Using Algebraic Reconstruction in Computed Tomography
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ABSTRACT

Spectral Computed Tomography (spectral CT) is a newly
emerging, medical imaging modality. It extends CT by ac-
quiring multiple datasets over different x-ray energy bins. As
the x-ray absorption of materials is energy dependent, the
energy bins together provide significantly more information
about the composition of the subject.

To exploit the full potential of spectral CT, there are many
new image processing challenges including reconstruction,
material decomposition, and visualization.

This paper introduces the development of a unique re-
construction algorithm which fully exploits the nature of
spectral CT data. A small application called mART was
developed which implements a standard Simultaneous Alge-
braic Reconstruction Technique (SART). mART will form
the basis for future research and development.

We demonstrate that in its current form it produces re-
constructions of superior quality to the commercial recon-
struction package Octopus CT® which is the standard soft-
ware adopted by our team. In addition, future plans for the
reconstruction algorithm will be discussed.
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1. INTRODUCTION

Computed Tomography (CT) is a medical imaging pro-
cedure that is fundamental to disciplines in both diagnostic
and therapeutic medicine. CT scanners acquire x-ray based,
radiographical images at various angles around a subject.
Reconstruction algorithms then produce a volumetric image
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of the original subject [1].

Conventional CT imaging, while providing information at
a high resolution of up to 500um spatial resolution, pro-
duces images that cannot reliably distinguish differences in
soft tissue and various contrast agents used in biomedical
imaging.

The Medipix All Resolution System (MARS) project aims
to advance CT into the realms of spectral CT. Spectral
CT measures not only x-ray intensity (measured in photon
counts) but also the energy associated with the detected
photons. As the linear attenuation for materials is energy
dependent, the potential for material decomposition algo-
rithms is significantly improved.

A key task leading to the success of the MARS project is
the image processing of the spectral CT data. In particular,
material decomposition and reconstruction algorithms have
the potential to exploit the nature of spectral CT data. This
can improve image quality and reduce dose requirements.

The current reconstruction software adopted by the MARS
team is Octopus CT by InCT systems [2]. This is a com-
mercial application based on filtered back projections [3].
To reconstruct data from the MARS scanner, each energy
bin is reconstructed independently. While successful, it does
not use the full potential of the data acquired and does not
cope well with reconstructing images of low photon counts.
This results in high exposure times, and large over-sampling
to produce scans of sufficient quality. Neither case is ideal
for future clinical use.

This paper introduces the groundwork for developing a
reconstruction algorithm that meets the needs of the MARS
project. The algorithm used is an algebraic reconstruction
technique (ART) called SART. The basis model for ART in
equation (1) is simple and flexible. In particular, it is easy to
incorporate prior knowledge, constraints, and custom data
structures such as the multiple values per detector element
acquired by spectral CT. This makes ART a good basis for
spectral reconstruction.

Az =1» (1)

This paper examines images produced using our imple-
mentation of ART and compares them to equivalent images
produced using the current reconstruction methods. Section



2 outlines the implementation of ART used. Section 3 dis-
cusses the measures used to quantify image quality. Section
4 discusses the differences seen between the two methods of
reconstruction, with concluding remarks found in section 5.

2. ALGEBRAIC RECONSTRUCTION

The theory behind reconstruction algorithms was first in-
troduced by Johann Radon in 1917 [4]. Radon’s work de-
scribes the mathematical procedure for recreating a subject
image from many projection images by using the inverse
Radon transform.

However, the inverse Radon transform can not be solved
analytically in its basic state. A solution was found by Bates
and Peters in 1971 [5], by using Fourier transforms to sim-
plify the problem. This method became known as filtered
back projection. After Godfrey Hounsfield [6] popularized
the CT scanner in 1972, filtered back projection quickly be-
came the solution of choice due to its high computational
efficiency.

Another common reconstruction approach is the algebraic
approach which has been around since the start of CT. In
fact, an algebraic solution was used by Hounsfield himself in
his original work [6]. Since then, many variations of ART
have arisen to improve quality, speed, and to meet the needs
of new scanner technologies.

There are three common variations of ART that exist to-
day based on iterative methods of solving equation (1). The
basic method is the Kaczmarz equation [7] shown in equa-
tion (2). When referring to ART, this algorithm is usually
assumed. While very effective, variations of this method
arose to improve on the results.

by —xp—1- Ay
T = Ti—1 + A, A, .V (2)

The first of such variations was the Simultaneous Itera-
tive Reconstruction Technique (SIRT) proposed by Gilbert
in 1972 [8]. SIRT updates the voxel values, ) with the av-
erage of all weighted differences from all detector elements
over all projection angles that contribute to the voxel. This
yields results of superior quality at the cost of significantly
increasing the time to convergence.

