011 61 21.51
44 0.1498 100 0.0014 62 19.79

98 0.1500 79 0.0037 100 18.58
61 0.1641 61 0.0041 43 17.52
79 0.2038 77 0.0054 98 17.42
121 0.2186 119 0.0093 44 15.10
152 0.2411 80 0.0127 119 14.35

Although the order of top biomarkers varied between methods, the same top

biomarkers appeared. Several of the markers appeared with attached additive

multiples of 18, suggesting the presence of water clusters. For example, masses

61, 79, and 97 appeared as top biomarkers corresponding to acetic acid, as shown

in Equation (4.1).

CH3COOH + H3O
+ → CH3COOH ·H+ (m/z 61) + H2O

CH3COOH ·H+ + H2O → CH3COOH ·H+ ·H2O (m/z 79)

CH3COOH ·H+ ·H2O + H2O → CH3COOH ·H+ · 2H2O (m/z 97)

CH3COOH ·H+ + CH3COOH → 2(CH3COOH) ·H+ (m/z 121) (4.1)

A similar trend was observed with masses 44, 62, 80 and 98, however it is not

known which compound this relates to. Masses 58, 60, and 78 all refer to TMA,

and the reaction proceeds as shown in Equations (4.2) and (4.3).
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(CH3)3N + H3O
+ → (CH3)3NH+ (m/z 60) + H2O

(CH3)3NH+ + H2O → (CH3)3NH+ ·H2O (m/z 78) (4.2)

(CH3)3NH+ → C3H8N
+ (m/z 58) + 2H+ (4.3)

Figures 4.9-4.19 show the density profiles of the top biomarkers. The left

plot shows the density profile of the raw data. The centre plot shows the density

profile of the normalised data. Finally, the right plot shows the density profile of

the log-odds ratio of the normalised data.
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Figure 4.9 Probability density profiles for Mass 43 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor. Log-odds probability density profile for
identification of biomarkers is shown, right.
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Figure 4.10 Probability density profiles for Mass 44 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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Figure 4.11 Probability density profiles for Mass 58 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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Figure 4.12 Probability density profiles for Mass 61 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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Figure 4.13 Probability density profiles for Mass 62 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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Figure 4.14 Probability density profiles for Mass 78 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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Figure 4.15 Probability density profiles for Mass 79 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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Figure 4.16 Probability density profiles for Mass 80 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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Figure 4.17 Probability density profiles for Mass 97 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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Figure 4.18 Probability density profiles for Mass 118 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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Figure 4.19 Probability density profiles for Mass 121 obtained via raw and normalised, pre
and post dialysis datasets with the H3O

+ precursor.
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It is noted in Figures 4.9-4.19 that probability density profiles created from

the raw concentration data did not display good separation between pre and post

dialysis states. However, the centre figures show that this limitation was greatly

alleviated by adoption of the relative change normalisation technique from Section

3.1. The right figures then show that the classification model could indeed easily

distinguish between the pre and post dialysis states, as observed by the very low

AOL of probability density profiles.

4.1.2.2 NO+

Using the NO+ precursor, Figure 4.20 was obtained from classification of the raw

data. A 20.0% classification error and a ROC area of 0.797 was observed with a

bootstrap sample size of 200.
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Figure 4.20 Classification on raw data over all masses with the NO+ precursor, as deter-
mined by Equation (2.3)

When the relative change method was employed (Equation (3.1)), Figure 4.21

was obtained, with a 0% classification error and a 0.999 ROC area with a boot-

strap sample size of 200. Using the biomarker identification method (Equation

(3.3)), Figure 4.22 was obtained.

A summary of the top biomarkers identified using each method for the NO+

precursor is shown in Table 4.4, with their respective scores.
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Figure 4.21 Classification on normalised data over all masses (Equation (3.1) with the NO+

precursor, as determined by Equation (2.3)
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Figure 4.22 Biomarker identification in Dialysis Study II with the NO+ precursor

Masses 59 and 77 are products of the reaction with TMA, masses 60 and 78

are products of the reaction with acetic acid, and mass 88 arises from the reaction

with acetone. The origin of mass 61 is unknown. However, masses 79 and 97 are

mass 61 associated with water clusters.

Figures 4.23- 4.32 show the density profiles of the top biomakers. Left, density

profile of the raw data; centre, density profile of the relative data; right, density

profile of the log-odds ratio of the relative data.
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Table 4.4 Dialysis Study II Top Biomarkers with NO+ precursor

Classification Method Biomarker ID
Raw Data Relative Data Method

Mass Score Mass Score Mass Score

60 0.1103 89 0.0000 77 26.82
59 0.1149 152 0.0000 59 26.47
78 0.1616 79 0.0000 60 25.28
77 0.2085 61 0.0001 78 21.10
80 0.3004 72 0.0012 88 19.86

61 0.3058 77 0.0035 61 19.00
79 0.3223 78 0.0046 89 18.97
151 0.3248 88 0.0069 58 16.79
121 0.3723 58 0.0103 79 16.31
97 0.3906 154 0.0111 154 13.39
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Figure 4.23 Probability density profiles for Mass 59 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.
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Figure 4.24 Probability density profiles for Mass 60 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.
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Figure 4.25 Probability density profiles for Mass 61 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.
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Figure 4.26 Probability density profiles for Mass 72 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.
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Figure 4.27 Probability density profiles for Mass 77 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.
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Figure 4.28 Probability density profiles for Mass 78 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.
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Figure 4.29 Probability density profiles for Mass 79 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.
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Figure 4.30 Probability density profiles for Mass 88 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.
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Figure 4.31 Probability density profiles for Mass 89 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.
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Figure 4.32 Probability density profiles for Mass 152 obtained from raw and normalised, pre
and post dialysis datasets using the NO+ precursor.

4.1.2.3 O2
+

Using the O2
+ precursor, Figure 4.33 was obtained from classification off raw

data. A 20.2% classification error and a ROC area of 0.790 was observed with a

bootstrap sample size of 200. When the relative change method was employed

(Equation (3.1)), Figure 4.34 was obtained, with a 0% classification error and

a 0.998 ROC area with a bootstrap sample size of 200. Using the biomarker

identification method (Equation (3.3)), Figure 4.35 was obtained.

A summary of the top biomarkers identified using each method is shown in

Table 4.5, with their respective scores.
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Figure 4.33 Classification on raw data over all masses with the O2
+ precursor, as determined

by Equation (2.3)
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Figure 4.34 Classification on normalised data over all masses (Equation (3.1) with the O2
+

precursor, as determined by Equation (2.3)
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Figure 4.35 Biomarker identification in Dialysis Study II with the O2
+ precursor
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Table 4.5 Dialysis Study II Top Biomarkers with O2
+ precursor

Classification Method Biomarker ID
Raw Data Relative Data Method

Mass Score Mass Score Mass Score

81 0.1103 43 0.0000 61 28.06
44 0.1149 151 0.0000 80 24.60
45 0.1616 58 0.0000 62 24.51
103 0.2085 79 0.0001 79 24.03
151 0.3004 60 0.0003 58 22.94

80 0.3058 80 0.0010 59 22.18
63 0.3223 59 0.0015 43 21.95
64 0.3248 78 0.0017 44 19.38
188 0.3723 97 0.0033 97 15.96
62 0.3906 42 0.0038 77 14.99

With the O2
+ precursor, several of the key masses overlap. Masses 43, 60,

61, 79 and 97 are associated with acetic acid; masses 43, 58, 59, 61, 77, 79, 97

are associated with acetone; and masses 58, 59 and 77 are associated with TMA.

Figures 4.36-4.46 show the density profiles of the top biomakers. The left

plot shows the density profile of the raw data. The centre plot shows the density

profile of the normalised data. Finally, the right plot shows the density profile of

the log-odds ratio of the normalised data.
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Figure 4.36 Probability density profiles for Mass 43 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.37 Probability density profiles for Mass 44 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.38 Probability density profiles for Mass 58 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.39 Probability density profiles for Mass 60 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.40 Probability density profiles for Mass 61 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.41 Probability density profiles for Mass 62 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.42 Probability density profiles for Mass 79 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.43 Probability density profiles for Mass 80 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.44 Probability density profiles for Mass 81 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.45 Probability density profiles for Mass 103 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.
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Figure 4.46 Probability density profiles for Mass 151 obtained from raw and normalised, pre
and post dialysis datasets using the O2

+ precursor.

4.2 Summary and Future Work

A clinical study was carried out in two parts to monitor the change in ammonia,

TMA and acetone as measured by SIFT-MS over the course of dialysis treatment.

In renal failure, the kidney fails to effectively excrete metabolic wastes and hence

these accumulate in the blood, and can be measured in the breath. The relative

and absolute changes in analyte concentration were compared with the changes

in BUN and creatinine, the gold standards of kidney function. Correlations were

much improved in the second part of the study, with the introduction of the

V oice200 R© SIFT-MS instrument, direct breath sampling methods, and a more

stable patient cohort. Statistically significant correlations were observed between

the reduction ratios of breath ammonia, breath TMA, BUN and creatinine in the

second study.

Mass scan analysis was performed on breath samples collected in tedlar bags,

for the purpose of detecting biomarkers of kidney function revealed when com-

paring the predialysis and postdialysis breath samples. Since dialysis efficacy

is most simply reported as the URR, a reduction ratio, mass scan analysis was

performed using the relative change in states between the beginning and end of

dialysis treatment. Several biomarkers were identified, including TMA, acetic

acid and acetone, all of which scored better than ammonia in the first study.

Since acetic acid is usually metabolised to by the liver to CO2 and water, its

identification in this study as a biomarker is more likely to be related to the fact

that patients were eating during the dialysis session, than to any indication of
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renal impairment in CRF. A 0% classification error was recorded for all precur-

sors in the second study, whereas in the first study, estimated prediction errors

ranged from 2-10% over the 3 precursors.

Future work aims to develop a predictive model for determining the optimal

time to dialyse a patient. Results from Study II indicate that TMA would be a

good analyte to monitor, since its concentration decreases rapidly regardless of

starting concentration, and is maintained at a relatively constant, low concentra-

tion during dialysis. As such, it is suggested that breath TMA measured over the

first 30 minutes of a dialysis session gives a good measure of the efficacy of clear-

ance from the plasma. A clinical study is currently underway to collect breath

samples from patients who have undergone a kidney transplant, in the weeks fol-

lowing their recovery. It is envisaged that analysis of breath analytes could help

predict rejection episodes by observing deviations from the improvement of renal

function, as monitored by changes in key breath analytes.

Carrying out a trial in a human setting poses difficulties, since all patients

present with a differing degree of impairment, have differing diets, and differing

genetic predispositions. It was considered that running an animal trial would

alleviate many of these difficulties, since in-bred animals could be used in the

study. In addition, samples sizes, diet, and daily behaviour, as well as degree of

renal impairment, could all be more easily controlled. Lastly, easy comparison

with gold standard measures of renal function would be possible, since several

techniques in addition to creatinine and BUN blood tests would be available.

Such techniques include radioactive tracer methods, which cannot be performed

in a human clinical trial. Hence, an animal trial was designed for the identification

of biomarkers of acute renal failure in rats, as described in Chapter 5.



Chapter 5

Acute Renal Failure in Rats - Animal Study

Design

5.1 Kidney Anatomy and Physiology

5.1.1 Kidney Structure and Function

The kidney is the major vertebrate organ for excretion and salt and water bal-

ance. It is also involved in acid-base balance, hormone production, and long-term

control of blood pressure. The functional unit of the kidney is the nephron, which

consists of the malpighian body and the tubule. The malpighian body is found

in the renal cortex and consists of the glomerulus encased in Bowman′s capsule,

as shown in Figure 5.1.

Figure 5.1 Kidney Anatomy, Merriam-Webster [2006]
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The glomerulus is a bundle of capillaries, originating from an afferent arteriole

from the renal artery, and exiting to an efferent arteriole where it diverges into

the peritubular capillary network. Blood plasma is filtered from the glomerulus

into Bowman’s capsule by a process called ultrafiltration. The ultrafiltrate, or

primary urine, contains glucose, amino acids, ions and nitrogenous wastes in the

same concentrations as in the blood plasma, but lacks the large plasma proteins,

which do not fit through the small pores in the glomerular capillary wall.

From Bowman’s capsule, primary urine enters the proximal convoluted tubule

(PCT), which descends into the loop of Henle in the renal medulla. The ascend-

ing limb of the loop of Henle comes back to the cortex and becomes the distal

convoluted tubule (DCT). The DCTs of many nephrons join in a common col-

lecting duct in the cortex, and then run back through the medulla to empty into

the ureter at the tips of the renal pyramid, as shown in Figure 5.2.

 
Figure 5.2 Structure of a nephron, Randall et al. [2002]

Once entering the tubules, the composition of the primary urine changes as

secretion and reabsorption takes place. Most of the water and solutes filtered by

the glomerulus are reabsorbed in the PCT. Na+, amino acids and other solutes

are actively transported out of the tubular fluid and into the interstitial fluids, and
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water follows passively to maintain osmotic pressure. Other passively reabsorbed

substances include Cl−, HCO−
3 , and urea. Reabsorbed water and solutes are

taken up by the peritubular capillaries and exit the kidney via the renal vein. The

epithelial cells in the PCT are structured for massive salt and water reabsorption,

with numerous microvilli forming a brush border which increases the surface area

available for reabsorption. Details of the PCT epithelial cell are shown in Figure

5.3.

 

Figure 5.3 PCT Epithelial Cell, Randall et al. [2002]

The loop of Henle acts as a countercurrent multiplier to establish a concen-

tration gradient in the renal medulla. Cells in the descending limb are non-

specialised and allow passive transport of water out of the tubular fluid, but have

very low permeability to salt. In the ascending limb, salt is actively transported

out into the interstitial fluid, but water cannot follow because this region of the

tubule is impermeable to water. Salt in the interstitial fluid then diffuses back

around the descending limb of the loop of Henle, where the osmotic gradient

causes water to move out into the interstitial fluid, thus concentrating the tubu-

lar fluid as it passes down the descending limb. The active transport of salt out

of the ascending limb results in a tubular fluid that is more dilute when it enters

the DCT than when it entered the PCT. Salt continues to be actively transported

out in the DCT, and water follows passively. Tubular fluid entering the collecting

duct from the DCT is much more dilute than the interstitial fluid in the medulla,
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and so when it passes down the collecting duct, which is permeable to water but

not to ions, water is reabsorbed to maintain the osmotic potential, and the urine

becomes more concentrated.

As well as reabsorbing desired substances back into the plasma, the tubules

are also capable of secreting substances directly into the tubular fluid. Such sub-

stances include K+ and H+ ions, ammonia, and organic acids and bases, such

as foreign or toxic substances and endogenous products of metabolism. Secre-

tion is mostly active, driven by the sodium gradient established by the Na+/K+

pumps in the tubular membrane. Some of these pumps are non-specific, and can

allow the elimination of many potentially dangerous substances, such as drugs

and toxins directly from the liver. However, this non-specificity also means that

various organic ions can be competing for the same secretory pathway, and there-

fore elevated levels of one organic compound can reduce the secretion of another.

Secretion of ammonia and H+ are intimately related and are important in the

regulation of acid-base homeostasis. Ammonia excretion is discussed further in

the next section.

The kidneys are primarily responsible for the excretion of organic wastes.

This process occurs via filtration of the blood in the glomerulus of individual

nephrons, and reabsorption and secretion of solutes and water in the renal tubules.

The resulting tubular fluid is excreted as urine.

5.1.2 Ammonia Excretion

Ammonia is mostly formed from the catabolism of proteins. Ingested and cellular

proteins are hydrolysed to form a pool of amino acids. Any amino acids not

used in protein production are catabolised to ammonia. This ammonia is either

excreted, or converted to urea via the Urea Cycle in the liver.

Ammonia exists biologically as NH3 and NH+
4 , with the relative amounts of

each governed by the buffer reaction NH3 + H+ 
 NH+
4 . In most biological

fluids, where the pH is less the 7.4, most ammonia is present as NH+
4 . NH3 is

relatively small and uncharged, thus it can diffuse across most lipid bilayers in the

tubular membrane. NH+
4 has very limited permeability and must be transported

across the apical tubular membrane.
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Since ammonia is very toxic, it is transported in the blood as glutamine, and

on reaching the proximal tubule, it is converted back to ammonia via ammoni-

agenesis. At this point, ammonia is either transported into the urine as NH+
4 ,

mainly via the apical Na+/H+ exchanger, or returns to the systemic circulation

to be metabolised to urea in the liver, in a ratio governed by acid-base homeosta-

sis. Ammonia can also enter the tubular fluid as NH3, by diffusing across the

apical membrane, as seen in Figure 5.4. Several different types of ammonia trans-

porters have been identified, of which the family of Rh glycoproteins has been

the most recent. The RhBG glycoprotein is expressed in a wide variety of organs

involved in ammonia metabolism, including the kidney, liver, skin, stomach and

gastrointestinal tract [Weiner and Hamm, 2007].

 

Figure 5.4 Tubular Excretion of Ammonia (Gln-Glutamine; GA-Glutaminase; Glu-
Glutamate; GDH-Glutamate Dehydrogenase, Weiner and Hamm [2007]

5.1.3 Glomerular Filtration Rate

Pressure in the glomerular capillaries is relatively high to maintain the Glomeru-

lar Filtration Rate, GFR. Autoregulation ensures that GFR remains relatively

constant as mean pressure, ∆P , in the renal artery changes, by vasoconstric-

tion and vasodilation of afferent and efferent arterioles. These changes alter the

resistance, R, to blood flow, Q, through the kidney, Equation (5.1).

Q =
∆P

R
(5.1)

This autoregulatory function is achieved through several mechanisms. By



94 CHAPTER 5 ACUTE RENAL FAILURE IN RATS - ANIMAL STUDY DESIGN

myogenic autoregulation, an increase in blood pressure causes a stretch in the

afferent arteriole wall, triggering contraction of smooth muscle cells surrounding

the vessel, thus reducing the vessel diameter and increasing the vessel resistance,

R:

R =
8µl

πr2
(5.2)

where µ is the dynamic viscosity of blood, l is the length of the vessel, and r

is the radius of the vessel. This increase in resistance counteracts the increase

in blood pressure, thus maintaining a constant flowrate, Q, through the vessel.

