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Abstract

In this thesis we explore the unit group of the ring of integers of number fields. In our
exploration we look at Dirichlet’s unit theorem which shows that the unit group is a finitely
generated abelian group. This will allow us to explore computing the generating set of the
unit group. From this basis we then extend the computation of unit groups to describe
and implement an algorithm in PARI for finding elements in the kernel of the norm mapping
K×/K×2 → Q×/Q×2. Elements in this mapping are of particular interest for finding Brauer
Manin obstructions with current implementations using a set of fundamental units.
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1 Introduction

Let K = Q[x]/ 〈f(x)〉 for some monic irreducible polynomial f(x) ∈ Z[x], ZK be the ring of
integers of K and Z×K the unit group. From understanding the unit group we can solve nu-
merous mathematical problems including Pell’s equation. The most useful theorem on the unit
group is Dirichlet’s unit theorem (see Theorem 2.6.1) which tells us the structure of the unit
group. From this theorem we can develop a way of generating a set of fundamental units for
these applications. In this thesis we will explore the computation of the unit group, subsets of
the unit group and finding non-square elements with square norm (with useful application in
finding Brauer Manin obstructions). Finally, we will develop and implement an algorithm for
generating elements of square norm that are not squares [Ken23].

A famous example of the use of units in number rings is Pell’s equation which was posed by
Fermat in 1657 and solution attributed to John Pell. Pell’s equation is the following

x2 − dy2 = 1 (1)

where we are looking for solutions x, y ∈ Z with fixed d ∈ Z. Now, consider the number field
K = Q(

√
d) with θ the root of the minimal polynomial of K. For this equation the norm is

defined as (x + y
√
d)(x − y

√
d) = x2 − dy2 = 1 which means that we are looking for solutions

of norm 1. These solutions will be equivalent to elements x + yθ ∈ ZK where θ is a root of
the polynomial x2 − d. Thus, if we can find units in ZK then we can find the solution to our
Pell’s Equation as units are elements with norm ±1 (See Lemma 2.2.4). Now it remains to be
seen that there are non-trivial units in ZK , we will check this using Dirichlet’s Unit Theorem.
If d is not a square then f(x) is irreducible otherwise we can define the minimal polynomial
x2 − d = (x +

√
d)(x −

√
d). Since f(x) is irreducible for d not square from Dirichlet’s Unit

theorem (see Theorem 2.6.1) we know that only one unit that is not a root of unity is required
to generate the unit group. Thus, we know that we have a solution assuming d is not a square.
Furthermore, if d = d′2 is a square then Pell’s equation becomes x2 = 1 + (d′y)2 which is
impossible to solve as there are no integer squares that are adjacent to each other (except the
trivial x = 1 and y = 0 ⇒ d′y = 0 which is always a solution to Pell’s Equation). Consider
the example where d = 6 which will have a unit since d is not a square. Thus, the unit of ZK
where K = Q(

√
d) is 2θ + 5 (the roots of unity are ±1). This means that we have the solution

x = 5, y = 2 to Pell’s equation when d = 6. This solution is fairly easy to compute, however,
it quickly becomes impractical. Consider the case when d = 1153. The fundamental unit for
this is 3017890256875073θ − 102475040023072656 which is of order 1017 making it impractical
to brute force. Thus, we must use more advanced techniques to compute the fundamental units.

A naive way to compute the set of fundamental units is to run through each number in a brute
force manner. From our example above we see that this is impractical and would take trillions
of computations. Instead, we construct the set of fundamental units using methods that are
based on constructive proofs of Dirichlet’s Unit theorem. These methods start by generating
elements until we obtain elements α, β, such that their norm is equivalent. Then we can take
α/β which will have a norm of 1 as the norm mapping is a homomorphism. Practically, we take
the valuations of our elements over a prime ideal factorbase p1, . . . , pk, that is if 〈α〉 = pv11 . . . pvkk
we store the vector (v1, . . . , vk). We do this as it converts the problem to finding the kernel of
a matrix formed by the valuation vectors. If an element does not factor over our chosen factor
base then we ignore it for computational efficiency. This leads to a balancing act of including
sufficient primes to generate the unit group but having the smallest possible factor base to
increase computational efficiency. A sufficient bound on the primes is Minkowski’s constant
(see Subsection 2.4) as all the primes below it are a sufficient representation of the rest of the
number ring for our application. However, practically we can use a smaller bound (for exam-
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ple 12 log |D|) which is sufficient if one assumes the General Riemann Hypothesis (GRH) is true.

Units are used in numerous algorithms, however, an algorithm of interest is finding Brauer
Manin obstructions on hyperelliptic curves using the algorithm seen in [CS23]. This algorithm
uses the subgroup of (K×/K×2)S that lies in the kernel of the norm map K×/K×2 → Q×/Q×2.
(K×/K×2)S is a subgroup of K×/K×2 where every element is not ramified over the prime ideals
above the primes not in S where S is a set of prime numbers. For this thesis we will assume
that S is all the prime numbers. Elements in Z×K are always going to map to ±1 with the
norm map, so it is natural to use this set for finding elements. Thus, we can simply try to find
units in Z×K which we can use the fundamental unit algorithm to do. However, experiments
show that one does not need a full set of fundamental units to still have success when finding
obstructions [Ken22]. Indeed, one only needs about a quarter of the full set of fundamental
units to find obstructions with sufficient reliability. Thus, it is reasonable to assume that an
algorithm could be developed to terminate when a small number of units are found. For this
project in particular, we will modify the algorithm to find elements of square norm in ZK that
are not squares as they will be in the kernel of the norm mapping. This could be done by storing
the factorisations of the norm of the elements generated using current methods and then finding
the kernel of this matrix modulo 2.

In section 2 we explore the relevant background in algebraic number theory. In section 3 we will
go through the history and a detailed implementation of a unit group algorithm. In section 4
we will explain the generation of square norm elements and then provide a tangible example
and algorithm for generating these elements. Finally, in section 5 we will briefly summarise the
results of this thesis.

2 Background in Algebraic Number Theory

2.1 Algebraic Structures

To start we will define the basic algebraic structures that are used.

Definition 2.1.1 (Group). A group G is a set X and a binary operator ∗ on X such that:

� There is an identity element 1 such that a ∗ 1 = 1 ∗ a = a for all a ∈ X.

� X is closed under ∗.

� For all a ∈ X there exists b ∈ X such that ab = 1

One can extend the definition of a group to obtain a ring.

Definition 2.1.2 (Ring). A ring is a set R with two binary operators ×,+ such that the
following axioms are satisfied

� (R,+) for a commutative group.

� The operator × is associative.

� ∀a, b, c ∈ R the distributive laws a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c
hold.

An example of a ring is the integers Z with the operators of addition and multiplication. Z
forms a commutative group with addition as ∀a ∈ Z there is an additive inverse (a+ (−a) = 0)
with identity element 0 and Z is closed (you can never add two integers and not get an integer).
Z is associative under multiplication as a×b = b×a for all a, b ∈ Z. Finally one can see that the
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distributive laws hold. Thus, Z forms a ring with the operators of addition and multiplication.
There are also a number of unique properties that elements in rings can have with the following
an important definition.

Definition 2.1.3 (Unit). A unit a is an element in a ring R with a corresponding element a−1

such that a× a−1 = 1, that is, a has a multiplicative inverse.

For example, Z only has the units ±1 which has itself as its inverse, but in the ring of rational
numbers Q, all non-zero elements are units (consider 2 and 1/2). This definition of a unit
naturally leads to a field F which is a commutative ring where every nonzero element is a unit.
From the definition of a field it is easy to see that Q is a field. We can also define subrings as a
subset of a ring R that is a ring under the induced properties of R. Note that a subfield is the
same as a subring except it is a subset of a field and is itself a field.

Another type of subset is the subset of ideal

Definition 2.1.4 (Ideal). An ideal I is a subring of a ring R with the property that with a ∈ I
and b ∈ R that ab ∈ I.

For example, the subring 2Z is an ideal of Z as with a, b′ ∈ Z and b ∈ 2Z with 2b′ = b and then
ab = 2ab′ ∈ 2Z. There are many properties that an ideal can have, the following are the more
useful properties for this thesis. A prime ideal p of a ring R is an ideal with the property that
if a, b ∈ R and ab ∈ p then either a ∈ p or b ∈ p. Consider the ideal 3Z, as 3 is a prime it has no
non-trivial divisors in Z, thus if a × b ∈ 3Z it implies either a or b is a multiple of 3 and thus,
is in 3Z. Thus, 3Z is a prime ideal of Z. However, consider the ideal 6Z, now 6 = 2 × 3 and
2, 3 /∈ 6Z thus, 6Z is not a prime ideal. A principal ideal is an ideal that is generated by a single
element in the ring. For example the ideal 〈2〉 in ZK where K = Q[x]/ 〈x2 − 5〉 is a principal
ideal but the ideal 〈2, x− 1〉 in ZK is not a principal ideal. A proper ideal is an ideal I that
is neither the complete ring R or the trivial ideal {0}. For example the ideal 6Z is a proper
ideal. A maximal ideal is an ideal that is not a subset of any proper ideal. For example 3Z is a
maximal ideal but 6Z ⊂ 3Z is not a maximal ideal. Now we come to the following observation

Lemma 2.1.1. A ideal is prime if it is maximal.

Proof: Let R be a ring and a be an ideal of R. The ideals of R/a is correspond to ideals of
R lying between a and R. Suppose a is maximal. Then there are no proper ideals in R/a.
This implies that R/a is a field as otherwise there would exist a non-unit 1 6= a ∈ R/a and the
ideal a would not be the R/a or {0}. Since a is maximal we know that a 6= R. Now let us
assume that there exists bc ⊆ a but b * a, b * a. Then we can find elements b ∈ b, c ∈ c with
b, c /∈ a but with bc ∈ a. However, this implies that a + b and a + c are non-zero in R/a but
(a+ b)(a+ c) = a+ bc = a implying (a+ b) and (a+ c) are zero-divisors, however, R/a is a field
so there are no zero divisors a contradiction. Thus, a is prime.
A natural question from this lemma would be whether every prime ideal is maximal. However,
this is not the case generally and in Lemma 2.2.9we will show that there is a case where this is
true. Finally, we will define a property that some rings have relating to ideals, a number ring
is noetherian when all the ideals of the number ring are finitely generated. This property will
allow us to write out our ideals as a set of elements.

Another area in algebraic number theory that we will consider is that of polynomials. For our
case in particular we are mostly interested in the following type of polynomial

Definition 2.1.5 (Irreducible Polynomial). An irreducible polynomial f(x) is a polynomial
with coefficients in a ring R such that f(x) 6= g(x)h(x) for all g(x), h(x) ∈ R[x].
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For example, the polynomial f(x) = x2+1 is irreducible over R (the roots of the polynomial are
±i /∈ R). We define the degree of a polynomial as highest exponent, that is n in the polynomial
anx

n + an−1x
n−1 + · · · + a1x + a0. A polynomial is called a monic polynomial when an = 1.

Naturally one can ask if there is a field where all the roots of a polynomial are contained, that
is, a field where there are no irreducible polynomials. This leads to the following theorem.

Theorem 2.1.2 (Number of complex roots of a polynomial). Every polynomial f(x) ∈ C of
degree n has exactly n roots in C counting multiplicity.

Proof: Suppose n = 1, then f(x) = x − θ and f(θ) = 0 proving the statement. Thus, suppose
that the theorem holds for n − 1. Now from the Fundamental Theorem of Algebra we know
that f(x) ∈ C[x] has a root in C. Let θ′ ∈ C be this root of f(x), then we can write f(x) =
g(x)(x − θ′) ∈ C and g(x) is of degree n − 1 which by our assumption has n − 1 roots. Thus,
f(x) has n roots in C.
We have considered polynomials as you can create extension fields from monic irreducible poly-
nomials. We define an extension field E of a field F as a field which has F as a subfield. We
can build these by taking quotients of F [x], that is, we can let E = F [x]/ 〈f(x)〉. For example,
we can build the complex numbers as an extension of R with C = R[x]/ 〈f(x)〉 = R(i) which
is a ring containing the roots of f(x) (that is, ±i) and R. This can be seen in the following
theorem.

Theorem 2.1.3 (Extension of F ). Let F be a field and p(x) ∈ F [x] be irreducible over F . If θ
is a zero of p(x) in some extension E of F then F (θ) ∼= F [x]/ 〈p(x)〉.

Proof based on Theorem 20.1 in [Gal21]: Define φ : F [x] → E taking f(x) 7→ f(θ). This is
a ring homomorphism and the image is contained in F (θ). It can be seen that 〈p(x)〉 ⊆ kerφ
as p(θ) = 0. We also have that kerφ 6= F [x] as φ(1) = 1 6= 0. This implies that 〈p(x)〉 =
kerφ because p(x) is irreducible so 〈p(x)〉 is maximal and kerφ 6= F [x]. This shows us that
F [x]/ 〈p(x)〉 = F [x]/ kerφ. Which is isomorphic to img(φ) by the first isomorphism theorem
(See Theorem 15.3 in [Gal21]). Thus, we see that img(φ) ⊆ F (θ) ⊆ E. Now F [x]/ 〈p(x)〉 is a
field as 〈p(x)〉 is maximal which implies that the image of φ is a field containing φ(x) = θ and
that F (θ) is the smallest field containing F and θ implying img(φ) = F (θ). This proves that
F (θ) ∼= F [x]/ 〈p(x)〉.
Now we need to have a way to select elements in a field that is easy to understand and read.
To do this we need to have a basis.

