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ABSTRACT. We show that every flat projective plane contains topological ovals. This is 
achieved by completing certain closed partial ovals, the so-called quasi-ovals, to topological 
ovals. 

1. Introduction 

The real Desarguesian projective plane is an (abstract) projective plane, that is, a point­
line geometry satisfying the following two axioms. 

(Pl) Two distinct points p and q are contained in a unique line p V q. 
(P2) Two lines L and M intersect in a unique point L /\ M. 
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By removing a line from this plane we arrive at the Euclidean plane. Every convex, 
differentiable simply closed curve in the Euclidean plane is an oval in the real projective 
plane, that is, a set of points such that 

(01) every line in the projective plane intersects the set in no more than two points, and 
such that 

( 02) every point p of the set is contained in precisely one line that intersects the set 
only in p. 

Actually, every oval that is homeomorphic to a circle arises in this manner as a convex, 
differentiable simply closed curve. A line that intersects an oval in no, 1, or 2 points is 
called exterior line, tangent or secant of the oval, respectively. 

The real Desarguesian projective plane is the classical example of a fiat projective plane, 
that is, a projective plane which shares the point set with the real Desarguesian projective 
plane and whose lines are homeomorphic to the circle § 1. For non-isomorphic examples 
the reader is referred to [3) and [4, Chapter 3). Using transfinite induction ( cf. [2]) it is 
possible to construct ovals in such a plane. However, these ovals are not very 'nice' from a 
topological point of view. It is also known (see [1]) that an oval in a flat projective plane 
is a closed subset of its point set if and only if it is homeomorphic to a circle. Such an oval 
is called topological and automatically shares many of the properties of topological ovals 
in the real Desarguesian projective plane. We will mention some of these properties in 
Section 3 of this note. Topological ovals play a crucial role in the theory of flat incidence 
geometries, in particular in the theory of flat circle planes ( cf. [5]). Our goal is to show 
that topological ovals exist in every fl.at projective plane. 

A projective plane whose point set and line set carry topologies is called topological if 
the operations of joining two distinct points by a line and intersecting two distinct lines in 
a point are continuous in their respective domains of definition. It is possible to turn any 
flat projective plane into a topological projective plane in an essentially unique way. Its 
point set already carries a natural topology and the topology on the line set that does the 
trick is the so-called Hausdorff topology. The dual of a projective plane is the point-line 
geometry that we arrive at by exchanging the roles of points and lines. It is clear from 
axioms (Pl) and (P2) and from what we just said that the dual of a ( topological) projective 
plane is a ( topological) projective plane. In particular, the dual of a flat projective plane 
is topological and if we regard a point as the set of all lines it is contained in, this dual can 
be seen to be a flat projective plane, too.· For details the reader is referred to [3] and [4]. 

Here is a brief sketch of our construction of a topological oval in a fl.at projective plane: 
We first observe that the set of tangents of such an oval is a dual oval, that is, a topological 
oval in the dual projective plane ( cf. [l]). This is in strong contrast to the situation for 
Mazurkiewicz' ovals ( cf. [2]), where all tangents pass through one single point. A pair 
consisting of a point and a line that passes through the point is called a flag. Every point 
of an oval together with the tangent at this point is a flag. Any set of such flags associated 
with a topological oval is a quasi-oval (see Section 3). On the other hand, we will show 
that closed quasi-ovals exist in any flat projective plane, that it is possible to extend every 
closed quasi-oval by a flag to a larger quasi-oval, that this extension process can be done 
to eventually give a 'dense' and 'round' quasi-oval, and finally that the topological closure 
of such a quasi-oval is a topological oval. 
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For the rest of this note let 'P be a flat projective plane with point set P and line set 
£. Note again that, as topological spaces, both sets are homeomorphic to the point set 
of the real Desarguesian projective plane. Furthermore, we denote the pencil of all lines 
through a point p by .Lp, If we remove a line from a flat projective plane, the incidence 
structure we are left with is a fiat affine plane. Like the Euclidean plane, the point set 
of a flat affine plane is homeomorphic to 112 and all its lines are subsets of its point set 
separating the point set into two open components. Furthermore, as in any affine plane, 
two distinct points are contained in a unique connecting line and there is a unique parallel 
line to a given line through some point. Finally, two non-parallel lines in a flat affine plane 
intersect transversally, that is, they never just 'touch' in their common point. These facts 
lead to a convexity theory for flat affine planes, that is, a generalization of the convexity 
theory for the Euclidean plane. In this theory a subset of the point set of a flat affine 
plane is called convex if any two of its points can be connected by a line segment that is 
completely contained in the set. For details the reader is referred to [4, Chapter 31]. 

