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Abstract

The ability of cells to undergo collective movement plays a fundamental role in tissue

repair, development and cancer. Interactions occurring at the level of individual cells may

give rise to spatial structure, such as clustering, in a moving population. In vitro cell culture

studies have shown that the presence of such spatial structure can play an important role in

determining the dynamics of migrating cells at a population level. However, mathematical

models that consider population-level behaviour often take a mean-field approach, which

assumes that individuals interact with one another in proportion to their average density and

neglects the effects of spatial structure.

In this work, we develop a lattice-free individual-based model (IBM) for collective move-

ment in one-dimensional space. The IBM uses random walk theory to model the stochastic

interactions occurring at the scale of individual migrating cells. In particular, our model

allows an individual’s direction of movement to be affected by interactions with other cells

in its neighbourhood, providing insights into how directional bias generates spatial struc-

ture. As an alternative to the mean-field approach, we employ spatial moment theory to

develop a population-level model which accounts for spatial structure and predicts how these

individual-level interactions propagate to the scale of the whole population. The IBM is used

to derive an equation for dynamics of the second spatial moment (the average density of

pairs of cells) which incorporates the neighbour-dependent directional bias and we solve this

numerically for a spatially homogeneous case.

Extending our model to consider cell behaviour in two-dimensional space makes it more

amenable for use alongside experimental data. Using imaging data from in vitro experiments,

we estimate parameters for the two-dimensional model and show that it can generate similar

spatial structure to that observed in a 3T3 fibroblast cell population. Finally, we incorporate

cell birth and death into our two-dimensional model to consider how these processes give rise

to spatial structure and how, in turn, this spatial structure affects the collective dynamics.
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Nomenclature

Functions

Individual-based Model

ψi Movement rate for an individual i, T−1

B̂i Birth rate for an individual i, T−1

D̂i Death rate for an individual i, T−1

w(z) Interaction kernel for movement rate, T−1

wρ(z) Interaction kernel for birth rate, T−1

µ(x, y) Movement PDF, L−d in d−dimensional space

b(x) Neighbour-dependent directional bias, dimensionless

ĥ(x) Spatially-dependent weight, dimensionless

u(x, y) Spatially-dependent neighbour contribution to directional bias, dimensionless

v(z) Interaction kernel for directional bias, L

pr Probability of moving right, dimensionless

g(θ; b) Probability of moving in direction θ, dimensionless

µ(ρ)(x, y) Dispersal PDF, L−d

Spatial Moment Dynamics

Zn nth spatial moment, L−dn

Z̃3(x, y, z) Moment closure for third spatial moment, L−dn

M1(x), M2(x, y) Expected movement rates for first and second moment dynamics, T−1

B1(x), B2(x, y) Expected birth rates for first and second moment dynamics, T−1

D Expected death rate, T−1

µ1(x, y), µ2(x, y, z) Movement PDFs for first and second moment dynamics, L−d

b1(x), b2(x, y) Directional bias for first and second moment dynamics, dimensionless
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Parameters

m Intrinsic movement rate, T−1

ρ Intrinsic birth rate, T−1

d Intrinsic death rate, T−1

α Strength of interaction for movement rate, T−1

β Strength of interaction for directional bias, L

γ Strength of interaction for birth rate, T−1

σw Spatial range of interactions for movement rate, L

σv Spatial range of interactions for directional bias, L

σρ Spatial range of interactions for birth rate, L

σµρ Spatial range of dispersal PDF, L

λµ Rate parameter of PDF for movement distance, L−1

σµ Spatial range of PDF for movement distance, L

δr Bin width for PCF, L

∆ Grid spacing for discretisation of spatial displacement ξ, L

ξmax Maximum distance of ξ1, ξ2 for computing Z2(ξ), L
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Chapter 1

Introduction

1.1 Motivation and Objectives

The ability of cells to migrate as a collective, either to local sites or distant parts of the

body, is fundamental for a number of physiological processes. For example in wound healing

there is an orchestrated response involving the migration of various cell types to the wound

site in order to combat infection and instigate tissue regeneration [1, 2]. The behaviour of

cells undergoing collective movement is governed by a highly complex network of biochemical

and biophysical factors acting across a range of scales. When the mechanisms regulating cell

movement break down or are disrupted the outcome is either a lack of migration or migration

to improper sites, consequently leading to defects which in the worst case may be lethal. In

cancer the transition of a tumour from a benign state to a malignant state is marked by

tumour cells acquiring the ability to invade surrounding tissues and metastasise to distant

parts of the body [3].

Achieving a comprehensive understanding of collective cell movement is a hurdle that must

be overcome if new and effective therapeutic strategies targeting migration are to be developed

[4, 5]. Therapies that promote movement would enhance the synthesis of artificial tissues [6]

while movement-inhibiting drugs could slow or halt the spread of a malignant tumour [7].

Mathematical modelling has proved a useful tool for the substantial task of dissecting the

intricacies of collective movement and can often provide explanations to problems for which

an experimental approach alone is insufficient [1, 8, 9].

Gaining insight into collective cell movement at different scales is important. A highly

dynamic actin cytoskeleton comprises the core component of the intracellular machinery that

facilitates a cell’s migration [10]. At a higher organisational level, extracellular chemical

signals, cell-cell adhesions and interactions with the extracellular matrix all contribute to the

movement of cells [11]. The combined effect of these factors has implications for the moving

cell population at a tissue level. For example, interactions occurring between neighbouring

1



2 CHAPTER 1. INTRODUCTION

cells can generate spatial structure which will, in turn, have significant consequences for the

population-level dynamics. Thus a mathematical model of collective movement should be

designed to predict behaviour across multiple biological scales [9].

In addition, a theoretical model for collective cell movement should be compatible with

experimental data at different scales. Data generated from cell migration experiments may

consist of measurements made at the scale of individual cells, for instance cell tracking tech-

niques can be used to monitor the trajectories of single cells migrating across a surface [12].

Other measurements may be taken on a larger scale such as that of a whole population. Ex-

perimental data involving average cell densities or the speed of invading fronts of cells fall into

this category [1]. Together, these requirements have led to the development of multi-scale

models for collective movement [9, 13].

In this thesis we develop a mathematical model that accurately predicts the behaviour of

cells undergoing collective movement. Our model acts on two scales: a microscopic scale which

describes the behaviour of migrating cells at the level of an individual, and a macroscopic scale

that describes the emergent dynamics of the population as a whole. At the microscopic level

where cell behaviour is governed by stochastic forces, we employ an individual-based model

(IBM) to predict how short-range interactions, such as crowding effects, influence collective

movement. In particular, we incorporate a mechanism which allows a cell’s direction of

movement to be determined by the degree of crowding in its neighbourhood. This local

directional bias is representative of attractive or repulsive forces occurring between cells and

generates spatial structure in the population. The IBM is constructed using a lattice-free

framework where cells are represented as individual agents that can wander freely across

a continuous domain, rather than being constrained to discrete lattice sites. As we will

discuss, this lattice-free approach leads to more realistic cell behaviour compared to a lattice-

based approach. In order to investigate how the underlying individual-level information

propagates to a larger scale we use our IBM to derive a corresponding description in terms

of the dynamics of spatial moments. Unlike the majority of cell movement models, our

spatial moment model accounts for the presence of spatial structure and allows us to explore

population-level properties such as the dynamics of the average density of single cells and

the average density of cell pairs. The model will be designed such that it is compatible with

a variety of cell types and experimental situations. We use in vitro data generated from

experiments with 3T3 fibroblast cells to parameterise our model and show that it is capable
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of generating similar spatial structure to that observed in fibroblast populations. Finally, we

extend the model to incorporate cell birth and death to consider the role these processes play

in determining collective behaviour.

1.2 Thesis Structure

Chapter 2 (Background) Some key concepts of collective cell movement are introduced and

we carry out a review of the relevant biological and mathematical modelling litera-

ture. In particular, the importance of spatial structure for collective cell behaviour is

discussed.

Chapter 3 (Individual-Based Model) Presents the derivation of an individual-based model

(IBM) for collective cell movement through one-dimensional space. The model allows

interactions with neighbouring cells to determine an individual’s rate and direction of

movement. We also discuss how a pair-correlation function (PCF) can be computed

from a particular configuration of cells, to quantify the extent of spatial structure

present in the population.

Chapter 4 (Spatial Moments Model) The one-dimensional IBM is used to derive corre-

sponding population-level approximations by employing theory from the dynamics of

spatial moments. Equations for the rates of change of spatial moments up to second

order are derived. This allows the effects of spatial structure to be accounted for at

a population level. The model can be applied in a spatially non-homogeneous setting,

however we only solve for a homogeneous space.

Chapter 5 (Numerical Results for One-dimensional Model) Presents numerical results for

the one-dimensional model for a simple case where cells are distributed homogeneously

throughout space. The different spatial structures generated by neighbour-dependent

movement are discussed and we analyse the performance of the spatial moment model

as an approximation to the underlying IBM.

Chapter 6 (Two-dimensional Model and In Vitro Data) Extends the model for collective

movement in two spatial dimensions. We present and discuss numerical results for the

extended model, again for a spatially homogeneous case. The analysis of experimental

data is also dealt with in Chapter 6 and the data is used to parameterise and validate
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the two-dimensional model.

Chapter 7 (Model of a Birth-death-movement Process) The IBM and spatial moment mod-

els are extended to incorporate cell birth and death as well as movement. Numerical

results from the extended model are presented and discussed. In particular, we ex-

plore how these different cell processes generate spatial structure and what effect this

structure has on the dynamics of the population.

Chapter 8 (Concluding Remarks) Summarises the outcomes and importance of the work.

We also discuss some possible directions for future research.

1.3 Thesis Publications

A paper presenting the derivation and results for the one-dimensional model, from Chapters

3, 4 and 5, has been published by Journal of the Royal Society Interface [14]. The two-

dimensional model, numerical results and analysis of experimental data from Chapter 6, are

presented in a paper which has been accepted for publication by PeerJ [15].



Chapter 2

Background

2.1 Biological Background

Cell movement plays a fundamental role in a number of physiological processes, where it

is highly regulated. For example, controlled cell migration facilitates the growth of new

blood vessels from existing vasculature (angiogenesis) [3], embryonic development [16], wound

healing [17], and is also a component of the immune response [11]. Abnormal migration is

known to contribute to pathological processes such as vascular disease, chronic inflammatory

syndromes and cancer [6, 11].

While the role of migratory cells varies between different cell types, there is evidence to

suggest the underlying mechanisms controlling migration are similar. The key components

of these mechanisms are also evolutionarily conserved between different species [16]. In gen-

eral, migratory cells sense and respond to external migration-inducing signals by undergoing

internal changes involving components of their cytoskeleton, allowing them to move through

their external environment [6]. Cells may move up a chemical signal concentration gradi-

ent by chemotaxis or up a gradient of cellular adhesion sites by haptotaxis, in addition to

undergoing random migration [3].

The intracellular machinery that facilitates the migration of a single cell through its envi-

ronment is built from a highly dynamic actin cytoskeleton and involves a cyclical progression

through four steps, namely polarisation, protrusion, adhesion and retraction [6, 11, 16]. In

response to an external migratory signal, a cell will first undergo polarisation, involving spec-

ification of the front of the cell (the leading edge) and the rear (the trailing edge) so that it

now faces a certain direction [6,16]. The next stage in the cycle is the protrusion of the cell’s

leading edge in the direction of migration. These finger-like projections are called pseudopo-

dia and arise through rearrangements in cytoskeletal components [10]. In the third stage,

the protrusions at the leading edge undergo adhesion by fusing to the extracellular substrate.

This provides the cell with strong and stable external contacts from which it can push off,

5



6 CHAPTER 2. BACKGROUND

and enables the cell to propel itself forwards through the surrounding medium [11]. The final

stage in the migration cycle is the retraction of the rear of the cell. The trailing edge retracts

into the cell body while adhesion contacts at the rear are released, allowing the cell to pull

itself forwards, completing the cycle [6, 11,16].

While many cell types migrate as individuals, for instance lymphocytes involved in the

immune response, others undergo collective migration [7, 11]. Migrating epithelial cells can

form a tightly associated continuous sheet, within which the cells align and polarise themselves

such that they share a unified direction of movement [18,19]. Such sheets often have a clear

invasion front and are observed in physiological processes such as wound healing [8, 11]. In

addition to the protrusions extended by individual cells, multi-cellular projections guided by

leader cells occur [18,20]. Other forms of collective migration include sprouting and branching,

for example the growth of new blood vessels from pre-existing vasculature in angiogenesis [3],

and streams, such as neural crest cells involved in vertebrate embryogenesis [16]. In some

cases, cells also migrate as free groups, as is observed in ovarian border cell clusters of

Drosophila melanogaster [11]. A desire to understand how these moving collectives arise and

how it is possible for such large numbers of individuals to coordinate their movement has led

to extensive studies into the interactions occurring between migrating cells [12, 20,21].

Interactions occurring between collectively moving cells can be mechanical. For instance

contacts via cell-cell junctions provide a physical coupling between neighbouring cells. Tensile

stresses are transmitted through these intercellular junctions as a result of traction forces

exerted between migrating cells and their surrounding substrate [18–20,22]. Non-mechanical

interactions, such as the ability of certain cell types to detect diffusible chemical factors, also

impact collective behaviour [12]. Chemical signals can enhance [23] or inhibit a cell’s rate of

movement, or affect its direction of movement [24]. Quorum-sensing in bacterial populations

enables cells to sense their population density by detecting the concentration of a cell-secreted

chemical signal in the surrounding medium. At high cell densities the increased concentration

of signal induces a physiological response, such as the initiation of swarming movement in

Burkholderia cepacia [25–27]. Similar behaviour has been observed in eukaryotic cells for

example the induction of aggregation in the slime mould Dictyostelium discoideum [25, 28].

Some interactions within cell collectives act as attractive forces to drive cells together.

These include cell-cell adhesions [29] and cell-released chemoattractant signals which give rise

to chemotaxis towards the signal source [25, 30]. On the other hand, movement in response
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to a cell-secreted chemorepellant can have a repulsive effect where cells are biased to move

away from their nearest neighbours [24,31]. Other interactions affecting cell motility include

crowding effects which can occur at high cell densities. One such effect is contact inhibition

of locomotion whereby, after colliding with another individual, a moving cell will slow down

then alter its direction of movement in an attempt to avoid future collisions [12, 32]. This

behaviour has been observed experimentally in invading malignant fibroblast cells [32] and

in wound healing [1, 33].

The short-range interactions experienced by cells often lead to self-generated spatial struc-

ture which can in turn have a significant impact on the dynamics of the cell population [34–36].

For instance, many cell types are known to form clusters or aggregates as a result of attrac-

tive interactions [37, 38]. Examples include breast cancer cells [29] and hepatocyte-stellate

aggregates [37]. Others, such as retinal neurons [31, 39], arrange themselves into patterns

that minimise their proximity to neighbouring cells. This behaviour can be observed in cell

populations cultured in vitro, however it is not always obvious which underlying mechanisms

are responsible for pattern formation, particularly when multiple types of interaction are in-

volved [37]. Therefore there is good motivation for the development of techniques that give

more insight into the effects of these mechanisms.

2.1.1 Experimental Techniques

The migration of cells in two dimensions has been studied extensively in vitro and a range of

experimental techniques have been developed for this purpose [13, 40, 41]. Time-lapse pho-

tography and image analysis methods are commonly used in conjunction with cell migration

assays to capture the distribution of cells across a substrate at discrete time intervals and allow

measurements to be taken at these fixed time points. Microscopy techniques generate high

quality images at the level of individual cells in addition to the population scale [1,12,42,43].

One such assay is a cell scrape (or wound healing) assay which initially involves the growth

of cells to form a confluent monolayer. A small section of the monolayer is then scratched

away to leave a cell-free gap or wound. The cells are monitored as they invade into the

cell-free gap to close the wound and an invasion front is often observed. Population-scale

measurements such as the invasion rate of the leading edge can be taken [8,13,42]. A similar

but more reproducible experiment is a two-dimensional barrier assay, which typically involves

attaching a hollow circular barrier to the surface of the culture dish and introducing cells
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into the internal barrier chamber. The barrier is then removed and the cells are monitored

as they spread into the cell-free regions of the dish [40, 41]. Monolayer formation assays are

a third type of experiment used in studies of cell population growth. A sparse population

of cells is initially uniformally distributed across a culture dish, then allowed to migrate and

proliferate until the population reaches confluence. This type of experiment allows large-scale

measurements of population growth rate and maximum cell density to be taken. At a smaller

scale, individual cell trajectories can also be tracked and their rate and direction of movement

monitored over time [1]. In addition, cell-cell contact effects such as contact inhibition of

migration and contact inhibition of proliferation can be observed experimentally [32, 44].

Techniques such as the Transwell Invasion assay are used for in vitro studies of cell migration

through three-dimensional space. In a Transwell assay, cells are placed on the top surface of

a cell-permeable membrane and allowed to invade through the membrane, usually towards a

chemoattractant [45].

A number of different cell types can be used in migration assays depending on their focus.

For instance, epithelial, endothelial or fibroblast cells are often used in studies of wound

healing [1,19,33] while invasive sarcoma, glioma or melanoma cells have been used in cancer

studies [32, 45]. Invasion assays can also be used to test the effect of migration-inducing

or -inhibiting agents [45]. For example, the cell-secreted protein Slit has been shown to

have a repulsive effect on the migration of neurons [24] while the chemo-attractant acidic

fibroblast growth factor (aFGF) has been used to study the role of endothelial cell migration

in angiogenesis [46]. The data generated from experimental studies such as these can be

used for the parameterisation of mathematical or computational models for cell movement

[13,33,43,46].

2.2 Mathematical Modelling Background

Collective movement arises in a variety of contexts from insect swarming [47], to pedestrian

flow in traffic [48], to cell migration in tissue [11]. The desire to better understand this type of

behaviour has motivated the development of mathematical models for collective movement.

A variety of approaches have been applied to the modelling of cell migration across a range

of biological scales and these can be divided into two broad categories [5, 9, 13]. Firstly,

microscopic models which describe collective cell behaviour at the level of individuals and
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where the movement of cells is governed by a stochastic process [46]. Secondly, macroscopic

models which provide insight into collective behaviour at the level of a cell population and

are deterministic [5, 42,49].

Ideally, a model for collective movement should incorporate both microscopic and macro-

scopic behaviour and multi-scale models for collective movement are now well discussed in

the literature [3, 9, 13]. In many cases a PDE is derived initially for the population-level

behaviour and then undergoes a decomposition to a continuous-time master equation to give

insight into the individual-level properties [3, 13]. However this trend has now shifted to a

“bottom-up” approach where a microscopic model is developed first and then, by first writing

conservation statements and taking the continuum limit, is used to derive a population-level

description [4, 5, 49].

2.2.1 Microscopic Models

Probabilistic models are used to model migration at an individual-level, from isolated single

cells to large numbers of individuals [50]. The earliest stochastic models of cell migration

tended to focus on isolated or small numbers of individuals, such as a model of bacterial

chemotaxis proposed by Stroock (1974) [50] or a correlated random walk model for slime-

mold amoebae movement developed by Hall (1977) [51]. The strategy of using random

walks [52] to describe the movement of eukaryotic cells, such as leukocytes and fibroblasts,

found in more complex multicellular organisms was popularised by models developed by

Peterson & Noble (1972) [53], Alt (1980) [54] and by Dunn & Brown (1987) [55]. In 1991,

Stokes & Lauffenberger proposed a model for the migration of endothelial cells involved in

angiogenesis that incorporated random movement as well as chemotaxis [46].

More recently, stochastic models for simulating the movement of large numbers of in-

dividuals have been developed [33, 42]. These include individual-based models (IBMs) or

agent-based models where each cell is represented as an individual agent and the movements

of all agents are tracked over time [56]. IBMs can be divided into two classes. In the first

lattice-based class (which includes cellular automata), movement is constrained to a regular

or irregular lattice with pre-defined grid points. The lattice framework restricts the location

of agents to discrete grid sites and agents can only move in a discrete set of directions to

neighbouring sites [5, 42]. Cell interactions and crowding effects can be incorporated into

lattice-based models through exclusion processes which ensure that only a single agent can
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occupy any one lattice site [43, 44]. Other individual-level factors, such as cell-cell adhesion

which has a role in malignant invasion, have been explored using lattice-based models [29].

Lattice-based approaches have been shown to provide a good match to behaviour observed

experimentally, particularly for low cell densities [13, 42]. However, one drawback to this

approach is that the carrying capacity (i.e. the maximum number of cells that can occupy

the domain) is a property that is artificially pre-determined by the number of grid points

available in the chosen lattice. Also, at high cell densities where cells are tightly packed into

the available space, an unrealistic spatially-regular configuration of cells arises due to their

alignment along the lattice [44].

The second class are lattice-free models where cells are not restricted to discrete lattice

sites but can wander freely across a continuous domain. These have been shown to result

in a more realistic spatially-irregular configuration of cells [57]. In a lattice-free framework

the maximum cell density is an emergent outcome of the model as opposed to being pre-

determined by the size of the lattice [44]. A drawback of employing a lattice-free strategy is

that running simulations can become more computationally intensive at high cell densities

than using an equivalent lattice-based approach [57].

Recent research has highlighted the importance of volume exclusion, the concept that the

cells themselves occupy space in the domain and may obstruct other individuals from occu-

pying the same space [58, 59]. In lattice-based approaches, volume-exclusion is incorporated

by assuming that only one individual can be present at each lattice site and the lattice-

spacing corresponds to a cell diameter. Methods for deriving population-level cell models

from lattice-based IBMs can be found in the literature [42, 49]. Different approaches to de-

riving macroscopic descriptions from lattice-free IBMs with volume exclusion have also been

discussed. One method involves defining individuals as hard spheres with fixed diameter,

around which may lie an exclusion area that other individuals cannot occupy. In this case,

the domain can be divided into strips and an approximate population-level description found

by writing a conservation statement for the density of agents in each strip [29,44,57]. Other

models describe a hard spherical core but apply an external force which can be representative

of either inter-particle or external interactions [60]. Frameworks for deriving population-level

descriptions from lattice-free IBMs in one-, two- and three-dimensions, and incorporating a

mechanism for global directional bias, have also been described [58,59].

Simulations of IBMs produce synthetic data that can be compared to experimental im-
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ages [43] and may shed some light on the underlying mechanisms responsible for emerging

spatial structure [37], however they are quite intractable mathematically. Deriving a formal

mathematical representation gives more insight into the population-level dynamics of such

systems and provides scope for a more rigorous analysis [61].

2.2.2 Macroscopic Models

For simplicity, macroscopic models often neglect the effects of spatial structure on a cell

population. They typically deal with a density of individuals that has been averaged over

space and explore the evolution of this average density over time. Such models are termed

‘mean-field’ and assume that individuals are well-mixed or undergo long-range interactions.

‘Local mean-field’ models, such as reaction-diffusion equations, allow the average density of

individuals to be expressed as a function of the location in space however they still tend to

ignore the effects of small-scale spatial structure on the population [61]. For example, the

Fisher-Kolmogorov equation [62, 63] has been used to describe both cell migration, incorpo-

rated in a diffusion term, and proliferation in the form of a logistic growth function [8, 43].

The use of reaction-diffusion equation models was pioneered largely by Keller & Segel (1970)

when they proposed a partial-differential equation (PDE) for modelling chemotaxis in bacte-

ria [64]. More recently, models for cell movement have been described in a range of contexts

including angiogenesis [3], wound healing [1, 8] and malignant spreading [4, 5].

In reality the short-range interactions experienced by cells can often lead to self-generated

spatial structure which can in turn have a significant impact on the dynamics of the cell pop-

ulation [34–37]. As mean-field models do not account for these local interactions they do not

always provide a good representation of real behaviour [65]. Spatial moment theory, origi-

nally developed in statistical physics [66–69], can be used to investigate the effect of spatial

structure on population-level dynamics [61, 65, 70, 71]. The average density of individuals

dealt with in mean-field models is the first spatial moment which holds no information on

small-scale spatial structure. One way to access such information is to consider the second

spatial moment, the average density of pairs of cells, expressed as a function of the distance r

between them. The second moment is often dealt with as a pair correlation function (PCF)

C(r) in which it is normalised by the square of the first moment such that in the absence

of spatial structure C(r) ≈ 1. Figure 2.1 shows the PCF for three spatial point patterns.