Another variation, which is a balance between standard
ART and SIRT, is the Simultaneous Algebraic Reconstruc-
tion Technique (SART) proposed in 1984 by Anderson and
Kak [9]. In this variation, the voxel updates are the av-
eraged weighted differences from all detector elements in a
single projection angle that contributes to a voxel. This
provides a good balance between speed and quality.

A different approach is the Multiplicative Algebraic Re-
construction Technique (MART) proposed by Gordon in
1970 [10]. Most iterative algorithms adopt an additive solu-
tion. MART, as the name suggests is a multiplicative solu-
tion with a few important consequences. Firstly, the MART
algorithm converges faster due to its simpler structure. Sec-
ondly, a voxel value of zero will nullify progress of the algo-
rithm which can yield incorrect results. Lastly, MART has
a tendency of magnifying noise while the additive methods
tend to average noise.

Recent developments in ART have shifted away from it-
erative solutions in favour of compressed sensing techniques
[11]. Compressed sensing techniques apply known constraints
to the system to reduce the amount of data required to re-

construct a signal. This has the potential to greatly reduce
dose for images of equivalent quality. The only downsides
are high complexity and low computational efficiency.

2.1 Algorithm for Spectral CT Reconstruction

The ideal reconstruction algorithm for spectral CT data
would be one which incorporates all the available data. For
the MARS scanner, the acquired data represents the count of
photons registered above a set energy threshold. Therefore,
the spectrum of energies acquired ranges from the selected
low threshold to the maximum energy produced, set via the
x-ray voltage limit (kVp).

In spectral CT, data for all energy bins are acquired over
the same field-of-view. This means that all energy bins con-
tain the same geometrical structures. Therefore each energy
bin should improve the spatial resolution of the other energy
bins if processed correctly.

To meet the target goal for spectral CT reconstruction,
the adopted approach is to extend an existing reconstruction
algorithm. The algorithm selected for developement was
SART. This is because the core ART model (equation (1)) is
simple, flexible, and closely maps the physics of the scanning
process. In addition, SART has proven in the past to have
a good balance between quality and performance [9, 12].

The core ART model can be directly derived from the
Beer Lambert Law:

C = Coe ™. (3)

The Beer Lambert Law links the measured counts C' to the
transmission pd along a single ray from the source to a de-
tector element. Transmission has the property that it can
be divided into a sum of smaller steps, such that

urdr = Z,U/idi- (4)

This expression represents a single row of equation (1) where
by, = prdr, Ani = d;, and z; = ;.

There are three parts to the SART solution which may be
altered if necessary.

The first part is the initial value of the volume, x. The
closer this is to the solution, the faster convergence will be.
A very simple form of spectral CT reconstruction would be
to use the result from one energy bin as the starting value
of another. The geometrical structures will then be present
right from the start and improve performance.

The second part of the SART solution which may be al-
tered is the geometrical model of the scanner. The values
of the A matrix in the ART model, represents the average
path length through a volume voxel which contributes to a
detector element. The more accurate the scanner model, the
more precise the values of the A matrix will be. The current
implementation uses 11 geometrical transformations, includ-
ing translations, offsets, rotations, and skew angles. Scanner
specific metrics, such as flex and vibration, were not consid-
ered in the current model.

The third simple adjustment is the handling of dead pix-
els. Traditionally, dead pixels are filled in by an approxi-
mation. This process is generally referred to as inpainting.
This works well for small dead regions, however, for large
dead regions inpainting does more harm than good. If an
object is hidden behind a dead region, then the inpainting
is guaranteed to produce incorrect results.

The other option is to note that equation (1) is a large
underdetermined system. This is because it is desirable to



minimize dose and hence, minimize the number of values in
b. If a value of b is dead, then the row corresponding to that
value can simply be removed. This results in a slightly more
underdetermined system which can produce better results
than reconstructing from incorrect values after inpainting.

With all of the above points taken into consideration, a
small application called mART was developed which imple-
ments SART. The implementation is a single threaded CPU
solution aimed at producing high quality reconstructions.
Once this first milestone is achieved, the algorithm can be
optimized and extended for spectral CT reconstruction.

The current form of mART reconstructs data from indi-
vidual chip images. This is to allow sub-pixel geometrical
alignment without the blurring associated with stitching al-
gorithms. Inpainting of dead pixels is optional where dead
pixels are simply ignored if present in the data.

3. MEASURING IMAGE QUALITY

The first test for mART is to compare the output with
that of Octopus CT, however the way in which image quality
can be assessed are numerous. This paper employs two main
methods: the assessment of the graininess of an image and
the sharpness of the edges within the image.