2. Half-planes, Intervals and Triangles 

In this section we compile some further facts about flat projective planes that we will 
need in the following. All these facts are easy consequences of the convexity theory for flat 
affine planes. 

Let L and M be lines and p, Pl, pz and p3 be points of 'P. For L -/=- M the set 
P \(LUM) consists of two connected components. We call each connected component a 
half-plane defined by L and M. More precisely, if p E P \(LUM), denote the connected 
component containing p by Hf M· The set Hf Mis called the half-plane defined by L, M, 

' ' and p (in Figure 1.1 the shaded region is this half-plane). For the closure of this half-plane 

we have Hf M = Hf M U L U M. 
' ' 

L 

Figure 1.1 Figure 1.2 Figure 1.3 

Every line of 'P is homeomorphic to § 1. Let p1 and pz be two distinct points. We call 
the two connected components of (p1 V pz) \ {P1, pz} the open intervals defined by Pl and 
pz. Let L be a line that does contain neither Pl nor pz. We denote the open interval 
defined by Pl and P2 that does not contain the point (p1 V p2) /\ L by ]p1, pz [L and define 
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[pI , Pz [L: = {pi} U ]PI , pz [L, ]PI , pz] L : = {pz} U ]PI , pz [L and [pI , pz] L : = {PI, Pz } U ]PI , pz [L 
(see Figure 1.2). These sets are also connected, because [pI,P2]L = ]PI,P2[£. In analogy 
to the classical case, they are called open, half-open, and closed intervals defined by PI and 
p2 relative to L. The set of all open intervals defined by p and points on L is denoted by 
Ip,L (half-lines). Dually we obtain I1,,p, the set of all half-pencils (half-lines in the dual 
plane) defined by L and lines through p. 

For PI, pz and p3, non-collinear and non-incident with L, the set .6.L(PI,Pz,p3) := 

H!;vpa,L n H!:vpi,L n H!:vp
2
,L is called the open triangle defined by PI, p2 and p3 relative 

to L, and the points PI, p2 and p3 are called its vertices (see Figure 1.3). The intervals 
defined by the vertices of a triangle relative to the same line are called its sides. 

The following lemma states some facts we will be using frequently [4, Chapter 31]. 

Lemma 1. Let PI, p2 and p3 be three non-collinear points, let L be a line containing none 
of these points, let .6. := .6.L(pI,Pz,p3), let p, qI, qz and q3 be points, and M, L1, L2 and 
L3 be lines. 

(1) Two points are contained in the same half-plane defined by the lines LI and L2 
if and only if LI and L2 meet the same open interval defined by the points; see 
Figure 2.1. 

(2) .6., as a set of points, is open and &.6. = [pI,Pz]L U [p2,p3]£ U [p3,PI]£. 
(3) If qI, qz, q3 E .6. are three non-collinear points, then .6.L( qI, qz, q3) ~ .6., in particu­

lar, [qI, q2]L ~ .6. ( and .6. and .6. are connected); see Figure 2.3. 
(4) If p E .6., q (/. .6. and I is an open interval defined by p and q, then IIn &.6.I = 1, in 

particular, if Mn .6. =I- 0 then IM n &.6.I = 2; see Figure 2.2. 
(5) If qI E ]pz,p3[£, qz E ]PI,P3[L and q3 E ]PI,P2[L, then .6. = .6.L(pI,qz,q3) U 

.6. L(pz, q3 , qI ) U .6. L (p3 , qI , qz) U .6. L ( qI , qz , q3) U ] qI , qz [L U J qz , q3 [L U ] q3 , q1 [L ( this is 
a disjoint union); see Figure 2.3. 