Figures 2.1(a)-(c) can each be considered as a snapshot in time from a realisation of an IBM.
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Figure 2.1: Three different spatial patterns in two-dimensional homogeneous space (a)-(c)
and the pair correlation functions C(r) for each pattern (d)-(f). (a) Poisson spatial pattern
(or complete spatial randomness) in which there is no spatial structure present; (b) Cluster
spatial pattern; (c) Regular spatial pattern.

Figure 2.1(a) describes a spatial Poisson point process (sometimes referred to as complete

spatial randomness) in which all locations of individuals are independent of one another. For

this case C(r) ≈ 1 and no spatial structure is present (Fig. 2.1(d)). Figure 2.1(b) shows a

cluster pattern, in which pairs of cells are more likely to be found in close proximity. This

corresponds to C(r) > 1 for short distances r as shown in Figure 2.1(e). The opposite effect

can also arise, whereby cells are less likely to be found close together resulting in a regular

pattern (Fig. 2.1(c)). Figure 2.1(f) shows that C(r) < 1 at short distances r for this type of

spatial structure [72].

In previous studies, PCFs have been calculated from experimental images to quantify

the extent of spatial structure in live cell populations which adopt Poisson [73], cluster or

regular patterns [38, 74] to varying degrees. For instance, time-lapse imaging of in vitro cell

migration assays, such as circular barrier assays [73] and scratch assays [75], generates data

in two spatial dimensions. Image analysis techniques can then be employed to measure the

distances between cell pairs and this data used to calculate a PCF. PCFs have also been
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used alongside experimental data to give insight into the mechanisms responsible for pattern

formation [37].

Exploring the dynamics of the second moment can provide insight into how the spatial

structure is changing over time and whether the state of the system converges. The dynam-

ics of the third moment, the average density of triplets, can be derived to provide further

information still, and so on up to the n-th moment however the descriptions of the dynamics

become increasingly complex for higher moments [65, 70]. In order to solve the dynamical

system a suitable closure is also required because the dynamics of each moment depend on

the next moment in the hierarchy. Mean-field models employ a first order closure (the mean-

field assumption) in which the second moment is assumed to equal the first moment squared.

In other words, it is assumed that individuals encounter one another in proportion to their

average density. Thus, in the mean-field assumption any spatial information that was held in

the second moment is lost. However, models which close the dynamics at higher orders retain

the spatial information held by the second moment. At second order a number of different

closures are possible, for example the Kirkwood superposition approximation [76], which is

commonly employed in cell movement models [71,77,78]. Murrell, Dieckmann and Law (2004)

discussed the suitability of various closures and found that the asymmetric power-2 closure

also performs well in general [79].

The types of local interactions inherent to migrating cell populations are also of impor-

tance in other contexts, such as in animal or plant communities. Many of the modelling tools

that employ spatial moment theory were developed for ecological problems [80–83]. Models

for dynamics of the second moment which incorporate mechanisms for birth, growth, death

and movement (either in isolation or combination) have been derived. One of the earliest

ecological studies employing spatial moment theory was that of Bolker and Pacala (1997),

who explored growth and competition in plants using the dynamics of spatial moments with

density-dependent mortality [80]. This study was extended by Law, Murrell and Dieckmann

(2003), who showed that self-generated spatial structure can cause the growth of a population

to differ significantly from the non-spatial dynamics [65]. Their work revealed that both the

rate of population growth and the steady state average density can be greatly affected by

spatial structure, generated from the dispersal of offspring or local competition, as shown in

Figure 2.2 [65].

Lewis and Pacala (2000) considered the invasion of populations by incorporating density-
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Figure 2.2: The effects of spatial structure on the dynamics of a growing population, stud-
ied by Law, Murrell and Dieckmann (2003) [65]. Spatial structure was generated both by
the short-range dispersal of offspring and local competition. Figure used by permission of
Ecological Society of America.

dependent birth into the moment dynamics [83]. The relationship between spatial arrange-

ment and plant size distribution have also been explored [84]. Models for animal populations

undergoing movement have been derived both for the case where movement is dependent on

local neighbourhood and the independent case [70,85,86]. These have also been extended to

describe the role of spatial structure in predator-prey relationships [86].

Spatial moment models often assume a homogeneous spatial distribution (the pattern is

stationary over space). Here we use the term spatially homogeneous to refer to a situation

where the probability of finding an individual in a given small region does not depend on

the location in space. This is the same as assuming that the spatial structure observed in

a small window within a larger space is independent of the position of the window, i.e. it

has translational invariance. In terms of spatial moments this corresponds to a first moment

that is constant over space, while the second and third moments can be expressed in terms

of displacements between pairs of agents as opposed to agent locations [61,72,87].

In some cases of collective cell movement it is necessary to consider a non-homogeneous

setting, where the average density of cells is higher or lower in certain regions. For example, a

non-homogeneous initial condition would be required for the modelling of cell invasion assays

in which moving fronts of cells are formed [43, 88]. However, solving the spatial moment

dynamics up to at least second order is more complicated for the non-homogeneous case and

consequently has received significantly less attention than simpler homogeneous systems [61].

Middleton et al. [71] studied a lattice-free cell movement model incorporating a local direc-
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tional bias and employing the second spatial moment for a non-homogeneous distribution of

cells. This work extended that of Newman and Grima (2004) [89]. Their IBM is based on a

Langevin equation defining each cell’s velocity as the sum of the interaction forces from neigh-

bours plus a noise term. Thus, neighbour interactions always affect both speed and direction

of movement. Comparable population-level models for cell birth-death-movement processes

in lattice-based frameworks have been developed, in which pair-approximation methods are

used to account for spatial correlations in discrete space. These have been described for a

homogeneous setting [78] and have also been extended to account for a global directional bias

in non-homogeneous space [88].

In an ecological context, spatial moments models in non-homogeneous space have been

developed for the invasion of a population through a birth/dispersal mechanism, incorporating

local interactions, but in the absence of movement [82, 83]. Murrell and Law (2000) [70]

described a model for local density-dependent animal movement, in which the self-generated

spatial structure of the population assumed homogeneity but movement occurred through

a fixed heterogeneous landscape. While these models were relatively case-specific, a more

general model incorporating terms for density-dependent birth, death and movement was

recently derived by Plank and Law (2014) [61] for a spatially non-homogeneous case.

Other methods for describing the dynamics of spatial point processes, which do not require

a closure assumption, are also discussed in the literature. Stochastic differential equations,

such as Langevin-type equations, capture fluctuations arising due to short-range interac-

tions via a noise term and can be used to investigate spatio-temporal patterns at different

scales [90]. Blath et al. [91] analysed a stochastic, lattice-based model using stochastic differ-

ential equations to explore whether spatial structure could give rise to coexistence between

two competing species. A closed system of equations for the whole hierarchy of moments was

derived by Ovaskainen et al. [92] using techniques from Markov evolutions and a perturbation

expansion around the spatial mean-field model. Bruna and Chapman [60] employed a per-

turbation method to describe the dynamics of moving particles by using matched asymptotic

expansions in a small parameter ε� 1 to derive a nonlinear diffusion equation.
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Chapter 3

Individual-Based Model

In this chapter we describe an IBM for collective cell movement in one-dimensional space.

At this scale we are interested in the stochastic interactions occurring between individual

cells. Our model is constructed using a lattice-free framework where cells are represented

as individual agents that can wander freely across a continuous domain, rather than being

constrained to discrete lattice sites. We incorporate short-range interactions by allowing

an individual’s rate and direction of movement to depend on the degree of crowding in

its neighbourhood. This local directional bias is representative of attractive or repulsive

forces occurring between cells, such as in response to a chemoattractant or repellant, and

generates spatial structure in the population. In the next chapter, we use our IBM to derive

a corresponding description in terms of the dynamics of spatial moments.

Motile cells possess dynamic cytoskeletons which enable them to change their shape and

flex around neighbouring cells [10, 32]. For this reason, cells rarely form perfect spheres and

it can be difficult to accurately estimate their average diameter. Therefore, we choose not to

use a hard-core approach to account for volume exclusion but instead represent the location

of a cell by its coordinates in space. Rather than explicitly excluding neighbours from the

space surrounding an individual, we consider a kernel (a Gaussian function) which weights

the strength of an individual’s interaction with its neighbours. The kernel width corresponds

to the range over which an individual will affect other cells in its neighbourhood and can be

considered a proxy for average cell diameter.

The majority of cell biology experiments are carried out in two or three spatial dimensions.

However, numerically solving the moment dynamics up to second order can become quite

complicated in higher dimensions and so here we consider a simpler case of movement through

one-dimensional space. We will show that the one-dimensional model can still capture the

qualitative traits of spatial structure inherent to populations in which short-range interactions

are important, i.e. clustering and regular patterns observable in cell populations cultured in

vitro. In Chapter 6 we extend the IBM for movement in two spatial dimensions.

17
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3.1 Setting

The stochastic theory employed in many microscopic models of collective movement revolves

around the concept of Markov processes which we will now briefly describe in a general

context.

3.1.1 Poisson and Markov Processes

The Poisson process is a stochastic process that counts the number of events that occur in a

given time interval. The waiting time between a pair of consecutive events is exponentially

distributed with rate λ and is independent of all other waiting times. In order to give a formal

definition of this we now need to introduce some notation. We denote a Poisson process by

{X(t) : t ≥ 0} where the random variable X(t) represents the state of the process at time

t. Time can evolve via discrete time jumps in which case t belongs to the finite positive set

{t0, t1, . . . , tn}. Alternatively it can evolve continuously for 0 ≤ t ≤ ∞. A Poisson process

has a positive rate λ and a discrete state space S which is a set of non-negative integers. In

addition, it has the following properties:

i X(0) = 0

ii For any times t0 < t1 < t2 < . . . < tn the time increments are independent, that is

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−X(tn − 1)

are independent random variables. The time increments are also stationary such that the

probability distribution of an increment X(t) −X(s) depends only on the length of the

time interval t− s for any 0 ≤ s < t.

iii The random variable X(s + t) − X(s) for any 0 ≤ s < t has a Poisson probability

distribution:

P{X(s+ t)−X(s) = k} =
(λt)ke−λt

k!
. (3.1)

The first moment (mean µ) and second moment (variance σ2) of a Poisson process of rate λ

are

E[X(t)] = λt and Var[X(t)] = λt,
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respectively. By this definition, for a small waiting time τ we see that the probability of a

single event occuring in the time interval [t, t+ τ ] is

P{X(t+ τ)−X(t) = 1} =
(λτ)1e−λτ

1!

= λτ +O(τ2). (3.2)

The likelihood of more than two events occurring in an interval [t, t + τ ] corresponds to a

probability

P{X(t+ τ)−X(t) ≥ 2} = O(τ2), (3.3)

which implies that two or more events cannot occur simultaneously.

A Poisson process can be classed as either homogeneous or non-homogeneous. In a homo-

geneous Poisson process the rate λ is constant over time. When the rate λ varies over time

such that λ = λ(t) we call this a non-homogeneous Poisson process. In this case the expected

number of events occurring in a time interval (s, t] is Poisson distributed and the mean given

by

E(X(t)−X(s)) =

∫ t

s
λ(u)du.

Finally, the combination of n independent Poisson processes with associated rates λj for

j = 1, . . . , n is itself a Poisson process with rate λ =
∑n

j=1 λj .

A Poisson process is the simplest form of Markov process which is a stochastic process that

satisfies the Markov property. This is a memoryless property in which the future behaviour of

a process depends only on the current state and not on any states that may have occurred in

the past. A Markov process {X(t) : t ≥ 0} has a state space S which may be either discrete

or continuous but we will proceed with our definition using the notation for a continuous

state space where S ⊆ R. The Markov process satisfies the Markov property if for all s, t ≥ 0

P(X(s+ t) = y|X(s) = x, {X(u) : 0 ≤ u < s})

= P(X(s+ t) = y|X(s) = x) (3.4)

for all x ∈ S, y ∈ S [93].
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3.1.2 The Gillespie Algorithm

The Gillespie algorithm [94] or stochastic simulation algorithm (SSA) is a computational

method for numerically simulating the time evolution of a stochastic system. In general,

the algorithm can be applied to a system defined at a time t by state variables x(t) =

(x1(t), x2(t), . . . , xn(t))T , where x(t) ∈ S. The system is updated to a new state by undergoing

one of m possible transitions with associated transition rates λi, i = 1, . . . ,m. The algorithm

can be broken down into four steps as follows:

1. The first step is initialisation, where time is set to t = 0 and the initial state x(0) of

the system is defined.

2. For the current system state x(t) a transition rate λi(x) is calculated for each possible

type of transition, i = 1, . . . ,m, and the total transition rate

λ =
m∑
i

λi(x),

is found.

3. Monte Carlo techniques are then employed to generate two random numbers. Firstly a

random number τ , which is the waiting time to the next transition event, is drawn from

an exponential distribution with mean 1/λ. The next transition to occur is then chosen

with a probability proportional to the rate of that transition. To achieve this a random

number u is drawn from a continuous uniform distribution on [0, λ]. If 0 ≤ u ≤ λ1(x)

then the transition with associated rate λ1(x) is the next to occur; if λ1(x) < u ≤ λ2(x)

then the transition with rate λ2(x) occurs; and continuing in a similar fashion until, if

λm−1(x) < u ≤ λmx) then the transition with rate λm(x) occurs.

4. Time is advanced by the random time increment, from t to t + τ . The state of the

system is then updated to reflect the occurrence of the chosen event.

5. Finally, the method is repeated from the second step until the time limit of the simu-

lation has been reached or until an update to the system state prevents the occurrence

of further events.

The method was originally developed for the simulation of spatially homogeneous chemical

systems involving reactive molecular species. In this case, the next chemical reaction to occur
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would be chosen at step 3 and the system would be updated in step 4 by altering the molecule

count of the species involved in that reaction accordingly.

3.2 One-Dimensional Individual-Based Model

We consider the collective movement of n individuals through a one-dimensional continuous

finite domain Ω = {xl ≤ x ≤ xr, x ∈ R}. Our IBM is a continuous time Markov process

model, thus the future state of the system depends only on the given current state and is not

influenced by any states that may have arisen in the past, as described in section 3.1.1. The

state of the system x(t) at a particular time t is

x(t) = (x1(t), x2(t), . . . , xn(t))T , (3.5)

where xi ∈ Ω is a coordinate representing the location of an individual cell i. As time

advances, a cell updates its location in the space by undergoing a movement event. This

leads to a transition in the state of the system which can be expressed as follows:

x 7→ x + eir, (3.6)

where ei denotes a basis vector with 1 at the ith coordinate and zeros elsewhere. The rate

density (which hereafter we will refer to simply as a rate) at which the system undergoes the

transition denoted by Eq. (3.6) is ψi(x)µ(xi, xi + r), where ψi(x) is the movement rate per

unit time of cell i when the system is in a state x. From here on we will drop the x argument

from ψi for notational ease. The function µ(xi, xi+r) is a probability density function (PDF)

for movement by a distance r.

Periodic boundaries are implemented at x = xl and x = xr such that when a cell moves

over one boundary it reappears at the opposite boundary. This means that for an individual

at x attempting to take a step r, the new location y of that individual will be

y =


x+ r if xl ≤ x+ r ≤ xr

x+ r + |xr − xl| if x+ r < xl

x+ r − |xr − xl| if x+ r > xr .

(3.7)
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3.2.1 Unbiased Movement

We simulate this stochastic process using the Gillespie algorithm, in which the time increment

τ between events is exponentially distributed with mean 1/λ(t), where λ(t) is the sum of all

transition rates ψi for i = 1, . . . , n at time t. One of n possible transitions occurs at time t+τ

and is chosen with a probability proportional to the rate of that transition. The movement

distance r can then be determined according to µ(xi, xi + r). In the following description we

make choices for the functions ψi and µ(xi, xi + r), however these can be easily adapted to

suit different experimental situations.

The movement rate ψi comprises two terms: an intrinsic motility rate m, i.e. the rate at

which an isolated cell would move, and a neighbour-dependent component. The latter term

sums a contribution w(z) from each of the other cells in the population, where w(z) is a

kernel weighting the strength of interaction between a pair of cells displaced by z. Therefore

the movement rate for an individual at xi with n neighbours at xj is

ψi = max(0, m+
n∑
j=1
i 6=j

w(xj − xi)). (3.8)

This definition ensures that ψi ≥ 0. Notice that we remove the effect of the individual i

interacting with itself by excluding the case where i = j. For simplicity, we choose the

interaction kernel w(z) to be a Gaussian function

w(z) = α exp

(
− z2

2σ2w

)
, (3.9)

where α and σ2w determine strength and range of interaction respectively. The intrinsic rate

m, interaction kernel w(z) and overall motility rate ψi have dimensions T−1.

This choice of kernel means that cells interact strongly with near neighbours but are not

influenced by those further afield. For α > 0, cell i’s motility ψi is increased by the presence

of close-lying neighbours. This type of interaction is relevant from a biological perspective,

for example in collective movement involving cell types which release motility-enhancing

diffusible signalling factors into their environment. The high concentrations of signals found

at high cell densities can result in increased motility rates for cells in crowded regions [23,95].

On the other hand if α < 0 then the presence of close-lying neighbours will reduce ψi. For

instance, crowding effects such as contact inhibition of locomotion reduce motility at high
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local cell densities [13,32].

When a cell undergoes a movement event it takes a step of displacement r from x to y,

drawn from a movement PDF µ(x, y). In the unbiased case where an individual’s direction

of movement is not affected by the presence of neighbouring cells, we define µ(x, y) to be a

Laplace distribution

µ(x, y) =
λµ
2

exp (−λµ|y − x|) , (3.10)

where the mean step length taken by a cell is 1/λµ. This means cells are more likely to take

short steps than undergo large jumps across the space and so is biologically reasonable [12].

3.2.2 Biased Movement

The model described so far allows simulation of collective movement in which an individual’s

motility is influenced by the cell density in its local neighbourhood, as can be observed

experimentally [1,12]. We now incorporate a local directional bias b(x) such that the presence

of neighbouring cells affects the direction of movement of an individual at x. The neighbour-

dependent bias b(x) sums a contribution u(x, y) from each of the other cells in the population

as follows:

b(x) =

n∑
j=1

u(x, xj) , (3.11)

where

u(x, y) = v′(y − x)ĥ(x). (3.12)

and v′(z) denotes the derivative of v(z) with respect to z. Here, ĥ(x) is a spatially-dependent

weight placed on the cell at x, for example the effect of a spatially-variable environmental

factor on direction of movement. In a case where the distribution of cells is homogeneous

across space, we have ĥ(x) = 1. In equation (3.12), v′(y−x) determines the effect of a cell at

y on the direction of movement for an individual at x. In theory v′(z) could be replaced by

any real-valued kernel which weights the strength of interaction between a cell pair displaced

by z. We choose v(z) to be a Gaussian function

v(z) = β exp

(
− z2

2σ2v

)
. (3.13)

This means v′(z) has positive and negative values across its domain and the distinction in

sign determines direction of movement. The dimensions for β and v(x, y) are L.
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In order to visualise the total neighbour-dependent effect in b(x) more easily, consider the

example in Figure 3.1 where β > 0 (and ĥ(x) = 1). It shows the total effect of interactions∑10
j=1 v(xj − x), from 10 neighbours located at xj on a cell at x. To understand why we take

a derivative of the interaction kernel v(z) it helps to think of the total weighting function

as a ‘crowding surface’ which a cell at x can use as a means of measuring the extent of

crowding in its neighbourhood. In Figure 3.1, −b(x) is the gradient of this ‘surface’ and

cells are biased to move down the gradient in the direction of reduced crowding. Consider,

for example, the arrangement of cells shown in Figure 3.1(a). Say the cell indicated by the

arrow is about to undergo a movement event. At this location the gradient is positive so

b(x) < 0 which corresponds to a bias for movement in the left direction, away from the

crowded region on the individual’s right. Thus, the sign of the gradient holds information

about the direction in which crowded regions exist. In addition, steep gradients occur at

locations on the edges of clusters while shallow or zero gradients occur either within clusters

or in sparsely occupied regions. Therefore the magnitude of the gradient provides a measure

for the degree of crowding in a location x. The bias b(x) allows us to tap into the information

held by the gradient of a ‘crowding surface’, for a particular arrangement of cells, and use it

to determine the direction of movement for an individual at x.

Owing to our choice of v(z), the effect of a neighbour located at y on the direction of

movement for a cell at x is greater for small distances |y − x|, while for larger distances the

effect is negligible. The strength of interaction is determined by the constant β. The variance

σ2v is a measure of spread for v(z), affecting the spatial range of displacements over which a

pair of cells interact. In Figure 3.1 we consider two different values of σ2v . When σ2v is large,

v(z) has a wide spread that will influence outlying cells as shown in Figure 3.1(a). On the

other hand for small σ2v , v(z) is a narrow kernel and only neighbouring cells in close proximity

to the individual will be affected by its presence (Fig. 3.1(b)).

As a means of relating the bias to an individual’s direction of movement, we use b(x) to

determine the probability of moving right pr(b) for a cell at x. Its complement (1 − pr(b))

determines the probability of moving left. For simplicity, we define pr(b) to be a logistic

function

pr(b) =
1

1 + exp(−b)
, (3.14)

so that for large b(x) > 0 a cell at x is strongly biased to move right, while for large b(x) < 0
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Figure 3.1: A function
∑10

j=1 v(xj − x) (blue line) for the total weighting on a cell at x, of
interactions from 10 neighbours located at xj for j = 1, . . . , 10 (blue dots). The gradient
of this function is −b(x) and cells are biased to move down the gradient. The interaction
strength is β = 1.5 and we compare σ2v for different values (a) σ2v = 0.2, and (b) σ2v = 0.02.
The arrow in (a) marks the location of an individual that is biased to move left.

the bias to move left is strong. When b(x) = 0 there is no bias from neighbours (i.e. the cell

is either isolated or in the centre of a cluster).

Finally, we incorporate the directional bias into the movement PDF µ(x, y) to give a

piecewise function

µ(x, y) =


λµ exp (−λµ|y − x|) pr(b(x)) if y − x > 0

λµ exp (−λµ|y − x|) (1− pr(b(x))) if y − x < 0.

(3.15)

In a biological context v(z) could be representative of, say, the extent to which an indi-

vidual responds to a concentration of chemical signal secreted by a neighbouring cell. Then

b(x) would describe the total strength of a cell’s response to signals from all neighbours and

pr(b) the mechanism by which these interactions change the cell’s direction of movement.

The sign of β determines the nature of the directional bias. When β > 0, as shown in Figure

3.1, cells are biased to move away from close-lying neighbours. This type of behaviour facil-

itates movement of individuals out of crowded regions. For example some cell types release

chemorepellents which have a repulsive effect on neighbouring cells [24]. Conversely, when

β < 0 the directional bias will drive cells towards one another as may occur in the presence

of a cell-secreted chemoattractant [25]. If we set β = 0 the resulting probability of moving

right is 1/2 and the direction of movement is unbiased. The dimensions of µ(x, y) are L−1

and as it is a PDF we have the constraint that
∫
µ(x, y)dy = 1.
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With this description of the IBM in place, we are ready to proceed with a derivation of the

population-level model. However, it will first be useful to discuss how a pair-correlation func-

tion is computed from a configuration of agents arising in an IBM realisation at a particular

time.

3.3 Pair Correlation Function

The second spatial moment, the average density of pairs of cells, can be expressed as a pair-

correlation function (PCF) C(r), written in terms of a separation distance r [72]. We compute

a PCF C(r) from a particular configuration of agents in a domain of length L, in one spatial

dimension, or of width Lx and height Ly in two spatial dimensions. First, a reference agent

at xi is chosen and the distance between xi and a neighbour at xj is calculated for n − 1

neighbours. We measure across periodic boundaries such that in one-dimensional space the

distance between a pair of agents displaced by ξ = xj − xi is

r =


|ξ| if |ξ| < L

2

L− |ξ| if |ξ| > L
2 .