Definition 2.1.6 (basis). Let F be a ring. An F -basis of a group or ring E is a set of elements
{α1, α2, . . . , αn} from E such that the following two conditions are true

� For all β ∈ E there are values a1, a2, . . . , an ∈ F such that β = a1α1 + a2α2 + . . . anαn

� There are no values a1, a2, . . . , an ∈ F with at least one non-zero such that a1α1 + a2α2 +
. . . anαn = 0

The first condition is that the basis spans E and the second condition is that all the elements
are linearly independent. This allows us to consider E as a vector space over F and also describe
each element in E uniquely as a combination of elements. However, this concept is useless if
there does not exist an F -basis over E

Theorem 2.1.4 (Basis of F (θ) over F ). Let F be a field and p(x) ∈ F [x] be irreducible over
F and F (θ) = F [x]/ 〈p(x)〉. If deg(p(x)) = n, then every member of F (θ) can be expressed
uniquely in the form

cn−1θ
n−1 + cn−2θ

n−2 + · · ·+ c1θ + c0 (2)

where c0, c1, . . . , cn−1 ∈ F . In other words {1, θ, . . . , θn−1} is a F -basis for F (θ).
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Proof based on Theorem 19.3 in [Gal21]: Suppose 1, θ, . . . , θn−1 is a F -basis for F (θ). Let
φ : F [x] → E taking f(x) 7→ f(θ). Let β ∈ F (α) = img(φ) by Theorem 2.1.3. So β = φ(g(x))
for some g(x) ∈ F [x]. Now writing g(x) = p(x)q(x) + r(x) with deg(r(x)) < n we obtain

φ(g) = φ(p)φ(q) + φ(r) = r(θ) (3)

Now from this we see that r(x) = c0 + c1x+ · · ·+ cn−1x
n−1 thus,

β = r(θ) = cn−1θ
n−1 + cn−2θ

n−2 + · · ·+ c1θ + c0 (4)

Implying that this vector space spans. Suppose cn−1θ
n−1 + cn−2θ

n−2 + · · ·+ c1θ + c0 = 0 with
ci ∈ F . Then h(x) = c0 + c1x + · · · + cn−1x

n−1 ∈ kerφ = 〈p(x)〉. So h(x) = p(x)g(x) with
deg(h(x)) < n and deg(p(x)g(x)) ≥ n. Thus, h(x) = g(x) = 0, which implies all the coefficients
are zero implying that they are linearly independent. Thus, our basis 1, θ, . . . , θn−1 spans and
is linearly dependent.

We will now generalise our notation and define some critical definitions. An algebraic integer is
an element in K such that it is the solution of some monic polynomial with integer coefficients,
that is, it is a root of some polynomial in Z[x]. For this project we define K to be the extension
field Q(θ) where θ is an algebraic integer. Similarly to how we can consider integers in Q we
can consider the following.

Definition 2.1.7 (Ring of Integers). The ring of integers ZK of an extension field K is the ring
of all algebraic integers contained in K.

For example we can consider the ring of integers ZK where K = Q[x]
〈x2−5〉 . K has the roots θ

which map to ±
√

5 in C however, this does not mean that ZK is equivalent to Z[
√

5]. Consider

the element α = 1+
√
5

2 , now this element is clearly in K, but it is also in ZK . This is because α

is a root of the polynomial (x − 1−
√
5

2 )(x − 1+
√
5

2 ) = x2 − x − 1 ∈ Z[x], thus, it is an algebraic
integer and is in ZK . An integral basis for ZK is a Z-basis for ZK . We will define ω1, . . . , ωn to
be an integral basis for K and we will now show that every ring of integer has a basis. To do
this we need to consider the following definition

Definition 2.1.8. The discriminant of a set of element α1, . . . , αn is defined as follows.

δ(α1, . . . , αn) = det



σ1(α1) σ1(α2) . . . σ1(αn)
σ2(α1) σ2(α2) . . . σ2(αn)

...
...

. . .
...

σn(α1) σn(α2) . . . σn(αn)




2

(5)

This definition will also be useful later for the norm of an ideal.

Lemma 2.1.5. The ring of integers ZK has a Z-basis {ω1, . . . , ωn}.

Proof from Theorem 1.9 in Chapter 5 of [Ros94]: From Theorem 2.1.4 we know there is at
least one set of elements {ω1, . . . , ωn} that forms a Q-basis for K. We can assume that this
Q-basis is a set of algebraic integers as we can multiply by the greatest common denominator.
Since {1, θ, . . . , θn−1} is a Q-basis for K we can have ωi = ci,0 + ci,1θ+ · · ·+ ci,n−1θ

n−1 and the
conjugates as σj(ωi) = ci,0 + ci,1σj(θ) + · · ·+ ci,n−1σj(θ

n−1). This means that ∆(ω1, . . . , ωn) =
(det(M))2∆(1, θ, . . . , θn−1) with M being a matrix with coefficients ci,j . Now since {ω1, . . . , ωn}
form a Q-basis in of K that det(M) ∈ Q and will be non-zero. As well as this we know that
∆(1, θ, . . . , θn−1) will be non-zero and rational as all the conjugates are distinct and form a
Q-basis. Thus, we have that there is a minimum set of algebraic integers that is a Q-basis
over K as the discriminant is always positive (solution is rational and non-zero). Now suppose
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ω1, . . . , ωn is a Q-basis over K with minimum discriminant but is not a Z-basis of ZK . Then
there is an element β ∈ ZK such that β = a1ω1 + a2ω2 + · · ·+ anω with at least one ai /∈ Z. We
will choose a1 to be one of those elements. Now a1 = a′1 + t with 0 < t < 1. From this let use
choose a new Q-basis {α1, . . . , αn} with α1 = β− a′1ω1 and αi = ωi for integer 2 ≤ i ≤ n. From
this we can form the transformation matrix as

T =


t a2 . . . an
0 1 . . . 0
...

...
. . .

...
0 0 0 1

 (6)

Taking the discriminant of this new Q-basis we obtain

∆(α1, α2, . . . , αn) = det(T )2∆(ω1, . . . , ωn) = t2∆(ω1, . . . , ωn) (7)

as the determinant mapping is a homomorphism. The determinant of this Q-basis is smaller
than that of {ω1, . . . , ωn} which we choose to be minimal. Thus, we have a contradiction and
so there is no β that is not an integral linear combination of {ω1, . . . , ωn} meaning there is a
Z-basis for ZK .
Another feature of the ring of integers is the following

Lemma 2.1.6. ZK is noetherian.

The proof of this can be seen in Theorem 5.3b in [ST79]. The unit group Z×K is a group that
contains all the units in ZK with multiplication the binary operator. A root of unity is an unit
a such that for some non-zero n ∈ Z, an = 1. For example consider −1 ∈ Z×, (−1)2 = 1. The
set of roots of unity form a subset of the unit group. Another group that is closely related to
the unit group is the class group. Let JK be the group of fractional ideals of K, that is ideals
I ⊆ K that satisfy the property cI ⊆ ZK where c ∈ ZK is non-zero. Let PK be the group of
principal fractional ideals of ZK , which is a subgroup of JK .

Definition 2.1.9 (Class group). The class-group is the quotient group JK/PK [ST79].

The order of the class group is called the class-number which we will show is finite in Theo-
rem 2.5.1. We say that two ideals a, b are equivalent, that is a ∼ b if they map to the same
element in JK/PK . We notate [a] as the set of ideals equivalent to a and the class group can
be seen as the set of these equivalency classes.

2.2 Embeddings and Field Norms

The two fundamental tools used to find units are embeddings and norms. We first define an
embedding.

Definition 2.2.1 (Embeddings). An embedding is an injective homomorphism from a field E
to another field F .

From this one can observe the following.

Lemma 2.2.1. Let σ be an embedding from K → C, σ(α) = α if α ∈ Z.

Proof: We can write a =
∑a

i=1 1 as a ∈ Z. Thus, σ(a) = σ(
∑a

i=1 1) =
∑a

i=1 σ(1) =
∑a

i=1 1 = a
as σ(1) = 1 and σ(ab) = σ(a)σ(b) from homomorphism properties.
For a number field K we define an embedding as real if σ(K) ⊆ R and complex if σ(K) ⊆ C
but σ(K) 6⊆ R. We define the number or real embeddings as r1 and the number of pairs of
complex embeddings as r2. Note that they vary from number field to number field. A non-
obvious property of embeddings in rational extensions to complex numbers is that there is a
finite number of them. Consider the following lemma.
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Lemma 2.2.2. Let σ be an embedding from K → C where K = Q[x]/ 〈f(x)〉 and f(x) is a
polynomial of degree n with f(θ) = 0. Then there are exactly r1 + 2r2 = n linearly independent
embeddings.

Proof: Consider the embedding σ : θ 7→ θ′ where θ′ ∈ C is a root of f(x) (There are n
of these from Theorem 2.1.2). By Theorem 2.1.4 we know that every element in K can be
uniquely represented as a combination of roots θ. Thus, if we are only mapping the roots to
distinct elements in C thus, if we are mapping to distinct roots in C we know that they will be
uniquely represented and the map will be injective, thus, an embedding. Suppose that there
is another embedding from K → C, that takes σ(θ) → α where f(α) 6= 0. Now consider
0 = σ(0) = σ(f(θ)) = f(σ(θ)) = f(α) 6= 0 which gives a contradiction, thus, θ must map to
a root of f(x). Thus, since every embedding must be of the form σ : θ 7→ θ′ and all these are
embeddings then there are an equal number of embeddings to number of roots.

Now to define the norm. Let E be an extension of F of finite degree which forms a vector space
over F . From Theorem 2.1.4 we know there exists an F -basis for E. From this we can build a
linear map for an element α ∈ E that takes Mα : b 7→ bα. This linear map Mα can be seen as
a matrix over the F -basis for E. From this linear map we can define the following

Definition 2.2.2 (Norm of an Element). The norm of an element α is the determinant of the
matrix Mα.

From this we can obtain the following lemmas

Lemma 2.2.3. Let α, β ∈ E. Then NE|F (αβ) = NE|F (α)NE|F (β).

Proof: The statement in the lemma can be restated as follows

det(Mαβ) = det(Mα) det(Mβ) (8)

Since the determinant is a homomorphism from GLn(F ) → F× all we need to show is that
Mαβ = MαMβ. This can be seen as Mαβ : b 7→ bαβ and MαMβb = Mαbβ = bβα = bαβ. Thus,
MαMβ : b 7→ bαβ which is equivalent to Mαβ thus, the theorem holds.

Lemma 2.2.4. Every unit in ZK has the norm NK|Q(α) = ±1.

Proof: Suppose α ∈ ZK is a unit and α−1 is the corresponding inverse. From Lemma 2.2.3 we
know that NK|Q(αα−1) = NK|Q(α)NK|Q(α−1). However, NK|Q(αα−1) = NK|Q(±1) = ±1 and
so NK|Q(α) = 1/NK|Q(α−1). However, since α, α−1 ∈ ZK we see that the determinant of either
of the elements must be in Z (as the Mα depends on the coefficients of the minimal polynomial
which is integral). This results in NK|Q(α),NK|Q(α−1) ∈ Z× which means that they have the
possible values of ±1.

Lemma 2.2.5. The following statement is true

NK|Q(α) =
n∏
i=1

σi(α) (9)

where σi is an embedding of K → C.

Proof based on proof in Lemma 4.2 in [Ste20]: Suppose we have that K = Q(α) then the
embeddings map α to the roots of the irreducible polynomial of α. Thus, h(x) = f(x) =∏n
i=1(x − σi(α)) is the minimal irreducible polynomial of α. Consider the general case, then

Q(α) has [K : Q(α)] extensions, and so we obtain that
∏n
i=1(x − σi(α)) = f(x) = h(x)[K:Q(α)]

where h(x) is the minimal polynomial of α. Thus, we have that the minimal polynomial of α
at least divides f(x). Let g(x) = det(λI −Mα) be the characteristic polynomial of Mα. Mα
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is a root of g(x) from Cayley-Hamilton Theorem. Similarly Mα is a root of f(x) as Mα is the
matrix representation of α. Thus, since g(x) and f(x) both have Mα as roots the minimal
polynomial must divide g(x) and f(x). In fact these two polynomials are the same as Mα is
also a solution to the minimal polynomial of the conjugates of α (each column represents a
conjugate of α). From this we obtain that the constant element in f(x) is (−1)k

∏n
i=1 σ(α) and

the constant element of g(x) = (−1)k det(Mα) which means that if g(x) = f(x) we have that
NK|Q(α) = det(Mα) =

∏n
i=1 σi(α) proving our theorem.

The elements σi(α) are called conjugates of α. So far we have only considered the norm of an
element, however, we can extend this idea to norms of ideals. We define δ(I) as the discriminant
of basis elements of the ideal I and δ(K) as the discriminant of the Q-basis elements of the field
K. And now to consider the norm of an ideal

Definition 2.2.3 (Norm of an ideal). The norm of an ideal I is NK|Q(I) =
√

δ(I)
δ(K) .

A useful property of the norm of an ideal is

Theorem 2.2.6. Let I be a non-zero ideal of ZK . Then NK|Q(I) = card(ZK/I).

That is, the number of elements in the quotient ring of ZK and I is equal to the norm. The
proof of this can be found in Theorem 9.1.3 from [AW03].
So far we have two definitions of the norm, the norm of elements and the norm of ideals. These
two definitions are not unrelated, in fact we have the following connection.

Theorem 2.2.7. Let α ∈ ZK , then NK|Q(〈α〉) = |NK|Q(α)|.

Proof from Theorem 9.2.5 in [AW03]: The ideal 〈α〉 has the basis {ω1α, . . . , ωnα}. Now from
this we can consider the discriminant of this basis

δ(α1, . . . , αn) = det



σ1(αω1) σ1(αω2) . . . σ1(αωn)
σ2(αω1) σ2(αω2) . . . σ2(αωn)

...
...

. . .
...

σn(αω1) σn(αω2) . . . σn(αωn)




2

(10)

From this we can extra the embedding of α to get the following

δ(α1, . . . , αn) = det



σ1(α) 0 . . . 0

0 σ2(α) . . . 0
...

...
. . .

...
0 0 . . . σ1(α)



σ1(ω1) σ1(ω2) . . . σ1(ωn)
σ2(ω1) σ2(ω2) . . . σ2(ωn)

...
...

. . .
...

σn(ω1) σn(ω2) . . . σn(ωn)




2

= (σ1(α)σ2(α) . . . σn(α))2δ(K)

(11)

From Lemma 2.2.5 we obtain that δ(〈α〉) = NK|Q(α)2δ(K). Thus, from the definition we obtain
that NK|Q(〈α〉) = |NK|Q(α)|.
From this connection we will now prove the following useful theorem.

Theorem 2.2.8. There are only a finite number of ideals in ZK with a given norm and every
ideal in ZK has integer norm.