(6) If the lines LI, L2 and L3 do not pass through the same point and C is a connected 
component of P \ (LI U L2 U L3), then there is a line L such that C = .6.L(LI /\ 
L2,L2 /\ L3,L3 /\ LI)· 

Figure 2.1 Figure2.2 Figure 2.3 

Note that two lines are contained in the same connected component of the line set minus 
the pencils of two points PI and pz if and only if the lines intersect PI V pz in the same 
open interval defined by the points. 
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3. Quasi-ovals 

In this section we define quasi-ovals and collect some results about them. Let 7!'1 and 
71'2 be the projections from the set of flags of P to P and £, respectively. A set :F of flags 
in P is called a quasi-oval if there exists a line L of P such that 

( Q O) for every flag ( q, M) E :F the set 71'1 ( :F \ { ( q, M)}) is contained in one of the two 
connected components of P \(LUM) (see Figure 3). 

M L 

Figure 3 

Example 1. We want to construct a quasi-oval containing three given points p1 , P2 and 
p3 that are not collinear. Choose a line L that does not contain any of the points. 
For {i,j,k} = {1,2,3} we define Li := Pi V ((Pj V Pk) AL). By Lemma 1.1 the set 
{(P1,L1),(P2,L2),(p3,L3)} is a quasi-oval. 

Note that we can extend a quasi-oval with less than three flags to a quasi-oval with three 
flags by choosing L to yield the above situation for the already given points and lines. 

Example 2. For every topological oval O the set of pairs (q, M), such that q E O and M 
is the tangent of O at q, is a quasi-oval. The condition ( QO) is easily verified for an exterior 
line L of O, because O minus one point is connected ( see Figure 4.1). Furthermore, this 
quasi-oval is a maximal quasi-oval, that is, a quasi-oval that is not properly contained in 
any other quasi-oval. We will later construct the promised topological ovals by starting off 
with a quasi-oval from Example 1 and then adding new flags until we arrive at a maximal 
quasi-oval. 

Some care has to be taken here, since not all maximal quasi-ovals yield ovals ( see Figures 
4.2 and 4.3 for examples of such maximal quasi-ovals). The quasi-oval in Figure 4.2 is an 
'oval with a corner', that is, axiom (01) is satisfied but the uniqueness of the tangent line 
(02) does not hold for every point (in Figure 4.2 this only happens in the point where the 

'-; 

: 
I.a 
I 
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otherwise smooth curve has a corner). The quasi-oval in Figure 4.3 is 'dual' to the one in 
Figure 4.2; again (02) is violated. 

Figure 4.1 Figure 4.2 Figure4.3 

In analogy to the terminology of ovals, we call the points in 71'1 (F) the points of F, and 
the lines in 7r2(F) the tangents of F. 

Quasi-ovals and topological ovals have many properties in common. Here are some 
examples. 

Proposition 1. Let F be a quasi-oval and L a line such that (QO) holds. Then the 
following hold. 

(1) Every tangent intersects the point set of F in exactly one point. 
(2) Every line in the projective plane intersects the point set of Fin no more than two 

points. 
(3) Let ( q1, M1) and ( q2 , M2) be two distinct Bags in F. Then every tangent intersects 

the line q1 V q2 in a point of ( q1 V q2) \]q1, q2 [L. 
--------,-

( 4) For three points PI, P2 and p3 of F the set 6.L(P1, P2, p3) \ {p1, P2, p3} and all 
tangents of F are disjoint. In particular, this set is contained in all the half-planes 
defined in (QO ). 

Proof. (1) Suppose that there is a flag ( q, M) E F such that M intersects 71'1 ( F) in another 
point q' i= q of F. Then 71'1 ( F \ { ( q, M)}) contains the point q1 whereas P \ (LU M) does 
not. This contradicts ( Q O). Hence every tangent intersects 71'1 ( F) in exactly one point. 

(2) Suppose that there is a line 1{ that intersects 71'1 (F) in at least three points p1, P2 
and p3. Let Mi, i = 1, 2, 3, be the corresponding tangents; these are distinct from I{ by 
(1). Since 1{ i= L, the point q = 1{ /\Lis well-defined. We label the above points in such 
a way that q and P2 are in different connected components of K\ {p1,p3}. By Lemma 1.1, 
the points PI, p3 are in different half-planes relative to L and M2. This contradicts (QO). 
Hence every line intersects the point set of Fin no more than two points. 