(3.16)

A different reference agent is then chosen and the process repeated until each agent in the

population has been selected as a reference once. Once all possible pair distances excluding

self-pairs have been measured, C(r) is constructed by counting the distances that fall into

an interval [r − δr
2 , r + δr

2 ], i.e. binning distances using a bin width δr. Normalising by

n(n − 1)(2δr)/L in one spatial dimension ensures that C(r) = 1 in the complete absence of

spatial structure. In Chapter 6 we extend the IBM to two-dimensional space, for which the

normalisation n(n− 1)(2πrδr)/(LxLy) is used.

The choice of δr is important because very small values can yield a PCF dominated by

fluctuations while values that are too large result in an overly-smooth function which may

mask spatial structure [74].



Chapter 4

Spatial Moments Model

The local interactions taking place between cells at the level of individuals give rise to larger

scale effects at the population level. In the following sections we introduce a description of

the first, second and third moments in terms of the probabilities of individuals being found

in given regions. The definitions for the moments given here are equivalent to those given

by Illian, et al [72]. We then use our IBM to derive a population-level model in terms of the

dynamics of the first and second spatial moments. The following notation and method are

consistent with the generalised derivation proposed by Plank and Law [61], however we have

derived new terms to describe the effect of a neighbour-dependent directional bias.

4.1 Spatial Moments

The first, second and third spatial moments are the average densities of single cells, pairs and

triplets, respectively. The concept is better explained by considering the geometry of three

small regions δx, δy and δz centred on x, y and z, respectively. Each region has size h (length

h in one dimension, area h in two dimensions, and volume h in three dimensions) and it is

assumed that the probability of finding multiple cells within a single region is O(h2). These

regions are depicted in Figure 4.1 in two-dimensional (Fig. 4.1(a)) and one-dimensional space

(Fig. 4.1(b)). The probability of a cell being present in a small region δx at time t is the first

spatial moment Z1(x, t). The probability of a cell being present in δx and a cell being present

in δy at time t is the second spatial moment Z2(x, y, t). The third moment Z3(x, y, z, t) is

the probability of cells being present in all three regions δx, δy and δz at time t. For a

spatially homogeneous distribution of agents, the moments can be expressed in terms of the

displacements between pairs of cells, as shown in Figure 4.1.

The spatial moments are functions of time as well as space but for ease of notation we will

omit the argument t. The first spatial moment Z1(x) is expressed in terms of the probability

27
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Figure 4.1: First, second and third spatial moments in (a) two-dimensional space, and (b)
one-dimensional space. Small regions δx, δy and δz, of size h (length h in one dimension and
area h in two dimensions), are centred on locations x, y and z, respectively. For a case where
cells are distributed homogeneously throughout space, the second and third moment can be
expressed in terms of the displacements ξ = y − x and ξ′ = z − x.

of a cell being found in a small region δx, centred on x and of size h, at time t as follows:

Z1(x) = lim
h→0

P (I(x) = 1)

h
. (4.1)

I(x) is an indicator variable such that I(x) = 1 if there is a cell in δx centred on x and

I(x) = 0 if there is no cell in δx.

The second spatial moment Z2(x, y), the average density of cell pairs, involves the prob-

ability of cells being found in the small regions δx and δy as follows:

Z2(x, y) = lim
h→0

P (I(x) = 1 & I(y) = 1)

h2
. (4.2)

For simplicity, we assume that δx and δy cannot overlap and so (4.2) excludes the case

where x = y. A more rigorous definition which accounts for and removes the effect of such

self-pairs (that would otherwise create a Dirac-delta peak in Z2(x, y) at x = y) is discussed

by Plank and Law [61]. The second spatial moment has a two-fold symmetry such that

Z2(x, y) = Z2(y, x) [61].

The third spatial moment, the density of triplets in the small regions δx, δy and δz, is

defined as

Z3(x, y, z) = lim
h→0

P (I(x) = 1 & I(y) = 1 & I(z) = 1)

h3
, (4.3)

excluding the cases where x = y, x = z and y = z as we assume that δx, δy and δz cannot

overlap. Again, a more detailed description which allows for such non-distinct triplets is given
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by Plank and Law [61]. The third moment has been shown to have a six-fold symmetry [79].

Similarly, the nth spatial moment Zn is defined as the expected number of n-tuples of cells

per unit (length)Dn, for a D-dimensional space.

It is also useful to define some conditional probabilities. The probability of a cell being

found in δy conditional on the presence of a cell in δx is P (I(y) = 1|I(x) = 1). We use the

fact that P (A|B) = P (A&B)/P (B) along with Eqs. (4.1), (4.2) and (4.3) to rewrite this

conditional probability as follows:

P (I(y) = 1|I(x) = 1) =
P (I(y) = 1 & I(x) = 1)

P (I(x) = 1)
=
Z2(x, y)h

Z1(x)
+O(h2). (4.4)

Similarly, we can write the probability of a cell being found in δz conditional on the presence

of a cell in δx and a cell in δy as

P (I(z) = 1|I(x) = 1 & I(y) = 1) =
P (I(x) = 1 & I(y) = 1) & I(z) = 1)

P (I(x) = 1) & I(y) = 1)

=
Z3(x, y, z)h

Z2(x, y)
+O(h2). (4.5)

4.2 First Spatial Moment

The following derivation can be used to describe moment dynamics in a non-homogeneous

space, where the first moment is dependent on x. We derive corresponding descriptions for

movement rate ψi and PDF µ(x, y) in terms of spatial moments. In the IBM, the move-

ment rate of individual i, given by (3.8), comprises an intrinsic component and a neighbour-

dependent component which describes the contribution of neighbouring cells to individual

i’s motility. In the spatial moment dynamics this corresponds to an integration over y of

the probability of a cell at y conditional on a cell being present at x. Using the conditional

probability in Eq. (4.4), the expected movement rate (from hereafter simply referred to as

movement rate) for a single cell at x is

M1(x) = m+

∫
w(y − x)

Z2(x, y)

Z1(x)
dy. (4.6)

The maximum formula which ensured a non-negative movement rate in (3.8) is not incorpo-

rated in the spatial moment description because we only consider solutions in which negative

expected movement rates do not arise.
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In one spatial dimension, when a cell moves, it travels from an original location x to a

destination y drawn from the PDF

µ1(x, y) =


λµexp (−λµ|y − x|) pr(b1(x)) if y − x > 0

λµexp (−λµ|y − x|) (1− pr(b1(x))) if y − x < 0.

(4.7)

The neighbour-dependent bias term b1(x) sums a contribution u(x, y) from all possible neigh-

bours to the direction of movement of a cell at x. Therefore, we write b1(x) as an integration

over y of the probability of a neighbour at y conditional on the presence of a cell at x, weighted

by an interaction kernel u(x, y):

b1(x) =

∫
u(x, y)

Z2(x, y)

Z1(x)
dy. (4.8)

The movement rate M1(x), movement PDF µ1(x, y) and neighbour-dependent bias b1(x)

are functions of spatial moments and thus are also functions of time, however we have dropped

the argument t from the notation for brevity. The same is true for the corresponding functions

for the second spatial moment dynamics given below in (4.14)-(4.16). When solving for

a spatially homogeneous case, M1(x) and b1(x) are independent of x and µ1(x, y) can be

expressed in terms of the displacement from x to y.

4.3 Dynamics of the First Spatial Moment

For the dynamics of the first spatial moment Z1(x) we consider the probability that a cell will

be present in the small region δx centred on x at a time t+ δt, where δt is a short period of

time. For this situation to arise, a cell could have been present in δx at time t and remained

there. Alternatively, a cell located elsewhere in the space could have arrived in δx via a

movement event. Movement events occur over time as an inhomogeneous Poisson process

and so the probability of more than one event occurring in δt is O(δt2). We can combine

these possibilities into a single statement

P (cell in δx at t+ δt) = P (cell in δx at t)P (cell remains in δx in [t, t+ δt])

+ P (cell absent in δx at t)P (cell arrives in δx in [t, t+ δt]).

(4.9)



4.4. SECOND SPATIAL MOMENT 31

The probability that a cell remains in δx in [t, t+ δt] is

P (cell remains in δx in [t, t+ δt]) = 1− P (cell moves out of δx in [t, t+ δt])

= 1−M1(x)δt+O(δt2). (4.10)

The probability that a cell arrives in δx in [t, t + δt] can be written as a probability that a

cell moved from u into δx, integrated over all possible starting locations u as follows:

P (cell arrives in δx in [t, t+ δt]) = hδt

∫
µ1(u, x)M1(u)Z1(u, t)du+O(δt2), (4.11)

where M1(u)Z1(u, t) is the movement rate per unit area at location u. Now, using equations

(4.1), (4.10) and (4.11), we can write (4.9) as

Z1(x, t+ δt)h = Z1(x, t)h [1−M1(x)δt]

+ [1− Z1(x, t)h] hδt

∫
µ1(u, x)M1(u)Z1(u, t)du

+O(h3) +O(δt2). (4.12)

Making use of the Taylor expansion of Z1(x, t + δt) then taking the limit h, δt → 0 leads us

to a differential equation for the rate of change of the first spatial moment:

dZ1(x, t)

dt
= −M1(x)Z1(x, t) +

∫
µ1(u, x)M1(u)Z1(u, t)du. (4.13)

This equation depends on the second spatial moment, incorporated in the movement rate

term M1(x). The first term in (4.13) describes movement out of x while movement into x is

accounted for in the second term as an integration over all possible starting locations u.

4.4 Second Spatial Moment

By considering only the first spatial moment, valuable information about small-scale spatial

structure that may arise in the system is lost. Therefore, it is necessary to advance to the

second spatial moment, the average density of pairs of cells.

For the second moment dynamics, we describe a movement rate function M2(x, y) for

a cell at x conditional on the presence of a cell at y. Recall that the neighbour-dependent
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component of movement rate for a single cell M1(x) was conditional on the presence of a

second cell. Similarly, the neighbour-dependent component for M2(x, y) is conditional on the

presence of a third cell at z and requires the third spatial moment. We use Eq. (4.5) to write

M2(x, y) as follows:

M2(x, y) = m+

∫
w(z − x)

Z3(x, y, z)

Z2(x, y)
dz + w(y − x). (4.14)

The third term here accounts for the direct effect of the cell at y on the cell at x. Because

the regions δy and δz do not overlap, the third moment does not account for the case where

y = z and we add this interaction as a separate term.

In the dynamics of the second moment, a cell at x moves to a new location at y drawn

from a PDF µ2(x, y, z), where the third argument accounts for the fact that the cell at x is

in a pair with a cell at z:

µ2(x, y, z) =


λµexp (−λµ|y − x|) pr(b2(x, z)) if y − x > 0

λµexp (−λµ|y − x|) (1− pr(b2(x, z))) if y − x < 0.

(4.15)

The neighbour-dependent bias term b2(x, y) represents the contribution of all possible neigh-

bours to the direction of movement of the cell at x in a pair with a cell at y. It is an integration

over z of the probability of a third neighbour at z conditional on the presence of a cell at x

and a cell at y, weighted by the kernel u(x, z). Thus, we have

b2(x, y) =

∫
u(x, z)

Z3(x, y, z)

Z2(x, y)
dz + u(x, y). (4.16)

As in Eq. (4.14), the direct effect of a cell at y on a cell at x must be added as a separate

term because the third moment does not account for the degenerate case where y = z. In

a spatially homogeneous setting, M2(x, y), b2(x, y) and µ2(x, y, z) can be expressed in terms

of displacements rather than physical locations, as illustrated in Figure 4.1 and described in

Section 4.6.

4.5 Dynamics of the Second Spatial Moment

We now derive an equation for the rate of change of the second spatial moment. Consider

the probability of finding a cell present in the region δx and a cell in the region δy at a time
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t+ δt. The following four cases could have led to this outcome:

i Regions δx and δy each contained a cell at time t and both cells remained there in [t, t+δt].

ii There was a cell present in δy but not in δx at time t. In [t, t+δt], the cell in δy remained

there and a cell arrived in δx.

iii There was a cell present in δx but not in δy at time t. In [t, t+δt], the cell in δx remained

there and a cell arrived in δy.

iv Neither region δx or δy contained a cell at time t. In [t, t+ δt], a cell arrived in δx and a

cell arrived in δy.

We can summarise these scenarios as follows:

P

 cell in δx & cell

in δy at t+ δt

 = P

 cell in δx &

cell in δy at t

P

 cells remain

in δx and δy


+ P

 cell in δy but

not in δx at t

P

 cell remains in δy

& cell arrives in δx


+ P

 cell in δx but

not in δy at t

P

 cell remains in δx

& cell arrives δy


+ P

 cell absent at

δx and δy at t

P

 cell arrives in δx

& cell arrives in δy

 . (4.17)

The probability of cells being present in both δx and δy can be written in terms of Z2(x, y)

from equation (4.2):

P (cell in δx & cell in δy at t) = Z2(x, y, t)h
2 +O(h3). (4.18)

Using (4.1) and (4.2), the probability of a cell being present in δy and absent from δx is

P (cell in δy but not in δx at t) = Z1(y, t)h− Z2(x, y, t)h
2 +O(h3). (4.19)
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The probability of both cells remaining in δx and δy in [t, t+ δt] is written in terms of (4.14):

P

 both cells remain

in δx and δy

 = 1− P

 cell moves out of

δx in [t, t+ δt]

− P
 cell moves out of

δy in [t, t+ δt]

+O(δt2)

= 1− (M2(x, y) +M2(y, x))δt+O(δt2). (4.20)

This is comparable to Eq. (4.10) for the first moment dynamics.

The probability of a cell remaining in δy and a cell arriving in δx via a movement event

in [t, t + δt] is equivalent to the conditional probability that a cell arrives in δx given that

there is a cell in δy. As in (4.11), we integrate over all possible starting locations u for the

cell moving into δx. However, the probability of a cell being located at u is conditional on

the presence of a cell at y. Therefore we have

P

 cell remains in δy

& cell arrives in δx

 = hδt

∫
µ2(u, x, y)M2(u, y)

Z2(u, y, t)

Z1(y, t)
du+O(δt2). (4.21)

Finally, the probability of a cell arriving in δx and a cell arriving in δy is O(δt2) because this

would involve two Poisson events occurring during [t, t+δt]. Similarly, the higher order terms

in Eqs. (4.20) and (4.21) arise from probabilities involving more than one cell undergoing a

movement event during a time δt.

We substitute equations (4.18)-(4.21) into (4.17) and make use of the 2-fold symmetry of

Z2(x, y, t) to give

Z2(x, y, t+ δt)h2 = Z2(x, y, t)h
2[1− (M2(x, y) +M2(y, x))δt]

+ [Z1(y, t)h− Z2(x, y, t)h
2]hδt

∫
µ2(u, x, y)M2(u, y)

Z2(u, y, t)

Z1(y, t)
du

+ [Z1(x, t)h− Z2(x, y, t)h
2]hδt

∫
µ2(u, y, x)M2(u, x)

Z2(u, x, t)

Z1(x, t)
du

+O(h4) +O(δt2). (4.22)

Using a Taylor expansion of Z2(x, y, t + δt), expanding terms, then letting h, δt → 0 which
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removes the higher order terms, leads us to

dZ2(x, y, t)

dt
= − (M2(x, y) +M2(y, x))Z2(x, y, t)

+

∫
µ2(u, x, y)M2(u, y)Z2(u, y, t)du

+

∫
µ2(u, y, x)M2(u, x)Z2(u, x, t)du. (4.23)

Here, the first negative term describes movement out of x, conditional on the presence of

a cell at y. The first integral term represents movement into x from a starting location u,

conditional on the presence of a cell at y. The remainder are symmetric terms for movement

out of and into y. For notational simplicity, from here on we will drop the t from the spatial

moment notation.

4.5.1 Moment Closure for the Third Spatial Moment

Equation (4.23) depends on the third spatial moment. Similarly the third moment dynamics

will depend on the fourth moment and so on. Therefore, we need to close the system before

solving. To achieve this we use the power-3 closure (also known as Kirkwood superposition

approximation) given by

Z̃3(x, y, z) =
Z2(x, y)Z2(x, z)Z2(y, z)

Z1(x)Z1(y)Z1(z)
, (4.24)

This is only an approximation to the third moment and other choices of closure may perform

better. The power-2 closure for example has been shown to perform well, however this closure

contains a term that may cause the third moment to become negative [79]. For a Poisson

spatial pattern the third moment is Z3(x, y, z) = Z3
1 and the approximation in (4.24) has

perfect accuracy.

4.6 Spatially Homogeneous Moment Dynamics

To solve Eq. (4.23) for the dynamics of the second moment numerically it is beneficial to

reduce the number of variables. For a spatially homogeneous distribution of cells, the first

spatial moment is independent of x. The second moment Z2(x, y) depends only on the

displacement y − x which can now be treated as a single variable. As shown in Figure 4.1,

the displacement from x to y is denoted ξ and the displacement from x to z is denoted ξ′.
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For the movement PDF µ2(u, x, y), we denote the displacement from u to x as ξ′′. The

spatially-dependent weight ĥ(x) in (3.12) and (6.3) is set to ĥ(x) = 1.

Equation (4.23) is rewritten in terms of the displacements between pairs as follows:

dZ2(ξ)

dt
= − (M2(ξ) +M2(−ξ))Z2(ξ)

+

∫
µ2(ξ

′′, ξ′′ + ξ)M2(ξ
′′ + ξ)Z2(ξ

′′ + ξ)dξ′′

+

∫
µ2(ξ

′′, ξ′′ − ξ)M2(ξ
′′ − ξ)Z2(ξ

′′ − ξ)dξ′′. (4.25)

The movement rate M2(x, y) of a cell at x in a pair with a cell at y given in (4.14) is now

expressed in terms of the displacement ξ between x and y:

M2(ξ) = m+

∫
w(ξ′)

Z3(ξ, ξ
′)

Z2(ξ)
dξ′ + w(ξ). (4.26)

The movement PDF given in (4.15) becomes

µ2(ξ, ξ
′) =


λµexp (−λµ|ξ|) pr(b2(ξ

′)) if ξ > 0

λµexp (−λµ|ξ|) (1− pr(b2(ξ′))) if ξ < 0,

(4.27)

with neighbour-dependent bias

b2(ξ) =

∫
v′(ξ′)

Z3(ξ, ξ
′)

Z2(ξ)
dξ′ + v′(ξ). (4.28)

The interaction kernels were previously expressed in terms of a single variable in (3.9) and

(3.13) and these definitions still hold here. The closure for the third moment is

Z̃3(ξ, ξ
′) =

Z2(ξ)Z2(ξ
′)Z2(ξ

′ − ξ)
Z3
1

. (4.29)

The boundary condition is as follows:

Z2(ξ)→ Z2
1 as ξ →∞. (4.30)



Chapter 5

Numerical Results for One-dimensional Model

We now compare some numerical results to measure how effectively our spatial moment model

approximates the behaviour predicted by the IBM in one spatial dimension. We consider a

simple case in which the distribution of cells is homogeneous throughout space. Therefore, the

spatially-dependent weight ĥ(x) in (3.12) is ĥ(x) = 1. The first spatial moment is independent

of x and the second and third moments can be expressed in terms of pair displacements as

described in Section 4.6. Because our model does not incorporate cell proliferation or death

the first moment is also stationary in time, i.e. its rate of change given in (4.13) is zero.

To obtain spatial information from the IBM we calculate a PCF CIBM(ξ) by averaging

the results of repeated realisations. The PCF predicted by the spatial moment model is

given by CSM(ξ) = Z2(ξ)/Z
2
1 such that CSM(ξ) = 1 in the absence of spatial structure. The

second moment is isotropic (i.e. it has symmetry about the origin) and therefore we only

show CSM(ξ) for ξ ≥ 0.

In each realisation of the IBM we distribute the cells at t = 0 according to a spatial Poisson

process on [xl, xr] with intensity n/L. Therefore, initially there is no spatial structure present.

The corresponding initial condition for the spatial moment model is to set Z2(ξ) = Z2
1 at

t = 0. Results from both models are compared at time t = 25, by which point the system

has converged to steady state in the majority of cases.

5.1 Non-Interacting Model

We begin by considering a simple case of cell migration in the absence of any neighbour-

dependent interactions. In the complete absence of interactions, movement rate is determined

by the intrinsic component alone and direction of movement is unbiased (i.e. µ(x, y) is a

Laplace distribution). Under these conditions, Equation (4.25) reduces to a simpler form

and it is straightforward to show analytically that the steady state solution for Z2(ξ) is a

constant.

37
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Figure 5.1: Migration in the absence of neighbour-dependent motility and neighbour-
dependent directional bias (α = 0, β = 0). Collective movement of 200 cells in a domain of
length L = 500 therefore Z1 = 0.4. The pair correlation function for 100 averaged realisations
of the IBM (blue solid) is plotted against the second moment (red broken) at time t = 25.
σ2w = σ2v = 0.08, λµ = 5,m = 10.

Numerical solutions and IBM simulations confirm this, as shown in Figure 5.1. As we

would expect, in the absence of interactions cells merely undergo diffusion-like movement

and no spatial structure develops over time. For this simple case the spatial moment model

provides a good approximation to the underlying IBM.

5.2 Interacting Model

5.2.1 Neighbour-Dependent Motility

We first consider a case with neighbour-dependent motility but in the absence of neighbour-

dependent directional bias. Figure 5.2 shows results for different values of α where interaction

strength increases from left to right. We choose α < 0 to be sufficiently small such that the

sum of the motility rate’s intrinsic and neighbour-dependent components will give rise to

ψi > 0 with high probability. Owing to the stochastic nature of the IBM it is possible that

negative motility rates may occur by chance; the definition of ψi given in Eq. (3.8) ensures

that ψi = 0 for such rare chance events. This does mean, however, that for large magnitudes

of α < 0 there is an equilibrium where all individuals have motility ψi = 0 and this is reached

with probability 1 if the IBM is simulated for a sufficiently long time.

In Figures 5.2(a)-(c) for α > 0, C(ξ) < 1 at short displacements which corresponds to

a regular spatial pattern. When α < 0 (Figs. 5.2(d)-(f)), C(ξ) > 1 at short displacements
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Figure 5.2: Migration with neighbour-dependent motility but in the absence of neighbour-
dependent directional bias (β = 0). Collective movement of 200 cells in a domain of length
L = 500 therefore Z1 = 0.4. The PCF CIBM(ξ) (blue solid) for 300 averaged realisations of
the IBM is plotted against the PCF CSM(ξ) (red broken) predicted by the spatial moment
model at time t = 25. Blue dotted lines indicate the interquartile range for the PCF across
the realisations performed, i.e. 50 % of realisations yield a PCF in the region between the
blue dotted lines. Parameters are σ2w = σ2v = 0.08, λµ = 5,m = 10. (a) α = 1, (b) α = 5, (c)
α = 10, (d) α = −1, (e) α = −2, and (f) α = −2.5.

indicating a cluster spatial pattern. Increasing the magnitude of α (i.e. the strength of

interaction) increases the extent of spatial structure.

CSM(ξ) provides a good approximation to CIBM(ξ) except for α < 0 when |α| is large.

For α = −2 and α = −2.5, CSM(ξ) has converged to a steady state by t = 25 but CIBM(ξ)

continues to increase over time at short displacements. The discrepancy between CSM(ξ) and

CIBM(ξ) can likely be attributed to the increased occurrence of negative motility rates (set

to ψi = 0 as previously discussed), which can accumulate during simulation of the IBM when

the magnitude of α < 0 is sufficiently large. The chance occurrence of many pairs being

found at short displacements, while reasonably rare for the chosen values of α, may cause a

positive feedback reaction whereby the motility rate is reduced for these pairs to an extent

where they are very unlikely to undergo further movements. Any cells that move into the
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resulting cluster will also have their motility rates drastically reduced causing the effect to

propagate. The spatial moment model does not account for these rare events as it deals only

with average behaviour.

For instance, in the stochastic simulations for α = −1 none of the motility rates that

arose were negative and CSM(ξ) matched CIBM(ξ) well. However for α = −2 and α = −2.5

at t = 25 negative motility rates represented 0.1% and 1% of all motility rates respectively.

Increasing t beyond this time caused the incidences to further increase. In contrast, the

average motility rate M2(ξ) predicted by the spatial moment model remained positive for

all time. While the 0.1% incidence when α = −2 was sufficiently low as to be of little or

no consequence for CIBM(ξ), Figure 5.2(f) shows that even a relatively low incidence of 1%

can lead to a mis-match between CIBM(ξ) and CSM(ξ). Further increasing the magnitude of

α < 0 causes a significant increase in the incidences of ψi < 0 and the fit between CSM(ξ)

and CIBM(ξ) deteriorates to an even greater extent.

