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Abstract

In the study of phylogenetics, which is the study of how forms of life evolve and relate to each

other, there is great scope for mathematics to get involved. One such study of phylogenetics

that currently employs mathematics is the study of phylogenetic networks and phylogenetic trees.

Phylogenetic networks and trees can be used to represent how life evolved with the former having

the ability to represent biological processes such as hybridization, horizontal gene transfer, and

gene recombination. In terms of mathematics, one sees phylogenetic networks and trees as directed

graphs. A phylogenetic network N displays a rooted phylogenetic tree T if all of the ancestral

history inferred by T is also inferred by N . The main result of this thesis is a quartic-time, in terms

of the number of leaves in the network, algorithm that decides whether or not a given phylogenetic

network displays a tree twice. As a consequence of the work leading to the main result, a class

of phylogenetic networks is discovered such that there is a quadratic-time, in terms of the number

of leaves in the network, algorithm for counting the number of distinct trees displayed by a given

network in the class. These results are interesting because it has been shown that in general counting

the number of trees displayed by a given phylogenetic network is #P-complete. Thus the main result

of this thesis opens the door to insights regarding a computationally hard problem.
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Chapter 1

Introduction

Phylogenetics is the reconstruction and analysis of phylogenetic (evolutionary) trees and networks

based on inherited characteristics [1]. The tools and techniques of phylogenetics have been used

in fields such as evolutionary biology, linguistics, cancer research, epidemiology, virology, and con-

servation biology. With the help of phylogenetics a number of multifaceted problems have been

investigated and resolved, such as the origin of the HIV virus [1]. Phylogenetics has even been used

to reconstruct the copying history of manuscripts (see [2]). One of the many tools of phylogenetics

is the phylogenetic tree or evolutionary tree. Since the time of Charles Darwin’s The Origin of

Species [3], phylogenetic trees have played an important role in the study of evolution, because

of a phylogenetic tree’s ability to represent speciation events. It is now becoming apparent that

representing evolution with a tree is not sufficient, because of the presence of reticulation events.

Reticulation events include hybridization, horizontal gene transfer, and DNA recombination. DNA

recombination involves the exchange of genetic material either between multiple chromosomes or

between different regions of the same chromosome [4]. Horizontal (lateral) gene transfer is the

transfer of genes between different species [5]. Whilst hybridization can be defined as reproduc-

tion between members of genetically distinct populations producing offspring of mixed ancestry [6].

About 10-30% of multicelluar animal and plant species hybridize regularly [6]. Hybridization also

played an important role in the evolution of bread wheat, because the findings from [7] imply that

the present-day bread wheat genome is a product of multiple rounds of hybrid speciation [7]. Hence

evolution is more accurately represented by an entwined network that can represent both speciation

events and reticulation events (for some books on phylogenetics see [1], [8], [9], [10], [11], [12]).

Although phylogenetic networks are becoming increasingly important in studying the evolution

of present-day species whose past includes reticulation events, phylogenetic trees continue to play

a fundamental role in phylogenetic analyses since the evolutionary history of a single gene can, in

3
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Figure 1.0.1: The figure shown is an example of a phylogenetic tree. The leaves are labeled

1, 2, 3, 4, 5, 6.

most cases, be described by a tree. It is therefore not surprising that investigating the tree-like

content of phylogenetic networks is often an important first step in analyzing and interpreting such

networks. For example, one might be interested in deciding if a phylogenetic network displays a

given phylogenetic tree or in counting the number of trees displayed by a network. The latter

problem is related to calculating the parsimony score of a network [13] which, given the popularity

of parsimony tree reconstruction algorithms, is likely to become a standard tool in computing a

phylogenetic network directly from sequence data. While deciding if a tree is displayed by a network

is polynomial-time solvable for certain special classes of phylogenetic networks (for the work done

on the aforementioned problem see [14], [15], [16], [17], [18]), the problem is NP-complete in its

general form [19]. Similarly, counting the number of phylogenetic trees that are displayed in an

arbitrary phylogenetic network is also known to be a computationally hard problem [20].

A simpler problem relative to counting the number of phylogenetic trees displayed by a network

is deciding if a network displays the maximum number of trees, which, of course, is the same

as deciding whether or not a network displays a tree twice. An example of when one needs to

have a phylogenetic tree displayed more than once in a phylogenetic network is in the case where

a phylogenetic tree is sufficient for the representation of a species’ evolution but there is some

uncertainty about how the present-day descendants are related to one another or how they evolved

from their ancestors; hence a phylogenetic network can be used in the absence of reticulation events,

when there is some uncertainty in the true (tree-shaped) phylogeny [21]. If there are a number of

plausible ways in which the present-day descendants could be related to each other (represented by

a number of distinct phylogenetic trees) then all the information contained in those phylogenetic

trees can be held in a single phylogenetic network. It is known that if a phylogenetic network N

has k reticulation vertices (vertices that have two edges going in and one edge going out), then the

maximum number of possible trees displayed by N is 2k, because for each reticulation vertex v in

N there are two possible ways to enter v. So if we want a phylogenetic network to display a number
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of phylogenetic trees where that number is not 2k, then the phylogenetic network has to display a

tree twice. This means that there exists two different ways of choosing exactly one reticulation edge

(an edge going into a reticulation vertex) for each reticulation vertex in the network, and the result

of these two different ways of choosing reticulation edges is one tree. Therefore one may want to

ask “When does a phylogenetic network display a tree twice?” This question drives this thesis. The

challenge is to be able to decide in polynomial-time whether or not a given phylogenetic network

displays a tree twice.

Another question that is answered in this thesis is: “Given a positive integer n, does there

exist a phylogenetic network that displays exactly n distinct trees?” That question is motivated

by the work done in [20], where the authors showed (as a by-product of their main result) that,

given a Fibonacci number m, there exists a phylogenetic network that displays exactly m distinct

phylogenetic trees. By constructing a phylogenetic network that displays exactly n distinct trees

answers the question “Given a positive integer n, does there exist a phylogenetic network that

displays exactly n distinct trees?”

Answering the driving question of this thesis is a much more involved process, and is outlined

as follows: We characterise when a phylogenetic network displays a tree twice in terms of a local

substructure inherent in the network. We then show that this local substructure can be represented

by a phylogenetic tree, and that one can go from the local substructure to its tree representation and

back again without losing any information, relative to our aim. We work on the tree representation

and translate what it means for a representation to display a tree twice. The translation from

networks to trees means that we start working with set operations such as intersection, union, and

set minus, as well as the tree operation of leaf restriction. That translation makes it easier to

navigate the complexities that arise when characterising when the local substructure displays a tree

twice. From there we develop a polynomial-time algorithm for deciding whether or not the local

substructure displays a tree twice based on the characterisation. Lastly, this leads to a polynomial-

time algorithm for deciding whether or not the network displays a tree twice. Hence the main

result of this thesis is a polynomial-time algorithm for deciding whether or not a given phylogenetic

network displays a tree twice. Consequent to the work leading to the main result, it is also revealed

that there is a class of networks for which the number of distinct trees displayed by a network in

the class can be computed in polynomial-time with the help of the multiplication principle.
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1.1 Overview

Chapter 2 shows how to construct a phylogenetic network that displays exactly n trees, for a given

positive integer n. Chapter 3 characterises when a particular class of phylogenetic networks display

a tree twice and shows that there is a polynomial-time algorithm for deciding whether or not any

network in the particular class displays a tree twice. The characterisation of when a phylogenetic

network displays a tree twice in terms of a local substructure in the network is in Chapter 4, as

well as how to represent the local substructure as a phylogenetic tree. In Chapter 5 we characterise

when the representation displays a tree twice. In Chapter 6 we present a polynomial-time algorithm

for deciding whether or not the representation of the local substructure displays a tree twice based

on the work in Chapter 5. Now Chapter 7 is when all the work from Chapters 4, 5, and 6 come

together to give a polynomial-time algorithm for deciding whether or not a phylogenetic network

displays a tree twice. Chapter 8 describes a class of networks such that counting the number of

distinct trees displayed by any network in the class can be done in polynomial-time.

Except where duly and clearly noted, the results of Chapters 2, 4, 5, 6, 7, and 8 are new. The

third chapter is based on the paper [22] that was done jointly with Charles Semple and Simone

Linz.

1.2 Basic Definitions and Lemmas that are Used Throughout the

Thesis

This section provides notation and terminology that is used throughout the thesis. Throughout the

thesis, X denotes a finite set.

Phylogenetic trees. A rooted phylogenetic X-tree T is a rooted tree in which the root has degree

at least two and all other interior vertices have degree at least three, and whose leaf set is X. In

addition, T is binary if, apart from the root which has degree two, all interior vertices have degree

three. Since we are interested only in rooted binary phylogenetic X-trees throughout the thesis, we

will almost always refer to such a tree as a tree on X.

Example 1.1. The following figure is an example of a rooted binary phylogenetic X-tree, where

X = {1, 2, 3, 4, 5}.

6
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Phylogenetic networks. A phylogenetic network N on X is a rooted acyclic digraph that satisfies

the following three properties:

(i) the root has out-degree two,

(ii) each vertex with out-degree zero has in-degree one, and the set of vertices with out-degree

zero is X, and

(iii) all other vertices either have in-degree one and out-degree two, or in-degree two and out-degree

one.

Example 1.2. The following figure is a phylogenetic network on X, where X = {1, 2, 3, 4}. The

root is labeled ρ.

1 2
4

3

ρ

We will refer to N as a network on X or, simply, as a network if X plays no particular role.

Such networks are commonly referred to as binary phylogenetic networks. Here, as well as in all

other figures, edges are directed down the page. Furthermore, we will assume that networks have

no parallel edges. For a network N, vertices with in-degree two and out-degree one are called

reticulation vertices or reticulations and all other vertices are called tree vertices.

7



Example 1.3. A phylogenetic network with its only reticulation vertex labeled v.

1 2
4

3

ρ

v

Example 1.4. A phylogenetic network with one of its tree vertices labeled x.

1 2

3

4

x

In addition, edges directed into a reticulation are called reticulation edges and all other edges are

called tree edges. Similar to rooted phylogenetic trees, vertices with out-degree zero are referred to

as leaves. Indeed, a rooted binary phylogenetic tree is a phylogenetic network with no reticulations.

Example 1.5. The edges/arcs that are marked are reticulation edges/arcs.

1 2

3 4

5

e1
e2

e′1
e′2
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Biologically, like phylogenetic trees, phylogenetic networks illustrate the evolutionary history of a

collection of present-day species. Such species are represented by the leaves, while all other vertices

represent (hypothetical) ancestors. A reticulation represents, for example, a hybrid species.

Let u and v be two vertices of a network N on X. If there is a directed path (resp. a directed

path that contains at least one edge) from u to v, then u is an ancestor (resp. strict ancestor) of

v, and v is a descendant (resp. strict descendant) of u. More particularly, if (u, v) is an edge in N,

then u is a parent of v, and v is a child of u. Furthermore, if two vertices have a common parent,

then they are said to be siblings.

Let T be a tree on X, and let N be a network on X. We say that N displays T if T can be

obtained from N by deleting edges and vertices, and contracting vertices with in-degree one and

out-degree one. Intuitively, T is displayed by N if all of the ancestral information inferred by T is

also inferred by N . Note that if T is displayed by N, then T is necessarily binary.

Example 1.6. The tree shown can be obtained from the network in Example 1.5 by deleting the

reticulation edges e2 and e′2 then suppressing all vertices with in-degree one and out-degree one.

1 2 3

5

4

Definition 1.1. Let N be a phylogenetic network. A directed path P is called a tree-path if every

vertex, except for the first and last, on P is a tree-vertex.

Example 1.7. The directed path from v to v′ is a tree-path. The only directed path from x to v′

through v is not a tree-path. The only directed path from v to leaf 4 is not a tree-path. The only

directed path from v′ to leaf 4 is a tree-path.

9
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1.3 Switchings and Avoidability

In this section, we introduce the concept of switchings in a network to describe precisely what it

means for a tree to be displayed twice. We also introduce the concept of avoidability, which is

crucial in characterising when a network displays a tree twice.

Switchings. Let N be a network on X. A subset S of reticulation edges of N is a switching of N

if, for each reticulation v of N, the set S contains precisely one of the two reticulation edges directed

into v.

Example 1.8. The set S = {e1, e
′
1} is a switching of the network shown in Example 1.5, whilst

the set G = {e1, e
′
1, e
′
2} is not a switching of the network shown in Example 1.5. Likewise the set

B = {e1} is not a switching of the network shown in Example 1.5.

Now, let S be a switching of N . If we delete each reticulation edge in N that is not in S, then the

resulting directed graph contains no underlying cycle and, for each leaf ` ∈ X, it is easily checked

that there is a directed path from the root of this directed graph to `. If we now repeatedly contract

each resulting vertex with in-degree one and out-degree one and delete each degree one vertex that

is not in X, it is easily seen that we obtain a tree T on X. We say that S yields T . Note that T

is well-defined and, by construction, T is displayed by N . Conversely, observe that, if T is a tree

on X displayed by N, then there exists a switching that yields T . In summary, this leads to the

following lemma, which we will freely use throughout the thesis.

Lemma 1.1. A network N on X displays a tree T on X if and only if there exists a switching S

of N that yields T .

Example 1.9. The switching S = {e1, e
′
1} applied to the network shown in Example 1.5 yields the

tree shown in Example 1.6.

10



With Lemma 1.1 in hand, we say that N displays a tree twice if there exists two distinct switchings

of N each of which yields (up to phylogenetic isomorphism, i.e. up to relabeling internal vertices

and swapping leaves that share the same parent) the same tree on X. Referring back to a comment

made in the introduction, it follows from Lemma 1.1 that if N is a network on X with exactly k

reticulations, then N displays at most 2k distinct trees on X.

Example 1.10. The two distinct switchings S1 = {e1, e
′
2} and S2 = {e2, e

′
2} applied to the network

shown in Example 1.5 yield the following tree.

1 2

3

5

4

Example 1.11. The network on the left yields the two trees to the right of the network. Those

trees are isomorphic in the graph theory sense but they are not isomorphic in the phylogenetic

sense.

1

2

3 1

2

3 1

2

3

Definition 1.2. A subset G of reticulation edges of N is a general switching of N when for each

reticulation vertex v ofN either exactly one of v’s reticulation edges is in G or both of v’s reticulation

edges are in G.

Example 1.12. The set G = {e1, e
′
1, e
′
2} is a general switching of the network shown below. The

set B = {e1} is not a general switching of the network shown below. The set S2 = {e2, e
′
2} is both

a general switching and a switching of the network shown below.

11



1 2

3 4

5

e1
e2

e′1
e′2

v

Definition 1.3. If G is a general switching of a network N and we delete each reticulation edge

in N that is not in G, then for each leaf ` ∈ X, it is easily checked that there is a directed path

from the root of this directed graph to `. If we now repeatedly suppress each resulting vertex with

in-degree one and out-degree one and delete each degree one vertex that is not in X, then we obtain

a network N ′ on X. We say that G yields N ′.

Example 1.13. The general switching G = {e1, e
′
1, e
′
2} applied to the network shown in Example

1.12 yields the following network.

1 2

3 4

5

e′1
e′2

Definition 1.4. Let N and N ′ be networks on X. We say that N displays N ′ when there exists a

general switching G of N such that G yields N ′.

The next definition leads to a lemma that characterises when two trees are distinct.

Definition 1.5. Let T be a tree on leaf set X, and let `1, `2, `3 ∈ X. We say that T contains the

triple `1`2|`3 (or equivalently `2`1|`3) when the path connecting `1 and `2 does not intersect the

path from the root of T to `3.

12



Example 1.14. The tree T1 on the left contains the triple `1`3|`5. The tree T2 on the right does

not contain the triple `1`3|`5, but it does contain the triple `3`5|`1. Hence we see that T1 6= T2.

`5

`4

`6
`8`7

`3
`2`1

`4

`5

`6
`8`7

`3
`2`1

T1 T2

Lemma 1.2. Let T1 and T2 be two trees on the leaf set X. The two trees T1, T2 are distinct if and

only if there exists `1, `2, `3 ∈ X such that either T1 contains the triple `1`2|`3 whilst T2 does not,

T1 contains the triple `1`3|`2 whilst T2 does not, or T1 contains the triple `2`3|`1 whilst T2 does not.

Avoidable vertices. Let N be a network on X, and let v be a vertex of N . We say that v is

avoidable if, for each ` ∈ X, there exists a directed path from the root of N to ` that avoids v.

Otherwise, v is unavoidable. In particular, if v is unavoidable, then there exists a leaf ` such that

every directed path from the root of N to ` contains v. To illustrate, Example 1.12 shows a network

with an avoidable reticulation v. Note that the definition of an unavoidable reticulation coincides

with that of a so-called visible reticulation in [8].

The next lemma gives a sufficient, but not a necessary, condition for guaranteeing that a network

displays a tree twice.

Lemma 1.3. Let N be a network on X. If N has an avoidable reticulation, then N displays a tree

on X twice.

Proof. Let v be an avoidable reticulation of N, and let e1 and e2 be the two reticulation edges that

are incident with v. Since v is avoidable, there exists, for each ` ∈ X, a directed path P` from the

root of N to ` that avoids v. Let T be a tree on X that is displayed by N and, up to degree two

vertices, whose edge set is a subset of
⋃
`∈X P`. It is easily seen that such a T always exists. Now, let

S be a switching of N that yields T . It follows that the two distinct switchings (S−{e1, e2})∪{e1}

and (S − {e1, e2}) ∪ {e2} both yield T and, hence, N displays a tree on X twice.

13



Chapter 2

Displaying Exactly p Trees with p− 1

Reticulation Vertices

2.1 Introduction

This chapter is motivated by the work done in [20]. The authors of [20] positively answered, as a

by-product of their main result, the following question: “Given a Fibonacci number m, does there

exist a phylogenetic network that displays exactly m distinct phylogenetic trees?” One would then

ask “Given a positive integer p, does there exist a phylogenetic network that displays exactly p

distinct phylogenetic trees?” That question is the subject of this chapter, and it turns out that,

given a positive integer p, there does exist a phylogenetic network that displays exactly p distinct

phylogenetic trees. In order to display exactly p trees, where p ∈ N, we first construct the caterpillar

on p + 1 leaves. A caterpillar on x leaves, where x ∈ N and x ≥ 2, is a rooted directed tree such

that the root has a directed edge going into a leaf, call it leaf 1, and has another directed edge going

into a vertex α. If x = 2 then α is a leaf, call it leaf 2. If x ≥ 3 then α has a directed edge going

into a leaf, call it leaf 2, and has another directed edge going into a vertex β. If x = 3 then β is a

leaf, call it leaf 3. In this way we have the caterpillar on x leaves.

2.2 The Construction

Theorem 2.1. Given a positive integer p, there exists a phylogenetic network that displays exactly

p distinct phylogenetic trees.

Proof. First we construct the caterpillar on p+ 1 leaves. We then set about constructing a network

with p− 1 reticulation vertices. In order to do this, we first turn each leaf n, except for leaf p and

14
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Figure 2.2.1: Here is an example showing a caterpillar with four leaves being converted into a

network with two reticulation vertices that displays exactly three trees.

leaf p + 1, into a vertex that has two directed edges going into two leaves, call those leaves leaf n

and leaf n∗. Next we join leaf 1∗ to leaf 2∗ and call the resulting vertex (1, 2). The vertex (1, 2)

has a single directed edge going into a leaf, call it leaf (1, 2)∗. After that we join leaf (1, 2)∗ to leaf

3∗ and call the resulting vertex (1, 2, 3). The vertex (1, 2, 3) has a single directed edge going into

a leaf, call it leaf (1, 2, 3)∗. We proceed like this until we get reticulation vertex (1, 2, . . . , p− 1),

which has a single directed edge going into leaf (1, 2, . . . , p− 1)∗. Join leaf (1, 2, . . . , p− 1)∗ to leaf

p, call the resulting vertex (1, 2, . . . , p− 1, p). The reticulation vertex (1, 2, . . . , p− 1, p) has a single

directed edge going into a leaf, call it leaf p. Now we have a network with p− 1 reticulation vertices

and p− 2 of those reticulation vertices are avoidable reticulation vertices.

Given the above constructed network with p−1 reticulation vertices, we now set out to prove that

the network displays exactly p trees. We know that the network can display at most 2p−1 distinct

trees. Starting at the reticulation vertex called (1, 2, . . . , p− 1, p), we delete the reticulation edge

that joins to reticulation vertex (1, 2, . . . , p− 1). As a result of deleting that reticulation edge, every

other reticulation vertex is subsequently deleted, which means that the tree that has leaf p and leaf

p + 1 as a cherry is displayed 2p−2 times. Returning to the original network, we delete the other

reticulation edge, so that leaf p is now adjacent to reticulation vertex (1, 2, . . . , p− 1). We delete the

reticulation edge that joins reticulation vertex (1, 2, . . . , p− 2) to reticulation vertex (1, 2, . . . , p− 1),

in this modified network. This results in every other reticulation vertex being deleted, so that the
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tree that has leaf p and leaf p − 1 as a cherry is displayed 2p−3 times. We proceed like this until

we get leaf p adjacent to reticulation vertex (1, 2). We see that the tree that has leaf p and leaf 2

as a cherry is displayed exactly once, and likewise the tree that has leaf p and leaf 1 as a cherry is

also displayed exactly once. All in all we have p trees, and 2p−2 + 2p−3 + . . . + 21 + 1 + 1 = 2p−1.

Therefore the network displays exactly p trees.
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Chapter 3

Answering the Driving Question of

this Thesis for a Particular Class of

Networks

3.1 Introduction

In this chapter, we investigate the driving question of this thesis for a particular class of phylogenetic

networks. The driving question of this thesis is: “Given a phylogenetic network N, does there exist

a phylogenetic tree with the same leaf set as N that is displayed more than once by N?” If such

a tree exists, then there are two distinct sets of edges in N that yield the same tree. As we know,

if N is binary and has k reticulations, then the maximum number of possible trees displayed by

N is 2k. While it was shown independently that the upper bound of 2k is sharp for so-called

“normal networks” in [14, Theorem 1] and [23, Corollary 3.4], little is known about the properties

of a phylogenetic network that guarantees that it displays the maximum number of trees, which, of

course, is the same as saying that a network never displays a tree twice. Here, we present the first

such characterisation for a class of networks that lies strictly between tree-child and tree-sibling

networks.

Tree-child and tree-sibling networks are two prominent types of networks arising in the literature.

Let N be a network on X. A vertex v of N has the tree-path property if there exists a leaf ` such

that there is a tree-path P from v to `. If such a path exists, then each edge of P is a tree edge

and P is the unique directed path from v to ` in N . For example, except for the parent common to

v and v′, each vertex of the network shown on the left-hand side in Figure 3.1.1 has the tree-path

property. We say that N is tree-child (e.g. see [24]) if each vertex of N has the tree-path property.
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Figure 3.1.1: Left: A phylogenetic network N that displays three trees. Middle: A phylogenetic

tree that is displayed twice by N . Right: A phylogenetic network N ′ that displays four trees. While

N and N ′ are both tree-sibling, only N ′ also satisfies the stronger tree-child condition.

Equivalently, N is tree-child if each non-leaf vertex u of N has a child v such that v is a tree vertex.

Biologically, such networks guarantee that all species that arise from a speciation event (represented

by a tree vertex) or a reticulation event exist for a certain period of time before evolving any further.

Furthermore, N is tree-sibling (e.g. see [25]) if each reticulation has a sibling that is a tree vertex.

For example, the network shown on the left-hand side of Figure 3.1.1 is tree-sibling but not tree-

child, while the network shown on the right-hand side of the same figure is tree-child (and, hence,

also tree-sibling). Observe that, for a fixed set X, the class of tree-child networks on X is a proper

subclass of tree-sibling networks on X.

The class of networks on X that is nested strictly between those two classes is the class which

has the property that, for each reticulation, at least one of its parents has the tree-path property.

The characterisation of when a network in the aforementioned class of networks displays a tree

twice is based on a certain type of underlying cycle in a network that will be formally introduced

in Section 3.2. Moreover, we will show that such cycles are recognizable in quadratic time, leading

to the following theorem.

Theorem 3.1. Let N be a rooted binary phylogenetic network with leaf set X and suppose that, for

each reticulation of N, at least one of its parents is connected to a leaf of N via a directed path that

does not contain a reticulation. Then it takes time quadratic in the size of |X| to decide whether or

not N displays a rooted phylogenetic tree with leaf set X twice.

It is worth pointing out that for a network N with the property described in Theorem 3.1, the

number of leaves in N does not bound the total number of vertices in N . Hence, for a fixed set

X, the class of networks with leaf set X that we consider in this chapter contains infinitely many

networks (for example, see Figure 3.1.2, where the directed path from the root of the network to

the leaf labeled 1 can be arbitrarily long). In contrast, for a fixed set X, the number of tree-child

networks with leaf set X is finite [26].

The remainder of the chapter is organized as follows: In Section 3.2, we introduce the concept
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Figure 3.1.2: A phylogenetic network for which each reticulation has a parent connected to the leaf

labeled 1 via a directed path that does not contain a reticulation.

of avoidable cycles. We also derive several lemmas in this section that are important in establishing

the above-mentioned characterisation, which is presented in Section 3.3. In Section 3.4, we establish

Theorem 3.1. The last section contains a remark on tree-child and normal networks.

3.2 Avoidable Cycles

In this section, we describe a certain type of cycle and establish several lemmas that play a role in

the characterisation of the next section.

Avoidable cycles. We now extend the concept of avoidability to cycles of a network. Let N be a

network on X, and let v be a reticulation of N . Let u be a tree vertex of N such that there exists

two directed paths P1 and P2 from u to v whose vertex sets, apart from u and v, are disjoint. We

call the underlying cycle induced by the union of the vertex sets of P1 and P2 a 2-path cycle of N,

where u is the source vertex and v is the sink vertex. It is easily seen that each reticulation of N is

the sink of at least one 2-path cycle in N .

Let C be a 2-path cycle of N with source u and sink v. Let H be a subset of the vertex set of

C such that, for each leaf ` ∈ X, at least one of the following holds:

(i) there is a directed path from the root of N to ` which avoids every vertex in C, or

(ii) there is a directed path from the root of N to ` for which the last vertex in the path meeting

C is contained in H.

We refer to H as a hitting set of C. Furthermore, H is minimum if C has no hitting set H ′ with

|H ′| < |H|. If there exists a hitting set of C with at most two elements, we say that C is avoidable.

A simplified phylogenetic network that has an avoidable cycle and summarizes the basic idea of

such a cycle is shown in Figure 3.2.1. Moreover, for a more explicit example, the network shown on

the left-hand side of Figure 3.1.1 has a 2-path cycle C with source u and sink v that is avoidable,
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Figure 3.2.1: A 2-path cycle C of a network N on X = X1 ∪ X2 ∪ X3 with source u and sink v.

Note that {v, v1} is a hitting set of C because X can be partitioned into three sets X1, X2, and X3

such that, for each `1 ∈ X1, there exists a directed path from ρ to `1 that avoids every vertex in C,

and, for each `2 ∈ X2 (resp. `3 ∈ X3), there exists a directed path from ρ to `2 (resp. `3) for which

the last vertex on that path that meets a vertex in C is v (resp. v1). Thus C is an avoidable cycle.

Except for the edge joining v1 and v, lines indicate directed paths in N . Furthermore, the three

triangles indicate subnetworks of N . While omitted for the sake of simplicity, these subnetworks as

well as C may be further interwoven among themselves and among each other.

and a 2-path cycle with source u′ and sink v′ that is unavoidable. Note that C is avoidable because

there exists directed paths from the root of the network to leaves 3 and 4 that do not meet C.

The next lemma gives a sufficient, but not a necessary, condition for guaranteeing that a network

displays a tree twice.

Lemma 3.1. Let N be a network on X, and let v be a reticulation of N . If v is the sink of an

avoidable cycle, then N displays a tree on X twice.

Proof. Suppose that v is the sink of an avoidable cycle C. Then there is a hitting set H of C such

that |H| ≤ 2. Furthermore, for each ` ∈ X, there is a directed path P` in N from the root to ` such

that either P` avoids every vertex of C or the last vertex of P` meeting C is an element of H.

Now, let T be a tree on X displayed by N whose edge set, up to degree-2 vertices, is a subset of⋃
`∈X P`. Since H contains at most two elements, T has a subtree that can be detached by deleting

a single edge and whose leaf set contains precisely each element ` ∈ X for which the last vertex

of P` meeting C is an element of H. Let e1 and e2 denote the reticulation edges incident with v,

and let S be a switching of N that yields T . By construction, it is now easily seen that the two

switchings (S − {e1, e2}) ∪ {e1} and (S − {e1, e2}) ∪ {e2} both yield T . Hence N displays a tree on

X twice.
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Figure 3.2.2: A phylogenetic network (left) that displays the tree shown on the right twice. More-

over, N has no avoidable cycle because each 2-path cycle of N with sink vi, for i ∈ {1, 2, 3}, has

a minimum hitting set of size at least three. For example, {h1, h2, v3} and {h1, h3, v3} are the two

unique minimum hitting sets of the 2-path cycle of N with sink v3.

The converse of Lemma 3.1 does not hold. For example, Figure 3.2.2 shows a network that has no

avoidable cycle, but displays a tree twice.

We end this section with a concept and an lemma that is used in the rest of the chapter. Let N

be a network, and let v be a reticulation of N . A parent of v is a distinguished parent if it has the

tree-path property and, if both parents of v have the tree-path property, then it is not an ancestor

of the other parent. Note that, if v has a parent that has the tree-path property, then v has at least

one distinguished parent. Moreover, if v has two distinguished parents, then v is not the sink of an

avoidable cycle in N . Referring back to Figure 3.1.1, each of the two reticulations in the network

shown on the left has exactly one distinguished parent, while each of the two reticulations in the

network shown on the right of the same figure has two distinguished parents.

The following lemma immediately follows from the definition of an avoidable cycle and recalling

that such a cycle has a hitting set of size at most two.

Lemma 3.2. Let N be a network with no avoidable reticulation, and let v be a reticulation of N .

If v has a distinguished parent, say v1, and v is the sink of an avoidable cycle C in N, then {v1, v}

is the unique minimum hitting set of C.

3.3 Characterisation

In this section, we characterise when a network with at least one parent of each reticulation having

the tree-path property displays a tree twice. This characterisation is in terms of avoidable reticu-

lations and avoidable cycles. We will see in the next section that this result leads naturally to a

quadratic-time algorithm that decides whether or not such a network displays a tree twice.
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We start by describing an operation that involves a deletion of a reticulation in a network. Let

N be a network with no avoidable reticulation and, for each reticulation, at least one of its parents

has the tree-path property. Let ρ be the root of N, and let v be a reticulation of N whose strict

descendants are all tree vertices. Since N is acyclic such a reticulation exists. Obtain a rooted

acyclic digraph N ′ from N by deleting v and contracting any resulting vertex of in-degree one and

out-degree one. Such vertices correspond to v1 and v2 and, provided neither is ρ, there are two

contractions. If v1 or v2 is ρ, then delete ρ as well. We say that N ′ is obtained from N by a

reticulation deletion relative to v. The next lemma shows that N ′ preserves the two properties of

N that distinguish it.

Note 1. We use Du to denote the subset of X whose elements are precisely the descendants of u.

Lemma 3.3. Let N be a network on X with no avoidable reticulation. Suppose that N has the

tree-path property for at least one parent of each reticulation. Let N ′ be the rooted acyclic digraph

obtained from N by a reticulation deletion relative to a reticulation v. Then N ′ is a network on

X −Dv with no avoidable reticulation and, for each reticulation, at least one of its parents has the

tree-path property.

Proof. Let ρ denote the root of N . Furthermore, let v1 and v2 denote the parents of v. Without

loss of generality, we may assume that v1 is a distinguished parent of v. Let m denote a leaf in

N with the property that there is a tree-path from v1 to m. Now, since each reticulation in N is

unavoidable, v1 and v2 are tree vertices. Using this fact, as well as the property that at least one

parent of each reticulation has the tree-path property in N, it is easily checked that N ′ is indeed a

phylogenetic network on X −Dv (with no parallel edges).

We next show that each reticulation in N ′ is unavoidable, and at least one parent of each

reticulation in N ′ has the tree-path property. The latter certainly holds as no such tree-path in N

contains either (v1, v) or (v2, v). Now, let w be a reticulation in N ′. If w is avoidable in N ′, then,

as w is unavoidable in N, there is a leaf ` ∈ Dv such that every directed path in N from ρ to `

meets w. Moreover, there is a directed path Pm from ρ to m in N avoiding w. Since Pm extends

the unique tree-path from v1 to m, it follows that, by making use of the first part of Pm from ρ to

v1, we can construct a directed path from ρ to ` that uses the edge (v1, v) and avoids w in N ; a

contradiction. Thus each reticulation in N ′ is unavoidable.

The next theorem is the aforementioned characterisation.

Theorem 3.2. Let N be a network on X. Suppose that at least one parent of each reticulation

in N has the tree-path property. Then N displays a tree on X twice if and only if N contains an
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avoidable reticulation or an avoidable cycle.

Proof. Let ρ denote the root of N . If N contains an avoidable reticulation or an avoidable cycle,

then, by Lemmas 1.3 and 3.1, N displays a tree on X twice.

Now, suppose that N contains neither an avoidable reticulation nor an avoidable cycle. Let k

be the number of reticulations in N . We will show by induction on k that N does not display a

tree on X twice. If k = 0, then N is a tree on X and the result holds. Now assume that k ≥ 1

and that the result holds for all networks with k − 1 reticulations. Let v be a reticulation of N

whose strict descendants are all tree vertices, and let v1 and v2 be the two parents of v. Without

loss of generality, assume that v1 is a distinguished parent of v. Furthermore, let m denote a leaf in

N with the property that there is a tree-path from v1 to m. Let N ′ be the rooted acyclic digraph

obtained from N by applying a reticulation deletion relative to v. It follows, by Lemma 3.3, that

N ′ is a network on X − Dv with no avoidable reticulation and, for each reticulation, at least one

parent has the tree-path property.

To apply the induction assumption, we next show that N ′ contains no avoidable cycles. Suppose

to the contrary that N ′ has an avoidable cycle C ′ with sink t. Let t1 and t2 denote the parents of

t and, without loss of generality, assume that t1 is a distinguished parent of t. By Lemma 3.2, it

follows that {t1, t} is the unique minimum hitting set H ′ of C ′. Let C denote the 2-path cycle in

N induced by C ′ in N ′. Since each tree vertex in N and N ′ has out-degree exactly 2, and t1 has

the tree-path property in N ′, it follows that t1 is not contained in {v1, v2}, so (t1, t) is an edge in

C ′ and C. Now, let P ′m be a directed path from the root of N ′ to m such that either P ′m avoids C ′

or the last vertex of P ′m that meets C ′ is contained in H ′. As C ′ is an avoidable cycle in N ′, such a

path exists. Now, if v2 = ρ and (v2, v1) is an edge in N, let vp denote the child of v1 in N such that

vp 6= v; otherwise, let vp denote the parent of v1 in N . Note that the unique directed path from vp

to m in N ′ is a subpath of P ′m.

We next consider two cases. First, assume that the subpath of P ′m in N ′ from vp to m either

avoids every vertex in C ′ or vp ∈ {t1, t}. By the existence of P ′m in N ′, we have that, for each leaf

` ∈ Dv, there exists a directed path P` from ρ to ` in N that uses the edge (v1, v) such that P`
avoids every vertex of C or the last vertex of P` that meets C is contained in {t1, t}. Furthermore,

as (t1, t) is an edge in C, we have that H ′ is a hitting set of C in N . In particular, as C ′ is an

avoidable cycle in N ′, it follows that C is an avoidable cycle in N ; a contradiction.

Second, assume that the subpath of P ′m from vp to m in N ′ does not avoid every vertex in C ′

and vp /∈ {t1, t}. As C is unavoidable in N, v1 is either a vertex of C or the source of C is a strict

descendant of v1. In the latter case, it is easily checked that, as C ′ is avoidable in N ′, C is avoidable
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in N ; a contradiction. We may therefore assume that v1 is a vertex of C. If there is an element

` ∈ Dv for which there is a directed path in N from ρ to ` through v2 such that either it avoids C,

or it meets C and the last vertex it meets in C is t or t1, then all elements in Dv have such a path.