(3) The statement is obviously true for M1 and M2. Let M -=I= M1,M2 be a tangent of 
F and suppose that lvl /\ (qi V q2) is in ]q1,q2[L, Then, by Lemma 1.1, the points q1 and 
q2 are in different half-planes determined by L and M. This contradicts (QO). 
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( 4) Let M be a tangent of F. By ( 3) it is disjoint to ]p1, P2 [£ U ]p2, p3 [L U ]p3, PdL. 
Suppose that M meets 6.L(P1,P2,p3). Then Lemmata 1.4 and 1.2 show that M meets 
[p1,P2]L U [p2,p3]£ U [p3,p1]L in precisely two points, which is a contradiction to what we 
have said above. This shows the first assertion. The set under consideration plus one 
vertex of the triangle is connected by Lemma 1.3 and therefore contained in every half­
plane ( which is a connected component) defined by a tangent not containing this vertex. 
Now this is true for every vertex of the triangle and the second assertion follows. D 

Proposition 1.4 implies that an open triangle defined by three points of a quasi-oval 
contains no points of the quasi-oval. On the other hand, all points of a quasi-oval are 
contained in the closure of a triangle 'formed' by tangents of the quasi-oval ( cf. Lemma 
2). In order to employ this observation we will now give another definition of quasi-ovals, 
which is more convenient to work with. Let ( Fo, p, L) be a triple consisting of a set Fo of 
three flags (Pi, Li), i = 1, 2, 3, of P together with an anti-flag (p, L), that is, p ¢:. L, such 
that all four lines and points under discussion are distinct and in general position, i.e., no 
three of the points are collinear and dually for the lines. This triple is called a complete 
triangle ifandonlyifpi E ]Li!\Lj,Ld\Lk[L for {i,j,k} = {1,2,3} andp E 6.L(P1,P2,p3), 
see Figure 5. 

Figure 5 
One can think of the line L of a complete triangle intersecting the three lines L1, L2 

and L3 as shown in Figure 5. Lemma 1.3 implies that 6.L(P1,P2,p3) ~ 6.L(L1 !\ L2,L2 !\. 
L3, L3 !\ L1 ); furthermore, the 'big triangle formed by the points L1 !\ L2, L2 !\ L3 and 
L3 !\ L1' does not contain any point of L and the 'small triangle formed by the points Pl, 
P2 and p3' contains the point p. 

A set F of flags in P is called a quasi-oval with respect to a complete triangle ( Fo, p, L) 
if Fo ~ F and (QO) holds. 

Note that the set Fo of flags of a complete triangle (F0 ,p, L) is a quasi-oval with respect 
to (Fo,P, L). The following proposition shows that our two definitions of quasi-ovals are 
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equivalent for sets with three or more flags. 

Proposition 2. Let :F be a quasi-oval and Fo be a subset of :F with three elements. Then 
there is an anti-flag (p, L) such that ( Fo, p, L) is a complete triangle and :F is a quasi-oval 
with respect to (:F0 ,p,L). 

Proof. Let (Pi, Li), i = 1, 2, 3 be the three flags of Fa. Let L' be a line such that (QO) 
holds for L' instead of L. For three points q1, q2 and q3 of :F the set l.( q1, q2, q3) := 

6..u ( q1, q2, q3) \ { q1, q2, q3} is connected by Lemma 1.3 and disjoint to all tangents of :F 
by Proposition 1.4. The union of all these sets Ii.( q1, q2, q3) is a connected set C, which 
is disjoint to every tangent of :F. Hence C is contained in a connected component of 
P \ (L1 U L2 U L3). By Lemma 1.6, there is a line L such that this connected component 
equals 6.. := 6..L(L1 /\ L2,L2 /\ L3,L3 /\ L1). Now l(p1,P2,p3) ~ C ~ 6.. and therefore 
P1,P2,p3 E 6... Since Pi E ]Li/\ Lj,Li /\ Lk[L for {i,j, k} = {1,2,3}, the triple (:Fo,p,L) is 
a complete triangle if we choose p E 6..L(P1,P2,p3). 