Proof based on proof of Theorem 5.12 in [ST79]: Let I be an ideal of ZK From Theorem 2.2.6
we know that NK|Q(I) = card(ZK/I). Now since every element x ∈ ZK has order dividing
NK|Q(I) we know that NK|Q(I)x ∈ I. Thus, we know that NK|Q(I) ∈ I as x = 1 ∈ ZK . From
Theorem 2.3.1 we know that every ideal has a unique factorisation into prime ideals. This im-
plies that there are a finite number of divisors of I (as there is only a finite number of elements
in the factorisation). If a ∈ I then 〈a〉 is contained in I implying I divides 〈a〉. Since there are
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a finite number of divisors that means there are a finite number of I that contain 〈a〉 or a ∈ I.
Thus, there is a finite number of ideals in ZK with a given norm proving the first half. The
norm of an element must be in the image of the map and in ZK from the statement earlier.
However, there is no a /∈ Q\Z with a ∈ ZK as the generating polynomial of a would not be
integral. Thus, ever ideal in ZK has integer norm.

Finally, we will give a case where the other direction of Lemma 2.1.1 holds.

Lemma 2.2.9. Every prime ideal in ZK is maximal.

Proof as seen in Theorem 5.3d in [ST79]: Let p be a prime ideal of ZK with 0 6= α ∈ p. Then
NK|Q(α) = αα2 . . . αn ∈ p from Lemma 2.2.5 where αi is the conjugate σi(α) and since p is a
prime ideal. Thus, 〈NK|Q(α)〉 ⊆ p so we see that ZK/p is a quotient ring of ZK/ 〈NK|Q(α)〉ZK .
This group will be of size [ZK : p] which is finite so every element will have finite order. ZK/p is
finite, and it will have no zero divisors. This is because otherwise there are elements a, b ∈ ZK/p
such that ab ∈ p which would mean that p is not a prime ideal. Since p ⊂ ZK we have that
there are at least two elements with one nonzero. Forall 0 6= x ∈ ZK/p with y ∈ ZK/p we know
that xy are distinct as otherwise xy = xz and we have that x(y − z) = 0 with y 6= z implying
we have zero divisors. Thus, the set of elements xy must be ZK/p so there must be at least
one y such that xy = 1. So every element in ZK/p is a unit, so it is a field. Now suppose
p ⊂ I ⊂ ZK with I an ideal then {1} ⊂ ZK/I ⊂ ZK/p with ZK/I an ideal. However, ZK/p is
a field, so it has no proper ideals, a contradiction. Thus, there is no I such that p ⊂ I ⊂ ZK so
p is maximal.

2.3 Unique Factorisation of Ideals

In the integers Z there is the well known concept of factorisation where any two numbers can
be factored uniquely into prime numbers. For example, it is known that 6 factors uniquely into
2× 3. It is therefore natural to ask if we can factor elements in the ring of integers ZK . In the
general case this is not true as if we consider the number ring K = Q[x]/ 〈x2 − 5〉 where there
is the unit (1 +

√
5)/2 any element α ∈ ZK can factor into α× (1 +

√
5)/2× (1−

√
5)/2. Thus,

we see that if we have non-trivial units that there is no longer unique factorisation. However,
the following can be said about factorisation in ZK .

Theorem 2.3.1 (Unique Factorisation of ideals in ZK). Every proper ideal of ZK can be written
as a product of prime ideals, uniquely up to the order of the factors.

It gets around the problem of divisibility by a unit as the ideal of a unit is the ring of integers
and so is not included in the ideal factorisation. So we can factor elements by factoring the
ideal generated by the element.

To prove Theorem 2.3.1 we need a few preliminaries. Since we are considering factorisation it
is useful to consider what an inverse of an ideal actually is.

Definition 2.3.1. The inverse of an ideal I is defined to be I−1 = {x ∈ K|xI ⊆ ZK}.

From this definition we can observe the following.

Lemma 2.3.2. If I ⊆ p ⊂ ZK with I an ideal and p a prime ideal then ZK ⊆ p−1 ⊆ I−1

Proof: Suppose p−1 * I−1 then there exists x ∈ p−1 such that xp ⊆ ZK with xI * ZK . This
implies there exists a ∈ I with xa /∈ ZK but since a ∈ p we see that xp * ZK a contradiction.
Thus, p−1 ⊆ I−1.
Another property of inverses of ideals is

Lemma 2.3.3. For every ideal I 6= 0, II−1 = ZK .
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This property is similar to the property that an element times its inverse is the same as the
multiplicative identity element (the ideal generated by the identity element is 〈1〉 = ZK). Before
we prove this lemma we need the following observation about ideals

Lemma 2.3.4. If I is a non-zero ideal and IS ⊆ I for any subset S ⊆ K then S ⊂ ZK .

Proof from Theorem 5.5 part (iv) in [ST79]: Let α ∈ S. From Lemma 2.1.6 we know that ZK is
noetherian so we can write I = 〈a1, . . . , am〉, where we can write not all ai as zero. This implies
that Iα ⊆ I gives

a1α = b11a1 + · · ·+ b1mam (12)

... (13)

amα = bm1a1 + · · ·+ bmmam (14)

with bij ∈ ZK . From this we can construct the set of equations

(b11 − α)x1 + · · ·+ b1mxm = 0 (15)

... (16)

bm1x1 + · · ·+ (bmm − α)xm = 0 (17)

which can give use a non-zero solution x1 = a1, . . . , xm = am. Taking the determinant the
matrix formed by this system of equations we obtain a polynomial equation with coefficients in
ZK for every α. Thus, we obtain that α ∈ ZK implying S ⊆ ZK .
Now to prove Lemma 2.3.3 based on Theorem 5.5 part (vi) in [ST79]: Consider the case when
I is a maximal ideal. Then from definition I ⊆ II−1 ⊆ ZK . However, since I is maximal we
have that II−1 must either be ZK or I. II−1 6= I as the contrary implies from Lemma 2.3.4
that I−1 ⊆ ZK which is a contradiction to Lemma 2.3.2. Thus, II−1 = ZK if I is a maximal
ideal. Now consider the case that I is not a maximal ideal and select I such that II−1 6= ZK
where there is no b ⊂ ZK where I ⊂ b and bb−1 6= ZK . That is, consider I maximal to the
condition that it is not contained in any ideal which when multiplied by together is the ring
of integers. Then I ⊆ p where p is maximal. From Lemma 2.3.2 we have that ZK ⊆ p−1 ⊆ I.
Thus, I ⊆ Ip−1 ⊆ II−1 ⊆ ZK as pp−1 must be contained within ZK by definition and I ⊂ p.
From this we can observe that Ip−1 ⊆ ZK implies that it is an ideal. Suppose that I = Ip−1

then by Lemma 2.3.4 we have that p−1 ⊆ ZK a contradiction to Lemma 2.3.2 so I ⊂ Ip−1.
Now by our maximality condition on I we have that Ip−1(Ip−1)−1 = ZK . This means that
p−1(Ip−1) ⊆ I−1. Then, ZK = Ip−1(Ip−1)−1 ⊆ II−1 ⊆ ZK a contradiction and proving the
statement.
Note that we say that an ideal I divides the ideal A when there exists B such that A = IB.
This condition is equivalent to A ⊆ I.

We will now finally prove Theorem 2.3.1 which is based on the proof to Theorem 5.5 in [ST79]:
Suppose that an ideal a is not a product of prime ideals and choose a such that it is maximal
subject to this condition. That is there is no b with a ⊂ b ⊂ ZK that is also not a product
of prime ideals. Then it is not prime but it will be contained in some maximal prime ideal
p. Now ap−1 * a as from Lemma 2.3.4 we see that this implies p−1 ⊆ ZK a contradiction to
Lemma 2.3.2. We also have that ap−1 ⊆ ZK as pp−1 must be contained within ZK by defi-
nition and a ⊂ p. Thus, a ⊂ ap−1 ⊆ ZK . Now by maximality condition of a we obtain that
ap−1 = p2 . . . pr. Hence, we obtain that a = pp2 . . . pr proving every ideal of ZK can be written
as a product of prime ideals. Thus, now it suffices to show that this factorisation is unique.
From the definition p dividing ab where a and b are ideals implies that p divides a or b. Let
p1, . . . , pr, q1, . . . , qs be prime ideals. Suppose there is the factorisation a = p1 . . . pr = q1 . . . qs.
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The norm of a prime ideal will be a prime number as from Theorem 2.2.6 we know that
NN |Q(p) = card(ZK/p) and if the cardinality is not prime then there is a subgroup in ZK/p im-
plying that there is another proper ideal containing p which is a contradiction to Lemma 2.2.9.
The norm of p1 . . . pr and q1 . . . qs will be the same and thus, we can expect to have the same
prime numbers in the norm however, this requires that r = s as otherwise there is an unac-
counted for prime number in the norm. Let k be the number of factors. Now let k = 1 then
a = p1 = q1 and clearly there is only one factorisation. Now suppose that factorisation is unique
for k − 1 factors. Then a = p1 . . . pk = q1 . . . qk. For each pk they must divide at least one of qj
so multiplying each side by p−1k we can cancel each out (as by Lemma 2.3.3). This relabeling
this obtains p1 . . . pk−1 = q1 . . . pk−1 which is unique from the assumption. Thus, by induction,
ideal factorisation into prime ideals is unique.

Now that we have proven there is unique factorisation of ideals we can consider practical uses of
this and data structures which will be useful later on. We define a set of primes p1, . . . , pk ⊆ ZK
a factor base and say that α factors over the factor base if all prime ideal factors of 〈α〉 are
contained in the factor base. For practicality, we define the following valuation:

Definition 2.3.2 (Valuations). A valuation of 〈α〉 = pe11 . . . pekk in some field F where p is a
prime ideal in F is defined as valpi(α) = ei for some i ∈ {1, . . . , k}.

This leads to a very useful way to store ideals as valuations over a factorbase as a vector. For
example the element 14 ∈ Z factors over the factor base 2, 3, 5, 7 as 14 = 21 × 30 × 50 × 71 so
we would store this as (1, 0, 0, 1) over this factor base. As we see in the example above this
definition of valuations also works for prime numbers in Z.

Lemma 2.3.5. If α ∈ K has a valuation of at least zero over all primes ideals then it lies in
ZK . Moreover, if the valuation is exactly zero over all prime ideals then it is a unit.

Proof: If α has a non-negative valuation over all the prime ideals then for the factorisation
〈α〉 = pe11 . . . pekk the set e1, . . . , ek is all positive. If ei is non-negative then peii ⊆ ZK as pi ∈ ZK ,
thus, every prime ideal that 〈α〉 factors into is in ZK so 〈a〉 ⊆ ZK . Since a ∈ 〈α〉 this implies
that a ∈ ZK . If α has a valuation of zero over all prime ideals then then α is contained in
no prime ideals. By Lemma 2.1.1 all maximal ideals are prime. This implies that 〈α〉 is not
contained in any ideal and is not maximal. This implies 〈a〉 = ZK which requires α to be a
unit.
Now there are an infinite number of prime ideals for the ring ZK (consider the prime ideals
above the ideals 〈p〉 where p is a prime number). Thus, it is practical to only consider elements
who have valuations over specific prime ideals (consider bounding the norm of prime ideals).
This definition of valuation provides the following useful definition.

Definition 2.3.3 (Unramified). A prime p is ramified over a factor base if valp(〈p〉) > 1 for
some prime ideal p, otherwise it is considered unramified.

For example, consider the prime 2 in Z and let L = Q/ 〈x3 + x2 + 5x− 16〉 which factors into
2ZK = p2p4 = (2, θ) · (2, θ2 + θ + 1) so 2 would be unramified. Now consider 3 which factors
into 3ZK = p23q3 = (2, θ + 1)2 · (3, θ − 1) so it would be ramified.

2.4 Minkowski’s Theorem

Minkowski’s Theorem was proved by Hermann Minkowski in 1889 and is used in many algebraic
number theory results. The nature of the proof is geometric in nature. In particular, it can
be used in the proof of Dirichlet’s Unit Theorem and for proving that the class group is finite.
From these it also provides the Minkowski constant which provides a useful bound. Before we
get into the theorem we need to cover a number of geometric concepts. A lattice L is a subgroup
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of Fn generated by the Z-basis e1, . . . , em. A lattice has a fundamental-domain defined to be
all the elements

∑
aiei with ai ∈ R with 0 ≤ ai < 1. A subset X of Fn is convex if any point

on a straight line from x to y with x, y ∈ X also are in X. Our subset X is symmetric if x ∈ X
implies −x ∈ X. We define the volume of X ⊆ Rn as

∫
X dx1 . . . dxn. The circle group S is the

set {z ∈ C| |z| = 1} which is a group under multiplication. A n dimensional torus is a product
of n circle groups. For example a 2 dimensional torus can be considered a mapping from points
in a square to points on the surface of a donut. The following lemma connects some of these
concepts.

Lemma 2.4.1. If L is an n-dimensional lattice in the vector space Rn then Rn/L is isomorphic
to the n-dimensional torus Tn.

Proof based on Theorem 6.4 in [ST79]: Let {e1, . . . , en} be a generating set for L. As the
set of vectors {e1, . . . , en} are linearly independent, they form a R-basis for Rn. Consider the
mapping φ : Rn/L → Tn, a1e1 + · · · + anen 7→ (e2πia1 , . . . , e2πian) where 0 ≤ a1, . . . , an < 1.
Now since we are going from an additive group to a multiplicative group we need to show that
φ(a+ b) = φ(a)φ(b) for all a, b ∈ Rn.

φ(a+ b) = φ((a1 + b1)e1 + · · ·+ (an + bn)en)

= (e2πi(a1+b1), . . . , e2πi(an+bn))

= (e2πia1e2πib1 , . . . , e2πiane2πibn)

= (e2πia1 , . . . , e2πian)(e2πib1 , . . . , e2πibn)

= φ(a1e1 + · · ·+ anen)φ(b1e1 + · · ·+ bnen)

= φ(a)φ(b)

Thus, we see that φ is a homomorphism. Each element in Rn/L will map uniquely to an element
in Tn as 0 ≤ ai < 1 and φ maps onto Tn. Thus, φ is an isomorphism from Rn/L to Tn and
thus, Rn/L is isomorphic to Tn.
Using the mapping φ as defined in Lemma 2.4.1 we can see that we can define the volume of
a subset X of a torus as vol(X) = vol(φ−1(X)) as φ−1(X) ⊆ T . Now consider Minkowski’s
Theorem.