5.2.2 Neighbour-Dependent Directional Bias

We now consider a case of migration in the absence of neighbour-dependent motility but in

the presence of neighbour-dependent directional bias. Figures 5.3(a)-(c) show that setting

β > 0, such that cells are biased to move away from crowded regions, generates a regular

spatial pattern. In Figure 5.3(c) for β = 10 there is a peak in both the CIBM(ξ) and CSM(ξ)

around ξ = 1. This peak arises because the strong directional bias is forcing cells to be

displaced as far as possible from their nearest neighbours. This leads to an extreme case

of regular spatial pattern in which nearly all cells are separated by approximately the same

displacement; the peak in C(ξ) corresponds to this common displacement. Setting β < 0,

such that cells are biased to move towards their neighbours, gives rise to clustering as shown

in Figures 5.3(d)-(f). Increasing the magnitude of interaction strength β increases the extent

of spatial structure.

In Figure 5.3, CSM(ξ) provides a good approximation to CIBM(ξ). However, greater

magnitudes of β < 0 lead to disparities between CSM(ξ) and CIBM(ξ). For example when

β = −0.5, CIBM(0) ≈ 3.6 at t = 25 while CSM(0) ≈ 11.5 and neither PCF has reached steady

state. Over time, the cluster pattern becomes stronger and the disparity between the two

approximations deteriorates because CSM(0) is increasing at a faster rate than CIBM(0).
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Figure 5.3: Migration with neighbour-dependent directional bias but in the absence of
neighbour-dependent motility (α = 0). Collective movement of 200 cells in a domain of
length L = 500 therefore Z1 = 0.4. The PCF CIBM(ξ) (blue solid) for 300 averaged realisa-
tions of the IBM is plotted against the PCF CSM(ξ) (red broken) predicted by the spatial
moment model at time t = 25. Blue dotted lines indicate the interquartile range for the PCF
across the realisations performed, i.e. 50 % of realisations yield a PCF in the region between
the blue dotted lines. Parameters are σ2w = σ2v = 0.08, λµ = 5,m = 10. (a) β = 0.1, (b)
β = 1, (c) β = 10, (d) β = −0.1, (e) β = −0.2, (f) β = −0.25.

5.2.3 Neighbour-Dependent Motility and Directional Bias

Now that we have a better understanding of the independent effects of neighbour-dependent

motility and directional bias we will consider the case where both are incorporated together.

Figure 5.4 shows results for four different combinations of α and β. Figures 5.4(a) and

5.4(d) show that when the neighbour-dependent motility and directional bias are working

cooperatively to promote spatial structure this results in a greater magnitude of departure

from a Poisson spatial pattern than would occur when considering either interaction in isola-

tion. However, when the neighbour-dependent interactions are working in opposition (Figs.

5.4(b)-(c)), they counteract one another and very little spatial structure develops over time

as indicated by CSM(ξ) ≈ 1. CSM(ξ) is a good approximation to CIBM(ξ) except in Figure

5.4(d). In this case, the slight mis-match near ξ = 0 is likely due to the fact that the two
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Figure 5.4: Migration with both neighbour-dependent motility and a directional bias. Col-
lective movement of 200 cells in a domain of length L = 500 therefore Z1 = 0.4. The PCF
CIBM(ξ) (blue solid) for 300 averaged realisations of the IBM is plotted against the PCF
CSM(ξ) (red broken) predicted by the spatial moment model at time t = 25. Blue dotted
lines indicate the interquartile range for the PCF across the realisations performed, i.e. 50
% of realisations yield a PCF in the region between the blue dotted lines. Parameters are
σ2w = σ2v = 0.08, λµ = 5,m = 10. (a) α = 5, β = 0.15, (b) α = 5, β = −0.1, (c) α = −2,
β = 0.15, (d) α = −2, β = −0.1.

forms of interaction working together promote clustering to such a degree that incidences of

negative motility rate (approximately 0.8%) in the IBM become important.

5.2.4 Moment Closure

The numerical results above employ a power-3 closure to truncate the system of spatial

moment dynamics at second order. This closure provides a reasonable approximation to the

third spatial moment, except for a strongly clustered spatial pattern. Another closure that

is discussed in the literature [79,96] is the power-2 closure, given by

Z̃3(ξ, ξ
′) =

1

α+ γ

(
α
Z2(ξ)Z2(ξ

′)

Z1
+ β

Z2(ξ)Z2(ξ
′ − ξ)

Z1
(5.1)

+ γ
Z2(ξ

′)Z2(ξ
′ − ξ)

Z1
− βZ3

1

)
.
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Figure 5.5: Comparison of closures for the third spatial moment. Collective movement of 200
cells in a domain of length L = 500 therefore Z1 = 0.4. The PCF CIBM(ξ) (blue solid) for 300
averaged realisations of the IBM is plotted against the PCF CSM(ξ) predicted by the spatial
moment model at time t = 25, using a power-3 closure (red dashed line), power-2 closure with
weighting {1,0,1} (cyan dashed line), power-2 closure with weighting {1,1,1} (green dashed
line), power-2 closure with weighting {1,3,8} (yellow dashed line) and power-2 closure with
weighting {4,1,1} (purple dashed line). Parameters are α = −2, β = −0.1, σ2w = σ2v = 0.08,
λµ = 5, m = 10.

Here, α, β and γ are weights that can be applied to each corner of the triplet. Setting α = β =

γ gives the symmetric form of the closure, while setting different weights creates asymmetric

versions. Three asymmetric power-2 closures that have proven particularly successful in

other models employ the weightings {α, β, γ} = {4, 1, 1} [65], {α, β, γ} = {1, 3, 8} [79] and

{α, β, γ} = {1, 0, 1} [70].

Figure 5.5 compares the predictions of the power-3 closure with these four power-2 closures

for a cluster spatial pattern, where the performance of the approximations tends to be most

limited. The closure with the best performance in this case is the power-3 closure and

is therefore an appropriate choice for our model. The asymmetric power-2 closure with

weighting {1,0,1} provides the poorest approximation overall.

5.2.5 Average Cell Density

The results discussed so far have explored collective movement for Z1 = 0.4. However, the

spatial structure that arises due to short-range interactions will depend largely on this first

spatial moment. If we interpret 2σ (two standard deviations) as the approximate range over
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Figure 5.6: Spatial structure at three different average cell densities for 200 cells undergoing
collective movement. The PCF CIBM(ξ) (blue solid) for 100 averaged realisations of the IBM
is plotted against the PCF CSM(ξ) (red broken) predicted by the spatial moment model at
time t = 25. Parameters are α = −2, β = 0.5, σ2w = σ2v = 0.08, λµ = 5, m = 10. (a)
Low average density, Z1 = 0.1, (b) moderate average density, Z1 = 0.8, and (c) high average
density, Z1 = 1.5.

which a cell interacts, this can be used as a proxy for the space occupied by a cell giving a

sense of scale to the spatial domain. We assume that the theoretical maximum cell density

corresponds to the case where individuals are regularly spaced along the domain, each cell

separated from its nearest neighbours by a displacement corresponding to the average cell

diameter. Under this assumption, the theoretical maximum cell density for n cells is n/2σn.

Figure 5.6 shows the PCF for three different values of Z1. In this case, σ2w = σ2v = 0.08

giving an average cell diameter 0.57 and theoretical maximum density 1.75. Increasing Z1

(by holding n fixed and decreasing L) leads to a decrease in the magnitude of local spatial

structure. For very high densities (above the theoretical maximum density), C(ξ) ≈ 1 for all

values of ξ indicating an absence of spatial structure.

5.2.6 Width of Interaction Kernels

We now consider what effect changing the width of the interaction kernels has on the second

spatial moment. We first use the moment equations to give an analytical description of the

effect and then show some corroborative numerical results.

First, consider an interaction kernel w(cξ) which is a horizontal stretching of w(ξ) by a
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factor c when 0 < c < 1 and a horizontal compression for c > 1. We now define the following:

ŵ(ξ) = w(cξ), Ẑ1 = cZ1,

d

dξ
v̂(ξ) =

d

dξ

(
1

c
v(cξ)

)
, Ẑ2(ξ) = c2Z2(cξ),

µ̂(ξ′′, ξ′′ + ξ) = cµ(cξ′′, cξ′′ + cξ), Ẑ3(ξ, ξ
′) = c3Z3(cξ, cξ

′),

(5.2)

At steady state, the rate of change equation for the second moment in (4.25) gives us

0 = −M2(ξ)Z2(ξ) +

∫
µ(ξ′′, ξ′′ + ξ)M2(ξ

′′ + ξ)Z2(ξ
′′ + ξ)dξ′′ + 〈ξ → −ξ〉, (5.3)

where for sake of conciseness we have only shown terms for movement involving a pair dis-

placed by ξ. The additional terms for movement involving a pair displaced by −ξ are found

by making a substitution ξ for −ξ and we have denoted this 〈ξ → −ξ〉. We can rewrite (5.3)

in terms of the newly-defined functions given in (5.2) as follows:

0 = −M̂2

(
ξ

c

)
1

c2
Ẑ2

(
ξ

c

)
+

∫
1

c
µ̂

(
ξ′′

c
,
ξ′′ + ξ

c

)
M̂2

(
ξ′′ + ξ

c

)
1

c2
Ẑ2

(
ξ′′ + ξ

c

)
dξ′′+〈ξ → −ξ〉.

(5.4)

Making a change of variables from ξ′′ to cξ′′ in the integral then simplifying terms gives the

steady state equation for Ẑ2

(
ξ
c

)
:

0 = −M̂2

(
ξ

c

)
Ẑ2

(
ξ

c

)
+

∫
µ̂

(
ξ′′, ξ′′ +

ξ

c

)
M̂2

(
ξ′′ +

ξ

c

)
Ẑ2

(
ξ′′ +

ξ

c

)
dξ′′ + 〈ξ → −ξ〉,

(5.5)

where

M̂2

(
ξ

c

)
= m+

∫
ŵ

(
ξ′

c

) 1
c3
Ẑ3

(
ξ
c ,

ξ′

c

)
1
c2
Ẑ2

(
ξ
c

) dξ′ + ŵ

(
ξ

c

)

= m+

∫
ŵ(ξ′)

Ẑ3

(
ξ
c , ξ
′
)

Ẑ2

(
ξ
c

) dξ′ + ŵ

(
ξ

c

)
,

(5.6)
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and

b̂2

(
ξ

c

)
=

∫
d

dξ′
cv̂

(
ξ′

c

) 1
c3
Ẑ3

(
ξ
c ,

ξ′

c

)
1
c2
Ẑ2

(
ξ
c

) dξ′ +
d

dξ
cv̂

(
ξ

c

)

=

∫
d

dξ′
v̂(ξ′)

Ẑ3

(
ξ
c , ξ
′
)

Ẑ2

(
ξ
c

) dξ′ +
d

dξ
cv̂

(
ξ

c

)
,

(5.7)

involving a change of variables from ξ′ to cξ′. Setting η = ξ
c in (5.5)-(5.7), it becomes clear

that the steady state equation for Ẑ2(η) is of the same form as the steady state equation for

Z2(η). It follows that when Ẑ2(ξ) is normalised by Ẑ1
2

such that Ẑ2(ξ) = 1 in the absence

of spatial structure, its steady state solution will be a horizontal stretch or compression by a

factor c of the normalised steady state solution Z2(ξ).

Thus, there is an equivalence between varying kernel width σ2 and varying Z1. A horizon-

tal stretch in the kernels by a factor c leads to the same spatial structure as would increasing

Z1 by a factor c. The second moment Z2(ξ) is increased by a factor c2 and horizontally

stretched by a factor c. Thus, increasing the range of cell-cell interactions is equivalent to

increasing the average density.

We can verify this numerically as shown in Figure 5.7. Figure 5.7(a) shows the average

pair density at steady state when c = 1 such that ŵ(ξ) = w(ξ) and d
dξ v̂(ξ) = d

dξv(ξ). In

comparison when c = 0.5 the width of the interaction kernels ŵ(ξ) and v̂(ξ) are double that

of w(ξ) and v(ξ). As expected, this results in a solution Ẑ2(ξ) which is a horizontal stretching

of Z2(ξ) by a factor c = 0.5 as seen in Figure 5.7(b).

5.3 Numerical Methods

In this section we describe methods we have implemented in order to solve the equation for

the second spatial moment (4.25) numerically.

5.3.1 Discretisation of Pair Displacement ξ

Equation (4.25) was solved using the method of lines with MATLAB’s in-built ode45 solver,

which is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair [97].

Ode45 is a one-step solver, i.e. in computing the solution at a time point tn, it requires only
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Figure 5.7: Effect of changing interaction kernel width on the steady state solution of the
second moment. The PCF CIBM(ξ) (blue solid) for 100 averaged realisations of the IBM is
plotted against the PCF CSM(ξ) (red broken) predicted by the spatial moment model at time
t = 25 for two values of c. (a) c = 1. Collective movement of 200 cells in a domain of length
L = 500 therefore Ẑ1 = 0.4. Parameters are α = −2, β = 0.5, σ21 = σ22 = 0.08, λµ = 5,
m = 10. (b) c = 0.5. Collective movement of 200 cells in a domain of length L = 1000
therefore Ẑ1 = 0.2. Parameters are α = −2, β = 1, σ21 = σ22 = 0.32, λµ = 2.5, m = 10.

the solution at the immediately preceding time point tn−1. The method of lines involved a

discretisation of ξ with grid spacing ∆ over the domain |ξ| ≤ ξmax, where ξmax was large

enough so that Z2(ξ) ≈ Z2
1 at |ξ| = ξmax. Required values of Z2(ξ) that lay outside of the

computable domain were set to the value of Z2(ξ) at the boundary. The integral terms in

(4.25) were approximated using the trapezoidal rule with the same discretisation.

The numerical results above used a grid spacing ∆ = 0.1 and ξmax = 5 and were insensitive

to a reduction in ∆. Some numerical error can arise in Z2(ξ) due to this discretisation of ξ

and will accumulate over time. At steady state, any numerical error is most noticeable for

large ξ where we know the exact solution is Z2(ξ) = 1 but in the numerical solution Z2(ξ) the

accumulated error can at worst lead to a deviation from 1 of the order 10−1. The magnitude

of this error depends on the choice of ξmax. Increasing ξmax incurs a loss of computational

efficiency but reduces this numerical error. For instance increasing ξmax from 5 to 10 reduces

Z2(ξ) at ξ = 5 from 1.04 to 1.02. Decreasing ∆ to give a finer grid does not significantly affect

Z2(ξ) or the numerical error. In the above results we have chosen values of ξmax and ∆ which

give a reasonably good match between CIBM(ξ) and CSM(ξ) at relatively low computational

cost. However, if computational efficiency is not of concern then a more accurate solution

can be found by choosing a greater ξmax and smaller ∆.
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Figure 5.8: Effect of numerical normalisation on Z2(ξ). Collective movement of 200 cells
in a domain of length L = 500 therefore Z1 = 0.4. The PCF CIBM(ξ) (blue solid) for 100
averaged realisations of the IBM is plotted against the PCF CSM(ξ) (red broken) predicted
by the spatial moment at time t = 1 for α = −2, β = 0.5, σ21 = σ22 = 0.08, λµ = 5, m = 10,
(a) with numerical normalisation, and (b) without numerical normalisation of µ2(ξ, ξ

′).

5.3.2 Numerical Normalisation of µ2(ξ, ξ
′) in the Moment Equations

The PDF for movement µ2(ξ, ξ
′) is normalised numerically using the trapezium rule such that∫

µ2(ξ, ξ
′)dξ = 1. This involves division of µ2(ξ, ξ

′) by the numerical normalisation constant

N =
hλ

2

∑
k

(exp(λξk) + exp(λξk+1)) , (5.8)

where ξk denotes the kth grid point in the discretised ξ domain. Figure 5.8 demonstrates

the effect that this normalisation has on the accuracy of the numerical solution Z2(ξ). When

µ2(ξ, ξ
′) is normalised by N , Figure 5.8(a) shows CSM (ξ) ≈ 1 for large ξ at t = 1 as expected.

Under the same conditions but in the absence of numerical normalisation, CSM (ξ) ≈ 1.5 for

large ξ at t = 1 (Fig. 5.8(b)). Over time the solution deteriorates further as Z2(ξ) continues

to increase across all ξ which induces other irregularities such as M2(ξ) < 0.

5.3.3 Truncation of Kernels in the Moment Equations

The interaction kernels w(ξ) and v(ξ), and movement PDF µ2(ξ, ξ
′) are defined over an

infinite domain, therefore truncation of the kernels is necessary for numerical integration of

the moment equations. We truncate the kernel tails such that w(ξ) = v(ξ) = µ2(ξ, ξ
′) = 0 over

the domain {ξk | 1 ≤ k ≤ 5, n− 4 ≤ k ≤ n}, where ξk denotes the kth grid point and n is the

number of grid points in the discretised ξ domain. We ensure that 1/λµ < 4σw, 4σv < ξn−4.
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5.4 Discussion

The IBM enables us to simulate the stochastic behaviour of cells undergoing collective move-

ment and our numerical results demonstrate how individual-level interactions give rise to

the development of spatial structure in the population. To obtain an accurate description

of average behaviour we either simulate movement for a large number of cells or average

the results from many realisations of the model. This approach becomes computationally

intensive when cell abundance is high because the interactions between each individual and

all of its neighbours must be calculated before every movement event. In addition, IBMs

are not directly amenable to mathematical analysis. Therefore there is good motivation for

a population-level model in terms of spatial moment dynamics which provides mechanistic

insight into how local directional bias gives rise to spatial structure and creates scope for a

more formal analysis of the underlying stochastic process [61].

Unlike models which employ the mean-field assumption, our spatial moment model takes

into account the effects of local spatial structure on the dynamics of the population. The

second moment predicted by the model, expressed as a PCF, provides a measure of this

structure and can be directly compared to PCFs calculated from images of in vitro cell

migration experiments [38]. Our numerical results show that the moment model can provide

a good approximation of the spatial structure predicted by the IBM when the distribution

of cells is homogeneous throughout space. In the case where interactions affect neighbour-

dependent motility but not the direction of movement, the two models mostly match very

well both when motility rate is increased in close proximity to neighbours or when it is

decreased. However, when interactions that decrease cell motility are strong the moment

model tends to under-predict the second moment. This is likely due to it not accounting

for the higher incidence of negative motility rates that can arise by chance in the IBM. One

possible solution to this issue would be to use an alternative form of movement rate in which

the neighbourhood effects are non-linear, for example an exponential decay of movement rate

with local crowding. However, deriving the spatial moment approximation for a non-linear

movement rate would be far from straightforward.

When interactions determine only direction of movement and do not affect movement rate

the two models again correspond well except when cells are strongly biased to move towards

one another. In this case, the spatial moment model over-predicts the second moment. As the
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motility rate is constant, a rise in negative motility rates can not be causing the disparity in

this case. Instead, it is likely that the performance of the power-3 closure as an approximation

to the third moment breaks down when the spatial pattern becomes strongly clustered. If

this is the case, the spatial moment model may also be over-predicting the second moment

in the case where strong interactions with close neighbours reduce motility rate and generate

clustering. However, it is possible that the high average pair densities that arise in the IBM,

due to the increased incidences of negative motilities, could be masking the effect.

When interactions influence both motility rate and directional bias, the results from the

IBM and the spatial moments still correspond well in most cases. The two models only

start to disagree when the second moment is large for short displacements. In this case the

mechanisms that we have seen cause disparity between CSM(ξ) and CIBM(ξ) when interactions

affecting motility rate and directional bias are considered in isolation, may both contribute

to the mis-match in results. However, we have shown that in general our spatial moment

model provides a good approximation to the underlying IBM and only starts to break down

when the spatial pattern becomes strongly clustered.

In the cell movement model proposed by Middleton et al. [71], neighbour interactions

are affected by both speed and direction of movement. This differs from our model where

average speed and direction are treated as independent effects. Despite these differences, we

see similar qualitative patterns of spatial structure due to local repulsive or attractive forces

as in Middleton et al [71].

The closure for the third spatial moment is only an approximation and different closures

may have better performance under different conditions. A number of asymmetric power-2

closures have performed well for other models discussed in the literature [65,70,79], although

they do have the potential to violate the positivity constraint which is required because an

average density of triplets can never be negative [79]. For our model, the power-3 closure

outperformed the four different power-2 closures that were tested for a strongly clustered

pattern, however it is possible that other weightings or closures may improve the approxima-

tion. While it is important to keep this in mind, an exhaustive analysis of moment closures

is outside the scope of this work.

As our model does not incorporate volume exclusion, for example through the represen-

tation of cells as hard objects, there is the possibility that cell locations may arise in very

close proximity in the IBM. The use of an interaction kernel which is concentrated around
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short pair displacements provides a mechanism for generating a regular spatial pattern and

thus allows us to reduce the likelihood of two cells being found close together. However, this

approach is probabilistic and does not altogether exclude the possibility of such an occurrence.

It is appealing to consider the collective movement of cells in one dimension from a the-

oretical perspective, in particular because it simplifies the derivation and numerical solution

of the spatial moments description. Solving the differential equation in two dimensions is

considerably more computationally intensive as it involves double integrations in both the

x- and y- direction. While the majority of experimental data is two- or three-dimensional,

our results suggest that a one-dimensional model could still prove useful for quantifying the

behaviour of moving cells. In one dimension we observe traits in the second moment that we

would expect to see in a live population of cells, namely the development of clusters or regular

spatial patterns. However, as a cell moving through two-dimensional space is interacting with

neighbours in all directions, not just those on either side, it is possible that this could have

a more profound impact on spatial structure than is predicted by a one-dimensional model.

Therefore, in the next chapter we present numerical results for the model extended to two

spatial dimensions.
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Chapter 6

Two-dimensional Model and In Vitro Data

In this chapter, we take a combined experimental and modelling approach to explore collective

behaviour in two-dimensional space. We first extend our original IBM to an equivalent

two-dimensional model, then provide descriptions for the corresponding terms in the spatial

moment dynamics. As for the one-dimensional model, the dynamics of the second spatial

moment are solved for a homogeneous space. Using imaging data from in vitro experiments,

we estimate parameters for the model and show that it can generate similar spatial structure

to that observed in a 3T3 fibroblast cell population.

6.1 Two-Dimensional Individual-Based Model

In two spatial dimensions we define a continuous bounded domain Ω ∈ R2, with periodic

conditions at the boundaries. The location of a cell i is a coordinate xi ∈ R2. The movement

rate ψi is still expressed by (3.8), however the kernel w(z), which weights the strength of

interaction between a pair of cells displaced by z = (z1, z2)
T , is a two-dimensional Gaussian

w(z) = α exp

(
− |z|

2

2σ2w

)
. (6.1)

We now describe a mechanism for neighbour-dependent directional bias which is comparable

to that outlined in Section 3.2.2 but with some differences that are required for extension

to two spatial dimensions. The neighbour-dependent bias b(x) accounts for the effect of n

neighbouring cells located at xj on the direction of movement of an individual at x:

b(x) =
n∑
j=1

u(x,xj), (6.2)

where

u(x,y) = ∇v(y − x)ĥ(x). (6.3)

53
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Figure 6.1: Examples of probability density function g(θ;b) (blue solid line) for movement in
a direction θ ∈ [0, 2π]. The neighbour-dependent bias b is a vector indicating the direction
(arg(b)) in which the greatest/lowest degree of crowding arises in a cell’s neighbourhood, as
well as the extent to which it occurs (|b|). Insets are schematics illustrating g(θ;b) (grey solid
line), where black arrows indicate the direction (arg(b)) in which an individual (black dot)
is most biased to move. (a) Unbiased movement; (b) weak directional bias b = (0.25, 0.5)T ;
(c) strong directional bias b = (0.5, 1)T .