In turn, this implies that C is avoidable in N ; a contradiction. Hence, for all ` ∈ Dv, every directed

path from ρ to ` through v2 meets a vertex of C and the last such vertex is neither t nor t1. Let r

denote such a vertex of C, and let Pr denote a directed path from r to v2 in N . We may assume

that r is the only vertex of Pr meeting C. Potentially, Pr may consist of the single vertex v2. Now,

let D be the unique 2-path cycle in N with sink v whose vertex set is the union of V (Pr)∪ {v} and

a subset of the vertices in C, and whose edge set is E(Pr) ∪ {(v1, v), (v2, v)} a subset of the edges

in C, where V (Pr) and E(Pr) are the vertex and edge sets of Pr, respectively. Let Xv1 denote the

subset of X such that p ∈ Xv1 precisely if p ∈ Dv or there is a path from v1 to p that avoids D

except for v1. Since v is not the sink of an avoidable cycle in N, the set X −Xv1 is non-empty. In

particular, there exists a leaf q ∈ X −Xv1 with the property that every directed path from ρ to q

in N meets D and the last vertex meeting D is neither v nor v1. Moreover, since C ′ is avoidable in

N ′, at least one such path, say Pq, does not meet a vertex of C in N or the last vertex meeting C

in N is an element in {t1, t}. If the last vertex of Pq that meets C in N is either t1 or t, it is easily

checked that there is a path from ρ to q such that the last vertex on this path meeting D is v1; a

contradiction. We may therefore assume that Pq does not meet a vertex of C. Hence, V (Pr)− {r}

is non-empty and, in particular, Pq meets D in a vertex of V (Pr)−{r}. But then there is a directed

path in N from ρ to ` using Pq that avoids every vertex in C, in which case, C is avoidable in N ; a

contradiction.

We now proceed with the induction. Since N ′ has k−1 reticulations, it follows by the induction

assumption that N ′ does not display a tree on X − Dv twice. Let T ′ be a tree on X − Dv that

is displayed by N ′, and let S′ be a switching that yields T ′. Now consider the two switchings

S1 = S′ ∪ {e1} and S2 = S′ ∪ {e2}, where e1 = (v1, v) and e2 = (v2, v). For completeness, if S′

contains an edge (w1, w), where w1 is the parent of v2 and w is a child of v2 in N, then replace

(w1, w) with (v2, w) in S1 and S2. Let C be a 2-path cycle in N whose sink is v. It is easily checked

that C exists. Furthermore, let ` be an element in Dv, and let q be an element in X such that

the last vertex of each directed path from ρ to q in N that meets C is neither v nor v1. As C is

not avoidable, such a q exists. Then S1 yields a tree T1 on X that contains the triple `m|q while

S2 yields a tree T2 on X that contains the triple `q|m or qm|` and, thus, T1 � T2, by Lemma 1.2.

Applying this argument to each of the trees on X −Dv displayed by N ′, it follows that N does not

display a tree on X twice; thereby completing the proof of the theorem.
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3.4 Quadratic-Time Algorithm

Making use of the characterisation Theorem 3.2, in this section we establish Theorem 3.1. If N is

a network with n vertices, then, as each vertex of N has degree at most three, the number of edges

in N is at most 3
2n. We will implicitly use this fact throughout the section.

We start by showing that the total number of vertices in a certain type of network N on X is

bounded by a function that is linear in the size of X. Eventually, this will enable us to get the

overall running time to be quadratic in |X|.

Lemma 3.4. Let N be a network on X with no avoidable reticulation, and suppose that N has the

tree-path property for at least one parent of each reticulation. Let k be the number of reticulations

in N, and let n be the total number of vertices in N . Then k ≤ |X| and, in particular, n < 4|X|.

Proof. If k = 0, then the result clearly holds. So assume that the result holds for all networks with

fewer than k reticulations. Let N ′ be a network obtained from N by applying a reticulation deletion

relative to a reticulation v in N . It follows, by Lemma 3.3, that N ′ is a network on X −Dv with

no avoidable reticulation and, for each reticulation, at least one parent has the tree-path property.

Moreover, N ′ has k − 1 reticulations and at most |X| − 1 leaves. Therefore, by induction,

k − 1 ≤ |X −Dv| ≤ |X| − 1,

and so k ≤ |X|. To establish the second part, we use a result from [26, Equation 5] whose authors

have shown that |X|+ k = n+1
2 . Since k ≤ |X|, it follows that

n = 2(|X|+ k)− 1 ≤ 4|X| − 1 < 4|X|,

thereby establishing the second inequality of the lemma.

Corollary 3.1. Let N be a network on X that has the tree-path property for at least one parent of

each reticulation. If N has at least 4|X| vertices, then N displays a tree on X twice.

Proof. It follows by the contrapositive of Lemma 3.4 that N has an avoidable reticulation. Hence,

by Lemma 1.3, N displays a tree on X twice.

Following on from Corollary 3.1, the next lemma shows that we can decide quickly if a network on

X has at least 4|X| vertices.

Lemma 3.5. Let N be a network on X. It takes time linear in |X| to decide if N has at least 4|X|

vertices.
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Proof. The result follows by applying a breadth-first search traversal to N that keeps track of the

number of previously visited distinct vertices in N and either returns the number n of vertices in

N if n < 4|X| or stops if 4|X| distinct vertices have been traversed. Since the running time of a

breadth-first search algorithm applied to N is O(3
2n+ n) [27], the lemma now follows.

We next establish a lemma on avoidable cycles and then state an algorithm that recognizes whether

or not a reticulation is the sink of an avoidable cycle in a network with no avoidable reticulations

and, for each reticulation, at least one parent has the tree-path property.

Lemma 3.6. Let N be a network with no avoidable reticulation, and suppose that at least one

parent of each reticulation in N has the tree-path property. Let v be a reticulation in N with parents

v1 and v2 say, where v1 is a distinguished parent of v. If v is the sink of an avoidable cycle C, and

P1 and P2 are the two directed paths whose union is C with vi lying on Pi, then, apart from v, the

path P1 contains at most one reticulation and the path P2 contains no reticulations. Moreover, C

is the unique avoidable cycle with sink v.

Proof. Let ρ denote the root of N . It follows, by Lemma 3.2, that {v, v1} is the unique hitting set

of C. We first show that P2 contains no reticulations except for v. Assume that w is a reticulation

lying on P2 such that w 6= v. Amongst all such reticulations, choose w so that the only reticulation

in P2 after w is v. Since w is unavoidable, there exists a leaf q such that every directed path from

ρ to q contains w. In particular, there exists a directed path from ρ to q, say Pq, such that, as C is

avoidable, the last vertex of Pq meeting C is either v or v1. But then, as w is not the source of C,

there is a directed path from ρ to q using P1 that avoids w; a contradiction. Thus P2 contains no

reticulations except v.

We next show that P1 contains at most one reticulation except for v. Assume that w is a

reticulation lying on P1 such that w 6= v. Like above, choose w so that amongst all such reticulations

the only reticulation after w in P1 is v. Let w1 and w2 be the parents of w in N . Without loss

of generality, we may assume that w1 is a distinguished parent of w. Since w1 has the tree-path

property, there is a leaf q with the property that there is a tree-path from w1 to q. Since C is

avoidable and {v, v1} is the unique hitting set of C, it follows that w1 does not lie on P1; otherwise,

a hitting set of C has size at least three. Thus w2 lies on P1. Now assume that P1 contains a

reticulation t other than v and w. Choose t so that the only reticulations after t in P1 are w and

v. Since t is unavoidable, there exists a leaf r such that every directed path from ρ to r contains t.

Moreover, as C is avoidable, there exists at least one such path, say Pr, such that the last vertex

of Pr meeting C is either v or v1. Now, let Pq be a directed path from ρ to q and observe that Pq
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contains as a subpath the tree-path from w1 to q. Since N is acyclic and C is avoidable, Pq does

not meet C. But then there is a directed path from ρ to r using Pq to w1, the unique path from w1

to v1, and the subpath of Pr from v1 to r. In particular, this path avoids t; a contradiction. Hence,

P1 contains at most one reticulation other than v.

To see that C is the unique avoidable cycle with sink v in N, first note that P2 contains no

reticulations except v. Furthermore, P1 contains at most one reticulation (other than v) and, if it

contains such a reticulation w, then P1 has no choice with regards to which parent of w it meets.

Since no 2-path cycle of N with sink v that contains v, v1, and a parent of w that has the tree-path

property is avoidable, the uniqueness of C now follows.

The previous lemma provides insights into how to decide whether or not a reticulation is the

sink of an avoidable cycle in a network N on X with no avoidable reticulation and for which the

tree-path property holds for at least one parent of each reticulation. We next summarize these

insights in the form of an algorithm, called AvoidableCycle. Subsequently, we will establish that

AvoidableCycle works correctly and that its running time is linear in the size of X.

Algorithm: AvoidableCycle

Input: A network N on X with no avoidable reticulation and, for each reticulation, at least one

parent has the tree-path property. A reticulation v of N with parents v1 and v2 say, where v1 is a

distinguished parent of v.

Output: Return “yes” if v is the sink of an avoidable cycle in N ; otherwise, return “no.”

Step 1 Set P2 = u1, u2, . . . , ul to be the (unique) maximal directed path in N with ul−1 = v2 and

ul = v such that, except for v, each vertex on P2 is a tree vertex.

Step 2 Set P1 = w1, w2, . . . , wm to be the (unique) maximal directed path in N with wm−1 = v1

and wm = v such that the following three properties are satisfied: (i) w1 is a tree vertex,

(ii) P1 contains at most one reticulation other than v, and (iii) except for v1 and, possibly

v2, no vertex on P1 that is a parent of a reticulation in N, has the tree-path property.

Step 3 If P1 and P2 have no common tree vertex, then return “no.” Otherwise, let C be the 2-path

cycle of N induced by subpaths of P1 and P2 with source u and sink v, where u is the last

tree vertex in P1 and P2 common to both paths.
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Step 4 Let X ′ be the subset of X such that ` ∈ X ′ if and only if there is a directed path from

either v1 or v to ` avoiding all other vertices of C.

Step 5 For each leaf q in X − X ′, check whether there is a directed path from the root of N to

q avoiding all vertices of C. Return “yes” if there exists such a path for all q; otherwise,

return “no.”

Lemma 3.7. Let N be a network on X with no avoidable reticulation. Suppose that at least one

parent of each reticulation in N has the tree-path property. Let v be a reticulation in N . Calling

AvoidableCycle for N and v returns “yes” if and only if v is the sink of an avoidable cycle.

Furthermore, the running time of AvoidableCycle in this call is linear in the number of vertices

in N .

Proof. Let ρ denote the root of N, and let v1 and v2 denote the parents of v. Without loss of

generality, we may assume that v1 is a distinguished parent of v. Furthermore, let n denote the

number of vertices in N . Throughout the proof, we use the same notation as in the description of

AvoidableCycle.

We first show that AvoidableCycle works correctly. Suppose that C ′ is an avoidable cycle

of N with sink v. Then, by Lemma 3.6, C ′ is unique. Applying AvoidableCycle to N and v,

it follows, by Lemma 3.6 and the construction described in AvoidableCycle, that C ′ is the 2-

path cycle C constructed in Step 3 of the algorithm. By the definition of an avoidable cycle, Step 5

returns “yes.” Now suppose that N has no avoidable cycle with sink v. Applying AvoidableCycle

to N and v, there are two cases to consider depending on whether or not P1 and P2 meet in Step 3.

If P1 and P2 do not meet at a tree vertex, then Step 3 returns “no.” Therefore, assume that P1 and

P2 do meet at a tree vertex. Then, as v is not the sink of an avoidable cycle in N, there is some leaf

q ∈ X −X ′ such that every path from ρ to q meets C, in which case Step 5 returns “no.” Hence,

AvoidableCycle correctly determines if v is the sink of an avoidable cycle in N .

We now turn to the running time of AvoidableCycle. Starting at v2 and traversing edges in

the opposite direction to determine P2 takes time linear in n. Similarly, determining P1 takes time

linear in n. However, if P1 contains a reticulation v′, distinct from v, then one has additionally to

determine which of its two parents, say v′1 and v′2, have the tree-path property. A naive way to

do this is the following. Let (r1, r2, . . . , r|X|) be an ordering on the leaves of N . In turn, for each

ri, let Pri be the unique maximal directed path in N that ends in ri such that each vertex on Pr
is a tree vertex and, except for the first vertex of Pri no vertex is contained in a path Prj with

1 ≤ j < i ≤ |X|. If there exists an ri such that Pri meets v′k with k ∈ {1, 2}, then v′k has the

28



tree-path property. Collectively, this takes time linear in n. Clearly, Step 3 can be done in time

linear in n and, so, it remains to check the running time of Steps 4 and 5. For Step 4, delete the

vertices in C that are neither v nor v1, and then determine, for each leaf `, if there is a directed path

from v1 to ` in the resulting directed graph, in which case, ` ∈ X ′. Here we can, for example, use a

depth-first search traversal [27] starting at v1 and, so, this step takes time linear in n. An analogous

approach can be done for Step 5. We conclude that the running time of AvoidableCycle is linear

in n.

We are now in a position to prove Theorem 3.1.

Theorem 3.1. Let N be a network on X and suppose that N has the tree-path property for at least

one parent of each reticulation. It takes time quadratic in the size of X to decide if N displays a

tree on X twice.

Proof. First, by Lemma 3.5, we can decide in time linear in |X| if N has at least 4|X| vertices. If

N has at least that many vertices, then, by Corollary 3.1, N displays a tree on X twice. We may

therefore assume that N has at most 4|X| vertices.

We complete the proof by showing that it takes time quadratic in |X|, to decide whether or not

N has an avoidable reticulation or an avoidable cycle which is, by Theorem 3.2, a necessary and

sufficient condition for N to display a tree on X twice. Let v be a reticulation in N . Deciding if

v is avoidable is easily checked in time that is linear in the size of N, which is at most 4|X|. For

example, one way is to simply delete v from N and then use a depth-first search [27], whose running

time is linear in |X|, to decide whether there is a directed path from the root to each vertex in X in

the resulting directed graph. Since the number of reticulations in N is at most |X| (see Lemma 3.4),

deciding whether or not N has an avoidable reticulation takes time quadratic in |X|. Now we may

assume that N has no avoidable reticulation. It then follows, by Lemma 3.7, that it takes time

linear in the number of vertices in N and, hence, by Lemma 3.5, time linear in |X|, to decide if v

is the sink of an avoidable cycle in N using AvoidableCycle. Applying this algorithm to each

reticulation in N to decide if there exists a reticulation that is the sink of an avoidable cycle takes

time quadratic in |X|. The theorem now follows.

3.5 Remark on Tree-Child and Normal Networks

As tree-child networks are a subclass of the networks in which each reticulation has at least one

parent that satisfies the tree-path property, it immediately follows, by Theorem 3.1, that it can be

decided quickly whether or not a tree-child network displays a tree twice. Curiously, since each
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vertex of a tree-child network N has the tree-path property, it is tempting to assume that N never

displays a tree twice and therefore has no avoidable cycles. However, this is not necessarily true.

To see this, consider a reticulation v of N and its two parents v1 and v2. If v1 has the tree-path

property and v2 is an ancestor of v1, then it is possible for v to be contained in an avoidable cycle.

In [28], Willson refers to a tree-child network that does not have a reticulation for which one parent

is an ancestor of the other parent as a normal network. Noting that a normal network does not

have an avoidable cycle as every 2-path cycle has a minimum hitting set of size at least three, the

next corollary is now an immediate result of Theorem 3.2.

Corollary 3.2. Let N be a normal network on X. Then N does not display a tree on X twice.
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Chapter 4

Characterising when a Phylogenetic

Network Displays a Tree Twice in

Terms of Substructures in the

Network

4.1 Introduction

This chapter is about characterising when an arbitrary phylogenetic network displays a tree twice

in terms of local substructures inherent in the network. These local substructures arise due to

the presence of reticulation vertices, and the local substructures, when isolated, are themselves

phylogenetic networks. In Section 4.2 we identify the local substructures inherent in a network and

show that the local substructures are themselves networks. In Section 4.3 we show how the local

substructures can be represented by a tree, so that essentially the local substructures are tree-like.

Section 4.4 presents a proposition that is a crucial part of the algorithm that decides whether or

not a network displays a tree twice, as well as describing what it means to reduce a representation.

Section 4.5 shows that a network, displayed by a network without any avoidable reticulation vertices,

is free of avoidable reticulation vertices. In Section 4.6 we present the characterisation of when a

network displays a tree twice in terms of the local substructures identified in Section 4.2.

31



4.2 Basic Networks and Basic Cyclic Pairs

The networks for which it is easy to decide whether or not they display a tree twice are networks

that have only one level of reticulation vertices; this means that the descendants of any reticulation

vertex in the network are non-reticulation vertices. We call such a network a basic network. The

subnetworks of a basic network are basic networks, so one can not get any simpler than a basic

network in terms of substructures. One does find, however, that some basic networks have a more

direct way of deciding whether or not they display a tree twice than other basic networks; these

networks are called basic cyclic pairs. A basic cyclic pair is an ordered tuple (w, v, P1, P2) and a

basic network B, where w is a tree vertex, v is a reticulation vertex, and P1,P2 are two edge disjoint

directed paths connecting w to v such that every directed path from the root to a reticulation vertex

in the network passes through w. Since a basic cyclic pair is identified by a reticulation vertex v,

the reticulation vertex v is special, so that defining when a basic cyclic pair displays a tree twice

involves the reticulation vertex v. We say that a basic cyclic pair displays a tree twice when there

exists two switchings such that v’s reticulation edges are split between the two switchings, which

means that one of v’s reticulation edges is in one of the switchings whilst the other reticulation edge

is in the other switching, and those two switchings yield the same tree.

Definition 4.1. A basic network is a phylogenetic network N such that for every reticulation vertex

v in N there is no other reticulation vertex v′ where there is a directed path from v to v′.

Example 4.1. The network shown is a basic network. The network shown in Example 1.5 is not

a basic network.
ρ

x

2

3 4
5

6 7
8

x′

9

10

1

Definition 4.2. Let N be a network on leaf setX. A network N1 on leaf setX1 ⊆ X is a subnetwork

of N when there exists a tree-vertex x in N such that deleting all the vertices and edges that can

not be reached from x via a directed path in N then suppressing all vertices with in-degree one and

out-degree one results in N1.

32



Example 4.2. The network shown on the left was obtained from the network shown in Example

4.1 by deleting all the vertices and edges that can not be reached from x via a directed path in the

network shown in Example 4.1 then suppressing all vertices of in-degree one and out-degree one.

Similarly the network shown on the right was obtained from the network shown in Example 4.1

with respect to x′.
x

2

3 4
5

1
6 7

8

x′

Definition 4.3. Let B be a basic network, and let w be a tree-vertex in B such that every directed

path from the root of B to a reticulation vertex in B passes through w. Let v be a reticulation

vertex in B such that there exists two directed paths P1,P2 such that E (P1) ∩ E (P2) = ∅ and

V (P1) ∩ V (P2) = {w, v}. The ordered tuple (w, v, P1, P2) and a basic network B is called a basic

cyclic pair. We denote a basic cyclic pair by B- (w, v, P1, P2).

Note 2. This definition allows a parallel pair, as reticulation edges are given distinct labels. In fact,

if v is a reticulation vertex then we label v’s reticulation edges ev1,ev2.

Example 4.3. The basic network shown, called B, has two basic cyclic pairs. One basic cyclic

pair is B- (w, v3, P1, P2), where P1 = {(w,w′) , (w′, x1) , (x1, v3)} and P2 = {(w, x2) , (x2, v3)}.

The other basic cyclic pair is B- (w, v2, P
′
1, P

′
2), where P ′1 = {(w,w′) , (w′, x3) , (x3, v2)} and

P ′2 = {(w, x2) , (x2, v2)}. The network shown in Example 4.1 has no basic cyclic pairs.

5 6

4

3
2

1

v2

v1

v3

ev2
2ev2

1

ev1
1

ev1
2

ev3
1 ev3

2

w
w′

x2
x1

x3
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Definition 4.4. A basic cyclic pair B- (w, v, P1, P2) displays a tree twice when there exists two

switchings S1, S2 of B that yield the same tree, and one of v’s reticulation edges is in S1 whilst the

other is in S2.

Example 4.4. The basic cyclic pair B- (w, v3, P1, P2) from Example 4.3 displays the tree shown

twice via S1 = {ev2
1 , e

v1
1 , e

v3
1 } and S2 = {ev2

1 , e
v1
1 , e

v3
2 }. The other basic cyclic pair B- (w, v2, P

′
1, P

′
2)

from Example 4.3 does not display the tree shown twice as ev2
1 ∈ S1 and ev2

2 /∈ S2.

4 5 6
1

2 3

4.3 Representing a Basic Cyclic Pair

When it comes to analysing a basic cyclic pair, we just want the information that is relevant in

regards to deciding when the basic cyclic pair displays a tree twice. It is also preferable to work

with existing concepts that have well-established notation. Since every directed path from the root

to a reticulation vertex passes through w, we have w as the root of the tree representing the basic

cyclic pair. First we relabel each leaf n in the leaf set of the basic cyclic pair with `n. Now for each

reticulation vertex vi, where i ∈ A and A is a finite subset of the natural numbers, there is a tree

structure below it, so delete the edge going out of vi and delete any components that do not contain

w. Now vi has two directed edges going into it and no edge going out), so we split the vertex vi into

two leaves ve1
i and ve2

i where ve1
i is the finish vertex of the edge evi1 and ve2

i is the finish vertex of

the edge evi2 . Now we have a tree that represents the basic cyclic pair, and the tree contains all the

information that is needed in order to decide whether or not the basic cyclic pair that it represents

displays a tree twice.

Definition 4.5. The tree T that represents a basic cyclic pair B- (w, v, P1, P2) is obtained from

the basic cyclic pair as follows:

1. For each leaf n in the leaf set of B, relabel n with `n.

2. For each reticulation vertex vi in B, where i ∈ A and A is a finite subset of the natural

numbers, delete the edge going out of vi.
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3. For each vertex vi split it into two leaves ve1
i and ve2

i such that ve1
i = fin (evi1 ) and ve2

i =

fin (evi2 ), where fin (evi1 ) means the finish vertex of the directed edge evi1 .

4. Delete the edge going into w and delete any components that do not contain w.

Note 3. In B- (w, v, P1, P2) v = vj for some j ∈ N.

Example 4.5. The tree T shown represents the basic cyclic pair B- (w, v3, P1, P2) from Example

4.3. The tree shown also represents the basic cyclic pair B- (w, v2, P
′
1, P

′
2) from Example 4.3.

w

ve2
3 ve2

2

ve1
3ve2

1

ve1
1`2

ve1
2

4.3.1 What does it mean for the representation of a basic cyclic pair to display

a tree twice?

The tree that represents a basic cyclic pair has two distinct groups of leaves. One group of leaves

represents reticulation edges in the basic cyclic pair whilst the other represents leaves that can be

got to from a tree-path starting at w. The first group of leaves can be restricted in the following

way: for every leaf veji , where j ∈ {1, 2} and i ∈ N, exactly one of ve1
i , v

e2
i is included in the leaf

restriction. The second group of leaves is fixed so that any leaf restriction of the tree must include

the second group. We see that these special leaf restrictions correspond to a switching of a basic

cyclic pair and vice versa, so that a basic cyclic pair displays a tree twice if and only if its tree

representation displays a tree twice. There is one more thing that needs to be done for a coherent

representation of displaying a tree twice: After a leaf-restriction is applied to the tree representing

a basic cyclic pair, all the leaves veji need to be relabeled `vi . This ensures that the trees that are

displayed by the representation are embedded in the trees displayed by the basic cyclic pair that it

represents.

Definition 4.6. Let T be a tree on leaf set X. A leaf restriction R of T is a set such that R ⊆ X.
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Definition 4.7. Let T be a tree on leaf set X, and let X1 be a leaf restriction of T . The leaf

restriction X1 applied to T is obtained from T by deleting all the vertices and edges that are not on

a directed path from the root of T to an element of X1. Then deleting any vertices with in-degree

zero and suppressing any vertices of in-degree one and out-degree one. We denote the leaf restriction

X1 applied to T by T |X1.

Definition 4.8. Let T be the representation of a basic cyclic pair. The leaves of form `∗, where ∗

can be a number or a letter, are called the fixed leaves. The set of fixed leaves is denoted by CT .

Example 4.6. The set of fixed leaves of the tree representation T shown in Example 4.5 is CT =

{`2}.

Definition 4.9. The leaves of the tree T representing a basic cyclic pair that are not in CT are

called reticulation leaves, and the set of reticulation leaves of T is denoted by HT .

Example 4.7. The set of reticulation leaves of the tree representation T shown in Example 4.5 is

HT = {ve1
1 , v

e2
1 , v

e1
2 , v

e2
2 , v

e1
3 , v

e2
3 }.

Definition 4.10. A switching of the tree T representing a basic cyclic pair is a leaf restriction R

of T such that CT ⊆ R and, for every vi, where i ∈ N, that is in the set of reticulation vertices of

the basic cyclic pair, exactly one of ve1
i , v

e2
i is in R.

Example 4.8. The leaf restriction R = {`2, ve1
1 , v

e2
2 , v

e1
3 } is a switching of the tree representation

T shown in Example 4.5.

Definition 4.11. A general switching of the tree T representing a basic cyclic pair B- (w, v, P1, P2)

is a leaf restriction G of T such that CT ⊆ G and for every vi, where i ∈ N, that is in the set of

reticulation vertices of the basic cyclic pair either exactly one of ve1
i , v

e2
i is in G or {ve1

i , v
e2
i } ⊆ G;

that is, G contains at least one of ve1
i , v

e2
i .

Example 4.9. The leaf restriction G = {`2, ve1
1 , v

e2
1 , v

e2
2 , v

e1
3 , v

e2
3 } is a general switching of the tree

representation T shown in Example 4.5.

Definition 4.12. The tree T representing a basic cyclic pair displays a tree when there exists a

general switching G of T such that after G is applied to T every leaf veji , where j ∈ {1, 2} and

i ∈ N, where exactly one of ve1
i , v

e2
i is in G is relabeled `vi . We denote applying G to T by T |G,

and we denote the result of the relabeling that takes place afterwards by (T |G)L.

Example 4.10. The tree T |G is shown on the left where T is the tree representation from Example

4.5 and G is from Example 4.9. The tree (T |G)L is shown on the right.
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w

ve2
3 ve2

2

ve1
3ve2

1

ve1
1`2

w

ve2
3 `v2

ve1
3ve2

1

ve1
1`2

Note 4. Let X be a set of reticulation leaves (X could be a general switching, a switching, or a leaf

set) of the tree T representing a basic cyclic pair then (X)L means that we relabel every reticulation

leaf veji in X as `vi .

Example 4.11. Taking G from Example 4.9 we have (G)L = {`2, `v1 , `v2 , `v3}.

Definition 4.13. The tree T representing a basic cyclic pair B- (w, v, P1, P2) displays a tree twice

when there exists two switchings R1, R2 of T such that either ve1 ∈ R1 and ve2 ∈ R2 or ve2 ∈ R1

and ve1 ∈ R2, and (T |R1)L = (T |R2)L.

Note 5. We abuse notation and put “=” when we mean “isomorphic to” (in the phylogenetic sense).

Example 4.12. The tree on the left was obtained from Example 4.5 via the switchings

R1 = {ve1
1 , v

e1
2 , v

e1
3 , `2} and R2 = {ve1

1 , v
e1
2 , v

e2
3 , `2}. Hence T from Example 4.5 representing

B- (w, v3, P1, P2) displays the tree on the left twice. The tree on the right was obtained from

Example 4.3. It is a subtree of the tree displayed twice by B- (w, v3, P1, P2), and we see that it is

simply the tree on the left with its leaves relabeled.
w

`v3

`2
`v2

`v1

4

2
1

3

Definition 4.14. Let T be a tree on the leaf set X. A tree T1 on a leaf set X1 ⊆ X is a subtree of

T if there exists a vertex x of T such that T1 = T |L (x), where L (x) is the set of leaves ` ∈ X such

that there is a directed path from x to ` in T .
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Example 4.13. The tree T on the left has leaf set X = {1, 2, 3, 4, 5, 6, 7, 8, 9}. The tree T1 in the

middle is a subtree of T, where L (x) = {5, 6, 7, 8, 9}. The tree T2 on the right is not a subtree of T

nor a subtree of T1.

1 2

3 4

5 6 7
8 9

T

5 6 7
8 9

T1 = T |L (x)

x x

5 6 7

T2 = T1| {5, 6, 7}

Lemma 4.1. Let T1 and T2 be two trees on the same leaf set X. Let T ′1 be a subtree of T1 on leaf

set X ′ and let T ′2 be a subtree of T2 on leaf set X ′. If T ′1 6= T ′2 then T1 6= T2.

Proof. Suppose T1 = T2 then it is fairly clear that any subtree of T1 on a subset of the leaf set X

will be isomorphic (in the phylogenetic sense) to the subtree of T2 on the corresponding leaf set.

Note 6. This lemma does not work for multi-labeled trees.

Theorem 4.1. Let T be the representation of a basic cyclic pair B- (w, v, P1, P2). The tree T

displays a tree twice if and only if B- (w, v, P1, P2) displays a tree twice.

Proof. Suppose the tree T displays a tree twice then there exists two switchings R1, R2 of T such

that either ve1 ∈ R1 and ve2 ∈ R2 or ve2 ∈ R1 and ve1 ∈ R2, and (T |R1)L = (T |R2)L. Without loss

of generality, suppose that ve1 ∈ R1 and ve2 ∈ R2. Consider the two set S1, S2 where evij ∈ S1, for

j ∈ {1, 2} and i ∈ N, if and only if veji ∈ R1 and evij ∈ S2 if and only if veji ∈ R2. Since ve1 ∈ R1 and

ve2 ∈ R2, we have ev1 ∈ S1 and ev2 ∈ S2, so that v’s reticulation edges are split between S1 and S2.

Now S1 and S2 are switchings of B- (w, v, P1, P2) because R1 and R2 are switchings of T . We will

show that S1 and S2 yield the same tree by supposing that they do not and reaching a contradiction.

First relabel every leaf n in B- (w, v, P1, P2) with `n, call the result [B- (w, v, P1, P2)]∗. Suppose that

S1 and S2 yield different trees, call them T1 and T2 respectively. Since every directed path from

the root to a reticulation vertex passes through w and that T1 6= T2, there exists T ′1 a subtree

of T1 whose leaf set is a subset of the cluster below w in [B- (w, v, P1, P2)]∗ and there exists T ′2 a

subtree of T2 whose leaf set is the same as the leaf set of T ′1, and T ′1 6= T ′2. For every vertex x in
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T ′1 with the property that there exists a reticulation vertex vi in [B- (w, v, P1, P2)]∗ with the same

cluster as x, replace x and everything below it by `vi . Do the same for T ′2, call the results (T ′1)∗

and (T ′2)∗ respectively. We must have (T ′1)∗ 6= (T ′2)∗ and they are on the same leaf set, but (T ′1)∗ is

a subtree of (T |R1)L and (T ′2)∗ is a subtree of (T |R2)L; hence, by Lemma 4.1, (T |R1)L 6= (T |R2)L

- a contradiction. Therefore S1 and S2 yield the same tree. Thus B- (w, v, P1, P2) displays a tree

twice.

Suppose that B- (w, v, P1, P2) displays a tree twice then there exists two switchings S1, S2 of

B- (w, v, P1, P2) such that either ev1 ∈ S1 and ev2 ∈ S2 or ev2 ∈ S1 and ev1 ∈ S2, and S1 and S2 yield

the same tree, call it T ∗. Without loss of generality, suppose that ev1 ∈ S1 and ev2 ∈ S2. Consider the

two sets R′1, R′2 where veji ∈ R′1, where j ∈ {1, 2} and i ∈ N, if and only if evij ∈ S1 and veji ∈ R′2 if

and only if evij ∈ S2. We see that ve1 ∈ R′1 and ve2 ∈ R′2. Of course, R1 = R′1∪CT and R2 = R′2∪CT

are switchings of T . First relabel every fixed leaf `n in T with n. Suppose for contradiction that

(T |R1)L 6= (T |R2)L. Now (T |R1)L and (T |R2)L are on the same leaf set, because take any `vi

in the leaf set of (T |R1)L then either ve1
i or ve2

i is in R1. Since R2 is a switching, exactly one of

ve1
i , v

e2
i is in R2, so that `vi is in the leaf set of (T |R2)L. Similarly for the other direction. Since

B- (w, v, P1, P2) is a basic cyclic pair, for every reticulation vertex vi in B- (w, v, P1, P2) there is

a tree Tvi whose root is the child of vi. In (T |R1)L replace every `vi with the tree Tvi , call the

result T ∗1 . Do the same in (T |R2)L , call the result T ∗2 . We must have T ∗1 6= T ∗2 , but we also have

T ∗1 , T
∗
2 being two subtrees of T ∗ on the same leaf set, so, by Lemma 4.1, T ∗1 = T ∗2 - a contradiction.

Therefore (T |R1)L = (T |R2)L , so that T displays a tree twice.

4.4 Reducing a Basic Cyclic Pair

One of the most important results for deciding quickly whether or not an arbitrary phylogenetic

network displays a tree twice is the following proposition. If a basic cyclic pair displays a tree twice

then any reduction of the basic cyclic pair displays a tree twice. This proposition implies that if

we are able to reduce a basic cyclic pair to a basic cyclic pair that does not display a tree twice

then the original basic cyclic pair does not display a tree twice. We shall see that there are certain

archetypal basic cyclic pairs that never display a tree twice, and it is these basic cyclic pairs, which

we call desirable configurations, that makes the task of deciding quickly whether or not an arbitrary

phylogenetic network displays a tree twice possible. To reduce a basic cyclic pair B- (w, v, P1, P2)

is to reduce the representation of the basic cyclic pair, and to reduce the representation of the basic

cyclic pair is to apply a leaf restriction that keeps the leaves ve1 , ve2 (we may discard any fixed

leaves), but to keep ve1
i we must also keep ve2

i . The proof of the reduction proposition depends on
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two lemmas. The first lemma says that it does not matter what order two leaf restrictions are done

in, and it does not matter how a particular leaf restriction is performed. The second lemma says

that if we have a leaf restriction that is a switching and another leaf restriction that is a reduction

then when we relabel does not affect the result, so that if we relabel after the switching is applied

and then apply a relabeled reduction then that is the same as relabeling after applying the switching

and the reduction.

Definition 4.15. A reduction of a basic cyclic pair B- (w, v, P1, P2) is a leaf restriction Γ of the

tree representation T of B- (w, v, P1, P2) such that {ve1 , ve2} ⊆ Γ and for all vi in B- (w, v, P1, P2),

v
ej
i ∈ Γ if and only if ve{1,2}\ji ∈ Γ.

Example 4.14. The leaf restriction Γ = {ve1
3 , v

e2
3 , v

e1
1 , v

e2
1 , `2} is a reduction of the basic cyclic pair

B- (w, v3, P1, P2) from Example 4.3, but it is not a reduction of the basic cyclic pair B- (w, v2, P1, P2).

Lemma 4.2. Let T be the representation of a basic cyclic pair B- (w, v, P1, P2). Let R be a switching

of T , and let Γ be a reduction of B- (w, v, P1, P2). Then (T |R) |Γ = (T |R ∩ Γ) and (T |Γ) |R =

(T |R ∩ Γ).

Proof. It does not matter what order two restrictions are done in, so (T |Γ) |R = (T |R) |Γ. Now

(T |R ∩ Γ) takes T and restricts T to the leaves that are in both R and Γ; note that R ∩ Γ ⊆ XT ,

where XT is the leaf set of the tree T . Also (T |R) |Γ takes T and first restricts it to the leaves in

R then restricts T |R to the leaves in Γ. This gives the same result as (T |R ∩ Γ). Note that the leaf

set of T |R is XT ∩ R, so that the leaf set of (T |R) Γ is XT ∩ R ∩ Γ, which is the same as the leaf

set of (T |R ∩ Γ). Therefore (T |R) |Γ = (T |R ∩ Γ) and (T |Γ) |R = (T |R ∩ Γ).

Lemma 4.3. Let T be the representation of a basic cyclic pair B- (w, v, P1, P2). Let R be a switching

of T , and let Γ be a reduction of B- (w, v, P1, P2). Then ((T |R) |Γ)L = (T |R)L | (Γ)L.

Proof. The leaf set of ((T |R) |Γ)L is (XT ∩R ∩ Γ)L. We will show that (XT ∩R ∩ Γ)L =

(XT ∩R)L∩(Γ)L. Take any element in (XT ∩R ∩ Γ)L then it is of form `∗, so either ∗e1 ∈ XT ∩R∩Γ,

∗e2 ∈ XT ∩R ∩ Γ, or `∗ ∈ XT ∩R ∩ Γ. If `∗ ∈ XT ∩R ∩ Γ then `∗ ∈ (XT ∩R)L and `∗ ∈ (Γ)L , so

`∗ ∈ (XT ∩R)L∩(Γ)L. Without loss of generality, suppose that ∗e1 ∈ XT ∩R∩Γ then ∗e1 ∈ XT ∩R

and ∗e1 ∈ Γ, so `∗ ∈ (XT ∩R)L and `∗ ∈ (Γ)L; hence `∗ ∈ (XT ∩R)L ∩ (Γ)L. Take any element

in (XT ∩R)L ∩ (Γ)L then it is of form `∗, so `∗ ∈ (XT ∩R)L and `∗ ∈ (Γ)L. If `∗ ∈ XT then

`∗ ∈ XT ∩R and `∗ ∈ Γ; hence `∗ ∈ (XT ∩R ∩ Γ), so `∗ ∈ (XT ∩R ∩ Γ)L. If `∗ /∈ XT then, since Γ

is a reduction, {∗e1 , ∗e2} ⊆ Γ, as `∗ ∈ (Γ)L. Since R is a switching, `∗ ∈ (XT ∩R)L , and `∗ /∈ XT ,

we have either ∗e1 ∈ XT ∩R or ∗e2 ∈ XT ∩R. Without loss of generality, suppose that ∗e1 ∈ XT ∩R
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then ∗e1 ∈ XT ∩ R ∩ Γ, so `∗ ∈ (XT ∩R ∩ Γ)L. Therefore (XT ∩R ∩ Γ)L = (XT ∩R)L ∩ (Γ)L.