The graininess of an image, from hence forth referred to
as noise, limits the contrast sensitivity of a CT image, and
hence its ability to detect features within the image itself.
The noise of an image is evaluated by measuring the relative
standard deviation in CT numbers over a uniform region of
interest, where the CT number is the normalised unit of at-
tenuation in Hounsfield units (HU) and is independent of the
scanner. CT numbers are defined such that the CT num-
ber for air and water are -1000 HU and 0 HU respectively.
Larger noise values represent more variation in CT numbers
across the region of interest, and hence more graininess.

The sharpness of the edges within an image can be related
to the spatial resolution, and is a measure of the ability to
resolve fine detail. It can be measured from the modulation
transfer function (MTF). An annulus mask is applied to an
image, shown in Figure 1(a), from which the MTF can be
determined by direct analysis of the edge response function.
The 10% MTF value, shown in Figure 1(b), represents the
number of line pairs distinguishable in a millimetre [13].

4. RESULTS AND DISCUSSION

This comparison of reconstructions from mART and Oc-
topus CT was performed using both simulated and real data
of standard phantoms. All images presented in this section
are normalised to standard CT numbers.

The Shepp-Logan phantom is a standard simulated phan-
tom used in a variety of tomographic medical imaging appli-
cations. Synthetic Shepp-Logan phantom images were sim-
ulated by MATLAB using the 3D modified Shepp-Logan al-
gorithm. As this phantom does not specifically contain any
regions of water, to determine the attenuation value of wa-
ter in reconstructed images, a uniform region of the interior
was selected, whereas a region of the surrounding medium
was selected to determine attenuation values for air.

Figure 2 shows selected reconstructed slices of the Shepp-
Logan phantom using Octopus CT and mART algorithm,
when using 72, 180 and 360 x-ray projections in the recon-
struction. When using 360 projections the resulting images
are visibly similar, however at 72 projections Octopus CT

Normalised MTF Peak

10% MTF = 3.4261

0 1 2 3 4 5 6
line pairs per mm

(b)

Figure 1: Spatial resolution determination. (a) An
annulus mask is applied to an image, from which the
MTF can be determined. (b) The 10% MTF value
defines the number of line pairs distinguishable in a
millimetre.



Table 1: Noise and spatial resolution values for
mART reconstructions of Shepp-Logan images. 10%
MTF values is in line pairs per mm.
Shepp-Logan Noise(HU) | 10% MTF
72 projections || 4.67 & 1.92 | 2.91 + 0.25
180 projections || 2.12 £ 0.90 | 2.95 £ 0.26
360 projections || 1.45 + 0.70 | 2.95 + 0.27

Table 2: Noise and spatial resolution values for Oc-
topus CT reconstructions of Shepp-Logan images.
10% MTF values is in line pairs per mm.

Shepp-Logan Noise(HU) 10% MTF
72 projections || 10.03 £+ 4.55 | 4.16 £+ 1.46
180 projections || 3.25 £ 1.61 474+ 1.6
360 projections || 1.33 £ 0.51 4.74 + 1.6

results in a rippling pattern in the images.

Tables 1 and 2 shows the measured noise and spatial res-
olution values for mART and Octopus CT reconstructions
respectively, where values were determined over 10 neigh-
bouring slices in the 3D reconstructed volume. In both case,
with an increase in the number of projections used during
reconstruction the noise in the image decreases, reflected in
the images shown in Figure 2. While there is no statistical
difference in the noise between mART and Octopus at 360
projections, at 72 projections the noise in mART images is
approximately half of that in Octopus images, seen as the
enhanced rippling seen in Figure 2(a), indicating a higher
deviation in attenuation across the slice reconstructed us-
ing Octopus. This has important clinical implications, as it
may be possible to utilise a smaller number of projections,
delivering a lower x-ray dose to the patient.

Regardless of the reconstruction method used, the spa-
tial resolution is independent of the number of projections.
However, Octopus produces finer edge detail with 10% MTF
values of ~4.7 line pairs per mm, compared to ~2.9 line pairs
per mm for mART.

To assess the performance of the implemented SART al-
gorithm on real data, scans of a cylindrical water phantom
was used, where scans were taken using a Medipix 3.0 chip
with a Si sensor layer. Selected slices from the reconstruc-
tions are shown in Figure 3, with the measured noise and
spatial resolution indicated in Tables 3 and 4.

For the mART reconstructed slices of the water phan-
tom, the graininess of the images became less prominent,
matching the decreasing noise values. However, the spatial
resolution (10% MTF) decreased as the number of projec-
tions increased from 72 to 180 and 360 projections. This
is reflected in the images determined from 360 projection
having a blurrier edge than those of the 180 projections and
72 projections. This can be expected as smoothing can blur
edge definition.