The converse situation is also true, with vessels dilating when blood pressure

decreases.

Renal blood flow is also modulated by secretion of substances from cells

in the juxtaglomerular apparatus. The juxtaglomerular apparatus contains two

types of cells: modified distal tubule cells which form the macula densa and

monitor sodium chloride flux in the distal tubule; and modified smooth muscle

cells, called juxtaglomerular or granular cells, which are located mostly in the

afferent arterioles and secrete substances which indirectly affect blood flow, as

shown in Figure 5.5.

 

Figure 5.5 Juxtaglomerular Complex for monitoring renal blood flow, Randall et al. [2002]

A reduction in renal blood flow or systemic blood pressure produces a decrease

in GFR, which decreases solute delivery to the distal tubule. This decreased solute

delivery reduces the sodium chloride flux in the macula densa cells, which in turn
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triggers the release of renin from the granular cells, as well as directly producing

tubuloglomerular feedback relaxation of efferent arteriolar smooth muscle. When

renin is released, the level of the hormone angiotensin II in the blood increases,

causing constriction of all arterioles in the body. A rise in angiotensin II also

stimulates the release of aldosterone from the adrenal cortex which promotes

the tubular reabsorption of salts. Angiotensin II also stimulates an increase

in the synthesis of Antidiuretic Hormone (ADH) in the hypothalamus and its

release from the posterior pituitary, which increases the water permeability of the

distal tubule and collecting duct, thus promoting water reabsorption. Increase in

the reabsorption of salts and water increases blood volume and therefore blood

pressure, thus restoring GFR via this autoregulatory route.

5.1.4 Renal Histology

The PCT, DCT, collecting ducts and thick segments of the Loop of Henle are

lined by a simple cuboidal epithelium, and the thin segments of the loop of Henle

are lined with a simple squamous epithelium. The PCT and DCT are found in the

renal cortex, whereas the loops of Henle and collecting ducts run mainly through

the medulla. The length of a PCT tends to be several times greater than that

of a DCT, so sections of proximal tubules are much more common than those of

distal tubules in a typical histological slide of renal cortex.

A section of PCT is distinguishable by the brush border of microvilli on

the apical end of each cell which provides an increased surface for absorption of

substances from the tubular fluid. PCT cells and cells of the thick ascending

limb of the loop of Henle have the highest proportion of mitochondria in their

cytoplasm, to provide the energy for pumping ions and molecules against their

concentration gradient.

The plasma membranes of adjacent PCTs and DCTs are extensively interdigi-

tated to increase the basal membrane surface area available for pumping molecules

out the basal end of each cell. Collecting ducts merge and become larger as they

descend through the medulla, so different sizes of collecting ducts may be ob-

served at different levels in the kidney, with the smallest in the cortex and the

largest near the renal pelvis at the base of the medulla. Normal histological

preparations are shown in Figures 5.6-5.8.
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Figure 5.6 Normal Tubular Histology: p - Proximal Convoluted Tubule; d - Distal Convo-
luted Tubule, King [2007]

 
 

Figure 5.7 Normal Tubular Histology: cd - Collecting Duct; ts - Thin Segment of Loop of
Henle; d - Distal Convoluted Tubule, King [2007]

 
 

Figure 5.8 Normal Tubular Histology: Longitudinal Section of Collecting Duct and Thick
Segment of Loop of Henle, King [2007]
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5.1.5 Acute Renal Failure

GFR is the most widely accepted measure of kidney function. It refers to the

volume of plasma that can be filtered through the glomerulus per unit time.

Therefore, the ability to measure GFR in real-time would be very useful for the

early detection of Chronic Kidney Disease (CKD). It would also be of great use

in the management of patients presenting with Acute Renal Failure (ARF), also

known as Acute Kidney Injury, (AKI), in which GFR is significantly decreased.

Knowing the GFR is particularly useful when determining drug dosage, since

a drug will continue to act whilst in the blood, and many drugs are excreted

by the kidney in proportion to GFR. However, it is important to note that kid-

ney function, quoted as GFR, is therefore dependent on the functioning of the

glomerulus, and does not consider tubular injury, which is nearly always present

in ARF [Solomon and Segal, 2008]. When glomerular filtration is compromised,

substances cannot be excreted, and therefore build up in the blood. Therefore, a

biomarker for kidney function would be any substance that changes concentration

in the blood in a manner specific to ARF and sensitive to the degree of change

in GFR and/or kidney function. On the other hand, a biomarker for ARF/AKI

reflecting tubular injury could be present prior to any change in GFR.

GFR is currently estimated in a clinical setting from the reciprocal of serum

creatinine concentration, as discussed later in this chapter. At low GFR, creati-

nine secretion in the tubules increases. Hence, the serum creatinine concentration

appears smaller, resulting in an over-estimated GFR. In addition, the steady-

state assumption of GFR prediction models becomes invalid in ARF, since serum

creatinine levels do not remain constant [Hosten, 1990]; [Bellomo et al., 2004];

[Erley et al., 2001]; [Doolan et al., 1962]. The creatinine production rate is also

observed to decrease in ARF, associated with decreasing muscle mass [Shemesh

et al., 1985]. Lastly, in chronic kidney disease, serum creatinine levels are very

slow to react to changes in GFR, because the half life of creatinine is 48-72 hours.

Hence, serum creatinine levels often do not increase until the kidney injury is rel-

atively severe, resulting in a delay in the diagnosis of ARF [Solomon and Segal,

2008]. The converse of this is also true, and the kidney could have stopped dete-

riorating or even begun to improve, before any discernible difference is observed

in the serum creatinine level. Regardless, a decrease in GFR, as indicated by

an increase in serum creatinine concentration, remains the current definition of



98 CHAPTER 5 ACUTE RENAL FAILURE IN RATS - ANIMAL STUDY DESIGN

ARF, despite these limitations.

The clinical condition of ARF is said to occur in anywhere from 1% to 25% of

critically ill patients, depending on the population being studied and the criteria

used to define its presence [Bellomo et al., 2004]. ARF can be classified in humans

using the RIFLE system, in which deviation from a baseline (normal) GFR is

determined based on the following criteria:

• Risk of renal dysfunction: serum creatinine increased 1.5 times OR urine

production <0.5 mL/kg body weight for 6 hours;

• Injury to the kidney: serum creatinine increased 2.0 times OR urine pro-

duction <0.5 mL/kg body weight for 12 hours;

• Failure of kidney function: serum creatinine increased 3.0 times OR crea-

tinine >355 µmol/L (with a rise of >44) or urine output below 0.3 mL/kg

for 24 hours;

• Loss of kidney function: persistent ARF or complete loss of kidney function

for more than four weeks;

• End-stage kidney disease: complete loss of kidney function for more than

three months.

ARF can be caused by pre-renal, renal, or post-renal factors. Pre-renal refers

to causes in the blood supply, such as ischaemia, hypovolemia or sepsis. Renal

refers to damage to the kidney itself, which could be caused by toxins or med-

ications, haemolysis, acute glomerulonephritis, or rhabdomyolysis, the latter of

which is the breakdown of muscle tissue and release of myoglobin into the blood

caused by a crush or blunt trauma injury. Post-renal refers to obstructive causes

in the urinary tract, caused by anticholinergic medication, abdominal cancers, or

kidney stones.

Histologically, an ischaemic insult to the kidney results in no morphological

change to the glomeruli, however many studies have reported tubular, vascu-

lar, and inflammatory perturbations in ARF. This discussion will focus on the

tubular abnormalities observed in ARF. ARF is characterised by tubular dys-

function with impaired sodium and water reabsorption, and is associated with
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the shedding and excretion of proximal tubule brush border membranes and ep-

ithelial tubule cells into the urine. In vitro studies using chemical anoxia have

revealed abnormalities in the proximal tubule cytoskeleton that are associated

with translocation of Na+/K+−ATPase from the basolateral to the apical mem-

brane [Schrier et al., 2004]. Such a translocation could explain the decrease in

tubular sodium reabsorption that occurs with ARF since it interferes with the

transporter responsible for sodium uptake.

This tubular perturbation is insufficient to cause the fall in GFR that leads

to nitrogenous-waste retention. However, loss of brush border membranes, loss

of proximal tubule cells, and decreased proximal tubule sodium reabsorption

may combine to result in a decreased GFR during ARF [Thurau and Boylan,

1976]. Brush border membranes and cellular debris could obstruct the tubular

lumen. Microdissection of individual nephrons of kidneys from patients with ARF

demonstrated obstructing casts in distal tubules and collecting ducts [Oliver et al.,

1951], which could explain the dilated proximal tubules that are observed upon

renal biopsy of ARF kidneys.

The decrease in proximal tubular sodium reabsorption that is associated with

acute ischaemic injury would increase sodium chloride delivery to the macula

densa and thereby activate the tubuloglomerular feedback mechanism and de-

crease GFR [Thurau and Boylan, 1976]. Micropuncture perfusion studies deliver-

ing increased sodium chloride to the macula densa have demonstrated a decrease

in single-nephron GFR by as much as 50% through tubuloglomerular feedback

[Schnermann and Homer, 2003]. The loss of the tubular epithelial cell barrier

and/or the tight junctions between cells during acute renal ischemia could lead

to a leak of glomerular filtrate back into the circulation [Molitoris et al., 1989]. If

this occurs and normally non-reabsorbable substances leak back into the circula-

tion, then a falsely low GFR will be measured, if based on the clearance of that

substance. Dextran sieving studies in patients with ARF demonstrated that only

a 10% decrease in GFR could be explained by backleak of filtrate [Myers et al.,

1979].

Early detection and intervention in ARF can greatly improve a patient’s prog-

nosis. Therapy for ARF depends on the cause, but if GFR is not improved with

fluid resuscitation, therapy-resistant hyperkalemia, metabolic acidosis, or fluid

overload, then dialysis is required. Hence, real-time, high resolution biomark-
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ers would offer a significant advantage in early detection and monitoring of the

therapeutic intervention.

5.2 Study Design

Current measurements of renal function rely on daily measurements of plasma

creatinine. Consequently, when most glomerular filtration function is lost, the di-

agnosis of kidney failure is delayed by up to 3 - 5 days in clinical situations. This

delay results in unacceptable delays in instituting treatment. Consequently, there

have been no improvements in mortality in the management of ARF for over 50

years, despite the availability of many useful experimentally effective treatments.

SIFT-MS has the potential to offer non-invasive determination of renal function

in real-time, and hence this study aims to correlate renal function as determined

via SIFT-MS with current clinical and research gold standard techniques. Clini-

cal gold standards refer to those methods currently used commonly in standard

medical practice. Research gold standards refer to those techniques which are

generally too time consuming or expensive to be appropriate in a clinical setting,

although they usually give a more accurate result.

In this study, approved by the Animal Ethics Committee (C09/ 07601),

female Sprague-Dawley rats (280-320g, n=11) were housed at 21oC in a 12

hour light/dark cycle, and allowed free access to food and water. Under ke-

tamine/domitor anaesthesia, an in-dwelling cannula was inserted into the jugular

vein for the purposes of fast serial blood sampling. GFR was monitored via

plasma creatinine, SIFT-MS breath sampling, and bolus inulin clearance for 5

days while the animal recovered from surgery.

In a subsequent surgery, the renal arteries were exposed via a single mid-

ventral incision, and clamped for 60 minutes, creating ARF via an ischemic event.

GFR was monitored for 7 days using the same 3 techniques, as the animal recov-

ered and renal function returned to normal levels. Rats were euthanised at the

completion of the trial, and histological preparations were made from the excised

kidneys. The GFR monitoring schedule is shown in Table 5.1.

Pilot studies were conducted to develop the techniques required for this study.

The following factors were considered in relation to surgical techniques:
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Table 5.1 GFR Monitoring Schedule

Method Monitoring Timepoints
Post-cannulation Post-ARF

Plasma Creatinine 6hr, 2day 1hr, 6hr, 20hr, 30hr,
2day, 4day, 7day

Inulin Clearance 6hr, 2day 6hr, 30hr, 2day,
4day, 7day

SIFT-MS Breath -4hr, 1hr, 6hr, -4hr, 1hr, 6hr,
20hr, 30hr, 2day, 20hr, 30hr, 2day,

3day, 4day, 7day

• Method of induction of ARF

• Blood sampling, blood loss, and blood transfusion

• Method of inserting indwelling jugular vein cannula

• Choice of anaesthetic agent, duration of anaesthesia, and number of surg-

eries

• Inulin clearance modelling

• Breath collection techniques

5.3 Induction of Acute Renal Failure

In this study, ARF was induced via ischaemia. Under anaesthesia, oxygen was

prevented from reaching the kidneys for a period of time via a bilateral renal

artery clamp. Rats typically recover from this type of surgery over the course of

approximately 1 week [Gobé et al., 2000].

A non-volatile anaesthetic agent was required so as not to interfere with the

breath sampling experiments. For this reason, Halothane and Isoflurane were

not considered, although access to the neck region for the cannulation surgery

would have been very difficult with the rat in a vaporiser in any event. In addi-

tion, the agent could not interfere with kidney function. Sodium Pentobarbitone

(Pentobarb-300) was originally selected due to its low cost. However, this drug

is intended for use as an euthanasia solution, and although it is commonly used
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as an anaesthetic in rats, its variable quality and low margin of safety deemed it

ultimately an unsuitable option for this study.

Subsequently, a domitor/ketamine mixture was selected. Domitor is an alpha-

2 adrenoceptor agonist, which is ideal as a sedation agent. The action of domitor

can be reversed with anti-sedan administered at equal dosage. Due to its poor

analgesic properties, domitor is usually administered with ketamine, a dissocia-

tive drug. No reversal agent is available for ketamine, and the adverse effect

of drying of the cornea must be prevented with ophthalmic ointment. Domitor

causes diuresis, by inhibiting ADH release from the pituitary. This does not

effect glomerular filtration, but due to the high urine flowrate (approximately

10mL urine is passed over the duration of surgery), the fluid lost must be re-

placed. Thus, 10mL saline was injected subcutaneously after the rat entered

the surgical plane to compensate for fluid loss during surgery. Domitor can also

can cause cardiovascular and respiratory depression. Hence, it is usually admin-

istered in conjunction with atropine sulphate, an antimuscarinic alkaloid which

helps prevent bradycardia, and reduces bronchial secretions.

Two analgesics were considered for post-operative pain relief. Marcain is a

rapid-onset, long-acting local anaesthetic which is applied topically. It can be

applied to the wound area during suturing, but therefore cannot be used for

pain relief in the days following surgery. Better recovery was observed for rats

treated with temgesic, a long-acting synthetic opioid, which can be administered

subcutaneously as required following surgery. Table 5.2 summarises the drug

regime.

Table 5.2 Rat Anaesthetic and Analgesic Drug Regime

Drug Dose Admin Purpose
(mg/kg) Route*

Domitor 0.5 SC Sedation
Ketamine 75 SC Sedation & analgesia
Atropine 0.05 SC Prevent bradycardia and bronchial secretions
Saline 10mL SC Compensate diuretic effect of domitor
Antisedan 0.5 SC Reverse effect of domitor
Temgesic 0.05 SC Post-operative pain-relief

*SC Subcutaneous
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Because it was intended that the rat survived this surgery, it was necessary to

use as noninvasive a technique as possible when inducing ARF. The first technique

considered was to access the kidneys via two flank incisions, through which it

would be possible to pop out the kidney in order to clamp the renal arteries. Such

a technique had been performed by the surgical team in previous laboratory work,

and could be achieved with very small incisions that did disturb other organs.

However, this technique required decapsulating the kidney to get to the vessels,

and due to the position of the vein and artery, it was extremely difficult to

separate the vein from the artery without piercing the vein, as seen in Figure

5.9. It was also difficult to actually locate the artery. Hence, the solution was to

clamp the vein and artery together. However, using this technique, it was very

difficult to know how adequate the ischaemia was.

 

Left renal artery 

Figure 5.9 Renal circulation, highlighting position of the renal vein, University of Debrecen
[2009]

The second method investigated was to access the kidneys via a single mid-

ventral incision. Although this technique requires a larger incision, it was through

the linea alba, a fibrous structure running down the midline of the abdomen. The

linea alba contains thinner tissue layers, and is devoid of important nerves and

blood vessels. Therefore, an incision here causes the recovering animal signifi-

cantly less discomfort.

Using this technique, the renal arteries can be clamped close to the aorta,

where it is much easier to separate the artery from surrounding tissue. Therefore

the artery can be isolated and clamped, and the discolouration of the kidney

caused by blood draining out of it can be detected almost immediately. This

approach ensures adequate, controlled damage to the kidney.
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In total, 8 pilot studies were carried out on inducing ARF via bilateral renal

artery clamping. These studies and outcomes are summarised in Table 5.3. Other

studies in the literature performed renal artery clamping for between 30 and 60

minutes with good survival rates [Gobé et al., 2000]. For this study, a 60-minute

bilateral renal artery clamp was selected. The surgical technique is summarised

in Figure 5.10.

Table 5.3 Pilot Studies on ARF

Rat Anaesthetic Incision Clamp Outcome
Type Time

370g Pentobarb midventral 60 mins 50mm incision seemed quite large.
female Tried to clamp renal arteries close

to the kidney. Decision to try 2 flank
incisions. Difficult to find vessels
without decapsulating the kidney.

520g Pentobarb 2 x flank 30 mins Quicker to access kidney via flank
male incision, but tissue layer much thicker.

Easier to find vessels when kidneys
decapsulated.

325g Pentobarb 2 x flank 45 mins Successful experiment, but left kidney
female went quite black, and right kidney

remained pink.

326g Pentobarb NA NA Rat died due to respiratory failure after
female cannulation prior to renal artery clamp.

336g Pentobarb 2 x flank 45 mins Rat euthanised due to respiratory
female difficulties after clamping complete.

318g Pentobarb midventral 45 mins Rat died overnight after surgery, but
female pre-clamp and post-clamp bolus inulin

clearances were carried out and a 25%
decrease in function was observed.

297g Domitor/ midventral 45 mins Kidneys did not change colour - need to
female Ketamine tie the clamps shut. Post-clamp

inulin clearance indicated
insufficient kidney damage.