Theorem 2.4.2 (Minkowski’s Theorem). Let L be an n-dimensional lattice in Rn with funda-
mental domain T , and let X be a bounded symmetric convex subset of Rn. If vol(X) > 2nvol(T )
then X contains a non-zero point in L.

Proof is based on Theorem 7.1 in [ST79]: Double the size of L to obtain a lattice 2L with
fundamental domain 2T . The volume of this will be 2nvol(T ) as there are n elements in T
and we are doubling the size of the generating vectors. Consider the torus Tn ∼= Rn/2L, then
we see that vol(Tn) = vol(2T ) = 2nvol(T ). Now the mapping ψ : Rn → Tn where ψ is the
extension of the mapping φ in Lemma 2.4.1 by letting a1 ∈ R. This mapping cannot preserve
the volume of X as vol(X) > 2nvol(T ) = vol(Tn), thus, vol(ψ(X)) 6= vol(X). Let us assume
the mapping ψ : X → Tn is injective. Since X is bounded we see that it shares elements with
a finite number of sets T + l with l ∈ L. Let Xl = X ∩ (T + l). From this one can observe that
X = Xl1 ∪ · · · ∪ xln where {l1, . . . , ln} is the finite set of l such that Xl is non-empty. Now for
each element li ∈ {l1, . . . , ln} define Yli = Xli − li with Yli ⊂ T . From our assumption these
Yli must be disjoint which implies that vol(∪Yli) =

∑
vol(Yli). Now vol(Xli) = vol(Yli) for all i
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and ψ(Xli) = φ(Yli). Now let us compute the following

vol(ψ(X)) = vol(ψ(∪Xli))

= vol(∪Yli)

=
∑

vol(Yli)

=
∑

vol(Xli)

= vol(X)

However, we have already seen that vol(ψ(X)) 6= vol(X) thus, ψ is not injective. Hence, there
exists x1, x2 ∈ X with x1 6= x2 such that ψ(x1) = ψ(x2). Thus, we can write x1 = al+φ(x1) and
x2 = bl+φ(x2) with a, b ∈ Z which results in x1−x2 = (a−b)l ∈ 2L. Since X is symmetric and
x2 ∈ X we also have that −x2 ∈ X and from of X concavity we have that 1

2x1 + 1
2(−x2) ∈ X.

It follows from x1 − x2 ∈ 2L that 1
2(x1 − x2) ∈ L hence 1

2(x1 − x2) ∈ L ∩X which gives us our
required observation.
Now to apply Minkowski’s Theorem to number fields we need to define a lattice for our number
field. To do this let us consider ZK which has a Z-basis {ω1, . . . , ωn} from Lemma 2.1.5 and let
Φ : ZK → Cn where Φ : x → (σ1(x), . . . , σn(x)). It can be seen that Φ(ZK) forms a lattice in
Cn with C-basis vectors Φ(ω1), . . . ,Φ(ωn). This leads to the following theorem

Lemma 2.4.3. The volume of the fundamental domain of an ideal I over the lattice Φ(I) is
NK|Q(I)

√
|∆| where ∆ is the determinant of ZK .

Proof: Let {ω1, . . . , ωn} be a Z-basis for I and let M be the n× n matrix where Mij = σi(ωj).
Now the volume of the fundamental domain of this is equivalent to taking the square of the
determinant of M . However, from our definition of a norm of an ideal we see that det(M)2 =
NK|Q(I)

√
|∆| proving our statement.

Another useful mapping is the complex logarithmic embedding which can be used to create a
map from multiplicative group of a number field to a lattice allowing us to use Minkowski’s
Theorem. The complex logarithmic embedding is defined as follows

LC(α) =

(
ni

(
ln(σi(α))−

ln(NK/Q(α))

n

))
1≤i≤r1+r2

(18)

where ni = 1 for 1 ≤ i ≤ r1 and ni = 2 for r1 + 1 ≤ i ≤ r1 + r2. One can observe from this is
the following

Lemma 2.4.4. The complex embedding of 1 is zero.

Proof: For all embeddings we have that σi(1) = 1 and the norm of 1 is 1. Thus, clearly from
this LC(1) = 0.
An application of Theorem 2.4.2 is in showing that every ideal is equivalent to an ideal with
bounded norm where the bound is called Minkowski’s Constant.

Theorem 2.4.5 (Minkowski’s Constant). Every ideal class of the class group H of K contains
an integral ideal of norm not exceeding Minkowski’s constant given by

MK =

(
4

π

)r2 n!

nn

√
|∆| (19)

where ∆ is the discriminant of K.

Proof as seen in Theorem 5.8 in [Ste20]: Let I ⊂ K be an ideal of K and Xt be a box consisting
of elements x = (σ1(x), . . . , σn(x)) where

i=1∑
n

σi(x) ≤ t (20)
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This box has volume vol(Xt) = 2r1πr2 t
n

n! to which we are going to prove with induction. We
can simplify our system by only considering pairs of complex embeddings and instead show
that vol(Xt) = 2r1(π2 )r2 t

n

n! . The reason there is a difference is that we are not counting the
conjugates but the conjugate. Let Vr1,r2(t) be the volume of the box Xt with r1 and r2 being
the number of real embeddings and number of pairs of complex embeddings respectively. Now
V1,0(t) = 2t as Xt = [−t, t] and V0,1(t) = πt2/4 as Xt = {|σ(x)| ≤ t/2}. Now assume that the
Vr1,r2 = 2r1(π2 )r2 t

n

n! . Then

Vr1+1,r2 =

∫ t

x=−t
Vr1,r2(t− |x|)dx

=

∫ t

x=−t
2r1
(
π

2

)r2 (t− |x|)n

n!
dx

= 2r1
(
π

2

)r2
2

∫ t

x=0

(t− x)n

n!
dx

= 2r1
(
π

2

)r2
2

[
−(t− x)n+1

n!(n+ 1)

]t
x=0

= 2(r1+1)

(
π

2

)r2 tn+1

(n+ 1)!

Let z = ρeiθ, then

Vr1,r2+1 =

∫ 2π

θ=0

∫ t

ρ=0
Vr1,r2(t− 2ρ)ρdθdρ

= 2π

∫ t

ρ=0
2r1
(
π

2

)r2 (t− 2ρ)n

n!
ρdρ

= 2r12π

(
π

2

)r2 ∫ t

ρ=0

(t− 2ρ)n

n!
ρdρ

= 2r12π

(
π

2

)r2 [(t+ 2x)n+1(−t+ 2(1 + n)x)

(4(n+ 2)!

]t/2
ρ=0

= 2r12π

(
π

2

)r2 tn+1t

4(n+ 2)!

= 2r1
(
π

2

)r2+1 tn+2

(n+ 2)!

Thus, by induction vol(Xt) = 2r1(π2 )r2 t
n

n! . And from our earlier assumption we see vol(Xt) =
2r1πs t

n

n! . From Lemma 2.4.3 we know that the fundamental domain of the lattice Φ(I) can

be given by NK|Q(I)
√
|∆|. Now from Theorem 2.4.2 we have that this set Xt will contain

an x such that ψ(x) ∈ φ(I) ∩ Xt if vol(X) ≥ 2nNK|Q(I)
√
|∆| Now let us choose t such that

vol(Xt) = 2nNK|Q(I)
√
|∆|, thus

2r1(
π

2
)r2
tn

n!
= 2r1+2r2NK|Q(I)

√
|∆|

⇒ tn ≥ n!

(
4

π

)r2
NK|Q(I)

√
|∆|

(21)

Now the norm of the element x will be |NK|Q(x)| =
∏n
i=1 |σ(x)|. Now (

∏n
i=1 |σ(x)|)1/n will not

exceed 1
n

∑n
i=1 |σ(x)| from Equation 20. Thus, there is an element x ∈ I ∩ ZK with norm

|NK|Q(x)| =
n∏
i=1

|σ(x)| ≤ (
1

n

n∑
i=1

|σ(x)|)n ≤ tn/nn =
n!

nn

(
4

π

)r2
NK|Q(I)

√
|∆|. (22)
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If I is invertible then we can create the ideal xI−1 which will be contained in the equivalence
class [I−1] with norm NK|Q(xI−1) = |NK|Q(x)|NK|Q(I−1) ≤ n!

nn

(
4
π

)r2 NK|Q(I)
√
|∆|. Thus,

since I was an arbitrary ideal in JK and every ideal in JK except the zero ideal is invertible we
see that every equivalence class has an ideal as described above.
One result for this theorem is that it gives us a bound for the prime ideals required to generate
the class group as every equivalence class contains an ideal with norm smaller than Minkowski’s
constant. This does not imply that the bound is necessarily small, in particular consider the
field K = Q[x]/ 〈f(x)〉 where f(x) = x8 − 4x7 + 3x6 − 2x5 + 4x4 − 9x3 + x2 + 5x+ 2. This has
the discriminant of −77837869969751 which means that MK ≥ 21202.94071 and there are 2384
prime numbers below 21202.94. And for larger degree and larger coefficients the discriminant
can get even larger. Later we will se that we can consider a smaller bound with the GRH.

2.5 Finitely Generated Abelian Groups

Now we come across the concept of Finitely Generated Abelian groups

Definition 2.5.1 (Finitely Generated Abelian Group (FGAG)). A finitely generated abelian
group is an abelian group G that is generated by a finite number of elements where ∀a, b ∈ G
ab = ba.

A trivial example of this is the group Z × Z
nZ which can be generated by the elements (1, 0)

and (0, 1). We will see later that all FGAG are of the same form as the previous example (See
Theorem 2.5.4). The unit group and class group are less clear examples of finitely generated
abelian groups (which the unit case will be seen in Dirichlet’s unit theorem in Theorem 2.6.1).
To show the class group is a FGAG consider the following.

Theorem 2.5.1. The class group is a FGAG.

Proof (for more see Theorems 5.4 and 5.8 in [Ste20] and Theorem 9.7 in [ST79]): The class
group H = J/P is abelian as K is a number field. From Theorem 2.2.8 we know that there
is only a finite number of ideals for a given norm and that the norm of these ideals must be
integers. From Theorem 2.4.5 we know that every equivalence class contains an integral ideal
below a bound. Thus, there is only a finite number of ideals below a given norm and as extension
there are only a finite number of equivalence classes. Thus, the group is finite (implying it can
be finitely generated) and abelian.
Earlier we saw that for a number field that we can uniquely describe every element in a number
ring as a linear combination of elements. It is the same for a Finitely Generated Abelian Group.

Theorem 2.5.2. Every FGAG has a Z-basis.

Before proving this we need to consider the following

Lemma 2.5.3. If x1, . . . , xk is a generating set for G and integers c1, . . . , ck ≥ 0 with gcd(ci) =
1 then there exists a generating set y1, . . . , yk with y1 =

∑
cixi.

Proof as based on Lemma 1.53 in [Mil21]: Let s =
∑
ci. Suppose s = 1 then that implies

that there is one ci = 1 and all others are zero which can be seen as reordering of x1, . . . , xn
and is sufficient for the case where s = 1. Now suppose s ≥ 2 implying, without loss of
generality, that c1 ≥ c2 ≥ 0 and that the theorem is true when

∑
di < s. Consider the gen-

erating set x1, x1 + x2, x3, . . . , xk and integers d1 = c1 − c2, d2 = c2, . . . , dk = ck. From this
gcd(di) = gcd(ci) = 1 and

∑
di = (

∑
ci) − c2 < s. Thus, from the induction hypothesis we

obtain y1 = d1x1+d2(x1+x2)+· · ·+dkxk = (c1x1−c2x2)+c2x1+c2x2+· · ·+ckxk =
∑
cixi.

Proof of Theorem 2.5.2 based on Theorem 1.54 in [Mil21]: Let k be the size of a generating set
of G. Suppose k = 1 then we have that G = 〈x1〉 so it has a basis. Now suppose that k > 1
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and that every FGAG generated by fewer than k elements has a Z-basis. Among all elements
x1, x2, . . . , xk in the generating set of size k, choose one element x whose order is minimal and
relabel elements so that this element is x1. If the order of x1 is one then x2, . . . , xk generate G so
G has a Z-basis. Thus, assume the order of x1 is greater than 1 and suppose that x1, x2, . . . xk is
not a basis. Then there are ai ∈ Z such that

∑
aixi = 0 where not all aixi = 0. We can assume

that 0 ≤ a1 ≤ ord(x1) and let d = gcd(ai) so that ci = ai/d. By Lemma 2.5.3 this results
in a generating set y1, . . . , yk with yi =

∑ ai
d xi. However, note that 1 ≤ d ≤ a1 ≤ ord(x1) so

dy1 = d
∑ ai

d xi =
∑
aixi = 0 so ord(y1) < ord(x1) a contradiction. Thus, x1, . . . , xk must be a

Z-basis.
This leads us to the following theorem.

Theorem 2.5.4 (Structure theorem for FGAGs). Let G be a finitely generated abelian group.
There exists unique integers r > 0,m1, . . . ,mk ≥ 0 such that m1|m2| . . . |mk and

G ∼= Zr × Z
m1Z

× · · · × Z
mkZ

(23)

This tells us that every FGAG is a product of cyclic groups.
Proof as based on Theorem 1.57 in [Mil21]: From Theorem 2.5.2 we know that a FGAG G has
a basis x1, . . . , xk, xk+1, . . . , xk+r where ord(xi) = mi < ∞ for i ∈ {1, . . . , k} and ord(xi) = ∞
for i ∈ {k + 1, . . . , k + r}. Thus, there are r infinite order elements and k finite order elements
which gives

G ∼= Zr × Z
m1Z

× · · · × Z
mkZ

(24)

2.6 Dirichlet’s Unit Theorem

Now we come to the crucial theorem required to compute units, Dirichlet’s unit theorem devel-
oped by Peter Dirichlet (who was born in 1805 and died in 1859). This theorem shows that the
unit group is a FGAG, and it gives the structure of this into a set of units and a set of roots of
unity.

Theorem 2.6.1 (Dirichlet’s Unit Theorem). Let K be an algebraic number field of degree n.
Let r1 be the number of real conjugate fields of K and 2r2 the number of complex conjugate
fields of K. Then ZK contains r1 + r2 − 1 units ε1, . . . , εr1+r2−1 such that each unit of ZK can
be expressed uniquely in the form in the form ηετ11 . . . ε

τr1+r2−1

r1+r2−1 where η is a root of unity in ZK
and τ1, dots, τr1+r2−1 ∈ Z.