It remains to verify (QO) for the line L. Let r and s be two points of :F. Because 
Jr, s[u ~ C ~ 6.. the open interval Jr, s[u and L are disjoint. Now the statement follows 
from (QO) for L' and Lemma 1.1. D 

For a set :F of flags we define :F.* = {(M, q) I (q, M) E F}. This is a set of flags in the 
dual plane. The following proposition shows that a quasi-oval :F with respect to ( Fo, L, p) 
is, essentially, a quasi-oval of the dual plane of P. 

Proposition 3. Let :F be a quasi-oval with respect to a complete triangle (:F0 ,p, L). Then 
:F*, that is, :F with points and lines exchanged is a quasi-oval of the dual plane of P with 
respect to (:F0,L,p). 

Proof. We have to show that (:F0, L,p) is a complete triangle of the dual plane. Let 
{i,j,k} = {1,2,3}. By Proposition 1.3, the line Li and the side ]Pj,Pk[L are disjoint 
whereas p V Pi meets this side by Lemma 1.4. Hence Li and p V Pi are in different connected 
components of .Cp; \ {Pi V Pj,Pi V pk}. This proves that the first condition of a complete 
triangle is satisfied. 

As mentioned after the definition of a complete triangle we have p E 6..L (p1, P2, p3 ) ~ 

6..L(L1 /\L2,L2 /\L3,L3 /\L1) and therefore ]p,Li /\Lj[L ~ 6..L(L1 /\L2,L2 /\L3,L3 /\L1) 
by Lemma 1.3. Thus L and Lk are in the same half-plane of the dual plane defined by 
p and Li/\ Lj (see the remark after Lemma 1). This proves that Lis an element of the 
triangle D..p( L1, L2, L3) of the dual plane. 

Let ( q, M) E :F. We have to show that every tangent of :F except M intersects the line 
p V q in a point of (p V q) \ [p, q]L· This is an immediate consequence of Lemma 1.1 and 
Proposition 1.4, because p E 6..L(P1,P2,p3). D 

By the preceding proposition, every statement about quasi-ovals that we prove is also 
true with points and lines exchanged. For later use we highlight one observation made in 
the proof of Proposition 3. 

Proposition 4. Let :F be a quasi-oval with respect to a complete triangle (:F0 ,p, L) and 
let ( q, M) E :F. Then every tangent of :F except M intersects the line p V q in a point of 
(p V q) \ [p, q]L· In particular, p belongs to all the half-planes defined in (QO). 
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Lemma 2. Let F be a quasi-oval with respect to a complete triangle (F0 ,p,L) where 
Fo = {(p1,L1),(p2,L2),(p3,L3)}. Let 6i := 6L(Pi,Pk,Lj /\ Lk) for {i,j,k} = {1,2,3}. 
Then 7r1(F) ~ 61 U 62 U 63 U {p1,P2,p3}. In particular, 6 := 6L(p1,P2,p3) contains no 
points of F. and, furthermore, no tangent of F intersects 6. 

Proof. It follows from Proposition 4 and p E 6 ~ 6L(L1 /\ L2, L2 /\ L3, L3 /\ L1) that 

L 

Figure 6 

Now, the triangle 6L(L1 /\ L2, L2 /\ L3, L3 /\ L1) is the disjoint union of 61, 62, 63 and 
the closure of 6 minus its three vertices by Lemma 1.5; cf. Figure 6. The last set of this 
union is disjoint to all tangents of F by Proposition 1.4. This proves the second part of 
the statement and 7!'1 ( F) ~ 61 U 62 U 63 U {p1, p2, p3}. D 

Theorem 1. Let F be a quasi-oval with respect to a complete triangle (:F0 ,p, L). Assume 
that the set of open intervals of Ip,L, the set of all open intervals defined by p and points 
on L, containing points of 7r1 (:F) is dense in Ip,L, and assume the dual condition. Then 
:F, the closure of :Fin the flag-space, is a quasi-oval with respect to (:F0 ,p,L), and 7r1(:F) 
is a topological oval. 

Proof. We first show that :Fis a quasi-oval with respect to (:F0 ,p, L). Obviously, :Fo ~ :F. 
By Lemma 2, no points of :Fare on L, and dually, no tangents of :F pass through p. Let 
(q, M) E :F. 