Here, ∇v(z) denotes the gradient vector ∇v(z) = ( ∂v∂z1 ,
∂v
∂z2

)T . The kernel v(z) weights the

strength of interaction between a pair of cells displaced by z and is a two-dimensional Gaussian

function

v(z) = β exp

(
−|z|

2

2σ2v

)
, (6.4)

so, as before, the interaction will be strong for a pair of cells located close together and

negligible if they are far apart. In two dimensions, the neighbour-dependent bias b(x) is a

vector holding information about both the extent and direction of crowded regions in the

neighbourhood of a cell at x. We use the angle arg(b(x)) to describe the direction of b(x).

When β > 0, arg(b(x)) is the direction in which the lowest degree of cell crowding arises

locally. Conversely for β < 0, arg(b(x)) is the direction of greatest local crowding. The

magnitude |b(x)| provides a measure of the extent of crowding.

When a cell moves, its direction of movement θ ∈ [0, 2π] is drawn from a PDF g(θ;b)

which depends on the neighbour-dependent bias b(x). The function g(θ;b) is a von Mises

distribution with mean arg(b) and concentration |b|:

g(θ;b) =
exp
(
|b|cos

(
θ − arg(b)

))
2πI0(|b|)

, (6.5)

where I0 is the modified Bessel function of order 0. Thus, a cell is most likely to move in the

direction arg(b) and the strength of this directional bias increases with |b|. The PDF g(θ;b)

is illustrated in Figure 6.1 for different examples of bias vector b(x).
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In our one-dimensional IBM, the distance moved by a cell was drawn from an exponential

distribution with mean step length 1/λµ. However, in two spatial dimensions this choice of

distribution causes the spatial moment model to under-predict the extent of spatial structure

generated by the directional bias, as shown in Figure 6.2(a). If, instead, the distance moved

by a cell is drawn from a non-negative normal distribution with mean step length 1/λµ and

variance σ2µ, the spatial moment model provides a much better approximation to the IBM

(Fig. 6.2(b)). It is likely that this discrepancy will arise for choices of movement PDF µ(x,y)

that are concentrated around very short displacements y − x. We discuss this limitation in

Section 6.5.

Therefore, in the two-dimensional model, the distance moved by a cell is drawn from a

non-negative normal distribution with mean step length 1/λµ and variance σ2µ. Thus, the

probability of an individual at x moving to a new location at y is distributed according to

µ(x,y) = N exp

−
(
|y − x| − 1

λµ

)2
2σ2µ

 g
(
arg(y − x);b(x)

)
. (6.6)

This means that a cell at x is biased to move away from close-lying neighbours when β > 0.

From a biological perspective this repulsive force could correspond to, for example, movement

in response to a cell-released chemorepellant [24] or physical forces due to deformation of the

cell membrane under direct contact with other cells [20]. When β < 0 the bias is towards

crowded regions, such as might arise in the presence of a cell-released chemoattractant [25].

The bias strength increases with increasing neighbourhood cell density. In the absence of

neighbourhood interactions (i.e. setting β = 0), g
(
arg(y − x);b(x)

)
= 1/(2π) and the cell

is equally likely to move in any direction, i.e. movement is unbiased. The PDF µ(x,y) has

dimensions L−2 and normalising by the constant N satisfies the constraint
∫
µ(x,y)dy = 1

for any fixed x.

6.2 Spatial Moments in Two Dimensions

The equations for the spatial moment dynamics can easily be extended to consider move-

ment in two-dimensional space. However, solving the differential equation numerically in

two dimensions is more computationally intensive because, for a location x = (x1, x2)
T , each

integration over x involves an integration over both x1 and x2. In two spatial dimensions, the
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Figure 6.2: Performance of spatial moment approximation using two choices of movement
PDF µ(x,y). Spatial structure for 200 cells undergoing collective movement with neighbour-
dependent bias (α = 0) in a 20 x 20 domain at time t = 5. A PCF CIBM (r) (blue solid line)
is computed (using a bin width δr = 0.1) by averaging results from 500 simulations of the
IBM. This is compared to the PCF CSM (r) (red dashed line) approximated by the spatial
moment model, solved using ∆ = 0.1 and ξmax = 4. The result was insensitive to a finer grid
spacing ∆. Parameters are β = 0.2, σw = σv = 0.5, m = 10, λµ = 5, σµ = 0.05; (a) Distance
moved by a cell is drawn from an exponential distribution with mean step length 1/λµ; (b)
Distance moved by a cell is drawn from a non-negative normal distribution with mean step
length 1/λµ and variance σ2µ.

only expression that differs from the one-dimensional description is the movement PDF. We

use equation (6.6) from the two-dimensional IBM to derive µ1(x,y) and µ2(x,y, z), required

for the dynamics of the first and second spatial moments respectively.

For the dynamics of the first spatial moment, when a cell at x moves, its new location y

is drawn from a PDF

µ1(x,y) = N exp

−
(
|y − x| − 1

λµ

)2
2σ2µ

 g
(
arg(y − x);b1(x)

)
. (6.7)

The neighbour-dependent bias b1(x) for a cell at x is

b1(x) =

∫
u(x,y)

Z2(x,y)

Z1(x)
dy. (6.8)

The rate of change of the first spatial moment is given by

dZ1(x, t)

dt
= −M1(x)Z1(x, t) +

∫
µ1(u,x)M1(u)Z1(u, t)du. (6.9)

For the dynamics of the second spatial moment, when a cell at x moves, its new location
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y is drawn from a PDF µ2(x,y, z). The third argument in µ2(x,y, z) accounts for the fact

that x is in a pair with a cell at z:

µ2(x,y, z) = N exp

−
(
|y − x| − 1

λµ

)2
2σ2µ

 g
(
arg(y − x);b2(x, z)

)
. (6.10)

The neighbour-dependent bias b2(x, y) for a cell at x in a pair with a cell at y is

b2(x,y) =

∫
u(x, z)

Z3(x,y, z)

Z2(x,y)
dz + u(x,y). (6.11)

Finally, the rate of change for the second moment in two dimensions is

dZ2(x,y, t)

dt
= − (M2(x,y) +M2(y,x))Z2(x,y, t)

+

∫
µ2(u,x,y)M2(u,y)Z2(u,y, t)du

+

∫
µ2(u,y,x)M2(u,x)Z2(u,x, t)du. (6.12)

6.2.1 Spatially Homogeneous Moment Dynamics

In two dimensions, (6.12) can also be expressed in terms of (4.25), (4.26) and (4.29) with the

displacements ξ, ξ′ and ξ′′ ∈ R2.

The movement PDF given in (6.10) becomes

µ2(ξ, ξ
′) = N exp

−
(
|ξ| − 1

λµ

)2
2σ2µ

 g
(
arg(ξ);b2(ξ

′)
)
. (6.13)

where

b2(ξ) =

∫
∇v(ξ′)

Z3(ξ, ξ
′)

Z2(ξ)
dξ′ +∇v(ξ). (6.14)

The boundary condition is given by

Z2(ξ)→ Z2
1 as |ξ| → ∞. (6.15)
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6.3 Numerical Results

To explore whether our model is capable of generating spatial structure in a simulated cell

population we average results from repeated simulations of the IBM and compute a periodic

PCF CIBM (r). We compare this to numerical solutions of our spatial moment model to

examine whether it provides a good approximation to the underlying stochastic process.

We consider a case where the distribution of cells is spatially homogeneous, therefore the

spatially-dependent weight ĥ(x) in (6.3) is ĥ(x) = 1. The equation for the dynamics of the

second spatial moment can be expressed in terms of displacements between pairs of cells, as

outlined in Section 4.6. The PCF CSM (ξ) is given by Z2(ξ)/Z2
1 such that CSM (ξ) = 1 in

the complete absence of spatial structure. The second spatial moment is radially symmetric

about the origin of ξ. Therefore, in the results below we show only a radial section of CSM (ξ)

which we denote CSM (r), where r = |ξ|. Cells are initially distributed across a domain of

width Lx and height Ly, according to a spatial Poisson process with intensity n/(LxLy). In

the spatial moment model this corresponds to Z2(ξ) = Z2
1 at t = 0. The system is allowed

to reach steady state before results from each model are compared.

6.3.1 Numerical Methods

Equation (4.25) for the dynamics of the second spatial moment was solved numerically us-

ing the method of lines with MATLAB’s in-built ode23 one-step solver, which is an im-

plementation of an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine [98]. The

method of lines involved a discretisation of ξ = (ξ1, ξ2)
T with grid spacing ∆ over the domain

{−ξmax ≤ ξ1, ξ2 ≤ ξmax}, where ξmax was large enough so that Z2(ξ) ≈ Z2
1 at the bound-

ary. Required values of Z2(ξ) that lay outside of the computable domain were set to the

value of Z2(ξ) at a corner of the boundary, i.e. Z2(ξmax, ξmax). The integral terms in (4.25)

were approximated using the trapezium rule with the same discretisation. In addition, the

PDF for movement µ2(ξ, ξ
′) was normalised numerically using the trapezium rule such that∫

µ2(ξ, ξ
′)dξ = 1 for any fixed ξ′. The results were insensitive to a reduction in grid spacing

∆.

The interaction kernels w(ξ) and v(ξ), and movement PDF µ2(ξ, ξ
′) are defined over an

infinite domain, therefore truncation of the kernels is necessary for the numerical integration

of the moment equations. We truncate the tails of the kernels such that w(ξ) = v(ξ) =
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µ2(ξ, ξ
′) = 0 over the domain |ξ| > ξmax/2 and we ensure that (1/λµ + 4σµ) ≤ 4σw, 4σv ≤

ξmax/2.

6.3.2 Moment Closure

In our one-dimensional model we employed a power-3 closure to truncate the system of spatial

moment dynamics at second order. This closure performed well as an approximation to the

third spatial moment, except for a strongly clustered spatial pattern. We now compare the

performance of the power-3 closure with a number of others for our two-dimensional model, to

consider whether this choice is still appropriate for describing movement in two-dimensional

space. In addition to the power-2 closure given previously in equation (5.1), we explore the

performance of the symmetric power-1 closure, given by

Z̃3(ξ, ξ
′) = Z1Z2(ξ

′ − ξ) + Z1Z2(ξ
′) + Z1Z2(ξ)− 2Z3

1 . (6.16)

Figure 6.3 compares the predictions of five different closures for a cluster spatial pattern,

where the performance of the approximations tends to be most limited. The closures that

have the best performance in this case are the power-3 closure and the asymmetric power-2

closure with weighting {1,3,8}, while the power-1 closure provides the poorest approximation

overall. In the following numerical results we choose to continue employing the power-3

closure. The power-2 (1,3,8) closure outperforms the power-3 very slightly for this cluster

spatial pattern, however its negative term means that it can violate the positivity constraint

of the third spatial moment [79].

6.3.3 Non-Interacting Model

In the complete absence of interactions, an individual’s direction of movement is unbiased and

its movement rate is solely determined by the intrinsic component. It is straightforward to

show analytically that the steady-state solution for Z2(ξ) is a constant under these conditions.

Numerical solutions and averaged IBM simulations confirm this.



60 CHAPTER 6. TWO-DIMENSIONAL MODEL AND IN VITRO DATA

r

0 0.5 1 1.5 2 2.5 3

C
(r

)

0.8

1

1.2

1.4

1.6

1.8

2
IBM

Power-3

Power-2 (1,1,1)

Power-2 (1,3,8)

Power-2 (4,1,1)

Power-1

Figure 6.3: Comparison of closures for the third spatial moment. Spatial structure for 200
cells undergoing collective movement with neighbour-dependent directional bias (α = 0) in a
20 x 20 domain at time t = 25. A PCF CIBM (r) (blue solid line) is computed (using a bin
width δr = 0.15) by averaging results from 500 simulations of the IBM. This is compared
to the PCF CSM (r) approximated by the spatial moment model (∆ = 0.1 and ξmax = 4)
solved using a power-3 closure (red dashed line), power-2 closure with weighting {1,1,1}
(green dashed line), power-2 closure with weighting {1,3,8} (yellow dashed line), power-2
closure with weighting {4,1,1} (purple dashed line) and power-1 closure (cyan dashed line).
Parameters are β = −0.05, σw = σv = 0.5, m = 10, λµ = 5, σµ = 0.05.

6.3.4 Interacting Model

6.3.4.1 Neighbour-Dependent Directional Bias

The effect of the neighbour-dependent directional bias, in the absence of neighbour-dependent

motility, is shown in Figure 6.4. Regular spatial patterns are generated by the directional

bias when β > 0 while β < 0 gives rise to clustering. The spatial moment model performs

very well as an approximation to the IBM except when there is strong clustering (Fig 6.4(d)).

This can likely be attributed to limitations of the moment-closure assumption. The power-3

closure provides a reasonable approximation to the third moment for Poisson spatial patterns

and regular patterns, but performs quite poorly for cluster spatial patterns where it can cause

the model to underestimate the second moment [79,85,96].

6.3.4.2 Neighbour-Dependent Motility

Figure 6.5 shows the spatial structure generated by the mechanism for neighbour-dependent

motility when there is no local directional bias (i.e. β = 0). Neighbourhood interactions
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Figure 6.4: Spatial structure for 200 cells undergoing collective movement with neighbour-
dependent directional bias (α = 0 hours−1) in a 20 µm x 20 µm domain at time t = 25
hours. Insets show IBM simulation snapshots of cell locations (blue dots). A PCF CIBM (r)
(blue solid line) is computed (using a bin width δr = 0.12 µm) by averaging results from 500
simulations of the IBM. This is compared to the PCF CSM (r) (red dashed line) approximated
by the spatial moment model, solved using ∆ = 0.1 µm and ξmax = 4 µm. Parameters are
α = 0 hours−1, σw = σv = 0.5 µm, m = 10 hours−1, λµ = 5 µm−1, σµ = 0.05 µm; (a) β = 0.1
µm; (b) β = 1 µm; (c) β = −0.03 µm; (d) β = −0.05 µm.

give rise to regular spatial patterns when α > 0 and cluster spatial patterns when α < 0.

Again, we see good agreement between CSM (r) and CIBM (r) except for large magnitudes of

α < 0 where the pattern is clustered and the moment model under-predicts spatial structure

(Fig. 6.5(d)). While the limitations associated with the moment closure may play a role,

there is another factor that could also be contributing to the poor fit here. We have chosen

values of α such that the probability of ψi > 0 is high. However ψi = 0 can arise by chance

in an IBM simulation and while such occurrences are relatively rare they can have a self-

propagating effect, leading to strong clustering. The spatial moment model does not account

for these chance events so this might explain why spatial structure is underestimated more

dramatically even for relatively weak clustering. As in the one-dimensional case, for large
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Figure 6.5: Spatial structure for 200 cells undergoing collective movement with neighbour-
dependent motility (β = 0 µm) in a 20 µm x 20 µm domain at time t = 25 hours. Insets
show IBM simulation snapshots of cell locations (blue dots). A PCF CIBM (r) (blue solid
line) is computed (using a bin width δr = 0.12 µm) by averaging results from 500 simulations
of the IBM. This is compared to the PCF CSM (r) (red dashed line) approximated by the
spatial moment model, solved using ∆ = 0.1 µm and ξmax = 4 µm. Parameters are β = 0
µm, σw = σv = 0.5 µm, m = 10 hours−1, λµ = 5 µm−1, σµ = 0.05 µm; (a) α = 1 hours−1;
(b) α = 10 hours−1; (c) α = −1.5 hours−1; (d) α = −2 hours−1.

magnitudes of α < 0 there is an equilibrium where all individuals have motility ψi = 0 which

is reached with probability 1 if the IBM is simulated for a sufficiently long time.

6.3.4.3 Average Cell Density

We now consider what effect varying the average cell density has on spatial structure, in the

presence of both neighbour-dependent motility and directional bias. Figure 6.6 compares

the spatial structure for a low (Fig. 6.6(a)), moderate (Fig. 6.6(b)) and high average cell

density (Fig. 6.6(c)). Here, directional bias is the stronger structure-generating mechanism

and promotes a regular spatial pattern. However, as average cell density is increased (Fig.

6.6(a)-(c) from left to right), the spatial structure weakens. Further increase in average cell
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Figure 6.6: Spatial structure at three different average cell densities for 200 cells undergoing
collective movement at time t = 25. A PCF CIBM (r) (blue solid line) is computed (using a
bin width δr = 0.12) by averaging results from 500 simulations of the IBM. This is compared
to the PCF CSM (r) (red dashed line) approximated by the spatial moment model, solved
using ∆ = 0.1 and ξmax = 4. Parameters are α = −1, β = 0.2, σw = σv = 0.5, m = 10,
λµ = 5, σµ = 0.05; (a) Low average cell density Z1 = 0.25; (b) Moderate average cell density
Z1 = 0.5; (c) High average cell density Z1 = 0.75.

density causes the structure to tend towards a Poisson spatial pattern.

6.4 In Vitro Experimental Data

6.4.1 Experimental Methods

6.4.1.1 Cell Culture

Murine fibroblast 3T3 cells were cultured in Dulbecco’s modified Eagle medium (Invitrogen,

Australia) with 5% foetal calf serum (FCS) (Hyclone, New Zealand), 2 mM L-glutamine

(Invitrogen), 50U/ml penicillin and 50µg/ml streptomycin (Invitrogen), in 5% CO2 and 95%

air at 37 ◦C. Monolayers of 3T3 cells were cultured in T175 cm2 tissue culture flasks (Nunc,

Thermo Scientific, Denmark). Prior to confluence, cells were lifted with 0.05% trypsin (Invit-

rogen). Viable cells were counted using the trypan blue exclusion test and a haemocytometer.

Two cell suspensions were created at approximate average cell densities of 20,000 cells/ml

and 30,000 cells/ml. The experiments were performed in triplicate for each initial cell density.

Cells were seeded in a 24 well tissue culture plate (each well of diameter 15.6 mm) and

incubated overnight in 5% CO2 and 95% air at 37 ◦C to allow them to attach to the base of

the plate. Initially, cells were approximately uniformly distributed in each well.
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6.4.1.2 Imaging Techniques and Analysis

Time-lapse images of the cells were captured, over a period of 12 hours at 3 hour intervals,

using a light microscope and Eclipse TIS software at 100x magnification. For each sample,

a 4500 µm x 450 µm image was reconstructed from overlapping adjacent images captured at

approximately the centre of the well. The locations of the n cells in each image were manually

determined by superimposing markers onto cells and recording the Cartesian coordinates of

markers using ImageJ image analysis software. These coordinates were used to calculate a

pair-correlation function (PCF) for each image following the method in Section 3.3.

6.4.2 Model Validation Using Experimental Data

We will now use in vitro experimental data to validate our model. We begin by exploring

whether the directional bias mechanism is capable of generating spatial structure that is

qualitatively similar to that observed in 3T3 fibroblast cell populations studied in vitro and

aim to estimate parameters which yield a reasonable qualitative match to our data.

6.4.2.1 Parameter Estimation

Movement rates for 3T3 fibroblast cells are discussed in the literature [12, 23]. We choose a

biologically relevant rate of 50 µm/hour for the speed at which an isolated cell moves (i.e.

in the absence of neighbourhood interactions). Cell speed is not itself a parameter of our

model, but can be decomposed into two constituent parts for input into the model: a mean

step length 1/λµ = 10 µm and an intrinsic movement rate m = 5 hour−1. For the movement

PDF µ(x,y) we set σµ = 2.5 µm which is biologically reasonable as it ensures cells are

more likely to take short steps than undergo large jumps across the space. We employ the

directional bias mechanism to incorporate volume exclusion effects by interpreting 2σv as the

approximate range over which a cell interacts with neighbours and treating this as a proxy

for the average diameter of a cell. From the literature, the average cell diameter for 3T3

fibroblast cells is approximately 20 µm which yields σv = 10 µm [12, 99]. Here, we consider

the directional bias mechanism in the absence of neighbour-dependent motility (i.e. we set

α = 0). With these parameter choices in place, interaction strength β is the only parameter

that we need to estimate.

Images are taken at the centre of the well to avoid edge effects and when analysing our in
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vitro data, we assume that cells are distributed homogeneously across this region. An average

cell density is estimated from each image, by dividing the number of cells in an image (which

ranged between 80 and 318 cells) by the image area. Previously, we implemented periodic

boundary conditions in our IBM simulations such that cells located near a boundary of the

domain could interact with those at an opposite boundary. Therefore it was reasonable

to calculate a periodic PCF from the configurations of cells that arose. However, for our

experimental data, the motility of a cell located near the edge of an image will not be affected

by a cell at an opposite edge. Therefore, to calculate an accurate average pair density for

the short displacements we are primarily interested in, we choose to generate a non-periodic

PCF Cexp(r) from the experimental images.

To obtain an estimate for β we consider a single experimental image of dimensions 4500

µm x 450 µm with 286 cells, as shown in Figure 6.7(a) with markers superimposed over cell

locations. We use our IBM to simulate movement in this 4500 µm x 450 µm region using

the parameters discussed above and explore different values of β. In each simulation repeat,

286 cells are initially distributed according to a spatial Poisson process and we compute a

PCF once the system has converged to steady state. Figure 6.7(b) shows a snapshot from

an IBM simulation at t = 15 hours. The presence of spatial structure is not obvious from

visual inspection of Figures 6.7(a)-(b) alone but calculating a PCF (Fig. 6.7(c)) indicates

a regular spatial pattern over displacements < 50 µm. We find that for β = 1000 µm the

PCFs predicted by our IBM and spatial moment model provide a very good visual match to

that computed from the in vitro data for this sample. Unlike CIBM (r) and CSM (r), the PCF

computed from each experimental image does not tend to 1 for large displacements because

it is computed from non-periodic distances and owing to the image dimensions. However,

we see good agreement at short to moderate displacements. To validate our estimate, we

compare PCFs obtained using the same parameter choices and β = 1000 µm for the average

cell densities in each of the other images (Figures given in the Appendix). For all samples

we see a reasonable qualitative agreement between the PCFs predicted by the model and the

PCF generated from the in vitro data.

The PCFs Cexp(r) and CIBM (r) employ a bin width δr which provides a reasonably

smooth function for the majority of experimental samples yet contains sufficient information

about spatial structure to allow us to carry out our analysis. Smaller values of δr give a

better match to CSM (r), however Cexp(r) becomes dominated by fluctuations.
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6.4.2.2 Average Cell Density and Spatial Structure

From our numerical results we know that both the mechanisms for neighbour-dependent

motility and directional bias are capable of generating spatial structure. In the absence of

directional bias, large values of α are required to generate the extent of spatial structure

observed in the in vitro data. When carrying out IBM simulations under these conditions,

individuals experience strong neighbourhood interactions and, as a result, movement rates ψi

are often considerably higher than the average movement rates of fibroblast cells discussed in

the literature [12,23]. For example, using the same parameter choices as for Figure 6.7 but in

the absence of directional bias (β = 0), an interaction strength of α = 1000 generates spatial

structure which is a reasonable qualitative match to the in vitro data. However, 23% of indi-

viduals undergo movement with a rate ψi > 100 hour−1, which corresponds to a biologically

unreasonable cell speed of 1000µm/hour. Therefore, we do not consider neighbour-dependent

motility in isolation. When both mechanisms are acting together, numerous combinations of

α and β exist that would give rise to similar spatial structure.