Now the leaf set of (T |R)L is (XT ∩R)L and the leaf set of (T |R)L | (Γ)L is (XT ∩R)L ∩ (Γ)L ,

so ((T |R) |Γ)L has the same leaf set as (T |R)L | (Γ)L. Take (T |R) and relabel every veji as `vi to

get (T |R)L then restrict (T |R)L to (Γ)L. This is the same as taking (T |R) restricting to Γ then

relabeling every veji as `vi . Thus ((T |R) |Γ)L = (T |R)L | (Γ)L.

Proposition 4.1. Let B- (w, v, P1, P2) be a basic cyclic pair. If B- (w, v, P1, P2) displays a tree

twice then any reduction of B- (w, v, P1, P2) displays a tree twice.

Proof. Suppose B- (w, v, P1, P2) displays a tree twice then the tree T representing B- (w, v, P1, P2)

displays a tree twice, so there exists two switchings R1, R2 of T such that either ve1 ∈ R1 and ve2 ∈

R2 or ve2 ∈ R1 and ve1 ∈ R2, and (T |R1)L = (T |R2)L. Let Γ be any reduction of B- (w, v, P1, P2), so

Γ is a leaf restriction of T where for every {ve1
i , v

e2
i } ⊆ HT either {ve1

i , v
e2
i } ⊆ Γ or {ve1

i , v
e2
i }∩Γ = ∅,

and {ve1 , ve2} ⊆ Γ. We want to show that T |Γ displays a tree twice. Now the leaf set of T |Γ is

XT ∩ Γ = (HT ∪ CT ) ∩ Γ = (HT ∩ Γ) ∪ (CT ∩ Γ).

Let R′1 be (R1 ∩ Γ), and let R′2 be (R2 ∩ Γ). We want to show that R′1 and R′2 are switchings of

T |Γ. Since CT ⊆ R1, we see that R1 = (R1 ∩HT ) ∪ CT , so

R′1 = R1 ∩ Γ = [(R1 ∩HT ) ∪ CT ] ∩ Γ.

Hence CT ∩ Γ ⊆ R′1. Since R1 is a switching of T , for every {ve1
i , v

e2
i } ⊆ HT , where i ∈ N, exactly

one of ve1
i , v

e2
i is in R1, so for every {ve1

i , v
e2
i } ⊆ (HT ∩ Γ) exactly one of ve1

i , v
e2
i is in R1. Hence

for every {ve1
i , v

e2
i } ⊆ (HT ∩ Γ) exactly one of ve1

i , v
e2
i is in R′1. Thus R′1 is a switching of T |Γ.

Likewise R′2 is a switching of T |Γ. Without loss of generality, suppose that ve1 ∈ R1 and ve2 ∈ R2,

since {ve1 , ve2} ⊆ Γ, we have {ve1 , ve2} ⊆ (HT ∩ Γ), so that ve1 ∈ R′1 and ve2 ∈ R′2. Consider

((T |Γ) |R′1)L and ((T |Γ) |R′2)L. By Lemma 4.2, the order in which leaf restrictions are done in

does not matter, so ((T |Γ) |R′1)L = ((T |R′1) |Γ)L. We also have, by Lemma 4.3, ((T |R′1) |Γ)L =

(T |R′1)L | (Γ)L. Now (T |R′1) |Γ = (T |R′1), so ((T |R′1) | (Γ))L = (T |R′1)L. Likewise we can show that

((T |R′2) | (Γ))L = (T |R′2)L. Since (T |R1)L = (T |R2)L , we have (T |R1)L | (Γ)L = (T |R2)L | (Γ)L.

By Lemma 4.3, (T |R1)L | (Γ)L = ((T |R1) |Γ)L , and, by Lemma 4.2, ((T |R1) |Γ)L = (T |R1 ∩ Γ)L.

Of course, (T |R1 ∩ Γ)L = (T |R′1)L. Likewise we can show that (T |R2)L | (Γ)L = (T |R′2)L Therefore

(T |R′1)L = (T |R′2)L. Thus we get ((T |Γ) |R′1)L = ((T |Γ) |R′2)L , and that means that T |Γ displays

a tree twice via R′1 and R′2. Therefore any reduction of B- (w, v, P1, P2) displays a tree twice.

Definition 4.16. Let T be the representation of a basic cyclic pair B- (w, v, P1, P2). We say that

T is a desirable configuration if T does not display a tree twice.
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Corollary 4.1. Let B- (w, v, P1, P2) be a basic cyclic pair. The basic cyclic pair B- (w, v, P1, P2)

displays a tree twice if and only if B- (w, v, P1, P2) can not be reduced to a desirable configuration.

Proof. Suppose B- (w, v, P1, P2) displays a tree twice then, by Proposition 4.1, any reduction of

B- (w, v, P1, P2) displays a tree twice. Therefore B- (w, v, P1, P2) can not be reduced to a desirable

configuration.

Suppose that B- (w, v, P1, P2) can not be reduced to a desirable configuration then every reduc-

tion of B- (w, v, P1, P2) results in a basic cyclic pair that displays a tree twice. Therefore the trivial

reduction of B- (w, v, P1, P2) displays a tree twice. Thus B- (w, v, P1, P2) displays a tree twice.

4.5 Avoidable Reticulation Vertices

The characterisation of when a phylogenetic network displays a tree twice only characterises a

subclass of phylogenetic networks. This subclass of phylogenetic networks are all free of a certain

type of reticulation vertex, which is called an avoidable reticulation vertex. If a phylogenetic network

has an avoidable reticulation vertex then the network displays a tree twice, so every network outside

of the subclass of networks without avoidable reticulation vertices displays a tree twice. We will

show that the property of not having any avoidable reticulation vertices is preserved under general

switchings, so if a network does not have any avoidable reticulation vertices then any network

displayed by the network does not have any avoidable reticulation vertices.

Lemma 4.4. Let N be a network on X. Let G be a general switching of N, and let N ′ be the

network yielded by G. If N does not have any avoidable reticulation vertices then N ′ does not have

any avoidable reticulation vertices.

Proof. Suppose that N does not have any avoidable reticulation vertices. Let v be any reticulation

vertex in N ′ then v is a reticulation vertex in N ; thus v is unavoidable in N, so there exists a

leaf ` ∈ X such that every directed path from the root of N to ` passes through v. Since N ′ is a

network on X, the leaf ` is in N ′. Let P ′ be any directed path from the root of N ′ to ` in N ′. We

see that there is a directed path P from the root of N to ` in N such that V (P ′) ⊆ V (P ). Since

every directed path from the root of N to ` in N passes through v, we see that P ′ passes through

v. Therefore v is unavoidable in N ′.
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4.6 Characterising when a Phylogenetic Network Displays a Tree

Twice in Terms of Cyclic Pairs in the Network

We have already seen that a network with an avoidable reticulation vertex displays a tree twice, so

we now characterise when networks without any avoidable reticulation vertices display a tree twice.

The advantage of not having any avoidable reticulation vertices in a network is that we are not going

to inadvertently lose a reticulation vertex when a general switching is applied to the network. In

order to get the characterisation that leads to an efficient algorithm we need a few stepping stones.

The first stepping stone that we need is another type of cyclic pair, and it is found by seeing what

it means for a phylogenetic network, without any avoidable reticulation vertices, to display a tree

twice. This other type of cyclic pair has no reticulation vertices on its main paths and if one can

get from the source of the cyclic pair to a reticulation vertex via a tree-path then there are two

tree-paths that differ at at least one edge from the source to that reticulation vertex.

Definition 4.17. LetN be a network, and let w be a tree-vertex in N . Let v be a reticulation vertex

in N such that there exists two directed paths P1,P2 such that E (P1) ∩ E (P2) = ∅ and V (P1) ∩

V (P2) = {w, v}. The ordered tuple (w, v, P1, P2) and the network N is called a cyclic pair. We

denote a cyclic pair by N - (w, v, P1, P2). We also call w the source with respect to N - (w, v, P1, P2),

and we call v the sink with respect to N - (w, v, P1, P2).

Example 4.15. There are three cyclic pairs in the network N shown, namely: N - (ρ, v1, P1, P2),

where P1 = {(ρ, x1) , ev1
1 } and P2 = {(ρ, x2) , ev1

2 }; N - (ρ, v2, P
′
1, P

′
2), where P ′1 = {(ρ, x1) , ev1

1 , e
v2
1 }

and P ′2 = {(ρ, x2) , (x2, x3) , (x3, x4) , ev2
2 }; and N - (x2, v2, P

′′
1 , P

′′
2 ), where P ′′1 = {ev1

2 , e
v2
1 } and P ′′2 =

{(x2, x3) , (x3, x4) , ev2
2 }.

1 2

3 4

5

ev1
1

ev1
2

ev2
1

ev2
2

6

v1

v2

x1 x2

x3

x4

ρN
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Definition 4.18. A cyclic pair N - (w, v, P1, P2) displays a tree twice when there exists two switch-

ings S1, S2 of N that yield the same tree, and one of v’s reticulation edges is in S1 whilst the other

is in S2.

Example 4.16. The cyclic pair N - (ρ, v1, P1, P2) from Example 4.15 displays the tree shown on the

left twice via S1 = {ev1
1 , e

v2
1 } and S2 = {ev1

2 , e
v2
1 }. The other cyclic pairs from Example 4.15 do not

display the tree on the left twice. The other trees displayed by N are shown on the right.

1 2

3 4
5

6

x3

x4

ρ

1 2

3 4

5

6

x2
x3

ρ

1 2

3 4

5

6

x1
x3

ρ

Definition 4.19. A cyclic pair N - (w, v, P1, P2) is a tree-path cyclic pair when both P1 and P2 are

tree-paths.

Example 4.17. The only tree-path cyclic pair from the network N from Example 4.15 is

N - (ρ, v1, P1, P2).

Definition 4.20. Let N - (w, v, P1, P2) be a cyclic pair. A reticulation vertex v1 is a tree-path

reticulation with respect to w if there is a tree-path from w to v1.

Example 4.18. Both v1 and v2 are tree-path reticulations with respect to ρ for the cyclic pairs

N - (ρ, v1, P1, P2) and N - (ρ, v2, P
′
1, P

′
2) from Example 4.15. Likewise v1 and v2 are tree-path reticu-

lations with respect to x2 for N - (x2, v2, P
′′
1 , P

′′
2 ) from Example 4.15.

Definition 4.21. Let N - (w, v, P1, P2) be a cyclic pair. A tree-path reticulation v1 with respect to

w is a two-way tree-path reticulation with respect to w if there are two tree-paths from w to v1 that

differ at at least one edge.
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Example 4.19. Only v1 is a two-way tree-path reticulation with respect to ρ for the cyclic pairs

N - (ρ, v1, P1, P2) and N - (ρ, v2, P
′
1, P

′
2) from Example 4.15. Neither v1 nor v2 are two-way tree-path

reticulations with respect to x2 for the cyclic pair N - (x2, v2, P
′′
1 , P

′′
2 ) from Example 4.15.

Definition 4.22. A tree-path cyclic pair N - (w, v, P1, P2) is a maximal tree-path cyclic pair if every

tree-path reticulation with respect to w is a two-way tree-path reticulation with respect to w.

Example 4.20. Every cyclic pair in the network shown is a maximal tree-path cyclic pair.

1
2

3 4 5 6

7

Proposition 4.2. Let N be a network without any avoidable reticulation vertices. Let X be the

leaf set of N . If N displays a tree twice then there exists a maximal tree-path cyclic pair, displayed

by N, that displays a tree twice.

Proof. Suppose N displays a tree twice then there exists two switchings S1, S2 of N such that

S1 6= S2 and S1, S2 yield the same tree when they are applied to N . Since S1 6= S2, there exists

a non-empty set D of reticulation vertices of N such that v ∈ D if and only if either ev1 ∈ S1 and

ev2 ∈ S2 or ev2 ∈ S1 and ev1 ∈ S2. Let the set of reticulation vertices of N be called K. Then K \D is

the set of reticulation vertices of N such that v1 ∈ K\D if and only if either ev1
1 ∈ S1 and ev1

1 ∈ S2 or

ev1
2 ∈ S1 and ev1

2 ∈ S2. Let EK\D be the set of reticulation edges of N such that evji ∈ EK\D, where

i ∈ {1, 2} and j ∈ N, if and only if vj ∈ K \D. We see that S1 ∩EK\D = S2 ∩EK\D. We can order

the set D by descendancy, so there exists v ∈ D such that v has no ancestors in D. Let D1 be the set

of all such reticulation vertices v. Let ED be the set of reticulation edges of N such that evji ∈ ED
if and only if vj ∈ D. Consider the general switching G defined as

(
S1 ∩ EK\D

)
∪ED. Since N has

no avoidable reticulation vertices, every reticulation vertex in D remains after G is applied to N .

Let NG be the network that is the result of applying G to N . In particular, the reticulation vertices

in D1 are in NG. Let v be any reticulation vertex in D1. Since the only reticulation vertices in

NG are those in D and v has no ancestors in D, the two paths starting at v and traveling towards

the root of NG are tree-paths. Let w be the first tree-vertex on those two tree-paths starting at v.

Therefore NG- (w, v, P1, P2) is a tree-path cyclic pair. Let KG be the set of reticulation vertices in
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NG. Let EKG be the set of reticulation edges in NG. We see that NG- (w, v, P1, P2) displays a tree

T twice via S1 ∩ EKG and S2 ∩ EKG .

Let J be the set of two-way tree-path reticulation vertices with respect to w in NG. Let EJ
be the set of reticulation edges of NG such that evji ∈ EJ if and only if vj ∈ J . Let M be the

set of tree-path reticulations with respect to w that are not in J . For each vj ∈ M exactly one

of evj1 , e
vj
2 is on the tree-path from w to vj . Let EMT be the set of reticulation edges in NG such

that evji ∈ EMT if and only if vj ∈ M and evji is not on a tree-path from w to vj . Let EM be the

set of reticulation edges in NG such that evji ∈ EM if and only if vj ∈ M . Consider the general

switching G2 = (S2 ∩ (EKG \ EM )) ∪ EJ ∪ EMT . We see that applying G2 to NG deletes all the

reticulation edges that are on a tree-path from w to a reticulation vertex that is not in J, and the

only reticulation vertices left are those in J . Let NG2 be the network displayed by NG via G2. We

see that there is a maximal tree-path cyclic pair in NG2 whose source is w and whose sink is an

element of J . Let NG2- (w, v, P ′1, P ′2) be such a maximal tree-path cyclic pair in NG2 . Let EKG2

be the set of reticulation edges in NG2 . We claim that NG2- (w, v, P ′1, P ′2) displays a tree twice via

S1 ∩ EKG2 and S2 ∩ EKG2 . Let T1 be the tree displayed by NG2 via S1 ∩ EKG2 , and let T2 be the

tree displayed by NG2 via S2 ∩ EKG2 . Suppose for contradiction that T1 6= T2 then, by Lemma

1.2, there exists leaves `1, `2, `3 ∈ X such that T1 contains the triple `1`2|`3 whilst T2 does not, T1

contains the triple `1`3|`2 whilst T2 does not, or T1 contains the triple `2`3|`1 whilst T2 does not.

Without loss of generality, suppose that T1 contains the triple `1`2|`3 whilst T2 does not. In NG2

there must be a reticulation vertex v1 ∈ J in NG2 such that there is a tree-path from v1 to exactly

one of `1, `2, `3. Without loss of generality, suppose there is a tree-path from v1 to `1. Now in NG

v1 exists, and, since N has no avoidable reticulation vertices, we see that v1 is not an avoidable

reticulation vertex by Lemma 4.4. Hence there exists a leaf `′1 such that every directed path from

the root of NG to `′1 passes through v1. Coming back to NG2 , we see that T1 contains the triple

`′1`2|`3. If in NG2- (w, v, P ′1, P ′2) there are two tree-paths from w to `2, `3 such that the tree-path

from w to `2 leaves P ′1, say, at a tree-vertex x1 whilst the tree-path from w to `3 leaves P ′1 or P ′2
at a tree-vertex x2, where x1 6= x2, then NG does not display the tree T twice. For the tree T ′1
displayed by NG via S1 ∩ EKG contains either the triple `′1`2|`3 or the triple `′1`3|`2 or the triple

`2`3|`′1. Without loss of generality, suppose that T ′1 contains the triple `′1`2|`3 then the tree T ′2
displayed by NG via S2∩EKG contains either the triple `′1`3|`2 or the triple `2`3|`′1, so that T ′1 6= T ′2

- a contradiction. Hence in NG2 there must be another reticulation vertex v2 such that there is a

tree-path from v2 to exactly one of `2 or `3. Without loss of generality, suppose that there is a

tree-path from v2 to `2. Then, as before with v1 so too with v2, there exists a leaf `′2 such that
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every directed path from the root of NG to `′2 passes through v2. We see that T1 contains the triple

`′1`
′
2|`3, and suppose that T2 contains the triple `′1`3|`′2. For now suppose that there is a tree-path

from w to `3 in NG2 then there is a tree-path from w to `3 in NG. Suppose that T contains the

triple `′1`′2|`3 then there is a path connecting `′1 and `′2 that does not intersect the directed path

from w to `3 in NG. Hence there is a reticulation vertex v∗1 on the said path connecting `′1 and `′2
such that either `′1 is a descendant of v∗1 or `′2 is a descendant of v∗1. Without loss of generality,

suppose that `′1 is a descendant of v∗1. Since v1 ∈ J, we must have v∗1 being a descendant of v1, as

otherwise v1 /∈ J - a contradiction. Now we see that there is a directed path from the root of NG

to `′1 that avoids v1 - a contradiction. Therefore, in this case, we reach a contradiction.

Suppose that T contains the triple `′1`3|`′2 then there is a path connecting `′1 and `3 that does

not intersect the directed path from w to `′2 in NG. Hence there is a reticulation vertex v∗3 on the

said path connecting `′1 and `3 such that either `′1 is a descendant of v∗3 or `3 is a descendant of v∗3.

The case where `′1 is a descendant of v∗3 leads to a contradiction as in the last case, so suppose that

`3 is a descendant of v∗3. Then we see that there is no tree-path from w to `3 in NG - a contradiction.

Suppose that T contains the triple `′2`3|`′1 then we reach two contradictions. Of course, if we suppose

that there is no tree-path from w to `3 in NG2 then we still reach a contradiction. Therefore T1 = T2,

so that NG2- (w, v, P ′1, P ′2) displays a tree twice via S1 ∩ EKG2 and S2 ∩ EKG2 .

4.6.1 Associated basic cyclic pairs

The next task is to build a bridge between basic cyclic pairs and these maximal tree-path cyclic

pairs. A new concept, that of an associated basic cyclic pair of a maximal tree-path cyclic pair,

is the bridge between basic cyclic pairs and maximal tree-path cyclic pairs. The associated basic

cyclic pair of a maximal tree-path cyclic pair is obtained from the maximal tree-path cyclic pair

by the following procedure: Make every reticulation vertex in the maximal tree-path cyclic pair

adjacent to a leaf. Delete the directed edge going into the source with respect to the maximal

tree-path cyclic pair. Then delete any components that do not contain the source with respect to

the maximal tree-path cyclic pair. The result is a basic cyclic pair, and we call this the associated

basic cyclic pair of the maximal tree-path cyclic pair. We will then prove that a maximal tree-path

cyclic pair displays a tree twice if and only if its associated basic cyclic pair displays a tree twice

with the help of a lemma. The lemma says that if a network displayed by a network displays a tree

twice then the original network displays a tree twice.

Definition 4.23. Let N - (w, v, P1, P2) be a maximal tree-path cyclic pair. The associated basic

cyclic pair B- (w, v, P1, P2) of N - (w, v, P1, P2) is obtained from N - (w, v, P1, P2) as follows:
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1. For each reticulation vertex vi that is a two-way tree-path reticulation with respect to w in

N, where i ∈ A and A is a finite subset of the natural numbers, delete the edge going out of

vi.

2. Create a new leaf (call it `vi), and make vi adjacent to `vi .

3. Delete the edge going into w.

4. Delete any components that do not contain w.

Example 4.21. The network N shown has the maximal tree-path cyclic pair N - (w, v, P1, P2),

where P1 is shown in red and P2 is shown in blue. Shown on the right is the associated basic cyclic

pair of N - (w, v, P1, P2).
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Lemma 4.5. Let N be a network without any avoidable reticulation vertices. Let G be a general

switching of N, and let N ′ be the network yielded by G. If N ′ displays a tree twice then N displays

a tree twice. Moreover, let S′1 and S′2 be the two switchings of N ′ that yield the same tree then there

exists two switchings S1 and S2 of N such that S′1 ⊆ S1, S
′
2 ⊆ S2, and S1, S2 yield the same tree.

Proof. Suppose that N ′ displays a tree twice then there exists two switchings S′1, S′2 such that

S′1 6= S′2 and S′1, S′2 yield the same tree. Let K ′ be the set of reticulation vertices in N ′. Then, since

S′1 is a switching of N ′, for every v′ ∈ K ′ exactly one of ev′1 , ev
′

2 is in S′1. Similarly for S′2. Consider

the two switchings S1, S2 of N where S′1 ⊆ S1 ⊆ G and S′2 ⊆ S2 ⊆ G. It is fairly clear that we can

not have ev1 ∈ S′1 and ev1 /∈ G nor can we have ev2 ∈ S′1 and ev2 /∈ G for any reticulation vertex v in

N . Therefore S1 being a switching and S′1 ⊆ S1 ⊆ G are compatible. Likewise with S2. Applying

S1 to N is the same as applying G to N, but not deleting or suppressing any vertices, and then
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applying S′1. It makes no difference whether or not we delete and suppress vertices as we go or leave

it till the end. Therefore the result of applying S1 to N is the tree that is yielded by S′1 when S′1 is

applied to N ′. Similarly for S2. Thus S1 and S2 yield the same tree, as S′1, S′2 yield the same tree.

Since S′1 6= S′2, S
′
1 ⊆ S1, and S′2 ⊆ S2, we have S1 6= S2. Therefore N displays a tree twice.

Proposition 4.3. Let N be a network without any avoidable reticulation vertices, and

let N - (w, v, P1, P2) be a maximal tree-path cyclic pair. The maximal tree-path cyclic pair

N - (w, v, P1, P2) displays a tree twice if and only if its associated basic cyclic pair B- (w, v, P1, P2)

displays a tree twice.

Proof. Suppose that N - (w, v, P1, P2) displays a tree twice then there exists two switchings S1, S2

such that, without loss of generality, ev1 ∈ S1 and ev2 ∈ S2, and S1, S2 yield the same tree T . Let KB

be the set of reticulation vertices in B- (w, v, P1, P2), where B- (w, v, P1, P2) is the associated basic

cyclic pair of N - (w, v, P1, P2). Let J be the set of two-way tree-path reticulations with respect to

w in N - (w, v, P1, P2). By definition of N - (w, v, P1, P2) and the construction of B- (w, v, P1, P2),

KB = J . Let EKB be the set of reticulation edges of the reticulation vertices in KB, and let EJ
be the set of reticulation edges of the reticulation vertices in J . We see that EKB = EJ . Consider

S1 ∩ EJ and S2 ∩ EJ . Since EJ = EKB , we have S1 ∩ EJ and S2 ∩ EJ being two switchings of

B- (w, v, P1, P2). Since {ev1, ev2} ⊆ EJ , ev1 ∈ S1, and ev2 ∈ S2, we have ev1 ∈ S1 ∩EJ and ev2 ∈ S2 ∩EJ .

We will show that S1 ∩ EJ and S2 ∩ EJ yield the same tree, by using the two general switchings

S1 ∪ EJ and S2 ∪ EJ of N - (w, v, P1, P2). Let N1 be the network yielded by S1 ∪ EJ , and let N2

be the network yielded by S2 ∪ EJ . Take any reticulation vertex v1 in N1 then v1 ∈ J, so v1 is a

two-way tree-path reticulation with respect to w in N1- (w, v, P1, P2). The reticulation vertex v1

must also be a two-way tree-path reticulation with respect to w in N2- (w, v, P1, P2). Consider the

tree T 1
v1 below v1 in N1- (w, v, P1, P2), and consider the tree T 2

v1 below v1 in N2- (w, v, P1, P2). We

must have T 1
v1 = T 2

v1 , since both T 1
v1 and T 2

v1 are on the same leaf set and they are subtrees of T .

Coming back to B- (w, v, P1, P2), replace every leaf `v1 by the tree Tv1 that is below v1 in both

N1 and N2, call the result of doing this B′- (w, v, P1, P2). We now see that B′- (w, v, P1, P2) is a

subnetwork of N1 and N2; hence applying S1 ∩ EJ and S2 ∩ EJ to B′- (w, v, P1, P2) is the same as

applying S1 ∩ EJ to N1 and applying S2 ∩ EJ to N2. Therefore the result of applying S1 ∩ EJ to

B′- (w, v, P1, P2) is a subtree, call it T1, of T on leaf set X ′, and the result of applying S2 ∩ EJ to

B′- (w, v, P1, P2) is a subtree, call it T2, of T on leaf set X ′. Since T = T and Lemma 4.1, T1 = T2.

Thus B′- (w, v, P1, P2) displays a tree twice, and B- (w, v, P1, P2) must also display a tree twice.

Suppose that B- (w, v, P1, P2) displays a tree twice. Then there exists two switchings S′1, S′2 of

B- (w, v, P1, P2) such that, without loss of generality, ev1 ∈ S′1 and ev2 ∈ S′2, and S′1, S
′
2 yield the
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same tree T ′. Let G be the general switching of N - (w, v, P1, P2) such that EJ ⊆ G and for any

reticulation vertex outside of J exactly one of its reticulation edges is in G. Let N ′ be the network

that is the result of applying G to N - (w, v, P1, P2). Now, by construction, N ′ is a basic network.

Take any reticulation vertex v1 in N ′ then v1 ∈ J, so that v1 ∈ KB. Now there is a tree below

v1 in N ′, call it Tv1 . In B- (w, v, P1, P2), for every such v1, replace the leaf `v1 with the tree Tv1 ,

call the result B′- (w, v, P1, P2). We now see that B′- (w, v, P1, P2) is a subnetwork of N ′. Since

B- (w, v, P1, P2) displays a tree twice via S′1, S′2, B′- (w, v, P1, P2) displays a tree twice via S′1, S′2;

hence N ′ displays a tree twice via S′1, S′2. By Lemma 4.5, there exists two switchings S1, S2 of

N - (w, v, P1, P2) such that ev1 ∈ S1 and ev2 ∈ S2 and N - (w, v, P1, P2) yields a tree twice via S1 and

S2. Therefore N - (w, v, P1, P2) displays a tree twice.

4.6.2 Processed cyclic pairs

It would not be efficient to have to check every maximal tree-path cyclic pair displayed by a network,

because there are too many general switchings that result in maximal tree-path cyclic pairs. Hence

we introduce a specific procedure that, when applied to a cyclic pair in a network, results in a

maximal tree-path cyclic pair. The procedure applied to a cyclic pair consists of two general

switchings, one applied after the other, with the result being a maximal tree-path cyclic pair, which

we call the processed cyclic pair of that cyclic pair. The characterisation that is implicitly used in

the efficient algorithm in deciding whether or not a network displays a tree twice is the following: A

network without any avoidable reticulation vertices displays a tree twice if and only if there exists a

cyclic pair whose processed cyclic pair displays a tree twice. This leads to the following corollary that

is directly used in the efficient algorithm: A network without any avoidable reticulation vertices

displays a tree twice if and only if there exists a cyclic pair whose processed cyclic pair has the

property that its associated basic cyclic pair can not be reduced to a desirable configuration.

Definition 4.24. Let N - (w, v, P1, P2) be a cyclic pair of the network N . The process applied to

N - (w, v, P1, P2) is the following procedure: Let D be the set of reticulation vertices on exactly one

of P1 or P2, so v /∈ D because v is on both P1 and P2. For each v1 ∈ D, let ev1
1 be the reticulation

edge of v1 that is on exactly one of P1 or P2. Let G be the general switching of N such that, for each

v1 ∈ D, we have {ev1
1 , e

v1
2 } ∩ G = {ev1

1 }, and, for every v2 ∈ K \D, we have {ev2
1 , e

v2
2 } ⊆ G, where

K is the set of reticulation vertices of N . Let NG be the network that is the result of applying G

to N . We see that NG- (w, v, P ′1, P ′2) is a tree-path cyclic pair of NG, where P ′1 has the property

that V (P ′1) ⊆ V (P1) and P ′2 has the property that V (P ′2) ⊆ V (P2). Let J be the set of tree-path

reticulations with respect to w that are not two-way tree-path reticulations with respect to w, in
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NG. For each v3 ∈ J let ev3
1 be the reticulation edge of v3 that is on the tree-path from w to

v3. Hence ev3
2 is the reticulation edge of v3 that is not on a tree-path from w to v3. Let G1 be

the general switching of NG such that, for each v3 ∈ J, we have {ev3
1 , e

v3
2 } ∩ G1 = {ev3

2 }, and, for

every v4 ∈ K ′ \ J, we have {ev4
1 , e

v4
2 } ⊆ G1, where K ′ is the set of reticulation vertices of NG. Let

NG1 be the network that is the result of applying G1 to NG. We see that NG1- (w, v, P ′′1 , P ′′2 ) is a

maximal tree-path cyclic pair of NG1 , where P ′′1 has the property that V (P ′′1 ) ⊆ V (P ′1) and P ′′2

has the property that V (P ′′2 ) ⊆ V (P ′2). We call NG1- (w, v, P ′′1 , P ′′2 ) the processed cyclic pair of

N - (w, v, P1, P2).

Example 4.22. The network N has the cyclic pair N - (w, v, P1, P2), where P1 is coloured red and

P2 is coloured blue. The network NG is obtained from N via the first part of the process applied

to N - (w, v, P1, P2). The network NG1 has the processed cyclic pair of N - (w, v, P1, P2) in it.
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Theorem 4.2. Let N be a network without any avoidable reticulation vertices. The network N

displays a tree twice if and only if there exists a cyclic pair N - (w, v, P1, P2) whose processed cyclic

pair NG1- (w, v, P ′′1 , P ′′2 ) displays a tree twice.

Proof. Suppose N displays a tree twice then, by Proposition 4.2, there exists a maximal tree-path

cyclic pair N ′- (w, v, P ′1, P ′2), displayed by N, that displays a tree twice. Hence there exists two

switchings S′1, S′2 of N ′ such that either ev1 ∈ S′1 and ev2 ∈ S′2 or ev1 ∈ S′2 and ev2 ∈ S′1, and S′1, S′2 yield
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the same tree when they are applied to N ′. The vertices w and v of N ′ exist in N . So in N there

exists a cyclic pair N - (w, v, P1, P2) such that V (P ′1) ⊆ V (P1) and V (P ′2) ⊆ V (P2). Now consider

the processed cyclic pair NG1- (w, v, P ′′1 , P ′′2 ) of N - (w, v, P1, P2). We see that N ′- (w, v, P ′1, P ′2) is

displayed by NG1 . Thus, by Lemma 4.5, NG1 displays a tree twice. By Lemma 4.5, we see that the

two switchings S1, S2 of NG1 that yield the same tree have either ev1 ∈ S1 and ev2 ∈ S2 or ev1 ∈ S2

and ev2 ∈ S1. Therefore NG1- (w, v, P ′′1 , P ′′2 ) displays a tree twice.

Suppose there exists a cyclic pairN - (w, v, P1, P2) whose processed cyclic pairNG1- (w, v, P ′′1 , P ′′2 )

displays a tree twice. Then, by definition, NG1- (w, v, P ′′1 , P ′′2 ) is displayed by N and displays a tree

twice. Hence NG1 displays a tree twice and is displayed by N . Therefore, by Lemma 4.5, N displays

a tree twice.

Corollary 4.2. Let N be a network without any avoidable reticulation vertices. The network N dis-

plays a tree twice if and only if there exists a cyclic pair N - (w, v, P1, P2) whose processed cyclic pair

NG1- (w, v, P ′′1 , P ′′2 ) has the following property: The associated basic cyclic pair of NG1- (w, v, P ′′1 , P ′′2 )

can not be reduced to a desirable configuration.

Proof. Suppose N displays a tree twice then, by Theorem 4.2, there exists a cyclic pair

N - (w, v, P1, P2), whose processed cyclic pair NG1- (w, v, P ′′1 , P ′′2 ) displays a tree twice. By Propo-

sition 4.3, the associated basic cyclic pair B- (w, v, P ′′1 , P ′′2 ) of NG1- (w, v, P ′′1 , P ′′2 ) displays a tree

twice. By Corollary 4.1, B- (w, v, P ′′1 , P ′′2 ) can not be reduced to a desirable configuration.

Suppose there exists a cyclic pairN - (w, v, P1, P2) whose processed cyclic pairNG1- (w, v, P ′′1 , P ′′2 )

has the following property: The associated basic cyclic pair B- (w, v, P ′′1 , P ′′2 ) of NG1- (w, v, P ′′1 , P ′′2 )

can not be reduced to a desirable configuration. Then, by Corollary 4.1, B- (w, v, P ′′1 , P ′′2 ) displays

a tree twice. Hence, by Proposition 4.3, NG1- (w, v, P ′′1 , P ′′2 ) displays a tree twice. Therefore, by

Theorem 4.2, N displays a tree twice.
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Chapter 5

The Representation of a Basic Cyclic

Pair

5.1 Introduction

In the last chapter we characterised a network without any avoidable reticulation vertices that

displays a tree twice in terms of a substructure of the network. In this chapter we characterise the

representation in terms of a substructure of the representation. With the benefit of hindsight, we see

that the substructure of the representation has a deterministic characterisation. This deterministic

characterisation lends itself to an efficient algorithm and provides insight into the harder problem

of counting the number of trees displayed by a network. The substructure of the representation

of a basic cyclic pair that we will be studying is a tree displayed by the representation that is

itself a representation of a certain type of basic cyclic pair. This substructure has the following

property: Each reticulation leaf is split between the two maximal subtrees of the representation.

Every representation of a basic cyclic pair is a tree whose root has two children, and the trees whose

roots are those two children are called the maximal subtrees of the representation. Having each

reticulation leaf split between the two maximal subtrees means that if a reticulation leaf is in one

maximal subtree then its partner is in the other maximal subtree.

Definition 5.1. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2). Let Q be a

subtree of T such that the root of Q is not a leaf. Let the two children of the root of Q be x1, x2.

A maximal subtree of Q is a subtree of T whose root is either x1 or x2.

Example 5.1. Shown on the left is the basic cyclic pair N - (w, v4, P1, P2), where P1 is in red whilst

P2 is in blue. Shown on the right is the representation T of N - (w, v4, P1, P2). The subtree Q of T
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is labeled together with its two maximal subtrees Q1, Q2.
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Definition 5.2. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2). Let T1 and T2

be T ’s two maximal subtrees. We say that T is a basic0 representation when for each reticulation

leaf vemi in the leaf set of T1, veni , where m ∈ {1, 2}, i ∈ N, and n ∈ {1, 2} \ {m}, is in the leaf set of

T2, and vice versa.

Example 5.2. Shown on the left is the basic cyclic pair N - (w, v4, P1, P2), where P1 is in red whilst

P2 is in blue. Shown on the right is the basic0 representation T of N - (w, v4, P1, P2). The tree

shown in Example 5.1 is not a basic0 representation.
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Definition 5.3. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2). The tree T

displays a representation T ∗ when there exists a general switching G of T such that {ve1 , ve2} ⊆ G

and (T |G)L = T ∗.

Theorem 5.1. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2). The tree T

displays a tree twice if and only if there exists a basic0 representation T ∗ that is displayed by T and

T ∗ displays a tree twice relative to v.
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5.2 Characterising when the Representation of a Basic Cyclic Pair

Displays a Tree Twice

Before we prove Theorem 5.1, two lemmas are needed. The two lemmas describe archetypal desirable

configurations and the conditions that are needed in order to be able to reduce a representation to

such an archetype. The first archetypal desirable configuration has two maximal subtrees which each

have three reticulation leaves. In both maximal subtrees two of the reticulation leaves are partners

whilst the other has its partner in the other maximal subtree. We will prove that this archetype

is a desirable configuration, and we will show that if a representation has the property that both

its maximal subtrees have two reticulation leaves that are partners then that representation never

displays a tree twice. The second archetypal desirable configuration has one maximal subtree with

a fixed leaf whilst the other maximal subtree has three reticulation leaves, two of which are partners

whilst the other has its partner in the other maximal subtree. Similarly, we will prove that this

archetype is a desirable configuration, and we will show that if a representation has the property

that one of its maximal subtrees has a fixed leaf and there is a reticulation leaf with itself and its

partner in the other maximal subtree then that representation never displays a tree twice.

