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ABSTRACT 

The Box Counting algorithm is a well-known method for the computation of the fractal 

dimension of an image. It is often implemented using a recursive subdivision of the image 

into a set of regular tiles or boxes.   Parallel implementations often try to map the boxes to 

different compute units, and combine the results to get the total number of boxes intersecting 

a shape.  This paper presents a novel and highly efficient method using OpenCL kernels to 

perform the computation on a per-pixel basis. The mapping and reduction stages are 

performed in a single pass, and therefore require the enqueuing of only a single kernel. Each 

instance of the kernel updates the information pertaining to all the boxes containing the pixel, 

and simultaneously increments the box counters at multiple levels, thereby eliminating the 

need for another pass to perform the summation. The complete implementation and coding 

details of the proposed method are outlined. The performance of the method on different 

processors are analysed with respect to varying image sizes.  

 

Keywords:  Fractal dimension; OpenCL kernels; Box counting algorithm; Multifractal 

analysis; Parallel implementations. 
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1.  Introduction 

Fractal analysis has recently found several applications in the field of medical image 

processing [1]-[3]. The highly complex, but statistically self-similar texture features found in 

medical images motivated the development of fractal based algorithms for the extraction of 

diagnostically significant information. Fractal characteristics of tissue images have also been 

used as texture features for automatic classification [4], [5]. Similarity measures formed using 

these features were found useful in the classification of pathological cases and the 

identification of regions of interest [6], [7]. A common algorithmic step in most of the above 

applications is the computation of the fractal dimension. The fractal dimension is often 

approximated as the box-counting dimension [8], [9]. Even though the box counting 

algorithm is a very popular method for estimating the fractal dimension, it is computationally 

slow as it requires a recursive subdivision of the image into regular grids with varying sizes.  

The computation of the fractal dimension also forms the core of many multifractal analysis 

techniques used in biomedical imaging [10], [11].  Tissue images can be thought of as a 

superposition of several disjoint textures (alfa-slices), each with its own fractal 

characteristics. An alfa-slice represents the collection of pixels in a tissue image that satisfy 

similar scaling laws for some intensity based measure defined over the image [12]. Such a 

decomposition of an image is found to be useful in both segmentation and classification.  The 

determination of the multifractal spectrum of an image requires the computation of the fractal 

dimension of all alfa-slices, which often consists of a large number of images. Applications 

involving the processing of very large images (eg., very high magnification digital 

microscopy images of biopsy samples) of Gigabyte sizes are also becoming common in the 

field of medical image processing. For an excellent review of applications of fractal and 

multifractal methods in the field of medical image analysis, please refer to [13]. 



 

 

In order to meet the increasing demand for fast fractal computation of either large size or 

large number of images, recent research has primarily focussed on methods to reduce the 

complexity at both algorithm level and/or implementation level. Algorithms such as the 

Higuchi dimension [14] and correlation fractal dimension [15] have been found to be faster 

than the box counting method. However when the input data set becomes voluminous in size, 

new computational paradigms involving parallel or concurrent processing are often utilized. 

Only very recently, some significant efforts have been made in this direction where GPU 

implementations have been used for computing the fractal dimension [16], [17]. 

The Open Computing Language (OpenCL) [18] provides an excellent framework for 

implementing tasks that can be individually computed on rectangular image tiles and then 

merged to form the final solution. It is therefore ideally suited for computing the fractal 

dimension of images using the box counting method, but to the author’s knowledge, such 

implementations have not been discussed much in literature. The nVidia developer zone [19] 

also does not provide any examples of kernels for computing fractal dimension.  

This paper provides a detailed description of two implementations of the box counting 

method using OpenCL kernels. The first approach uses only the global memory to store the 

box status values at each level, while the second uses the local work-group memory for small 

box sizes and a reduced amount of global memory for large box sizes. In both cases, the box 

counts are obtained in the same pass without requiring an additional kernel. The performance 

improvements and memory requirements are compared and analysed with respect to image 

sizes varying from 256×256  to  8192×8192 pixels. The paper is organised as follows. The 

next section gives a set of results that are used as bench marks, obtained using the 

conventional box counting method. Section 3 introduces the first kernel and discusses its 

implementation aspects.  A second OpenCL kernel is presented in Section 4 along with a 



 

 

comparative analysis of the performance. Conclusions and future work are outlined in 

Section 5.  

2.  The Box Counting Algorithm 

The well-known box counting algorithm is commonly used as a close approximation of the 

Hausdorff dimension [8] which is defined based on a covering of a fractal using open discs. 