Numerical and analytical results suggest that there is a relationship between the average

cell density and the extent of spatial structure in the moving cell population. Increasing the

average cell density causes a decrease in the extent of spatial structure, i.e. for a regular

spatial pattern average pair densities at short displacements increase towards 1. However,

for the average cell densities studied here, it is not immediately obvious whether our in

vitro experimental data supports the suggestion that a significant relationship exists. We

now explore this idea in more depth by using the area between the PCF to calculate a

summary statistic which quantifies the extent of spatial structure. We consider two metrics,

the first of which measures spatial structure as
∫ R
0 (1−C(r))dr (Fig. 6.8(c)). For this metric,

positive values indicate a regular spatial pattern while negative values indicate a cluster

spatial pattern. The second is given by
∫ R
0 |1 − C(r)|dr (Fig. 6.8(d)). Both metrics are

calculated for R = 80 µm and have units µm. We compute each metric for PCFs generated

from the IBM, spatial moment model and in vitro data, as shown in Figure 6.8. The average

cell densities obtained from the in vitro data lie within a relatively small range and so the

overall change in the metric is small. Nevertheless, for both metrics our model predicts

that increasing average cell density decreases the extent of spatial structure. To investigate

whether our in vitro data supports this we carry out a simple linear regression, yielding
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Figure 6.7: Spatial structure in 3T3 fibroblast cells for 286 cells in a 4500µm x 450µm region.
(a) Sample image (obtained from a well containing cell suspension of approximate initial
density 30,000 cells/ml) showing superimposed markers (white dots). Scale bar corresponds
to 100µm; (b) Cell locations (blue dots) at t = 15 hours from a single IBM simulation.
Parameters are α = 0 hours−1, β = 1000 µm, σw = σv = 10 µm, m = 5 hours−1, λµ = 0.1
µm−1, σµ = 2.5 µm; (c) PCF CIBM (r) (blue solid line) obtained from averaging results from
200 simulations of the IBM at t = 15 hours. PCFs computed from the IBM using values of
β within the range ±75% of β = 1000 µm, lie within the region indicated by the blue shaded
area. PCF Cexp(r) (green squares-dotted line) generated from experimental image, for δr = 8
µm. PCF CSM (r) (red dashed line) approximated by spatial moment model at t = 15 hours,
for ∆ = 5 µm and ξmax = 150 µm.

p-values of 0.0211 and 0.0435 for the first (Fig. 6.8(a)) and second metric (Fig. 6.8(b)),

respectively. Thus, using either metric and despite the noise in our in vitro data, the results

suggest that a significant relationship does indeed exist between average cell density and

spatial structure.
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Figure 6.8: Relationship between average cell density and the extent of spatial structure.
(a)-(b) Metrics calculated from IBM (blue triangles), spatial moment model (red circles) and
in vitro data (green squares) for the average cell densities in each of the images. A regression
line (black line) is fitted to the experimental data. (c) The metric in (a) is calculated by
integrating (1 − C(r)) over displacements 0 ≤ r ≤ 80 µm, i.e. summing the green-shaded
area and subtracting the grey-shaded area. (d) The metric in (b) is calculated by integrating
|1− C(r)| over displacements 0 ≤ r ≤ 80 µm, i.e. summing the green-shaded area.

6.5 Discussion

IBMs of collective movement allow us to explore how interactions between individuals give

rise to spatial structure and how, in turn, this self-generated spatial structure affects the

population dynamics. However, IBMs are limited when it comes to explaining population-

level behaviour as they can be difficult to analyse mathematically. To move beyond these

limitations, population-level models can be derived from IBMs but often employ a mean-field

assumption which neglects spatial correlations between cells. We have derived a population-

level description in terms of spatial moment dynamics to account for spatial correlations

and give insight into how neighbour-dependent directional bias generates spatial structure

in a moving cell population. Extending our original model [14] from one to two spatial

dimensions makes it more amenable for use alongside experimental data. Our results verify

that the spatial moment model can provide a good approximation to averaged simulations of

the underlying IBM when cells are distributed homogeneously through space.

Volume exclusion effects can be incorporated into lattice-free models of interacting agents,

for example using a hard sphere approach where neighbours are explicitly excluded from a re-
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gion surrounding an individual. Instead, we employ the mechanism for neighbour-dependent

directional bias as a means of accounting for crowding effects. Using an interaction kernel

concentrated around short pair displacements allows us to reduce the likelihood of two cells

being found in very close proximity, although it does not altogether rule out the possibility.

In vitro studies have shown that cell motility can be heavily influenced by the average

density of cells, particularly at high densities where crowding effects come into play, affecting

the movement rate or direction of individuals [1, 12, 100]. In addition, spatial correlations

between cells can have major implications for motility, for example cell populations with

clustering exhibit different behaviour to those that adopt regular spatial patterns [35, 39].

We carried out in vitro experiments with motile 3T3 fibroblast cells for model validation and

to explore the extent to which spatial structure is generated in fibroblast cell populations.

It is not obvious from visual inspection alone whether spatial structure is present, however

calculating PCFs from the imaging data indicates a regular spatial pattern. The spatial struc-

ture arises over displacements < 50 µm and is likely predominantly a consequence of space

being excluded by the cells, however chemotactic interactions, such as chemokine signalling,

may also contribute to a lesser extent [12]. We obtain the majority of our model parameters

by selecting biologically relevant values from the literature and use our data to provide an

estimate for the interaction strength β. This parameter was estimated from a single exper-

imental image and for validation we use the same estimate for the average cell densities in

each of the other images. A visual comparison of the PCFs suggests that our parameterised

model can successfully predict the spatial structure of 3T3 fibroblasts at various average cell

densities.

We choose to calculate a non-periodic PCF from each experimental image to obtain

an accurate average pair density at short displacements. Because we do not apply edge

corrections and owing to the image dimensions, the PCF often has values less than 1 for

large displacements. However, we would expect that a PCF calculated either for a very large

number of cells (at the same average density) or by averaging results from many identically-

prepared repeated experiments, would give C(r) ≈ 1 for large displacements. A number of

methods to account for edge effects are discussed in the literature, for example the use of

buffer zones, toroidal edge corrections or employing weighting factors [87, 101]. However, in

some cases, applying an edge correction may yield results that do not provide an accurate

representation of the spatial structure in the population. For instance, when analysing spatial
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patterns that are clustered or regular, the use of a toroidal correction can lead to an unknown

extent of bias in the resulting distribution of distances [101]. To avoid this uncertainty, we

have chosen to work with the actual pair distances between cells in the experimental images

and not correct for edge effects.

We have further validated our model by considering in more detail the relationship be-

tween average cell density and the extent of spatial structure in a cell population. Numerical

and analytical results from our model suggest that increasing the average cell density de-

creases the extent of spatial structure. There is considerable noise in the in vitro data

because we choose to analyse PCFs generated from individual images as opposed to working

with averaged results. In addition, the data considers a relatively small range of average cell

densities. Nevertheless, our experimental data also supports the idea that such a relationship

exists. The most likely explanation for this effect is that as average cell density increases,

there is less free space available and cells are forced into closer proximity. Because of their

deformable plasma membranes, pairs of cells can arise at displacements less than the average

diameter of a cell. This increases the average pair density at short displacements, thus reduc-

ing the extent of spatial structure. Because we do not employ a hard sphere volume-exclusion

method, instead representing cells by points in space, our model will predict a Poisson spatial

pattern for very high average cell densities (far greater than those in our data). In reality,

the fact that 3T3 fibroblasts have a minimum area they can occupy means that this would

never be observed in vitro.

The spatial moment model is only an approximation to the IBM because it invokes a

closure assumption which closes the dynamical system at second order and ignores higher

order moments. The performance of our model depends on the suitability of this closure as

an approximation to the third moment. Different closures are proposed in the literature and

we use the power-3 closure (Kirkwood Superposition Approximation), which is a relatively

simple closure that is often applied in cell movement models. This closure is known to

perform reasonably well for regular and Poisson spatial patterns but causes the model to

underestimate the second moment for cluster patterns. A number of other closures also

share this limitation. The asymmetric power-2 closure, which expresses the third moment in

terms of weighted sums of lower order moments, can prove more successful for cluster spatial

patterns. However it is not always obvious which weighting constants are most appropriate

and the closure has the potential to predict negative average densities of triplets [79,85,96].
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We have chosen to use kernels suitable for modelling fibroblast movement but different

kernels could be employed for applications in other contexts. However, there is a numer-

ical constraint associated with choosing the movement PDF µ(x,y). If using a PDF that

has large positive values concentrated at pair displacements very close to zero, the spatial

moment model cannot always accurately capture the full extent of the directional bias at

these short displacements. This, in turn, causes the model to underestimate the extent of

spatial structure. Choosing a movement PDF with positive values at displacements further

from zero, such as the PDF employed here, overcomes this issue. Expressing and solving the

moment dynamics equations in polar coordinates may also allow for greater flexibility in the

choice of movement PDF.
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Chapter 7

Model of a Birth-death-movement Process

In this chapter we explore how the collective dynamics are affected when individuals are

able to give birth or die as well as move. In the context of cell biology, birth refers to cell

proliferation, i.e. the division of a cell to form two daughter cells. In vitro studies of cell

proliferation have shown that the rate at which cells divide is dependent on local cell density.

For instance, at high local cell densities, crowding effects such as contact inhibition of pro-

liferation can reduce the rate at which proliferation occurs [44, 102–104]. To consider what

implications this has for the emergent behaviour of a cell population, we extend our two-

dimensional IBM to a birth-death-movement process and derive corresponding descriptions

for birth and death in the spatial moment model. We allow the rate at which an individual

gives birth to depend on the density of cells in its neighbourhood and explore how this affects

the growth of the population, both in the presence and absence of directional bias. Similar

spatial moment models that incorporate neighbourhood effects into birth or death processes

are discussed in the literature (see for example, [80], [82], [65]), with some also accounting for

movement [85], [86]. However, moment approximations for birth-death processes incorporat-

ing neighbour-dependent movement, in particular directional bias, have received considerably

less attention.

7.1 Two-dimensional IBM for Cell Birth, Death and Move-

ment

We now extend our two-dimensional IBM for collective movement to incorporate cell birth

and death. With birth, death and movement the state of the system at time t comprises

the location xi ∈ Ω of each individual i in a population of size N(t). In the original model,

individual i moved as a Poisson process over time with movement rate per unit time ψi.

With each movement event the system underwent a transition to a new state with rate

ψi µ(xi,xi + ξ′′) for a displacement ξ′′. We now consider a second type of possible transition

73
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in the state of the system which corresponds to individual i giving birth to a new cell. This

type of transition adds an additional coordinate x′ to the current system state x(t), where

x′ ∈ Ω represents the location of cell i’s offspring. The system undergoes this transition with

rate B̂i(x)µ(ρ)(xi,x
′), where B̂i(x) is the birth rate per unit time of cell i when the system

is in state x. The function µ(ρ)(xi,x
′) is a PDF for dispersal of cell i’s offspring to a location

x′. Finally, we allow for the death of cell i by considering a third type of transition in system

state which involves the removal of the ith coordinate from x(t). This transition occurs with

rate D̂i(x) which is the death rate per unit time of individual i.

As before, we employ the Gillespie algorithm to simulate this birth-death-movement pro-

cess. In this case, the time increment τ between each event is exponentially distributed with

mean 1/λ(t), where

λ(t) =

N(t)∑
i=1

(
ψi(x) + B̂i(x) + D̂i(x)

)
, (7.1)

at time t. For brevity, from here on we omit the x argument from the movement, birth and

death rate notation. One of 3N(t) possible transitions is chosen to occur at time t+ τ , with

a probability that is proportional to the rate of that transition. If the transition corresponds

to a movement event, a movement displacement ξ′′ is determined according to µ(xi,xi + ξ′′).

If a birth event is chosen then the location x′ of the daughter cell is drawn from µ(ρ)(xi,x
′).

With this general framework in place, we now make particular choices for the rate functions

and PDFs in order to simulate cell movement. However it is important to keep in mind that

the model is amenable to different choices of function for application in other contexts.

The movement rate ψi and movement PDF µ(x,y) are the same as those given previously

in equations (3.8) and (6.6) respectively. We define a death rate D̂i that is comprised solely

of an intrinsic death rate d and does not depend on other cells in the neighbourhood of

individual i:

D̂i = d. (7.2)

We consider a birth rate B̂i comprising an intrinsic component and a component that

depends on the presence of other cells in the neighbourhood. The intrinsic birth rate ρ

describes the rate at which a cell would give birth in the absence of other cells. A neighbouring

cell, displaced from xi by z, contributes wρ(z) to the birth rate of cell i. Summing the intrinsic

rate and contributions from N(t) neighbours at xj gives the overall birth rate for an individual
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at xi:

B̂i = max(0, ρ+

N(t)∑
j=1
i 6=j

wρ(xj − xi)), (7.3)

where we have implemented the maximum formula to ensure B̂i ≥ 0.

The function wρ(z) weights the strength of interaction between a pair of cells displaced

by z and we choose wρ(z) to be a two-dimensional Gaussian function

wρ(z) = γ exp

(
−|z|

2

2σ2ρ

)
. (7.4)

Here, the strength of interaction and spatial range of interaction are determined by γ and σρ

respectively. The dimensions of ρ, d, wρ(z), B̂i and D̂i are T−1. Setting γ < 0 means that

cell i’s birth rate B̂i is reduced by interactions with nearby neighbours. This allows us to

consider how crowding effects, such as contact inhibition of proliferation, affect the collective

cell dynamics.

When a cell at x gives birth, its offspring is dispersed to a new location y with a probability

drawn from the PDF µ(ρ)(x,y) for dispersal by a displacement y − x. The dispersal PDF

µ(ρ)(x,y) is a bivariate normal distribution

µ(ρ)(x,y) =
1

2πσ2µρ
exp

(
−|y − x|2

2σ2µρ

)
, (7.5)

where σµρ determines the spatial range over which offspring are dispersed from a parent cell

at x. Therefore, even if the direction of cell movement is biased, the dispersal of offspring

is unbiased (i.e. the direction in which offspring are dispersed is not directly affected by

neighbourhood interactions). The function µ(ρ)(x,y) satisfies
∫
µ(ρ)(x,y)dy = 1 and has

dimensions L−2. Periodic conditions are implemented at the boundaries of the spatial domain.

7.2 Spatial Moment Dynamics with Birth, Death and Move-

ment

Extending the IBM to a birth-death-movement process provides insight into how cell prolif-

eration and death give rise to spatial structure in a moving population and how this, in turn,

affects the collective dynamics. To gain a deeper understanding of how this individual-level

behaviour relates to the emergent population dynamics, we now scale up our extended IBM
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by deriving an approximation in terms of the dynamics of spatial moments up to second

order.

We make use of the definitions for spatial moments given in Chapter 4 by equations (4.1)-

(4.5). As for our original model, we derive a description of the moment dynamics that can

be applied for a non-homogeneous spatial pattern. However, in our numerical results we only

consider a spatially homogeneous case.

7.2.1 First Spatial Moment

We first describe rate functions and dynamics for the first spatial moment. The expected

movement rate M1(x) for a cell at x was given previously in (4.6). In a similar manner, we

use the birth rate B̂i in (7.3) to derive an expected birth rate function B1(x) for a cell at

x in terms of spatial moments. Accounting for contributions from neighbours involves an

integration over y of the probability of a cell being located at y conditional on the presence

of a cell at x, weighted by wρ(y − x). Making use of the conditional probability in (4.4) we

obtain the expected birth rate B1(x) for a cell at x:

B1(x) = ρ+

∫
wρ(y − x)

Z2(x,y)

Z1(x)
dy. (7.6)

The maximum formula in (7.3) is not incorporated in the spatial moment description because

we only consider solutions in which negative expected birth rates do not arise. The birth

rate B1(x) and the equivalent birth rate B2(x, y) for the second moment dynamics (given

below in (7.11)) are functions of spatial moments and are therefore also dependent on time,

however we omit the argument t for notational ease.

The equivalent expression for death rate D̂i is the expected death rate for a cell at x given

by

D = d. (7.7)

The PDF for dispersal of offspring µ(ρ)(x,y), required for the first moment dynamics, is

given by (7.5). Unlike the movement PDF µ1(x,y), which is a function of spatial moments

(contained within the bias function b1(x) in (6.8)), the dispersal PDF µ(ρ)(x,y) is independent

of time. In a spatially homogeneous setting, M1(x) and B1(x) are independent of x, and the

PDFs µ1(x,y) and µ(ρ)(x,y) can be expressed in terms of pair displacements.
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7.2.2 Dynamics of the First Spatial Moment

We now extend the description of the first moment dynamics developed in Section 4.3 to

incorporate cell birth and death. As before, we consider the probability that a cell is present

in the small region δx centred on x at a time t + δt, given in (4.9). Movement, birth and

death events occur as independent Poisson processes over time so the probability of more

than one event taking place in a short period of time δt is O(δt2).

A cell can depart δx by either moving or dying, thus the probability that a cell remains

in δx in [t, t+ δt] is

P (cell remains in δx in [t, t+ δt]) = 1− (M1(x) +D) δt+O(δt2). (7.8)

A cell arrives in δx via either a movement event or a birth event accompanied by dispersal.

Therefore, we write the probability that a cell arrives in δx in [t, t + δt] as the sum of two

terms. The first component is the probability that a cell moves from u into δx, integrated

over possible starting locations u. The second is the probability that a parent cell at u gave

birth and dispersed a daughter cell into δx, integrated over all possible parent locations u.

This gives

P (cell arrives in δx in [t, t+ δt]) = hδt

∫ (
µ1(u,x)M1(u) + µ(ρ)(u,x)B1(u)

)
Z1(u, t)du+O(δt2),

(7.9)

where M1(u)Z1(u, t) and B1(u)Z1(u, t) are the movement rate and birth rate per unit area

at location u, respectively. Substituting (4.1),(7.8) and (7.9) into (4.9), then using the Taylor

expansion of Z1(x, t + δt) and taking the limit h, δt → 0, we get the rate of change for the

first spatial moment:

dZ1(x, t)

dt
= − (M1(x) +D)Z1(x, t)

+

∫ (
µ1(u,x)M1(u) + µ(ρ)(u,x)B1(u)

)
Z1(u, t)du. (7.10)

This equation is of a similar form to the dynamics of the first spatial moment for cell movement

without birth and death, given in equation (4.13). As before, the negative term describes

movement out of x but here we also account for departure from x via cell death. The integral

term accounts for arrival at x which previously occurred only by movement from a starting
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location u but now also arises by dispersal of a daughter cell from a parent at u.

7.2.3 Second Spatial Moment

For the dynamics of the second spatial moment, an expected movement rate function M2(x,y)

for a cell at x conditional on the presence of a cell at y, was given previously in (4.14). The

expected birth rate B2(x,y) for a cell at x conditional on the presence of a cell at y is derived

in a similar manner to give

B2(x,y) = ρ+

∫
wρ(z− x)

Z3(x,y, z)

Z2(x,y)
dz + wρ(y − x). (7.11)

The PDF for dispersal µ(ρ)(x,y) in the second moment dynamics is still given by (7.5). When

cells are distributed homogeneously throughout space we can express M2(x,y), B2(x,y),

µ2(x,y, z) and µ(ρ)(x,y) in terms of displacements between the physical locations x, y and

z.

7.2.4 Dynamics of the Second Spatial Moment

To incorporate cell birth and death into the second moment dynamics derived in Section 4.5,

we once again consider the probability of cells being present in the regions δx and δy at time

t + δt, given in (4.17). Now that a cell can depart a region via either a movement event or

death event, the probability of both cells remaining in δx and δy in [t, t+ δt] is

P

 both cells remain

in δx and δy

 = 1− (M2(x,y) +M2(y,x) + 2D) δt+O(δt2). (7.12)

The probability that a cell remains in δy and a cell arrives in δx in [t, t + δt] is equivalent

to the conditional probability that a cell arrives in δx given there is a cell in δy. A cell can

arrive in each region via a movement event or a birth event accompanied by dispersal. As in

(7.9), we consider the probability that a cell moves from u into x plus the probability that

a cell at u gives birth to a daughter at x, then integrate over all possible locations of origin

u. In this case, the probability of a cell being located at u is conditional on the presence of
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a cell at y. Together, this gives

P

 cell remains in δy

& cell arrives in δx

 =hδt

[∫ (
µ2(u,x,y)M2(u,y) + µ(ρ)(u,x)B2(u,y)

) Z2(u,y, t)

Z1(y, t)
du

+ µ(ρ)(y,x)B1(y)
]

+O(δt2). (7.13)

Here, an extra term has been included to account for the possibility that the cell at y gives

birth and disperses a daughter cell to x.

We substitute equations (7.12)-(7.13) along with (4.18)-(4.19) into (4.17) and employ

the Taylor expansion of Z2(x,y, t + δt). By expanding terms, making use of the two-fold

symmetry of Z2(x,y, t), then taking the limit h, δt → 0, we get the rate of change for the

second spatial moment:

dZ2(x,y, t)

dt
= − (M2(x,y) +M2(y,x) + 2D)Z2(x,y, t)

+

∫ (
µ2(u,x,y)M2(u,y) + µ(ρ)(u,x)B2(u,y)

)
Z2(u,y, t)du

+

∫ (
µ2(u,y,x)M2(u,x) + µ(ρ)(u,y)B2(u,x)

)
Z2(u,x, t)du

+ µ(ρ)(y,x)B1(y)Z1(y) + µ(ρ)(x,y)B1(x)Z1(x). (7.14)

Equation (7.14) has a similar form to the second moment dynamics given by (4.23) for

movement only. Here, the negative component accounts for departure from x by movement

or death, conditional on the presence of a cell at y, and symmetric terms for departure from

y. The first integral term represents arrival at x via either movement from a starting location

u or dispersal of a daughter cell from a parent at u, conditional on the presence of a cell at

y. The second integral contains symmetric terms corresponding to departure from y. The

final two terms, which do not appear in (4.23), describe dispersal of a daughter cell to x from

a parent at y, and vice-versa. Equation (7.14) is the same as that derived by Plank and Law

(2015) [61], with the exception that the movement kernel µ2(x,y, z) incorporates neighbour-

dependent directional bias into the dynamics, providing insights into how directional bias

affects spatial structure in a cell population undergoing birth, death and movement.
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7.2.5 Spatially Homogeneous Moment Dynamics

In a spatially homogeneous setting, the dynamics of spatial moments can be expressed in

terms of displacements between physical locations, as described in Section 4.6 for the original

model without birth and death. Here, we use the same notation as in Section 4.6 to describe

the dynamics of the first and second moments for a spatially homogeneous distribution of

cells.

The first moment dynamics are now independent of x and, using the constraint
∫
µ(u,x)dx =

1 and
∫
µ(ρ)(u,x)dx = 1, equation (7.10) simplifies to:

dZ1

dt
= (B1 +D)Z1, (7.15)

where

B1 = ρ+

∫
wρ(ξ)

Z2(ξ)

Z1
dξ. (7.16)

Therefore, in the spatially homogeneous case the dynamics of the first moment are not directly

affected by movement (because the movement terms have been cancelled out in (7.15)).

However, movement can influence the dynamics of the second moment, thus the effects of

movement can channel to the first moment dynamics indirectly through the Z2(ξ) term in

(7.16).

The dynamics of the second moment are given by

dZ2(ξ)

dt
= − (M2(ξ) +M2(−ξ) + 2D)Z2(ξ)

+

∫ (
µ2(ξ

′′, ξ′′ + ξ)M2(ξ
′′ + ξ) + µ(ρ)(ξ′′)B2(ξ

′′ + ξ)
)
Z2(ξ

′′ + ξ)dξ′′

+

∫ (
µ2(ξ

′′, ξ′′ − ξ)M2(ξ
′′ − ξ) + µ(ρ)(ξ′′)B2(ξ

′′ − ξ)
)
Z2(ξ

′′ − ξ)dξ′′

+
(
µ(ρ)(−ξ) + µ(ρ)(ξ)

)
B1Z1. (7.17)

The movement rate M2(ξ), movement PDF µ2(ξ, ξ
′) and neighbour-dependent bias b2(ξ)

were given previously in (4.26), (6.13) and (6.14) respectively. The birth rate B2(ξ) for a

cell, in a pair with a neighbour displaced from it by ξ, is

B2(ξ) = ρ+

∫
wρ(ξ

′)
Z3(ξ, ξ

′)

Z2(ξ)
dξ′ + wρ(ξ). (7.18)
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The PDF µρ(ξ) for dispersal of offspring a displacement ξ away from the parent cell is

µ(ρ)(ξ) =
1

2πσ2µρ
exp

(
−|ξ|2

2σ2µρ

)
. (7.19)

The boundary condition is as follows:

Z2(ξ)→ Z2
1 as |ξ| → ∞. (7.20)

7.3 Numerical Results

In this section we consider to what extent spatial structure affects the collective dynamics

of a cell population undergoing birth, death and movement. We are also interested in how

neighbourhood interactions affecting birth and movement give rise to spatial structure and

the relative importance of each structure-generating mechanism. To approach these prob-

lems, we simulate our IBM for cell birth, death and movement and consider the growth of

the population by computing average cell density N(t)/(LxLy) over time t. We are primar-

ily interested in the role of crowding effects, such as contact inhibition of proliferation, in

population growth. Therefore, we only consider values of γ < 0 such that a cell’s birth rate

is reduced by interactions with neighbours and the growing population eventually reaches a

steady state average cell density. In the context of in vitro cell studies, steady state corre-

sponds to the average cell density of a population that has reached confluence (i.e. the cell

carrying capacity), beyond which further growth is limited by the availability of space and

nutrients [1]. In addition, we choose γ < 0 to be sufficiently small so as not to violate the

positivity constraint of the expected birth rate B1 and B2(ξ).