Theorem 5.1 is actually a corollary of another theorem. This other theorem says that the basic0

representation that is displayed is displayed using a general switching that preserves the most pairs

of reticulation leaves, so that if a pair of reticulation leaves are not needed for a basic0 representation

to be displayed then that pair is kept. Hence the minimum number of changes are made to the

original representation. Thus a basic0 representation that is displayed in that way is said to be

parsimoniously displayed.

Definition 5.4. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2), and let T1

and T2 be T ’s two maximal subtrees. Let D be the set of reticulation leaves veij , where i ∈ {1, 2}

and j ∈ N, such that veij ∈ D if and only if either veij ∈ XT1 and venj ∈ XT2 , where n ∈ {1, 2} \ {i},

or veij ∈ XT2 and venj ∈ XT1 . We say that T parsimoniously displays a basic0 representation T ∗

when there exists a general switching G such that (T |G)L = T ∗ and D ⊆ G.

Example 5.3. The tree T ∗ shown is parsimoniously displayed by T from Example 5.1 via the

general switching G = D ∪ {ve1
3 , `1, `2}, where D = {ve1

1 , v
e2
1 , v

e1
2 , v

e2
2 , v

e1
4 , v

e2
4 }. We see that T ∗ is a

basic0 representation.
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Lemma 5.1. Let T be the tree representing the basic cyclic pair B- (w, v, P1, P2). Let T1 and T2 be

the two maximal subtrees of T . If there exists reticulation leaves ve1
1 , ve1

2 such that {ve1
1 , v

e2
1 } ⊆ XT1

and {ve1
2 , v

e2
2 } ⊆ XT2 then T does not display a tree twice.

Proof. Let Γ be the reduction of B- (w, v, P1, P2) where Γ = {ve1
1 , v

e2
1 , v

e1
2 , v

e2
2 , v

e1 , ve2}. In order for

T |Γ to display a tree twice there has to be two switchings R1, R2 such that ve1 , ve2 are split between

R1 and R2, and ((T |Γ) |R1)L = ((T |Γ) |R2)L. Without loss of generality, suppose that ve1 ∈ XT1 and

ve2 ∈ XT2 , where XT1 , XT2 are the leaf sets of T1, T2 respectively. Consider R1 =
{
ve1 , vei1 , v

ej
2

}
and

R2 =
{
ve2 , veα1 , v

eβ
2

}
where i, j, α, β ∈ {1, 2}. Since {ve1 , ve1

1 , v
e2
1 } ⊆ XT1 and {ve2 , ve1

2 , v
e2
2 } ⊆ XT2 ,

((T |Γ) |R1)L has the triple `v`v1 |`v2 whilst ((T |Γ) |R2)L has the triple `v`v2 |`v1 , so, by Lemma 1.2,

((T |Γ) |R1)L 6= ((T |Γ) |R2)L. Therefore T |Γ does not display a tree twice. Thus, by Corollary 4.1,

B- (w, v, P1, P2) does not display a tree twice. Therefore, by Theorem 4.1, T does not display a tree

twice.

Lemma 5.2. Let T be the tree representing the basic cyclic pair B- (w, v, P1, P2). Let T1 and T2

be the two maximal subtrees of T . If CT2 6= ∅ and there exists a reticulation leaf ve1
1 such that

{ve1
1 , v

e2
1 } ⊆ XT1 or CT1 6= ∅ and there exists a reticulation leaf ve1

2 such that {ve1
2 , v

e2
2 } ⊆ XT2 then

T does not display a tree twice.

Proof. Without loss of generality, suppose that CT2 6= ∅ and there exists a reticulation leaf ve1
1

such that {ve1
1 , v

e2
1 } ⊆ XT1 . Then there exists a fixed leaf ` ∈ XT2 . Let Γ be the reduction of

B- (w, v, P1, P2) where Γ = {ve1
1 , v

e2
1 , v

e1 , ve2 , `}. In order for T |Γ to display a tree twice there has

to be two switchings R1, R2 such that ve1 , ve2 are split between R1 and R2, and ((T |Γ) |R1)L =

((T |Γ) |R2)L. Without loss of generality, suppose that ve1 ∈ XT1 and ve2 ∈ XT2 , where XT1 ,

XT2 are the leaf sets of T1, T2 respectively. Consider R1 = {ve1 , vei1 , `} and R2 =
{
ve2 , v

ej
1 , `

}
where

i, j ∈ {1, 2}. Since {ve1 , ve1
1 , v

e2
1 } ⊆ XT1 and {ve2 , `} ⊆ XT2 , ((T |Γ) |R1)L has the triple `v`v1 |` whilst

((T |Γ) |R2)L has the triple `v`|`v1 , so, by Lemma 1.2, ((T |Γ) |R1)L 6= ((T |Γ) |R2)L. Therefore T |Γ
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does not display a tree twice. Thus, by Corollary 4.1, B- (w, v, P1, P2) does not display a tree twice.

Therefore, by Theorem 4.1, T does not display a tree twice.

Theorem 5.2. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2). The tree T

displays a tree twice if and only if there exists a basic0 representation T ∗ that is parsimoniously

displayed by T and T ∗ displays a tree twice relative to v.

Proof. Suppose that T displays a tree twice. Let T1 and T2 be the two maximal subtrees of T . If

T is a basic0 representation then we have trivially found a basic0 representation displayed by T ,

namely T , that displays a tree twice. Suppose that T is not a basic0 representation then there exists

ve1
1 such that either {ve1

1 , v
e2
1 } ⊆ XT1 or {ve1

1 , v
e2
1 } ⊆ XT2 , where XT1 , XT2 are the leaf sets of T1, T2

respectively. Without loss of generality, suppose that {ve1
1 , v

e2
1 } ⊆ XT1 then if there exists ve1

2 such

that {ve1
2 , v

e2
2 } ⊆ XT2 then, by Lemma 5.1, T does not display a tree twice - a contradiction; hence

no such ve1
2 exists. Thus we can relabel all the reticulation leaves veij , where i ∈ {1, 2} and j ∈ N,

in T2 as ve2
j and concurrently relabel venj , where n ∈ {1, 2} \ {i}, in T1 as ve1

j . Let D be the set of

reticulation leaves veij such that veij ∈ D if and only if either veij ∈ XT1 and venj ∈ XT2 or veij ∈ XT2

and venj ∈ XT1 . It is the case that HT2 ⊆ D, and for all ve2
j ∈ HT2 we have

{
ve1
j , v

e2
j

}
⊆ D. Thus

ve1
1 /∈ D and ve2

1 /∈ D.

Since T displays a tree twice, there exists two switchings R1, R2 of T such that, without loss of

generality, ve1 ∈ R1 and ve2 ∈ R2, and (T |R1)L = (T |R2)L. Consider the set G1 defined as R1 ∪D,

and consider the set G2 defined as R2 ∪D. Both G1 and G2 are general switchings of T , and they

both result in basic0 representations (T |G1)L and (T |G2)L. By construction, (T |G1)L and (T |G2)L

are both parsimoniously displayed by T . Observe that both (T |G1)L and (T |G2)L have T2 as one

of their maximal subtrees. Let the other maximal subtree of (T |G1)L be called T G1
1 , and let the

other maximal subtree of (T |G2)L be called T G2
1 . We want to prove that (T |G1)L displays a tree

twice, but before we can do that we need a few more facts. First observe that CT G1
1

and CT G2
1

are

both non-empty: They both contain `v1 . Next note that CT2 = ∅, because if it were not then, by

Lemma 5.2, T would not display a tree twice - a contradiction. We will use these facts to find out

what (T |R1)L = (T |R2)L implies.

We can split R1 ∩ X(T |G1)L into two disjoint subsets, namely R1 ∩ X(T |G1)L ∩ XT2 and

R1 ∩ X(T |G1)L ∩ XT G1
1

. Likewise we can split R2 ∩ X(T |G2)L into two disjoint subsets,

namely R2 ∩ X(T |G2)L ∩ XT2 and R2 ∩ X(T |G2)L ∩ XT G2
1

. Consider
(
T2|R1 ∩X(T |G1)L ∩XT2

)L
and

(
T G1

1 |
(
R1 ∩X(T |G1)L ∩XT G1

1

)
∪ CT G1

1

)L
, and consider

(
T2|R2 ∩X(T |G2)L ∩XT2

)L
and(

T G2
1 |

(
R2 ∩X(T |G2)L ∩XT G2

1

)
∪ CT G2

1

)L
. Suppose that R1 ∩X(T |G1)L ∩XT2 6= ∅ then the above
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trees are the maximal subtrees of (T |R1)L and (T |R2)L respectively. Note that R2∩X(T |G2)L∩XT2 6=

∅, because ve2 ∈ R2 and ve2 ∈ XT2 , by definition, and ve2 ∈ X(T |G2)L as {ve1 , ve2} ⊆ D. Now

(T |R1)L = (T |R2)L implies that either
(
T2|R1 ∩X(T |G1)L ∩XT2

)L
=
(
T2|R2 ∩X(T |G2)L ∩XT2

)L
and

(
T G1

1 |
(
R1 ∩X(T |G1)L ∩XT G1

1

)
∪ CT G1

1

)L
=
(
T G2

1 |
(
R2 ∩X(T |G2)L ∩XT G2

1

)
∪ CT G2

1

)L
or(

T2|R1 ∩X(T |G1)L ∩XT2

)L
=

(
T G2

1 |
(
R2 ∩X(T |G2)L ∩XT G2

1

)
∪ CT G2

1

)L
and(

T G1
1 |

(
R1 ∩X(T |G1)L ∩XT G1

1

)
∪ CT G1

1

)L
=

(
T2|R2 ∩X(T |G2)L ∩XT2

)L
. We see that

both possibilities are impossible, because in the former case `v is not in the leaf set

of
(
T2|R1 ∩X(T |G1)L ∩XT2

)L
yet it is in the leaf set of

(
T2|R2 ∩X(T |G2)L ∩XT2

)L
.

In the latter case `v1 is not in the leaf set of
(
T2|R1 ∩X(T |G1)L ∩XT2

)L
yet it is

in the leaf set of
(
T G2

1 |
(
R2 ∩X(T |G2)L ∩XT G2

1

)
∪ CT G2

1

)L
. Therefore we must have

R1 ∩ X(T |G1)L ∩ XT2 = ∅. Thus (T |R1)L =
(
T G1

1 |
(
R1 ∩X(T |G1)L ∩XT G1

1

)
∪ CT G1

1

)L
, and

we still have
(
T2|R2 ∩X(T |G2)L ∩XT2

)L
and

(
T G2

1 |
(
R2 ∩X(T |G2)L ∩XT G2

1

)
∪ CT G2

1

)L
be-

ing the maximal subtrees of (T |R2)L. Note that R1 ∩ X(T |G1)L ∩ XT2 = R1 ∩ XT2 and

R1∩X(T |G1)L∩XT G1
1

= R1∩XT G1
1

. Since R1∩X(T |G1)L∩XT2 = ∅, we have R1∩XT2 = ∅. We claim

that
(
R1 ∩XT G1

1

)
∪ CT G1

1
= XT G1

1
. Take any x ∈

(
R1 ∩XT G1

1

)
∪ CT G1

1
then x ∈

(
R1 ∩XT G1

1

)
or x ∈ CT G1

1
. In both cases we see that x ∈ XT G1

1
, so

(
R1 ∩XT G1

1

)
∪ CT G1

1
⊆ XT G1

1
.

Take any x ∈ XT G1
1

then either x ∈ HT G1
1

or x ∈ CT G1
1

. The latter directly shows

that x ∈
(
R1 ∩XT G1

1

)
∪ CT G1

1
, so suppose that x ∈ HT G1

1
. Then x is of form ve1

j ,

as HT G1
1
⊆ HT1 . Since R1 is a switching, either ve1

j ∈ R1 or ve2
j ∈ R1. Note that

ve2
j ∈ XT2 , so if ve2

j ∈ R1 then R1 ∩ XT2 6= ∅ - a contradiction. Thus ve1
j ∈ R1;

hence x ∈
(
R1 ∩XT G1

1

)
. Therefore

(
R1 ∩XT G1

1

)
∪ CT G1

1
= XT G1

1
. This implies that(

T G1
1 |

(
R1 ∩X(T |G1)L ∩XT G1

1

)
∪ CT G1

1

)L
=

(
T G1

1 |XT G1
1

)L
, and

(
T G1

1 |XT G1
1

)L
=

(
T G1

1

)L
.

Therefore (T |R1)L =
(
T G1

1

)L
.

Let the two maximal subtrees of T G1
1 be AT G1

1
and MT G1

1
. We see that, since (T |R1)L =

(T |R2)L and (T |R1)L =
(
T G1

1

)L
, we must have, without loss of generality,

(
AT G1

1

)L
=(

T2|R2 ∩X(T |G2)L ∩XT2

)L
and

(
MT G1

1

)L
=
(
T G2

1 |
(
R2 ∩X(T |G2)L ∩XT G2

1

)
∪ CT G2

1

)L
. In or-

der for these two equations to hold, we must have ve1 ∈ XA
TG1

1
, `v1 ∈ XM

TG1
1

, and CA
TG1

1
= ∅.

With these facts in hand, we will show that (T |G1)L displays a tree twice. Consider the two

sets RT G1
1
⊆ XT G1

1
and RT2 ⊆ XT2 defined as follows: We set RT G1

1
= XM

TG1
1

, and we define
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RT2 as having the property that ve2
j ∈ RT2 if and only if `vj ∈ X(

A
TG1

1

)L . We claim that the

set R3 defined as RT G1
1
∪ RT2 is a switching of (T |G1)L. Now (T |G1)L represents a basic cyclic

pair, call it B- (w′, v, P ′1, P ′2). Take any reticulation vertex vj in the set of reticulation vertices of

B- (w′, v, P ′1, P ′2); we want to show that exactly one of ve1
j , ve2

j is in R3. We have ve1
j ∈ X(T |G1)L ,

so ve1
j ∈ XT G1

1
; hence either ve1

j ∈ XM
TG1

1
or ve1

j ∈ XA
TG1

1
. If ve1

j ∈ XM
TG1

1
then ve1

j ∈ RT G1
1

, so

ve1
j ∈ R3, and ve1

j /∈ XA
TG1

1
, so `vj /∈ X(

A
TG1

1

)L ; hence ve2
j /∈ RT2 , so that ve2

j /∈ R3. If ve1
j ∈ XA

TG1
1

then `vj ∈ X(
A
TG1

1

)L , so that ve2
j ∈ RT2 ; hence v

e2
j ∈ R3. We also see that ve1

j /∈ XM
TG1

1
, so that

ve1
j /∈ RT G1

1
; thus ve1

j /∈ R3. Therefore R3 is a switching of (T |G1)L. Note that, since ve1 ∈ XA
TG1

1
,

we have ve2 ∈ R3. Now
(
(T |G1)L |R3

)L
has maximal subtrees

(
T G1

1 |RT G1
1

)L
and (T2|RT2)L. Since

RT G1
1

= XM
TG1

1
, we have

(
T G1

1 |RT G1
1

)L
=
(
T G1

1 |XM
TG1

1

)L
; by definition, T G1

1 |XM
TG1

1
= MT G1

1
.

Therefore
(
T G1

1 |RT G1
1

)L
=
(
MT G1

1

)L
. We claim that (T2|RT2)L =

(
AT G1

1

)L
. We will prove this

claim, by showing that (T2|RT2)L is equal to (T2|R2 ∩XT2)L. In order to do that, we will show that

RT2 = R2 ∩XT2 . Recall that
(
AT G1

1

)L
= (T2|R2 ∩XT2)L, so X(

A
TG1

1

)L = (R2 ∩XT2)L. Take any

ve2
j ∈ RT2 then `vj ∈ X(

A
TG1

1

)L , which means that `vj ∈ (R2 ∩XT2)L. Since ve2
j ∈ XT2 , we must

have ve2
j ∈ R2, otherwise `vj /∈ (R2 ∩XT2)L. Therefore ve2

j ∈ R2∩XT2 . Take any v
em
j ∈ R2∩XT2 then

vemj ∈ XT2 , so v
em
j = ve2

j . Thus ve2
j ∈ R2 ∩XT2 . Now `vj ∈ (R2 ∩XT2)L; hence `vj ∈ X(

A
TG1

1

)L ,
so that ve2

j ∈ RT2 . Therefore vemj ∈ RT2 . Thus RT2 = R2 ∩XT2 . Therefore (T2|RT2)L =
(
AT G1

1

)L
.

Recall that (T |R1)L =
(
T G1

1

)L
, and the maximal subtrees of

(
T G1

1

)L
are

(
AT G1

1

)L
and

(
MT G1

1

)L
.

Therefore
(
(T |G1)L |R3

)L
= (T |R1)L.

Consider the set R4 defined as (R1 ∩D) ∪ CT G1
1

. This is a switching of (T |G1)L, because R1 is

a switching of T and G1 = R1 ∪D. Since ve1 ∈ R1 and {ve1 , ve2} ⊆ D, we have ve1 ∈ R4. We also

see that
(
(T |G1)L |R4

)L
= (T |R1)L. Therefore (T |G1)L displays a tree twice via R3 and R4.

Suppose there exists a basic0 representation T ∗ that is parsimoniously displayed by T and T ∗

displays a tree twice. Then T ∗ is displayed by T , so there exists a general switching G of T such

that {ve1 , ve2} ⊆ G and (T |G)L = T ∗. Since T ∗ displays a tree twice there exists two switchings

R1, R2 of T ∗ such that, without loss of generality, ve1 ∈ R1, ve2 ∈ R2, and (T ∗|R1)L = (T ∗|R2)L.

Consider the two switchings R3, R4 of T defined as having the following properties: The switching

R3 has R1 ⊆ R3 ⊆ G, and the switching R4 has R2 ⊆ R4 ⊆ G. These properties do not invalidate
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R3 and R4 being switchings of T . Here is the proof: Take any reticulation leaf vemj in T , where

m ∈ {1, 2} and j ∈ N. Either vemj is in T ∗ or it is not. Now exactly one of vemj , venj , where

n ∈ {1, 2} \ {m}, is in R3. Suppose that vemj is in T ∗ then
{
ve1
j , v

e2
j

}
⊆ G, and, since R1 is a

switching of T ∗, exactly one of ve1
j , ve2

j is in R1. Without loss of generality, suppose that ve1
j ∈ R1

then ve2
j /∈ R1, so ve1

j ∈ R3 and ve2
j /∈ R3. Suppose that vemj is not in T ∗ then `vj must be in T ∗, so

that exactly one of ve1
j , ve2

j is in G. Without loss of generality, suppose that ve1
j ∈ G then ve2

j /∈ G.

We also must have
{
ve1
j , v

e2
j

}
∩ R1 = ∅. Therefore ve1

j ∈ R3 and ve2
j /∈ R3. Likewise with R4. We

also see that (T |R3)L = (T ∗|R1)L and (T |R4)L = (T ∗|R2)L. Therefore (T |R3)L = (T |R4)L, and

ve1 ∈ R3 and ve2 ∈ R4. Thus T displays a tree twice.

5.3 Characterising when a Basic0 Representation Displays a Tree

Twice

A basic0 representation has a characterisation of when it displays a tree twice in terms of subsets of

the leaf set of the basic0 representation. In order to determine whether or not a basic0 representation

displays a tree twice, subsets of its leaf set are used together with set operations such as intersection

and union. If the subsets of the leaf set are known then it is easy to decide whether or not a

basic0 representation displays a tree twice. Fortunately, a reasonable number of subsets of the

basic0 representation’s leaf set need to be known in order to quickly decide whether or not a basic0

representation displays a tree twice. By supposing that the basic0 representation displays a tree

twice we can determine exactly what subsets of the basic0 representation’s leaf set are needed.

Let T be a basic0 representation of a basic cyclic pair N - (w, v, P1, P2). Suppose that T displays

a tree twice. Then there exists two switchings R,W of T such that ve1 ∈ R and ve2 ∈W or ve2 ∈ R

and ve1 ∈W and (T |R)L = (T |W )L. Let T1 and T2 be T ’s two maximal subtrees, and let XT1 and

XT2 be the leaf sets of T1 and T2 respectively. Let RT1 be R∩XT1 , and let RT2 be R∩XT2 . Likewise

with WT1 and WT2 . Without loss of generality, suppose that ve1 ∈ R and ve2 ∈W . Without loss of

generality, suppose that ve1 ∈ XT1 and ve2 ∈ XT2 . Then ve1 ∈ RT1 and ve2 ∈ WT2 , so that RT1 6= ∅

and WT2 6= ∅. Let us now look at some cases in regards to RT2 and WT1 .

5.3.1 Case 1: Both RT2 and WT1 are empty

The only way that both RT2 and WT1 can be empty is when there are no fixed leaves in T1 nor in

T2, so CT1 = ∅ and CT2 = ∅. Since T is a basic0 representation, for any reticulation leaf vemi , where

m ∈ {1, 2} and i ∈ N, in XT either vemi ∈ XT1 or vemi ∈ XT2 . Since R is a switching of T , for any
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reticulation leaf vemi either vemi ∈ R or veni ∈ R, where n ∈ {1, 2} \ {m}. Therefore R ∩XT1 = XT1 ,

because R ∩XT1 ⊆ XT1 and if we take any element in XT1 then it must be a reticulation leaf, call

it vemi , if vemi /∈ R then veni ∈ R, but v
en
i ∈ XT2 , and this means that RT2 6= ∅ - a contradiction.

Therefore RT1 = XT1 and WT2 = XT2 , so that T |R = T |RT1 = T |XT1 = T1 and T |W = T2. Since

(T |R)L = (T |W )L, we must have (T1)L = (T2)L.

Proposition 5.1. Let T be a basic0 representation of a basic cyclic pair N - (w, v, P1, P2). Let T1

and T2 be T ’s two maximal subtrees. If (T1)L = (T2)L then T displays a tree twice.

Proof. Since T is a basic0 representation, XT1 and XT2 are two switchings of T such that v’s

reticulation leaves are split between the two switchings. Since T |XT1 = T1 and T |XT2 = T2, we see

that (T |XT1)L = (T |XT2)L because (T1)L = (T2)L.

5.3.2 Case 2: Exactly one of RT2 and WT1 is empty

Suppose that RT2 = ∅ and WT1 6= ∅ then CT2 = ∅ and RT1 = XT1 . Hence (T |R) = T1. Since

(T |R)L = (T |W )L, we have (T1)L = (T |W )L. Let AT1 and MT1 be the two maximal subtrees of

T1, and let XAT1
and XMT1

be the leaf sets of AT1 and MT1 respectively. Since ve1 ∈ XT1 , we must

have either ve1 ∈ XAT1
or ve1 ∈ XMT1

. Without loss of generality, suppose that ve1 ∈ XMT1
. Now

ve2 ∈ WT2 , so we must have (T2|WT2)L = (MT1)L, because ve2 /∈ WT1 and so `v is not in the leaf

set of (T1|WT1)L but it is in the leaf set of (MT1)L. The only way that (T2|WT2)L can be equal to

(MT1)L is when (WT2)L =
(
XMT1

)L
, because the leaf set of (T2|WT2)L is (WT2)L and the leaf set

of (MT1)L is
(
XMT1

)L
. Hence (T2)L |

(
XMT1

)L
= (MT1)L. Now we get a similar result for WT1 :

Namely, (T1)L |
(
XAT1

)L
= (AT1)L, so WT1 = XAT1

. Suppose that WT1 = ∅ and RT2 6= ∅ then

CT1 = ∅ and WT2 = XT2 . Hence (T |W ) = T2. Since (T |R)L = (T |W )L, we have (T |R)L = (T2)L.

Let AT2 and MT2 be the two maximal subtrees of T2, and let XAT2
and XMT2

be the leaf sets of AT2

and MT2 respectively. Since ve2 ∈ XT2 , we must have either ve2 ∈ XAT2
or ve2 ∈ XMT2

. Without

loss of generality, suppose that ve2 ∈ XMT2
. By a similar line of reasoning as before, we have

(T1)L |
(
XMT2

)L
= (MT2)L and (T2)L |

(
XAT2

)L
= (AT2)L.

Proposition 5.2. Let T be a basic0 representation of a basic cyclic pair N - (w, v, P1, P2). Let

T1 and T2 be T ’s two maximal subtrees, and let AT1 and MT1 be the two maximal subtrees of T1;

let AT2 and MT2 be the two maximal subtrees of T2. Let ve1 ∈ XMT1
, and let ve2 ∈ XMT2

. If

(T2)L |
(
XMT1

)L
= (MT1)L and CT2 = ∅ or (T1)L |

(
XMT2

)L
= (MT2)L and CT1 = ∅ then T displays

a tree twice.

Proof. Suppose that (T2)L |
(
XMT1

)L
= (MT1)L and CT2 = ∅ - we will find two switchings of T that
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yield the same tree. Since T is a basic0 representation and CT2 = ∅, R = XT1 is a switching of

T . Consider the following two sets WT1 ⊆ XT1 and WT2 ⊆ XT2 where WT1 = XAT1
and WT2 has

the property that (WT2)L =
(
XMT1

)L
. We shall prove that W is a switching where W is defined

as WT1 ∪ WT2 . Take any reticulation leaf vemi in XT , where m ∈ {1, 2} and i ∈ N, then either

vemi ∈ XT1 and veni ∈ XT2 or vemi ∈ XT2 and veni ∈ XT1 , where n ∈ {1, 2} \ {m}. Suppose that

vemi ∈ XT1 then veni ∈ XT2 , as T is a basic0 representation. Now either vemi ∈ XAT1
or vemi ∈ XMT1

,

suppose vemi ∈ XAT1
then vemi /∈ XMT1

; hence vemi ∈ W and `vi /∈
(
XMT1

)L
= (WT2)L; thus

veni /∈ W . Suppose that vemi ∈ XMT1
then vemi /∈ XAT1

, so vemi /∈ W, and `vi ∈
(
XMT1

)L
; hence

veni ∈ W . A similar case is when vemi ∈ XT2 and veni ∈ XT1 . We also see that CT1 ⊆ XAT1
, so

that CT1 ⊆ W . Therefore W is a switching of T . Since ve1 ∈ XMT1
, we have ve1 ∈ R, and since

ve2 ∈ XMT2
, we have ve2 ∈ W . So that v’s reticulation leaves are split between R and W . Now we

need to prove that (T |R)L = (T |W )L. Since R = XT1 , we get (T |R)L = (T1)L, so we need to prove

that (T1)L = (T |W )L. Two trees are equal when their two maximal subtrees are equal, and T1’s

two maximal subtrees are AT1 and MT1 . Now the two maximal subtrees of (T |W ) are T1|WT1 and

T2|WT2 . Since WT1 = XAT1
, we get T1|WT1 = AT1 , so (T1|WT1)L = (AT1)L; hence we only need to

show that (T2|WT2)L = (MT1)L. Observe that (T2|WT2)L = (T2)L | (WT2)L, and (WT2)L =
(
XMT1

)L
.

Therefore (T2|WT2)L = (T2)L |
(
XMT1

)L
, and, by hypothesis, (T2)L |

(
XMT1

)L
= (MT1)L. Hence

(T2|WT2)L = (MT1)L. Thus T displays a tree twice. If (T1)L |
(
XMT2

)L
= (MT2)L and CT1 = ∅ then

T displays a tree twice in a similar way as above.

5.3.3 The final case

The final case is when both RT2 and WT1 are non-empty, and since ve1 is in RT1 and ve2 is in

WT2 , we immediately see that there is only one way in which (T |R)L can be equal to (T |W )L.

This implies that there are no fixed clusters in T , and if we are going to get anything interesting

then T ’s maximal subtrees T1, T2 have to have (T1)L 6= (T2)L. The properties of T1, T2, namely

(T1)L 6= (T2)L and (XT1)L = (XT2)L, turn out to be very important, so that the unordered pair

(T1, T2) is given the name of major tree pair. Formally, a major tree pair of T is an unordered pair

(Qi, Qj), for i ∈ {1, 2} and j ∈ {1, 2} \ {i}, where Qi is a subtree of Ti and Qj is a subtree of Tj
having the following properties: (Q1)L 6= (Q2)L and (XQ1)L = (XQ2)L. More generally we say that

an unordered pair (Qi, Qj) is a tree pair when Qi is a subtree of Ti and Qj is a subtree of Tj having

the following property: (XQ1)L = (XQ2)L. It really gets interesting when we have a major tree

pair, say (T1, T2), where none of the maximal subtrees of T1 and T2 make a major tree pair; we call

such a major tree pair of T a sterile major tree pair of T . It is these sterile major tree pairs of T
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that characterise the final case.

Definition 5.5. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2). Let T1 and

T2 be T ’s two maximal subtrees. A tree pair of T is an unordered pair (Qi, Qj), for i ∈ {1, 2} and

j ∈ {1, 2} \ {i}, where Qi is a subtree of Ti and Qj is a subtree of Tj such that (XQ1)L = (XQ2)L,

where XQ1 is the leaf set of Q1 and XQ2 is the leaf set of Q2.

Example 5.4. The tree T shown has many tree pairs. They are (U1, U2), (Q1, Q2), (U ′1, U ′2),

(Q′1, Q′2), (T1, T2), and
(
Qi1, Q

i
2
)
for i ∈ {1, 2, 3, 4, 5, 6, 7, 8}, where Qi1 is the subtree of T1 consisting

of the leaf ve1
i and Qi2 is the subtree of T2 consisting of the leaf ve2

i .

ve1
1 ve1

2

ve1
3

ve1
5

ve1
6
ve1

7 ve1
8

T2
Q′2

U ′2

T

T1

Q′1

U ′1
Q1

U1 ve2
8

U2

Q2

ve2
7

ve2
4ve2

6
ve1

4

ve2
5
ve2

1
ve2

2 ve2
3

Definition 5.6. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2). A trivial tree

pair of T is a tree pair (Qi, Qj), where i ∈ {1, 2} and j ∈ {1, 2}\{i}, of T such that (Q1)L = (Q2)L.

Example 5.5. The trivial tree pairs from Example 5.4 are: (U ′1, U ′2) and
(
Qi1, Q

i
2
)
for i ∈

{1, 2, 3, 4, 5, 6, 7, 8}.

Definition 5.7. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2). A tree pair

of T (Qi, Qj), where i ∈ {1, 2} and j ∈ {1, 2} \ {i}, is a major tree pair of T when (Q1)L 6= (Q2)L.

Example 5.6. The major tree pairs from Example 5.4 are: (U1, U2), (Q1, Q2), (Q′1, Q′2), and

(T1, T2).

Definition 5.8. Let T be the representation of the basic cyclic pair N - (w, v, P1, P2). A major tree

pair of T (Qi, Qj), where i ∈ {1, 2} and j ∈ {1, 2} \ {i}, is a sterile major tree pair of T when there

is no other major tree pair
(
Q′i, Q

′
j

)
such that Q′i is a maximal subtree of Qi and Q′j is a maximal

subtree of Qj .

Example 5.7. The sterile major tree pairs from Example 5.4 are: (Q′1, Q′2) and (U1, U2).

Proposition 5.3. Let T be the basic0 representation of the basic cyclic pair N - (w, v, P1, P2), and

let CT = ∅. Let T1 and T2 be T ’s two maximal subtrees. If (T1)L 6= (T2)L then there exists a sterile

major tree pair of T .
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Proof. Since T is a basic0 representation and CT = ∅, we have (XT1)L = (XT2)L; hence (T1, T2)

is a major tree pair of T . Let D be the set of all major tree pairs of T . We can order the major

tree pairs in D by descendancy as follows: A major tree pair (Q′1, Q′2) is a descendant of another

major tree pair (Q1, Q2) when Q′1 is a maximal subtree of Q1 and Q′2 is a maximal subtree of Q2.

Since D is finite, there exists a major tree pair (Q′1, Q′2) ∈ D that has no descendants in D . By

construction, (Q′1, Q′2) is a sterile major tree pair of T .

With the existence of sterile major tree pairs established, we now return to the final case. In the final

case the basic0 representation displays a tree twice and both RT2 and WT1 are non-empty. Recall

that ve1 ∈ RT1 and ve2 ∈ WT2 , so that ve2 /∈ RT2 and ve1 /∈ WT1 ; hence (T1|RT1)L 6= (T1|WT1)L and

(T2|RT2)L 6= (T2|WT2)L, because these trees are on different leaf sets. The only way that (T |R)L

can be equal to (T |W )L, in this case, is when (T1|RT1)L = (T2|WT2)L and (T2|RT2)L = (T1|WT1)L.

Therefore (RT1)L = (WT2)L and (RT2)L = (WT1)L. Observe that (RT1)L = (WT2)L implies that

CT1 = ∅ and CT2 = ∅, so that (XT1)L = (XT2)L; thus (RT2)L = (XT1)L \ (RT1)L. Hence if we can

completely determine what (RT1)L is then we can completely determine what (RT2)L is, and then

we can completely determine what (WT1)L and (WT2)L are. Now if (T1)L = (T2)L then T displays

a tree twice, so suppose that (T1)L 6= (T2)L then (T1, T2) is a major tree pair of T .

By Proposition 5.3, there exists a sterile major tree pair of T . Let (Q1, Q2) be any sterile major

tree pair of T . Let AQ1 and MQ1 be the two maximal subtrees of Q1, and let AQ2 and MQ2 be the

two maximal subtrees of Q2. We will show that none of the maximal subtrees of Q1 make a tree

pair with any subtree of Q2.

Lemma 5.3. Let (Q1, Q2) be a major tree pair of a basic0 representation T . Let AQ1 and MQ1

be the two maximal subtrees of Q1, and let AQ2 and MQ2 be the two maximal subtrees of Q2. If

(Q1, Q2) is a sterile major tree pair of T then
(
XMQ1

)L
6=
(
XMQ2

)L
and

(
XMQ1

)L
6=
(
XAQ2

)L
.

Moreover,
(
XAQ1

)L
6=
(
XMQ2

)L
and

(
XAQ1

)L
6=
(
XAQ2

)L
.

Proof. (Proof by contrapositive.) Without loss of generality, suppose that
(
XMQ1

)L
=
(
XMQ2

)L
.

Since (Q1, Q2) is a tree pair of T , (XQ1)L = (XQ2)L; hence
(
XMQ1

)L
∪
(
XAQ1

)L
= (XQ1)L

and (XQ1)L \
(
XMQ1

)L
=
(
XAQ1

)L
(likewise with

(
XMQ2

)L
and

(
XAQ2

)L
). Thus (XQ1)L \(

XMQ1

)L
= (XQ1)L \

(
XMQ2

)L
, which implies that (XQ1)L \

(
XMQ1

)L
= (XQ2)L \

(
XMQ2

)L
.

Therefore
(
XAQ1

)L
=
(
XAQ2

)L
. Now we can not have (MQ1)L = (MQ2)L and (AQ1)L = (AQ2)L,

as this implies that (Q1)L = (Q2)L - a contradiction of the fact that (Q1, Q2) is a major tree pair of

T . Hence (MQ1)L 6= (MQ2)L or (AQ1)L 6= (AQ2)L, and this implies that (MQ1 ,MQ2) or (AQ1 , AQ2)

is a major tree pair of T . Therefore (Q1, Q2) is not a sterile major tree pair of T .
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Lemma 5.4. Let T be the basic0 representation of the basic cyclic pair N - (w, v, P1, P2), and let

CT = ∅. Let T1 and T2 be T ’s two maximal subtrees. Let R be a switching of the basic0 representation

T of the basic cyclic pair, and let W be a switching of the basic0 representation T of the basic cyclic

pair. Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1, RT2 ⊆ XT2, and RT1∪RT2 = R, where T1

and T2 are T ’s two maximal subtrees, and let WT1 and WT2 be subsets of W such that WT1 ⊆ XT1,

WT2 ⊆ XT2, and WT1 ∪ WT2 = W . If (T1|RT1)L = (T2|WT2)L and (T2|RT2)L = (T1|WT1)L then

(T1)L | (RT1)L = (T2)L | (RT1)L and (T2)L | (RT2)L = (T1)L | (RT2)L.

Proof. We know that (T1|RT1)L = (T1)L | (RT1)L, so that (T1|RT1)L = (T2|WT2)L implies

(T1)L | (RT1)L = (T2)L | (WT2)L. Now we must have (RT1)L = (WT2)L; hence (T1)L | (RT1)L =

(T2)L | (RT1)L. Similarly, (T2|RT2)L = (T1|WT1)L implies that (T2)L | (RT2)L = (T1)L | (RT2)L.

Lemma 5.5. Let T be the basic0 representation of the basic cyclic pair N - (w, v, P1, P2), and let

CT = ∅. Let T1 and T2 be T ’s two maximal subtrees. Let R be a switching of the basic0 representation

T of the basic cyclic pair, and let W be a switching of the basic0 representation T of the basic cyclic

pair. Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1, RT2 ⊆ XT2, and RT1 ∪RT2 = R, where

T1 and T2 are T ’s two maximal subtrees. If (T1)L | (RT1)L = (T2)L | (RT1)L and (T2)L | (RT2)L =

(T1)L | (RT2)L then (Q1)L | (RT1)L∩(XQ1)L = (Q2)L | (RT1)L∩(XQ2)L and (Q2)L | (RT2)L∩(XQ2)L =

(Q1)L | (RT2)L ∩ (XQ1)L, where (Q1, Q2) is a tree pair of T .