Suppose that there are points q1, q2 E 7!'1 ( :F) that are in opposite half-planes relative to 
L and M. Because the set of lines intersecting q1 V q2 in a point of ] q1, q2 [L is open we can 
find a tangent M' E :F such that q1 and q2 are still in different half-planes relative to L 
and M'. Then, because half-planes are open, each of the above half-planes also contains 
a point of 7r1(:F), say Pl and P2, which contradicts (QO) for :F. This shows that 7r1(:F) is 
entirely contained in the closure of the half-plane Hf M by Proposition 4. 

' 
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Now suppose that there is a point q1 =/= q such that q1 E M n 1r1 ( F). Since the set 
of open intervals of Ip,L containing points of 1r1(F) is dense in Ip,L and by the above, 
llL (p, q, q1) contains a point r of F. Let N be the corresponding tangent of F at r. N 
cannot intersect ] q, q1 [L, as seen above. Hence N must pass through q or through q1 or N 
intersects ]p, q[L and ]p, q1 [L. In the latter case at least one of the points of the complete 
triangle is in the half-plane opposite the Hf N and we obtain a contradiction. 

We can now assume that the tangents t~ all points of F in llL(P, q, q1) pass through 
q or through q1. This then gives us a contradiction as before, since the dual of F is a 
quasi-oval. Hence Fis a quasi-oval with respect to (Fo,p,L). 

By [1], it only remains to show that O := 1r1 (F) is an oval, because O is closed. Axiom 
( 01) is just Proposition 1.2, and Proposition 1.1 guarantees the existence of a tangent at 
every point of 0. The map a : 0 ~ Ip,L, which assigns to a point of O the half-line of 
Ip,L containing it, is well-defined and continuous. Since O is compact and a( 0) is dense in 
Ip,L, the continuity of a shows that it is surjective. Hence every line through p, which is, 
essentially, the union of two half-lines, intersects O in two points. Therefore a is injective 
and thus a homeomorphism. Likewise, the map a* : 1r2(F) ~ I1,p, which assigns to a 

tangent of F the half-pencil of I1,P ( the dual of Ip,L) containing it, is a homeomorphism. 

Now, let ( q, M) E F and let M' be a line through q that meets O only in q. Because 
0 ~ Ip,L,..., § 1, we see that O \ q is connected. Hence (F \ {(q, M)}) U {(q, M')} is also a 
quasi-oval. Furthermore p ~ M', because every line through p intersects O in two points 
as we saw above. Since a* is surjective, there is a flag (r, N) E F such that a*(N) is the 
half-pencil containing M'. We assume that N =/= M'. Let s = L /\ M'. Then the four 
lines L, p Vs, M' and Nall pass through s and M' and N are in the same component of 
£ 8 \ {L,pV s }. Furthermore, because £ 3 !:::::'. §1, either Land M' are in different components 
of £ 3 \ {p Vs, N} or Land N are in different components of £ 3 \ {p Vs, M'}. This means 
that in the former case, p and r are in different half-planes determined by L and M', 
and that in the latter case p and q are in different half-planes determined by L and N. 
However, since the quasi-ovals (F \ {(q,M)}) U {(q,M')} and F have the same points, 
Proposition 1.4 gives us a contradiction, because accordingly the points of the respective 
quasi-ovals and p E !:lL(p1 , p2, p3) are in the same half-planes. Therefore we have shown 
that N = M' and so M' = M equals the tangent of F at q. This proves that there is a 
unique tangent of O at q. Hence O is an oval. 0 

4. The Construction 

The aim of this section is to prove 

Theorem 2. Every closed quasi-oval can be extended to a quasi-oval whose point set is 
a topological oval. 

As already mentioned in the introduction, Theorem 2 and Example 1 together prove 
our main result. In fact, there are plenty of topological ovals in every flat projective plane. 

Corollary. For any three non-collinear points of a :Bat projective plane there is a topo­
logical oval passing through these three points. 
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The following lemma is the main step in the proof of Theorem 2. 