248g Domitor/ midventral 60 mins 50% decrease in GFR as estimated
female Ketamine by bolus inulin clearance.
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Kidney 

Figure 5.10 ARF Surgical Technique: Top left, mid-ventral incision; top right, locating
kidney; bottom left, clamping renal artery; bottom right, suturing each tissue layer with a
running stitch.

Under domitor/ketamine anaesthesia, atropine and saline were administered

subcutaneously. During surgery and recovery, body temperature was maintained

via use of a heat pad. Corneal drying was prevented using eye ointment. Under

surgical conditions, a 5cm mid-ventral incision was made and a blunt dissection

technique was used to expose the renal arteries close to the aorta. Both renal

arteries were clamped for 60 minutes, and adequate clamping was ensured by

observing the kidneys become pale. Saline-soaked gauze was used to prevent in-

ternal organs drying out during the 60 minute clamping time. After 60 minutes,

the clamps were removed and each tissue layer was sutured separately with a

running stitch. Anti-sedan was administered to reverse the anaesthetic effect of

domitor, and the rat began to twitch within 2 minutes. Temgesic was adminis-

tered subcutaneously as indicated for pain relief for 2 days post-surgery. The rat

was monitored using animal welfare score sheets until recovery, and at least twice

daily for the remainder of the trial.
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5.4 Inulin Clearance Tests for Determining GFR

5.4.1 Clearance Techniques

The most widely accepted measure of kidney function is the volume of ultrafil-

trate that can be filtered by the glomerulus per unit time, the GFR. The renal

clearance of any substance which can be freely filtered by the glomerulus without

being secreted or reabsorbed by the renal tubules can thus be used to estimate

GFR. Key elements include the ability to safely administer the substance, and

to measure its concentration in the plasma. It is essential that there be no other

means by which the body can clear the specific substance, so that clearance is

specific for the GFR.

Inulin is a large starch-like fructose polymer, which is uncharged, and does

not bind to plasma proteins. Therefore, it passes readily through the glomerular

capillary basement membrane. In addition, it is not reabsorbed, secreted or

metabolised by the renal tubules, making it an ideal filtration marker. Inulin

clearance can be measured using two main approaches: constant infusion method

(CIM), requiring plasma samples and timed urine collection; or bolus techniques,

requiring modelling of the tracer (inulin) distribution and elimination kinetics.

The constant infusion method (CIM) is considered the research gold standard

measure of kidney function, and is the method commonly quoted in textbooks

[Cameron, 1992]. Using this method, inulin is injected into the plasma at a

constant rate until a steady state is achieved. Once in the steady state, a blood

sample is taken, and the inulin plasma concentration determined. The appearance

of inulin in the urine is determined by its concentration in the urine and the

volume of urine produced per minute. GFR is then determined by Equation

(5.3).

GFR =
(Urine concentration)(Urine flow)

Plasma concentration
(5.3)

In practice, this technique has limitations, because it is difficult and slow to

achieve a steady state. In addition, it is very cumbersome and difficult, in man,

to obtain an accurate timed urine collection [Cameron, 1992]. Several techniques



5.4 INULIN CLEARANCE TESTS FOR DETERMINING GFR 107

have been suggested in the literature to alleviate these difficulties, ranging from

catheterisation to overcome the problem of deadspace in the urinary tract, to

rationalising against the need for urine collection at all.

[Earle and Berliner, 1946] and [Berger et al., 1948] argued that for subjects

with reasonable kidney function (inulin clearance more than 60% of normal), the

rate of excretion must be equal to the rate of infusion, provided the plasma con-

centration and volume of distribution do not change. In this case, only the plasma

concentration and infusion rate were required to calculate GFR. Many subsequent

studies have illustrated the unreliability of this technique due to failure to obtain

a constant inulin concentration in the plasma [Zeier et al., 1992].

[Van Acker et al., 1995] investigated the validity of the steady-state constant

infusion method by carrying out 3 hourly clearances of inulin and p-aminohippuric

acid (PAH) over 27 hours in 25 patients with renal disease. As estimated without

urine collection, this overestimated clearance calculated using urinary recovery by

10%. Additionally, neither inulin nor PAH plasma concentrations became fully

constant.

In contrast to constant infusion techniques, bolus methods can be carried

out quickly, and require only a single injection of the exogenous marker into

the plasma, and fast serial blood sampling thereafter at defined intervals. Urine

collection is not required. However, data analysis requires the application of a

well defined mathematical model. For accurate results, the exact amount of inulin

injected must also be known, all of which must enter the circulatory system.

Several models have been proposed in the literature. One-compartment mod-

els such as [Sapirstein et al., 1952], are inaccurate because they assume that the

mixing time between the plasma and interstitial compartments is negligible, and

as demonstrated in [Sturgeon et al., 1998], this situation is not the case. Some

models such as [Peters et al., 1999] are single compartment and recognise that

GFR is overestimated in that type of model, but then try to correct for GFR

using a sliding factor that assumes the distribution phase between the plasma

and interstitial compartment is constant for all subjects.

Other models, such as [Prescott et al., 1991], calculate clearance as the

amount of inulin present in the urine divided by the area under the plasma-inulin
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concentration curve. Such a model requires adequate blood sampling in both

the distribution (plasma to interstitial compartments), and elimination (plasma

compartment to urine) phases, as well as prolonged sampling until near-zero

plasma concentrations to obtain an accurate plasma-inulin concentration curve.

The model of [Prescott et al., 1991] maintains that inulin clearance changes as

the time after bolus administration increases, however it is likely that insufficient

sample points were obtained in the early distribution phase to adequately define

the pharmacokinetics in this model.

[Qi et al., 2004] calculated GFR in mice using a bolus FITC-inulin injec-

tion (a fluorescence technique). In this study, 7 blood samples were collected

over 75 minutes, and a 2-compartment exponential decay curve was fitted using

nonlinear regression in Prism. [Qi et al., 2004] also calculated GFR using only

the later timepoints and a single compartment model, and found that GFR was

overestimated by 34% using this method. After a 5/6 nephrectomy, GFR was

found to decrease to approximately 14% ( 1/6) of its previous value, as expected.

However, their model does not appear to fit well to sample data points.

Other models insist that clearance can be calculated using only 1 or 2 sample

points [Russell et al., 1989]; [Bubeck et al., 1992]. In this method, the ratio of the

markers’ dose to serum activity at a pre-specified time point(s) after intravenous

administration is used as its volume of distribution, which is then logarithmically

transformed to obtain the Tubular Extraction Rate, TER. As this ratio becomes

smaller, such as during impaired renal function, it becomes closer to a critical

threshold, e1.75e0.005t
calculated using the half life of 99mTc−MAG3, below which

value negative values are obtained.

In this study, pilot experiments were carried out to attempt to correlate

constant infusion and bolus clearance results in 5 rats. All rats had CIM and

bolus inulin clearances performed under anaesthesia in the same surgery: 2 rats

received CIM followed by bolus inulin clearance, and 3 rats received the bolus

experiment followed by CIM. It was found that it was preferable to carry out the

bolus experiment prior to the CIM experiment so as not to have to account for a

background/starting inulin concentration in the bolus kinetic model.

Using CIM, urine was collected via catheterisation of both ureters; serial

blood sampling was carried out via a jugular vein cannula (described in Section
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5.4.2) and inulin was infused via tail or femoral vein, as summarised in Table 5.4.

Table 5.4 Clearance Experiments

Rat Infusion Infusion GFR Outcome
(male) Method Route (mL/min)

665g CIM Femoral 3.77* Inulin infused at 3mL/hr following a 0.38mL
bolus. Mannitol greatly improved urine
output. Constant plasma and urine
concentrations not achieved after 70 minutes,
Figure 5.11.

665g Bolus Femoral 3.94* Background inulin concentration at time zero
not evaluated. Monitoring only carried out for
10 minutes - subsequently deemed too short to
describe the elimination phase. Inulin
concentration injected too low.

*Expected GFR is 3.92-5.05mL/min.

700g CIM Femoral 2.37* Inulin infused at 2mL/hr following a 0.28mL
bolus. Constant plasma and urine
concentrations not achieved after 70 minutes,
Figure 5.12. Block in ureteric
cannula at 40-50 minutes.

700g Bolus Femoral 4.50* Background inulin concentration at time zero
estimated. 7 samples collected over 10 minutes.
Inulin concentration injected too low.

*Expected GFR is 4.13-5.32mL/min.

590g Bolus Jugular 3.82* 2 bolus clearances performed prior to CIM.
Monitored for 6 minutes.

590g Bolus Jugular 3.86* Estimated background inulin concentration at
time zero. Monitored for 6 minutes.

590g CIM Tail 0.40* Inulin infused at 2mL/hr following a 0.28mL
bolus. Steady state not achieved after
70 minutes. Rat deteriorating.

*Expected GFR is 3.48-4.48mL/min.

606g Bolus Jugular 3.76* 4 samples collected over 10 minutes.
606g CIM Femoral 2.69* Inulin infused at 2mL/hr following a 0.3mL

bolus. Extremely variable urine collections.
*Expected GFR is 3.58-4.61mL/min.

570g Bolus Jugular 4.07* 6 samples collected over 10 minutes.
570g CIM Femoral 3.54* Inulin infused at 3mL/hr following a 0.38mL

bolus. Steady state achieved, Figure 5.15.
*Expected GFR is 3.36-4.33mL/min.
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The main problems encountered with CIM were:

• Infusion into the tail vein was difficult under anaesthesia because the rat

temperature decreased making it harder to cannulate the vein. During these

experiments a lump appeared in the tail indicating that not all the inulin

was being delivered to the circulatory system.

• Urinary output was insufficient and the deadspace volume was too large.

Mannitol in the ratio 1:10 with saline was used to make up the inulin

solution to increase urine volume, and the catheters were cut as short as

possible to reduce deadspace.

Using the bolus inulin injection method, serial blood sampling was carried

out via a jugular vein cannula, and an inulin bolus was injected into the femoral

or jugular vein over 2-3 seconds. The main problems encountered were:

• Cannulating the jugular vein and femoral vein was time consuming and less

practical for ambulatory experiments, therefore infusion into the jugular

vein was tested, and provided the cannula and needles were well flushed,

injecting and sampling from the same cannula was found not to contaminate

results.

• The optimal concentration of inulin to be injected was unknown. Results

were improved with higher concentrations (1:4 opposed to 1:19) and sam-

pling over a longer period of time (70 minutes opposed to 10 minutes).

Expected GFR results were calculated based on body weight, as shown in

Equation (5.4) [Löwenborg et al., 2000].

0.59×Body weight ≤ GFR ≤ 0.70×Body weight (5.4)

For all 5 rats, GFR estimated using the bolus method resulted in a value within

the expected range. However, using CIM, only 1 rat obtained a GFR within the

expected range, with the remaining 4 rats underestimating GFR.



5.4 INULIN CLEARANCE TESTS FOR DETERMINING GFR 111

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

Time (minutes)

In
ul

in
 C

on
ce

nt
ra

tio
n 

(c
ou

nt
s)

 

 

Urine

Plasma

Figure 5.11 CIM for Pilot Rat 1
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Figure 5.12 CIM for Pilot Rat 2
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Figure 5.13 CIM for Pilot Rat 5
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Bolus experiments in 3 subsequent rats were performed with each rat under-

going the clearance test while anaesthetised, and in the ambulatory state 1-4 days

after surgery. Inulin was injected in ratio 1:4 with saline, and sampling continued

over 70-90 minutes. Table 5.5 shows that rats 1 and 3 obtained a GFR that was

repeatable over more than 1 bolus clearance experiment. All GFR estimations

were within expected values except the rat 2 anaesthetised bolus clearance. This

result was somewhat expected since the rat suffered extensive blood loss during

surgery, and after the clearance experiment received a blood transfusion from

another rat, all of which may have effected the results.

Table 5.5 Bolus Experiments

Rat Expected GFR GFR Estimation Figure
(male) (mL/min) (mL/min) % error

415g 2.45-3.15 3.12 9.9% 5.14
415g 2.45-3.15 3.11 12.0% 5.14

386g 2.28-2.93 1.92 7.4% 5.15
386g 2.28-2.93 2.38 6.6% 5.15

276g 1.70-2.19 2.06 8.8% 5.16
276g 1.70-2.19 2.18 1.5% 5.16
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Figure 5.14 Subsequent bolus clearances for Pilot Rat 6 - Model fitted to raw data
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Figure 5.15 Subsequent bolus clearances for Pilot Rat 7
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Figure 5.16 Subsequent bolus clearances for Pilot Rat 8

5.4.2 Serial Blood Sampling and Cannulation

Serial blood sampling for bolus inulin clearance can best be achieved via cannu-

lation, requiring a surgical intervention to insert the cannula. Important points

to consider are:

• How to tie the cannula in place

• How to keep the cannula patent for the duration of the trial

• How to prevent the animal attacking the cannula

• Sampling time-points and blood volumes
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• Length of time of surgery

• Control experiments

Two methods for jugular vein cannulation were considered. The first was the

double-blunt needle technique described by [Bakar and Niazi, 1982] in which a

23-gauge needle is forced into a bent 20-gauge needle. A cannula of appropriate

size then fits snugly onto the other end of the 23-gauge needle, as seen in Figure

5.17.

The cannula is then inserted into the jugular vein by threading the bent 20-

gauge needle into and out of the vein, as seen in Figure 5.18. The 20-gauge needle

is then removed from the assembly, leaving the cannula and smaller needle behind

in the vein to be sutured in place.

 

Figure 5.17 Double blunt needle assembly Bakar and Niazi [1982]

 

Figure 5.18 Double blunt needle cannulation technique Bakar and Niazi [1982]

The second and easier to perform method is similar to that described by

[Wyman et al., 1994]. In this method, 0.8/0.5mm 15o bevel-tipped cannula filled

with heparinised saline attached to a 1mL syringe via a blunt 24-gauge needle

is inserted approximately 40mm into the jugular vein, through the sinus at the
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junction of the subclavian vein, and into the superior vena cava, as shown in

Figure 5.19.

Figure 5.19 Position of the jugular vein

The angle of the bevel is important, because although a sharper bevel makes

it easier to insert into the vein, it also increases the risk of piercing the vessel

wall, or of occluding the cannula due to suction onto the vessel wall when blood

is withdrawn from the cannula. It is often difficult to manoeuvre the cannula

into position. However, lifting the chest cavity and/or injecting saline into the

cannula to open the vessel can usually overcome this difficulty. The position of

the cannula is verified by drawing back on the syringe to see if blood flows freely.

The cannula is held in place by suturing to the muscle. Next, the cannula is

threaded subcutaneously to the back of the neck, where the animal cannot easily

reach it.

Pilot studies found that the animal was still able to pull the cannula out of

position. Hence, a coat was fashioned to protect the cannula, as seen in Figure

5.20. The cannula was temporarily blocked off with a 24g needle and nylon thread

providing a tight seal to prevent blood being drawn back up the cannula when

blood was not being sampled.



116 CHAPTER 5 ACUTE RENAL FAILURE IN RATS - ANIMAL STUDY DESIGN

Figure 5.20 Rat coat to prevent rat accessing the indwelling cannula

The surgical technique is shown in Figures 5.21 and 5.22.

   

Figure 5.21 Cannulation Surgery: Top left, rat positioned for surgery; top right, isolating the
jugular vein; bottom left, inserting the cannula; bottom right, obtaining blood from cannula.

Heparinsed saline was used daily to flush the cannula to keep it patent and

prevent clotting, however, by the end of the 2-week experiment, there was typi-

cally a buildup of fibrous tissue over the tip of the cannula in most animals which

caused either partial or complete occlusion. It is thought that this buildup is most



5.4 INULIN CLEARANCE TESTS FOR DETERMINING GFR 117

  

  

Figure 5.22 Cannulation Surgery: Top left, tying cannula in place; top right, gavage needle
to thread the cannula sub-cutaneously to the back of neck; bottom left, positioning cannula at
the back of neck; bottom right, wrapped in cannula-protecting coat.

likely an immune response to the cannula. Because of the difficulty in keeping

the cannula patent for 2 weeks, it was considered to perform both the bilateral

renal artery clamp and jugular vein cannulation in the one surgery. However, the

length of surgery was a significant concern in the design of experiments.

In particular, the time required to perform an ARF surgery was approxi-

mately 2 - 2.5 hours from administration of the anaesthetic to administration

of the reversal agent. To insert a jugular vein cannula could take up to 1 hour,

and because a control, pre-ARF-induction inulin clearance test was desired, a 70

minute inulin clearance test would also have to be performed during the surgery.

These tests made the surgery too long, and pilot animals did not survive. In ad-

dition, the heparin required to keep the jugular vein cannula patent caused excess

blood loss around the large mid-ventral incision, and an inulin clearance test un-

der surgical conditions can not act as a control with non-anaesthetised animals.

Therefore, it was determined to perform 2 surgeries, allowing approximately 5

days for the animal to recover from the cannulation surgery before undergoing

the ARF surgery.
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Pilot studies were used to determine the optimal blood sampling time points

for inulin clearance, with consideration to allowable blood loss volumes and main-

taining adequate blood volume and pressure. Blood volume, BV , in the rat is

estimated by Equation (5.5), where BW is the body weight in grams [Lee and

Blaufox, 1985].