Looking at the Octopus reconstructed images using 72
projections (Figure 3(a)), the image is extremely grainy,
with a noise value of 427.52 + 136.61HU. It was almost
impossible to see any clear details of the image. But the
graininess was reduced significantly as the number of projec-
tions was increased to 180 and 360, reflected in the measured
noise values. However, the smoothness around the phantom
edge in the images from 180 and 360 projections was similar

a) Octopus; 72 projections

) mART; 180 projections

) mART; 72 projections

¢) Octopus; 180 projections (

e) Octopus; 360 projections (f) mART; 360 projections

Figure 2: Reconstructed Shepp-Logan Slices.



(a) Octopus; 72 projections (b) mART; 72 projections

(c¢) Octopus; 180 projections (d) mART; 180 projections

(e) Octopus; 360 projections (f) mART; 360 projections

Figure 3: Reconstructed water phantom Slices.

to each other, with a 10%MTF value of ~2.4 line pairs per
mm.

In general mART will produce images that are less grainy
than Octopus, but edges of features may not be as well de-
fined. However if a lower number of projections is to become
standard within clinical and pre-clinical applications, to de-
crease x-ray dosage, mART will produce far superior images.

Figure 4 shows reconstructed slices of an atheroma using
both Octopus CT (left) and mART (right), scanned with a
CdTe detector at 720 projections. The images shown are
scaled to CT numbers. The atheroma sample is located to-
ward the bottom left with a calcified feature indicated with
the bright section (HU~2500). The surrounding capillaries
are of air, water and various concentrations of gold and cal-
cium chloride. The Octopus reconstructed image appears to
be more grainy than the mART reconstructed image, which
is in agreement with values from the quality analysis of the
Shepp-Logan and water phantoms above. However, even

Table 3: Noise and spatial resolution values for
mART reconstructions of a cylindrical water phan-
tom. 10% MTF values is in line pairs per mm.

Water Phantom Noise(HU) 10% MTF
72 projections || 211.43 &£ 85.37 | 2.92 4+ 0.23
180 projections || 124.38 £ 39.97 | 2.72 £ 0.16
360 projections 98.83 £+ 35.63 | 2.65 + 0.12

Table 4: Noise and spatial resolution values for
Octopus CT reconstructions of a cylindrical water
phantom. 10% MTF values is in line pairs per mm.

Water phantom Noise(HU) 10% MTF
72 projections 427.52 £ 136.61 | 0.74 + 1.40
180 projections 208.48 + 97.12 | 2.424 0.11
360 projections 151.554+ 82.89 | 2.44 £+ 0.08

though the mART reconstructed image appeared smoother
and less grainy, it had a more blurry edge compared to the
Octopus reconstructed image. This agrees with the differing
values of spatial resolution that we obtained earlier, showing
that mART reconstructed images have lower spatial resolu-
tion than Octopus reconstructed images, albeit slightly.

S. CONCLUSIONS AND FUTURE WORK

The results shown in the previous sections demonstrate
that the current application mART produces images of su-
perior quality to Octopus CT for a smaller number of pro-
jections. This means that the first milestone in developing a
reconstruction algorithm for spectral CT data is complete.
The SART algorithm adopted within mART is a flexible al-
gorithm which will allow for rapid extensions based on the
nature of spectral CT.

There are three primary tasks which will form the bulk
of future research. The first is compressed sensing which
will allow reconstructions of higher quality, and hence, lower
dose scans. The second is spectral reconstruction which will
reconstruct all energy bins simultaneously to exploit the sim-
ilarities between energy bins. Lastly, is material reconstruc-
tion which will fuse the reconstruction algorithm together
with a material decomposition algorithm, also in current
development. Compressed sensing is an alternative method
of solving algebraic linear equations. In our case, this is the
ART model from equation (1). The main idea is to incorpo-

Figure 4: Reconstructed slice of atheroma. Image
on left is reconstructed using Octopus CT, whereas
image on right is reconstructed using mART. Both
images are scaled to HU units.



rate known constraints into the problem. These constraints
reduce the number of samples required to reconstruct the
original signal. Therefore, reconstruction will require a sig-
nificantly lower dose.

Spectral reconstruction is when all energy bins are recon-
structed simultaneously. This is to exploit the similarities
between energy bins such as the geometrical information
which is identical between each. If processed correctly, ev-
ery energy bin should be able to contribute to the spatial
resolution of each other and improve image quality. In turn,
this should reduce dose requirements further.

Material reconstruction is the fusion of material decom-
position and reconstruction. This is possible because the
nature of the models for algebraic reconstruction and mate-
rial decomposition are similar in nature.

The benefit of such a fusion would be two-fold. Firstly, de-
composed data has nicer properties such as sparcity (most
of the volume would be empty for most target materials)
which could be exploited early on. Secondly, a single united
algorithm should perform faster than two sequential algo-
rithms.

The potential of spectral CT is vast, and still mostly un-
explored. It is our hope that this initial work will contribute
greatly to future CT technology.
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