The extent of spatial structure arising in a realisation of the IBM at a particular time is

quantified by computing a pair-correlation function CIBM (r). Averaged results from repeated

IBM realisations are compared to numerical solutions of the spatial moment model to explore

how well it approximates the underlying stochastic process. As in Chapters 5 and 6, we

consider a spatially homogeneous problem by solving the dynamics of the first and second

moment described in Section 7.2.5. Again, we compute a PCF CSM (ξ) = Z2(ξ)/Z2
1 but

only show a radial section of CSM (ξ) which we denote CSM (r), where r = |ξ|. Initially,

cells are distributed across the domain according to a spatial Poisson process with intensity

N(t)/(LxLy), corresponding to Z2(ξ) = Z2
1 in the spatial moment dynamics. The system is
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allowed to reach steady state before simulations are stopped, which is determined to have

occurred once there is no longer a noticeable difference in the dynamics of the first and second

spatial moments over time.

7.3.1 Numerical Methods

Equation (7.22) for the mean-field dynamics of the first spatial moment (derived below) is

solved using MATLAB’s in-built ode23 solver. We perform a numerical integration of equa-

tion (7.17) for the second moment dynamics following the method outlined in Section 6.3.1.

The conditions at the boundary of the discretised ξ domain are approximately mean-field

such that Z2(ξ) ≈ Z2
1 at the boundary. Therefore, we compute the first spatial moment

over time by taking the square root of the value of Z2(ξ) at a corner of the domain, i.e.

Z1 =
√
Z2(ξmax, ξmax). Because the computation must be constrained to a finite-size discre-

tised spatial grid, the value of
√
Z2(ξmax, ξmax) is only an approximation to Z1 and will not

correspond exactly to the value of Z1 obtained by solving equation (7.15) numerically. There-

fore, numerical integration of the full coupled system of equations (7.15) and (7.17) would

involve small inconsistencies in the value of Z1. To avoid this discrepancy we solve only

equation (7.17) and obtain the solution to the first moment by computing
√
Z2(ξmax, ξmax)

over time.

The dispersal PDF µ(ρ)(ξ) is normalised numerically using the trapezium rule such that∫
µ(ρ)(ξ)dξ = 1. We carry out the same truncation of kernels as outlined in Section 6.3.1.

Similarly, the tails of the interaction kernel wρ(ξ) and dispersal PDF µ(ρ)(ξ) are truncated

such that wρ(ξ) = µ(ρ)(ξ) = 0 over the domain |ξ| > ξmax/2 and we ensure that (1/λµ +

4σµ) ≤ 4σρ, 4σµρ ≤ ξmax/2.

7.3.2 Mean-field Population Dynamics

In order to understand the effects of spatial structure on the collective dynamics, it is useful to

first consider how a population behaves in the complete absence of spatial structure, i.e. for a

Poisson spatial pattern of cells. In terms of spatial moments this corresponds to Z2(ξ) = Z2
1

(the mean-field assumption). Applying Z2(ξ) = Z2
1 to equation (7.16) gives the expected

birth rate B1 of a cell for the mean-field case:

B1 = ρ+ Z1

∫
wρ(ξ)dξ. (7.21)
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Our choice of interaction kernel wρ(ξ), given in (7.4), has the property that
∫
wρ(ξ)dξ =

γ(2πσ2ρ). Using this property and substituting (7.21) into (7.15) gives the mean-field dynamics

of the first spatial moment:

dZ1

dt
= (ρ− d)Z1 + γ(2πσ2ρ)Z

2
1 . (7.22)

Here, the first term represents growth of the population arising due to intrinsic cell birth and

death. The second term accounts for the overall effect of interactions affecting the expected

birth rate. In the absence of interactions (i.e. for γ = 0), the population grows exponentially

with rate (ρ− d) and the average cell density over time is described by

Z1(t) = Z1(0) exp ((ρ− d)t) . (7.23)

When interactions are present (i.e. for γ < 0), the population undergoes logistic growth and

reaches an equilibrium average cell density

Z∗1 =
d− ρ
γ(2πσ2ρ)

. (7.24)

In the original IBM (for movement only) spatial structure was generated both by the

neighbour-dependent component of cell movement rate and by the neighbour-dependent di-

rectional bias. With cell birth and death there are two additional mechanisms that can affect

the spatial structure: short-range dispersal of offspring and short-range neighbourhood inter-

actions affecting cell birth rate. Therefore, in order to simulate mean-field conditions where

there is no spatial structure, we use a wide interaction kernel wρ(ξ) (such that pairs of cells

can interact over long spatial ranges) and a wide dispersal kernel. In addition we switch off

the structure-generating mechanisms of neighbour-dependent motility and directional bias by

setting α = β = 0. Figure 7.1 shows the first and second spatial moments over time for a cell

population undergoing birth, death and intrinsic movement (i.e. neighbourhood interactions

do not affect cell movement rate or direction). We consider the growth of the population

for a non-spatial case by simulating the IBM using a wide interaction kernel wρ(ξ) and wide

dispersal kernel µ(ρ)(ξ). Under these conditions the population undergoes logistic growth and

reaches an equilibrium average cell density of approximately 0.8, as shown in Figure 7.1(a).

Initially the average cell density is low so the overall effect of neighbourhood interactions is
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Figure 7.1: Mean-field dynamics for a cell population undergoing birth, death and intrinsic
movement (α = 0, β = 0) in a 20 x 20 domain. Initially, the size of the cell population is
N(0) = 100. The IBM is simulated until t = 60 and results are averaged over 20 realisations.
Interactions and disperal occur over a large spatial range (σρ = σµρ = 2). Parameters are
m = 5, ρ = 1, d = 0.6, γ = −0.5/(2πσ2ρ) = −0.02, λµ = 2.5, σµ = 0.1. (a) First spatial
moment over time predicted by the IBM (solid blue line) is compared to that approximated
by the spatial moment model (red broken line), solved using ∆ = 0.2, ξmax = 8 and a power-2
(4,1,1) closure. The mean-field approximation of population growth (the numerical solution
of (7.22) which assumes Z2(ξ) = Z2

1 ) is shown as the black dotted line. (b) Time series of the
PCF CIBM (r) computed from IBM simulations (with bin width δr = 0.2). (c) Time series
of the PCF CSM (r) predicted by the spatial moment model.

sufficiently weak to allow the population to grow (i.e. B̂i > D̂i). As the average cell density

increases, neighbourhood interactions start to have a greater effect until eventually they are

strong enough that B̂i ≈ D̂i and the population reaches steady state.

The numerical solution to equation (7.22), for the mean-field dynamics of the first spatial

moment, describes the growth of the population in the complete absence of spatial structure
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and agrees well with the IBM’s prediction. However, the mean-field dynamics rely on the

assumption that Z2(ξ) = Z2
1 over time (corresponding to a PCF C(r) = 1) while the IBM

predicts that a very small degree of spatial structure arises in the population initially (Figure

7.1(b)). The dispersal of offspring that accompanies cell birth generates a weak cluster spatial

pattern because even though the dispersal kernel is wide, it is still slightly concentrated at

small displacements. In other words, a daughter cell has a slightly higher probability of being

dispersed a short distance from the parent cell than a large distance, giving rise to weak

clustering. Therefore, spatial structure is most noticeable initially when the overall birth

rate B̂i tends to be high because the combined effect of neighbourhood interactions is weak.

The spatial structure dissipates as the population grows and the effect of neighbourhood

interactions becomes strong enough to counteract the clustering generated by dispersal. At

steady state the PCF CIBM (r) ≈ 1, however, because the Gaussian kernels are slightly

concentrated at short displacements, CIBM (r) will always be slightly greater than 1 at short

displacements. The presence of this weak spatial structure explains why the IBM predicts

slightly slower population growth initially and a lower steady state average cell density than

that of the mean-field dynamics.

The numerical solutions to equations (7.15)-(7.17) for the dynamics of the first and second

spatial moments, employing the same wide kernels, are also shown in Figure 7.1. The moment

model provides a very good approximation to both the first and second spatial moments

over time for this non-spatial case. We now consider how spatial structure is generated by

neighbourhood interactions affecting cell birth and by the dispersal of offspring, and explore

the effect of this spatial structure on population growth.

7.3.3 Moment Closure

In our original model we employed a power-3 closure in order to close the system of spa-

tial moment dynamics at second order. While this closure performed well when only cell

movement was considered, except for strongly clustered spatial patterns, we now compare its

performance against other choices of closure for the extended model with cell birth and death.

Figure 7.2 shows the dynamics of the first and second spatial moments predicted by the IBM

and the spatial moment model for four different closures. We consider a symmetric power-

1 closure, symmetric power-2 closure, asymmetric power-2 closure with weighting {4, 1, 1},

and power-3 closure [79]. These closures tend to perform well when the spatial pattern is
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Figure 7.2: Comparison of closures for the third spatial moment. Collective dynamics of a
cell population, of initial size N(0) = 100, undergoing birth, death and movement in a 20 x
20 domain. Parameters are m = 5, ρ = 1, d = 0.6, α = β = 0, γ = −0.5, σρ = σµρ = 0.5,
λµ = 2.5, σµ = 0.1. Dynamics of spatial moments predicted by the IBM (solid blue line)
(averaged over 20 realisations) are compared to those approximated by the spatial moment
model (∆ = 0.2 and ξmax = 8) solved using a power-1 closure (red dashed-dotted line),
power-2 closure with weighting {1, 1, 1} (red dotted line), power-2 closure with weighting
{4, 1, 1} (red solid line) and power-3 closure (red dashed line): (a) First spatial moment Z1(t)
over time t; (b) Second spatial moment, expressed as a PCF C(r) (with bin width δr = 0.2),
computed at t = 60, by which time the system is at steady state.

Poisson or regular but are more limited for cluster spatial patterns [96], therefore we carry

out our comparison under conditions that generate clustering. Figure 7.2(a) shows the first

spatial moment over time predicted by the four closures. All closures predict a steady state

average cell density below the mean-field density, with the power-1 and asymmetric power-2

closures providing the best fit to the IBM. In Figure 7.2(b) we compare the second spatial

moment estimated by each closure once the system has reached steady state. While all the

closures underestimate the second moment to some extent, the power-3 closure provides the

poorest fit to the IBM. The asymmetric power-2 closure with weighting {4, 1, 1} has the best

performance under these conditions, therefore we employ this closure in the remainder of our

numerical analysis.

7.3.4 Width of Interaction and Dispersal Kernels

We now consider how spatial structure is generated by neighbourhood interactions and dis-

persal, and how this in turn affects the growth of a population undergoing birth, death and

intrinsic movement. In some of the results below we see similar trends to those predicted by

the spatial logistic model in studies by Bolker and Pacala (1997) [80] and Law, Murrell and
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Dieckmann (2003) [65]. Before considering the combined effect of neighbour-dependent birth

rate and dispersal, it is first helpful to consider what kind of spatial structure each mechanism

is independently generating. When dispersal of offspring occurs over a short spatial range (i.e.

using a narrow dispersal kernel µ(ρ)(ξ)) this generates clusters of individuals. However, the

independent effects of neighbour-dependent birth cannot be so easily determined because this

mechanism’s ability to affect spatial structure is dependent upon dispersal. When neighbour-

hood interactions occur over a short range (narrow interaction kernel wρ(ξ)) the birth rates

of individuals in close proximity are reduced. Therefore, if the spatial pattern is clustered,

individuals separated by larger displacements give birth at a higher rate than those within

clustered regions, thereby filling up the remaining space with dispersed offspring and breaking

down the spatial structure. On the other hand, for a regular spatial pattern, individuals are

less likely to have close-lying neighbours so the overall effect of short-range neighbourhood

interactions is low. Thus, the birth rates for individuals are higher than would be expected in

the absence of any spatial structure. This leads to a rapid filling of the space with dispersed

offspring which breaks down the regular pattern. Therefore, short-range neighbourhood in-

teractions act to break down spatial structure, promoting a Poisson spatial pattern, but this

effect is reliant on the dispersal of offspring.

In the non-spatial case we employed wide kernels such that cell interactions and dispersal

of offspring occurred over a long spatial range. This resulted in a Poisson spatial pattern

and logistic population growth. Figure 7.3 shows how employing kernels of different widths

affects the first and second spatial moments. When varying the width of interaction kernel

wρ(ξ) we set interaction strength γ = −0.5/(2πσ2ρ). This ensures that while the range of

neighbourhood interactions is varied (by choosing different values of σρ), the overall summed

contribution of interactions remains the same (i.e. the integral of wρ(ξ) over ξ remains fixed).

If γ were instead fixed, the steady state average cell density would merely tend to zero with

increasing kernel width.

We first consider a case where cells interact over a long spatial range (wide interaction

kernel wρ(ξ)) and offspring are dispersed over a short range (narrow dispersal kernel µ(ρ)(ξ))

(Fig. 7.3(a)-(d)). In this case, the short-range dispersal of offspring promotes clustering, as

indicated by C(r) > 1 at short displacements (Fig. 7.3(d)). The cluster spatial pattern is

relatively strong because the wide interaction kernel can do little to counteract this spatial

structure. In the non-spatial dynamics, the population grew until it reached a steady state
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Figure 7.3: Effect of varying width of interaction kernel wρ(ξ) and dispersal kernel µ(ρ)(ξ).
Collective dynamics for a cell population, of initial size N(0) = 100, undergoing birth, death
and intrinsic movement (α = 0, β = 0) in a 20 x 20 domain. The IBM is simulated until t = 60
and results are averaged over 20 realisations. First and second spatial moments predicted by
the IBM (solid blue line) are compared to those approximated by the spatial moment model
(red broken line), solved using ∆ = 0.2 and ξmax = 8. Parameters are m = 5, ρ = 1, d = 0.6,
λµ = 2.5, σµ = 0.1. Row 1: Kernel widths are σρ = 2, σµρ = 0.5, and γ = −0.5/(2πσ2ρ) =
−0.02. Row 2: Kernel widths are σρ = 0.5, σµρ = 2, and γ = −0.5/(2πσ2ρ) = −0.32. Row 3:
Kernel widths are σρ = 0.5, σµρ = 0.5, and γ = −0.5/(2πσ2ρ) = −0.32. (a), (e), (i) Interaction

kernel wρ(ξ); (b), (f), (j) dispersal kernel µ(ρ)(ξ); (c), (g), (k) first spatial moment Z1(t) over
time; (d), (h), (l) PCF C(r) (with bin width δr = 0.2) computed at t = 60.

average cell density Z∗1 = 0.8, by which point the combined effect of neighbourhood interac-

tions was sufficiently strong to limit further growth. However, when the spatial pattern is

clustered the steady state average cell density is slightly lower than for the non-spatial case,
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as shown in Figure 7.3(c). Despite the weak interaction weight associated with a wide kernel

wρ(ξ), close neighbours interact more strongly than those displaced far apart because the

wide Gaussian kernel is still slightly concentrated around short displacements. The presence

of a cluster spatial pattern means that cell pairs are more likely to be separated by short

displacements where neighbourhood interactions have the strongest effect. Therefore, despite

the weak interaction weight, the threshold average cell density at which the combined effect of

neighbourhood interactions starts to restrict population growth is lower than if spatial struc-

ture were absent. On the other hand, if the interaction kernel was perfectly uniform with

respect to separation distance, then the presence of clustering would have no effect on the

steady state average cell density. These results agree well with those predicted by the spatial

logistic model, in which clustering generated by short-range dispersal and long-range inter-

actions also gave rise to a lower steady state average cell density than that of a non-spatial

case [65,80].

In the absence of cell movement, the population would approach its steady state average

cell density at a slower rate than the non-spatial case because the initially uninhabited space

could only be filled slowly by the dispersal of offspring over short distances [65]. In contrast,

the long-range dispersal in the non-spatial dynamics would facilitate more rapid filling of the

available space. However, with motile cells the initial population growth is only slightly slower

than for the non-spatial dynamics. This is because movement predominates over dispersal as

the space-filling mechanism (m� ρ), thus altering the dispersal range has little consequence

for the initial rate of population growth.

Next, we consider a case where neighbourhood interactions occur over a short spatial range

while offspring are dispersed over a wide range (Fig. 7.3(e)-(h)). Here, the wide dispersal

kernel can promote only very weak clustering and this spatial structure is broken down by

the strong, short-range interactions which greatly reduce the birth rates of any close-lying

neighbours. This results in a Poisson spatial pattern (indicated by C(r) ≈ 1) (Fig. 7.3(h))

and logistic population growth matching the mean-field dynamics (Fig. 7.3(g)).

Finally, we explore the collective dynamics when both neighbourhood interactions and

dispersal of offspring occur over a short spatial range (Fig. 7.3(i)-(l)). Again, the short-range

dispersal promotes clustering in the population. However, in this case the short-range neigh-

bourhood interactions counteract this effect, partially breaking down the spatial structure.

The resulting cluster spatial pattern (Fig. 7.3(l)) is therefore weaker than that observed in
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Figure 7.3(d) where long-range interactions could do little to counteract the spatial struc-

ture. Despite this weaker cluster pattern, the steady state average cell density (Fig. 7.3(k))

is even lower than that shown in Figure 7.3(c). This is likely owing to the fact that the short-

range neighbourhood interactions are considerably stronger at short displacements than the

long-range interactions. Fixing γ = −0.5/(2πσ2ρ) ensures that, for a Poisson spatial pattern,

varying σρ does not change the summed contribution from neighbours to the birth rate B1.

However, for a particular cluster spatial pattern the summed contribution from neighbours

is greater (in magnitude) for the small kernel width σρ = 0.5 than the large kernel width

σρ = 2. Therefore, with the same extent of clustering at steady state, the narrow interaction

kernel would result in a lower birth rate B1 and consequently a lower steady state average cell

density compared to the wide kernel. In Figure 7.3 the steady state cluster spatial pattern

is slightly weaker for the narrow interaction kernel, however it is still sufficiently strong to

result in a lower steady state average cell density (Fig. 7.3(k)) than for the wide kernel (Fig.

7.3(c)).

It is also worth noting that the rate at which the population grows to its steady state

average cell density is slowest in the third case. As discussed above, this is because the

available space is filled more slowly by offspring dispersed over short distances compared to

long-range dispersal, even though cell movement facilitates faster filling of the space. The

slow growth rate is more noticeable here because, at the initially low average cell densities,

short-range dispersal quickly generates clustering and offspring are deposited close enough to

parent cells that they are immediately within the range at which interactions are very strong

(compared to the wide interaction kernel). Therefore, parents interact strongly with their own

offspring and even at early times the overall strength of short-range interactions is already

sufficient to reduce birth rate and slow population growth. A similar result was observed

with the spatial logistic model, in which short-range interactions and dispersal also gave rise

to slow population growth and a particularly low steady state average cell density [65,80].

7.3.5 Neighbour-dependent Birth

We now consider the effect on the collective dynamics of varying the strength of neighbour-

hood interactions affecting cell birth rate (by varying interaction strength γ). We employ the

same interaction and dispersal kernel widths as in Figure 7.3(i)-(j) such that neighbourhood

interactions and the dispersal of offspring occur over a short spatial range. Figure 7.4 com-
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Figure 7.4: Effect of varying interaction strength γ. Collective dynamics for a cell population,
of initial size N(0) = 100, undergoing birth, death and intrinsic movement (α = 0, β = 0)
in a 20 x 20 domain. The IBM is simulated until t = 60 and results are averaged over 20
realisations. First and second spatial moments predicted by the IBM (blue lines) against
those approximated by the spatial moment model (red lines), solved using ∆ = 0.2 and
ξmax = 8. Parameters are m = 5, ρ = 1, d = 0.6, λµ = 2.5, σµ = 0.1, σρ = σµρ = 0.5. Three
different values of interaction strength γ are considered: γ = −0.25 (dotted lines), γ = −0.32
(solid lines) and γ = −0.5 (dashed lines). The corresponding mean-field equilibrium average
cell density (correct to 2 d.p.) is Z∗1 = 1.02 for γ = −0.25, Z∗1 = 0.80 for γ = −0.32, and
Z∗1 = 0.51 for γ = −0.5. (a) First spatial moment Z1(t) over time t; (b) Second spatial
moment, expressed as a PCF C(r) (with bin width δr = 0.2), computed at t = 60.

pares the first and second spatial moments for the strength γ = −0.32 (employed previously

in Fig. 7.3(k)-(l)) and two other values of γ < 0. For each value of γ < 0, a cluster spatial

pattern is generated (Fig. 7.4(b)) and the steady state average cell density is below that

predicted by the mean-field dynamics (Fig. 7.4(a)). When kernel widths are fixed, increasing

the strength of interactions (i.e. increasing the magnitude of γ < 0) reduces the steady state

average cell density (Fig. 7.4(a)) but results in a greater extent of spatial structure at steady

state (Fig. 7.4(b)). To understand why this is the case it helps to consider the growth of the

population as it unfolds.

Initially, the spatial pattern is Poisson and average cell density is low so cells are less

likely to come into close enough proximity for short-range interactions to have any effect.

This means the birth rates of cells in the initial population are high on average and the

population starts to grow. The short-range dispersal of offspring that accompanies cell birth

quickly generates strong clustering in the regions of space occupied by each parent cell from

the initial population, although cell movement diffuses this spatial structure to some extent.

Within these clusters, neighbouring cells are more likely to be located close enough together
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for short-range neighbourhood interactions to come into play. Owing to the cluster spatial

pattern, for high magnitudes of γ < 0 (e.g. γ = −0.5) the overall effect of neighbourhood

interactions is already sufficiently strong at these low average densities that cell birth rates

are significantly reduced. In this case the population grows slowly to a low steady state

average cell density beyond which further population growth is restricted by neighbourhood

interactions (Fig. 7.4(a)). In Figure 7.3(h) we saw that strong short-range neighbourhood

interactions can break down spatial structure to promote a Poisson spatial pattern as average

cell density increases. However, because the steady state average cell density is low here, there

has not been much opportunity for neighbourhood interactions to break down the cluster

spatial pattern and it remains strong at steady state (Fig. 7.4(b)).

In contrast, when the magnitude of γ < 0 is small (e.g. γ = −0.25), the overall effect

of neighbourhood interactions is insufficient to slow population growth at early times when

average cell density is low, in spite of the cluster spatial pattern. Therefore, the population

undergoes rapid growth initially. The cluster pattern weakens over time because short-range

interactions reduce the birth rates of cells in close proximity while those separated by larger

displacements give birth at high rates and rapidly fill the available space with offspring. This

continues until average cell density reaches the threshold at which interactions are strong

enough overall to halt population growth. Therefore, at steady state the extent of spatial

structure that remains is less than for higher magnitudes of γ < 0, as shown in Figure 7.4(b).

As previously mentioned, we only consider values of γ < 0 that do not violate the positivity

constraint of the expected birth rate B1 and B2(ξ). However, owing to the IBM’s inherent

stochasticity, negative individual birth rates B̂i can arise at a particular time by chance and

the maximum formula in (7.3) ensures these rates are set to B̂i = 0. For the results presented

in Figure 7.4, these rates B̂i = 0 represented 1.3% of the birth rates of all cells over time

when γ = −0.25, 2.4% when γ = −0.32 and 5.6% when γ = −0.5. Despite the spatial

moment model not accounting for this effect, we see a reasonable agreement between the first

and second spatial moments predicted by the IBM and moment approximation over time.

Employing larger magnitudes of γ < 0 (e.g. γ = −0.6) in simulations of the IBM causes the

population size to decline rather than grow and can lead to extinction. However, we do not

consider such cases here because the required magnitudes of γ < 0 are sufficiently large to

violate the positivity constraint of B1 and B2(ξ).
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7.3.6 Neighbour-dependent Birth with Directional Bias

So far we have explored the collective dynamics for a cell population undergoing neighbour-

dependent birth and death with only intrinsic movement. We now consider how the dynamics

are affected when movement with neighbour-dependent directional bias is incorporated. Fig-

ure 7.5 shows the first and second spatial moments for different values of interaction strength

β, where the width of interaction/dispersal kernels and interaction strength γ are all fixed

with the same values employed in Figure 7.4. For ease of comparison we also show the results

for β = 0 that were described in the previous section. We previously explained that for

values of β > 0 the directional bias acts as a repulsive force to promote a regular spatial

pattern while for values of β < 0 the force is attractive and promotes clustering. In addition,

increasing the magnitude of β leads to stronger spatial structure.