BV (mL) = 0.06BW + 0.77 (5.5)

For multiple survival collections, 13% of an animals’ blood volume in any

2-week period is the permissible collection volume. For 300g rats in the current

study, this equated to a total allowable collection volume of 2.44mL. 50µL plasma

was required for scintillation analysis, and with an average haematocrit of 40%,

and allowing a margin of error, 150µL blood was required for each inulin sampling

time point. Figure 5.23 shows the model fitted clearance curve for a pilot animal.
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Figure 5.23 Pilot Animal Inulin Clearance Curve

Hence, the following time-point sampling selections were determined:

• Pre-inulin bolus

• 1.5 minutes post-bolus

• 3 minutes post-bolus
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• 6 minutes post-bolus

• 12 minutes post-bolus

• 20 minutes post-bolus

• 40 minutes post-bolus

• 70 minutes post-bolus

With an additional 200µL blood sample required for creatinine analysis at

each inulin clearance test, a total of 1.4mL blood was required at each inulin

clearance. As seen in Figure 5.24, GFR as estimated via inulin clearance did

not vary significantly between 22 and 50 hour sample time-points. Hence, it was

determined to perform inulin clearance tests at 6 hours, 30 hours, 2 days, 4 days

and 7 days, as well as well as 6 hour and 2 day clearances following the cannulation

surgery to provide an experimental control. Therefore, the total blood volume

required was significantly greater than the allowable collection volume for survival

experiments.
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Figure 5.24 Pilot Animal Day 2 Inulin Clearance

The solution to this problem was to perform a blood transfusion. Initially,

other rats from the colony were considered for this role. However, since only

the blood plasma is required for testing, it was determined that after separating

the plasma from the red blood cells, the red blood cells could be mixed with a
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volume of saline equal that that lost in plasma, and returned to the animal at

the completion of the inulin clearance test via the jugular vein cannula.

5.4.3 Final Inulin Clearance method

14C labelled inulin (1 µCi of 1.12 uCi/mg dissolved in 0.1mL ionised water, diluted

1:4 with saline) was injected into the jugular vein cannula of a conscious animal

over 2-3 seconds, and flushed with heparinised saline. A 150µL blood sample was

collected via the jugular vein cannula at -1, 1.5, 3, 6, 12, 20, 40, 70 minutes post-

bolus, and the separated plasma was sent for scintillation analysis. Red cells and

remaining blood plasma were returned to the animal with saline via the jugular

vein after each complete clearance experiment.

5.5 Creatinine Clearance for GFR Determination

Measuring GFR by calculating the clearance of an exogenous marker is time con-

suming, expensive, and thus not appropriate in most clinical settings. Hence,

GFR is usually estimated using an endogenous marker, such as creatinine. Crea-

tinine is formed from creatine phosphate in muscle tissue, and as such, creatinine

production varies greatly with muscle mass. Serum creatinine concentration also

varies with diet. Cooking converts creatine in meat to creatinine, which when

eaten, raises serum creatinine concentration. Hence there can be large variation

in creatinine concentration, particular during illness.

In addition to the variable rate of generation, creatinine is also not an ideal

filtration marker because, as well as being filtered by the glomerulus, it is also

secreted by the proximal tubules, resulting in a clearance that exceeds GFR, par-

ticularly in ARF when secretion increases. Figure 5.25 shows that steady state

creatinine is approximately inversely proportional to GFR as measured by inulin

clearance at normal values (GFR > dashed line) [Shemesh et al., 1985]. However,

when the full spectrum of GFR values is considered, the relationship between cre-

atinine concentration and GFR is hyperbolic, indicating that creatinine clearance

is a poor measure of kidney function at low GFR where it would be most useful.
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Figure 5.25 Relationship between creatinine clearance and GFR in humans

When renal failure is advanced, there is a significant decrease in glomerular

filtration. However, this decrease is accompanied by an increase in tubular se-

cretion, extra-renal elimination of creatinine via intestinal bacteria, and often a

decrease in creatinine production. Therefore, in chronic renal failure, creatinine

concentration becomes an unreliable measure of renal function, usually overesti-

mating GFR.

Because of the difficulties in collecting timed urine samples, GFR is often

estimated using plasma creatinine samples alone, as opposed to calculating the

creatinine clearance. Equations such as the Cockcroft-Gault and the MDRD

equations, (5.6) and (6.16) respectively, have been developed to try to correct

for the limitations of GFR estimation by plasma creatinine, by accounting for

age, sex, weight and race [Cockcroft and Gault, 1976]; [Levy et al., 1999]. GFR

estimated using either the Cockcroft-Gault or the MDRD equations is the current

clinical gold standard.

Ccr(mL/min) =

(
140− age(years)

)(
weight(kg)

)(
0.85 if female

)
72Pcr(mg/dL)

(5.6)

Ccr(mL/min/1.73m2) = (186.3)(Pcr
1.154)(age−0.203)(1.212 if black)(0.742 if female)

(5.7)

All animals recruited for the present study were female albino rats and were
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approximately the same age. Hence, the variations observed between individuals

in a typical clinical setting were not considered relevant to this study. Therefore,

the GFR was estimated based on rat weight and plasma creatinine concentration

as described further in the next chapter.

A 200µL blood sample was required for creatinine analysis at each point that

GFR by plasma creatinine was to be compared with GFR by inulin clearance

and GFR by breath analysis. Blood was obtained via the jugular vein cannula if

patent, or by tail vein if it was not. Blood was centrifuged, and plasma creatinine

concentration was determined using the HPLC creatinine assay, in which precision

studies have shown the coefficient of variation to be 2% for both within batch

and between batch variation. Plasma concentration was determined at 6 hour

and 2 day post cannulation surgery, and at 6 hour, 30 hour, 2 day, 4 day and 7

day post ARF surgery.

5.6 Breath Collection for Determination of GFR

The most common method for breath testing in large animals is via a face-mask

with a non-rebreathing valve, and collecting the breath exhalate into a bag. In

small animals, the animal is usually placed in a sealed chamber until desired ana-

lytes reach detectable levels. In anaesthetised animals, breath is usually collected

directly using endotracheal intubation, [Wyse et al., 2005]. All 3 of these options

were investigated, before settling on a combined method.

Due to the results from the previously described dialysis study, direct breath

was deemed preferable to breath collection in tedlar bags. The tidal volume of the

rat had to be validated to ensure that the volume flowrate was greater than the

sampling rate, to ensure the breath sample was not too diluted. [Pass and Freeth,

1993] report the rat volume flowrate as approximately 2.7mL/sec for a 250-300g

rat, based on a respiratory rate of 85-110 breaths per minute and a tidal volume

of 1.5-1.8mL. Monitoring respiratory rate during surgery found that it drops from

approximately 100 breaths per minute at rest, to 40 breathes per minute during

anaesthesia for a 300g rat. Tidal volume was thus measured crudely by the water

displacement method, in which a beaker of water was inverted in a shallow dish,

also containing water. Tubing was placed under the lip of the beaker, and the
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other end was attached to a latex rat mask, into which the rat was held, forming

a seal. As the rat exhaled, a volume of water was displaced, equal to the volume

of air exhaled. A 300g rat was found to displace 23.5mL water in 10 seconds,

a value just higher than the SIFT-MS sampling rate of 2mL/sec. Because this

method is very crude for measuring flowrate, it was decided to use the values

reported by [Pass and Freeth, 1993].

Endotracheal intubation was not considered for the primary breath sampling

method in the main trial because it requires the animal to be anaesthetised. Due

to the number of breath samples required, this method was deemed impractical,

considering the risks of repeated anaesthesia, and animal ethics. However, en-

dotracheal intubation was considered as a validation technique for future breath

sampling methods. Unfortunately, due to difficulties with the anaesthetic, the

learning curve associated with intubation, and the desire to minimise animal

numbers, intubation, while attempted in 5 rats, was unsuccessful.

The option to place the animal in a sealed chamber, and wait for analyte

concentrations to build up was discarded for two main reasons. Firstly, to simply

wait for detectable analyte levels to be obtained is insufficient, since the analyte

will continue to build up until an equilibrium is obtained. To wait for an equi-

librium would be dangerous for the rat, since it would be re-breathing and thus

concentrating CO2 in the blood and risking hypercapnia. Secondly, the sample

collected would be contaminated from the fur and waste products, for example

if the animal urinated whilst in the chamber.

The face-mask option with re-breathing valve commonly used for breath sam-

pling in large animals was attempted for the rat. A latex mask was created from

a plaster mould generated off a deceased rat. A rat cage (Figure 5.10) was de-

signed to fit and hold a variable sized rat in position in the mask. The mask

was attached to straw with a simple reed valve, allowing the rat to breath from

the room air, and forcing breath unidirectionally down the straw to the mass

spectrometer.

Due to the low pressures involved because of the small size of the animal,

combined with the difficulty in forming a seal around the mask, activating the

valves was very difficult. In addition, because of the small tidal volume, deadspace

was a significant problem. Lastly, it was very stressful for the rat to be forced
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Figure 5.26 Rat restraining device

into the mask, likely elevating stress markers, such as pentane in the breath.

Hence, this method was abandoned. Valved methods such as utilised in humans

for discarding the dead-space portion of the breath and maintaining the alveolar

breath for sampling were also discarded as impractical in the rat.

Finally, a method was defined in which direct breath was collected from a

conscious rat by wrapping the rat in a towel and placing it snuggly into a 300mL

bottle as seen in Figure 5.27.

 

Position of Rat nose 
Rat

Breathing hole SIFT-MS Flow Tube 

Figure 5.27 Breath collection apparatus
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A background air sample was also obtained at each rat breath sample time-

point. The tightness of the fit in the bottle combined with wrapping the rat in

a towel minimised contamination from the fur and waste products. Breathing

holes were located posterior to the position of the rats’ nose. Breath was drawn

directly from the bottle through the SIFT-MS machine at 2mL/sec via a small

straw attached to the end of the bottle. Background air plays a significant role

in this experimental set-up, and the pilot studies and mathematical models to

account for this are described in the next chapter.

The effect of the anaesthetic was tested to ensure that there were not any

metabolites interfering with experimental results. The selected anaesthetic (domi-

tor/ketamine) is metobolised mainly in the liver, and excreted mainly in the urine.

Hence, it was not expected to interfere with breath VOCs. A pilot experiment

was performed in which breath VOCs were monitored in 2 anaesthetised rats.

Breath was sampled prior to administering the anaesthetic, and again at 30 min-

utes and 60 minutes post-anaesthetic with H3O
+, NO+ and O2

+ precursors. At

this time, the reversal agent was administered and breath was sampled again 1

and 2 hours later.

Acetone was seen to increase over the course of the experiment, due to the

enforced fast, as seen in Figures 5.28, 5.29, and 5.30.
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Figure 5.28 Increase in acetone as measured with H3O
+ precursor over duration of anaes-

thesia
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Figure 5.29 Increase in acetone as measured with NO+ precursor over duration of anaes-
thesia
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Figure 5.30 Increase in acetone as measured with O2
+ precursor over duration of anaesthesia

Isoprene was observed to decrease over the course of the experiment, although

this trend was more pronounced in Rat 2, as seen in Figures 5.29, and 5.30.

Isoprene has been reported to be increased in patients with end-stage renal failure,

[Davies et al., 2001]. Hence, it was an important analyte to monitor in the main

trial.

Lastly, because breath sampling occurs both following cannulation surgery

and following surgery for ARF induction, any VOC present because of the surgery

or anaesthetic would be identified in the control post-cannulation breath experi-

ments, and therefore not attributed to the reduction in renal function.
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Figure 5.31 Decrease in isoprene in Rat 1 over duration of anaesthesia
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Figure 5.32 Decrease in isoprene in Rat 2 over duration of anaesthesia

5.7 Summary

Kidney structure and function was described, with specific reference to GFR and

acute renal failure. Current clinical and research gold standard methods for deter-

mining renal function via the clearance of endogenous (creatinine) and exogenous

(inulin) markers, was summarised, along with a discussion of the difficulties and

limitations with these techniques.

An experimental design was presented for monitoring breath analyte concen-

tration in rats for the purpose of determination of renal function after induction

of ARF. Methods for determining GFR via a bolus inulin clearance and plasma

creatinine sampling were also presented. Results from these latter methods al-
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low comparison of the breath monitoring technique with current gold standard

measures.

Pilot studies were described that were conducted to refine the techniques

required for the main clinical trial. Pilot study considerations included surgical

techniques, anaesthetic agents, serial blood sampling, bolus clearance modelling

and breath collection techniques.



Chapter 6

ARF in Rats - Mathematical Methods

6.1 Inulin Clearance Modelling for GFR Determination

Injection of an inulin bolus into the blood is described by the 2-compartment

model in Figure 6.1, where the bolus is injected into the plasma compartment, P ,

(with distribution volume VP ), and moves bi-directionally between the interstitial

compartment, Q, (distribution volume VQ), as described by n2 and n3 before being

eliminated from the plasma via the kidneys, as described by n1.

 

P 
 

Q 

n1 

n3 

n2 

u(t) 
 

Figure 6.1 Two-Compartment Model of Kidney Function

The differential equations describing the amount of inulin in the 2 compart-

ments are dependent on the rate constants n1 - n3, and the inulin mass in both

compartments, p(t) and q(t), as described in Equations (6.1) and (6.2).

d

dt
p(t) = −(n1 + n3)p(t) + n2q(t) + u(t) (6.1)

d

dt
q(t) = −n2q(t) + n3p(t) (6.2)
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In terms of concentrations, where P = p
Vp

and Q = q
VQ

, and defining α =
VQ

VP
,

Equations (6.1) and (6.2) become:

Ṗ = −(n1 + n3)P (t) + n2αQ(t) +
u(t)

VP

(6.3)

Q̇ = −n2Q(t) +
n3

α
P (t) (6.4)

Since transport is assumed to be passive between plasma and interstitial com-

partments, the volume flowrate between compartments must be equal, indicating

a diffusion-based transport, as defined in Equation (6.5).

n3VP = n2VQ (6.5)

It is assumed that the bolus is given so quickly that the concentration in the

interstitial compartment, Q(t), is initially zero (as verified by the -1 minute blood

sample). The bolus is therefore modelled as a unit impulse function at time zero,

as described in Equation (6.6), where P (0) is the inulin concentration in the

plasma compartment at time zero, and δ(t) is the Dirac delta function.

u(t) = P (0)VP δ(t) (6.6)

Equation (6.6) is a reasonable simplification given there is no extra information to

be obtained by modelling the initial rise in plasma inulin concentration, giving the

physical limitations of gaining a sufficient number of accurate sample datapoints

within the first minute after injection of the bolus. This assumption also indicates

that the initial concentration in the plasma compartment is determined from the

size of the injected bolus and the plasma volume.

Combining Equations (6.3), (6.4), (6.5) and (6.6) yields:

Ṗ = −n1P (t)− n2α
(
P (t)−Q(t)

)
+ P (0)δ(t) (6.7)
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Q̇ = n2

(
P (t)−Q(t)

)
(6.8)

An analytical approach for solving this type of problem is to differentiate

Equation (6.7) to obtain a second order ODE in P (t):

P̈ = −n1Ṗ − n2α(Ṗ − Q̇) (6.9)

Equations (6.7) and (6.8) are rearranged for Q and Q̇, and are substituted into

Equation (6.9), which yields:

P̈ + (n1 + n2α + n2)Ṗ + n1n2P = 0 (6.10)

Equation (6.10) can be solved analytically to yield an equation of the form

P (t) = Ae−k1t + Be−k2t. However, this solution is highly non-linear in the un-

known parameters n1 and n2, and would require a non-linear optimisation routine

to solve. Thus, although the problem is simplified at one level by finding an an-

alytical solution to Equation (6.10), the inverse problem of identifying n1 and n2

is made non-linear and non-convex. Hence it is more difficult to find a global

minima, and would require many computationally expensive simulations over

multiple starting points to ensure the correct solution is obtained.

An alternative method is to recognise that identification of the parameter

n1 required for determination of GFR, can be achieved without computing an

analytical or a numerical solution, by using measured concentration data and an

iterative integral fitting method, [Hann et al., 2005].

This parameter identification method uses integrals of Equations (6.7) and

(6.8) to reduce the nonlinear estimation problem to a set of linear equations that

can be solved using linear least squares. The result is a convex relaxation to a well

known optimisation problem, which is linear and requires minimal computation.

In addition, integral functions have the advantage of being robust to noise in

the measured data, by effectively providing a low-pass filter in the summations

involved in numerical integration.
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First, Equation (6.7) is integrated to obtain an approximation to P (t) in

terms of the unknowns n1 and n2. A system of equations is then set up as

defined in Equation (6.11), and solved for n1 and n2 using linear least squares.

[ ∫ t

0
P (t)dt α

∫ t

0

(
P (t)−Q(t)

)
dt
] [ n1

n2

]
=
[

P (0)− P (t)
]

(6.11)

Note that Equation (6.11) will have to be integrated over several different time

intervals in the test to yield a solvable system of equations.

The initial approximation of P (t) is a linear piecewise approximation obtained

from the measured time and concentration data, and P (0) is the estimated aver-

age inulin concentration in the plasma immediately after injection of the bolus,

defined as the product of the bolus volume and concentration, divided by the

estimated plasma volume of the animal based on its weight. Using the obtained

solution for n1 and n2, a new approximation for P (t) is generated. Constraints

are added to the least squares solution to keep the approximation within known

physiological ranges. However, there are no measurements for Q(t), hence a dif-

ferent approach is required to analyse the interstitial compartment.

Given the approximation for P (t), Q(t) can be found analytically using the

convolution integral solution to Equation (6.8), given in (6.12).

Q(t) = n2

∫ t

0

P (τ)e−n2(t−τ)dτ (6.12)

Iterations between P (t) and new estimates of Q(t) to update P (t) in Equation

(6.11) continue until convergence is achieved in the parameter values. The method

is repeated for α values within the physiologically reported range of 2.2 - 4.5

[Levitt, 2003] and [Poulsen et al., 1977], until a least squares solution is found for

α.