These units described in Dirichlet’s Unit Theorem are called fundamental units and the theorem
tells us how big this set of fundamental units is. For example, by Dirichlet’s Unit theorem there
is one fundamental unit of Z(

√
2) being {1 +

√
2} ((1 +

√
2)(−1 +

√
2) = −1 + 2 = 1). Adding

on the roots of unity we obtain that the unit group is Z×K =< ±1, 1 +
√

2 >, note that the unit
(1 +
√

2)2 = 3 + 2
√

2 would not be a fundamental unit as one cannot generate 1 +
√

2 using this
unit. There are a number of proofs of Theorem 2.6.1, the proof we will be closely following can
be found in Chapter 13 of [AW03]. The basic idea is to generate a set of units where each unit
is unique using bounds on the embeddings of elements and by extension on the norm for all
but one embedding. Then we show that these units are linearly independent and using bounds
on the last embedding we show that every element is generated using these fundamental units
and roots of unity. To start let us define some notation that will be useful for the theorem. Let
α = c1ω1 + c2ω2 + · · · + cnωn with α ∈ ZK , c1, . . . , cn ∈ Z, {ω1, . . . , ω2} is a basis for ZK and
βi(x) = |σi(x)| where σi(x) is an embedding in K over Q. First we will have to prove a number
of lemmas
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Lemma 2.6.2. Let 0 ≤ pi < qi and pi, qi ∈ Q where i ∈ {1, 2, . . . , r + s}. There exists a ∈ K
such that pi < βi(a) < qi.

Let hi = 1
2(pi + qi) ∈ Q such that pi < hi < qi. Now let hj = hj−r2 where j ∈ {r1 + r2 +

1, . . . , r1 + 2r2} and consider a system of n equations where

hi = b1σ1(ω1) + · · ·+ bnσn(ωn). (25)

Now let D = det(σj(ωj)) 6= 0 as D2 = d(K) and the determinant of K is non-zero. Thus, since
D is the determinant of the matrix of the system of n equations, there is a unique solution for
b1, . . . , bn ∈ Cn. hi ∈ Q thus, Equation 25 must have a real rational solution. In fact bi can
be considered real coefficients as for the complex embeddings we can simply let bj = −bj+r2
for j ∈ {r1 + 1, . . . , r1 + r2} which cancels the imaginary part, thus, b1, . . . , bn ∈ R. From this
let δ = min1≤i≤r1+r2( qi−pi2Mn ) where M = max1≤i,j≤r1+r2 |σi(ωj)| so that 0 < δ ≤ qi−pi

2Mn for any
i ∈ {1, . . . , r1 + r2}. Now choose ci ∈ Q such that |bi − ci| < δ and form a = c1ω1 + · · ·+ cnωn.
Thus, we obtain

σi(a)− hi = (c1 − b1)σi(ω1) + · · ·+ (cn − bn)σi(ωn), i = 1, 2, . . . , n (26)

Taking absolute value of Equation 26 we find

|σi(a)− hi| ≤M(|c1 − b1|+ · · ·+ |cn − bn|), i = 1, 2, . . . , n

< Mnδ, i = 1, 2, . . . , n

≤ qi − pi, i = 1, 2, . . . , n

Thus, we see that hi − (qi − pi)/2 ≤ σi(a) ≤ hi + (qi − pi)/2 which since hi = (qi + pi)/2 we
obtain that pi ≤ βi(a) ≤ qi.

Lemma 2.6.3. Let k ∈ Z with k > 0 and let I be an integral or fractional ideal of ZK with
NK|Q(I) ≤ kn. Then there is a non-zero a ∈ I such that βi(a) ≤ nMk ∀i ∈ {1, 2, . . . , r1 + r2}
with M = max1≤i,j≤r1+r2 βi(ωj).

Proof: Suppose I is integral and let S = {b ∈ ZK |b = b1ω1 + · · · + bnωn, b1, . . . bn ∈
{0, 1, 2, . . . , k}}. The cardinality of this set will be (k + 1)n > kn ≥ NK|Q(I). This means
that from Theorem 2.2.6 there are more elements in S than in the quotient group ZK/A so we
see that there must be two elements in S that map to the same element in ZK/I or that there
exists b′, b′′ ∈ S with b′ 6= b′′ such that b′ + (−b′′) ∈ I. Let a = b′ − b′′ = a1ω1 + · · ·+ anωn 6= 0
with a ∈ ZK and a ∈ I. Thus, we have that each ai satisfies |ai| = |b′i − b′′i | ≤ k where
i ∈ {1, 2, . . . , r1 + r2}. From this we obtain the following

βi(a) = |σi(a1ω1 + · · ·+ anωn)|
= |a1||σi(ω1)|+ · · ·+ |an||σi(ωn)|
≤ k(M + · · ·+M)

≤ nMk

proving the lemma for the integral case. Now consider when I is fractional and let γ be the
common denominator of I. Let γ1 = γ and let γ2, . . . , γn be the conjugates of γ, that is elements
in K such that m = NK|Q(γ) = γ1γ2 . . . γn (from Lemma 2.2.5). These elements will be integral
as γ ∈ ZK from Theorem 2.2.8. From this we obtainNK|Q(γ)I = γ2 . . . γn(γI) = mA = B which
is an integral ideal. We know that there will be an element in b ∈ B such that βi(b) ≤ mkMn,
and since b ∈ B we have that there exists a ∈ I such that am = b thus, there exists a a ∈ I such
that βi(a) = kMn for i ∈ {1, 2, . . . , r1 + r2}. This proves the lemma for the fractional case.
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Lemma 2.6.4. For each j ∈ {1, 2, . . . , r1 + r2−1} with r1 + r2 ≥ 2 there exists an unit εj ∈ ZK
such that

βi(εj) < 1, i = 1, 2, . . . , r1 + r2, i 6= j

βj(εj) > 1.

Proof: Let a ∈ L be an element unique for each εj such that if j ∈ {1, 2, . . . , r1} with
Lemma 2.6.2 we have

B < βi(a) < 21/nB, i = 1, 2, . . . , r1 + r2, i 6= j

1

2Bn−1 < βi(a) <
1

21−1/nBn−1 , i = j
(27)

and if j ∈ {r + 1, . . . , r1 + r2 − 1} then

B < βi(a) < 21/nB, i = 1, 2, . . . , r1 + r2, i 6= j

1

21/2B(n−2)/2 < βi(a) <
1

21/2−1/nB(n−2)/2 , i = j
(28)

Either of these cases has βi(a) > B where i = 1, 2, . . . , r1 + r2, i 6= j. From Lemma 2.2.5 we
know that NK|Q(a) =

∏n
i=1 σi(a) and it can be clearly seen that

|NK|Q(a)| =
r1+r2∏
i=1

βi(a)di (29)

where di = 1 if σi is real and di = 2 if σi is complex. From this we can compute the norm of a
using Equation 27 to be

1

2Bn−1B
r(B2s) <|NK|Q(a)| < 1

21−1/nBn−1 (21/nB)r−1(21/nB)2s

⇒ 1

2
<|NK|Q(a)| < 1

(30)

when j ∈ {1, 2, . . . , r1} and using Equation 28

1

21/2B(n−2)/2B
r−1(B2(s−1)) <|NK|Q(a)| < 1

21/2−1/nB(n−2)/2 (21/nB)r(21/nB)2(s−1)

⇒ 1

2
<|NK|Q(a)| < 1

(31)

when j ∈ {r1 +1, . . . , r1 +r2−1}. Let ε ∈ Z×K be a unit and let I = 〈a〉. Now from Lemma 2.6.3
we know that there exists b = qa ∈ I such that βi(b) ≤ nM, i = 1, 2, . . . , r + s. From this we
can obtain the following

NK|Q(〈q〉)
2

< NK|Q(〈q〉)NK|Q(〈a〉)

= NK|Q(〈b〉)

≤
r+s∏
i=1

βi(b)
d
i

≤ (nM)n

(32)

Which shows that NK|Q(〈q〉) = NK|Q(q) < 2(nM)n hence there are only finitely many principal
ideals 〈q〉 below a bounded norm as there are only finitely many q ∈ ZK with norm smaller
than 2(nM)n. We will call these principle ideals 〈q1〉 , . . . , 〈qt〉. Now we can write q = εqi with
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ε ∈ Z×K (consider letting qi = ε−1q ∈ ZK). Now let l = maxi=1,...,r1+r2;j=1,...,t βi(q
−1
j ). Then we

obtain that
1 = βi(1) = βi(qjq

−1
j ) ≤ lβi(qj) (33)

Which results in
βi(εa) ≤ lβi(qj)βi(εa) = lβi(qa) = lβi(b) ≤ lnM = B (34)

Thus, βi(εa) ≤ B = lnM . Earlier we found that βi(a) > B for i = 1, 2, . . . , r1 + r2, i 6= j, thus
we have the following

βi(εj) =
βi(εja)

βi(a)
<
B

B
= 1, i = 1, 2, . . . , r + s, i 6= j (35)

From this we have

NK|Q(εj) =

r1+r2∏
i=1

βi(εj)
di

< βj(εj)
di

And it follows that βj(εj) > 1 as the norm of εj is 1.
We say that a set of {α1, . . . , αk} elements are independent if αρ11 α

ρ2
2 . . . αρkk = 1 implies that

ρ1 = ρ2 = · · · = ρk = 0.

Lemma 2.6.5. There exists a set ε1, ε2, . . . , εr1+r2−1 of independent units when r1 + r2 ≥ 2.

Proof: From Lemma 2.6.4 we know that there exists at least r1 + r2 − 1 unique units. Suppose
these units are not linearly independent, then ∃ρi ∈ Z with i ∈ {1, . . . , r1 + r2− 1} and at least
one ρi > 0 such that

∏r1+r2−1
j=1 ε

ρj
j = 1. Now we ensure that at least one of these ρi is positive

as we can take ρi ← −ρi which is simply the inverse of εi. Relabel these such ρi > 0 with
i ∈ {1, . . . , k}, k ≥ 1 and ρi ≤ 0 for i ∈ {k+ 1, . . . , r1 + r2}. Now let β′(x) = β1(x)d1 . . . βk(x)dk

and β′(x) = βk+1(x)dk+1 . . . βr1+r2(x)dr1+r2 where di = 1 if σi is a real embedding and di = 2 if
σi is complex. Now we define it this way as we obtain

β(x)β′(x) =
r+s∏
i=1

|σi(x)di | (36)

Which since |σj(x)| = |σj(x)| where σj is a complex embedding we obtain that

β(x)β′(x) =
n∏
i=1

|σi(x)| (37)

Which by Lemma 2.2.5 tells us that β(x)β′(x) = |NK|Q(x)|. Thus, β(ε)β′(ε) = 1 and β(ε) =

β′(ε)−1 for every unit ε ∈ Z×K . From Lemma 2.6.4 have that we can choose εj such that βj(εj) > 1
and βi(εj) < 1 for i 6= j. Since β′(εj) = βk+1(εj)

dk+1 . . . βr+s(εj)
dr+s we obtain that β′(εj) < 1

for j ∈ {1, . . . , k}. Similarly, we can show that β(εj) = β1(εj)
d1 . . . βk(εj)

dk and obtain that
β(εj) < 1 for j ∈ {k + 1, . . . , r1 + r2}. Now from our assumption we see that

∏r1+r2−1
j=1 ε

ρj
j = 1

now applying β′ to this we obtain

1 = β′(1) = β′

r1+r2−1∏
j=1

ε
ρj
j

 =

 k∏
j=1

β′(εj)
ρj

 r1+r2∏
j=k+1

β(εj)
ρj

 (38)

However, we see that this is smaller than 1 a contradiction proving our statement.
Thus, we have a set of units who are all linearly independent, now we need to show that these
units and the roots of unity span Z×K and that they are unique.
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Lemma 2.6.6. For each unit ε ∈ Z×K with βv(ε) ≤ 1, v = 1, 2, . . . , r1 + r2 − 1 there exists an
unit η ∈ Z×K

η = εερ11 . . . ε
ρr1+r2−1

r1+r2−1 (39)

that satisfies 1 < βv(η) ≤ av and βr1+r2(η) ≥ 1.

Proof: Let ε be a fixed unit satisfying βv(ε) ≤ 1 with v = 1, 2, . . . , r1+r2−1. From Lemma 2.6.3
we can obtain the following

βr1+r2(η) = βr1+r2(ε)

r1+r2−1∏
i=1

βr1+r2(εi)
ρi

< βr1+r2(ε)

Now we can also write η = c1ω1 + · · · + cnωn with ci ∈ Z (from Theorem 2.1.5) which leads
to σi(η) = c1σi(ω1) + · · · + cnσi(ωn). Now by Cramer’s rule we have that c1 = Ni/D where
Ni is the determinant of the matrix formed by σi(ωj) with the ith column replaced with σi(η).
Expanding Ni we obtain

Ni =
n∑
k=1

σk(a)(−1)k+i∆k (40)

with ∆k the determinant of the (n− 1)× (n− 1) matrix with entries in σp(ωq)|p, q ∈ 1, 2, . . . , n.
This can be seen as the matrix whose ith row and column are removed. Importantly all the
values in that matrix are bounded, specifically |σp(ωq)| ≤ M and thus, |∆k| ≤ (n − 1)!Mn−1.
This brings Equation 40 to be

|Ni| =
n∑
k=1

βk(a)|∆k| ≤ Ln!Mn−1 (41)

This results in each element ci being bounded and as a result, we see that there are a finite
number of η. Thus, we see that there exists βv(η) < av Now among these η we choose one which
has the least valuation βr1+r2(η). Let us assume that for some v0 ∈ {1, 2, . . . , r1 + r2 − 1} we
have βv0(η) ≤ 1. Now let εv0 be a unit such that βv(v0) < 1 for v = 1, 2, . . . , r1 + r2, v 6= v0 and
βv0(v0) = av0 > 1 (exists from Lemma 2.6.4). Now from this we have for v 6= v0 that

βv(εv0η) = βv(εv0)βv(η) < βv(η) ≤ av (42)

for v = v0 we obtain
βv0(εv0η) = av0βv0(η) ≤ av0 (43)

for v = r1 + r2 we obtain

βr+s(εv0η) = βr+s(εv0)βr+s(η) < βr+s(η) (44)

Thus, we see that εv0η is smaller over βr+s, a contradiction of the minimality of η, thus, βv(η) ≥ 1
for all v ∈ {1, 2, . . . , r + s− 1}.