Proof. (Contrapositive.) Suppose that (Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L then

we have a subtree of (T1)L | (RT1)L on leaf set (RT1)L ∩ (XQ1)L that is not equal to a subtree of

(T2)L | (RT1)L on leaf set (RT1)L ∩ (XQ2)L = (RT1)L ∩ (XQ1)L, as (XQ1)L = (XQ2)L. Therefore, by

Lemma 4.1, (T1)L | (RT1)L 6= (T2)L | (RT1)L. Likewise if (Q2)L | (RT2)L ∩ (XQ2)L 6= (Q1)L | (RT2)L ∩

(XQ1)L.

Now we need to make the following assumption: We assume that for every tree pair (Q1, Q2)

we have
(
XAQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XAQ1

)L
∩
(
XMQ2

)L
6= ∅,

(
XMQ1

)L
∩
(
XAQ2

)L
6= ∅, and(

XMQ1

)L
∩
(
XMQ2

)L
6= ∅, where AQ1 and MQ1 are the maximal subtrees of Q1, and AQ2 and MQ2

are the maximal subtrees of Q2; we make that assumption so that the characterisation is easier

to digest. Given the above assumption, we now set out to prove that (Q1)L | (RTi)
L ∩ (XQ1)L =

(Q2)L | (RTi)
L∩(XQ2)L implies that either (MQ1)L | (RTi)

L∩
(
XMQ1

)L
= (MQ2)L | (RTi)

L∩
(
XMQ2

)L
and (AQ1)L | (RTi)

L ∩
(
XAQ1

)L
= (AQ2)L | (RTi)

L ∩
(
XAQ2

)L
or (MQ1)L | (RTi)

L ∩
(
XMQ1

)L
=

(AQ2)L | (RTi)
L ∩

(
XAQ2

)L
and (AQ1)L | (RTi)

L ∩
(
XAQ1

)L
= (MQ2)L | (RTi)

L ∩
(
XMQ2

)L
, where

i ∈ {1, 2}. In order to do that we need a few lemmas.
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Lemma 5.6. Let R be a switching of the basic0 representation T of a basic cyclic pair, and let

CT = ∅. Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1, RT2 ⊆ XT2, RT1 ∪ RT2 = R,

RT1 6= ∅, and RT2 6= ∅, where T1 and T2 are T ’s two maximal subtrees. Let (Q1, Q2) be a tree pair of

the basic0 representation T . Let AQ1 and MQ1 be the two maximal subtrees of Q1, and let AQ2 and

MQ2 be the two maximal subtrees of Q2. If
(
RTj

)L
∩
(
X4Qi

)L
= ∅ then (RTm)L∩

(
X4Qi

)L
6= ∅ and(

RTj

)L
∩
(
X♦Qi

)L
6= ∅, where i, j ∈ {1, 2}, 4 ∈ {A,M}, m ∈ {1, 2} \ {j}, and ♦ ∈ {A,M} \ {4}.

Proof. Suppose that
(
RTj

)L
∩
(
X4Qi

)L
= ∅. Since R is a switching of T , we must have

(
X4Qi

)L
⊆

(RTm)L, so that (RTm)L ∩
(
X4Qi

)L
6= ∅. Since

(
RTj

)
6= ∅, we must have

(
RTj

)L
∩
(
X♦Qi

)L
6= ∅,

as
(
RTj

)L
∩ (XQi)

L 6= ∅,
(
RTj

)L
∩
(
X4Qi

)L
= ∅, and (XQi)

L =
(
XAQi

)L
∪
(
XMQi

)L
.

Lemma 5.7. Let R be a switching of the basic0 representation T of a basic cyclic pair, and let

CT = ∅. Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1, RT2 ⊆ XT2, RT1 ∪ RT2 = R,

RT1 6= ∅, and RT2 6= ∅, where T1 and T2 are T ’s two maximal subtrees. Let (T1)L | (RT1)L =

(T2)L | (RT1)L, and let (T1)L | (RT2)L = (T2)L | (RT2)L. Let (Q1, Q2) be a tree pair of the basic0

representation T . Let AQ1 and MQ1 be the two maximal subtrees of Q1, and let AQ2 and MQ2

be the two maximal subtrees of Q2. If
(
XAQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XAQ1

)L
∩
(
XMQ2

)L
6= ∅,(

XMQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XMQ1

)L
∩
(
XMQ2

)L
6= ∅, and the following: (Q2)L |

(
XMQ1

)L
6= (MQ1)L

or (Q2)L |
(
XAQ1

)L
6= (AQ1)L, and (Q1)L |

(
XMQ2

)L
6= (MQ2)L or (Q1)L |

(
XAQ2

)L
6= (AQ2)L then

either (RT1)L ∩ (X4)L 6= ∅ or (RT2)L ∩ (X♦)L 6= ∅ for all 4,♦ ∈ (AQ1 ,MQ1 , AQ2 ,MQ2).

Proof. (Contrapositive.) By Lemma 5.6, we can not have (RT1)L ∩ (X4)L = ∅ and (RT2)L ∩

(X4)L = ∅, where 4 ∈ (AQ1 ,MQ1 , AQ2 ,MQ2). Suppose we have (RT1)L ∩ (X4)L = ∅ and

(RT2)L ∩ (X♦)L = ∅, where 4 ∈ {AQi ,MQi}, for i ∈ {1, 2}, and ♦ ∈ {AQi ,MQi} \ {4}.

Then, by Lemma 5.6, we have (RT1)L ∩ (X♦)L 6= ∅ and (RT2)L ∩ (X4)L 6= ∅. This implies that

(RT1)L ∩ (XQi)
L = (X♦)L and (RT2)L ∩ (XQi)

L = (X4)L. By Lemma 5.5, we have (Q1)L | (RT1)L ∩

(XQ1)L = (Q2)L | (RT1)L ∩ (XQ2)L and (Q2)L | (RT2)L ∩ (XQ2)L = (Q1)L | (RT2)L ∩ (XQ1)L, as

(T1)L | (RT1)L = (T2)L | (RT1)L and (T2)L | (RT2)L = (T1)L | (RT2)L. Since (XQ1)L = (XQ2)L,

we have (Q1)L | (RT1)L ∩ (XQi)
L = (Q2)L | (RT1)L ∩ (XQi)

L and (Q2)L | (RT2)L ∩ (XQi)
L =

(Q1)L | (RT2)L∩(XQi)
L, so that (Q1)L | (X♦)L = (Q2)L | (X♦)L and (Q1)L | (X4)L = (Q2)L | (X4)L;

hence either (Q2)L |
(
XMQ1

)L
= (MQ1)L and (Q2)L |

(
XAQ1

)L
= (AQ1)L, or (Q1)L |

(
XMQ2

)L
=

(MQ2)L and (Q1)L |
(
XAQ2

)L
= (AQ2)L.

Finally, suppose that (RT1)L∩
(
X4Qi

)L
= ∅ and (RT2)L∩

(
X♦Qj

)L
= ∅, where 4,♦ ∈ {A,M},

i ∈ {1, 2}, and j ∈ {1, 2} \ {i}. Take any x ∈
(
X4Qi

)L
then x /∈ (RT1)L, but x ∈ (R)L and (R)L =

(RT1)L ∪ (RT2)L, so x ∈ (RT2)L. Since (RT2)L ∩
(
X♦Qj

)L
= ∅, we have x /∈

(
X♦Qj

)L
. Therefore
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(
X4Qi

)L
∩
(
X♦Qj

)L
= ∅; thus at least one of the following holds:

(
XAQ1

)L
∩
(
XAQ2

)L
= ∅,(

XAQ1

)L
∩
(
XMQ2

)L
= ∅,

(
XMQ1

)L
∩
(
XAQ2

)L
= ∅, or

(
XMQ1

)L
∩
(
XMQ2

)L
= ∅.

Proposition 5.4. Let R be a switching of the basic0 representation T of a basic cyclic pair, and

let CT = ∅. Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1, RT2 ⊆ XT2, RT1 ∪ RT2 = R,

RT1 6= ∅, and RT2 6= ∅, where T1 and T2 are T ’s two maximal subtrees. Let (T1)L | (RT1)L =

(T2)L | (RT1)L, and let (T1)L | (RT2)L = (T2)L | (RT2)L. Let (Q1, Q2) be a tree pair of the basic0

representation T . Let AQ1 and MQ1 be the two maximal subtrees of Q1, and let AQ2 and MQ2

be the two maximal subtrees of Q2. If
(
XAQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XAQ1

)L
∩
(
XMQ2

)L
6= ∅,(

XMQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XMQ1

)L
∩
(
XMQ2

)L
6= ∅, and the following: (Q2)L |

(
XMQ1

)L
6= (MQ1)L

or (Q2)L |
(
XAQ1

)L
6= (AQ1)L, and (Q1)L |

(
XMQ2

)L
6= (MQ2)L or (Q1)L |

(
XAQ2

)L
6= (AQ2)L then

either (RTi)
L ∩

(
XMQ1

)L
= (RTi)

L ∩
(
XMQ2

)L
and (RTi)

L ∩
(
XAQ1

)L
= (RTi)

L ∩
(
XAQ2

)L
or

(RTi)
L ∩

(
XMQ1

)L
= (RTi)

L ∩
(
XAQ2

)L
and (RTi)

L ∩
(
XAQ1

)L
= (RTi)

L ∩
(
XMQ2

)L
, for some

i ∈ {1, 2}.

Proof. By Lemma 5.5, we have (Q1)L | (RT1)L ∩ (XQ1)L = (Q2)L | (RT1)L ∩ (XQ2)L and

(Q2)L | (RT2)L ∩ (XQ2)L = (Q1)L | (RT2)L ∩ (XQ1)L. From Lemma 5.7, either (RT1)L ∩ (X4)L 6= ∅

or (RT2)L ∩ (X♦)L 6= ∅ for all 4,♦ ∈ (AQ1 ,MQ1 , AQ2 ,MQ2). Without loss of generality, sup-

pose that (RT1)L ∩ (X4)L 6= ∅ for all 4 ∈ (AQ1 ,MQ1 , AQ2 ,MQ2). Then the maximal sub-

trees of (Q1)L | (RT1)L ∩ (XQ1)L are (MQ1)L | (RT1)L ∩ (MQ1)L and (AQ1)L | (RT1)L ∩ (AQ1)L,

as (RT1)L ∩
(
XMQ1

)L
6= ∅ and (RT1)L ∩

(
XAQ1

)L
6= ∅. Likewise, the maximal subtrees

of (Q2)L | (RT1)L ∩ (XQ2)L are (MQ2)L | (RT1)L ∩ (MQ2)L and (AQ2)L | (RT1)L ∩ (AQ2)L. Since

(Q1)L | (RT1)L ∩ (XQ1)L = (Q2)L | (RT1)L ∩ (XQ2)L, we have either (MQ1)L | (RT1)L ∩
(
XMQ1

)L
=

(MQ2)L | (RT1)L ∩
(
XMQ2

)L
and (AQ1)L | (RT1)L ∩

(
XAQ1

)L
= (AQ2)L | (RT1)L ∩

(
XAQ2

)L
or

(MQ1)L | (RT1)L ∩
(
XMQ1

)L
= (AQ2)L | (RT1)L ∩

(
XAQ2

)L
and (AQ1)L | (RT1)L ∩

(
XAQ1

)L
=

(MQ2)L | (RT1)L ∩
(
XMQ2

)L
. Without loss of generality, suppose the former holds then we have

(RT1)L ∩
(
XMQ1

)L
= (RT1)L ∩

(
XMQ2

)L
and (RT1)L ∩

(
XAQ1

)L
= (RT1)L ∩

(
XAQ2

)L
.

Now we claim that (RT1)L ∩ (XQ1)L =
((
XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)
or

(RT1)L ∩ (XQ1)L =
((
XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
.

Lemma 5.8. Let R be a switching of the basic0 representation T of a basic cyclic pair, and let

CT = ∅. Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1, RT2 ⊆ XT2, and RT1 ∪ RT2 = R,

where T1 and T2 are T ’s two maximal subtrees. Let (Q1, Q2) be a tree pair of the basic0 representation

T . Let AQ1 and MQ1 be the two maximal subtrees of Q1, and let AQ2 and MQ2 be the two maximal
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subtrees of Q2. If (RTi)
L ∩

(
XMQ1

)L
= (RTi)

L ∩
(
XMQ2

)L
and (RTi)

L ∩
(
XAQ1

)L
= (RTi)

L ∩(
XAQ2

)L
or (RTi)

L ∩
(
XMQ1

)L
= (RTi)

L ∩
(
XAQ2

)L
and (RTi)

L ∩
(
XAQ1

)L
= (RTi)

L ∩
(
XMQ2

)L
then (RTi)

L ∩ (XQ1)L ⊆
((
XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)
or (RTi)

L ∩ (XQ1)L ⊆((
XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
, respectively, for i ∈ {1, 2}.

Proof. Without loss of generality, suppose that i = 1 and that (RT1)L ∩
(
XMQ1

)L
= (RT1)L ∩(

XMQ2

)L
and (RT1)L∩

(
XAQ1

)L
= (RT1)L∩

(
XAQ2

)L
. Take any element x in (RT1)L∩(XQ1)L then

x ∈ (RT1)L and x ∈ (XQ1)L. Since (XQ1)L =
(
XMQ1

)L
∪
(
XAQ1

)L
and

(
XMQ1

)L
∩
(
XAQ1

)L
= ∅,

either x ∈
(
XMQ1

)L
or x ∈

(
XAQ1

)L
. Suppose that x ∈

(
XMQ1

)L
then x ∈ (RT1)L ∩

(
XMQ1

)L
.

Since (RT1)L∩
(
XMQ1

)L
= (RT1)L∩

(
XMQ2

)L
, we have x ∈ (RT1)L∩

(
XMQ2

)L
thus x ∈

(
XMQ2

)L
.

Hence x ∈
(
XMQ1

)L
∩
(
XMQ2

)L
. If x ∈

(
XAQ1

)L
then, similarly, x ∈

(
XAQ1

)L
∩
(
XAQ2

)L
.

Therefore x ∈
((
XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)
. Thus (RT1)L ∩ (XQ1)L ⊆((

XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)
.

Lemma 5.9. If (Q1, Q2) is a tree pair of the basic0 representation T with AQ1 and MQ1 be-

ing the two maximal subtrees of Q1, and AQ2, MQ2 being the two maximal subtrees of Q2

then (XQ1)L \
[((

XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)]
=
((
XMQ1

)L
∩
(
XAQ2

)L)
∪((

XAQ1

)L
∩
(
XMQ2

)L)
.

Proof. Take any x ∈ (XQ1)L \
[((

XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)]
then

x ∈ (XQ1)L and x /∈
[((

XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)]
, so x /∈((

XMQ1

)L
∩
(
XMQ2

)L)
and x /∈

((
XAQ1

)L
∩
(
XAQ2

)L)
. Since (XQ1)L =

(
XAQ1

)L
∪(

XMQ1

)L
and x ∈ (XQ1)L, if x ∈

(
XAQ1

)L
then x /∈

(
XAQ2

)L
. Since

(XQ1)L = (XQ2)L and (XQ2)L =
(
XAQ2

)L
∪
(
XMQ2

)L
, we must have x ∈(

XMQ2

)L
, so x ∈

((
XAQ1

)L
∩
(
XMQ2

)L)
; hence x ∈

((
XMQ1

)L
∩
(
XAQ2

)L)
∪((

XAQ1

)L
∩
(
XMQ2

)L)
. Similarly, if x ∈

(
XMQ1

)L
then x ∈

(
XAQ2

)L
, so x ∈((

XMQ1

)L
∩
(
XAQ2

)L)
; thus x ∈

((
XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
. There-

fore (XQ1)L \
[((

XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)]
⊆
((
XMQ1

)L
∩
(
XAQ2

)L)
∪((

XAQ1

)L
∩
(
XMQ2

)L)
. Take any y ∈

((
XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
then y ∈

((
XMQ1

)L
∩
(
XAQ2

)L)
or y ∈

((
XAQ1

)L
∩
(
XMQ2

)L)
. Without loss of general-

ity, suppose that y ∈
((
XMQ1

)L
∩
(
XAQ2

)L)
then y ∈

(
XMQ1

)L
and y ∈

(
XAQ2

)L
. Since(

XMQ1

)L
∩
(
XAQ1

)L
= ∅ and

(
XMQ2

)L
∩
(
XAQ2

)L
= ∅, y /∈

(
XAQ1

)L
and y /∈

(
XMQ2

)L
.
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Therefore y ∈ (XQ1)L \
[((

XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)]
. Therefore we get

the result.

Proposition 5.5. Let R be a switching of the basic0 representation T of a basic cyclic pair, and

let CT = ∅. Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1, RT2 ⊆ XT2, RT1 ∪ RT2 = R,

RT1 6= ∅, and RT2 6= ∅, where T1 and T2 are T ’s two maximal subtrees. Let (T1)L | (RT1)L =

(T2)L | (RT1)L, and let (T1)L | (RT2)L = (T2)L | (RT2)L. Let (Q1, Q2) be a tree pair of the basic0

representation T . Let AQ1 and MQ1 be the two maximal subtrees of Q1, and let AQ2 and MQ2

be the two maximal subtrees of Q2. If
(
XAQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XAQ1

)L
∩
(
XMQ2

)L
6= ∅,(

XMQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XMQ1

)L
∩
(
XMQ2

)L
6= ∅, and the following: (Q2)L |

(
XMQ1

)L
6= (MQ1)L

or (Q2)L |
(
XAQ1

)L
6= (AQ1)L, and (Q1)L |

(
XMQ2

)L
6= (MQ2)L or (Q1)L |

(
XAQ2

)L
6= (AQ2)L

then (RT1)L ∩ (XQ1)L =
((
XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)
or (RT1)L ∩ (XQ1)L =((

XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
.

Proof. By Proposition 5.4 and Lemma 5.8, we get (RTi)
L ∩ (XQ1)L ⊆

((
XMQ1

)L
∩
(
XMQ2

)L)
∪((

XAQ1

)L
∩
(
XAQ2

)L)
or (RTi)

L∩ (XQ1)L ⊆
((
XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
,

for i ∈ {1, 2}. Without loss of generality, suppose that (RT2)L∩(XQ2)L ⊆
((
XMQ1

)L
∩
(
XMQ2

)L)
∪((

XAQ1

)L
∩
(
XAQ2

)L)
. Take any x ∈

((
XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
then

x /∈ (RT2)L ∩ (XQ2)L, by Lemma 5.9, so x ∈ (RT1)L ∩ (XQ1)L, as R is a switching and (XQ1)L =

(XQ2)L. Therefore
((
XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
⊆ (RT1)L ∩ (XQ1)L. Since(

XAQ1

)L
∩
(
XMQ2

)L
6= ∅ and

(
XMQ1

)L
∩
(
XAQ2

)L
6= ∅, we have (RT1)L ∩

(
XAQ1

)L
6= ∅, (RT1)L ∩(

XAQ2

)L
6= ∅, (RT1)L ∩

(
XMQ1

)L
6= ∅, and (RT1)L ∩

(
XMQ2

)L
6= ∅. Thus, by Proposition 5.4 and

Lemma 5.8, we have (RT1)L ∩ (XQ1)L =
((
XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
.

Theorem 5.3. Let T be the basic0 representation of the basic cyclic pair N - (w, v, P1, P2), and let

CT = ∅. Let T1 and T2 be T ’s two maximal subtrees. Let R be a switching of the basic0 representa-

tion T of the basic cyclic pair, and let W be a switching of the basic0 representation T of the basic

cyclic pair. Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1, RT2 ⊆ XT2, RT1 6= ∅, RT2 6= ∅, and

RT1∪RT2 = R, where T1 and T2 are T ’s two maximal subtrees, and let WT1 and WT2 be subsets of W

such that WT1 ⊆ XT1, WT2 ⊆ XT2, and WT1 ∪WT2 = W . Let (Q1, Q2) be any sterile major tree pair

of the basic0 representation T . Let AQ1 andMQ1 be the two maximal subtrees of Q1, and let AQ2 and

MQ2 be the two maximal subtrees of Q2. Let
(
XAQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XAQ1

)L
∩
(
XMQ2

)L
6= ∅,(

XMQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XMQ1

)L
∩
(
XMQ2

)L
6= ∅. If (T1|RT1)L = (T2|WT2)L and (T2|RT2)L =
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(T1|WT1)L then (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
,

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
.

Proof. By Lemma 5.4, we have (T1)L | (RT1)L = (T2)L | (RT1)L and (T2)L | (RT2)L = (T1)L | (RT2)L.

Suppose that either (Q2)L |
(
XMQ1

)L
= (MQ1)L and (Q2)L |

(
XAQ1

)L
= (AQ1)L, or

(Q1)L |
(
XMQ2

)L
= (MQ2)L and (Q1)L |

(
XAQ2

)L
= (AQ2)L. Without loss of general-

ity, suppose that (Q2)L |
(
XMQ1

)L
= (MQ1)L and (Q2)L |

(
XAQ1

)L
= (AQ1)L. We see

that (AQ1)L |
(
XAQ1

)L
∩
(
XAQ2

)L
=

(
(Q2)L |

(
XAQ1

)L)
|
(
XAQ1

)L
∩
(
XAQ2

)L
. Now(

(Q2)L |
(
XAQ1

)L)
|
(
XAQ1

)L
∩
(
XAQ2

)L
= (Q2)L |

(
XAQ1

)L
∩
((
XAQ1

)L
∩
(
XAQ2

)L)
;

hence (AQ1)L |
(
XAQ1

)L
∩
(
XAQ2

)L
= (Q2)L |

(
XAQ1

)L
∩
(
XAQ2

)L
. It is also the

case that (Q2)L |
(
XAQ1

)L
∩
(
XAQ2

)L
= (AQ2)L |

(
XAQ1

)L
∩
(
XAQ2

)L
. There-

fore (AQ1)L |
(
XAQ1

)L
∩
(
XAQ2

)L
= (AQ2)L |

(
XAQ1

)L
∩
(
XAQ2

)L
. In a similar

way we get (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
, and

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
. Suppose that

(Q2)L |
(
XMQ1

)L
6= (MQ1)L or (Q2)L |

(
XAQ1

)L
6= (AQ1)L, and (Q1)L |

(
XMQ2

)L
6=

(MQ2)L or (Q1)L |
(
XAQ2

)L
6= (AQ2)L then, by Proposition 5.5, we get (RT1)L ∩

(XQ1)L =
((
XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)
or (RT1)L ∩ (XQ1)L =((

XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
. Without loss of generality, sup-

pose that (RT1)L ∩ (XQ1)L =
((
XMQ1

)L
∩
(
XMQ2

)L)
∪
((
XAQ1

)L
∩
(
XAQ2

)L)
then

(RT2)L ∩ (XQ2)L =
((
XMQ1

)L
∩
(
XAQ2

)L)
∪
((
XAQ1

)L
∩
(
XMQ2

)L)
, as (RT2)L ∩ (XQ2)L =

(XQ1)L \
(
(RT1)L ∩ (XQ1)L

)
, (XQ1)L = (XQ2)L, and Lemma 5.9. By Lemma 5.5, we

have (Q1)L | (RT1)L ∩ (XQ1)L = (Q2)L | (RT1)L ∩ (XQ2)L and (Q2)L | (RT2)L ∩ (XQ2)L =

(Q1)L | (RT2)L ∩ (XQ1)L. Since
(
XAQ1

)L
∩
(
XAQ2

)L
6= ∅,

(
XMQ1

)L
∩
(
XMQ2

)L
6= ∅,

(RT1)L∩
(
XAQ1

)L
=
((
XAQ1

)L
∩
(
XAQ2

)L)
, and (RT1)L∩

(
XMQ1

)L
=
((
XMQ1

)L
∩
(
XMQ2

)L)
,

the maximal subtrees of (Q1)L | (RT1)L ∩ (XQ1)L are (AQ1)L | (RT1)L ∩
(
XAQ1

)L
and

(MQ1)L | (RT1)L ∩
(
XMQ1

)L
. Likewise the maximal subtrees of (Q2)L | (RT1)L ∩ (XQ2)L

are (AQ2)L | (RT1)L ∩
(
XAQ2

)L
and (MQ2)L | (RT1)L ∩

(
XMQ2

)L
. We must have

(MQ1)L | (RT1)L ∩
(
XMQ1

)L
= (MQ2)L | (RT1)L ∩

(
XMQ2

)L
and (AQ1)L | (RT1)L ∩

(
XAQ1

)L
=
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(AQ2)L | (RT1)L∩
(
XAQ2

)L
, because (MQ1)L | (RT1)L∩

(
XMQ1

)L
6= (AQ2)L | (RT1)L∩

(
XAQ2

)L
and

(AQ1)L | (RT1)L ∩
(
XAQ1

)L
6= (MQ2)L | (RT1)L ∩

(
XMQ2

)L
, since

(
XMQ1

)L
∩
(
XMQ2

)L
6=(

XAQ1

)L
∩
(
XAQ2

)L
. Similarly, we must have (MQ1)L | (RT2)L ∩

(
XMQ1

)L
=

(AQ2)L | (RT2)L ∩
(
XAQ2

)L
and (AQ1)L | (RT2)L ∩

(
XAQ1

)L
= (MQ2)L | (RT2)L ∩

(
XMQ2

)L
.

Therefore (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
,

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
.

5.3.3.1 Dropping some assumptions

This section explores what happens when we drop the assumption that
(
XAQ1

)L
∩
(
XAQ2

)L
6= ∅,(

XAQ1

)L
∩
(
XMQ2

)L
6= ∅,

(
XMQ1

)L
∩
(
XAQ2

)L
6= ∅, and

(
XMQ1

)L
∩
(
XMQ2

)L
6= ∅. First, here is

a lemma.

Lemma 5.10. Let T be the basic0 representation of the basic cyclic pair N - (w, v, P1, P2), and let

CT = ∅. Let (Q1, Q2) be a tree pair of T . Let AQ1 and MQ1 be the two maximal subtrees of Q1,

and let AQ2 and MQ2 be the two maximal subtrees of Q2. If (Q1, Q2) is a sterile major tree pair of

T then we can not have two of the following four sets equal to the empty set:
(
XAQ1

)L
∩
(
XAQ2

)L
,(

XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L
.

Proof. (Contrapositive.) Note that we can not have
(
X4Qi

)L
∩
(
XAQj

)L
= ∅ and

(
X4Qi

)L
∩(

XMQj

)L
= ∅, where 4 ∈ {A,M}, i ∈ {1, 2}, and j ∈ {1, 2} \ {i}, because it implies that(

X4Qi

)L
= ∅, which is impossible. Without loss of generality, suppose that

(
XAQ1

)L
∩
(
XAQ2

)L
= ∅

and
(
XMQ1

)L
∩
(
XMQ2

)L
= ∅ then

(
XAQ1

)L
=
(
XMQ2

)L
and

(
XAQ2

)L
=
(
XMQ1

)L
, which shows

that (Q1, Q2) is not a sterile major tree pair, by Lemma 5.3.

Lemma 5.11. Let T be the basic0 representation of the basic cyclic pair N - (w, v, P1, P2), and

let CT = ∅. Let R be a switching of T . Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1,

RT2 ⊆ XT2, RT1 6= ∅, RT2 6= ∅, and RT1 ∪ RT2 = R, where T1 and T2 are T ’s two maximal

subtrees. Let (Q1, Q2) be a sterile major tree pair of T . Let AQ1 and MQ1 be the two maxi-

mal subtrees of Q1, and let AQ2 and MQ2 be the two maximal subtrees of Q2. If there exists

x1, x2 ∈ Λ, y1, y2 ∈ Υ, and z1 ∈ Θ, for Λ ∈ Ξ, Υ ∈ Ξ \ {Λ}, and Θ ∈ Ξ \ {Λ,Υ}, where Ξ ={(
XAQ1

)L
∩
(
XAQ2

)L
,
(
XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L}
,

such that x1 ∈ (RT1)L, x2 ∈ (RT2)L, y1 ∈ (RT1)L, y2 ∈ (RT2)L, and z1 ∈ (RTi)
L, for i ∈ {1, 2}, then

(Q1)L | (RTi)
L ∩ (XQ1)L 6= (Q2)L | (RTi)

L ∩ (XQ2)L.

71



Proof. Without loss of generality, suppose that there exists x1, x2 ∈
((
XMQ2

)L
∩
(
XAQ1

)L)
such that x1 ∈ (RT1)L and x2 ∈ (RT2)L, there exists y1, y2 ∈

((
XAQ2

)L
∩
(
XMQ1

)L)
such

that y1 ∈ (RT1)L and y2 ∈ (RT2)L, and there exists z1 ∈
((
XMQ1

)L
∩
(
XMQ2

)L)
such that

z1 ∈ (RT1)L. Now the maximal subtrees of (Q1)L | (RT1)L ∩ (XQ1)L are (AQ1)L | (RT1)L ∩
(
XAQ1

)L
and (MQ1)L | (RT1)L ∩

(
XMQ1

)L
, and the maximal subtrees of (Q2)L | (RT1)L ∩ (XQ2)L are

(AQ2)L | (RT1)L ∩
(
XAQ2

)L
and (MQ2)L | (RT1)L ∩

(
XMQ2

)L
. We see that (AQ1)L | (RT1)L ∩(

XAQ1

)L
6= (AQ2)L | (RT1)L ∩

(
XAQ2

)L
, because x1 ∈ (RT1)L ∩

(
XAQ1

)L
and x1 ∈

(
XMQ2

)L
,

so that x1 /∈ (RT1)L ∩
(
XAQ2

)L
as
(
XMQ2

)L
∩
(
XAQ2

)L
= ∅; thus (RT1)L ∩

(
XAQ1

)L
6= (RT1)L ∩(

XAQ2

)L
. We also see that (AQ1)L | (RT1)L ∩

(
XAQ1

)L
6= (MQ2)L | (RT1)L ∩

(
XMQ2

)L
, because

z1 ∈ (RT1)L ∩
(
XMQ2

)L
and z1 ∈

(
XMQ1

)L
, so that z1 /∈

(
XAQ1

)L
as
(
XAQ1

)L
∩
(
XMQ1

)L
= ∅;

thus (RT1)L∩
(
XAQ1

)L
6= (RT1)L∩

(
XMQ2

)L
. Therefore (Q1)L | (RT1)L∩(XQ1)L 6= (Q2)L | (RT1)L∩

(XQ2)L.

Theorem 5.4. Let T be the basic0 representation of the basic cyclic pair N - (w, v, P1, P2), and

let CT = ∅. Let T1 and T2 be the two maximal subtrees of T such that (T1)L 6= (T2)L. Let

(Q1, Q2) be a sterile major tree pair of T . Let AQ1 and MQ1 be the two maximal subtrees of

Q1, and let AQ2 and MQ2 be the two maximal subtrees of Q2. Let (T2)L |
(
XMT1

)L
6= (MT1)L

and (T1)L |
(
XMT2

)L
6= (MT2)L. If two of the following four equations hold then T does not

display a tree twice: (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
6= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
6= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
6= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
,

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
6= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
.

Proof. Without loss of generality, suppose that (MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
6=

(AQ1)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
and (AQ2)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
6=

(MQ1)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
. Then

(
XMQ2

)L
∩
(
XAQ1

)L
6= ∅ and

(
XAQ2

)L
∩
(
XMQ1

)L
6= ∅.

Since (Q1, Q2) is a sterile major tree pair and Lemma 5.10,
(
XAQ1

)L
∩
(
XAQ2

)L
6= ∅ or(

XMQ1

)L
∩
(
XMQ2

)L
6= ∅. Without loss of generality, suppose that

(
XMQ1

)L
∩
(
XMQ2

)L
6= ∅.

Suppose for contradiction that T displays a tree twice then there exists two switchings R and

W, of T , such that (T |R)L = (T |W )L. Let RT1 and RT2 be subsets of R such that RT1 ⊆ XT1 ,

RT2 ⊆ XT2 , and RT1 ∪ RT2 = R, and let WT1 and WT2 be subsets of W such that WT1 ⊆ XT1 ,

WT2 ⊆ XT2 , and WT1 ∪WT2 = W . We must have RT1 , RT2 , WT1 , and WT2 all non-empty, because
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(T1)L 6= (T2)L, (T2)L |
(
XMT1

)L
6= (MT1)L, and (T1)L |

(
XMT2

)L
6= (MT2)L. By Lemma 5.4,

(T1)L | (RT1)L = (T2)L | (RT1)L and (T2)L | (RT2)L = (T1)L | (RT2)L, because (T1|RT1)L = (T2|WT2)L

and (T2|RT2)L = (T1|WT1)L is implied by (T |R)L = (T |W )L and RT1 , RT2 , WT1 , and WT2 all being

non-empty. If
(
XAQ2

)L
∩
(
XMQ1

)L
⊆ (RTi)

L or
(
XMQ2

)L
∩
(
XAQ1

)L
⊆ (RTi)

L, for i ∈ {1, 2},

then we reach a contradiction, which we now show. Without loss of generality, suppose that(
XMQ2

)L
∩
(
XAQ1

)L
⊆ (RT1)L. By Lemma 5.5, (Q1)L | (RT1)L∩(XQ1)L = (Q2)L | (RT1)L∩(XQ2)L,

and this implies that (Q1)L |
(
XMQ2

)L
∩
(
XAQ1

)L
= (Q2)L |

(
XMQ2

)L
∩
(
XAQ1

)L
, as(

XMQ2

)L
∩
(
XAQ1

)L
⊆ (RT1)L ∩ (XQ1)L and (RT1)L ∩ (XQ1)L = (RT1)L ∩ (XQ2)L. Now that im-

plies that (MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
- a contradiction.

Therefore we can not have
(
XAQ2

)L
∩
(
XMQ1

)L
⊆ (RTi)

L or
(
XMQ2

)L
∩
(
XAQ1

)L
⊆ (RTi)

L,

for i ∈ {1, 2}. Thus
(
XAQ2

)L
∩
(
XMQ1

)L
and

(
XMQ2

)L
∩
(
XAQ1

)L
are split between (RT1)L

and (RT2)L, so there exists x1, x2 ∈
((
XMQ2

)L
∩
(
XAQ1

)L)
such that x1 ∈ (RT1)L and

x2 ∈ (RT2)L, and there exists y1, y2 ∈
((
XAQ2

)L
∩
(
XMQ1

)L)
such that y1 ∈ (RT1)L and

y2 ∈ (RT2)L. Now
(
XMQ1

)L
∩
(
XMQ2

)L
6= ∅, so either (RT1)L ∩

((
XMQ1

)L
∩
(
XMQ2

)L)
6= ∅

or (RT2)L ∩
((
XMQ1

)L
∩
(
XMQ2

)L)
6= ∅. Without loss of generality, suppose that

(RT1)L ∩
((
XMQ1

)L
∩
(
XMQ2

)L)
6= ∅ then there exists z1 ∈

((
XMQ1

)L
∩
(
XMQ2

)L)
such

that z1 ∈ (RT1)L. By Lemma 5.11, (Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L - a

contradiction. Hence T does not display a tree twice.

5.3.3.2 An iterative algorithm

We are now ready to tackle the case where exactly one of
(
XAQ1

)L
∩
(
XAQ2

)L
,(

XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L
is the empty set

and exactly one of (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
6= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
6= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
6= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
,

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
6= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
holds. We characterise

this case in terms of an iterative algorithm. The algorithm uses a new concept called “structural

soundness.”

Definition 5.9. Let T be a tree on leaf set X. We say that a leaf set X1 is structurally sound in

T when there exists a subtree T1 of T such that X1 is the leaf set of T1.

Note 7. If X1 is structurally sound in a tree T then the smallest subtree in T containing all of X1
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contains nothing but X1.

Example 5.8. The leaf set {5, 7, 8} is not structurally sound in T . The leaf set {2, 3, 4} is struc-

turally sound in T .

2
3 4

T2

T

T1

87
65

1

Definition 5.10. Let T be a tree on leaf set X. Let T1 be a subtree of T such that T1 6= T . Let

the root of T1 be x1, and let the parent of x1 be u. Let the other child of u be y. Let T2 be the

subtree of T whose root is y. The subtree T2 is called the the sibling of T1.

Algorithm : IterativeAlg

Input : A basic0 representation T representing the basic cyclic pair B- (w, v, P1, P2) such that CT =

∅. A sterile major tree pair (Q1, Q2) of T , with AQ1 , MQ1 being the two maximal subtrees of Q1,

and AQ2 ,MQ2 being the two maximal subtrees of Q2, such that exactly one of
(
XAQ1

)L
∩
(
XAQ2

)L
,(

XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L
is the empty set, call it (XB)L,

and exactly one of (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
6= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
6= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
6= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
,

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
6= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
holds,

say (4Q1)L | (XZ1)L 6= (♦Q2)L | (XZ1)L, where 4,♦ ∈ {A,M} and

(XZ1)L =
(
X4Q1

)L
∩
(
X♦Q2

)L
. We also have two sets

(
R

(1)∗
Q1

)L
∈ Ξ \{

(XB)L , (XZ1)L
}

and
(
R

(1)∗
Q2

)L
∈ Ξ \

{
(XB)L , (XZ1)L ,

(
R

(1)∗
Q1

)L}
, where Ξ ={(

XAQ1

)L
∩
(
XAQ2

)L
,
(
XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L}
.