[Levitt, 2003] and Poulsen et al. [1977] both determined the volume of distri-

bution in humans. Therefore, to determine the volume of distribution in rats, 2

pilot experiments were performed, in which the renal arteries were tied off, and
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an inulin bolus was injected. Plasma samples were collected over 90 minutes,

by which time it was assumed that equilibrium would be obtained. Note that

in this model, the volume of distribution is equal to the sum of the plasma and

interstitial volumes (VP + VQ). The volume of distribution was then calculated

using Equation (6.13),

(volume of distribution) =
(vol inj)(cts inj)

SScts
(6.13)

where vol inj is the volume of the inulin bolus, cts inj is the inulin concentration

in the bolus, and SScts is the steady state inulin concentration calculated as

the area under the plasma inulin concentration curve (AUC) divided by time,

after equilibration between compartments. Note that if GFR is reduced to zero,

after equilibration between the plasma and interstitial compartments the inulin

concentration will remain constant until the end of the experiment, and thus

SScts will be a true steady state. Using this technique, Figures 6.2 and 6.3 were

obtained for rats 1 and 2, respectively, and experimental and model identified

parameters are shown in Table 6.1.
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Figure 6.2 Rat 1 Raw inulin concentration data to enable modelling of volume of distribution
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Figure 6.3 Rat 2 Raw inulin concentration data to enable modelling of volume of distribution

Table 6.1 Parameters for Volume of Distribution Determination

Parameter Rat 1 Rat 2

Volume inulin injected 0.38mL 0.395mL
Concentration inulin injected 183746.7 counts 195411.6 counts

Steady state inulin concentration 896 counts 913.4 counts

Weight 415g 383g
Plasma volume 16.6mL 15.3mL

Volume of distribution 77.9mL 84.5mL
α 3.7 4.5

However, as seen in Figures 6.4 and 6.5, the model fit to this raw inulin

concentration data suggests that steady state was not obtained, and thus GFR

was not exactly zero. Therefore, the volume of distribution and, subsequently α,

were overestimated in this instance. Average and maximum fitting errors were

3.6% and 6.7%, and 5.7% and 10.9% for rats 1 and 2, respectively in Figures 6.4

and 6.5. Note that, as the experiments were designed, the plasma and unmeasured

interstitial concentration should approach the same value, as seen in Figures 6.4

and 6.5.
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Figure 6.4 Rat 1 Model fit to raw inulin concentration data for volume of distribution de-
termination. The non-zero slope indicates GFR 6= 0
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Figure 6.5 Rat 2 Model fit to raw inulin concentration data. The non-zero slope indicates
GFR 6= 0

Equation (6.14) was employed to account for this situation in which steady

state is not achieved,

(volume of distribution) =
(vol inj)(cts inj)− (vol lost)(AUC/time)

AUC/time

=
(vol inj)(cts inj)

AUC/time
− (GFR)(mins) (6.14)

where cts lost is the concentration of inulin excreted, vol lost is the volume of
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urine passed over the experiment, time is time between equilibration and the end

of the experiment, and mins is the length of time between injection of the bolus

and the end of the experiment.

Using this technique, α was estimated as α = 2.3 and α = 2.2 for rats 1 and 2

respectively, compared with the α = 3.7 and α = 4.5 values obtained previously.

Therefore, in the integral fitting method, α values of between 2.2 and 4.5 are

permitted. This method also allows for a changing volume of distribution be-

tween clearance experiments, which is reasonable considering the changing state

of the rat over the 2-week course of the trial, including variable blood loss, water

consumption, and fluid loading. It is important to recognise that the volume of

distribution is a pharmacokinetic parameter, rather than an absolute physiolog-

ical parameter. Distribution of a substance in the interstitial compartment will

vary depending on the substance. Thus, the volume of the interstitial compart-

ment does not have an exact physiological meaning.

After fitting the model to the raw inulin concentration data, the GFR is then

equal to the product of n1 and the plasma volume, where plasma volume is defined

in Equation (6.15), and is found analytically using MapleTM with Equations (6.1)

and (6.2),

VP =
(−bolus)(rawcts)(−1 + e−n1tbolus)

(n1)(P (0))(tbolus)(e−n1tbolus)
(6.15)

where bolus is the volume of inulin solution injected, rawcts is the concentration

of the injected inulin, tbolus is the time over which the bolus was injected, and

P (0) is the average inulin concentration in the plasma immediately after inject-

ing the inulin bolus. Note that blood sampling over the course of the experiment

results in a decreased haematocrit, although blood volume and pressure is main-

tained by flushing the cannula with an equal volume of saline. For a 300g rat with

a 18-19mL blood volume, the 1.4mL of blood required over the experiment results

in a 7-8% decrease in haematocrit, which is not accounted for in the model.

Finally, note that the expected plasma volume is approximately 40% body

weight, based on a blood volume as defined in Equation (5.5), and an average

haematocrit of 40%. Thus, a 300g rat will have a plasma volume of approximately

11-12mL.
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6.2 Creatinine Estimates of GFR

All animals recruited for the present study were female Sprague-Dawley rats

of approximately the same age. Therefore, GFR was estimated based on rat

weight and plasma creatinine concentration. By plotting GFR (mL/min) values

generated using the inulin clearance method against wt
Pcr

for all rats at all time

points, Figure 6.6 and Equation (5.4) were obtained, where wt is the rat weight

in kg, and PCr is the plasma creatinine concentration in µmol/L.
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Figure 6.6 Relationship between plasma creatinine and GFR in all rats

GFR = 217
wt

Pcr

(6.16)

6.3 Breath collection for GFR estimation

6.3.1 SIM Scans

A pilot study was conducted to determine the relationship between rat breath

and background air in the experimental set-up described in Chapter 5. Healthy,

conscious rats were allowed to equilibrate in a room containing a controlled con-

centration of ammonia. By increasing the concentration of the background am-

monia, CB, and measuring the sample collected in the bottle, CTot, Figure 6.7 was
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obtained, relating background ammonia to the concentration in a rat’s breath,

which is useful for calibration of experimental results.
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Figure 6.7 Relationship between background and breath ammonia in healthy rats

Linear regression yields Equation (6.17), where the y-intercept can be used

to find the concentration of ammonia in breath given a zero concentration in

background air.

CTot = 1.46CB + 59 (6.17)

Because of the experimental set-up, the measured concentration, CTot is ac-

tually a combination of the rat breath concentration, CR, and the background

air, CB. Hence, CR is even higher than seen in Figure 6.7.

The slope of CTot in Figure 6.7 illustrates the very important observation that

ammonia concentration in rat breath, CR, is dependent on the concentration

of that analyte in the background air, CB, as expected. However, the slope

greater than 1 indicates that ammonia is concentrated in the breath against its

concentration gradient from the blood, a finding that has not been previously

described.



6.3 BREATH COLLECTION FOR GFR ESTIMATION 139

For simple diffusion down a concentration gradient, as is usually reported for

transport across lung epithelial cells, it was expected that when plotted against

CB, the lines CTot and CB should intersect at a point where the concentrations are

equal. At background air concentrations less than the point of intersection, the

analyte diffuses out of the blood, and at background air concentrations greater

than the point of intersection, the analyte diffuses into the blood. Hence, this

finding in Figure 6.7 and Equation (6.17) suggests the presence of actively ener-

gised ammonia transporters in the lung capillaries or epithelia, which are capable

of transporting ammonia against its concentration gradient such that ammonia

appears to be exhaled at concentration greater than that of the background air

or the blood.

Another possible explanation is that ammonia and its metabolites are re-

moved from the blood and concentrated in the lung tissue, thus providing a

sink for diffusion into the alveolar air. Cooper and Freed [2005] injected a

[13N]ammonia bolus into the femoral vein of anaesthetised rats and measured

its clearance from the blood. Results showed that nearly 30% of the label was

removed by the lungs in the first pass, supporting the theory for an ammonia

sink. However, they did not measure large quantities of ammonia in the expired

air. A third possible explanation is an increase in the action of the enzyme urease

in the oral cavity, which converts urea to ammonia.

Equation (6.17) indicates the ammonia concentration in a healthy rat. How-

ever, it is not feasible to perform such an experiment on a group of rats with

equally impaired renal function. Hence, a generalised model must be developed,

and analyte concentration in rats with impaired renal function must be nor-

malised to the healthy rat state.

A lumped parameter model for the breath circuit is shown in Figure 6.8. In

this model, the rat is breathing at a volume flow rate of VR mL/sec, and breathes

in and out concentrations of CTot and CR, respectively. SIFT-MS draws the

sample at 2mL/sec, and thus background air must be drawn into the bottle at

VB = 2mL/sec to maintain equilibrium. The volume flow rate of rat breath is

calculated from tidal volume and respiratory rate, which for a 250-300g rat, is

approximately 2.7mL/sec [Pass and Freeth, 1993].
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Bottle CTot @ VB=2mL/sec 
Drawn to SIFT-MS 

CB @ VB=2mL/sec 
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CR @ VR mL/sec 
Rat breathing out 

CTot @ VR mL/sec 
Rat breathing in

Figure 6.8 Rat Breathing Circuit

Using continuity of mass, CR can be calculated from Equation (6.18).

CBVB + CRVR = CTotVB + CTotVR

⇒ CR =
(
1 +

VB

VR

)
CTot −

VB

VR

CB (6.18)

Plotting CR against CB and fitting a linear regression as in Figure 6.7 and

Equation (6.17), yields (6.19), specific for ammonia.

CR = 1.79CB + 102 (6.19)

Note that the CR obtained from Equation (6.19) is specific for a healthy rat.

Hence, Equations (6.18) and (6.19) are combined to normalise a given rat concen-

tration, CR, to a healthy rat concentration at that background air concentration,

as seen in (6.20).

CR∗ =

(
1 +

VB

VR

)
CTot −

VB

VR

CB

1.79CB + 102
(6.20)

CR∗ is plotted against time, following the course of each surgical intervention.

Hence, each rat provides their own control from the cannulation surgery to ensure

that it was the ARF and not surgery alone causing the rise in breath ammonia.

Using this method, a percentage increase in breath ammonia can be reported
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for each rat. Subsequently, breath ammonia can be converted to GFR by plot-

ting GFR obtained via inulin clearance against CR∗ for each rat, and generating

Equation 6.21, where a is a rat-specific parameter.

GFR =
a

CR∗
(6.21)

Alternatively, a population metric for GFR can be obtained by plotting GFR

obtained via inulin clearance against CR∗ for all rats at all time-points, which

is shown in Figure 6.9. GFR can then be estimated for any rat in the popu-

lation from breath ammonia using Equation (6.22). Note that domitor causes

a 70% depression in respiration. Therefore, the ratio VB/VR in Equation (6.20)

is increased during surgery and recovery from anesthesia. A limitation of this

method is that the final breath concentration, normalised to the background air,

is quite sensitive to changes in the VB/VR ratio. This problem is less of an issue

in this study, because all rats are a similar weight, receive the same drug dosage,

and undergo the same surgical procedures. Hence, the respiratory responses are

assumed to be the same between animals.
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SIM scan results were collected not only for ammonia, but also for isoprene in

this pilot experiment. Although isoprene concentration in the laboratory air was

not varied deliberately, as ammonia was, its concentration was still monitored.

Plotting CTot against CB for isoprene, Figure 6.10 was obtained.
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Figure 6.10 Relationship between background and breath isoprene in healthy rats

The correlation is much lower in Figure 6.10 than in Figure 6.7. However,

the concentrations involved were much lower, and the variation in background

air was a natural variation, rather than an artificially imposed condition. The

CTot and CR slopes have a value less than 1.0 indicating that isoprene behaves

as expected for an analyte travelling passively down its concentration gradient

across lung epithelia. The fact that the point of intersection was not reached

within the commonly observed isoprene concentrations indicates that isoprene is

substantially higher in breath than background air. Hence, there is an almost

unlimited sink for isoprene diffusion into the background air.

[Buckley et al., 1999] found that after administering radiolabelled isoprene to

rats and following the time course of excretion, 91% of that dose was recovered, of

which 94% was excreted unchanged. Specifically, 59% was excreted in the breath,

35% was excreted by the kidney, and the remainder was recovered in the faeces

and tissues. With known and reported renal excretion, the slope in Figure 6.10 is

reasonable and suggests that the exhaled breath is the result of the combination

of endogenous isoprene and background isoprene minus renal excretion.



6.3 BREATH COLLECTION FOR GFR ESTIMATION 143

With lack of evidence to suggest otherwise, it is expected that most other

analytes cross the lung epithelia via diffusion, with the precise slope varying

depending on excretory pathways specific to the analyte. That is, the amount

exhaled will be a result of endogenous production or metabolism combined with

the amount of analyte inhaled, minus metabolism or excretion of the analyte via

other pathways. Ammonia, with its apparent active transport across the lung

epithelia is considered an exception, which could be an evolutionary adaptation

to rid the body of dangerous nitrogenous wastes.

6.3.2 Interpreting SIM Scan raw data

A typical SIM scan is shown in Figure 6.11. Error in the GFR estimation is due to

the oscillation in ammonia concentration as recorded by the SIFT-MS, and seen

in Figure 6.11. A density profile can be created from the SIM scan of background

air and sample results, as described in Chapter 2 and shown in Figure 6.12.
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Figure 6.11 Typical SIM scan, showing oscillation in reported concentration at equilibrium

The reported concentration is then the peak of the density profile, with the

error in the value obtained via error propagation. Equation (6.22) can then be

re-written in full, including errors:

GFR±∆GFR = a
102 + 1.79(CB ±∆CB

)(
1 + VB

VR

)(
CTot ±∆CTot

)
−
(

VB

VR

)(
CB ±∆CB

) (6.23)
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Figure 6.12 Density profile of typical SIM scan for determining true analyte concentration

The error on a quantity, ∆x, is usually quoted as the standard deviation,

σ. Given that the distribution in these SIM scans is largely normal, the 68%

confidence limits are ± one standard deviation from the value. Equations (6.24)

and (6.25) are used to determine the error propagation in (6.23).

f = aA± bB −→ σ2
f = a2σ2

A + b2σ2
B (6.24)

f = a
A

B
−→ (

σf

f
)2 = (

σA

A
)2 + (

σB

B
)2 (6.25)

Splitting (6.23) into its numerator, num, and denominator, den, the error in

GFR, σGFR, is determined, as defined in Equations (6.26) and (6.27).

(σGFR

GFR

)2
=
(σnum

num

)2
+
(σden

den

)2
(6.26)

⇒ σGFR = GFR

√√√√√
(

(1.79a)2(σCB
)2

(a2)(102 + 1.79CB)2

)
+

(
2(1 + VB

VR
)2 + 2(σCB

)2 + (σCTot
)2(

(1 + VB

VR
)CTot − VB

VR
CB

)2

)
(6.27)
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6.3.3 Mass Scans

Mass scans were analysed using the paired model described in Chapter 3. Raw

data were collected in triplicate for CB and CTot were combined using Equation

(6.18), and an Equation (6.20) specific to each mass of interest in the collected

spectrum. Masses can appear in the breath from the background air in four main

ways:

1. Mass generated endogenously, regardless of presence in background air; pas-

sive diffusion down a concentration gradient across lung epithelia; excretion

a combination of ventilation, metabolism and renal elimination, eg isoprene.

Figure 6.13, Case 1.

2. Mass generated endogenously, regardless of presence in background air;

active transport across lung epithelia, eg ammonia. Figure 6.13, Case 2.

3. Mass not generated endogenously; passive diffusion down a concentration

gradient across lung epithelia; no excretion or metabolism. Figure 6.14,

Case 1.

4. Mass not generated endogenously; passive diffusion down a concentration

gradient across lung epithelia; excretion a combination of ventilation, metabolism

and renal elimination. Note that if the mass is not produced endogenously,

but is metabolised or excreted via the kidneys, then the body is effectively

removing a contaminant from the background air. Figure 6.14, Case 2.
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Figure 6.13 Endogenously generated analyte transport into alveolar breath
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Figure 6.14 Analyte transport out of background air

Two classifications were performed using the paired classification technique

of Chapter 3 for biomarker identification:

1. Maximum concentration after cannulation surgery against maximum con-

centration after ARF surgery

2. Healthy concentration (after recovery from cannulation surgery and before

ARF surgery) against maximum concentration after ARF surgery

These three tests give an indication of the impact of ARF over and above the

impact of any surgical stressor, as well as an indication of the degree of recovery

within one week of induced ARF.

6.4 Summary

Mathematical models were presented for the determination of GFR from bolus

inulin clearance tests, plasma creatinine concentrations, and breath collections.

Specifically, a two compartment model described the kinetics of a bolus inulin

tracer as it is injected into the plasma and passes out into the urine. Secondly, a

population model based on the Cockcroft-Gault equation using plasma creatinine

concentrations, was presented and modified for use in rats.
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Lastly, it was illustrated how the concentration of analytes in rat breath can

be isolated from the background air. This illustration required a pilot study to

be carried out, in which the background air ammonia concentration was varied to

determine its effect on expired breath. Interestingly, it was found that ammonia

can be removed from the body at a concentration greater than that suggested by

simple diffusion from the blood, alone.





Chapter 7

ARF in Rats - Results and Discussion

In total, 11 rats participated in the main ARF animal trial. The completeness of

the datasets varied between rats, with the cannulae of some rats failing before the

end of the trial. In addition, some of the earlier rats do not have control results for

post-cannulation surgery. Results are detailed for each rat for correlation between

inulin clearance, creatinine concentration and breath SIM scans. Histology slides

were examined for evidence of ARF. Finally, the paired mass scan model from

Chapter 3 was employed to identify other possible biomarkers of renal failure.

Given the small number of rats in this study, both pseudo-names and numbers

were assigned to each, for clarity, and to highlight their contribution to these novel

studies. Again, all rats were female Sprague-Dawley rats of 280-320g. They

were housed individually at 21oC in a 12 hour light/dark cycle, and allowed free

access to food and water. Rats were regularly monitored according to animal

ethics guidelines, and approval for this study was granted by the Animal Ethics

Committee under protocol C09/07601. Approval to conduct these trials, also

required the successful completion of 3 animal ethics modules offered by the

University of Otago Animal Welfare Office:

• Module One: Animal Ethics and Legislation

• Module Two: Experimental Animal Techniques

• Module Three: Anaesthesia and Surgery
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7.1 Correlation of gold standard renal markers with

breath ammonia

7.1.1 Grace - Rat 1

7.1.1.1 Inulin Clearance

Grace underwent a successful cannulation surgery, followed by a recovery inulin

clearance test 2 days later. Five days after cannulation surgery, she underwent

surgery to induce ARF. Surgery was successful, and the cannula remained patent

for 3 post-ARF clearances. Her inulin clearance fitting results are shown in Figure

7.1, and model-fitted parameters are shown in Table 7.1. The good model fit to

raw data in this and subsequent rats justifies the integral fitting method selected

in Chapter 6.
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Figure 7.1 Grace: Modelling of inulin concentration in the plasma and interstitial compart-
ments over a 70 minute clearance test conducted on 4 separate occasions. 1: Two days post
cannulation surgery; 2-4: Six hours, 30 hours, and two days post ARF induction, respectively
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Table 7.1 Grace: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2 3 4

Weight (g) 236.1 255 244 236.2

Plasma Volume (mL) 9.5 10.2 9.8 9.5
n1 0.24817 0.1024 0.21567 0.22996
n2 0.21958 0.060525 0.2109 0.17734
α 2.8 3.7 2.9 3.5

GFR (mL/min) 2.35 1.05 2.11 2.18

Average Fitting Error (%) 10.9 7.7 14.3 10.9
Maximum Fitting Error (%) 29.4 22.3 42.8 26.3

7.1.1.2 Creatinine

Five creatinine concentrations were determined using the jugular vein cannula,

and a subsequent 3 samples obtained via the tail vein. A pre-ARF measurement

was not taken, but was assumed to be similar to the 6 hour post-cannulation

measurement.
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Figure 7.2 Grace: Plasma creatinine concentration and correlation with GFR via inulin
clearance
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7.1.1.3 Ammonia SIM Scans

Thirteen breath SIM scans were analysed from 1 hour after cannulation surgery

until 7 days post-ARF surgery. Figure 7.3 shows the measured breath results for

CB and CTot, as well as the calculated CR and CR∗ . In addition to displaying the

rat breath ammonia concentration, Figure 7.3 highlights the natural variation in

background ammonia levels in the laboratory environment.
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Figure 7.3 Grace: SIM scan analysis of ammonia in breath and background air

Plotting GFR obtained via inulin clearance against 1/CR∗ for all common

test timepoints, resulted in Equation (7.1), with a = 1.94 from Equation (6.21),

and an R2 value of 0.74.