Lemma 3. Let :F be a closed quasi-oval with respect to a complete triangle 
(:Fo,P, L). Let 

a : P \ ( {p} U L) -t 'Ip,L 

be the map which assigns to each point r the open half-line I containing it. Let ( q1, M 1) 
and ( qz, M2) be two elements of :F such that a( 1r1 ( :F \ { ( q1, M1), ( q2, M2)}) is contained in 
one connected component of'Ip,L \ {a(q1),a(qz)}. Then, given a half-line R in the other 
component, there exists a fl.ag ( q, M) such that q E R and such that :F U { ( q, M)} is a 
quasi-oval with respect to (:Fo,P, L). 

L 

Figure 7 

Proof The strategy is simple: We choose a point q E R n 6.L( q1, qz, M1 /\ M2) and a 
line M through q that intersects q1 V q2 in a point of ( q1 V q2) \ [ q1, qz) L. However, we 
have to make sure that the above triangle is well-defined, that our choices of q and M 
exist and that a quasi-oval results. Before we do this in a number of steps, let us fix 
some notation. Let (p1,L1), (P2,L2), (p3,L3) be the flags in the set :Fo and let !:lo := 

6.L(P1,Pz,p3). Furthermore, let 6.i := 6.L(Pj,Pk,Lj /\ Lk) for {i,j,k} = {1,2,3}. Then 
q1,q2 E 6.1 U 6.2 U 6.3 U {P1,P2,p3} by Lemma 2. 

We first show that qi, q2 are in the same extended triangle 6.i U {Pj,pk}. Suppose 
otherwise, say q1 E 6.1 and qz E 6.3 U {pi}. Then a( q1) E a(]p2, p3 [L) and a( qz) E 
a(]p1, pz [L) ( compare step ( 2) below). Hence a( q1) and a( qz) are in different connected 
components of Ip,L \ {a(p2),a(p3)}, because a()pz,p3[L) and a([p1,P2[L) are disjoint by 
Lemma 1.4. This is a contradiction to the assumption of the Lemma. 

In the following steps we assume that, without loss of generality, q1,q2 E 6.3 U {p1,P2}; 
compare Figure 7. 

(1) M1 /\ M2 E 6.3 and 6. := 6.L(q1,q2,M1 /\ M2) is well-defined: If q1 or qz equals 
one of Pl or pz, then M1 /\ M2 E 6.3, by Lemma 1.2 and Lemma 1.4. We now 
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consider the remaining case q1, q2 E 6.3. By Proposition 1.3, the lines M1 and M2 
are disjoint from [p1 ,P2]£. Therefore, by Lemma 1.4, both lines meet ]p1, L1 /\ L2[L, 
Furthermore, by the dual of Proposition 1.2, they meet the set in different points. 
We may assume that M1 meets ]p2, L2 /\M2 [L; see Figure 7. Because of axiom ( QO), 
M1 does not meet [p2,q2]£. Therefore it meets the interval ]q2,L2 /\ M2[LC M2, 
which, by Lemma 1.3, is also contained in 6.3. Thus M1 /\ M2 E 6.3. 

(2) a(.6.) = a(]q1,q2[L): Lett E .6.. Then ]p,t[L contains a point of ]q1,q2[£. Hence 
a(.6.) C a(]q1,q2[£). The sets .6. and ]q1,q2[L are both connected. Since a is open 
and continuous and .6. is open, the images of the two sets are open intervals of 
Ip,L ~ § 1 (one contained in the other). All elements of ]q1,q2[L are boundary 
points of .6.. Hence the two intervals a( .6.) and a(] q1, q2[L) have to coincide. 

(3) .6. ~ HL
1
,M2: This readily follows from Proposition 4 and Lemma 1.1, since ,6. ~ 

Hq1 n Hq 2 c HP n HP c HP . L,M2 L,M1 - L,M2 L,M1 - M1 ,M2 
(4) If a line N meets .6., but not [q1,q2]L, then N n HL1,M

2 
~ .6.: Suppose that there 

are points r EN n .6. ands E (N n HL
1
,MJ \ .6.. Then, by (3) and Lemma 1.1, 

the interval [r,s]M1 is contained in Hfvi1,M2, and therefore, by Lemma 1.3, meets 
]q1,q2[£. This contradicts the assumption of (4). 