We have indices i, j ∈ N, and we have a function f (n) =


2 when n is odd

1 when n is even
, where n ∈ N.

Output : The statement “displays a tree twice,” the statement “does not display a tree twice,” or
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a major tree pair
(
UQf(j+1) , UQf(j)

)
of T together with sets

(
R

(j)∗
Q1

)L
,
(
R

(j)∗
Q2

)L
, and

(
XZj

)L
, for

some j ∈ N.

1. Choose
(
R

(1)∗
Q1

)L
and

(
R

(1)∗
Q2

)L
such that (XZ1)L is structurally sound in (Q1)L |

(
R

(1)∗
Q2

)L
∪

(XZ1)L and (Q2)L |
(
R

(1)∗
Q1

)L
∪ (XZ1)L.

2. In (Q2)L |
(
R

(1)∗
Q2

)L
∪(XZ1)L check if (XZ1)L is structurally sound - if so then go to Step 3 with

j = 2 and i = 1, and set
(
R

(2)∗
Q1

)L
=
(
R

(1)∗
Q1

)L
,
(
R

(2)∗
Q2

)L
=
(
R

(1)∗
Q2

)L
, and (XZ2)L = (XZ1)L.

Otherwise go to Step 3 with j = 1 and i = 1.

3. In
(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
find the subtree whose leaf set is

(
XZj

)L
, call it Zj . We

then find the sibling of Zj , call it
(
SZj

)L
.

4. In
(
Qf(j)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
we find the smallest subtree containing all of

(
XSZj

)L
,

where
(
XSZj

)L
is the leaf set of

(
SZj

)L
, call it Di−1.

5. Let
(
RiQf(j+1)

)L
=
(
R

(j)∗
Qf(j+1)

)L
∪
((
XDi−1

)
\
(
XSZj

)L)
, where

(
XDi−1

)
is the leaf set of Di−1.

If (Q1)L |
(
RiQf(j+1)

)L
6= (Q2)L |

(
RiQf(j+1)

)L
then go to Step 12.

6. Look at
(
Qf(j)

)L
|
(
RiQf(j)

)L
, where

(
RiQf(j)

)L
=

(
XQf(j)

)L
\
(
RiQf(j+1)

)L
. If

(Q1)L |
(
RiQf(j)

)L
= (Q2)L |

(
RiQf(j)

)L
then go to Step 11. In

(
Qf(j)

)L
|
(
RiQf(j)

)L
the smallest

subtree containing all of
(
XSZj

)L
contains nothing but

(
XSZj

)L
, call it Di.

7. Find the sibling of Di in
(
Qf(j)

)L
|
(
RiQf(j)

)L
, call it SDi . Let

(
XSDi

)L
be the leaf set of SDi .

If
(
XSDi

)L
*
(
XZj

)L
then go to Step 12.

8. If
(
XSDi

)L
=
(
XZj

)L
then

(
UQf(j+1) , UQf(j)

)
, where UQf(j+1) is the subtree of Qf(j+1) such

that
(
XUQf(j+1)

)L
=
(
XZj

)L
and UQf(j) is the subtree of Qf(j) such that

(
XUQf(j)

)L
=(

XZj

)L
, is a major tree pair of T , so return the major tree pair

(
UQf(j+1) , UQf(j)

)
together

with the sets
(
R

(j)∗
Q1

)L
,
(
R

(j)∗
Q2

)L
, and

(
XZj

)L
.

9. Check if (Q1)L |
(
Ri+1
Qf(j)

)L
= (Q2)L |

(
Ri+1
Qf(j)

)L
, where

(
Ri+1
Qf(j)

)L
=
((
RiQf(j)

)L
\
(
XZj

)L)
∪(

XSDi

)L
. If not then go to Step 10. Check if (Q1)L |

(
Ri+1
Qf(j+1)

)L
= (Q2)L |

(
Ri+1
Qf(j+1)

)L
,

where
(
Ri+1
Qf(j+1)

)L
=
(
XQf(j+1)

)L
\
(
Ri+1
Qf(j)

)L
. If it does then go to Step 11. Check if

(Q1)L |
(
Ri+2
Qf(j+1)

)L
= (Q2)L |

(
Ri+2
Qf(j+1)

)L
, where

(
Ri+2
Qf(j+1)

)L
=
(
RiQf(j+1)

)L
∪
(
XSDi

)L
. If

not then go to Step 12, but if it does then go back to Step 6 replacing i with i+ 2.
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10. We have (Q1)L |
(
RmQf(j)

)L
6= (Q2)L |

(
RmQf(j)

)L
, where

(
RmQf(j)

)L
=
((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
∪(

XSDm−1

)L
, for some m ∈ N such that m ≥ i + 1. Check if (Q1)L |

(
RmQf(j+1)

)L
=

(Q2)L |
(
RmQf(j+1)

)L
, where

(
RmQf(j+1)

)L
=
(
XQf(j+1)

)L
\
(
RmQf(j)

)L
. If not then go to Step

12. If so then go to Step 3 with j replaced by j + 1, and set
(
R

(j+1)∗
Qf(j+1)

)L
=
(
RmQf(j+1)

)L
,(

R
(j+1)∗
Qf(j+2)

)L
=
(
R

(j)∗
Qf(j)

)L
, and

(
XZj+1

)L
=
(
XSDm−1

)L
. We also set i = m+ 1.

11. Return the statement “displays a tree twice.”

12. Return the statement “does not display a tree twice.”

5.3.3.3 How the iterative algorithm works

The idea behind IterativeAlg is to preserve the equations (Q1)L |
(
R

(j)∗
Qf(j)

)L
= (Q2)L |

(
R

(j)∗
Qf(j)

)L
and (Q1)L |

(
R

(j)∗
Qf(j+1)

)L
= (Q2)L |

(
R

(j)∗
Qf(j+1)

)L
, whilst at the same time seeing what from

(
XZj

)L
can go with

(
R

(j)∗
Qf(j)

)L
and what can go with

(
R

(j)∗
Qf(j+1)

)L
. If we find some part of

(
XZj

)L
that can

not go with
(
R

(j)∗
Qf(j)

)L
, i.e. when part of

(
XZj

)L
causes loss of equality due to lack of structural

soundness, then we see if that troublesome part of
(
XZj

)L
can go with

(
R

(j)∗
Qf(j+1)

)L
. If that does

not work then we know that we will never display a tree twice, because the troublesome part has

to go somewhere and we can not split the troublesome part up and split up the other part of(
XZj

)L
, by Lemma 5.11. On the other hand if the troublesome part can go with

(
R

(j)∗
Qf(j+1)

)L
then

we have expanded
(
R

(j)∗
Qf(j+1)

)L
whilst preserving equality, so we check if

(
R

(j)∗
Qf(j)

)L
together with(

XZj

)L
minus the troublesome part preserves equality. If it does then we know that we can choose

(RT1)L∩ (XQ1)L and (RT2)L∩ (XQ2)L such that (Q1)L | (RT1)L∩ (XQ1)L = (Q2)L | (RT1)L∩ (XQ2)L

and (Q1)L | (RT2)L ∩ (XQ1)L = (Q2)L | (RT2)L ∩ (XQ2)L, so we are on our way to displaying a tree

twice. If
(
R

(j)∗
Qf(j)

)L
together with

(
XZj

)L
minus the troublesome part does not work then we need

to split up
(
XZj

)L
minus the troublesome part. In this way we make some progress, and the

algorithm must eventually stop, because
(
XZj

)L
is finite.

Example 5.9. Here is a worked example showing how IterativeAlg works. We see that (XB)L =(
XAQ1

)L
∩
(
XMQ2

)L
= ∅ and (XZ1)L =

(
XMQ1

)L
∩
(
XMQ2

)L
= {`v1 , `v2 , `v3 , `v4 , `v9}. We choose(

R
(1)∗
Q1

)L
=
(
XMQ1

)L
∩
(
XAQ2

)L
= {`v8} and

(
R

(1)∗
Q2

)L
=
(
XAQ1

)L
∩
(
XAQ2

)L
= {`v5 , `v6 , `v7},

because (XZ1)L is structurally sound in (Q1)L |
(
R

(1)∗
Q2

)L
∪ (XZ1)L and (Q2)L |

(
R

(1)∗
Q1

)L
∪ (XZ1)L.
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`v5

`v1

`v3

`v2 `v4

`v8 `v9
`v6

`v7

`v1 `v4

`v9

`v3

`v2
`v5

`v8

`v6
`v7

(Q1)L (Q2)L

(MQ1)L (AQ1)L
(MQ2)L

(AQ2)L

Here we see (Q1)L |
(
R

(1)∗
Q2

)L
∪ (XZ1)L shown on the left and (Q2)L |

(
R

(1)∗
Q1

)L
∪ (XZ1)L shown on

the right.

`v5

`v1

`v3

`v2 `v4

`v9

`v6 `v7

`v1 `v4

`v9

`v3

`v2

`v8

In Step 2, we see that (XZ1)L is structurally sound in (Q2)L |
(
R

(1)∗
Q2

)L
∪(XZ1)L, so we set

(
R

(2)∗
Q1

)L
=(

R
(1)∗
Q1

)L
,
(
R

(2)∗
Q2

)L
=
(
R

(1)∗
Q2

)L
, and (XZ2)L = (XZ1)L, and we go to Step 3 with j = 2 and i = 1.

Now we see that f (j + 1) = 2 and f (j) = 1. Hence in Step 3 we are looking at (Q2)L |
(
R

(2)∗
Q1

)L
∪

(XZ2)L, and the sibling of (XZ2)L is the leaf `v8 . Shown is the result of Step 3.
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`v1 `v4

`v9

`v3

`v2

`v8

(Z2)(SZ2)L

In Step 4 we look at (Q1)L |
(
R

(2)∗
Q1

)L
∪ (XZ2)L, and shown is the result of Step 4.

`v1

`v3

`v2 `v4

`v9

`v8

D0

After two iterations, we find that
(
R6
Q2

)L
= {`v5 , `v6 , `v7 , `v9 , `v1 , `v4} works and

(
R6
Q1

)L
=

{`v2 , `v3 , `v8} works, so that the algorithm outputs the statement “displays a tree twice.”

Lemma 5.12. Let T be the basic0 representation of the basic cyclic pair N - (w, v, P1, P2), and let

CT = ∅. Let (Q1, Q2) be a sterile major tree pair with AQ1, MQ1 being the two maximal subtrees of

Q1, and AQ2, MQ2 being the two maximal subtrees of Q2. If exactly one of
(
XAQ1

)L
∩
(
XAQ2

)L
,(

XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L
is the empty set, call it (XB)L,

and exactly one of (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
6= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
6= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
6= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
,

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
6= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
holds, say

(4Q1)L | (XZ1)L 6= (♦Q2)L | (XZ1)L, where 4,♦ ∈ {A,M} and (XZ1)L =
(
X4Q1

)L
∩
(
X♦Q2

)L
,
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then (XZ1)L is structurally sound in both (Q1)L |
(
R

(1)∗
Q2

)L
∪ (XZ1)L and (Q2)L |

(
R

(1)∗
Q1

)L
∪ (XZ1)L

where
(
R

(1)∗
Q1

)L
∈ Ξ \

{
(XB)L , (XZ1)L

}
and

(
R

(1)∗
Q2

)L
∈ Ξ \

{
(XB)L , (XZ1)L ,

(
R

(1)∗
Q1

)L}
, and Ξ ={(

XAQ1

)L
∩
(
XAQ2

)L
,
(
XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L}
.

Proof. Without loss of generality, suppose that
(
XAQ1

)L
∩
(
XAQ2

)L
= ∅ and

(MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
6= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
then

(
XAQ1

)L
⊆(

XMQ2

)L
and

(
XAQ2

)L
⊆

(
XMQ1

)L
, so

(
XAQ1

)L
∩
(
XMQ2

)L
=

(
XAQ1

)L
and(

XAQ2

)L
∩
(
XMQ1

)L
=
(
XAQ2

)L
; hence we want to show that (XZ1)L =

(
XMQ1

)L
∩
(
XMQ2

)L
is structurally sound in either (Q1)L |

(
XAQ1

)L
∪ (XZ1)L and (Q2)L |

(
XAQ2

)L
∪ (XZ1)L or

(Q1)L |
(
XAQ2

)L
∪ (XZ1)L and (Q2)L |

(
XAQ1

)L
∪ (XZ1)L. It is fairly clear that (XZ1)L is struc-

turally sound in (Q1)L |
(
XAQ1

)L
∪ (XZ1)L and (Q2)L |

(
XAQ2

)L
∪ (XZ1)L, as the maximal subtrees

of (Q1)L |
(
XAQ1

)L
∪ (XZ1)L are (AQ1)L and (MQ1)L | (XZ1)L because

(
XAQ1

)L
∩ (XZ1)L = ∅.

Likewise in (Q2)L |
(
XAQ2

)L
∪ (XZ1)L, so

(
R

(1)∗
Q1

)L
is chosen to be

(
XAQ2

)L
and

(
R

(1)∗
Q2

)L
is chosen

to be
(
XAQ1

)L
. The other cases are similar.

Lemma 5.13. In IterativeAlg, if (XQ1)L = (XQ2)L =
(
R

(j)∗
Qf(j+1)

)L
∪
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
,(

R
(j)∗
Qf(j+1)

)L
∩
(
R

(j)∗
Qf(j)

)L
= ∅,

(
R

(j)∗
Qf(j+1)

)L
∩
(
XZj

)L
= ∅, and

(
R

(j)∗
Qf(j)

)L
∩
(
XZj

)L
= ∅ , for all

j ∈ N, then
(
R

(j)∗
Qf(j+1)

)L
⊆
(
RiQf(j+1)

)L
and

(
R

(j)∗
Qf(j)

)L
⊆
(
RiQf(j)

)L
, for all i, j ∈ N such that j ≤ i.

Proof. In Step 5 of the algorithm,
(
RiQf(j+1)

)L
=
(
R

(j)∗
Qf(j+1)

)L
∪
((
XDi−1

)
\
(
XSZj

)L)
, where

i, j ∈ N, so that
(
R

(j)∗
Qf(j+1)

)L
⊆
(
RiQf(j+1)

)L
. In Step 6,

(
RiQf(j)

)L
=
(
XQf(j)

)L
\
(
RiQf(j+1)

)L
,

so
(
R

(j)∗
Qf(j)

)L
⊆
(
RiQf(j)

)L
, because

(
R

(j)∗
Qf(j+1)

)L
⊆
(
RiQf(j+1)

)L
and

(
XQf(j)

)L
\
(
R

(j)∗
Qf(j+1)

)L
=(

R
(j)∗
Qf(j)

)L
∪
(
XZj

)L
(the latter follows from the hypothesis). Therefore

(
R

(j)∗
Qf(j)

)L
⊆
(
RiQf(j)

)L
and

(
R

(j)∗
Qf(j+1)

)L
⊆
(
RiQf(j+1)

)L
. Now in Step 9 we see that

(
Ri+1
Qf(j)

)L
=
((
RiQf(j)

)L
\
(
XZj

)L)
∪(

XSDi

)L
. Since

(
XZj

)L
∩
(
R

(j)∗
Qf(j)

)L
= ∅ and

(
R

(j)∗
Qf(j)

)L
⊆
(
RiQf(j)

)L
, we have

(
R

(j)∗
Qf(j)

)L
⊆(

Ri+1
Qf(j)

)L
. Also

(
Ri+1
Qf(j+1)

)L
=
(
XQf(j+1)

)L
\
(
Ri+1
Qf(j)

)L
, so that

(
R

(j)∗
Qf(j+1)

)L
⊆
(
Ri+1
Qf(j+1)

)L
. It

follows that
(
R

(j)∗
Qf(j+1)

)L
⊆
(
RiQf(j+1)

)L
and

(
R

(j)∗
Qf(j)

)L
⊆
(
RiQf(j)

)L
, for all i, j ∈ N such that

j ≤ i.

Lemma 5.14. In IterativeAlg, (XQ1)L = (XQ2)L =
(
R

(j)∗
Qf(j+1)

)L
∪
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
,(

R
(j)∗
Qf(j+1)

)L
∩
(
R

(j)∗
Qf(j)

)L
= ∅,

(
R

(j)∗
Qf(j+1)

)L
∩
(
XZj

)L
= ∅, and

(
R

(j)∗
Qf(j)

)L
∩
(
XZj

)L
= ∅ , for

all j ∈ N. Moreover,
(
R

(j+1)∗
Qf(j+1)

)L
=
(
R

(j)∗
Qf(j+1)

)L
∪
((
XZj

)L
\
(
XZj+1

)L)
.

Proof. We will prove the lemma by using induction on j. Base case j = 1:

When j = 1 we have
(
R

(1)∗
Q1

)L
,
(
R

(1)∗
Q2

)L
, and (XZ1)L. By definition,

(
R

(1)∗
Q1

)L
∈
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Ξ \
{

(XB)L , (XZ1)L
}

and
(
R

(1)∗
Q2

)L
∈ Ξ \

{
(XB)L , (XZ1)L ,

(
R

(1)∗
Q1

)L}
, where Ξ ={(

XAQ1

)L
∩
(
XAQ2

)L
,
(
XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L}
.

Also (XZ1)L ∈ Ξ. It is straight forward to show that Θ ∩ Λ = ∅ where Θ,Λ ∈ Ξ. Therefore(
R

(1)∗
Q1

)L
∩
(
R

(1)∗
Q2

)L
= ∅,

(
R

(1)∗
Q2

)L
∩ (XZ1)L = ∅, and

(
R

(1)∗
Q1

)L
∩ (XZ1)L = ∅. We know

that (XQ1)L = (XQ2)L, as (Q1, Q2) is a sterile major tree pair, and it is easy to show that

(XQ1)L =
⋃

Ξ, using Lemma 5.9. Hence (XQ1)L = (XQ2)L =
(
R

(1)∗
Q1

)L
∪
(
R

(1)∗
Q2

)L
∪ (XZ1)L, as

(XB)L = ∅. Induction step: Suppose that (XQ1)L = (XQ2)L =
(
R

(j)∗
Qf(j+1)

)L
∪
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
,(

R
(j)∗
Qf(j+1)

)L
∩
(
R

(j)∗
Qf(j)

)L
= ∅,

(
R

(j)∗
Qf(j+1)

)L
∩
(
XZj

)L
= ∅, and

(
R

(j)∗
Qf(j)

)L
∩
(
XZj

)L
= ∅ then, by

Lemma 5.13,
(
R

(j)∗
Qf(j+1)

)L
⊆
(
RiQf(j+1)

)L
and

(
R

(j)∗
Qf(j)

)L
⊆
(
RiQf(j)

)L
, for all j ∈ N, and for all i ∈ N.

The only way we can get
(
R

(j+1)∗
Qf(j+1)

)L
,
(
R

(j+1)∗
Qf(j+2)

)L
, and

(
XZj+1

)L
is when we get to Step 10. In

Step 10,
(
R

(j+1)∗
Qf(j+1)

)L
=
(
RmQf(j+1)

)L
,
(
R

(j+1)∗
Qf(j+2)

)L
=
(
R

(j)∗
Qf(j)

)L
, and

(
XZj+1

)L
=
(
XSDm−1

)
.

Since
(
R

(j)∗
Qf(j+1)

)L
⊆

(
RiQf(j+1)

)L
for all i ∈ N, we have

(
R

(j)∗
Qf(j+1)

)L
⊆

(
RmQf(j+1)

)L
;

thus
(
R

(j)∗
Qf(j+1)

)L
⊆

(
R

(j+1)∗
Qf(j+1)

)L
. Now

(
RmQf(j+1)

)L
=

(
XQf(j+1)

)L
\
(
RmQf(j)

)L
, since(

R
(j)∗
Qf(j)

)L
⊆
(
RiQf(j)

)L
, we have

(
R

(j)∗
Qf(j)

)L
⊆
(
RmQf(j)

)L
; hence

(
R

(j)∗
Qf(j)

)L
∩
(
RmQf(j+1)

)L
= ∅, so(

R
(j+1)∗
Qf(j+2)

)L
∩
(
R

(j+1)∗
Qf(j+1)

)L
= ∅. Now

(
R

(j+1)∗
Qf(j+2)

)L
∩
(
XZj+1

)L
= ∅, because

(
XZj+1

)L
⊆
(
XZj

)L
and

(
R

(j+1)∗
Qf(j+2)

)L
=
(
R

(j)∗
Qf(j)

)L
. In Step 10,

(
RmQf(j)

)L
=
((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
∪
(
XSDm−1

)L
and

(
XZj+1

)L
=

(
XSDm−1

)L
. Therefore

(
RmQf(j+1)

)L
∩
(
XZj+1

)L
= ∅, as

(
RmQf(j+1)

)L
=(

XQf(j+1)

)L
\
(
RmQf(j)

)L
; hence

(
R

(j+1)∗
Qf(j+1)

)L
∩
(
XZj+1

)L
= ∅. Next we show that

(XQ1)L =
(
R

(j+1)∗
Qf(j+1)

)L
∪
(
R

(j+1)∗
Qf(j+2)

)L
∪
(
XZj+1

)L
. By the induction hypothesis,

(XQ1)L =
(
R

(j)∗
Qf(j+1)

)L
∪
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
. By definition,

(
R

(j+1)∗
Qf(j+2)

)L
=
(
R

(j)∗
Qf(j)

)L
and(

XZj

)L
\
(
XZj+1

)L
⊆

(
R

(j+1)∗
Qf(j+1)

)L
, and, by Lemma 5.13,

(
R

(j)∗
Qf(j+1)

)L
⊆

(
RmQf(j+1)

)L
=(

R
(j+1)∗
Qf(j+1)

)L
; hence

(
R

(j+1)∗
Qf(j+1)

)L
=

(
R

(j)∗
Qf(j+1)

)L
∪
((
XZj

)L
\
(
XZj+1

)L)
. Therefore(

R
(j+1)∗
Qf(j+1)

)L
∪
(
R

(j+1)∗
Qf(j+2)

)L
∪
(
XZj+1

)L
=

(
R

(j)∗
Qf(j+1)

)L
∪
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
; hence

(XQ1)L =
(
R

(j+1)∗
Qf(j+1)

)L
∪
(
R

(j+1)∗
Qf(j+2)

)L
∪
(
XZj+1

)L
.

Lemma 5.15. In IterativeAlg,
(
XZj

)L
is structurally sound in

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
and

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
, for all j ∈ N.

Proof. We will prove this by induction on j. Base case j = 1: By Lemma 5.12, (XZ1)L is

structurally sound in both (Q1)L |
(
R

(1)∗
Q2

)L
∪ (XZ1)L and (Q2)L |

(
R

(1)∗
Q1

)L
∪ (XZ1)L. Induction

step: Suppose that
(
XZj

)L
is structurally sound in both

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
and(

Qf(j)
)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
. In order to get

(
R

(j+1)∗
Qf(j+1)

)L
,
(
R

(j+1)∗
Qf(j+2)

)L
, and

(
XZj+1

)L
, we
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have to get to Step 10. In Step 10,
(
R

(j+1)∗
Qf(j+1)

)L
=
(
RmQf(j+1)

)L
,
(
R

(j+1)∗
Qf(j+2)

)L
=
(
R

(j)∗
Qf(j)

)L
,

and
(
XZj+1

)L
=

(
XSDm−1

)L
. From Step 7, we have

(
XSDm−1

)L
⊆

(
XZj

)L
, and, since(

XZj

)L
is structurally sound in

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
, we have

(
XZj+1

)L
struc-

turally sound in
(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj+1

)L
, so that

(
XZj+1

)L
is structurally sound in(

Qf(j+1)
)L
|
(
R

(j+1)∗
Qf(j+2)

)L
∪
(
XZj+1

)L
. By Lemma 5.14, we have

(
R

(j+1)∗
Qf(j+1)

)L
=
(
R

(j)∗
Qf(j+1)

)L
∪((

XZj

)L
\
(
XZj+1

)L)
. Now

(
XZj

)L
is structurally sound in

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
;

we need to show that
(
XZj+1

)L
is structurally sound in

(
Qf(j+2)

)L
|
(
R

(j+1)∗
Qf(j+1)

)L
∪
(
XZj+1

)L
;

since
(
Qf(j+2)

)L
=

(
Qf(j)

)L
and

(
R

(j+1)∗
Qf(j+1)

)L
=

(
R

(j)∗
Qf(j+1)

)L
∪
((
XZj

)L
\
(
XZj+1

)L)
, we

need to show that
(
XZj+1

)L
is structurally sound in

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
. Since(

XZj+1

)L
=
(
XSDm−1

)L
and

(
XSDm−1

)L
⊆
(
XZj

)L
, we have

(
XZj+1

)L
⊆
(
XZj

)L
. Since(

XZj

)L
is structurally sound in

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
,
(
R

(j)∗
Qf(j+1)

)L
∩
(
XZj

)L
= ∅,

and
(
XZj+1

)L
⊆
(
XZj

)L
,
(
XZj+1

)L
is structurally sound in

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
,

because in Step 7 we found the sibling of Dm−1 in
(
Qf(j)

)L
|
(
Rm−1
Qf(j)

)L
, which is SDm−1 , so that(

XSDm−1

)L
is structurally sound in

(
Qf(j)

)L
|
(
Rm−1
Qf(j)

)L
. Therefore

(
XZj+1

)L
is structurally sound

in
(
Qf(j+2)

)L
|
(
R

(j+1)∗
Qf(j+1)

)L
∪
(
XZj+1

)L
.

Proposition 5.6. In IterativeAlg,
(
XZj+1

)L
is structurally sound in

(
Qf(j+2)

)L
|
(
R

(j+1)∗
Qf(j+2)

)L
∪(

XZj+1

)L
, for all j ∈ N.

Proof. Let j ∈ N. From Lemma 5.15,
(
XZj

)L
is structurally sound in both

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪(

XZj

)L
and

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
. In order to get

(
R

(j+1)∗
Qf(j+2)

)L
and

(
XZj+1

)L
, we must

get to Step 10, and at Step 10
(
R

(j+1)∗
Qf(j+2)

)L
=
(
R

(j)∗
Qf(j)

)L
and

(
XZj+1

)L
=
(
XSDm−1

)L
, by definition.

Hence we need to show that
(
XSDm−1

)L
is structurally sound in

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XSDm−1

)L
,

as
(
Qf(j+2)

)L
=
(
Qf(j)

)L
. In Step 7 we find the sibling of Dm−1 in

(
Qf(j)

)L
|
(
Rm−1
Qf(j)

)L
,

which is SDm−1 , so that
(
XSDm−1

)L
is structurally sound in

(
Qf(j)

)L
|
(
Rm−1
Qf(j)

)L
. By Lemma

5.14 and Lemma 5.13,
(
R

(j)∗
Qf(j)

)L
⊆
(
Rm−1
Qf(j)

)L
, so that

(
XSDm−1

)L
is structurally sound in(

Qf(j)
)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XSDm−1

)L
.

Lemma 5.16. In IterativeAlg, (Q1)L |
(
XZj

)L
6= (Q2)L |

(
XZj

)L
, (Q1)L |

(
R

(j)∗
Qf(j)

)L
=

(Q2)L |
(
R

(j)∗
Qf(j)

)L
, and (Q1)L |

(
R

(j)∗
Qf(j+1)

)L
= (Q2)L |

(
R

(j)∗
Qf(j+1)

)L
, for all j ∈ N.

Proof. We will prove this by induction on j. Base case j = 1: When j = 1,

we have (XZ1)L,
(
R

(1)∗
Q1

)L
, and

(
R

(1)∗
Q2

)L
, where (XZ1)L is defined to be

(
X4Q1

)L
∩(

X♦Q2

)L
, for some 4,♦ ∈ {A,M}, and (4Q1)L | (XZ1)L 6= (♦Q2)L | (XZ1)L. We also
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have
(
R

(1)∗
Q1

)L
∈ Ξ \

{
(XB)L , (XZ1)L

}
, so that (Q1)L |

(
R

(1)∗
Q1

)L
= (Q2)L |

(
R

(1)∗
Q1

)L
, and(

R
(1)∗
Q2

)L
∈ Ξ \

{
(XB)L , (XZ1)L ,

(
R

(1)∗
Q1

)L}
, so (Q1)L |

(
R

(1)∗
Q2

)L
= (Q2)L |

(
R

(1)∗
Q2

)L
, as Ξ ={(

XAQ1

)L
∩
(
XAQ2

)L
,
(
XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L}
. In-

duction step: Suppose that (Q1)L |
(
XZj

)L
6= (Q2)L |

(
XZj

)L
, (Q1)L |

(
R

(j)∗
Qf(j)

)L
=

(Q2)L |
(
R

(j)∗
Qf(j)

)L
, and (Q1)L |

(
R

(j)∗
Qf(j+1)

)L
= (Q2)L |

(
R

(j)∗
Qf(j+1)

)L
. The only way to get

(
XZj+1

)L
,(

R
(j+1)∗
Qf(j+1)

)L
, and

(
R

(j+1)∗
Qf(j+2)

)L
is to get to Step 10, and the only way to get to Step 10

is when (Q1)L |
(
RmQf(j)

)L
6= (Q2)L |

(
RmQf(j)

)L
, where

(
RmQf(j)

)L
=

((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
∪(

XSDm−1

)L
, for some m ∈ N such that m ≥ i + 1. We then must have (Q1)L |

(
RmQf(j+1)

)L
=

(Q2)L |
(
RmQf(j+1)

)L
, where

(
RmQf(j+1)

)L
=
(
XQf(j+1)

)L
\
(
RmQf(j)

)L
, and that leads to getting(

XZj+1

)L
=

(
XSDm−1

)L
,
(
R

(j+1)∗
Qf(j+1)

)L
=

(
RmQf(j+1)

)L
, and

(
R

(j+1)∗
Qf(j+2)

)L
=

(
R

(j)∗
Qf(j)

)L
; hence

(Q1)L |
(
R

(j+1)∗
Qf(j+1)

)L
= (Q2)L |

(
R

(j+1)∗
Qf(j+1)

)L
and (Q1)L |

(
R

(j+1)∗
Qf(j+2)

)L
= (Q2)L |

(
R

(j+1)∗
Qf(j+2)

)L
. The

only thing left to prove is that (Q1)L |
(
XZj+1

)L
6= (Q2)L |

(
XZj+1

)L
, and to do that we claim

that
((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
=
(
R

(j)∗
Qf(j)

)L
. From Lemma 5.13 and Lemma 5.14,

(
R

(j)∗
Qf(j)

)L
⊆(

Rm−1
Qf(j)

)L
, (XQ1)L = (XQ2)L =

(
R

(j)∗
Qf(j+1)

)L
∪
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
,
(
R

(j)∗
Qf(j+1)

)L
∩
(
R

(j)∗
Qf(j)

)L
= ∅,(

R
(j)∗
Qf(j+1)

)L
∩
(
XZj

)L
= ∅, and

(
R

(j)∗
Qf(j)

)L
∩
(
XZj

)L
= ∅; hence

(
R

(j)∗
Qf(j)

)L
⊆
(
Rm−1
Qf(j)

)L
\
(
XZj

)L
.

Take any x ∈
((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
then x ∈

(
Rm−1
Qf(j)

)L
and x /∈

(
XZj

)L
, so x ∈ (XQ1)L.

Suppose for contradiction that x ∈
(
R

(j)∗
Qf(j+1)

)L
then x ∈

(
RmQf(j+1)

)L
, as, by Lemma 5.13,(

R
(j)∗
Qf(j+1)

)L
⊆
(
RmQf(j+1)

)L
. Now

(
RmQf(j+1)

)L
=
(
XQf(j+1)

)L
\
(
RmQf(j)

)L
, so that x /∈

(
RmQf(j)

)L
,

but
(
RmQf(j)

)L
=
((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
∪
(
XSDm−1

)L
; thus x /∈

((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
- a con-

tradiction. Therefore x ∈
(
R

(j)∗
Qf(j)

)L
, so that

((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
=
(
R

(j)∗
Qf(j)

)L
. By the in-

duction hypothesis, (Q1)L |
(
R

(j)∗
Qf(j)

)L
= (Q2)L |

(
R

(j)∗
Qf(j)

)L
; hence (Q1)L |

((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
=

(Q2)L |
((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
. Since

(
XSDm−1

)L
⊆
(
XZj

)L
,
((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
=
(
R

(j)∗
Qf(j)

)L
,

and
(
R

(j)∗
Qf(j)

)L
∩
(
XZj

)L
= ∅, we have

((
Rm−1
Qf(j)

)L
\
(
XZj

)L)
∩
(
XSDm−1

)L
= ∅. Therefore the only

way that (Q1)L |
(
RmQf(j)

)L
6= (Q2)L |

(
RmQf(j)

)L
is when (Q1)L |

(
XSDm−1

)L
6= (Q2)L |

(
XSDm−1

)L
,

because
(
XZj+1

)L
=
(
XSDm−1

)L
is structurally sound in

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j)

)
∪
(
XSDm−1

)L
and(

Qf(j+1)
)L
|
(
R

(j)∗
Qf(j)

)
∪
(
XSDm−1

)L
, by Lemma 5.15 and Proposition 5.6; thus (Q1)L |

(
XZj+1

)L
6=

(Q2)L |
(
XZj+1

)L
.

Lemma 5.17. In IterativeAlg, if
(
UQf(j+1) , UQf(j)

)
is returned then

(
XZj

)L
is

structurally sound in
(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
,

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
,
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(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
, and

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
.

Proof. By Lemma 5.15 and Proposition 5.6,
(
XZj

)L
is structurally sound in(

Qf(j+1)
)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
,
(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
, and

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪(

XZj

)L
. By Step 7 and Step 8, we see that

(
XZj

)L
is structurally sound in

(
Qf(j)

)L
|
(
RiQf(j)

)L
.

Now, by Lemma 5.14 and Lemma 5.13,
(
R

(j)∗
Qf(j)

)L
⊆
(
RiQf(j)

)L
, and, by construction and Step 8,(

XZj

)L
⊆
(
RiQf(j)

)L
, so that

(
XZj

)L
is structurally sound in

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
.

Lemma 5.18. In IterativeAlg, if
(
UQf(j+1) , UQf(j)

)
is returned then

(
UQf(j+1) , UQf(j)

)
is a

major tree pair of T .

Proof. The only way that
(
UQf(j+1) , UQf(j)

)
can be returned in IterativeAlg is when, at Step

8,
(
XSDi

)L
=
(
XZj

)L
. We need to prove that

(
UQf(j+1)

)L
6=
(
UQf(j)

)L
. Now UQf(j+1) is de-

fined to be the subtree of Qf(j+1) such that
(
XUQf(j+1)

)L
=
(
XZj

)L
, so that

(
UQf(j+1)

)L
=(

Qf(j+1)
)L
|
(
XZj

)L
. Also UQf(j) is defined to be the subtree of Qf(j) such that

(
XUQf(j)

)L
=(

XSDi

)L
, since

(
XSDi

)L
=

(
XZj

)L
, we have

(
XUQf(j)

)L
=

(
XZj

)L
, so that

(
UQf(j)

)L
=(

Qf(j)
)L
|
(
XZj

)L
. Therefore we need to prove that

(
Qf(j+1)

)L
|
(
XZj

)L
6=
(
Qf(j)

)L
|
(
XZj

)L
,

which is the case, by Lemma 5.16. However, we still need to prove that UQf(j+1) and UQf(j) exist, and

the only way they can exist is when
(
XZj

)L
is structurally sound in (Q1)L and (Q2)L. By Lemma

5.17,
(
XZj

)L
is structurally sound in

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
,
(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪(

XZj

)L
,
(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
, and

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
. Suppose for contra-

diction that
(
XZj

)L
is not structurally sound in

(
Qf(j+1)

)L
then the smallest subtree in

(
Qf(j+1)

)L
whose leaf set contains all of

(
XZj

)L
contains something, call it x, from

(
XQf(j+1)

)L
\
(
XZj

)L
. By

Lemma 5.14, (XQ1)L = (XQ2)L =
(
R

(j)∗
Qf(j+1)

)L
∪
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
,
(
R

(j)∗
Qf(j+1)

)L
∩
(
R

(j)∗
Qf(j)

)L
= ∅,(

R
(j)∗
Qf(j+1)

)L
∩
(
XZj

)L
= ∅, and

(
R

(j)∗
Qf(j)

)L
∩
(
XZj

)L
= ∅, so x ∈

(
R

(j)∗
Qf(j)

)L
or x ∈

(
R

(j)∗
Qf(j+1)

)L
. If

x ∈
(
R

(j)∗
Qf(j+1)

)L
then

(
XZj

)L
is not structurally sound in

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
, and

if x ∈
(
R

(j)∗
Qf(j)

)L
then

(
XZj

)L
is not structurally sound in

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
- a con-

tradiction. Therefore
(
XZj

)L
is structurally sound in

(
Qf(j+1)

)L
. Suppose for contradiction that(

XZj

)L
is not structurally sound in

(
Qf(j)

)L
then the smallest subtree in

(
Qf(j)

)L
whose leaf set

contains all of
(
XZj

)L
contains something, call it y, from

(
XQf(j)

)L
\
(
XZj

)L
. If y ∈

(
R

(j)∗
Qf(j+1)

)L
then

(
XZj

)L
is not structurally sound in

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j+1)

)L
∪
(
XZj

)L
, and if y ∈

(
R

(j)∗
Qf(j)

)L
then

(
XZj

)L
is not structurally sound

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
- a contradiction. There-

fore
(
XZj

)L
is structurally sound in (Q1)L and (Q2)L, so that UQf(j+1) and UQf(j) exist. Since(

Qf(j+1), Qf(j)
)
is a major tree pair of T ,

(
UQf(j+1) , UQf(j)

)
is a major tree pair of T .
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Proposition 5.7. In IterativeAlg, if (UQ1 , UQ2) is returned then (Q1)L | (RT1)L ∩ (XQ1)L =

(Q2)L | (RT1)L ∩ (XQ2)L and (Q1)L | (RT2)L ∩ (XQ1)L = (Q2)L | (RT2)L ∩ (XQ2)L if and only

if (UQ1)L | (RT1)L ∩
(
XUQ1

)L
= (UQ2)L | (RT1)L ∩

(
XUQ2

)L
and (UQ1)L | (RT2)L ∩

(
XUQ1

)L
=

(UQ2)L | (RT2)L ∩
(
XUQ2

)L
. For some switching R of T with sets RT1, RT2 having the following

properties: RT1 ⊆ XT1, RT2 ⊆ XT2, (RT1)L ∪ (RT2)L = (R)L, and (RT1)L ∩ (RT2)L = ∅.