Proof of Dirichlet’s Unit Theorem: Suppose r1 + r2 = 1 then βr1+r2(ε) = 1. Now suppose
r1 + r2 ≥ 2. Let ε ∈ Z×K be a unit with X = max1≤v≤r1+r2−1 βv(ε). By Lemma 2.6.6 we
know that there exists a ε0 = εσ11 . . . ε

σr1+r2−1

r1+r2−1 with integers σ1, . . . , σr1+r2−1 such that satisfies
1 < βv(η) ≤ av and βr1+r2(η) ≥ 1 for v ∈ {1, 2, . . . , r1 + r2 − 1} as βv(1) = 1. Now set
Y = min1≤v≤r1+r2−1 βv(ε0) which has the property Y > 1. Now there exists k ∈ N such that
Y k ≥ X and this implies that βv(ε0)

k ≥ βv(ε) for all v ∈ {1, . . . , r1 + r2 − 1}. This leads to
the statement βv(εε

−k
0 ) ≤ 1 for v ∈ {1, 2, . . . , r1 + r2 − 1}. Thus, if we let λ = ε0ε we obtain

from Lemma 2.6.6 that there exists η = λερ11 . . . ε
ρr1+r2−1

r1+r2−1 with ρ1, . . . , ρr1+r2−1 integers such that
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1 < βv(η) ≤ av, v ∈ {1, 2, . . . , r1 + r2 − 1}. Expanding η out we obtain η = εε−k0 ερ11 . . . ε
ρr1+r2−1

r1+r2−1

which can be simplified to η = εερ1−kσ11 . . . ε
ρr1+r2−1−kσr1+r2−1

r+s−1 . Since η is a unit we obtain that

βr+s(η) ≤ 1 (as otherwise NK|Q(η) 6= 1). Rearranging this we obtain that ε = ηετ11 . . . ε
τr1+r2−1

r1+r2−1
with τi = kσi−ρi. This η has the property that βi(η) ≤ B for all i ∈ {1, 2, . . . , r1+r2} and we can
write it as η = c1ω1 + · · ·+cnωn with ci ∈ Z. From this we obtain that βi(η) = M

∑n
i=1 |ci| ≤ B

which implies that there are only finitely many η as |ci| ≤ B/M where ci is an integer. Let h be
the number of η and H = 〈ε1, . . . , εr1+r2−1〉 be a subgroup of Z×K . Now η /∈ H as βr1+r2(η) ≥ 1
while βr1+r2(εi) < 1 for i ∈ {1, 2, . . . , r1 + r2 − 1}. Thus, the quotient group Z×K/H has order
h and any η ∈ Z×K/H are units of finite order which divides h, implying they are roots of

unity. This also implies that any unit εh ∈ H, thus, we can write it as εh = εξ11 . . . ε
ξr1+r2−1

r1+r2−1
with ξ1, . . . , ξr1+r2−1 ∈ Z. Now suppose there are m ≥ r1 + r2 independent units. Then there
cannot exist λ1λ2 . . . λm 6= 1 however this becomes a system of equations with m unknowns and
r1 + r2− 1 equations which will have a solution. This implies that there are at most r1 + r2− 1
independent units and from Lemma 2.6.5 we see that there is such a set of units. Now suppose
there is an element that can be represented as ηεx11 . . . ε

xr1+r2−1

r+s−1 and θεy11 . . . ε
yr1+r2−1

r1+r2−1 with η, θ
roots of unity and xi 6= yi from some i ∈ {1, 2, . . . , r1 + r2 − 1}. Equating and rearranging we
obtain

ηθ−1 = εy1−x11 . . . ε
yr1+r2−1−xr1+r2−1

r1+r2−1 (45)

Taking this to the power of k such that (ηθ−1)k = 1 as η, θ are roots of unity and by group laws
so are ηθ−1.

1 = ε
k(y1−x1)
1 . . . ε

k(yr1+r2−1−xr1+r2−1)
r1+r2−1 (46)

However, since ε1, . . . , εr1+r2−1 are independent we must have that k(yi − xi) = 0 which im-
plies that yi = xi a contradiction. Thus, every unit in Z×K can be represented uniquely as
ηετ11 . . . ε

τr1+r2−1

r1+r2−1 .

2.7 Regulator and Zeta functions

The concepts in this section are useful in computing the full set of fundamental units but are
not vital in generating units. Thus, we will briefly discuss them. The first such concept is the
regulator

Definition 2.7.1 (Regulator). Let σ1, . . . , σr1+r2 be a set of pairwise non-conjugate embed-
dings. The regulator of a set of {ε1, . . . , εr1+r2−1} is defined as

reg(ε1, . . . , εr1+r2−1) = | det(di log |σiεj |)r1+r2−1i,j=1 | (47)

with di being the usual 1 if σi is a real embedding and 2 if σi is a complex embedding.

We say that the regulator of ZK is the regulator over a set of fundamental units and the regulator
of K is the regulator of the ring of integers.

Theorem 2.7.1. The regulator of K is independent on the set of fundamental units.

The proof of this can be found in 13.7 in [AW03]. Now the regulator is vital for computing the
class group and is useful for checking the set of fundamental units. To understand how we need
to consider zeta functions.

Definition 2.7.2 (Dedekind zeta function). The Dedekind zeta function is defined as

ζK(t) =
∑
I 6=0

(NK|Q(I))−t (48)

where I is a non-zero ideal in the ring of integers.
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We can see this by considering the following connection

Theorem 2.7.2. Let R(K) be the regulator of K, h(K) be the class number of K and ω(K)
the number of fundamental units of K. Then the following it true

2r1(2π)r2h(K)R(K)

ω(K)
√

∆(K)
=
∏
p

1− 1/p∏
p|p 1− 1/NK|Q(p)

= ζ∗K(1) (49)

where p is the prime ideals over the primes p and ζ∗K(1) is the residue at 1.

For more details on this see Theorem 6.3 in [Ste20] and chapter 5 section 1 in [BS66]. We call

the sum
∏
p

1−1/p∏
p|p 1−1/NK|Q(p)

the Euler product. An immediate application of Theorem 2.7.2

is we can compute an estimate for the regulator and class number. However, this is not the
only application of the Dedekind zeta function. Indeed, the results of the famous Riemann
hypothesis can be applied to the Dedekind zeta function in the following way

Conjecture 2.7.3 (General Riemann hypothesis). For the zeta function

ζK(t) =
∑
I 6=0

(NK|Q(I))−t (50)

the only values of t with 0 < Re(t) < 1 such that ζK(t) = 0 is only when Re(t) = 1
2 .

This is useful in our case as it provides a much better bound on the prime ideals that generate
the class group than Minkowski’s constant [CDO97]. Details of this bound can be seen in [Bac90]
and is based on the proof seen in [LO77].

2.8 Linear Algebra

The LLL algorithm, also known as Lenstra-Lenstra-Lovász algorithm, is a lattice basis reduction
algorithm. The algorithm computes a basis for a lattice that is LLL reduced given by the
following definition

Definition 2.8.1 (LLL reduction, Definition 2.6.1 [CCC93]). Let b1, . . . ,bk be a basis for a
lattice L and b∗1, . . . ,b

∗
k denote an orthogonal basis. We call a basis reduced if for |µi,j | ≤ 1

2
where 1 ≤ j < i ≤ k we have

|b∗i |2 ≥
(

3

4
− µ2i,i−1

)
|b∗i−1|2. (51)

A more general definition is that a Z basis for a lattice is LLL reduced if over a particular metric
if our vectors are short. Now a metric of particular note is the following.

Definition 2.8.2 (v-norm). Let v = (vi)1≤i≤n be a vector of real numbers such that vr2+i = vi
for r1 < i ≤ r1 + r2. The v-norm ‖α‖v of α is defined by

‖α‖2v =
n∑
i=1

evi |σi(α)|2 (52)

where σi is an embedding.

Which allows use to define an ideal being LLL reduced in a random direction [CDO97].

Definition 2.8.3 (LLL reduced in a random direction). A Z-basis α1, . . . , αn of an ideal I is
LLL-reduced in the direction v if it is LLL-reduced for the quadratic form ‖α‖2v.
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Basically here we are changing the metric for LLL reduction so that it is suitable for an ideal.
Another linear algebra method that will be of use is finding the Hermite Normal Form (HNF).
Hermite Normal Form is a method for row reducing (or in our case column reduce) an integral
matrix without dividing. More formally we have the following

Definition 2.8.4 (Hermite normal form, Definition 2.4.2 [CCC93]). We will say that an m×n
matrix M = (mi,j) with integer coefficients is in Hermite normal form if there exists r ≤ n and
a strictly increasing map f from [r + 1, n] to [1,m] satisfying the following properties.

� For r + 1 ≤ j ≤ n,mf(i),j ≥ 1,mi,j = 0 if i > f(j) and 0 ≤ mf(k),j < mf(k),k if k < j.

� The first r columns of M are equal to zero.

3 Computing Fundamental Units

The initial method for finding a set of fundamental units revolved around generating elements
until we find elements α, β ∈ ZK such that NK|Q(β/α) = 1. This finds units due to Lemma 2.2.4
which tells us that all units have norm ±1 and Lemma 2.2.3 telling us that if two elements have
the same norm then we can divide one from the other to get a unit. Note that this method is
not as effective for any number fields of degree greater than 3. This method was developed by
Minkowski and expanded in 1975 by Zassenhaus. Zassenhaus also modified the method to use a
linear combination of elements to obtain units decreasing the number of elements required. The
main problem with these methods was finding units which where linearly independent of units
already found. This was solved with the development of the LLL reduction [Zim96]. In 1989
James Hafner and Kevin McCurley developed the first algorithm with subexponential expected
performance [HM89]. This algorithm and the following classical algorithms assume the General
Riemann Hypothesis as a bound on the prime numbers that generate the class group. In 1997 H.
Cohen, F. Daiz Y Daiz and M. Olivier [CDO97] generalised and improved a method by James
Hafner and Kevin McCurley using a technique described by Buchmann [Buc90] and . This
algorithm is subexponential in performance and is currently implemented in PARI/GP. More
recently computing the unit group and class group has become useful in being able to break
certain cryptographic methods. With quantum computers being capable of breaking modern
encryption, a search has begun for cryptographic methods that are not quickly broken using
quantum computers or any classical algorithm. One type of encryption method is lattice-based
cryptography which is promising in their resistance to classical and quantum attacks [NDR+19].
Some of these methods make the well based assumption that it is hard to find short vectors
in an ideal lattice which the unit group and class group provide significant insight into. As
such two algorithms were developed in 2014 for computing the unit group faster, one classical,
one quantum. The classical algorithm was developed by Jean-François Biasse and Claus Fieker
in [BF14] which was still subexponential time but performed better in large degree number
fields. The key difference in the algorithm is that it utilises another lattice reduction algorithm
(BKZ) instead of LLL reduction which allows for relations between ideals being found faster.
The quantum algorithm was developed by Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev
and Fang Song in 2014 [EHKS14]. This algorithm is polynomial time with degree and log of the
discriminant and does not assume the General Riemann Hypothesis. This result was improved
by Jean-François Biasse and Fang Song in 2016 [BS16] which does assume the General Riemann
Hypothesis.

The algorithm that we will be looking at is the 1997 version (See [CDO97]) as it is implemented
in PARI/GP [PAR22], an open source computational algebra package. The full algorithm for
computing a set of fundamental units can be found in [CCC93]. However, we will outline some
key details.
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Our first step is to select a factor base. Our factor base FBp over the integers will contain all
prime numbers bellow the bound 12 ln2 |D| where D is the determinant of the number ring,
and it will contain a number of prime numbers bellow the Minkowski’s constant as seen in
Theorem 2.4.5. We use Minkowski’s constant as it gives a sufficient representation of the ring
of integers. Since we are assuming the GRH we do not use all the prime numbers below the
Minkowski bound. This reduces the size of our factor base and reduces the computational time
to find units. After selecting our prime number factor base we factor the prime number ideals
into prime ideals in ZK and store these to obtain our prime ideal factor base FBp. We also store
the prime number valuations over the factor base FBp in a relation matrix M and we do this
in the following way. The relations matrix M is a l ×m matrix with l the number of elements
in the prime ideal factor base and m the number of relations. Each column is the valuation of
an element α over the prime ideal factor base. From this construction of a matrix we can store
relations by adding another column onto the matrix. As well as this we store our element α
in a n×m matrix MC as a logarithmic embedding using Equation 18. We do this as it allows
for us to do the same operations on MC as M and the logarithmic embedding is significantly
smaller than containing the elements themselves. The only downside is that we have to reverse
the complex embedding to get units.

After generating the factor bases we generate and store relations in M and MC . In the previous
section we have already outlined a method for generating the trivial relations. This method is
factoring the elements in FBp over FBp and is done as it increases the number of columns in M
to require fewer relations computed using more involved methods. Another method is that we
generate elements of small norm and then factor that over the factor base FBp. We only store
the element if it completely factors over the factor base. We look at small norm elements as they
are likely to split over the factor base FBp. The most important method for generating relations
is generating random ideals and then LLL reducing them in a random direction. We start by
selecting random numbers vi ≤ 20, where each vi corresponds to an element in FBp, before we
select an ideal q in the factor base. Finally, we compute a random ideal as I = q

∏
1≤i≤s p

ei .
Note that we can speed up this computation by computing pei earlier. Then we LLL reduce
this ideal in a random direction to get J = I/α (See subsection 2.8). We then try to factor this
α over the factor base and, if it does factor, store this relation in the relation matrix M and
store the complex embedding of α in MC .

We use the methods described above to generate relations until we think we have enough to
generate a set of fundamental units. We then compute the roots of unity so that we can
compute the Euler number z so that we can compute the regulator of the number field from
Theorem 2.7.2. We need the Euler number as we see from the definition of the regulator that a
set of fundamental units can compute the regulator and since the regulator is independent on
the set of fundamental units from Theorem 2.7.1 this means we have a way of checking that
we have a set of fundamental units. Now we are going to compute the kernel of M with each
element in the kernel corresponding to a combination of elements which by Lemma 2.3.5 are a
unit. To do this we get the matrix MA = W where W is the Hermite Normal form of M and
similarly compute MCA = M ′C . Thus, any zero column in W will correspond to a unit in M ′C .
From this matrix M ′C we LLL-reduce the matrix to get C.