In box counting, a regular grid is superimposed on the fractal and the number of cells that 

intersects the shape is counted. The fractal dimension represents the power-law variation of 

the total number of cells containing the fractal with respect to the cell size. The method is 

often implemented using a recursive structure or a nested loop where the grid size is varied in 

powers of 2 (typically 4, 8, 16, etc., up to some maximum, say 128). A log-log plot of the 

number of cells intersecting the fractal versus box size ratio gives the dimension as the slope 

of the best-fitting line. As an example, the fractal known as the Sierpinski Carpet is shown in 

Fig. 1(a), and its linear regression line in Fig. 1(b).  The x-axis of the regression plot 

represents log2(BoxSize/ImageSize), and the y-axis  log2(BoxCount). In this example, the 

image size is chosen as 512. The first data point corresponds to a box size of 128 (with a x-

value 2) where the number of boxes intersecting the fractal is 16 (with a y-value 4). The 

computation of the slope of the linear regression line uses only a small amount of data points, 

and does not contribute to the complexity of the algorithm. Only the core box counting 

method is therefore discussed in the following sections. The presented methods do not 

depend on the actual fractal or shape characteristics of the image, and hence it suffices to use 

only one fractal shape with varying image sizes for the validation and analysis of the 

methods. 

 



 

 

 
 

(a)                                                                          (b) 

 

         Figure 1.  The Sierpinski Carpet fractal and its linear regression graph. 

 
 

Fig. 2. gives the variation of average elapsed time for the box counting algorithm as the 

fractal size is varied from 256256  to 81928192, each time scaling up the size by a factor 

of 2. For convenience, the x-axis is plotted on a logarithmic scale. This figure compares the 

time taken on two independent processors. The first processor used was an Intel i7-3770 CPU 

at 3.5 GHz with 8 GB RAM, and its graph is shown as a solid line. The second processor was 

a laptop with Intel i5-3337U  CPU at 1.8 GHz with 8 GB RAM, and its graph is shown as a 

dotted line. As can be seen from the graphs, large image inputs can take several seconds for 

the execution of the box counting method, even on fast processing devices. 

 



 

 

 
 

Figure  2.  Variation of elapsed time with image size for the box counting algorithm. 

 
 

3.  OpenCL Kernel - 1 

The first attempt at parallelizing the box counting algorithm aims at using a single kernel that 

executes a work item for each pixel of the image.  The position of a pixel is used to update 

the status of all enclosing boxes at different levels, and also to simultaneously update the box 

counts at those levels. This processing method eliminates the need for another pass (typically 

using another kernel) for counting the number of boxes. The main data structure required 

here is an array of bit values representing the status of boxes (showing whether they are 

intersected by the fractal or not). This array is referred to as “boxStatus”.  The update 

algorithm is depicted in Fig. 3., using one level of 16 boxes. The coordinates of the pixel and 

the box size are used to compute the box index in the array.  If the value at that location is 0, 
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it is updated to 1.  The box counter also is simultaneously incremented. If the value at the 

location was previously updated to 1 by another pixel within the box, then no action is taken. 

 

 
Figure  3.  A per-pixel algorithm for updating the box status and box count. 

 

 

The boxStatus array must be accessible to all instances of the kernel that execute on a per-

pixel basis, and is therefore created in the global memory. However when multiple work 

items try to read and update a global memory location, it is essential to have a memory lock 

mechanism by which an update operation cannot be interrupted. This mechanism is provided 

by atomic operations in OpenCL [20]. The atomic_cmpxchg function is ideal for the 

operation of comparison and setting of a location in the boxStatus array. Even though just 

a bit array is sufficient for this purpose, the function atomic_cmpxchg supports only 

integer operations. Therefore, boxStatus is defined as an integer array. Similarly, 

incrementing the box count also is done using the atomic function atomic_inc.  

This boxStatus  array can be extended to include all boxes at different levels. The box 

count field also gets extended to an array whose size is the number of levels used in the linear 

regression model. Consider 6 levels of box sizes 4, 8, 16, 32, 64, and 128  as previously 
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shown in Fig. 1(b).  If the image is of size NN pixels, then the total size of the boxStatus 

array is given by 
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Thus, for a 512512 image, the array has 21840 elements.  The global memory requirement 

increases exponentially with image size, and this is the main drawback of this method.  In the 

next section, an improved solution using local workgroup memory is presented. The variation 

of the size of the boxStatus array with respect to the image size is shown as the solid line 

plot in Fig. 4.  