GFR =
1.94

CR∗
(7.1)

Combining GFR estimation via inulin clearance, plasma creatinine, and breath

ammonia resulted in Figure 7.4. As expected, GFR drops after any surgery. How-

ever, the magnitude of that decrease is significantly greater after an acute renal

injury. In this rat, approximately 90% of renal function was restored within 30

hours of induction of ARF, and renal function appeared to be back within a

normal range by the end of the trial, 7 days after that injury. Error bars rep-

resenting sampling errors and variation in breath measurement were calculated

as described in Section 6.3. Errors in GFR estimation via inulin clearance were

calculated from average model fitting errors. Lastly, a fixed error of 2% is shown
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for errors in GFR calculation via plasma creatinine concentration, as described

in Section 5.5.
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Figure 7.4 Grace: A comparison of GFR estimates via bolus inulin clearance, plasma cre-
atinine concentration, and breath ammonia concentration, following cannulation surgery at 0
hours, and surgery for ARF induction at 120 hours

7.1.2 Heidi - Rat 2

7.1.2.1 Inulin Clearance

Heidi underwent a successful cannulation surgery, followed by a recovery inulin

clearance test 2 days later. Five days after cannulation surgery, she underwent

surgery to induce ARF. Surgery was successful, and the cannula remained patent

for 3 post-ARF clearances. The first of these clearances was performed in a

different manner to the rest of the clearance tests, in which blood samples were

taken every 30-60 minutes after the bolus for 4 hours, to attempt a GFR estimate

immediately after surgery. However, since this was a period when the GFR was

increasing rapidly, this method was not particularly successful. Heidi’s inulin

clearance fitting results are shown in Figure 7.5, and model-fitted parameters are

shown in Table 7.2.
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Figure 7.5 Heidi: Inulin clearance summary. 1: Two days post cannulation surgery; 2-4:
One, 24 and 48 hours post ARF induction, respectively

Table 7.2 Heidi: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2 3 4

Weight (g) 259.5 273.3 258.4 269.5

Plasma Volume (mL) 10.4 10.9 10.4 10.8
n1 0.24575 0.022907 0.10988 0.16224
n2 0.18806 0.012801 0.19054 0.22255
α 2.8 2.8 3.3 3.5

GFR (mL/min) 2.56 0.25 1.14 1.75

Average Fitting Error (%) 9.7 14.9 7.0 9.6
Maximum Fitting Error (%) 31.8 34.0 19.8 17.5

7.1.2.2 Creatinine

Five creatinine concentrations were determined using the jugular vein cannula,

with the last 2 samples obtained via the tail vein. A pre-ARF measurement

was not taken, but was assumed to be similar to the 6 hour post-cannulation

measurement.
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Figure 7.6 Heidi: Plasma creatinine concentration and correlation with GFR via inulin
clearance

7.1.2.3 Ammonia SIM Scans

Nine breath SIM scans were analysed from 2 days after cannulation surgery until

7 days post-ARF surgery. Figure 7.7 shows the measured breath results for CB

and CTot, as well as the calculated CR and CR∗ .
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Figure 7.7 Heidi: SIM scan ammonia in breath and background air

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-
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tion (7.2), with a = 2.40 from Equation (6.21), and an R2 value of 0.52.

GFR =
2.40

CR∗
(7.2)

Combining GFR estimation via inulin clearance, plasma creatinine, and breath

ammonia resulted in Figure 7.8.
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Figure 7.8 Heidi: GFR estimation via bolus inulin clearance, plasma creatinine, and breath
ammonia

7.1.3 Isis - Rat 3

7.1.3.1 Inulin Clearance

Isis underwent a successful cannulation surgery, followed by a recovery inulin

clearance test 2 days later. Five days after cannulation surgery, she underwent

surgery to induce ARF. Surgery was successful, and the cannula remained patent

for 5 post-ARF clearances, including an intermediate clearance the day after

surgery. Her inulin clearance fitting results are shown in Figure 7.9, and model-

fitted parameters are shown in Table 7.3.
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Figure 7.9 Isis: Inulin clearance summary, 1: Two days post cannulation surgery; 2-6: Six
hours, 20 hours, 30 hours, 2 days and 4 days post ARF induction

7.1.3.2 Creatinine

The first 7 creatinine concentrations were able to be determined using the jugular

vein cannula, with the last sample obtained via tail vein. A pre-ARF measure-

ment was not taken, but was assumed to be similar to the 6 hour post-cannulation

measurement.
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Table 7.3 Isis: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2 3 4 5 6

Weight (g) 294.4 298.6 273.3 284 280.9 281.6

Plasma 11.8 12.0 11.0 11.4 11.3 11.3
Volume (mL)
n1 0.21967 0.0792 0.1156 0.1074 0.157 0.19817
n2 0.22243 0.10698 0.185 0.13515 0.21887 0.21706
α 2.7 2.6 3.3 3.3 3.2 3.0

GFR (mL/min) 2.60 0.95 1.27 1.32 1.77 2.24

Average Fitting 14.0 3.3 6.6 9.8 8.3 7.5
Error (%)
Maximum Fitting 40.1 7.7 14.9 20.1 26.3 18.6
Error (%)
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Figure 7.10 Isis: Plasma creatinine concentration and correlation with GFR via inulin clear-
ance

7.1.3.3 Ammonia SIM Scans

Nine breath SIM scans were analysed from 2 days after cannulation surgery until

7 days post-ARF surgery. Figure 7.11 shows the measured breath results for CB

and CTot as well as the calculated CR and CR∗ .
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Figure 7.11 Isis: SIM scan ammonia concentration in rat breath and background air

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-

tion (7.3), with a = 1.67 from Equation (6.21), and an R2 value of 0.93.

GFR =
1.67

CR∗
(7.3)

Combining GFR estimation via inulin clearance, plasma creatinine, and breath

ammonia resulted in Figure 7.12.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

Time since Cannulation Surgery (hours)

G
FR

 (
m

L
/m

in
)

 

 
C

R*

Inulin
Creatinine

Figure 7.12 Isis: GFR estimation via bolus inulin clearance, plasma creatinine, and breath
ammonia
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7.1.4 Maya - Rat 4

7.1.4.1 Inulin Clearance

Maya underwent a successful cannulation surgery, followed by the post-operation

and recovery inulin clearance tests. Five days later, she underwent surgery to

induce ARF. Surgery was successful, and the cannula remained patent for 4 of

the 5 post-ARF samples. Her inulin clearance fitting results are shown in Figure

7.13, and model-fitted parameters are shown in Table 7.4.
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Figure 7.13 Maya: Inulin clearance summary, 1-2: Six hours and 2 days post cannulation
surgery, respectively; 3-6: Six hours, 30 hours, 2 days and 4 days post ARF induction, respec-
tively.
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Table 7.4 Maya: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2 3 4 5 6

Weight (g) 255.3 238.8 240.1 232.1 237 229.6

Plasma 10.3 9.6 9.6 9.3 9.5 9.2
Volume (mL)
n1 0.18252 0.24892 0.1141 0.22973 0.25366 0.20832
n2 0.14271 0.13695 0.070757 0.15365 0.18772 0.18312
α 3.1 2.6 2.4 3.4 3.2 2.9

GFR (mL/min) 1.87 2.39 1.10 2.14 2.41 1.92

Average Fitting 7.5 6.2 6.2 9.2 11.8 9.0
Error (%)
Maximum Fitting 15.1 19.1 10.9 21.4 34.4 21.6
Error (%)

7.1.4.2 Creatinine

The first 8 creatinine concentrations were able to be determined using the jugular

vein cannula, with the last sample obtained via tail vein. A pre-ARF measure-

ment was not taken, but was assumed to be similar to the 6 hour post-cannulation

measurement.
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Figure 7.14 Maya: Plasma creatinine concentration and correlation with GFR via inulin
clearance
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7.1.4.3 Ammonia SIM Scans

All 15 breath SIM scans were analysed from 4 hours prior to cannulation surgery

until 7 days post-ARF surgery. Figure 7.15 shows the measured breath results

for CB and CTot as well as the calculated CR and CR∗ .
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Figure 7.15 Maya: SIM scan ammonia concentration in rat breath and background air

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-

tion (7.4), with a = 1.78 from Equation (6.21), and an R2 value of 0.80. Combin-

ing GFR estimation via inulin clearance, plasma creatinine, and breath ammonia

resulted in Figure 7.16.

GFR =
1.78

CR∗
(7.4)
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Figure 7.16 Maya: GFR estimation via bolus inulin clearance, plasma creatinine, and breath
ammonia
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7.1.5 Nell - Rat 5

7.1.5.1 Inulin Clearance

Nell underwent a successful cannulation surgery, followed by the post-operation

and recovery inulin clearance tests. Five days later, she underwent surgery to

induce ARF. Surgery was successful, and the cannula remained patent for 4 of

the 5 post-ARF samples. Her inulin clearance fitting results are shown in Figure

7.17, and model-fitted parameters are shown in Table 7.5.
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Figure 7.17 Nell: Inulin clearance summary. 1-2: Six hours and 2 days post cannulation
surgery, respectively; 3-6: Six hours, 30 hours, 2 days, and 4 days post ARF induction, respec-
tively.
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Table 7.5 Nell: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2 3 4 5 6

Weight (g) 285.2 299.8 288 278.6 281.7 262.3

Plasma 11.4 12.0 11.5 11.2 11.3 10.5
Volume (mL)
n1 0.15558 0.2076 0.034497 0.047501 0.068831 0.10753
n2 0.1403 0.19356 0.086742 0.11323 0.16402 0.15459
α 2.5 2.7 2.7 3.1 3.8 3.6

GFR (mL/min) 1.78 2.50 0.40 0.53 0.78 1.13

Average Fitting 9.5 8.9 6.6 4.5 6.9 5.6
Error (%)
Maximum Fitting 24.1 27.4 13.3 8.0 13.0 12.6
Error (%)

7.1.5.2 Creatinine

The first 8 creatinine concentrations were able to be determined using the jugular

vein cannula, with the last sample obtained via tail vein. A pre-ARF measure-

ment was not taken, but was assumed to be similar to the 6 hour post-cannulation

measurement.
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Figure 7.18 Nell: Plasma creatinine concentration and correlation with GFR via inulin
clearance
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7.1.5.3 Ammonia SIM Scans

All 15 breath SIM scans were analysed from 4 hours prior to cannulation surgery

until 7 days post-ARF surgery. Figure 7.19 shows the measured breath results

for CB and CTot as well as the calculated CR and CR∗ .
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Figure 7.19 Nell: SIM scan ammonia concentration in breath and background air

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-

tion (7.5), with a = 1.74 from Equation (6.21), and an R2 value of 0.23.

GFR =
1.74

CR∗
(7.5)

This low correlation was further observed in Figure 7.20, where GFR es-

timated via breath ammonia appeared to return to normal levels much quicker

GFR estimated via inulin clearance or plasma creatinine. It is likely that machine

error may have contributed to this poor result, because the CTot value reported

by the SIFT-MS instrument did not reach a strict plateau. Instead, the reported

concentration continued to rise to a value of approximately 750ppb, which was

3-4 times greater than the highest concentration recorded for any other rat at

any other timepoint. Combining GFR estimation via inulin clearance, plasma

creatinine, and breath ammonia resulted in Figure 7.20.
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Figure 7.20 Nell: GFR estimation via bolus inulin clearance, plasma creatinine, and breath
ammonia

7.1.6 Olive - Rat 6

7.1.6.1 Inulin Clearance

Olive had a successful cannulation surgery, followed by the post-operation and re-

covery inulin clearance tests. After ARF-induction surgery the cannula remained

patent until a 6 day inulin clearance test. Inulin clearance fitting results are

shown in Figure 7.21, and model-fitted parameters are shown in Table 7.6.

Table 7.6 Olive: Inulin clearance Parameters

Parameter Inulin Clearance Test
1 2 3 4 5 6 7

Weight (g) 292.3 299.5 278.3 291.8 277 270 276

Plasma 11.7 12.0 11.1 11.7 11.1 10.8 11.1
Volume (mL)
n1 0.1701 0.22264 0.072785 0.12674 0.14959 0.16314 0.15911
n2 0.13217 0.12815 0.13058 0.21035 0.19531 0.22275 0.23927
α 2.4 3.2 2.4 3.0 3.1 2.9 3.2

GFR (mL/min) 1.99 2.67 0.81 1.48 1.66 1.77 1.81

Average Fitting 11.2 7.5 7.8 8.6 7.3 9.8 11.7
Error (%)
Maximum Fitting 25.5 18.3 15.5 20.5 16.3 31.9 24.7
Error (%)
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Figure 7.21 Olive: Inulin clearance summary. 1-2: Six hours and 2 days post cannulation
surgery; 2-7: Six hours, 30 hours, 2 days, 4 days, and 6 days post ARF induction, respectively

7.1.6.2 Creatinine

The first 8 creatinine concentrations were able to be determined using the jugular

vein cannula, with the last sample obtained via tail vein. A pre-ARF measure-

ment was not taken, but was assumed to be similar to the 6 hour post-cannulation

measurement.
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Figure 7.22 Olive: Plasma creatinine concentration and correlation with GFR via inulin
clearance

7.1.6.3 Ammonia SIM Scans

All 15 breath SIM scans were analysed from 4 hours prior to cannulation surgery

until 7 days post-ARF surgery. Figure 7.27 shows the measured breath results

for CB and CTot as well as the calculated CR and CR∗ .
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Figure 7.23 Olive: SIM scan ammonia in breath and background air

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-

tion (7.6), with a = 1.71 from Equation (6.21), and an R2 value of 0.17. This low

R2 value occurred because the lowest breath ammonia concentration achieved

after the cannulation surgery was not too dissimilar to that achieved after ARF
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induction. However, if the relative decrease in breath ammonia from a pre-surgery

concentration is considered, the relative decrease in renal function after ARF in-

duction is 47% compared with 27% for post-cannulation surgery. Combining GFR

estimation via inulin clearance, plasma creatinine, and breath ammonia resulted

in Figure 7.24.
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Figure 7.24 Olive: GFR estimation via bolus inulin clearance, plasma creatinine, and breath
ammonia

7.1.7 Paige - Rat 7

7.1.7.1 Inulin Clearance

Paige underwent a successful cannulation surgery, followed by the post-operation

and recovery inulin clearance tests. Five days later, she underwent surgery to

induce ARF. Surgery was successful, and the cannula remained patent up to and

including the 4 day post-ARF clearance test. Her inulin clearance fitting results

are shown in Figure 7.25, and model-fitted parameters are shown in Table 7.7.
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Figure 7.25 Paige: Inulin clearance summary. 1-2: Six hours and 2 days post cannulation
surgery; 3-6: Six hours, 30 hours, 2 days, and 4 days post ARF induction, respectively.

7.1.7.2 Creatinine

The first 8 creatinine concentrations were able to be determined using the jugular

vein cannula, with the last sample obtained via tail vein. A pre-ARF measure-

ment was not taken, but was assumed to be similar to the 6 hour post-cannulation

measurement.
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Table 7.7 Paige: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2 3 4 5 6

Weight (g) 295.6 308.9 302.1 284.6 286.2 275.4

Plasma 11.9 12.4 12.1 11.4 11.5 11.0
Volume (mL)
n1 0.17276 0.18666 0.072924 0.09339 0.13762 0.12464
n2 0.079153 0.19802 0.15279 0.16441 0.21158 0.1782
α 3.1 2.9 2.3 3.4 4.0 3.3

GFR (mL/min) 2.05 2.31 0.88 1.06 1.58 1.38

Average Fitting 10.9 9.0 10.1 8.9 10.5 4.8
Error (%)
Maximum Fitting 23.8 21.1 20.0 13.9 20.5 7.5
Error (%)
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Figure 7.26 Paige: Plasma creatinine concentration and correlation with GFR via inulin
clearance

7.1.7.3 Ammonia SIM Scans

All 15 breath SIM scans were analysed from 4 hours prior to cannulation surgery

until 7 days post-ARF surgery. Figure 7.27 shows the measured breath results

for CB and CTot as well as the calculated CR and CR∗ .
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Figure 7.27 Paige: SIM scan ammonia in breath and background air

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-

tion (7.7), with a = 1.86 from Equation (6.21), and an R2 value of 0.58. Combin-

ing GFR estimation via inulin clearance, plasma creatinine, and breath ammonia

resulted in Figure 7.28.
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Figure 7.28 Paige: GFR estimation via bolus inulin clearance, plasma creatinine, and breath
ammonia
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7.1.8 Quin - Rat 8

7.1.8.1 Inulin Clearance

Quin underwent a successful cannulation surgery, followed by the post-operation

and recovery inulin clearance tests. Five days later, she underwent surgery to

induce ARF. Surgery was successful, and the cannula remained patent up to and

including the 30 hour post-ARF clearance test. Her inulin clearance fitting results

are shown in Figure 7.29, and model-fitted parameters are shown in Table 7.8.
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Figure 7.29 Quin: Inulin clearance summary. 1-2: Six hours and 2 days post cannulation
surgery; 3-4: Six hours and 30 hours post ARF induction.