Proof. If (UQ1 , UQ2) is returned then, by Lemma 5.18 and by Step 8, (UQ1 , UQ2) is a major tree pair

of T with UQ1 a subtree of Q1 and UQ2 a subtree of Q2. If (Q1)L | (RT1)L∩(XQ1)L = (Q2)L | (RT1)L∩

(XQ2)L and (Q1)L | (RT2)L ∩ (XQ1)L = (Q2)L | (RT2)L ∩ (XQ2)L then (UQ1)L | (RT1)L ∩
(
XUQ1

)L
=

(UQ2)L | (RT1)L ∩
(
XUQ2

)L
and (UQ1)L | (RT2)L ∩

(
XUQ1

)L
= (UQ2)L | (RT2)L ∩

(
XUQ2

)L
, because(

XUQ1

)L
⊆ (XQ1)L,

(
XUQ1

)L
=
(
XUQ2

)L
, and (XQ1)L = (XQ2)L, so that (UQ1)L | (RT1)L ∩(

XUQ1

)L
is a subtree of (Q1)L | (RT1)L ∩ (XQ1)L, (UQ2)L | (RT1)L ∩

(
XUQ2

)L
is a subtree of

(Q2)L | (RT1)L ∩ (XQ2)L, (UQ1)L | (RT2)L ∩
(
XUQ1

)L
is a subtree of (Q1)L | (RT2)L ∩ (XQ1)L, and

(UQ2)L | (RT2)L ∩
(
XUQ2

)L
is a subtree of (Q2)L | (RT2)L ∩ (XQ2)L; hence, by Lemma 4.1, we

get (UQ1)L | (RT1)L ∩
(
XUQ1

)L
= (UQ2)L | (RT1)L ∩

(
XUQ2

)L
and (UQ1)L | (RT2)L ∩

(
XUQ1

)L
=

(UQ2)L | (RT2)L ∩
(
XUQ2

)L
.

If (UQ1)L | (RT1)L ∩
(
XUQ1

)L
= (UQ2)L | (RT1)L ∩

(
XUQ2

)L
and (UQ1)L | (RT2)L ∩(

XUQ1

)L
= (UQ2)L | (RT2)L ∩

(
XUQ2

)L
then consider (RT1)L ∩ (XQ1)L =

(
R

(j)∗
Q1

)L
∪(

(RT1)L ∩
(
XUQ1

)L)
and (RT2)L ∩ (XQ2)L =

(
R

(j)∗
Q2

)L
∪
(

(RT2)L ∩
(
XUQ2

)L)
. Now R

is still a switching, by Lemma 5.14. Since (RT1)L ∩
(
XUQ1

)L
⊆

(
XZj

)L
, (RT2)L ∩(

XUQ2

)L
⊆
(
XZj

)L
, and, by Lemma 5.17,

(
XZj

)L
is structurally sound in (Q1)L |

(
R

(j)∗
Q1

)L
∪(

XZj

)L
, (Q1)L |

(
R

(j)∗
Q2

)L
∪
(
XZj

)L
, (Q2)L |

(
R

(j)∗
Q1

)L
∪
(
XZj

)L
, and (Q2)L |

(
R

(j)∗
Q2

)L
∪
(
XZj

)L
,

we have (RT1)L ∩
(
XUQ1

)L
structurally sound in (Q1)L |

(
R

(j)∗
Q1

)L
∪
(

(RT1)L ∩
(
XUQ1

)L)
and (Q2)L |

(
R

(j)∗
Q1

)L
∪
(

(RT1)L ∩
(
XUQ1

)L)
, and (RT2)L ∩

(
XUQ2

)L
structurally sound in

(Q1)L |
(
R

(j)∗
Q2

)L
∪
(

(RT2)L ∩
(
XUQ2

)L)
and (Q2)L |

(
R

(j)∗
Q2

)L
∪
(

(RT2)L ∩
(
XUQ2

)L)
. Therefore

the two maximal subtrees of (Q1)L |
(
R

(j)∗
Q1

)L
∪
(

(RT1)L ∩
(
XUQ1

)L)
are (Q1)L |

(
R

(j)∗
Q1

)L
and

(Q1)L |
(

(RT1)L ∩
(
XUQ1

)L)
= (UQ1)L |

(
(RT1)L ∩

(
XUQ1

)L)
, and the two maximal subtrees of

(Q2)L |
(
R

(j)∗
Q1

)L
∪
(

(RT1)L ∩
(
XUQ1

)L)
are (Q2)L |

(
R

(j)∗
Q1

)L
and (Q2)L |

(
(RT1)L ∩

(
XUQ1

)L)
=

(UQ2)L |
(

(RT1)L ∩
(
XUQ2

)L)
. By Lemma 5.16 and hypothesis, (Q1)L |

(
R

(j)∗
Q1

)L
= (Q2)L |

(
R

(j)∗
Q1

)L
and (UQ1)L |

(
(RT1)L ∩

(
XUQ1

)L)
= (UQ2)L |

(
(RT1)L ∩

(
XUQ2

)L)
, so that (Q1)L | (RT1)L ∩

(XQ1)L = (Q2)L | (RT1)L∩(XQ2)L. Similarly, (Q1)L | (RT2)L∩(XQ1)L = (Q2)L | (RT2)L∩(XQ2)L.

Lemma 5.19. Let T1 and T2 be two trees on the same leaf set X. Let X1 ⊆ X, and let X1 be
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structurally sound in Ti, where i ∈ {1, 2}. If X1 is not structurally sound in Tj, where j ∈ {1, 2}\{i},

then T1 6= T2.

Proof. Without loss of generality, suppose that X1 is structurally sound in T1 and X1 is not struc-

turally sound in T2 then we have a subtree of T1 whose leaf set is X1, yet no such subtree exists in

T2; hence T1 6= T2.

Lemma 5.20. Let T be the basic0 representation of a basic cyclic pair. Let R be any switching of

T , and let T1 and T2 be T ’s two maximal subtrees. Let RT1 and RT2 be two sets such that RT1 ⊆ XT1,

RT2 ⊆ XT2, (RT1)L ∪ (RT2)L = (R)L, and (RT1)L ∩ (RT2)L = ∅. Let (Q1, Q2) be a tree pair of T ,

and let (XZ)L be a subset of (XQ1)L such that (Q1)L | (XZ)L 6= (Q2)L | (XZ)L. If (XZ)L ⊆ (RTi)
L,

for i ∈ {1, 2}, then (Q1)L | (RTi)
L ∩ (XQ1)L 6= (Q2)L | (RTi)

L ∩ (XQ2)L.

Proof. Suppose that (XZ)L ⊆ (RTi)
L, for i ∈ {1, 2}, and suppose for con-

tradiction that (Q1)L | (RTi)
L ∩ (XQ1)L = (Q2)L | (RTi)

L ∩ (XQ2)L. We must

have
(
(Q1)L | (RTi)

L ∩ (XQ1)L
)
| (XZ)L =

(
(Q2)L | (RTi)

L ∩ (XQ2)L
)
| (XZ)L, but(

(Q1)L | (RTi)
L ∩ (XQ1)L

)
| (XZ)L = (Q1)L | (XZ)L and

(
(Q2)L | (RTi)

L ∩ (XQ2)L
)
| (XZ)L =

(Q2)L | (XZ)L; hence (Q1)L | (XZ)L = (Q2)L | (XZ)L - a contradiction. Therefore

(Q1)L | (RTi)
L ∩ (XQ1)L 6= (Q2)L | (RTi)

L ∩ (XQ2)L.

Proposition 5.8. Let T be the basic0 representation of a basic cyclic pair. Let R be any switching

of T , and let T1 and T2 be T ’s two maximal subtrees. Let RT1 and RT2 be two sets such that

RT1 ⊆ XT1, RT2 ⊆ XT2, (RT1)L ∪ (RT2)L = (R)L, and (RT1)L ∩ (RT2)L = ∅. In IterativeAlg, if(
RTp

)L ∩ (R(j)∗
Qf(j)

)L
6= ∅,

(
RTp

)L ∩ (R(j)∗
Qf(j+1)

)L
6= ∅, and

(
RTp

)L ∩ (XZj

)L
6= ∅, for p ∈ {1, 2} and

j ∈ N, then (Q1)L |
(
RTp

)L ∩ (XQ1)L 6= (Q2)L |
(
RTp

)L ∩ (XQ2)L.

Proof. We will prove this by induction on j. Base case j = 1: By definition,(
R

(1)∗
Q1

)L
∈ Ξ \

{
(XB)L , (XZ1)L

}
and

(
R

(1)∗
Q2

)L
∈ Ξ \

{
(XB)L , (XZ1)L ,

(
R

(1)∗
Q1

)L}
, where Ξ ={(

XAQ1

)L
∩
(
XAQ2

)L
,
(
XAQ1

)L
∩
(
XMQ2

)L
,
(
XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L}
.

Without loss of generality, suppose that (RT1)L ∩
(
R

(1)∗
Q1

)L
6= ∅, (RT1)L ∩

(
R

(1)∗
Q2

)L
6= ∅, and

(RT1)L ∩ (XZ1)L 6= ∅ then, by Lemma 5.11, (Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L. In-

duction hypothesis: If
(
RTp

)L∩(R(j)∗
Qf(j)

)L
6= ∅,

(
RTp

)L∩(R(j)∗
Qf(j+1)

)L
6= ∅, and

(
RTp

)L∩(XZj

)L
6= ∅

then (Q1)L |
(
RTp

)L ∩ (XQ1)L 6= (Q2)L |
(
RTp

)L ∩ (XQ2)L. Without loss of generality, suppose

that (RT1)L ∩
(
R

(j+1)∗
Qf(j+1)

)L
6= ∅, (RT1)L ∩

(
R

(j+1)∗
Qf(j+2)

)L
6= ∅, and (RT1)L ∩

(
XZj+1

)L
6= ∅. Now, by

Step 10,
(
R

(j+1)∗
Qf(j+1)

)L
=
(
RmQf(j+1)

)L
,
(
R

(j+1)∗
Qf(j+2)

)L
=
(
R

(j)∗
Qf(j)

)L
, and

(
XZj+1

)L
=
(
XSDm−1

)L
, so

(RT1)L ∩
(
R

(j)∗
Qf(j)

)L
6= ∅. By Step 7,

(
XSDm−1

)L
⊆
(
XZj

)L
, so we have (RT1)L ∩

(
XZj

)L
6= ∅. If
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(RT1)L ∩
(
R

(j)∗
Qf(j+1)

)L
6= ∅ then we are done, so suppose that (RT1)L ∩

(
R

(j)∗
Qf(j+1)

)L
= ∅. By Lemma

5.14,
(
R

(j+1)∗
Qf(j+1)

)L
=
(
R

(j)∗
Qf(j+1)

)L
∪
((
XZj

)L
\
(
XZj+1

)L)
; hence (RT1)L∩

((
XZj

)L
\
(
XZj+1

)L)
6=

∅. Since R is a switching of T and (RT1)L ∩
(
R

(j)∗
Qf(j+1)

)L
= ∅, we have

(
R

(j)∗
Qf(j+1)

)L
⊆ (RT2)L.

By Lemma 5.20, if
(
XZj

)L
⊆ (RT1)L then (Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L,

because, by Lemma 5.16, (Q1)L |
(
XZj

)L
6= (Q2)L |

(
XZj

)L
. Since R is a switching of T , we

have (RT2)L ∩
(
XZj

)L
6= ∅. If (RT2)L ∩

(
R

(j)∗
Qf(j)

)L
6= ∅ then we are done, so suppose that

(RT2)L ∩
(
R

(j)∗
Qf(j)

)L
= ∅ then

(
R

(j)∗
Qf(j)

)L
⊆ (RT1)L. Since (RT1)L ∩

((
XZj

)L
\
(
XZj+1

)L)
6= ∅

and (RT1)L ∩
(
XZj+1

)L
6= ∅, consider

[
(RT1)L ∩

((
XZj

)L
\
(
XZj+1

)L)]
∪
(

(RT1)L ∩
(
XZj+1

)L)
.

We see that
[
(RT1)L ∩

((
XZj

)L
\
(
XZj+1

)L)]
∪
(

(RT1)L ∩
(
XZj+1

)L)
is structurally sound

in
(
Qf(j+1)

)L
| (RT1)L ∩

(
XQf(j+1)

)L
, because, by Lemma 5.15,

(
XZj

)L
is structurally

sound in
(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
and

(
XZj+1

)L
⊆

(
XZj

)L
. By construction,[

(RT1)L ∩
((
XZj

)L
\
(
XZj+1

)L)]
∪
(

(RT1)L ∩
(
XZj+1

)L)
is not structurally sound in(

Qf(j)
)L
| (RT1)L∩

(
XQf(j)

)L
, because the smallest subtree in

(
Qf(j)

)L
| (RT1)L∩

(
XQf(j)

)L
contain-

ing all of
[
(RT1)L ∩

((
XZj

)L
\
(
XZj+1

)L)]
∪
(

(RT1)L ∩
(
XZj+1

)L)
must contain some of

(
XSZj

)L
and

(
XSZj

)L
⊆
(
R

(j)∗
Qf(j)

)L
. Therefore (Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L.

Theorem 5.5. Let T be the basic0 representation of a basic cyclic pair. Let R be any switching of

T , and let T1 and T2 be T ’s two maximal subtrees. Let RT1 and RT2 be two sets such that RT1 ⊆ XT1,

RT2 ⊆ XT2, (RT1)L∪ (RT2)L = (R)L, and (RT1)L∩ (RT2)L = ∅. In IterativeAlg, if the statement

“does not display a tree twice” is returned, upon input of a sterile major tree pair (Q1, Q2), then

(Q1)L |
(
RTp

)L ∩ (XQ1)L 6= (Q2)L |
(
RTp

)L ∩ (XQ2)L, for some p ∈ {1, 2}.

Proof. Suppose that the statement “does not display a tree twice” is returned. There are several

ways in which that can occur. First let us look at
(
RTp

)L ∩ (R(j)∗
Qf(j)

)L
,
(
RTp

)L ∩ (R(j)∗
Qf(j+1)

)L
, and(

RTp
)L ∩ (XZj

)L
. By Proposition 5.8, if

(
RTp

)L ∩ (R(j)∗
Qf(j)

)L
6= ∅,

(
RTp

)L ∩ (R(j)∗
Qf(j+1)

)L
6= ∅, and(

RTp
)L∩(XZj

)L
6= ∅ then (Q1)L |

(
RTp

)L∩(XQ1)L 6= (Q2)L |
(
RTp

)L∩(XQ2)L. Now, by Lemma 5.20

and Lemma 5.16, if
(
XZj

)L
⊆
(
RTp

)L then (Q1)L |
(
RTp

)L ∩ (XQ1)L 6= (Q2)L |
(
RTp

)L ∩ (XQ2)L,

so, without loss of generality, suppose that (RT1)L ∩
(
R

(j)∗
Qf(j)

)L
= ∅, (RT1)L ∩

(
R

(j)∗
Qf(j+1)

)L
6= ∅,

and (RT1)L ∩
(
XZj

)L
6= ∅ then

(
R

(j)∗
Qf(j)

)L
⊆ (RT2)L; hence (RT2)L ∩

(
R

(j)∗
Qf(j)

)L
6= ∅, (RT2)L ∩(

R
(j)∗
Qf(j+1)

)L
= ∅, and (RT2)L ∩

(
XZj

)L
6= ∅, which implies that

(
R

(j)∗
Qf(j+1)

)L
⊆ (RT1)L. There-

fore
(
R

(j)∗
Qf(j)

)L
⊆ (RT2)L and

(
R

(j)∗
Qf(j+1)

)L
⊆ (RT1)L. Returning to the implications of the al-

gorithm returning “does not display a tree twice,” suppose that in Step 5 (Q1)L |
(
RiQf(j+1)

)L
6=
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(Q2)L |
(
RiQf(j+1)

)L
, where i, j ∈ N and

(
RiQf(j+1)

)L
=
(
R

(j)∗
Qf(j+1)

)L
∪
((
XDi−1

)
\
(
XSZj

)L)
. Now((

XDi−1

)
\
(
XSZj

)L)
⊆
(
XZj

)L
, and if

((
XDi−1

)
\
(
XSZj

)L)
⊆ (RT1)L then, by Lemma 5.20,

(Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L. Suppose that
((
XDi−1

)
\
(
XSZj

)L)
* (RT1)L

then, since R is a switching, (RT2)L ∩
((
XDi−1

)
\
(
XSZj

)L)
6= ∅. Since

(
R

(j)∗
Qf(j)

)L
⊆ (RT2)L and((

XDi−1

)
\
(
XSZj

)L)
6= ∅,

(
XSZj

)L
is not structurally sound in

(
Qf(j)

)L
| (RT2)L ∩

(
XQf(j)

)L
,

yet
(
XSZj

)L
is structurally sound in

(
Qf(j+1)

)L
| (RT2)L ∩

(
XQf(j+1)

)L
, because, by Lemma 5.15,(

XZj

)L
is structurally sound in

(
Qf(j+1)

)L
| (RT2)L ∩

(
XQf(j+1)

)L
and

((
XDi−1

)
\
(
XSZj

)L)
⊆(

XZj

)L
. Therefore, by Lemma 5.19, (Q1)L | (RT2)L ∩ (XQ1)L 6= (Q2)L | (RT2)L ∩ (XQ2)L, as(

XSZj

)L
⊆
(
R

(j)∗
Qf(j)

)L
.

Suppose that in Step 7
(
XSDi

)L
*
(
XZj

)L
then there exists x ∈

(
XSDi

)L
such that x /∈(

XZj

)L
. By Lemma 5.14, (XQ1)L = (XQ2)L =

(
R

(j)∗
Qf(j+1)

)L
∪
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
,
(
R

(j)∗
Qf(j+1)

)L
∩(

R
(j)∗
Qf(j)

)L
= ∅,

(
R

(j)∗
Qf(j+1)

)L
∩
(
XZj

)L
= ∅, and

(
R

(j)∗
Qf(j)

)L
∩
(
XZj

)L
= ∅; hence x ∈ (RT2)L because(

R
(j)∗
Qf(j)

)L
⊆ (RT2)L. Since (RT2)L ∩

(
XZj

)L
6= ∅, we see that

(
XSZj

)L
∪
(

(RT2)L ∩
(
XZj

)L)
is

structurally sound in
(
Qf(j+1)

)L
| (RT2)L ∩

(
XQf(j+1)

)L
, as

(
XSZj

)L
⊆
(
R

(j)∗
Qf(j)

)L
, yet

(
XSZj

)L
∪(

(RT2)L ∩
(
XZj

)L)
is not structurally sound in

(
Qf(j)

)L
| (RT2)L∩

(
XQf(j)

)L
, because the smallest

subtree in
(
Qf(j)

)L
| (RT2)L ∩

(
XQf(j)

)L
containing all of

(
XSZj

)L
∪
(

(RT2)L ∩
(
XZj

)L)
must

contain x, and x /∈
(
XSZj

)L
by construction. Therefore, by Lemma 5.19, (Q1)L | (RT2)L∩(XQ1)L 6=

(Q2)L | (RT2)L ∩ (XQ2)L.

Suppose that in Step 9 (Q1)L |
(
Ri+2q−1
Qf(j)

)L
= (Q2)L |

(
Ri+2q−1
Qf(j)

)L
, (Q1)L |

(
Ri+2q−1
Qf(j+1)

)L
6=

(Q2)L |
(
Ri+2q−1
Qf(j+1)

)L
, and (Q1)L |

(
Ri+2q
Qf(j+1)

)L
6= (Q2)L |

(
Ri+2q
Qf(j+1)

)L
, where

(
Ri+2q−1
Qf(j)

)L
=((

R
i+2(q−1)
Qf(j)

)L
\
(
XZj

)L)
∪
(
XSDi+2(q−1)

)L
,
(
Ri+2q−1
Qf(j+1)

)L
=

(
XQf(j+1)

)L
\
(
Ri+2q−1
Qf(j)

)L
, and(

Ri+2q
Qf(j+1)

)L
=

(
R
i+2(q−1)
Qf(j+1)

)L
∪
(
XSDi+2(q−1)

)L
, for some q ∈ N. If (RT2)L ∩((

XZj

)L
\
(
XSDi+2(q−1)

)L)
6= ∅ and (RT2)L ∩

(
XSDi+2(q−1)

)L
6= ∅ then (Q1)L | (RT2)L ∩ (XQ1)L 6=

(Q2)L | (RT2)L ∩ (XQ2)L, because
(
XZj

)L
is structurally sound in

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪(

XZj

)L
but, since

(
XSDi+2(q−1)

)L
⊆

(
XZj

)L
, SDi+2(q−1) is the sibling of Di+2(q−1), and(

XDi+2(q−1)

)L
⊆

(
R

(j)∗
Qf(j)

)L
,
(
XZj

)L
is not structurally sound in

(
Qf(j)

)L
|
(
R

(j)∗
Qf(j)

)L
∪(

XZj

)L
, so that

(
Qf(j)

)L
| (RT2)L ∩

(
XQf(j)

)L
contains the triple xz|y, where x ∈ (RT2)L ∩(

XSDi+2(q−1)

)L
, y ∈ (RT2)L ∩

((
XZj

)L
\
(
XSDi+2(q−1)

)L)
, and z ∈

(
XDi+2(q−1)

)L
, whilst(

Qf(j+1)
)L
| (RT2)L ∩

(
XQf(j+1)

)L
does not, so, by Lemma 1.2, (Q1)L | (RT2)L ∩ (XQ1)L 6=
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(Q2)L | (RT2)L ∩ (XQ2)L. If (RT2)L ∩
((
XZj

)L
\
(
XSDi+2(q−1)

)L)
= ∅ then, since R is a switch-

ing,
((
XZj

)L
\
(
XSDi+2(q−1)

)L)
⊆ (RT1)L. This means that

(
Ri+2q−1
Qf(j+1)

)L
⊆ (RT1)L, so, by

Lemma 5.20, (Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L. If (RT2)L ∩
(
XSDi+2(q−1)

)L
= ∅

then
(
XSDi+2(q−1)

)L
⊆ (RT1)L. Consider

(
R
i+2(q−1)
Qf(j+1)

)L
for q = 1 we have

(
R
i+2(q−1)
Qf(j+1)

)L
=(

R
(j)∗
Qf(j+1)

)L
∪
((
XDi−1

)
\
(
XSZj

)L)
, by Step 5, and in this case we have

(
R
i+2(q−1)
Qf(j+1)

)L
⊆ (RT1)L, be-

cause (RT2)L∩
((
XDi−1

)
\
(
XSZj

)L)
= ∅, from the first paragraph, which means that

(
Ri+2q
Qf(j+1)

)L
⊆

(RT1)L; hence for q = 1 we get (Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L, by Lemma

5.20. For q > 1, we see that
(
R
i+2(q−1)
Qf(j+1)

)L
=
(
R

(j)∗
Qf(j+1)

)L
∪
((
XDi−1

)
\
(
XSZj

)L)
∪
(
XSDi

)L
∪ . . .∪(

XSDi+2(q−2)

)L
. Suppose that (RT2)L∩

(
XSDα

)L
6= ∅, for some α ∈ {i, . . . , i+ 2 (q − 2)}. If (RT2)L∩((

XZj

)L
\
(
XSDα

)L)
6= ∅ then (Q1)L | (RT2)L∩(XQ1)L 6= (Q2)L | (RT2)L∩(XQ2)L, for the same rea-

sons when α = i+2 (q − 1). Suppose that (RT2)L∩
((
XZj

)L
\
(
XSDα

)L)
= ∅, but this means that((

XZj

)L
\
(
XSDα

)L)
⊆ (RT1)L. Now we must have (Q1)L |

(
Rα+1
Qf(j)

)L
= (Q2)L |

(
Rα+1
Qf(j)

)L
and

(Q1)L |
(
Rα+1
Qf(j+1)

)L
6= (Q2)L |

(
Rα+1
Qf(j+1)

)L
, where

(
Rα+1
Qf(j)

)L
=
((
RαQf(j)

)L
\
(
XZj

)L)
∪
(
XSDα

)L
and

(
Rα+1
Qf(j+1)

)L
=
(
XQf(j+1)

)L
\
(
Rα+1
Qf(j)

)L
. We see that

(
Rα+1
Qf(j)

)L
=
(
R

(j)∗
Qf(j)

)L
∪
(
XSDα

)L
and

(
Rα+1
Qf(j+1)

)L
=
(
R

(j)∗
Qf(j+1)

)L
∪
((
XZj

)L
\
(
XSDα

)L)
, so that

(
Rα+1
Qf(j+1)

)L
⊆ (RT1)L; hence,

by Lemma 5.20, (Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L. Suppose that (RT2)L ∩(
XSDα

)L
= ∅, for all α ∈ {i, . . . , i+ 2 (q − 2)}, then

(
R
i+2(q−1)
Qf(j+1)

)L
⊆ (RT1)L, but this means

that
(
Ri+2q
Qf(j+1)

)L
⊆ (RT1)L, as

(
XSDi+2(q−1)

)L
⊆ (RT1)L; hence, by Lemma 5.20, (Q1)L | (RT1)L ∩

(XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L.

Suppose that in Step 10 we have (Q1)L |
(
RmQf(j)

)L
6= (Q2)L |

(
RmQf(j)

)L
and

(Q1)L |
(
RmQf(j+1)

)L
6= (Q2)L |

(
RmQf(j+1)

)L
, for some m ∈ N, where

(
RmQf(j)

)L
=((

Rm−1
Qf(j)

)L
\
(
XZj

)L)
∪
(
XSDm−1

)L
and

(
RmQf(j+1)

)L
=
(
XQf(j+1)

)L
\
(
RmQf(j)

)L
. From Lemma

5.16, (Q1)L |
(
XSDm−1

)L
6= (Q2)L |

(
XSDm−1

)L
, as

(
XSDm−1

)L
=
(
XZj+1

)L
. We also see that(

RmQf(j)

)L
=
(
R

(j)∗
Qf(j)

)L
∪
(
XSDm−1

)L
and

(
RmQf(j+1)

)L
=
(
R

(j)∗
Qf(j+1)

)L
∪
((
XZj

)L
\
(
XSDm−1

)L)
. If

(RT2)L ∩
(
XSDm−1

)L
6= ∅ and (RT2)L ∩

((
XZj

)L
\
(
XSDm−1

)L)
6= ∅ then, as in the previous para-

graph, (Q1)L | (RT2)L ∩ (XQ1)L 6= (Q2)L | (RT2)L ∩ (XQ2)L. If (RT2)L ∩
(
XSDm−1

)L
= ∅ then, since

R is a switching,
(
XSDm−1

)L
⊆ (RT1)L. Since (Q1)L |

(
XSDm−1

)L
6= (Q2)L |

(
XSDm−1

)L
,

we have, by Lemma 5.20, (Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L. If

(RT2)L ∩
((
XZj

)L
\
(
XSDm−1

)L)
= ∅ then

((
XZj

)L
\
(
XSDm−1

)L)
⊆ (RT1)L. Since(

R
(j)∗
Qf(j+1)

)L
⊆ (RT1)L, we have

(
RmQf(j+1)

)L
⊆ (RT1)L, which implies, by Lemma 5.20,

88



(Q1)L | (RT1)L ∩ (XQ1)L 6= (Q2)L | (RT1)L ∩ (XQ2)L.

5.3.3.4 Running-time of the iterative algorithm

Lemma 5.21. In IterativeAlg, SZj exists in Step 3 and SDi exists in Step 7, for i, j ∈ N.

Moreover,
(
XSZj

)L
⊆
(
R

(j)∗
Qf(j)

)L
.

Proof. It can be shown that
(
R

(1)∗
Qf(j)

)L
⊆
(
R

(j)∗
Qf(j)

)L
, for j ∈ N. Since

(
R

(1)∗
Qf(j)

)L
6= ∅ by definition,

we have
(
R

(j)∗
Qf(j)

)L
6= ∅. We also have

(
R

(j)∗
Qf(j)

)L
∩
(
XZj

)L
= ∅, by Lemma 5.14. By Lemma

5.15,
(
XZj

)L
is structurally sound in

(
Qf(j+1)

)L
|
(
R

(j)∗
Qf(j)

)L
∪
(
XZj

)L
, so that SZj exists in Step

3, and
(
XSZj

)L
⊆
(
R

(j)∗
Qf(j)

)L
. We must have

(
XSZj

)L
6= ∅, since SZj exists, so in Step 4 Di−1

exists. In Step 5 we must have (Q1)L |
(
RiQf(j+1)

)L
6= (Q2)L |

(
RiQf(j+1)

)L
, otherwise the algorithm

would stop. In Step 6 Di exists, so that
(
XSZj

)L
is structurally sound in

(
Qf(j)

)L
|
(
RiQf(j)

)L
.

If
(
RiQf(j)

)L
∩
(
XZj

)L
= ∅ then

(
RiQf(j)

)L
=
(
R

(j)∗
Qf(j)

)L
. By Lemma 5.16, (Q1)L |

(
R

(j)∗
Qf(j)

)L
=

(Q2)L |
(
R

(j)∗
Qf(j)

)L
, so that if

(
RiQf(j)

)L
∩
(
XZj

)L
= ∅ then (Q1)L |

(
RiQf(j)

)L
= (Q2)L |

(
RiQf(j)

)L
;

hence we never get to Step 7 if
(
RiQf(j)

)L
∩
(
XZj

)L
= ∅. Therefore

(
RiQf(j)

)L
∩
(
XZj

)L
6= ∅; thus

in Step 7 SDi exists.

Lemma 5.22. In IterativeAlg, if in Step 9 we go back to Step 6, replacing i with i + 2, then

SDi+2 exists in Step 7.

Proof. As in the proof of Lemma 5.21, we need to prove that
(
Ri+2
Qf(j)

)L
∩
(
XZj

)L
6= ∅. Suppose

for contradiction that
(
Ri+2
Qf(j)

)L
∩
(
XZj

)L
= ∅ then

(
XZj

)L
⊆
(
Ri+2
Qf(j+1)

)L
, but, by Lemma 5.20

and Lemma 5.16, this implies that (Q1)L |
(
Ri+2
Qf(j+1)

)L
6= (Q2)L |

(
Ri+2
Qf(j+1)

)L
, which is impossible,

because in order to get
(
Ri+2
Qf(j)

)L
we have to have had (Q1)L |

(
Ri+2
Qf(j+1)

)L
= (Q2)L |

(
Ri+2
Qf(j+1)

)L
.

Therefore
(
Ri+2
Qf(j)

)L
∩
(
XZj

)L
6= ∅, so that SDi+2 exists in Step 7.

Proposition 5.9. IterativeAlg runs in polynomial-time.

Proof. First, the checks that are made in IterativeAlg are checking whether or not two trees

are isomorphic (in the phylogenetic sense), and checking whether or not two trees are isomor-

phic is polynomial-time. In fact, the authors of [29] showed checking whether or not two trees

are isomorphic is linear-time, and the author of [30] showed that checking whether or not two

trees are isomorphic is alogtime. Now, we will construct a one to one function from iterations

of IterativeAlg to elements in (XZ1)L ∪
[
(XZ1)L

]∗
, where

[
(XZ1)L

]∗
=
{
x∗ : x ∈ (XZ1)L

}
.

Since the maximum number of steps between iterations is a constant, the above construction will

show that IterativeAlg runs in polynomial-time. First we will construct a one to one function
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from iterations of IterativeAlg to {1, 3, . . . , 2p− 3, 2p− 1}, where p ∈ N, given that Itera-

tiveAlg stops at p. There are two ways in which IterativeAlg can be iterated. The first

way is in Step 9 when we are sent back to Step 6, and we replace i with i + 2 whilst not chang-

ing j. The second way is in Step 10 when we are sent back to Step 3, and we replace j with

j + 1 and i with m + 1, where m + 1 ∈ {i+ 2, i+ 4, i+ 6, . . .}. Since at the start of Itera-

tiveAlg i = 1, we can construct a one to one function from iterations of IterativeAlg to

{1, 3, . . . , 2p− 3, 2p− 1}. Now we construct a one to one function from {1, 3, . . . , 2p− 3, 2p− 1} to

(XZ1)L ∪
[
(XZ1)L

]∗
. Let n be any element in {1, 3, . . . , 2p− 3, 2p− 1} then, by Lemma 5.21 and

Lemma 5.22,
(
XSDn

)L
6= ∅. If n = 2p−1 then send n to any element in

(
XSDn

)L
. If n 6= 2p−1 then

n ∈ {1, 3, . . . , 2p− 3}, and, by Lemma 5.21 and Lemma 5.22,
(
XSDn+2

)L
6= ∅, . . . ,

(
XSD2p−1

)L
6= ∅.

If
(
XSDn

)L
\
((
XSDn+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
6= ∅ then send n to any element in

(
XSDn

)L
\((

XSDn+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
. If

(
XSDn

)L
\
((
XSDn+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
= ∅ then(

XSDn

)L
=
(
XZj

)L
for some j ∈ N, because if

(
XSDn

)L
6=
(
XZj

)L
for all j ∈ N then

(
XSDn

)L
\((

XSDn+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
=
(
XSDn

)L
, and since

(
XSDn

)L
6= ∅, we have

(
XSDn

)L
\((

XSDn+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
6= ∅. Consider

(
XSDn+2

)L
\
((
XSDn+4

)L
∪ . . . ∪

(
XSD2p−1

)L)
.

If
(
XSDn+2

)L
\
((
XSDn+4

)L
∪ . . . ∪

(
XSD2p−1

)L)
= ∅ then

(
XSDn+2

)L
=
(
XZj+1

)L
, but, by

Step 7,
(
XZj+1

)L
(
(
XZj

)L
hence

(
XSDn

)L
\
((
XSDn+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
6= ∅ - a con-

tradiction. Therefore
(
XSDn+2

)L
\
((
XSDn+4

)L
∪ . . . ∪

(
XSD2p−1

)L)
6= ∅ thus

[(
XSDn+2

)L]∗
\([(

XSDn+4

)L]∗
∪ . . . ∪

[(
XSD2p−1

)L]∗)
6= ∅, so send n to any element in

[(
XSDn+2

)L]∗
\([(

XSDn+4

)L]∗
∪ . . . ∪

[(
XSD2p−1

)L]∗)
. Now we will show that this function, call it g, is

one to one. Take any α, β ∈ {1, 3, . . . , 2p− 3, 2p− 1} such that α 6= β. We see that

α is either sent to an element in
(
XSDα

)L
\
((
XSDα+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
or to an el-

ement in
[(
XSDα+2

)L]∗
\
([(

XSDα+4

)L]∗
∪ . . . ∪

[(
XSD2p−1

)L]∗)
. Similarly with β, so if α

is sent to an element in
(
XSDα

)L
\
((
XSDα+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
whilst β is sent to

an element in
[(
XSDβ+2

)L]∗
\
([(

XSDβ+4

)L]∗
∪ . . . ∪

[(
XSD2p−1

)L]∗)
, or vice versa, then

g (α) 6= g (β). Without loss of generality, suppose that α < β, and suppose that α

is sent to an element in
(
XSDα

)L
\
((
XSDα+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
whilst β is sent to

an element in
(
XSDβ

)L
\
((
XSDβ+2

)L
∪ . . . ∪

(
XSD2p−1

)L)
. Since α < β, we see that[(

XSDα

)L
\
((
XSDα+2

)L
∪ . . . ∪

(
XSD2p−1

)L)]
∩
(
XSDβ

)L
= ∅, so that g (α) 6= g (β). Similarly

with the other case. Thus g is a one to one function; hence there is a one to one function from
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iterations of IterativeAlg to (XZ1)L ∪
[
(XZ1)L

]∗
. There are a maximum of 8 steps between

iterations, whilst there are two steps at the beginning of IterativeAlg that only feature in the

first iteration. Therefore the maximum number of steps that IterativeAlg can perform is less

than or equal to 16
∣∣∣(XZ1)L

∣∣∣+ 2.