Figure 7.5(b) shows that for β < 0 the directional bias and dispersal mechanisms work

cooperatively to generate a stronger cluster pattern than would occur in the absence of bias.

Initially, the overall effect of neighbourhood interactions is low so short-range dispersal is

likely to be the predominant mechanism driving clustering. However, as average density

increases (Fig. 7.5(a)), neighbourhood interactions become stronger and directional bias

plays a greater role as an attractive force, driving cells towards clustered regions and rapidly

strengthening the cluster spatial pattern. The steady state average cell density is therefore

lower than in the absence of bias (e.g. β = −0.2 in Fig. 7.5(a)) because with stronger

clustering the overall effects of neighbour-dependent birth can halt population growth at lower

average cell densities. Figure 7.5(a) shows that a sufficiently strong directional bias towards

crowded regions (e.g. β = −0.3) can actually cause the population to decline. At first, average

cell density increases because the combined effect of neighbourhood interactions is weak for

the initially Poisson pattern of cells. However, the combination of short-range dispersal and

strong directional bias quickly generates clustering to the extent that the expected neighbour-

dependent birth rate is reduced below the value of the expected death rate. This causes the

population to decline to a steady state average cell density lower than the initial density

(Fig. 7.5(a)). The spatial structure at steady state is a particularly strong cluster spatial

pattern in this case (Fig. 7.5(b)), so strong in fact that there is some disagreement between

the predictions of the IBM and the moment approximation. This can likely be attributed

to the deterioration in performance of the power-2 moment closure as an approximation for
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Figure 7.5: Effect of directional bias for different interaction strengths β. Collective dynamics
for a cell population, of initial size N(0) = 100, undergoing birth, death and movement
in a 20 x 20 domain. The IBM is simulated until t = 60 and results are averaged over
20 realisations. First and second spatial moments predicted by the IBM (blue lines) are
compared to those approximated by the spatial moment model (red lines), solved using
∆ = 0.2 and ξmax = 8. Parameters are m = 5, ρ = 1, d = 0.6, λµ = 2.5, σµ = 0.1,
α = 0, γ = −0.32, σv = σρ = σµρ = 0.5. Four different values of interaction strength β are
considered: β = 0.3 (dotted lines), β = 0 (solid lines), β = −0.2 (dashed lines) and β = −0.3
(dashed-dotted lines). (a) First spatial moment Z1(t) over time t; (b) Second spatial moment,
expressed as a PCF C(r) (with bin width δr = 0.2), computed at t = 60.

increasingly strong cluster spatial patterns.

On the other hand, for β > 0 (e.g. β = 0.3 in Fig. 7.5) the directional bias acts as a

repulsive force which counteracts the cluster-generating effects of short-range dispersal. At

very early times, the spatial pattern is clustered because the overall weak effect of neighbour-

hood interactions enables short-range dispersal to rapidly generate structure (i.e. birth rate

is high) while biased movement is insufficiently strong to completely break down this struc-

ture (results not shown). However, as the average density increases, neighbour-dependent

biased movement overcomes short-range dispersal as the predominant structure-generating

mechanism and eventually leads to a regular pattern at steady state (Fig. 7.5(b)). This

regular spatial pattern reduces the proximity between neighbours so that the overall effect of

interactions on an individual’s birth rate is lower than would be expected in the absence of

spatial structure. As a result, neighbour-dependent birth permits growth of the population to

a higher steady state average cell density than that of the mean-field dynamics (Fig. 7.5(a)).

The results presented here share similar traits to those of the spatial logistic model [65,80].

In both cases, the steady state average cell density is lower than that expected from the non-

spatial dynamics for a cluster spatial pattern and higher than expected for a regular pattern.
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Figure 7.6: Effect of neighbour-dependent motility for different interaction strengths α. Col-
lective dynamics for a cell population, of initial size N(0) = 100, undergoing birth, death
and movement in a 20 x 20 domain. The IBM is simulated until t = 60 and results are
averaged over 20 realisations. First and second spatial moments predicted by the IBM (blue
lines) are compared to those approximated by the spatial moment model (red lines), solved
using ∆ = 0.2 and ξmax = 8. Parameters are m = 5, ρ = 1, d = 0.6, λµ = 2.5, σµ = 0.1,
β = 0, γ = −0.32, σw = σρ = σµρ = 0.5. Three different values of interaction strength α are
considered: α = 1 (dotted lines), α = 0 (solid lines) and α = −1 (dashed lines). (a) First
spatial moment Z1(t) over time t; (b) Second spatial moment, expressed as a PCF C(r) (with
bin width δr = 0.2), computed at t = 60.

A similar decline in the population was also observed with the spatial logistic model for

particularly strong clustering generated by short-range interactions/dispersal [65].

7.3.7 Neighbour-dependent Birth and Motility

Finally, we consider the effect of neighbour-dependent motility on the dynamics of a cell

population undergoing neighbour-dependent birth and death (but in the absence of directional

bias). Previously, we showed that for α > 0 neighbourhood interactions give rise to an increase

in movement rate which promotes a regular spatial pattern. For α < 0, movement rate is

reduced by interactions and thereby promotes clustering. Figure 7.6 shows the first and

second spatial moments for a value of α > 0 and α < 0. Results for α = 0 are also shown for

comparison.

As was the case for movement with directional bias, the neighbour-dependent motility

mechanism can work cooperatively with short-range dispersal to promote clustering when

α < 0. Offspring dispersed within close proximity of other individuals have their motility

rates reduced thereby making it harder for them to escape the spatial structure. This results

in a stronger cluster spatial pattern at steady state (Fig. 7.6(b)) and thus a lower steady state
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average cell density than occurs with only intrinsic movement (Figure 7.6(a)). In contrast,

for α > 0, neighbour-dependent motility counteracts short-range dispersal enabling cells

within clustered regions to move at a faster rate which diffuses the spatial structure. For the

value of α < 0 employed in Figure 7.6, neighbour-dependent motility is sufficiently strong

to partially counteract the clustering generated by short-range dispersal but too weak to

generate a regular spatial pattern. Therefore, at steady state the spatial structure is very

weakly clustered (Fig. 7.6(b)) and average cell density is lower than that expected in the

absence of neighbour-dependent movement (Fig. 7.6(a)).

7.4 Discussion

Incorporating birth and death into our model for cell movement provides insights into how

these key processes generate spatial structure and how, in turn, this structure impacts the

growth of a cell population. We are particularly interested in the role that directional bias

plays in these dynamics. We previously found that both neighbour-dependent movement rate

and directional bias generated spatial structure in the system. In the presence of cell birth

and death, spatial structure is also affected by the dispersal of offspring and a neighbour-

dependent birth rate. Our numerical results show that while dispersal generates clustering,

neighbourhood interactions that reduce an individual’s birth rate act to break down the struc-

ture to promote a Poisson spatial pattern. Varying the range over which dispersal/interactions

occur (i.e. by varying kernel widths) or varying the strength of interactions affects the extent

to which spatial structure is generated. Our results show that spatial structure can cause

both the rate of population growth and the average cell density at steady state to differ

from that of the non-spatial dynamics. In general, the presence of clustering causes slower

growth to a lower than expected steady state average cell density. A regular spatial pattern

allows the population to grow rapidly to average cell densities above those observed in the

non-spatial dynamics.

Movement, in particular directional bias, also plays an important role in the population

dynamics. Intrinsic movement diffuses the spatial structure because offspring can move out of

the clusters generated by short-range dispersal. Neighbour-dependent directional bias away

from regions of crowding is more effective at breaking down this structure because cells un-

dergo directed movement out of clusters. If the bias is sufficiently strong, movement can
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completely counteract the effects of dispersal to generate a regular spatial pattern. On the

other hand, bias towards crowded regions strengthens the clustering generated by dispersal.

A neighbour-dependent movement rate gives rise to similar effects: either clustering is bro-

ken down because cells with close neighbours move with increased rate, or the pattern is

strengthened due to low motility of clustered cells. However, directional bias is the stronger

of these two mechanisms.

Our numerical results display similar trends to those predicted by the spatial logistic

model [65, 80], despite some differences in the underlying mechanisms of each model. For

instance, we observe similar effects of clustering and regular spatial patterns on the growth

of the population. In general, varying the kernel widths resulted in greater departures from

the mean-field dynamics with the spatial logistic model than were observed in our results.

This is because the spatial logistic model did not incorporate movement, therefore the spatial

structure generated by short-range interactions and dispersal was stronger than for our model

(where movement partially diffused the structure). In the spatial logistic model, competi-

tive short-range neighbourhood interactions generated a regular spatial pattern by increasing

the death rates of individuals with close neighbours. This is not observed with our model

because, in the absence of neighbour-dependent movement, neighbourhood interactions can

only break down the spatial structure generated by short-range dispersal. However, incor-

porating directional bias allows a wider range of spatial structures to be explored, including

regular patterns. For these results we observe departures from the mean-field dynamics that

are qualitatively similar to those of the spatial logistic model, even though the mechanisms

generating the spatial structures differ [65].

We explore the effect of neighbourhood interactions on population growth by allowing the

birth rate of an individual to comprise both an intrinsic component and a component which

depends on the presence of other cells in its neighbourhood. Implementing this mechanism

for neighbour-dependent birth alongside intrinsic death provides insights into how crowding

effects, such as contact inhibition of proliferation, give rise to spatial structure and influ-

ence population growth. With neighbour-dependent birth the growing population eventually

reaches a steady state average cell density, which is an observed feature of population growth

studied in vitro [1]. However, other approaches which incorporate neighbour-dependent ef-

fects into birth and death processes are also discussed in the literature. For instance, models

which implement intrinsic birth with neighbour-dependent death are popular in the ecology
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literature as they allow the effects of competition or predation on population growth to be

explored [65, 70, 80, 86]. One advantage of this approach is that an individual’s death rate is

increased by competitive neighbourhood interactions. Therefore, spatial logistic-type growth

can still be observed but without the risk of an individual’s birth or death rate ever be-

coming negative, even when interactions are strong. With neighbour-dependent birth, the

range of interaction strengths we can consider is restricted by our need to avoid negative

expected birth rates, thus implementing neighbour-dependent death provides greater scope

for exploring parameter space.

Another important difference concerns the effect of each mechanism on the spatial struc-

ture. Our results show that a Poisson spatial pattern is promoted by short-range neigh-

bourhood interactions that reduce birth rate. However, this ability to break down spatial

structure is completely reliant on the dispersal of offspring, making the independent effect of

interactions difficult to determine. A more rigorous analysis of parameter space, in particular

kernel width and interaction strength, may provide more insights into this process. With

short-range dispersal, which generates clustering, the overall structure is only ever a Poisson

or a cluster spatial pattern. In terms of population growth this means that the resulting

steady state average cell density can lie below that expected from the mean-field dynamics,

but never above. In contrast, neighbour-dependent death promotes a regular spatial pat-

tern because the death rates of individuals in close proximity are increased, resulting in the

over-dispersal of surviving individuals [65]. This force is separated from dispersal because it

does not affect birth rate so the independent effects of these two mechanisms can be extri-

cated from the overall dynamics. In addition, neighbour-dependent death permits population

growth to average cell densities above that of the mean-field dynamics, which is an effect we

do not observe except in the presence of neighbour-dependent directional bias or motility.

By comparison, neighbour-dependent birth has received less attention in the literature.

This could perhaps partly be explained by a prevalence of ecological examples that involve

competition and predation compared to competitive interactions affecting birth rate. It is

also plausible that the advantages of neighbour-dependent death mentioned above make it a

more appealing approach. Bolker and Pacala (1999) derived a birth-death model for plant

competition in which neighbourhood interactions reduced an individual’s birth rate and rates

that would otherwise be negative were set to zero. They also discussed how this nonlinearity

affected the accuracy of the moment equations for some parameter ranges [105]. A predator-
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prey model featuring neighbour-dependent birth was presented by Murrell (2005) [86]. How-

ever, in this case the predator’s birth rate was fully dependent on neighbourhood interactions

with prey (birth coincided with successful attacks on prey), i.e. there was no intrinsic birth.

Therefore, the strength of interaction was not limited by the positivity constraint. Models

describing birth rate as a sum of an intrinsic and neighbour-dependent component are also

discussed by Dieckmann and Law (2000), and Plank and Law (2015) [61,85].

Despite these differences, we see similar behaviour in the population dynamics predicted

by our model implementing neighbour-dependent birth as were observed in the spatial logistic

model with neighbour-dependent death [65, 80]. Incorporating neighbour-dependent death

would also be biologically relevant for cell movement. For instance, the rate of cell death can

be increased in overcrowded regions due to hypoxia (a lack of extracellular oxygen) or the

local depletion of nutrients [106]. Therefore, there is scope for future work to explore the

effects of neighbour-dependent death on the dynamics of a cell population, particularly in

the presence of directional bias.

Our work has some important implications from a biological perspective, in particular

for the in vitro study of cell movement. The results from our model would suggest that

directional bias has the potential to drastically alter the behaviour of a growing population

compared to if movement were unbiased. It would be useful to test this prediction in an in

vitro setting. For instance, the growth of a population of cells that secrete a strong chemo-

attractant or -repellant could be compared to the growth in a population where the release of

chemotactic factors was inhibited. If the dynamics do indeed significantly differ, as our model

suggests is possible, then it is important to take this into account when making predictions

about the outcomes of experiments with cells that undergo biased movement. In addition,

if the aim of an experiment is to manipulate collective movement in some way, for example

to enhance or retard movement, then the mechanisms that generate directional bias may be

appropriate targets.



100 CHAPTER 7. MODEL OF A BIRTH-DEATH-MOVEMENT PROCESS



Chapter 8

Concluding Remarks

In this work we have developed a model for collective cell behaviour at two biological scales.

Our model provides insights into how the short-range interactions experienced by cells lead

to self-generated spatial structure in a population and what consequences this has for the

collective dynamics. In particular, we focused on the effect of neighbour-dependent directional

bias on cell movement. To explore the stochastic cell behaviour that arises at a microscopic

scale, we first derived an individual-based model for movement in one-dimensional space.

The IBM was constructed in a lattice-free framework to avoid the drawbacks associated with

restricting movement along an artificially imposed grid. We incorporated mechanisms into

our model that allowed an individual’s direction and rate of movement to depend on the

degree of crowing in its neighbourhood.

To scale up our model and consider behaviour at a macroscopic scale, we used our IBM to

derive a population-level description in terms of the dynamics of spatial moments. Unlike the

majority of population-level models, our moment approximation accounts for the presence

of spatial structure in a population by including the dynamics of the second spatial moment

(an average density of cell pairs).

By carrying out simulations and computing numerical solutions for a homogeneous space,

we were able to show that the spatial moment model provided a good approximation to

the underlying IBM, except in the presence of strong clustering. Analysis of our results

showed that neighbourhood interactions affecting either the direction or rate of an individual’s

movement can give rise to spatial structure in a cell population. Both mechanisms were

capable of behaving either as a repulsive force, to generate a regular spatial pattern, or as an

attractive force to promote clustering. Qualitatively similar spatially homogeneous patterns

are observed in cell populations cultured in vitro [31, 37,74].

As well as offering insights into the role of directional bias for determining collective

behaviour, the one-dimensional model provided a useful stepping stone for an extension to

two-dimensional space. Our results confirmed that the moment approximation also agreed

101
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well with the IBM’s prediction in two spatial dimensions. Using imaging data generated from

in vitro cell experiments, we were able to parameterise the model and validate that it was

capable of predicting behaviour in a moving population of 3T3 fibroblast cells.

Finally, we carried out a further extension of the two-dimensional model to account for

cell birth and death. This allowed us to consider how the growth of a population is affected

by self-generated spatial structure, in the presence of directional bias. Our results showed

that the short-range dispersal of daughter cells and a neighbour-dependent birth rate also

affect spatial structure in a moving population. This spatial structure is diffused by intrinsic

cell movement but can still cause the growth of the population to differ from the expected

non-spatial growth. A neighbour-dependent directional bias causes even greater departures

from the expected non-spatial growth because it is capable of generating especially strong

spatial structure in the growing population.

Overall, our work highlights the importance of accounting for spatial structure in mod-

els of collective cell movement, particularly for populations affected by neighbour-dependent

directional bias. Deriving a spatial moment approximation from an IBM with directional

bias, allows us to relate the underlying stochastic cell behaviour to the emergent collec-

tive dynamics of the population and provides scope for further analysis. Movement with

neighbour-dependent directional bias has received comparatively little attention in the mo-

ment dynamics literature to date and has mostly been considered in only one spatial dimen-

sion [71, 89]. Our work expands the knowledge in this area by exploring biased movement

both in two-dimensional space and in the presence of cell birth and death. From a biological

perspective, our model could prove useful for quantifying the behaviour of cell populations

studied in vitro, especially for cell types that undergo biased movement. A model that can

predict the outcomes of experiments could be particularly beneficial, for instance, in the

context of drug testing.

Solving the equations for the dynamics of spatial moments required a closure assumption

to truncate the system at second order. Employing different closures can lead to quite different

model predictions and it is not immediately obvious which closure should be chosen in order

to obtain the best performance. We tested a small number of closures in our model and

found that the power-3 closure provided good performance overall for cell movement, both

with neighbour-dependent motility and directional bias. However, in the presence of cell

birth and death, this closure was no longer the most suitable choice. Instead, for neighbour-
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dependent birth and intrinsic death the asymmetric power-2 closure with weighting {4, 1, 1}

provided better performance. This closure has also been applied successfully in models with

neighbour-dependent death [65]. A more rigorous analysis of possible closures may reveal

other suitable choices, but these two closures provide reasonable approximations for the

neighbour-dependent mechanisms employed in our model.

There are several ways in which the work here could be extended. Applying our model

in a spatially homogeneous setting is an important first step towards understanding how

spatial structure is generated in moving cell populations and how this spatial structure affects

collective behaviour. However, extending this study to explore collective movement through

a non-homogeneous space would widen the scope for application of our model in a variety

of contexts. For example, this could provide key insights into the formation and behaviour

of invasion waves of individuals, such as those arising in spreading populations of malignant

tumour cells [7] or in wound healing [8]. From an experimental perspective, models for

movement in a non-homogeneous space could prove incredibly useful for understanding and

quantifying behaviour in cell invasion assays, such as scratch or circular barrier assays [45].

The tools for exploring a non-homogeneous space are already in place as we have derived

the equations for the dynamics of spatial moments in terms of physical locations. However,

solving the equations numerically may require some careful thought. Expressing the equa-

tions in terms of pair separation displacements for a homogeneous space reduced the number

of variables, therefore the numerical solutions were reasonably straightforward to compute.

Solving numerically for a non-homogeneous space will require heavier computations, particu-

larly in two spatial dimensions, as the spatial moments need to be calculated at each physical

location over time. The implementation of boundary conditions for the spatial moment dy-

namics in a non-homogeneous setting will also require careful consideration. A homogeneous

space allowed us to make the assumption that conditions at the boundary were approximately

mean-field such that there was no spatial structure at large pair displacements. However this

boundary condition could not be applied to a non-homogeneous space where the average

density of a pair is dependent on the physical location of each agent in space.

Many in vitro studies of cell populations generate experimental data in two spatial di-

mensions, such as time-lapse images, and our two-dimensional model is amenable for direct

application to this kind of data. There is also scope for further extension of the model to

describe cell movement through three-dimensional space. This would allow the model to be
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used in conjunction with three-dimensional experimental techniques, such as a Transwell mi-

gration assay [45,107]. However, numerically solving the equations for the dynamics of spatial

moments in three-dimensional space would be considerably more computationally intensive.

For example, an integration over a location in three-dimensional space would actually in-

volve an integration over each of the three dimensions. Therefore, it would be worthwhile to

consider how the efficiency of the numerical computations could be improved.

Our model is constructed so as to allow some flexibility in the choice of kernels and rate

functions. Therefore, the model can be readily adapted to suit a variety of different exper-

imental situations. Furthermore, the model could be easily extended to describe collective

behaviour in a population consisting of different types of cells. General frameworks for the

dynamics of spatial moments for different types of interacting species are already discussed

in the literature [61].

By closing the dynamical system of spatial moments at second order, we neglect the

presence of spatial structure at higher orders. This provides spatial information at the most

basic level yet still provides valuable insight into systems where short-range interactions

play a predominant role. However, extending the moment approximation to account for

the dynamics of higher spatial moments may reveal further information and provide a more

accurate approximation for systems where higher order structure has a greater effect.

Collective movement is a phenomena observed throughout nature, from migrating cells to

swarming animals and pedestrian flow in traffic. Despite their diverse contexts, the underlying

mechanisms governing this collective behaviour are often similar. In particular, neighbour-

dependent directional bias could also be an important driving factor of movement in systems

outside of the field of cell biology. Perhaps the closest ties lie in ecology, where the movements

of animals can also generate, for example, clustered or regular patterns of individuals.

Gaining a deeper understanding of the underlying processes that drive collective cell

behaviour is a crucial step towards being able to make accurate predictions about cell pop-

ulations studied in vitro. Mathematical models can shed light on these complex systems

by ascertaining which mechanisms are important for determining collective dynamics and

predicting the effect that manipulating these mechanisms has on the population. Therefore,

there is considerable scope for the application of modelling to in vitro studies that aim to

either enhance or perturb collective cell movement.



Appendix A

A.1 Model Validation Using In Vitro Data

105



106 APPENDIX A.

µ µ µ

µ µ µ

µ µ µ

µ µ µ

µ µ µ

A B C

D E F

G H I

J K L

M N O

Figure A.1: Spatial structure in populations of 3T3 fibroblast cells in a 4500µm x 450µm
region. PCF Cexp(r) (green squares-dotted line) generated from an experimental image (ob-
tained from wells containing cell suspension of approximate initial density 20,000 cells/ml),
for δr = 8 µm. PCF CIBM (r) (blue solid line) obtained from averaging results from 200
simulations of the IBM at t = 15 hours. PCF CSM (r) (red dashed line) approximated by
spatial moment model at t = 15 hours, for ∆ = 5 µm and ξmax = 150 µm. Parameters are
α = 0 hour−1, β = 1000 µm, σw = σv = 10 µm, m = 5 hour−1, λµ = 0.1 µm−1, σµ = 2.5 µm.
Time point 1, wells 1-3: A) 220 cells; B) 114 cells; C) 80 cells. Time point 2, wells 1-3: D)
228 cells; E) 123 cells; F) 95 cells. Time point 3, wells 1-3: G) 229 cells; H) 118 cells; I) 90
cells. Time point 4, wells 1-3: J) 235 cells; K) 125 cells; L) 88 cells. Time point 5, wells 1-3:
M) 235 cells; N) 123 cells; O) 92 cells.
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Figure A.2: Spatial structure in populations of 3T3 fibroblast cells in a 4500µm x 450µm
region. PCF Cexp(r) (green squares-dotted line) generated from an experimental image (ob-
tained from wells containing cell suspension of approximate initial density 30,000 cells/ml),
for δr = 8 µm. PCF CIBM (r) (blue solid line) obtained from averaging results from 200
simulations of the IBM at t = 15 hours. PCF CSM (r) (red dashed line) approximated by
spatial moment model at t = 15 hours, for ∆ = 5 µm and ξmax = 150 µm. Parameters are
α = 0 hour−1, β = 1000 µm, σw = σv = 10 µm, m = 5 hour−1, λµ = 0.1 µm−1, σµ = 2.5
µm. Time point 1, wells 1-3: A) 289 cells; B) 211 cells; C) 178 cells. Time point 2, wells 1-3:
D) 290 cells; E) 208 cells; F) 182 cells. Time point 3, wells 1-3: G) 286 cells; H) 207 cells; I)
180 cells. Time point 4, wells 1-3: J) 290 cells; K) 222 cells; L) 185 cells. Time point 5, wells
1-3: M) 318 cells; N) 245 cells; O) 201 cells.
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