7.1.8.2 Creatinine

The first 6 creatinine concentrations were able to be determined using the jugular

vein cannula. The remainder of the samples were obtained via the tail vein. A

pre-ARF measurement was not taken, but was assumed to be similar to the 6

hour post-cannulation measurement.
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Table 7.8 Quin: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2 3 4

Weight (g) 269.1 291.3 285.8 295

Plasma Volume (mL) 10.8 11.7 11.4 11.8
n1 0.18139 0.23398 0.079097 0.11924
n2 0.14566 0.20743 0.14921 0.21419
α 2.3 3.1 2.9 2.9

GFR (mL/min) 1.96 2.74 0.91 1.41

Average Fitting Error (%) 10.8 11.2 6.0 7.6
Maximum Fitting Error (%) 30.8 32.1 10.1 17.6
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Figure 7.30 Quin: Plasma creatinine concentration and correlation with GFR via inulin
clearance

7.1.8.3 Ammonia SIM Scans

All 15 breath SIM scans were analysed from 4 hours prior to cannulation surgery

until 7 days post-ARF surgery. Figure 7.31 shows the measured breath results

for CB and CTot as well as the calculated CR and CR∗ .

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-

tion (7.8), with a = 1.59 from Equation (6.21), and an R2 value of 0.23. Quin’s

results were similar to Olive’s, in that if a relative decrease in renal function from

pre to post surgery as measured by breath ammonia is considered, the decrease
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Figure 7.31 Quin: SIM scan ammonia in breath and background air

post-ARF is 50% compared to 19% for post-cannulation.

GFR =
1.59

CR∗
(7.8)

Combining GFR estimation via inulin clearance, plasma creatinine, and breath

ammonia resulted in Figure 7.32.
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Figure 7.32 Quin: GFR estimation via bolus inulin clearance, plasma creatinine, and breath
ammonia
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7.1.9 Sophie - Rat 9

7.1.9.1 Inulin Clearance

Sophie underwent a successful cannulation surgery, followed by the post-operation

and recovery inulin clearance tests. Five days later, she underwent surgery to

induce ARF. Surgery was successful, however the cannula lost patency and no

further inulin clearances were possible. Her inulin clearance fitting results are

shown in Figure 7.33, and model-fitted parameters are shown in Table 7.9.
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Figure 7.33 Sophie: Inulin clearance summary. 1-2: Six hours and 2 days post cannulation
surgery, respectively.

Table 7.9 Sophie: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2

Weight (g) 282.6 300.6

Plasma Volume (mL) 11.4 12.1
n1 0.19462 0.21105
n2 0.17991 0.18651
α 2.6 3.1

GFR (mL/min) 2.21 2.55

Average Fitting Error (%) 14.1 11.3
Maximum Fitting Error (%) 39.1 26.3
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7.1.9.2 Creatinine

The first 2 creatinine concentrations were able to be determined using the jugular

vein cannula. These were the 6 hour and 2 day post-cannulation measurements.

After this time, the jugular vein cannula lost patency, and the remainder of the

samples were obtained via the tail vein. A pre-ARF measurement was not taken,

but was assumed to be similar to the 6 hour post-cannulation measurement.

0 50 100 150 200 250 300
20

30

40

50

60

70

80

90

100

Time since Cannulation Surgery (hours)

P
la

sm
a 

C
re

at
in

in
e 

(µm
ol

/L
)

9 9.5 10 10.5

x 10−3

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

wt/PCr

G
F

R
 (

m
L/

m
in

) 
vi

a 
In

ul
in

 C
le

ar
an

ce

GFR=239.75wt/PCr
R2=0.9503

Figure 7.34 Sophie: Plasma creatinine concentration and correlation with GFR via inulin
clearance

7.1.9.3 Ammonia SIM Scans

All 15 breath SIM scans were analysed from 4 hours prior to cannulation surgery

until 7 days post-ARF surgery. Figure 7.35 shows the measured breath results

for CB and CTot as well as the calculated CR and CR∗ .

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-

tion (7.9), with a = 1.90 from Equation (6.21). With only 2 points for correlation,

no R2 value is reported.

GFR =
1.90

CR∗
(7.9)
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Figure 7.35 Sophie: SIM scan ammonia in breath and background air

Combining GFR estimation via inulin clearance, plasma creatinine, and breath

ammonia resulted in Figure 7.36.
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Figure 7.36 Sophie: GFR estimation via bolus inulin clearance, plasma creatinine, and
breath ammonia
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7.1.10 Tosca - Rat 10

7.1.10.1 Inulin Clearance

Tosca underwent a successful cannulation surgery, followed by the post-operation

and recovery inulin clearance tests. After surgery to induce ARF, she was able to

participate in the 6 hour, 30 hour, and 2 day post-ARF inulin clearances before

her jugular vein cannula failed. Her inulin clearance fitting results are shown in

Figure 7.37, and model-fitted parameters are shown in Table 7.10.
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Figure 7.37 Tosca: Inulin clearance summary. 1-2: Six hours and 2 days post cannulation
surgery; 3-5: Six hours, 30 hours and 2 days post ARF induction, respectively.
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Table 7.10 Tosca: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2 3 4 5

Weight (g) 289.5 306.2 280.8 287.9 282.7

Plasma Volume (mL) 11.6 12.3 11.3 11.5 11.3
n1 0.17214 0.25786 0.09692 0.14538 0.16666
n2 0.12608 0.15294 0.13025 0.23833 0.21884
α 3.1 2.9 3.1 3.0 3.4

GFR (mL/min) 2.00 3.17 1.09 1.68 1.89

Average Fitting Error (%) 9.8 8.2 6.1 9.7 8.3
Maximum Fitting Error (%) 26.2 10.7 22.0 31.2

7.1.10.2 Creatinine

The first 7 creatinine concentrations were able to be determined using the jugular

vein cannula. These were the 6 hour and 2 day post-cannulation measurements,

and the 1 hour, 6 hour, 20 hour, 30 hour and 2 day post-ARF measurements. 4

day and 7 day samples were obtained via the tail vein. A pre-ARF measurement

was not taken, but was assumed to be similar to the 6 hour post-cannulation

measurement.
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Figure 7.38 Tosca: Plasma creatinine concentration and correlation with GFR via inulin
clearance
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7.1.10.3 Ammonia SIM Scans

Sixteen breath SIM scans were analysed from 4 hours prior to cannulation surgery

until 7 days post-ARF surgery. Figure 7.39 shows the measured breath results

for CB and CTot as well as the calculated CR and CR∗ .
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Figure 7.39 Tosca: SIM scan ammonia in rat breath and background air

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-

tion (7.10), with a = 2.22 from Equation (6.21), and an R2 value of 0.85. Combin-

ing GFR estimation via inulin clearance, plasma creatinine, and breath ammonia

resulted in Figure 7.40.

GFR =
2.22

CR∗
(7.10)
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Figure 7.40 Tosca: GFR estimation via bolus inulin clearance, plasma creatinine, and breath
ammonia
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7.1.11 Ula - Rat 11

7.1.11.1 Inulin Clearance

Ula underwent a successful cannulation surgery, followed by the post-operation

and recovery inulin clearance tests. During surgery to induce ARF, she stopped

breathing for a short time, however was able to undergo the first post-ARF inulin

clearance test. However, she did not survive to participate in the recovery section

of the trial. Her inulin clearance fitting results are shown in Figure 7.41, and

model-fitted parameters are shown in Table 7.11.
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Figure 7.41 Ula: Inulin clearance summary.1-2: Six hours and 2 days post cannulation
surgery; 3: Six hours post ARF induction.

7.1.11.2 Creatinine

The first 4 creatinine concentrations were able to be determined using the jugular

vein cannula. These were the 6 hour and 2 day post-cannulation measurements,

and the 1 hour and 6 hour post-ARF measurements. A pre-ARF measurement

was not taken, but was assumed to be similar to the 6 hour post-cannulation

measurement.
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Table 7.11 Ula: Inulin clearance parameters

Parameter Inulin Clearance Test
1 2 3

Weight (g) 294.3 312.1 289.3

Plasma Volume (mL) 11.8 12.5 10.5
n1 0.18526 0.22789 0.058394
n2 0.12261 0.12562 0.10458
α 2.9 2.9 2.7

GFR (mL/min) 2.19 2.86 0.68

Average Fitting Error (%) 8.2 7.7 6.0
Maximum Fitting Error (%) 14.6 17.2 11.1
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Figure 7.42 Ula: Plasma creatinine concentration and correlation with GFR via inulin clear-
ance

7.1.11.3 Ammonia SIM Scans

Nine breath SIM scans were analysed from 4 hours prior to cannulation surgery

until 6 hours post-ARF surgery. Figure 7.43 shows the measured breath results

for CB and CTot as well as the calculated CR and CR∗ .
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Figure 7.43 Ula: SIM scan ammonia in breath and background air

Plotting GFR obtained via inulin clearance against 1/CR∗, resulted in Equa-

tion (7.11), with α equal to 2.04 from Equation (6.21), and an R2 value of 0.62.

GFR =
2.04

CR∗
(7.11)

Combining GFR estimation via inulin clearance, plasma creatinine, and breath

ammonia resulted in Figure 7.44.
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Figure 7.44 Ula: GFR estimation via bolus inulin clearance, plasma creatinine, and breath
ammonia
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7.1.12 Summary

Eleven rats participated in an animal trial conducted over 2 weeks. In an initial

surgery, an in-dwelling cannula was inserted into the jugular vein for the purposes

of fast serial blood sampling. Five days after recovery from this surgery, ARF

was induced via a 60 minute bilateral renal artery clamp. GFR was monitored

via inulin clearance tests, plasma creatinine concentrations, and breath ammonia

SIM scans during this trial.

Relative decreases in renal function showed excellent correlation between

methods, and indicate good promise for fast, non-invasive determination of renal

function via breath testing.

7.2 SIM Scan - Isoprene

Isoprene concentration was monitored via SIM scan analysis, and the results over

the course of the trial are shown in Figures 7.45 to 7.55, for each rat. It was

observed that while the isoprene concentration in exhaled breath does increase

after surgery to induce ARF, it does not appear to increase to an extent greater

than that observed in response to a general surgery. Hence, this increase in

exhaled isoprene is not necessarily attributable to ARF, but is instead a response

to surgery. Therefore, isoprene has potential as a biomarker of acute physiological

stress.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

Time (hours)

Is
op

re
ne

 C
on

ce
nt

ra
tio

n 
(p

pb
)

 

 
C

B

C
Tot

C
R*

ARF

Figure 7.45 Grace, rat #1: Breath Isoprene over ARF Trial
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Figure 7.46 Heidi, rat #2: Breath Isoprene over ARF Trial
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Figure 7.47 Isis, rat #3: Breath Isoprene over ARF Trial
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Figure 7.48 Maya, rat #4: Breath Isoprene over ARF Trial
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Figure 7.49 Nell, rat #5: Breath Isoprene over ARF Trial
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Figure 7.50 Olive, rat #6: Breath Isoprene over ARF Trial
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Figure 7.51 Paige, rat #7: Breath Isoprene over ARF Trial
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Figure 7.52 Quin, rat #8: Breath Isoprene over ARF Trial
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Figure 7.53 Sophie, rat #9: Breath Isoprene over ARF Trial
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Figure 7.54 Tosca, rat #10: Breath Isoprene over ARF Trial



7.3 RENAL HISTOLOGY 189

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

Time (hours)

Is
op

re
ne

 C
on

ce
nt

ra
tio

n 
(p

pb
)

 

 
C

B

C
Tot

C
R*

ARF

Figure 7.55 Ula, rat #11: Breath Isoprene over ARF Trial

Isoprene concentration in 5 of the rats appeared to increase towards the end

of the trial. Despite the apparent short-term recovery of these rats from ARF,

there is a strong likelihood that they would develop some degree of chronic renal

failure following this trial. Isoprene has been reported to be increased in patients

with end-stage renal failure, [Davies et al., 2001]. Hence, the increase in isoprene

observed in this trial may be an indication of the onset of chronic renal failure.

7.3 Renal Histology

Preparations of normal renal pathology were shown in Chapter 5.1.4. The follow-

ing types of abnormalities are commonly encountered in the renal tubules with

ARF [Danciu and Mihailovici, 2004]:

• Brush border changes

• Cell Swelling/dilatation

• Apoptosis

• Basement membrane detachment

• Blocked lumen

• Casts
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The most commonly seen abnormality in the experimental ARF studies was a

blocked lumen, which results from necrotic epithelial cells falling into the tubule

lumen and obliterating it, as seen in Figure 7.56. If the basement membrane

remains intact, the tubular epithelium can regenerate, [Danciu and Mihailovici,

2004]. Note that all slides shown here were prepared from the excised kidneys of

Nell and Maya.

 

Figure 7.56 Rat kidney (Nell) 7 days after a 60 minute ischaemia-reperfusion injury. The
dilated collecting ducts contain cell debris, sloughed apoptotic and necrotic cells.

 

Figure 7.57 Rat kidney (Nell) 7 days after a 60 minute ischaemia-reperfusion injury. Dilated
collecting ducts show both necrotic and viable epithelial cells. A dense pink stained tubular
cast is seen.
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Figure 7.58 Rat kidney (Maya) 7 days after a 60 minute ischaemia-reperfusion injury. Cor-
tical proximal tubules with largely intact brush borders (pink stain).

Abnormalities commonly observed with acute renal failure, such as the pres-

ence of casts, brush border changes, and necrotic cells in the tubular lumen,

were identified in the excised kidneys of selected rats in this study. These slides

provide histoligical evidence of significant renal injury, but also of viable or re-

covering proximal tubules. They highlight that injury and recovery are ongoing

processes, even when GFR has apparently returned to normal. The combination

of structural with physiological methods, are critical in determining the role of

breath analytes in this model.

7.4 Identification of Biomarkers of ARF

The biomarker identification methods described in Chapter 3 and used in Chap-

ters 4 and 5, were used to identify biomarkers of renal function in this rat ARF

trial. Classifications were performed comparing the normal breath analyte con-

centrations against the analyte concentrations after induction of ARF. For vali-

dation, analyte concentrations after cannulation surgery were also compared with

those after ARF induction. Classifications were performed using the H3O
+ and

O2
+ precursors only, since these are the most useful precursors for identifying the

expected biomarkers found in the dialysis studies.
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7.4.1 H3O
+ Precursor

7.4.1.1 Normal verses ARF

Mass scan results shown here compare the concentrations between the normal

state, obtained from the average of samples 1, 6, 7, 14, and 15 of the trial, with

the ARF state, obtained from the maximum concentration in samples 8, 9, 10,

and 11 of the trial (Refer Table 5.1). These 2 states are thus the j and k states,

respectively, from Section 3.1. Mass scans results are shown using classification

the method on the normalised data, (Equation (3.1)), and the relative change

biomarker identification method (Equation (3.3)), for comparison. Note that the

background air was removed from the sample, using a mass-specific Equation

(6.20) prior to classification, such that classification was performed on CR∗.

Using the H3O
+ precursor, Figure 7.59 was obtained from classification of

normal and ARF data. A 0.61% classification error and a ROC area of 0.999

was observed with a bootstrap sample size of 200. Note this figure covers all

masses scanned and shows good separation between groups. Using the biomarker

identification method, which displays the density profiles of the means of 200

bootstrap samples, (Equation (3.3)), Figure 7.60 was obtained. A summary of

the top biomarkers identified using each method is shown in Table 7.12, with

their respective scores. Using the classification method, top biomarkers have

minimal overlap between log-odds density profiles and thus a low score. Using the

biomarker identification method, top biomarkers have a high mean to standard

deviation ratio, and thus a high score.

Table 7.12 Top Biomarkers of ARF with the H3O
+ precursor.

Classification Method Biomarker ID Method
Mass Score Mass Score

63 0.0377 79 13.18
38 0.0481 77 12.61
79 0.0530 59 11.49
77 0.0570 38 9.16

59 0.1050 78 8.82
78 0.1694 63 8.01
60 0.1942 60 6.19
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Figure 7.59 Classification between normal and ARF over all masses using the H3O
+ pre-

cursor
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Figure 7.60 Biomarker identification in the normal and ARF states using the H3O
+ pre-

cursor

Figures 7.61-7.67 show the density profiles of the top biomarkers of Table

7.12. The left plot shows the density profile of the normalised data. The right

plot shows the density profile of the log-odds ratio of the normalised data. Again,

good separation is the hallmark of a good potential biomarker.

It was observed that similar to the dialysis studies, TMA, acetone, and acetic

acid emerged as the top biomarkers between the normal and ARF states. This

result was expected since both studies investigate renal function.
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Figure 7.61 Left : Probability density profile for Mass 38 obtained via normal and ARF
datasets with the H3O

+ precursor. Right : Log-odds probability density profile for identification
of biomarkers is shown, right.
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Figure 7.62 Left : Probability density profile for Mass 59 obtained via normal and ARF
datasets with the H3O

+ precursor. Right : Log-odds probability density profile for identification
of biomarkers is shown, right.
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Figure 7.63 Left : Probability density profile for Mass 77 obtained via normal and ARF
datasets with the H3O

+ precursor. Right : Log-odds probability density profile for identification
of biomarkers is shown, right.
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Figure 7.64 Left : Probability density profile for Mass 60 obtained via normal and ARF
datasets with the H3O

+ precursor. Right : Log-odds probability density profile for identification
of biomarkers is shown, right.
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Figure 7.65 Left : Probability density profile for Mass 78 obtained via normal and ARF
datasets with the H3O

+ precursor. Right : Log-odds probability density profile for identification
of biomarkers is shown, right.
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Figure 7.66 Left : Probability density profile for Mass 63 obtained via normal and ARF
datasets with the H3O

+ precursor. Right : Log-odds probability density profile for identification
of biomarkers is shown, right.
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Figure 7.67 Left : Probability density profile for Mass 79 obtained via normal and ARF
datasets with the H3O

+ precursor. Right : Log-odds probability density profile for identification
of biomarkers is shown, right.