From this we now compute an approximation of the regulator. To start we assume the regulator
is R = 0 and let j = r1 + r2 − 2. Let A be a (r1 + r2 − 1)× (r1 + r2 − 1) matrix from taking a
sufficient number of rows C and the rows j− r1 + r2 + 2 to j. Now we compute the determinant
of A as R1 before we compute the greatest common divisor of R1 and R which becomes our new
regulator approximation. In finding the greatest common divisor we compute the values u, v and
d in uR1 + vR = d. Using these values we set the column Cj to be vCj + (−1)r1+r2uCj−ru+1.
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We repeat this until j > r where r is the number of columns in C corresponding to units
and the final R becomes our approximation of the regulator. From C we define F to be the
last r1 + r2 − 1 columns which we will use to compute units, the coefficients will be labelled
fi,j . This step also minimises the first r1+r2−1 units so will be where the fundamental units are.

To finally obtain the set of fundamental units we need to reverse the complex embedding. We
start this by forming a n× r1 + r2−1 matrix B with coefficients bi,j = fi,j if i ≤ r1, bi,j = fi,j/2
if r1 < i ≤ r1 + r2 and bi,j = fi−r2,j if r1 + r2 < i ≤ n. This step in terms of the logarithmic
embedding seen in Equation 18 can be seen as

bi,j = (LC(αj)/ni)1≤i≤r1+r2 = ln(σi(αj)) (53)

We can ignore the second half from Equation 18 as the norm of α is 1. Before we take the
exponent of this, we will first LLL reduce the real part of the matrix B to get BU . Now we
take the exponents of the elements in BU to get E with coefficients ei,j . Looking at the form
of this we see that

ei,j = exp((LC(αj)/ni)1≤i≤r1+r2) = σi(αj) (54)

Finally we need to solve for αj . To do this we take a Z-basis ω1, . . . , ωn for ZK and form the
matrix Ω with each coefficient as wi,j = σj(ωi). Then we solve Fu = Ω−1E where each column
of Fu corresponds to a unit with components over the basis ω1, . . . , ωn. The components of
these units will be near integer but will not be exactly, so we will need to round. Note that
from this method we can easily tell if a unit is the trivial unit 1 as from Lemma 2.4.4 we know
that this is the zero vector.

Then we can compute the regulator using this set of fundamental units to check that they
actually are a full set of fundamental units. That is, we check that Rh = z

√
2 where h is the

class number and R is the regulator from the set of units. If this is not true then we compute
some more relations and go back to the Hermite reduction stage. This algorithm also computes
the class group as the overhead is marginal in the computation process, however, this is not
particularly relevant to computing the unit group, so we will not go over the details here.

If we only need a small number of units we can attempt to prematurely halt the fundamen-
tal unit algorithm. To prematurely halt we can generate the relations, reduce our matrix and
extract any units we find. We would generate relations the same way and would reduce the
relation matrix in the same way. The only difference would be that for every column in our
matrix corresponding to a unit we would check to see if the element is non-trivial. This would
skip having to wait for r1 + r2 − 1 relations, computing the regulator to check we have a fun-
damental set and computing things like the class group.

In theory this should be possible and reasonable to do, however the current implementation
stores them as the complex logarithmic embedding meaning we have to extract elements which
is not a simple task. We also cannot just consider the elements in non-logarithmic form as they
result in elements that contain large exponents. We could bypass this by storing the factorisation
of an element, however, this makes it harder to check whether we have a non-trivial unit. To
check if we have a unit we could look for units whose complex embedding is not the zero vector.
However, in the process of trying to implement such an algorithm we struggled to compute
non-trivial units and even when we did it was rarely faster than the original algorithm. This
is also before we attempted to check if the units were square or linearly independent. Thus,
instead we have pivoted to directly computing elements in the kernel of the norm mapping from
K×/K×2 → Q×/Q×2.
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4 Square Norm Elements

We have explored finding random units in our algorithm with limited success. However, we
can consider finding elements that are not in K×2 but have norm in Q×2. To do this we will
generate elements {α1, . . . , αm} in the same way as the complete fundamental unit algorithm as
seen in Section 3. Then we will factor the norm of these elements over a factor base of primes
below a bound (consider the Minkowski’s constant) modulo 2, let us call this relation matrix
Wp which is a matrix over Z2. From each vector v = (v1, . . . , vm)T ∈ ker(Wp) we can construct
β = αv11 . . . αvmm . Each element β will correspond to an element with square norm. Now we need
to find β that are not in K×. To do this one can consider factoring αi over the prime ideal
factor base of L modulo 2 to get the relation matrix Wp. Now each element v ∈ ker(Wp) corre-
sponds to an element β ∈ K×2 using the construction described earlier. Thus, if we want to find
elements that are not in K×2 but have norm in Q×2 then we need to find v ∈ kerWp\ kerWp.
We can still look for units as from Lemma 2.2.4 we know that a unit will always map to one the
multiplicative identity of the multiplicative group Q×/Q×2 so it will always be in the kernel of
φ if the unit is not a square. However, that does not mean that it will be in K×/K×2 as it may
be a square.

Consider the following two lemmas

Lemma 4.0.1 (Element not in K×2). An element α is not a square in K if valp(α) 6= 0 mod 2
for at least one prime ideal p in ZK .

Proof: Suppose α ∈ K×2, then there exists β ∈ K× such that β2 = α. Clearly 〈α〉 ⊆ 〈β〉. Now
by Theorem 2.3.1 we know that 〈β〉 = pe11 . . . pekk for some e1, . . . , ek ∈ Z and p1, . . . , pk prime

ideals of ZK . We also can see that a ∈ p2e11 . . . p2ekk and by extension 〈a〉 ⊂ p2e11 . . . p2ekk . Thus,

if 〈a〉 = pd11 . . . pdkk with d1, . . . , dk ∈ Z then ei ≤ di but 〈a〉 is the smallest ideal containing a,
thus, ei = di. This implies that di is even or zero which is a contradiction as there is at least
one di that is odd.

Lemma 4.0.2 (Square Norm Element). An element α ∈ K has square norm if valp(NK|Q(α)) =
0 mod 2 for all primes p ∈ Z and NK|Q(α) > 0.

Proof: The norm of NK|Q(α) ∈ Z, now if NK|Q(α) is a square then there is β ∈ Z such that
β2 = NK|Q(α). For this to be true valp(NK|Q(α)) = 2 × valp(β) and since valp(β) ∈ Z for all
primes p we know that valp(NK|Q(α)) = 0 mod 2 for all primes p.
Lemma 4.0.2 is a sufficient condition but not a necessary condition, to obtain a necessary
condition consider the following Lemma.

Lemma 4.0.3. An element α ∈ K where K is a number field is a square in K if and only if
the polynomial x2 − α ∈ K[x] is not irreducible.

Proof: If α is a square then β2 = α and we can factorise the polynomial x2 − α = x2 − β2 =
(x − β)(x + β). If α is not a square then there is no β such that this is true and x2 − α is
irreducible.
This leads to what we will be using for our algorithm.

Theorem 4.0.4. An element α ∈ K× is a non trivial element of the kernel of the norm map
K×/K×2 → Q×/Q×2 if one of the following is true

� valp(α) 6= 0 mod 2 for some prime ideal p in K, valp(NK|Q(α)) = 0 mod 2 for all primes
p ∈ Z and NK|Q(α) is positive.

� valp(α) = 0 for all prime ideals p in K and on the polynomial x2−α ∈ K[x] is irreducible
and the norm is positive.
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Proof: From Lemma 4.0.2 we know that α has square norm and from Lemma 4.0.1 we know that
it is not square, thus, it will be in the kernel proving the first part. From Lemma 2.3.5 we know
that α is a unit and from Lemma 2.2.4 we know that a unit has norm ±1. If val−1(NK|Q(α)) = 1
mod 2 then we know that the norm will be −1 and will not be in the kernel. Now we need to
check if α ∈ K×2 which by Lemma 4.0.3 we see that if x2 − α is irreducible that it is not a
square.
There are a number of things to note with this. Firstly, we are not interested in elements
k ∈ Z whose norms are kn with n the degree. These elements will always have square norms
in even degree. To see this consider the element 2 factored over the number ring ZK where
K = Q[x]/ 〈x4 + 9x3 − x2 − 6x− 9〉. This element factors into the prime ideals p2q2v2 yet the
norm of the element is 24 which is clearly a square. This satisfies our conditions, yet this will
always be true for any element k ∈ Z in an even degree field. Secondly, we are not interested
in elements of the form al2 where l ∈ K× and a ∈ Z for even degree as the norm of a is an. To
check for this we can factor our norm of α into prime numbers and if a prime number p appears
more than n times, it is likely that it was a factor. Thus, we can check if a linear combination
of p and α results in them becoming a square. Thirdly, if an element has negative norm then
it cannot be in Q×2, however we can bypass this by multiplying by −1. This works as from
Lemma 2.2.3 we have that NK|Q(−1 × α) = NK|Q(−1)NK|Q(α) = −NK|Q(α). Finally, this is
a sufficient check but not a necessary check. This can be seen in Subsection 4.1. A necessary
condition is if y2 + β ∈ K[x] (See Lemma 4.0.3) is irreducible over K.
For our case we will not be directly looking for linear independence as that is impractical
to compute without computing the unit group, which we are trying to avoid. Thus, we are
going to say that two elements are linearly independent if you can make a square from a linear
combination of the two. To do this we form a matrix with each column being the element over
the prime ideal factor base and check that the kernel is empty. To form the element we do not
need to factor the element over the prime ideal factor base but can instead take Wpv where
v ∈ ker(Wp) to get the factorisation of β over the prime ideal factor base.

4.1 Example

Consider the number field K = Q[x]/ 〈f(x)〉 where f(x) = x3 + x2 + 5x− 16 and let f(θ) = 0.
We are going to consider elements over the prime number factor base 2, 3, 5, 7. The factor
base of ideals in ZK as p2 = 〈2, θ〉 , q2 = 〈2, θ2 + θ + 1〉 , p3 = 〈3, θ + 1〉 , q3 = 〈3, θ + 2〉 , p5 =
〈5, θ + 2〉 , q5 = 〈5, θ2 − θ + 2〉 , p7 = 〈7, θ − 3〉 , q7 = 〈7, θ + 1〉 , v7 = 〈7, θ + 10〉. Now consider
Table 1. The kernel of Wp modulo 2 is given as

ker(Wp) = span





0
0
0
0
0
0
1
0
0
0
0





0
0
0
0
0
0
0
0
0
1
0





0
0
0
0
1
0
0
1
0
0
0





1
1
1
0
0
1
0
0
0
0
0





0
0
0
0
0
0
0
1
1
0
1





0
1
0
1
1
0
0
0
0
0
0





(55)

Now clearly elements 1 and 2 are not going to produce square norm elements as if we have a
look at their factorisation θ + 3 factors into p27 and θ − 1 factors into p23. This can also be seen
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Table 1: Ideals of K factored over the two factor bases

Ideals 2 3 5 7 θ + 1 θ + 2 θ + 3 θ + 4 θ + 8 θ − 1 θ − 2

Wp

2 1 0 0 0 0 1 0 0 1 0 1
3 0 1 0 0 1 1 0 1 0 0 1
5 0 0 1 0 0 1 0 0 0 0 0
7 0 0 0 1 1 0 0 1 1 0 0

Wp

p2 1 0 0 0 0 1 0 0 1 0 1
q2 1 0 0 0 0 0 0 0 0 0 0
p3 0 0 0 0 1 0 0 1 0 0 1
q3 0 1 0 0 0 1 0 0 0 0 0
p5 0 0 1 0 0 1 0 0 0 0 0
q5 0 0 1 0 0 0 0 0 0 0 0
p7 0 0 0 1 0 0 0 1 0 0 0
q7 0 0 0 1 1 0 0 0 1 0 0
v7 0 0 0 1 0 0 0 0 0 0 0

as they sit in the kernel of Wp

ker(Wp) = span





0
0
0
0
0
0
0
0
0
1
0





0
0
0
0
0
0
1
0
0
0
0





(56)

However, using Magma [BCP97] to check if they are squares we find that they are not squares.
This shows that our tests are not conclusive if elements are squares or not.

From element 3 we can make β3 = (θ+ 1)(θ+ 4) = θ2 + 5θ+ 4 which will not be in K×2 but its
norm will be in Q×2. Checking this we see that NK|Q(β3) = 1764 = 223272 = 422 ∈ Q×2 and
that

〈β3〉 = 〈2, x+ 2〉2 〈3, x+ 1〉2 〈7, x− 3〉 〈7, x+ 1〉 (57)

which is not in K×2. Similarly, for element 4 we have β4 = 2× 3 × 5 × (x + 2) = 30× (θ + 2)
with norm NK|Q(β4) = 24 × 34 × 54 and prime ideal factorisation

〈β4〉 = 〈2, θ + 2〉2 〈2, θ2 + θ + 3〉 〈3, θ + 1〉2 〈3, θ + 2〉2 〈5, θ + 2〉2 〈5, θ2 − θ + 2〉 (58)

which is not in K×2. For element 5 we have β5 = (θ − 2)(θ + 8)(θ + 4) = 9θ2 + 3θ − 48 with
norm NK|Q(β5) = −1× 26 × 34 × 72 = −254016 and prime ideal factorisation

〈β5〉 = 〈2, θ + 2〉6 〈3, θ + 1〉2 〈3, θ + 2〉2 〈7, θ − 3〉 〈7, θ + 1〉 (59)

which is not in K×2. Thus, −β5 would be in the kernel. For element 6 we have β6 = 3 × 7 ×
(θ + 1) = 21(θ + 1) with norm NK|Q(β6) = 34 × 74 = 194481 and prime ideal factorisation

〈β6〉 = 〈3, θ + 1〉3 〈3, θ + 2〉 〈7, θ + 1〉2 〈7, θ + 10〉 (60)
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which is not in K×2. This provides a way for odd degree number fields to quickly generate
elements in the kernel.