(5) N n .6. = 0 for all N E 1r2(F): We can assume that N =J. M 1 , M 2 • Since, by 
Proposition 1.3, Nn[q1,q2]L = 0, the assumption Nn.6. =J. 0 implies NnHL1,M2 ~ 
,6. by ( 4) and N =J. M 1 , M 2 • Then the point q of 1r1 ( F) on N belongs to Ht,M2 n 
Ht,M1 ~ HL1,M2 by (QO). Hence q must be contained in .6. ~ .6.3 and therefore 
a(q) E a(]q1,q2[L) ~ a(]p1,P2[L) by (2). But a(p3) tf, a([p1,P2]L)· Therefore, a(q) 
and a(p3) are in different connected components of Ip,L \ {a(q1),a(q2)}, which is 
a contradiction to the assumption of the Lemma. 

(6) C := LJ{[r,s]Llr,s E 1r1(F),r =J. s} ~ (H1Jvi
1

,M
2 

U{q1,q2})\.6.: By Propositions 
1.3 and 4, Jr, s[L ~ H'£,M

2 
n Hf.Mi ~ HL1 ,M2 for all r, s E 1r1 (F), r =J. s. Hence 

C ~ HL1 ,M2 U { q1, q2}. We now assume that there are points r, s E 1r1 (F), r =J. s, 
such that [r, s]L contains a point t of .6.. Then t =J. r, s and ]t, r[L, ]t, s[L ~ H1/vi

1
,M

2
• 

Obviously, we have {r,s} -=I- {q1,q2}. If {r,s} n {q1,q2} = 0, then, by Lemma 1.3, 
the intervals ]t, r[L and ]t, s[L contain a point of ]q1, q2[L, which is not possible, 
because r Vs and q1 V q2 meet only in one point. In the remaining cases, we 
have one intersection point by assumption and would obtain a second one by an 
application of Lemma 1.3. 

Now we choose a point q ER n .6. (this is possible by (2)) and a line M through q that 
meets q1 V q2 in a point outside of [q1,q2]£. By (4), this choice implies Mn HL1,M2 ~ .6. 
and therefore M and C are disjoint, by (6). Furthermore, C' := CU [q, q1]L U [q, q2]L ~ 
HL1,M2 U {qi, q2}, by the choice of q and by (6). It follows from (5) that N n C' = {r} for 
(r,N) E FU {(q,M)}. Now (QO) follows, since C' \ {r} is connected. D 

Proof of Theorem 2. Let F1 be a closed quasi-oval. If F1 has less than three elements we 
can add flags to F1 ( as mentioned after Example 1) such that the set becomes a quasi-oval 
with respect to a complete triangle ( Fo, p, L) by Proposition 2. Let a* : [, \ ( { L} U .Cp) ---* 

IL,p be the map dual to a defined in Lemma 3. We have Ip,L ,..._, IL,p ~ § 1. Let D and 
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D* be countable dense subsets of Ip,L and Ii,P, respectively, and let 1 : N -t D and 
'"'!* : N -t D* be bijections. Let n E N. We will construct a closed quasi-oval Fn+l by 
induction, such that 1 (n) E a(1r1(Fn+1)) and 1 *(n) E a*(1r2(Fn+1)) and Fn ~ Fn+I· 

Assume that such an Fn has already been constructed. If 1 (n) E a(1r1(Fn)), we define 
Fn+t := Fn, Now suppose that 1 (n) (/. a(1r1(Fn)). Since a and 7r1 are continuous, and 
Fn is closed and hence compact, a(1r1(Fn)) is closed. We can therefore find half-lines 
I1,I2 E a(1r1(Fn)), such that the connected component of Ip,L \ {I1,I2} containing 1 (n) 
contains no other element of a(1r1(Fn)). Now Lemma 3 (with (q1,M1) and (q2,M2) being 
the two flags of Fn with q1 E I1 and qz E I2) yields an extension Fn+t of Fn such that 

1 (n) E a(1r1(Fn+t)). Dually we can find an extension Fn+l of Fn+t as desired. 
Since {Fn I n EN} is a chain of quasi-ovals with respect to the same complete triangle 

(Fo, p, L ), so is F := Un EN Fn, Furthermore, this quasi-oval satisfies the assumptions of 
Theorem 1. Hence F, the closure of F in the flag-space, is a quasi-oval and 1r1 ( F) is a 
topological oval containing the points of the quasi-oval F 1 yve started off with. 
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