 

Figure 4.  A plot showing the variation of the size of boxStatus array with image size. 

 

The kernel code given in Fig. 5  shows the main implementation aspects of the method. Each 

kernel instance processes a single pixel, and if the pixel value is less than a threshold, the 
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work item immediately exits. Otherwise, the box IDs are obtained from the pixel coordinates 

and the box size, and the status and count arrays are updated if required, for all six levels. 

 

Figure 5.  Kernel code for the box counting algorithm (Implementation 1). 

 

The OpenCL device type was selected as GPU, and the time measurements taken using the 

high-resolution performance counter given by the QueryPerformanceCounter 

function. The performance improvement provided by the above implementation can be 

clearly seen by comparing the graphs in Figs. 2 an 6. The two graphs in Fig. 6 correspond to 

the two processors described in Sec. 2. The desktop machine (Processor 1) had a nVidia 

__constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |  

                               CLK_ADDRESS_CLAMP | 

                               CLK_FILTER_NEAREST; 

 

__kernel void fractal_dimn 

(read_only image2d_t img, 

                  __global int* boxStatus, 

  __global int* boxCount ) 

{ 

   int ix = get_global_id(0); 

   int iy = get_global_id(1); 

   int wid = get_image_width(img); 

 

   int iu = 0, iv = 0, offset = 0; 

   int index = 0, nboxes = 0, bcindx = 0; 

   float4 pixel = read_imagef(img, sampler, (int2)(ix, iy)); 

   if(pixel.x < 0.5) return; 

 

   for(int boxsize = 4; boxsize <= 128; boxsize <<= 1) 

   { 

       nboxes = wid / boxsize; 

   iu = (ix / boxsize); 

   iv = (iy / boxsize); 

       index = iv*nboxes + iu + offset; 

   if(atomic_cmpxchg(&boxStatus[index], 0, 1) == 0) 

                  atomic_inc(&boxCount[bcindx]); 

       offset += (nboxes * nboxes); 

       bcindx++; 

    } 

} 



 

 

GeForce GTX 650 graphics card (384 CUDA Cores) with 1100 MHz base clock. The laptop 

(Processor 2)  had a nVidia GeForce 710M graphics card (96 CUDA Cores). 

 

Figure 6.  Elapsed time for the execution of the box counting algorithm (Implementation 1) 

on the GPU of two processors. 

 

4.  OpenCL Kernel - 2 

The primary limitation of the kernel in the previous section is the requirement for a large 

global memory. The power of OpenCL work groups can be leveraged in reducing the use of 

global memory, at the same time improving performance. The main idea here is that the 

status of all boxes with size smaller than the work group size can be stored in the local 

memory of the work group.  The global memory will then be required only for box sizes that 

are larger than the work group size. This scheme partitions the boxStatus array into a 

collection of small local memory arrays (boxStatus_L), and one global memory array 
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(boxStatus_G) with a significantly reduced size compared to the previous method. 

OpenCL’s execution and memory models for processing two-dimensional data are ideally 

suited for this type of partitioning of the boxStatus array as shown in Fig. 7.  

 
Figure  7.  The improved version of the per-pixel algorithm for updating the box status and 

box count, using work groups and local memory. 

 

The distribution of the boxStatus array into smaller chunks of local memory can therefore 

be very easily implemented with minimal changes in the kernel code. Additionally, local 

memory operations are much faster than global memory. However, OpenCL implementation 

constraints on the maximum two-dimensional work group size could prevent the inclusion of 

boxes of all sizes within a workgroup. For example, if the maximum work group size is 

1616, then the portion of the boxStatus array of sizes 4, 8, 16 is included in the local 

memory, while the remaining sizes 32, 64 and 128 are represented in global memory. Thus, a 

21 element array is defined in the local memory of each work group. The global memory 

requirement now reduces to 
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The reduction of the boxStatus array residing in global memory, in comparison with the 

size given earlier in Eq.(1) can be seen as the dotted line in Fig. 4. The percentage of 

reduction achieved in this case is almost 98.5%.   On the other hand, if the work group size is 

1024, a local memory of size 85 elements for each work group and a global memory of  

5N
2
/2

14
  elements are required for representing box status. The boxCount array which has 

only around 6 elements is always defined in the global memory.  