7.4.1.2 Cannulation Surgery verses ARF Surgery

Mass scan results shown here compare the concentrations between the post-

cannulation state, obtained from the maximum of samples 2, 3, 4, and 5 of

the trial, with the post-ARF state, obtained from the maximum concentration

in samples 8, 9, 10, and 11 of the trial. These 2 states are thus the j and k

states, respectively, from Section 3.1. Mass scans results are shown using classifi-

cation method on the normalised data, (Equation (3.1)), and the relative change

biomarker identification method (Equation (3.3)), for comparison. This compar-

ison removes the initial surgery from the analysis to provide a clear examination

of just the impact of ARF.

Using the H3O
+ precursor, Figure 7.68 was obtained from classification of

post-cannulation and post-ARF datasets. A 23.14% classification error and a

ROC area of 0.674 was observed with a bootstrap sample size of 200. The corre-

sponding biomarker plot is shown in Figure 7.69.

This poor classification result, compared to Section 7.4.1.1, indicates that

although several VOCs were elevated after induction of ARF, they were also, at

least partially, elevated after any surgery. Hence, those biomarkers identified may

not be indicative of renal function alone, but include also the impact of surgery.

As a worst case, they are functions or markers of surgery or trauma. This result
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Figure 7.68 Classification between post-cannulation and post-ARF over all masses using the
H3O

+ precursor
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Figure 7.69 Biomarker identification in the post-cannulation and post-ARF states using the
H3O

+ precursor

could be due to low rat numbers, dilution of sample due to sampling method,

or machine noise at low VOC concentration (due at least partially to sample

dilution). The time course was plotted for each rat for the biomarkers identified

in Section 7.4.1, as seen in Figures 7.70-7.72. Note that the results from Ula (Rat

11) are omitted since she did not survive the cannulation surgery.
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Figure 7.70 Time profiles for all rats with at 59 (acetone) and 77 (acetone with water cluster),
using the H3O

+ precursor. Odd numbered rats are in the left column, and even numbered rats
are in the right column.

Masses 59 and 77 refer to acetone, and acetone with an associated water

cluster, respectively. It was observed that although the concentration of these

masses increases after surgery, the increase was not consistent between rats. More

specifically, 7 of the rats displayed a larger peak after ARF, and 3 displayed a

larger peak after cannulation surgery.
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Figure 7.71 Time profiles for all rats at masses 58, 60 and 78, corresponding to TMA, using
the H3O

+ precursor. Odd numbered rats are in the left column, and even numbered rats are
in the right column.

Masses 58, 60 and 78 refer to TMA. Once more, it was observed that the

breath concentrations of some rats at these masses were higher after cannulation

surgery than after surgery to induce ARF. Hence, the impact of surgery and ARF

were intermixed.
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Figure 7.72 Time profiles for all rats at mass 79, using the H3O
+ precursor. Red : sam-

ples used in ARF classification; Magenta: samples used in Cannulation classification; Green:
samples used in Normal classification. Odd numbered rats are in the left column, and even
numbered rats are in the right column.

When the criteria for classification are considered, it is easy to see how mass

79 is determined to be a top biomarker. Criteria 1 (Section 7.4.1) uses the max-

imum post-ARF concentration (red) against the average normal concentration

(green). Criteria 2 (Section 7.4.2) uses the maximum post-ARF concentration

(red) against the maximum post-cannulation concentration (magenta). It was

observed that 10 and 8 rats, using criteria 1 and criteria 2, respectively, exhibited

a higher post-ARF concentration. However, in the final analysis, the result at

this mass was not considered consistent enough to be clinically useful.
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7.4.2 O2
+ Precursor

Using the O2
+ precursor, Figure 7.73 was obtained from classification of normal

and ARF data. A 3.3% classification error and a ROC area of 0.990 was observed

with a bootstrap sample size of 200. The corresponding biomarker plot is shown

in Figure 7.74. Finally, best biomarkers are identified in Table 7.13.
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Figure 7.73 Classification between normal and ARF over all masses using the O+
2 precursor
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Figure 7.74 Biomarker identification in the normal and ARF states using the O+
2 precursor

Figures 7.75-7.78 show the density profiles of the top biomarkers. The left

plot shows the density profile of the normalised data. The right plot shows the

density profile of the log-odds ratio of the normalised data.



202 CHAPTER 7 ARF IN RATS - RESULTS AND DISCUSSION

Table 7.13 Top Biomarkers of ARF with the O2+ precursor

Classification Method Biomarker ID Method
Mass Score Mass Score

44 0.0056 59 16.52
59 0.0066 44 15.15
97 0.0103 58 8.59
77 0.1894 77 8.49
58 0.1910 43 8.05

43 0.2015 97 7.86
61 0.3234 79 5.14
17 0.3291 17 4.31
79 0.3315 61 4.21
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Figure 7.75 Left : Probability density profile for Mass 43 obtained via normal and ARF
datasets with the O+

2 precursor. Right : Log-odds probability density profile for identification
of biomarkers is shown, right.
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Figure 7.76 Left : Probability density profile for Mass 58 obtained via normal and ARF
datasets with the O+

2 precursor. Right : Log-odds probability density profile for identification
of biomarkers is shown, right.
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Figure 7.77 Left : Probability density profile for Mass 59 obtained via normal and ARF
datasets with the O+

2 precursor.
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Figure 7.78 Left : Probability density profile for Mass 77 obtained via normal and ARF
datasets with the O+

2 precursor.

Classification performed using the post-cannulation and post-ARF datasets

resulted in an estimated prediction error of 19.27% and a ROC error of 0.781

using a bootstrap sample size of 200, as seen in Figure 7.79.
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Figure 7.79 Classification between post-cannulation and post-ARF over all masses using the
O2

+ precursor
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Using the biomarker identification method, Figure 7.80 was obtained, with a

bootstrap sample size of 200.
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Figure 7.80 Biomarker identification between post-cannulation and post-ARF over all masses
using the O2

+ precursor

Time profiles for the top biomarkers identified during classification of the

normal and ARF states, with the O2
+ precursor, are shown in Figures 7.81-

7.84. Note that the raw concentration in counts per second is displayed for the

total breath (CTot), and for the background laboratory air (CB). It was observed

that the same problem occurred with the O2
+ precursor as occurred with the

H3O
+ precursor in Section 7.4.1.2. More specifically, although some markers did

appear elevated in ARF compared to normal, they were also elevated after the

cannulation surgery.

It is suggested that improved results may be possible with the use of the

V oice200 R© SIFT-MS instrument, which samples breath at a lower rate. The

lower sampling rate would reduce the VB

VR
ratio, and result in a less dilute breath

measurement, with less error, by Equation (6.18). Hence, this option should be

considered in future studies.

In the mass scan mode, less time is spent counting by the channeltron par-

ticle detector. In addition, the analyte concentration result cannot be viewed

directly as it is generated, compared with in SIM scan mode (see Figure 6.11).

Therefore, there are less resulting datapoints from which to infer the analyte
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Figure 7.81 Time profiles for all rats at mass 43, using the O2
+ precursor. Odd numbered

rats are in the left column, and even numbered rats are in the right column.

concentration. Another possible source of error was the position of the rat in

the bottle. In SIM scan mode, it is possible to see when equilibrium is obtained.

However, in mass scan mode, if the position of the rat nose changes slightly, for

example by moving closer to a breathing hole, the mixing between expired air and

background air in the bottle changes. Thus, the measured breath analytes could

vary significantly. Finally, the temperature in the laboratory was maintained at
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Figure 7.82 Time profiles for all rats at mass 58, using the O2
+ precursor. Odd numbered

rats are in the left column, and even numbered rats are in the right column.

approximately 25oC, and the bottles were stored in an incubator. However, it is

possible that analytes could have adsorb to the bottle wall.

It was concluded that the biomarkers identified in this section of the study, in

mass scan mode, were not specific to renal function across all rats at a sensitivity

great enough to be measured by the V oice100TM SIFT-MS instrument, using the

current rat breath sampling methods described in Chapter 5.6. It is suggested
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Figure 7.83 Time profiles for all rats at mass 59, using the O2
+ precursor. Odd numbered

rats are in the left column, and even numbered rats are in the right column.

that better results could be achieved using the V oice200 R© instrument. However,

if results are not improved using this instrument, it is suggested that more efforts

be focussed on obtaining a more representative alveolar breath sample from the

rat.
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Figure 7.84 Time profiles for all rats at mass 77, using the O2
+ precursor.

7.5 Summary

An animal trial was carried out in which ARF was induced in 11 rats. Renal

function was measured following recovery from an initial surgery to insert a jugu-

lar vein cannula for serial blood sampling, as well as after induction of ARF via a

60 minute bilateral renal artery clamp. Gold standard measures of kidney func-

tion were used to successfully correlate SIM scan breath ammonia concentration
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with both plasma creatinine concentration and GFR obtained via a bolus inulin

clearance test. Histology slides of excised rat kidneys provided further evidence

of the degree of renal damage.

Classification methods were used to identify biomarkers of renal function.

Several markers were identified with the H3O
+ and O2

+ precursors, most likely

relating to TMA, acetone and acetic acid. However, further investigation revealed

that these biomarkers were not elevated to a significantly greater extent than

in the cannulation surgery. Hence, it was concluded that the current breath

sampling technique with the V oice100TM SIFT-MS instrument, in the mass scan

mode, is not sufficiently sensitive to identify biomarkers of renal function in rats.

However, there is scope in future work to determine if TMA, acetone and/or

acetic acid might offer potential as a biomarker of acute physiological stress,

since these analyte concentrations were significantly elevated after surgery.





Chapter 8

Conclusions and Future Work

8.1 Conclusions

SIFT-MS is an analytical technique for the real-time quantification of VOCs in

gaseous samples. This technology has current and potential applications in a wide

variety of industries, although the focus of this research is in medical science. In

this field, SIFT-MS has potential as a diagnostic device, capable of determining

the presence of a particular disease or condition. In addition, SIFT-MS can be

used to monitor the progression of a disease state, or predict deviations from

expected behaviour. All these possibilities are available non-invasively and in

real-time, by measuring various analytes in breath samples.

A model was presented for the classification of cross-sectional sets of mass

scan data obtained using the SIFT-MS instrument. Using this method, test

datasets of known classification are used to develop probability density profiles

for each of the two datasets: Groups j and k. The probability density profiles

are created for each group from concentration data, using a mixed distribution

made up of a kernel density and a Dirac delta function. An unknown sample is

then tested against the datasets, with the result being a classification into either

Group j or Group k. In a diagnostic analysis, j and k would be the non-disease

and diseased states. Bootstrap methods are used to determine the estimated

prediction error. Finally, by determining which masses contribute most to a

successful classification, biomarkers for the disease state can be identified.

This cross-sectional classification model was validated in a simple study to

determine which VOCs or their water clusters increase or diminish when nitrogen



212 CHAPTER 8 CONCLUSIONS AND FUTURE WORK

is passed through sterile glass bottles filled with water. An additional goal was

to determine which VOCs are present in tedlar bags. As expected, the estimated

prediction error was 0% over all 3 precursors, and the masses most useful in

classification were those corresponding to the water clusters of nitrogen and the

precursor ions. Lastly, 2 biomarkers were identified that originated from the

tedlar bag. As a proof-of-concept this model was also tested on the pre and

post datasets from a patient undergoing dialysis. Good results were obtained,

although it was recognised that the inherent paired nature of such a dataset

is ignored using the cross-sectional classification model. Hence, a longitudinal

classification model was developed.

A longitudinal classification model was presented that exploits the paired

nature of data in a before/after setting. When monitoring the progression of a

disease state, there is no baseline for intra-patient comparison, because depending

on patient specific variables and degree of sickness, starting points and responses

to treatment can vary dramatically. However, a single patient dataset cannot

be considered on its own, because there is usually insufficient data to perform a

statistically rigid classification. Hence, an appropriate normalisation method is

required to allow interpatient biomarker identification.

Two clinical dialysis studies were carried out to monitor changes in the con-

centration of retained nitrogenous wastes over multiple dialysis sessions. Dialysis

efficacy is most simply determined using the urea reduction ratio, requiring blood

samples to determine changes in blood urea nitrogen. However, SIFT-MS offers

potential benefits in dialysis treatment via the ability to measure dialysis effi-

ciency non-invasively, and in real time, with a simple breath test to determine

the reduction ratio of key analytes. By observing specific patient trends, one

can determine the timing of the next required dialysis treatment, and thus avoid

secondary complications due to delayed treatment. SIFT-MS can also be used to

calculate the optimal time for each dialysis treatment, to minimise patient treat-

ment time and maximise machine availability for others. Lastly, SIFT-MS can

be used to identify key markers of renal function, as dialysis treatment effectively

takes a patient from a sick to a healthy state over a few hours.

Good correlation was observed with the gold standard creatinine and BUN

measures, with breath ammonia and TMA measured in SIM scan mode. Inter-

estingly, 3 different VOC time profiles over the course of dialysis were observed.
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Firstly, analyte concentrations decreased exponentially, as was the expected re-

sponse, with particularly ammonia showing a small rise 2-3 hours into treatment.

Secondly, analyte concentrations oscillated within an overall decreasing profile, a

trend particularly observed at lower concentrations, as expected. Lastly, analyte

concentrations increased for the first 30-60 minutes, before decreasing exponen-

tially. Mass scans identified biomarkers relating to TMA, acetone and acetic

acid. Estimated prediction error decreased from a maximum of 10% in the first

clinical study, to a maximum of 0% in the second study, most likely due to the

introduction of the V oice200 R© SIFT instrument, and better sampling methods.

Carrying out a trial in a human setting poses difficulties, since all patients

present with a differing degree of impairment, have differing diets, and differing

genetic predispositions, as well as other potential confounding factors. It was

considered that running an animal trial would alleviate many of these difficulties,

since in-bred animals could be used in the study. In addition, samples sizes, diet,

and daily behaviour, as well as degree of renal impairment, could all be more

easily controlled. Lastly, easy comparison with clinical and research gold standard

measures of renal function would be possible, since several techniques in addition

to creatinine and BUN blood tests would be available. Such techniques include

radioactive tracer methods, which cannot be performed in a human clinical trial.

Hence, an animal trial was designed for the identification of biomarkers of acute

renal failure in rats.

An animal study was carried out in which acute renal failure was induced via a

60-minute bilateral renal artery clamp in 11 Sprague-Dawley rats. Renal function

was monitored following recovery from a previous surgery to insert a jugular vein

cannula, and for 1 week following ARF-inducing surgery. A two-compartment

model was developed for estimating renal function via a bolus injection of a radio-

labelled inulin tracer, and was compared with the current clinical gold standard

plasma creatinine measurement, modified using the Cockcroft-Gault equation for

rats. These two methods were compared with SIFT-MS monitoring of breath

ammonia. Relative decreases in renal function showed very good correlation

between methods, indicating good promise for fast, non-invasive determination

of renal function via breath testing. In addition, it was found in a validation study,

that the concentration of expired ammonia increases as a function of background

ammonia concentration with a slope greater than 1. This result indicates that

ammonia can be removed from the body at a concentration greater than that
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possible by simple diffusion from the blood, alone, suggesting the presence of

ammonia transporters in lung epithelium for actively transporting ammonia. This

theory is supported in the literature by reports of ammonia transporters elsewhere

in the body [Weiner and Hamm, 2007].

Identification of breath biomarkers of renal function were semi-successful.

Distinction between the normal and ARF states was straight-forward, with <4%

estimated prediction errors and the identification of the same VOCs identified

in the dialysis clinical study. However, further investigation revealed that these

biomarkers were not elevated to a significantly greater extent than after the can-

nulation surgery, suggesting that the biomarkers identified were for acute physio-

logical stress as opposed to acute renal failure. It is suggested that better results

could be achieved using the V oice200 R© instrument, which samples at a lower

rate, to reduce errors incurred by dilution of the breath sample. However, if re-

sults are not improved with the the V oice200 R©, it is suggested that more efforts

be focussed on obtaining a more representative alveolar breath sample from the

rat.

Finally, the concept of a mass spectrometric breath sampling technique is very

new in diagnostic medicine. Therefore, the results presented here, while not ideal,

provide much insight for the way forward, in terms of methods and approach. It is

concluded that with better instrumentation, such as the V oice200 R©, and better

sampling techniques, the mathematical methods presented here could be applied

to a wide variety of medical applications.

8.2 Future Work

Future work aims to develop a predictive model for determining the optimal time

for each dialysis treatment, to minimise patient treatment time and maximise

machine availability for others. Results from the second clinical dialysis study

indicate that TMA would be a good analyte to monitor, since its concentration

decreases rapidly regardless of initial concentration, and is maintained at a rela-

tively constant, low concentration during dialysis. In addition, a clinical study is

currently underway to collect breath samples from patients who have undergone

kidney transplantation, in the weeks following their transplant. It is envisaged



8.2 FUTURE WORK 215

that analysis of breath analytes could help predict rejection episodes by observing

changes in renal function, as monitored by changes in key breath analytes.

Lastly, future work should further investigate alveolar gas exchange of ana-

lytes. The background, inspired air problem remains largely unresolved by studies

reported in the literature. Some researchers ignore background air, and others

have the test subject breath pure air prior to sampling. Some researchers sub-

tract background air concentrations from the sample, and yet others remove

the deadspace volume using valved devices to obtain the alveolar portion of the

breath. All these techniques aim to obtain a sample representative of alveolar

breath. However, even if an alveolar sample is obtained, background air still

plays an important role, since most analytes travel from the blood into the alveo-

lar breath as determined by the concentration gradient for diffusion. A model for

gas exchange in the alveoli could be combined with a closed experimental setup

involving an artificial respirator with reservoirs of variable, but known, analyte

concentration. Analysis of the measured analyte via SIFT-MS, could then be

used to study the movement of analytes in the dynamic breath scenario. Fi-

nally, this analysis could provide invaluable information about how to infer blood

analyte concentration from the breath concentration measured by the SIFT-MS

instrument.
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