From the above example we can see that we do not actually need to compute Wp as this is only
needed to check that we are finding a square norm element that is not a square in L. Thus, we
could instead compute ker(Wp) and then check that the element is indeed an element of square
norm not in K×2. To do this we need to factor the ideal generated by the element into prime
ideals and take the valuation of each of the prime ideals. If the valuations are non-zero modulo
2 then we know that the element is not in K×2. If the valuations are zero then we have found
a unit in ZK .

4.2 Algorithm

An implementation of this algorithm was made in PARI by modifying the fundamental unit
algorithm described by Cohen in [CDO97]. The general structure of the algorithm is as follows

Algorithm 4.2.1 (Finding elements of square norm). Let f ∈ Z[x] be a monic irreducible
polynomial and λ the number of elements needed.

1. Do Steps 1 through 5 in Algorithm 6.5.6 in [CCC93].

2. Apply Step 6 in Algorithm 6.5.6 in [CCC93] for δ relations.

3. Apply Algorithm 4.2.2.

4. If previous step computed at least λ elements then return the elements otherwise go to
Step 2.

The part that we have modified the most is the following

Algorithm 4.2.2 (Computing and checking elements). Let A = {α1, . . . , αm} be m elements
that factor over the prime ideal factor base of size l, let Wp be the m× l matrix with each column
being the valuation of each αi over the prime ideal factor base and let λ be the number of desired
elements.

1. Let i← 1, FB the prime number factor base of size k and Wp be a m× k matrix.

2. Find the valuation of the norm NK|Q(αi) over the prime number factor base and store it
as the ith column of Wp.

3. If i ≤ m then i← i+ 1 and go Step 2.

4. Compute the right kernel modulo 2 ker(Wp) and store each element in the kernel as a
column in the matrix Wker, if there are no elements in the kernel then find more elements
and return to Step 1.

5. Compute M = WpWker modulo 2.

6. Let j ← 1.

7. Let β correspond to the jth element of ker(Wp). If the jth column of M is zero modulo 2
or the jth column of WpWker is non-zero then go to Step 10.

8. Set C = B ∪ {p1, . . . , pl} where p1, . . . , pl are the primes where valp(NK|Q(β)) > n.

9. If the element is independent to C using Algorithm 4.2.3 then set B ← B ∪ {β}
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10. If j ≤ m then j ← j + 1 and go Step 7.

11. If the number of elements in B is greater than λ then return B otherwise find more
elements and return to Step 1.

Algorithm 4.2.1 can be outlined as follows. We start by computing the factor base and gen-
erating elements as described in [CDO97]. Then we factor the norm of the elements over the
prime number factor base and store it in the matrix Wp, we do not store each vector modulo
2 as this means we cannot check whether this element is a unit. Then we compute the kernel
ker(Wp) modulo 2 with each column corresponding to a square norm element. Due to how the
algorithm is set up, we still generate Wp and can compute M = Wp ker(Wp) modulo 2 to get
the prime ideal factorisation of the elements in the kernel. From this we can check each column
in M using the checks described above to see if what we have is not in K×2. A benefit of this
method is that at no point do we have to deal with the actual element, it is sufficient to simply
store the factors and their valuations of the element. This means that we can store and check
elements that would otherwise be impossible to store.

For our algorithm it is important that we check for uniqueness of elements and so to do this we
have the following checking algorithm.

Algorithm 4.2.3 (Independence of elements). Let B be a set of valid elements and α an
element we want to test.

1. For each element in B add the valuations of the elements over the prime ideal factor base
to a matrix M .

2. Add the valuation α over the prime ideal factor base to M .

3. Compute the kernel of M modulo 2.

4. If the kernel is empty then α is independent to all elements in B.

The implementation of the algorithm can be found on GitHub [Ken23].

4.3 Limitations and Improvements

There are a number of other ways that this algorithm could be improved. For example if the
relation between the ideals of the primes and the prime ideals is linear then we could compute
WpB = Wp. This would likely speed up the computation as we are no longer having to factor
the norm over the primes (as factoring large elements quickly becomes computationally expen-
sive compared to matrix multiplication). However, this speed is probably marginal as factoring
the norm of an element is likely not all that expensive as the prime factors are guaranteed to
be over a small factor base. Another potential improvement is to store the relation matrix in
as reduced of a form as possible. This would likely reduce the time that it would take to find
the kernel and would easily prevent repeated checking of elements. If we were to build the
algorithm from scratch it would be better to store the norm of the element and not compute
Wp at all and instead factor each element over the prime ideals as needed. However, that would
be beyond the scope of this project.

Another limitation of this approach is that the check in Theorem 4.0.4 is a sufficient condition
but not a necessary condition. For example, consider the number ring K = Q[x]/ 〈f(x)〉 where
f(x) = x8 − 4x7 + 3x6 − 2x5 + 4x4 − 9x3 + x2 + 5x+ 2 and the element

β = 1601033866846875023θ7 − 7003883833825445625θ6 + 7241835084518316073θ5

− 5283362922406963164θ4 + 7723972199829043687θ3 − 14873894663210837128θ2

+ 7898845533527310251θ + 3766359828176068618.

(61)
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This element has square norm but is itself not a square and was not found with the algorithm.
Alternatively, consider the examples θ − 1 and θ + 3 in Subsection 4.1, here we saw that it
was in the kernel of both matrices but it is not a square. To get past this limitation we could
directly test whether or not each element is a square as for each element β we can make the
polynomial x2− β ∈ K[x] and check if it is irreducible over K (see Theorem 4.0.3). If it is then
β is not a square if it is reducible then it is a square. This has not been implemented for the
algorithm. Also from computing elements in thousands of number rings there have been less
than ten unsuccessful number rings and they were all in degree less than 7 and, as we will see,
the difference in speed is trivial compared to computing a full set of fundamental units which
provides sufficient insight for our application.

4.4 Optimisation

For this algorithm we have to choose the number of relations δ we find before running Algo-
rithm 4.2.1. To work this out we are going to use a bracketing technique to find the optimal
number of relations for each degree. To do this we assume that there is a single minimum
point over the entire domain. For each value of δ we are going to compute the average time for
approximately 1000 polynomials (2000 polynomials for degree less than 15) that have maximum
coefficients of 10. We will start by computing a = 1, b = 100 where a and b are the boundaries
of our bracket before selecting two points c = (b − a)/3 and d = 2 × (b − a)/3. If c < d then
a ← a, b ← d and repeat until the difference of a and b are sufficiently small. Applying this
algorithm for our problem we find optimisation seen in Figure 1.
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Figure 1: Optimal l value for our algorithm.

From this data it is hard to tell if there is a correlation between the number of elements
selected and degree. This could be because a small number of number fields skewed the data.
Interestingly, the two different lines match very closely showing that there is very little difference
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between finding one element and many elements.

4.5 Algorithm Testing

Using the algorithm implementation described in Algorithm 4.2.1 we can compare the perfor-
mance of our algorithm verses computing the fundamental set of units. From Figure 2 we
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Figure 2

see that Algorithm 4.2.1 is faster than the fundamental unit algorithm. Interestingly the dif-
ference between computing a single element and n/2 elements is fairly similar. When fitting
a exponential function to each of the performances we obtained that the average time was
e(0.6306±0.0005)x−2.07±0.10 for the original algorithm, e(0.5224±0.0004)x−1.08±0.09 for the single ele-
ment and e(0.4984±0.0003)x−0.83±0.06 for n/2. This new algorithm performs better than the original
by a reasonable margin.

4.6 Result for degree 20 number field

Consider the following polynomial f(x) = x20 + 6x19 + 6x18 + 5x17 − 7x16 − 3x15 + 10x14 −
6x13 + 10x12 + 9x11 − 8x10 + 5x8 − x7 − 2x4 + 9x3 − x2 − 6x − 9 with f(θ) = 0 and pi,j as
the jth relevant prime ideal above the prime i. Running Algorithm 4.2.1 on the number field
K = Q[x]/ 〈f(x)〉 we find that we obtain the element β = α1α2α3α4 which is an element in the
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kernel of the norm mapping from K×/K×2 → Q×/Q×2. The four elements are the following

α1 =
−1

3
θ19 − 2θ18 − 2θ17 − 5

3
θ16 +

7

3
θ15 + θ14 − 10

3
θ13 + 2θ12 − 10

3
θ11 − 3θ10 +

8

3
θ9

− 5

3
θ7 +

1

3
θ6 +

5

3
θ3 − 14

3
θ + 1

α2 =
−2

9
θ19 − 5

3
θ18 − 10

3
θ17 − 28

9
θ16 − 1

9
θ15 + 3θ14 − 11

9
θ13 − 2θ12 − 2

9
θ11 − 16

3
θ10

− 11

9
θ9 +

8

3
θ8 − 10

9
θ7 − 13

9
θ6 +

1

3
θ5 +

13

9
θ3 +

8

3
θ2 − 43

9
θ − 13

3

α3 =
−1

9
θ19 − 1

3
θ18 +

4

3
θ17 +

13

9
θ16 +

31

9
θ15 + 4θ14 +

35

9
θ13 + 9θ12 − 91

9
θ11 − 2

3
θ10

+
125

9
θ9 − 26

3
θ8 +

85

9
θ7 +

97

9
θ6 − 25

3
θ5 +

38

9
θ3 − 26

3
θ2 − 17

9
θ − 11

3

α4 =
4

9
θ19 +

7

3
θ18 +

2

3
θ17 +

11

9
θ16 +

2

9
θ15 + θ14 +

40

9
θ13 − 18θ12 +

94

9
θ11 +

41

3
θ10

− 203

9
θ9 +

56

3
θ8 +

11

9
θ7 − 172

9
θ6 +

25

3
θ5 +

4

θ

4

− 107

9
θ3 +

20

3
θ2 − 22

9
θ +

8

3

(62)

with the following prime ideal decomposition

〈α1〉 = p23,1p3,2p29,1p2273,1p3079,1p5021,1p5387,1

〈α2〉 = p32,1p3,1p29,1p2273,1p3079,1p5021,1p5387,1

〈α3〉 = p33,1p3,3p79,1p139,1p193,1p523,1p1657,1p2467,1p5417,1

〈α4〉 = p2,1p
3
3,1p

3
3,3p79,1p139,1p193,1p523,1p1657,1p2467,1p5417,1

(63)

Multiplying these together we obtain

α1α2α3α4 = β

=
−481

3
θ19 − 1682θ18 − 5505θ17 − 19124

3
θ16 − 10130

3
θ15 + 4605θ14 +

9284

3
θ13

− 3637θ12 +
18179

3
θ11 − 1367θ10 − 23152

3
θ9 + 434θ8 − 9926

3
θ7 − 11480

3
θ6

+ 6909θ5 + 7633θ4 +
7736

3
θ3 + 1944θ2 − 6281

3
θ − 2243

(64)

This has the norm

NK|Q(β) = 24 × 314 × 292 × 792 × 1392 × 1932 × 5232 × 16572 × 22732 × 24672 × 30792

× 50212 × 53872 × 54172
(65)

and the prime ideal factorisation

〈β〉 = p42,1p
9
3,1p3,2p

4
3,3p

2
29,1p

2
79,1p

2
139,1p

2
193,1p

2
523,1p

2
1657,1p

2
2273,1p

2
2467,1p

2
3079,1p

2
5021,1p

2
5387,1p

2
5417,1.

(66)
Thus, by Theorem 4.0.4 we obtain that this is an element in the kernel. This took 115 relations
to find this element and took 5098ms compared to the fundamental unit algorithm which took
29728ms.

5 Summary

We have explored the background for computing units and the unit group of the ring of integers
of a number field which has led us to attempt to develop a random unit algorithm. With the
limited success of the random unit algorithm we then explored finding elements of square norm
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in a number field. This led to the development of an algorithm in PARI to compute elements of
square norm. This algorithm performed better than finding a full set of fundamental units and
is able to compute a large quantity of elements with minimal additional cost. These results are
good but could be improved if one checked whether the elements were square directly (using
Theorem 4.0.3). One could also expect improvements if the algorithm was built from the
ground up as this algorithm is based of an algorithm for computing a full set of fundamental
units. Additionally, modifying the method for finding the kernel in the matrix Wp as described
in Section 4 would likely improve the efficiency of the algorithm. We also did not explore any
different bounds on the primes which could reduce the time or reduce the spread of the elements.
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[EHKS14] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum
algorithm for computing the unit group of an arbitrary degree number field. In Pro-
ceedings of the forty-sixth annual ACM symposium on Theory of computing, pages
293–302, 2014.

[Gal21] Joseph Gallian. Contemporary abstract algebra. Chapman and Hall/CRC, 10 edition,
2021.

[HM89] James L Hafner and Kevin S McCurley. A rigorous subexponential algorithm
for computation of class groups. Journal of the American mathematical society,
2(4):837–850, 1989.

[Ken22] Joseph Kent. Random Brauer Manin obstructions on hyperelliptic curves, summer
project at the University of Canterbury. 2022.

[Ken23] Joseph Kent. Jedijoe100/SquareNormElements: Square Norm Elements Algorithm,
December 2023.

[LO77] Jeffrey C Lagarias and Andrew M Odlyzko. Effective versions of the chebotarev
density theorem. In Algebraic number fields: L-functions and Galois properties
(Proc. Sympos., Univ. Durham, Durham, 1975), volume 7, pages 409–464, 1977.

37



[Mil21] James S. Milne. Group theory (v4.00), 2021. Available at www.jmilne.org/math/.

[NDR+19] Hamid Nejatollahi, Nikil Dutt, Sandip Ray, Francesco Regazzoni, Indranil Banerjee,
and Rosario Cammarota. Post-quantum lattice-based cryptography implementa-
tions: A survey. ACM computing surveys, 51(6):1–41, 2019.

[PAR22] The PARI Group, Univ. Bordeaux. PARI/GP version 2.10.0, 2022. available from
http://pari.math.u-bordeaux.fr/.

[Ros94] H. E. Rose. A course in number theory. Clarendon Press, New York;Oxford;, 2nd
edition, 1994.

[ST79] Ian Stewart and David O. Tall. Algebraic number theory. Chapman and Hall,
London;New York;, 1979.

[Ste20] P. Stevenhagen. Number rings. 2020. Available at
https://websites.math.leidenuniv.nl/algebra/ant.pdf.

[Zim96] Horst G. Zimmer. Unit group and class group. Group Theory, Algebra, and Number
Theory. De Gruyter, Inc, Germany, 1996.

38