The implementation of the modified kernel is shown in Fig. 8. As seen in the code, the 

initialization of the local memory is carried out using a work group barrier, and the remaining 

part of the code is similar to the previous method, except that there are now two similar 

update loops, one for the local memory for box sizes 4, 8, 16  (assuming work group size 

256) and the other for the global memory for box sizes 32, 64, 128. 



 

 

 

__constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |  

                               CLK_ADDRESS_CLAMP | 

                               CLK_FILTER_NEAREST; 

__kernel void fractal_dimn(read_only image2d_t imgIn, 

                   __global int* boxStatus_G, 

                   __global int* boxCount) 

{ 

   __local int boxStatus_L[21]; 

    

   int ix = get_global_id(0); 

   int iy = get_global_id(1); 

   int wid = get_image_width(imgIn); 

    

   int ilx = get_local_id(0); 

   int ily = get_local_id(1); 

   int lindx = ily*16 + ilx; 

 

   int iu, iv, offset = 0, index, nboxes, bcindx = 0; 

   float4 pixel; 

 

   if(lindx < 21) boxStatus_L[lindx] = 0; 

   barrier(CLK_LOCAL_MEM_FENCE); 

 

   pixel = read_imagef(imgIn, sampler, (int2)(ix, iy)); 

   if(pixel.x < 0.5) return; 

 

   for(int boxsize = 4; boxsize <= 16 ; boxsize <<= 1) 

   { 

          nboxes = 16 / boxsize; 

     iu = (ilx / boxsize); 

     iv = (ily / boxsize); 

          index = iv*nboxes + iu + offset; 

          if(atomic_cmpxchg(&boxStatus_L[index], 0, 1) == 0) 

                  atomic_inc(&boxCount[bcindx]); 

          offset += (nboxes*nboxes); 

          bcindx++; 

    } 

     

    offset = 0; 

    for(int boxsize = 32; boxsize <= 128 ; boxsize <<= 1) 

    { 

         nboxes = wid / boxsize; 

     iu = (ix / boxsize); 

     iv = (iy / boxsize); 

         index = iv*nboxes + iu + offset; 

     if(atomic_cmpxchg(&boxStatus_G[index], 0, 1) == 0) 

                  atomic_inc(&boxCount[bcindx]); 

          offset += (nboxes*nboxes); 

          bcindx++; 

    } 

 

} 



 

 

Figure 8.  Kernel code for the box counting algorithm (Implementation 2). 

 

The reduction in the time taken by the box counting algorithm with the above kernel can be 

seen by comparing the graphs in  Fig. 9 with Fig. 6. Table 1  provides a better view in terms 

of the numerical values for the two processors for large images.  On the first processor, the 

percentage of reduction achieved using the modified kernel described in this section over the 

computation without the OpenCL kernel is almost 97%. 

 

Figure 9.  Elapsed time for the execution of the box counting algorithm (Implementation 2) 

on the GPU of two processors. 
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 Image Size Without 
Kernel Kernel-1 % Reduction Kernel-2 % Reduction 

Processor-1 2048x2048 180 12 93.33 7 96.11 

4096x4096 800 43 94.63 26 96.75 

8192x8192 3700 166 95.51 105 97.16 

       

Processor-2 2048x2048 270 124 54.07 91 66.30 

4096x4096 1230 469 61.87 359 70.81 

8192x8192 5445 1860 65.84 1420 73.92 

Table 1.  Comparison of elapsed time on the GPU using two different kernels and two 

processors 

 

5.  Conclusions 

The computation of fractal dimension forms an integral part of several texture analysis 

methods that are commonly used for processing biomedical images. When the image size 

becomes large, the computation of fractal dimension using the box counting method can take 

a large amount of time that could have a significant impact on the time taken by the processes 

of feature extraction and classification. OpenCL provides an ideal framework for 

implementing the box counting algorithm on the GPU. Moreover, the regular subdivision of 

an input image into a number of boxes fits very well with the memory model used by 

OpenCL. This paper has presented implementations that could drastically reduce the 

computation time for large images. With appropriate distribution of memory within work 

groups, the amount of global memory required for the process could also be significantly 

reduced. The paper has presented comparative analysis of the performance of the two kernel 

implementations on two different processors. 

The proposed methods could be easily integrated into existing systems to obtain significant 

performance gains even on GPUs with a moderately sized number of cores and limited work 



 

 

group sizes. Future work in this area is directed towards improving the kernel design further 

using OpenCL optimizations, and testing the method on applications requiring the 

computation of multifractal spectra from several images. 
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