5.4 A Sufficient Condition

In this section a sufficient condition for a network to display a tree twice is presented. The sufficient

condition relies on some new concepts and observations. The first new concept is that of a chain

of tree pairs, which is a series of tree pairs such that the tree pair following another tree pair in

the series either has its first element as a maximal subtree of the first element of the tree pair that

proceeds and likewise with the second element, or the tree pair that follows another tree pair is the

result of the proceeding tree pair being inputted into IterativeAlg. The second new concept is

that of a major tree pair that is not a sterile major tree pair, which we call a fertile major tree

pair, and these major tree pairs have the property that one of the maximal subtrees of the first

element makes a major tree pair with one of the maximal subtrees of the second element. The third

new concept is that of a sterile major tree pair that meets the input criteria of IterativeAlg

and yields a major tree pair together with sets upon input into IterativeAlg, which we call a

productive sterile major tree pair. This leads to the concept of a chain of tree pairs where every

link in the chain is either a fertile major tree pair or a productive sterile major tree pair, which

we call a chain of fertile/productive sterile major tree pairs. A simple observation would be that

a chain of fertile/productive sterile major tree pairs must eventually end at either a trivial tree

pair or a non-productive sterile major tree pair. A chain of tree pairs where every link except the

last is a fertile major tree pair or a productive sterile major tree pair is called a maximal chain of

fertile/productive sterile major tree pairs.

Definition 5.11. A chain of tree pairs is a series of tree pairs
(
U1

1 , U
1
2
)
,
(
U2

1 , U
2
2
)
,. . . ,(Un1 , Un2 ), where

n ∈ N, such that either U j1 is a maximal subtree of U j−1
1 and U j2 is a maximal subtree of U j−1

2 or(
U j1 , U

j
2

)
is the output of

(
U j−1

1 , U j−1
2

)
being inputted into IterativeAlg, for all j ∈ {2, . . . , n}.

Example 5.10. An example of a chain of tree pairs in the following figure is

(T1, T2) , (U1, U2) , (Q1, Q2), as (U1, U2) is the result of (T1, T2) being inputted into IterativeAlg,

whilst Q1 is a maximal subtree of U1 and Q2 is a maximal subtree of U2.
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Definition 5.12. A major tree pair (U1, U2) of a representation T is a fertile major tree pair of T

when one of the maximal subtrees of U1 makes a major tree pair with one of the maximal subtrees

of U2.

Example 5.11. The major tree pair (U1, U2) from Example 5.10 is a fertile major tree pair, as

(Q1, Q2) is a major tree pair.

Definition 5.13. A sterile major tree pair (U1, U2) of a representation T is called a productive

sterile major tree pair when (U1, U2) meets the input criteria of IterativeAlg, and (U1, U2) yields

a major tree pair together with sets when inputted into IterativeAlg.

Example 5.12. The sterile major tree pair (T1, T2) from Example 5.10 is a productive sterile major

tree pair.

Definition 5.14. A chain of tree pairs is a chain of fertile/(productive sterile) major tree pairs

when every link in the chain is a fertile major tree pair or a productive sterile major tree pair.

Example 5.13. The chain of tree pairs (T1, T2) , (U1, U2) from Example 5.10 is a chain of fer-

tile/(productive sterile) major tree pairs.

Definition 5.15. A chain of tree pairs
(
U1

1 , U
1
2
)
,
(
U2

1 , U
2
2
)
,. . . ,(Un1 , Un2 ), where n ∈ N, is a maximal

chain of fertile/(productive sterile) major tree pairs when
(
U1

1 , U
1
2
)
,. . . ,

(
Un−1

1 , Un−1
2

)
is a chain of

fertile/(productive sterile) major tree pairs and (Un1 , Un2 ) is either a non-productive sterile major

tree pair or a trivial tree pair.

Note 8. In the above definition we allow a maximal chain of fertile/(productive sterile) major tree

pairs that consists of one tree pair.
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Example 5.14. The chain of tree pairs (T1, T2) , (U1, U2) , (Q1, Q2) from Example 5.10 is a maximal

chain of fertile/(productive sterile) major tree pairs, as (Q1, Q2) is a non-productive sterile major

tree pair.

Lemma 5.23. Let (U1, U2) be a major tree pair of T . Let AU1, MU1 be the two maximal subtrees

of U1, and let AU2,MU2 be the two maximal subtrees of U2. If (U1, U2) is a fertile major tree pair

then either (AU1 , AU2) and (MU1 ,MU2) are tree pairs or (AU1 ,MU2) and (MU1 , AU2) are tree pairs.

Proof. By the definition of a fertile major tree pair, one of (AU1 , AU2), (MU1 ,MU2), (AU1 ,MU2),

or (MU1 , AU2) is a major tree pair. Without loss of generality, suppose that (AU1 , AU2) is a major

tree pair then
(
XAU1

)L
=
(
XAU2

)L
. Now

(
XAU1

)L
∩
(
XMU1

)L
= ∅ and

(
XAU1

)L
∪
(
XMU1

)L
=

(XU1)L, so
(
XMU1

)L
= (XU1)L \

(
XAU1

)L
. Similarly for

(
XAU2

)L
and

(
XMU2

)L
, so

(
XMU2

)L
=

(XU2)L \
(
XAU2

)L
. Since (XU1)L = (XU2)L and

(
XAU1

)L
=
(
XAU2

)L
, we have

(
XMU1

)L
=

(XU1)L \
(
XAU1

)L
= (XU2)L \

(
XAU2

)L
=
(
XMU2

)L
. Therefore (MU1 ,MU2) is a tree pair.

Lemma 5.24. A chain of fertile/(productive sterile) major tree pairs can be extended to a maximal

chain of fertile/(productive sterile) major tree pairs.

Proof. Since we can not have a never ending chain of fertile/(productive sterile) major tree pairs,

we must eventually get a maximal chain of fertile/(productive sterile) major tree pairs.

Proposition 5.10. Let T be a basic0 representation of a basic cyclic pair with maximal sub-

trees T1, T2 such that (T1)L 6= (T2)L, and CT = ∅. If every sterile major tree pair (Q1, Q2)

that is the last tree pair in a maximal chain of fertile/(productive sterile) major tree pairs

starting at (T1, T2), where Q1 has maximal subtrees AQ1 ,MQ1 and Q2 has maximal sub-

trees AQ2 ,MQ2, has (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
, and

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
or IterativeAlg re-

turns the statement “displays a tree twice” upon input of (Q1, Q2). Then T displays a tree

twice.

Proof. We will construct two sets R and W that together show that T displays a tree

twice. Let RT1 be a subset of XT1 , and let RT2 be a subset of XT2 . Let (U1, U2) be any

tree pair of T . Let the two maximal subtrees of U1 be AU1 , MU1 , and let the two max-

imal subtrees of U2 be AU2 , MU2 . If (U1, U2) is a sterile major tree pair then (U1, U2)
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can be either a productive or non-productive sterile major tree pair. If (U1, U2) is a non-

productive sterile major tree pair then (AU1 , AU2), (MU1 ,MU2), (AU1 ,MU2), (MU1 , AU2) are

all not tree pairs. If (MU1)L |
((
XMU1

)L
∩
(
XMU2

)L)
= (MU2)L |

((
XMU1

)L
∩
(
XMU2

)L)
,

(AU1)L |
((
XAU1

)L
∩
(
XAU2

)L)
= (AU2)L |

((
XAU1

)L
∩
(
XAU2

)L)
,

(MU2)L |
((
XMU2

)L
∩
(
XAU1

)L)
= (AU1)L |

((
XMU2

)L
∩
(
XAU1

)L)
, and

(AU2)L |
((
XAU2

)L
∩
(
XMU1

)L)
= (MU1)L |

((
XAU2

)L
∩
(
XMU1

)L)
then define

(
RT1 ∩XAU1

)
as having the property that

(
RT1 ∩XAU1

)L
=
(
XAU1

)L
∩
(
XAU2

)L
, and define

(
RT1 ∩XMU1

)
as having the property that

(
RT1 ∩XMU1

)L
=

(
XMU1

)L
∩
(
XMU2

)L
. Similarly, define(

RT2 ∩XAU2

)
as having the property that

(
RT2 ∩XAU2

)L
=
(
XAU2

)L
∩
(
XMU1

)L
, and de-

fine
(
RT2 ∩XMU2

)
as having the property that

(
RT2 ∩XMU2

)L
=
(
XMU2

)L
∩
(
XAU1

)L
. If

IterativeAlg returns the statement “displays a tree twice” upon input of (U1, U2) then

we have (U1)L |
(
RqUf(j+1)

)L
= (U2)L |

(
RqUf(j+1)

)L
and (U1)L |

(
RqUf(j)

)L
= (U2)L |

(
RqUf(j)

)L
for some j, q ∈ N, where

(
RqUf(j)

)L
=
(
XUf(j)

)L
\
(
RqUf(j+1)

)L
,
(
RqUf(j)

)L
⊆
(
XUf(j)

)L
, and(

RqUf(j+1)

)L
⊆
(
XUf(j+1)

)L
. Define (RT1) ∩ (XU1) as having the property that (RT1 ∩XU1)L =(

RqU1

)L
, and define (RT2) ∩ (XU2) as having the property that (RT2 ∩XU2)L =

(
RqU2

)L
. If

(U1, U2) is a productive sterile major tree pair then (U1, U2) yields a major tree pair (Y1, Y2)

together with sets
(
R

(j)∗
U1

)L
,
(
R

(j)∗
U2

)L
, and

(
XZj

)L
, for some j ∈ N, when (U1, U2) is inputted

into IterativeAlg. As in Proposition 5.7, define (RT1 ∩XU1) as having the property that

(RT1 ∩XU1)L =
(
R

(j)∗
U1

)L
∪
(
(RT1)L ∩ (XY1)L

)
. Similarly, define (RT2 ∩XU2) as having the

property that (RT2 ∩XU2)L =
(
R

(j)∗
U2

)L
∪
(
(RT2)L ∩ (XY2)L

)
. If (U1, U2) is a trivial tree pair then

(U1)L = (U2)L. Define RT1 ∩ XU1 as XU1 , and define RT2 ∩ XU2 as the empty set. Let R be

RT1 ∪RT2 . We claim that R is a switching of T . In order to prove that claim, we need to show that

for each vemi ∈ XT , where m ∈ {1, 2} and i ∈ N, exactly one of vemi , veni , where n ∈ {1, 2} \ {m}, is

in R. Take any vemi ∈ XT then, since T is a basic0 representation, either vemi ∈ XT1 and veni ∈ XT2

or vemi ∈ XT2 and veni ∈ XT1 . Without loss of generality, suppose that vemi ∈ XT1 and veni ∈ XT2 .

Since (T1)L 6= (T2)L and T is a basic0 representation, (T1, T2) is a major tree pair of T , so (T1, T2)

is either a sterile major tree pair or a fertile major tree pair. Suppose that (T1, T2) is a sterile

major tree pair; let AT1 , MT1 be the two maximal subtrees of T1, and let AT2 , MT2 be the two max-

imal subtrees of T2. If (MT1)L |
((
XMT1

)L
∩
(
XMT2

)L)
= (MT2)L |

((
XMT1

)L
∩
(
XMT2

)L)
,

(AT1)L |
((
XAT1

)L
∩
(
XAT2

)L)
= (AT2)L |

((
XAT1

)L
∩
(
XAT2

)L)
,

(MT2)L |
((
XMT2

)L
∩
(
XAT1

)L)
= (AT1)L |

((
XMT2

)L
∩
(
XAT1

)L)
, and
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(AT2)L |
((
XAT2

)L
∩
(
XMT1

)L)
= (MT1)L |

((
XAT2

)L
∩
(
XMT1

)L)
then, since vemi ∈ XT1

and veni ∈ XT2 , either vemi ∈ XAT1
or vemi ∈ XMT1

and either veni ∈ XAT2
or veni ∈ XMT2

.

Suppose that vemi ∈ XAT1
and veni ∈ XMT2

then vemi /∈ XMT1
and veni /∈ XAT2

. Thus

`vi ∈
(
XAT1

)L
∩
(
XMT2

)L
, `vi /∈

(
XMT1

)L
∩
(
XMT2

)L
, and `vi /∈

(
XAT1

)L
∩
(
XAT2

)L
. Hence,

by definition, `vi ∈
(
RT2 ∩XMT2

)L
, so that veni ∈ RT2 . We also have `vi /∈

(
RT1 ∩XAT1

)L
and

`vi /∈
(
RT1 ∩XMT1

)L
, so vemi /∈ RT1 . Of course, vemi /∈ RT2 and veni /∈ RT1 , because v

em
i /∈ XT2 and

veni /∈ XT1 . Therefore v
en
i ∈ R and vemi /∈ R. The other cases are similar. If IterativeAlg returns

the statement “displays a tree twice” upon input of (T1, T2) then `vi ∈
(
RqU1

)L
or `vi ∈

(
RqU2

)L
.

Without loss of generality, suppose that `vi ∈
(
RqU1

)L
then `vi /∈

(
RqU2

)L
, by construction. Hence

`vi ∈ (RT1)L, so that, since vemi ∈ XT1 , we have vemi ∈ RT1 . We see that veni /∈ RT2 , because

`vi /∈
(
RqU2

)L
. We also see that veni /∈ RT1 , because v

en
i ∈ XT2 and RT1 ⊆ XT1 . Therefore vemi ∈ R

and veni /∈ R.

Suppose that (T1, T2) is a fertile major tree pair then, by Lemma 5.23, both of the maximal

subtrees of T1 make tree pairs with the two maximal subtrees of T2. Without loss of generality,

suppose that (AT1 , AT2) and (MT1 ,MT2) are tree pairs; then we can have either vemi ∈ XAT1
and

veni ∈ XAT2
or vemi ∈ XMT1

and veni ∈ XMT2
. Without loss of generality, suppose that vemi ∈ XAT1

and veni ∈ XAT2
. Now (AT1 , AT2) can be either a trivial tree pair or a major tree pair. If (AT1 , AT2) is

a major tree pair then it can either a fertile major tree pair or a sterile major tree pair. If (AT1 , AT2)

is a non-productive sterile major tree pair then we can show that exactly one of vemi , veni is in R.

Suppose that (AT1 , AT2) is a trivial tree pair. Then RT1∩XAT1
is defined asXAT1

, and RT2∩XAT2

is defined as the empty set. Thus vemi ∈ RT1 and veni /∈ RT2 , so that vemi ∈ R and veni /∈ R.

Suppose that (T1, T2) is a productive sterile major tree pair then (T1, T2) yields a major tree pair

(Y1, Y2) together with sets
(
R

(j)∗
T1

)L
,
(
R

(j)∗
T2

)L
, and

(
XZj

)L
, for some j ∈ N, when (T1, T2) is

inputted into IterativeAlg. By Lemma 5.14, (XT1)L = (XT2)L =
(
R

(j)∗
T1

)L
∪
(
R

(j)∗
T2

)L
∪
(
XZj

)L
,(

R
(j)∗
T1

)L
∩
(
R

(j)∗
T2

)L
= ∅,

(
R

(j)∗
T1

)L
∩
(
XZj

)L
= ∅, and

(
R

(j)∗
T2

)L
∩
(
XZj

)L
= ∅. If `vi ∈

(
R

(j)∗
T1

)L
then `vi /∈

(
R

(j)∗
T2

)L
and `vi /∈

(
XZj

)L
; hence `vi ∈ (RT1 ∩XT1)L and `vi /∈ (RT2 ∩XT2)L, because

(XY1)L = (XY2)L =
(
XZj

)L
. Therefore vemi ∈ RT1 ∩ XT1 and veni /∈ RT2 ∩ XT2 ; thus vemi ∈ R

and veni /∈ R. Similarly, if `vi ∈
(
R

(j)∗
T2

)L
then veni ∈ R and vemi /∈ R. If `vi ∈

(
XZj

)L
then

`vi ∈ (XY1)L = (XY2)L. We must have vemi ∈ (XY1) and veni ∈ (XY2). If (Y1, Y2) is a non-productive

sterile major tree pair then we can show that either veni ∈ R and vemi /∈ R or vemi ∈ R and veni /∈ R. If

(AT1 , AT2) and (Y1, Y2) are fertile major tree pairs then we can apply the same argument to (AT1 , AT2)

and (Y1, Y2) as we did to (T1, T2). Likewise, if (AT1 , AT2) and (Y1, Y2) are productive sterile major

tree pairs. In this way and by Lemma 5.24, we can get a maximal chain of fertile/(productive sterile)
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major tree pairs
(
U1

1 , U
1
2
)
,
(
U2

1 , U
2
2
)
,. . . ,(Un1 , Un2 ) where

(
U1

1 , U
1
2
)

= (T1, T2),
(
U2

1 , U
2
2
)

= (AT1 , AT2)

or
(
U2

1 , U
2
2
)

= (Y1, Y2), and vemi ∈ XUj1
and veni ∈ XUj2

for all j ∈ (1, 2, . . . , n). Therefore vemi ∈ XUn1

and veni ∈ XUn2
where (Un1 , Un2 ) is either a trivial tree pair or a sterile major tree pair. In both cases

we see that R is a switching of T .

Next we define another two sets WT1 ⊆ XT1 and WT2 ⊆ XT2 where WT1 has the property that

(WT1)L = (RT2)L and WT2 has the property that (WT2)L = (RT1)L. We define W as WT1 ∪WT2 .

Since R is a switching of T , W is a switching of T . Now we will show that either ve1 ∈ R and

ve2 ∈W or ve2 ∈ R and ve1 ∈W . Since R is a switching of T , either ve1 ∈ R or ve2 ∈ R. Without

loss of generality, suppose that ve1 ∈ R. Either ve1 ∈ XT1 or ve1 ∈ XT2 . Without loss of generality,

suppose that ve1 ∈ XT1 then ve1 ∈ RT1 and `v ∈ (RT1)L. Hence `v ∈ (WT2)L. Since WT2 ⊆ XT2 and

ve2 ∈ XT2 , we have ve2 ∈WT2 . Thus ve2 ∈W .

The final task is to show that (T |R)L = (T |W )L. First we will show that if (U1, U2) is a tree

pair of T then (U1|RT1 ∩XU1)L = (U2|WT2 ∩XU2)L and (U2|RT2 ∩XU2)L = (U1|WT1 ∩XU1)L.

Either (U1, U2) is a trivial or a major tree pair. Suppose that (U1, U2) is a trivial tree pair

then (U1)L = (U2)L, RT1 ∩ XU1 = XU1 , and RT2 ∩ XU2 = ∅. Now (RT1 ∩XU1)L = (XU1)L,

and it is easy to show that (RT1 ∩XU1)L = (RT1)L ∩ (XU1)L. It is also easy to show

that (U1|RT1 ∩XU1)L = (U1)L | (RT1 ∩XU1)L. Since (U1)L = (U2)L, we just need to show

that (RT1 ∩XU1)L = (WT2 ∩XU2)L. Since (XU1)L = (XU2)L and (RT1)L = (WT2)L, we

have (RT1)L ∩ (XU1)L = (WT2)L ∩ (XU2)L. Hence (RT1 ∩XU1)L = (WT2 ∩XU2)L. Therefore

(U1)L | (RT1 ∩XU1)L = (U2)L | (WT2 ∩XU2)L. It follows that (U1|RT1 ∩XU1)L = (U2|WT2 ∩XU2)L.

Similarly, we can show that (U2|RT2 ∩XU2)L = (U1|WT1 ∩XU1)L (note that we get the result with-

out using our definitions of RT1 ∩XU1 and RT2 ∩XU2).

Suppose that (U1, U2) is a major tree pair then it is either a sterile major tree pair

or a fertile major tree pair. Suppose that (U1, U2) is a sterile major tree pair then

(U1, U2) is either a productive sterile major tree pair or a non-productive sterile major

tree pair. Suppose that (U1, U2) is a non-productive sterile major tree pair. Let the two

maximal subtrees of U1 be AU1 , MU1 , and let the two maximal subtrees of U2 be AU2 ,

MU2 . Suppose that (MU1)L |
((
XMU1

)L
∩
(
XMU2

)L)
= (MU2)L |

((
XMU1

)L
∩
(
XMU2

)L)
,

(AU1)L |
((
XAU1

)L
∩
(
XAU2

)L)
= (AU2)L |

((
XAU1

)L
∩
(
XAU2

)L)
,

(MU2)L |
((
XMU2

)L
∩
(
XAU1

)L)
= (AU1)L |

((
XMU2

)L
∩
(
XAU1

)L)
, and

(AU2)L |
((
XAU2

)L
∩
(
XMU1

)L)
= (MU1)L |

((
XAU2

)L
∩
(
XMU1

)L)
then first we will show

that (U1|RT1 ∩XU1)L = (U2|WT2 ∩XU2)L. Note that (RT1 ∩XU1)L = (WT2 ∩XU2)L,

(U1|RT1 ∩XU1)L = (U1)L | (RT1 ∩XU1)L, and (U2|WT2 ∩XU2)L = (U2)L | (WT2 ∩XU2)L, so if
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we can show that (U1)L | (RT1 ∩XU1)L = (U2)L | (RT1 ∩XU1)L then that will suffice. In order to

show that we need to show that one maximal subtree of (U1)L | (RT1 ∩XU1)L is equal to a maximal

subtree of (U2)L | (RT1 ∩XU1)L whilst the remaining pair of maximal subtrees are also equal.

We see that the maximal subtrees of (U1)L | (RT1 ∩XU1)L are (AU1)L | (RT1 ∩XU1)L ∩
(
XAU1

)L
and (MU1)L | (RT1 ∩XU1)L ∩

(
XMU1

)L
whilst the maximal subtrees of (U2)L | (RT1 ∩XU1)L are

(AU2)L | (RT1 ∩XU1)L ∩
(
XAU2

)L
and (MU2)L | (RT1 ∩XU1)L ∩

(
XMU2

)L
. We will show that

(AU1)L | (RT1 ∩XU1)L ∩
(
XAU1

)L
= (AU2)L | (RT1 ∩XU1)L ∩

(
XAU2

)L
and (MU1)L | (RT1 ∩XU1)L ∩(

XMU1

)L
= (MU2)L | (RT1 ∩XU1)L ∩

(
XMU2

)L
. Recall that RT1 ∩ XU1 was defined as(

RT1 ∩XAU1

)
∪
(
RT1 ∩XMU1

)
. Therefore (RT1 ∩XU1)L =

((
RT1 ∩XAU1

)
∪
(
RT1 ∩XMU1

))L
. It is

easy to show that
((
RT1 ∩XAU1

)
∪
(
RT1 ∩XMU1

))L
=
(
RT1 ∩XAU1

)L
∪
(
RT1 ∩XMU1

)L
. Recall

that
(
RT1 ∩XAU1

)L
=

(
XAU1

)L
∩
(
XAU2

)L
and

(
RT1 ∩XMU1

)L
=

(
XMU1

)L
∩
(
XMU2

)L
.

Hence (RT1 ∩XU1)L =
((
XAU1

)L
∩
(
XAU2

)L)
∪

((
XMU1

)L
∩
(
XMU2

)L)
. Thus

(RT1 ∩XU1)L ∩
(
XAU1

)L
=

(
XAU1

)L
∩
(
XAU2

)L
, as

(
XMU1

)L
∩
(
XAU1

)L
= ∅. Likewise

(RT1 ∩XU1)L ∩
(
XAU2

)L
=
(
XAU1

)L
∩
(
XAU2

)L
, as

(
XMU2

)L
∩
(
XAU2

)L
= ∅. By the hy-

pothesis of the proposition, (AU1)L |
((
XAU1

)L
∩
(
XAU2

)L)
= (AU2)L |

((
XAU1

)L
∩
(
XAU2

)L)
;

hence (AU1)L | (RT1 ∩XU1)L ∩
(
XAU1

)L
= (AU2)L | (RT1 ∩XU1)L ∩

(
XAU2

)L
. Similarly, we can

show that (MU1)L | (RT1 ∩XU1)L ∩
(
XMU1

)L
= (MU2)L | (RT1 ∩XU1)L ∩

(
XMU2

)L
. Therefore

(U1|RT1 ∩XU1)L = (U2|WT2 ∩XU2)L. Next we will show that (U2|RT2 ∩XU2)L = (U1|WT1 ∩XU1)L.

Since (RT2 ∩XU2)L = (WT1 ∩XU1)L, showing that (U2)L | (RT2 ∩XU2)L = (U1)L | (RT2 ∩XU2)L will

suffice. We will show that (AU2)L | (RT2 ∩XU2)L ∩
(
XAU2

)L
= (MU1)L | (RT2 ∩XU2)L ∩

(
XMU1

)L
and (MU2)L | (RT2 ∩XU2)L ∩

(
XMU2

)L
= (AU1)L | (RT2 ∩XU2)L ∩

(
XAU1

)L
. Now (RT2 ∩XU2)L =((

XAU2

)L
∩
(
XMU1

)L)
∪
((
XMU2

)L
∩
(
XAU1

)L)
. Hence (RT2 ∩XU2)L ∩

(
XAU2

)L
=(

XAU2

)L
∩
(
XMU1

)L
, as

(
XMU2

)L
∩
(
XAU2

)L
= ∅. We also have (RT2 ∩XU2)L ∩

(
XMU1

)L
=(

XAU2

)L
∩
(
XMU1

)L
, as

(
XMU1

)L
∩
(
XAU1

)L
= ∅. By the hypothesis of the proposition, we get the

result. Similarly, (MU2)L | (RT2 ∩XU2)L ∩
(
XMU2

)L
= (AU1)L | (RT2 ∩XU2)L ∩

(
XAU1

)L
. There-

fore (U2|RT2 ∩XU2)L = (U1|WT1 ∩XU1)L. Suppose that IterativeAlg returns the statement

“displays a tree twice” upon input of (U1, U2). We see that (U1|RT1 ∩XU1)L = (U2|WT2 ∩XU2)L

and (U2|RT2 ∩XU2)L = (U1|WT1 ∩XU1)L, by construction.

The final case is when (U1, U2) is a fertile major tree pair or a productive sterile major tree

pair, and here we are going to need induction. We will use induction on the length of the longest

maximal chain of fertile/(productive sterile) major tree pairs starting at any fertile major tree

pair or productive sterile major tree pair. Base case: Let (U1, U2) be any fertile major tree

pair such that the length of the longest maximal chain of fertile/(productive sterile) major tree
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pairs starting at (U1, U2) is two. Let AU1 , MU1 be the two maximal subtrees of U1, and let AU2 ,

MU2 be the two maximal subtrees of U2. Without loss of generality, suppose that (AU1 , AU2)

and (MU1 ,MU2) are tree pairs. Both (U1, U2) , (AU1 , AU2) and (U1, U2) , (MU1 ,MU2) are chains of

tree pairs. Since the length of the longest maximal chain of fertile/(productive sterile) major

tree pairs starting at (U1, U2) is two, (AU1 , AU2) and (MU1 ,MU2) are not fertile major tree pairs

nor productive sterile major tree pairs. Therefore we can have both being non-productive ster-

ile major tree pairs or one being a trivial tree pair and the other being a non-productive sterile

major tree pair. In both cases we can show that
(
AU1 |RT1 ∩XAU1

)L
=
(
AU2 |WT2 ∩XAU2

)L
,(

AU2 |RT2 ∩XAU2

)L
=
(
AU1 |WT1 ∩XAU1

)L
,
(
MU1 |RT1 ∩XMU1

)L
=
(
MU2 |WT2 ∩XMU2

)L
, and(

MU2 |RT2 ∩XMU2

)L
=
(
MU1 |WT1 ∩XMU1

)L
. Therefore (U1|RT1 ∩XU1)L = (U2|WT2 ∩XU2)L and

(U2|RT2 ∩XU2)L = (U1|WT1 ∩XU1)L. Similarly, if (U1, U2) is a productive sterile major tree pair

then (U1, U2) yields a major tree pair (Y1, Y2) via IterativeAlg. Hence (U1, U2) , (Y1, Y2) is a chain

of tree pairs. Since the length of the longest maximal chain of fertile/(productive sterile) major tree

pairs starting at (U1, U2) is two, (Y1, Y2) must be a non-productive sterile major tree pair. We can

show that (Y1|RT1 ∩XY1)L = (Y2|WT2 ∩XY2)L and (Y2|RT2 ∩XY2)L = (Y1|WT1 ∩XY1)L. Moreover,

it follows that (Y1)L | (RT1)L ∩ (XY1)L = (Y2)L | (RT1)L ∩ (XY2)L and (Y2)L | (RT2)L ∩ (XY2)L =

(Y1)L | (RT2)L∩ (XY1)L; thus, by Proposition 5.7, (U1)L | (RT1)L∩ (XU1)L = (U2)L | (RT1)L∩ (XU2)L

and (U2)L | (RT2)L ∩ (XU2)L = (U1)L | (RT2)L ∩ (XU1)L. It follows that (U1|RT1 ∩XU1)L =

(U2|WT2 ∩XU2)L and (U2|RT2 ∩XU2)L = (U1|WT1 ∩XU1)L. Induction step: Suppose the result

holds for any fertile/(productive sterile) major tree pair (Q1, Q2) such that the length of the longest

maximal chain of fertile/(productive sterile) major tree pairs starting at (Q1, Q2) is less than or

equal to p, where p ≥ 2. Let (U1, U2) be any fertile major tree pair such that the length of the longest

maximal chain of fertile major tree pairs starting at (U1, U2) is p+ 1. Let the two maximal subtrees

of U1 be AU1 ,MU1 , and let the two maximal subtrees of U2 be AU2 ,MU2 . Without loss of generality,

suppose that (AU1 , AU2) and (MU1 ,MU2) are tree pairs. Since p ≥ 2, (AU1 , AU2) and (MU1 ,MU2)

are fertile major tree pairs. Now the length of any maximal chain of fertile major tree pairs starting

at (AU1 , AU2) is less than or equal to p. Therefore the result holds for (AU1 , AU2), which means

that
(
AU1 |RT1 ∩XAU1

)L
=
(
AU2 |WT2 ∩XAU2

)L
and

(
AU2 |RT2 ∩XAU2

)L
=
(
AU1 |WT1 ∩XAU1

)L
.

Likewise for (MU1 ,MU2). Therefore (U1|RT1 ∩XU1)L = (U2|WT2 ∩XU2)L and (U2|RT2 ∩XU2)L =

(U1|WT1 ∩XU1)L. Similarly, if (Q1, Q2) is any productive sterile major tree pair then we get the

result with the help of Proposition 5.7.

Coming back to T and its maximal subtrees T1, T2. Now (T1, T2) is a major tree pair of T ,

and (T1, T2) can be either a non-productive sterile major tree pair, a fertile major tree pair, or a
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productive sterile major tree pair. In all cases we have (T1|RT1 ∩XT1)L = (T2|WT2 ∩XT2)L and

(T2|RT2 ∩XT2)L = (T1|WT1 ∩XT1)L. Therefore (T |R)L = (T |W )L.
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Chapter 6

An Algorithm for Deciding whether

or not a Basic Cyclic Pair Displays a

Tree Twice

6.1 Introduction

In this chapter we present an efficient algorithm that decides whether or not a basic cyclic pair

displays a tree twice. This algorithm uses, as its main subroutine, another efficient algorithm that

decides whether or not a basic0 representation displays a tree twice. Another subroutine that the

algorithm uses is one that identifies basic cyclic pairs that never display a tree twice. If a basic

cyclic pair is not represented by a basic0 representation nor is a desirable configuration then it is of

one of three forms. Each one of those three forms have almost all their basic0 representations that

are parsimoniously displayed being desirable configurations; hence the ones that are not desirable

configurations, for which there are at most two, are sent to the main subroutine. In this way we

get an efficient algorithm that decides whether or not a basic cyclic pair displays a tree twice.

6.2 An Efficient Algorithm for Deciding whether or not a Basic0

Representation Displays a Tree Twice

Algorithm : Basic0 Checker

100



Input : A basic0 representation T representing the basic cyclic pair B- (w, v, P1, P2) such that the

maximal subtrees of T are labeled T1, T2, and the maximal subtrees of T1 are labeled AT1 ,MT2

whilst the maximal subtrees of T2 are labeled AT2 ,MT2 . We also have ve1 ∈ XMT1
and ve2 ∈ XMT2

.

Output : The statement “displays a tree twice” or the statement “does not display a tree twice.”

1. Check if (T1)L = (T2)L. If so then go to Step 6.

2. Check if (T2)L |
(
XMT1

)L
= (MT1)L and CT2 = ∅. If so then go to Step 6.

3. Check if (T1)L |
(
XMT2

)L
= (MT2)L and CT1 = ∅. If so then go to Step 6.

4. Check if CT = ∅. If so then go to Step 5. If not then go to Step 7.

5. For every sterile major tree pair (Q1, Q2) such that (Q1, Q2) is the last tree pair of a maximal

chain of fertile/(productive sterile) major tree pairs starting at (T1, T2) check if

(MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
, and

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
, where AQ1 ,MQ1

are the maximal subtrees of Q1 and AQ2 ,MQ2 are the maximal subtrees of Q2, or (Q1, Q2)

meets the input criteria of IterativeAlg and IterativeAlg returns the statement

“displays a tree twice” upon input of (Q1, Q2). If so then go to Step 6. If not then go to Step

7.

6. Return the statement “displays a tree twice.”

7. Return the statement “does not display a tree twice.”

6.2.1 Proof that Basic0 Checker works

Theorem 6.1. Let T be a basic0 representation. T displays a tree twice if and only if Basic0

Checker returns the statement “displays a tree twice.”

Proof. If Basic0 Checker returns the statement “displays a tree twice” then either (T1)L = (T2)L,

CT2 = ∅ and (T2)L |
(
XMT1

)L
= (MT1)L, CT1 = ∅ and (T1)L |

(
XMT2

)L
= (MT2)L,

or CT = ∅ and for every sterile major tree pair (Q1, Q2) such that (Q1, Q2) is the

last tree pair of a maximal chain of fertile/(productive sterile) major tree pairs starting

at (T1, T2) either (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,
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(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
, and

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
, where AQ1 ,MQ1 are

the maximal subtrees of Q1 and AQ2 ,MQ2 are the maximal subtrees of Q2, or (Q1, Q2) meets the

input criteria of IterativeAlg and IterativeAlg returns the statement “displays a tree twice”

upon input of (Q1, Q2). In each case T displays a tree twice, by Proposition 5.1, Proposition 5.2,

Proposition 5.2, and Proposition 5.10, respectively.

If Basic0 Checker returns the statement “does not display a tree twice” then there

are two ways in which this can occur. The first way is when (T1)L 6= (T2)L, (CT2 6= ∅ or

(T2)L |
(
XMT1

)L
6= (MT1)L, CT1 6= ∅ or (T1)L |

(
XMT2

)L
6= (MT2)L, and CT 6= ∅. Now T does not

display a tree twice, because the only way that T can display a tree twice when (T1)L 6= (T2)L,

CT2 6= ∅ or (T2)L |
(
XMT1

)L
6= (MT1)L, and (CT1 6= ∅ or (T1)L |

(
XMT2

)L
6= (MT2)L) is when

CT = ∅. The second way in which the statement “ does not display a tree twice” can be returned

is when (T1)L 6= (T2)L, (T2)L |
(
XMT1

)L
6= (MT1)L, (T1)L |

(
XMT2

)L
6= (MT2)L, CT = ∅, and

there exists a sterile major tree pair (Q1, Q2) that is the last tree pair of a maximal chain of

fertile/(productive sterile) major tree pairs starting at (T1, T2) such that at least one of the follow-

ing does not hold: (MQ1)L |
((
XMQ1

)L
∩
(
XMQ2

)L)
= (MQ2)L |

((
XMQ1

)L
∩
(
XMQ2

)L)
,

(AQ1)L |
((
XAQ1

)L
∩
(
XAQ2

)L)
= (AQ2)L |

((
XAQ1

)L
∩
(
XAQ2

)L)
,

(MQ2)L |
((
XMQ2

)L
∩
(
XAQ1

)L)
= (AQ1)L |

((
XMQ2

)L
∩
(
XAQ1

)L)
, and

(AQ2)L |
((
XAQ2

)L
∩
(
XMQ1

)L)
= (MQ1)L |

((
XAQ2

)L
∩
(
XMQ1

)L)
, where AQ1 ,MQ1 are

the maximal subtrees of Q1 and AQ2 ,MQ2 are the maximal subtrees of Q2, and either (Q1, Q2)

does not meet the input criteria of IterativeAlg or IterativeAlg returns the statement

“does not display a tree twice” upon input of (Q1, Q2). By Lemma 5.10, either all of or all but

one of the following is not equal to the empty set:
(
XAQ1

)L
∩
(
XAQ2

)L
,
(
XAQ1

)L
∩
(
XMQ2

)L
,(

XMQ1

)L
∩
(
XAQ2

)L
,
(
XMQ1

)L
∩
(
XMQ2

)L
. In the former case, T does not display a tree twice,

by Theorem 5.3. In the latter case we employ IterativeAlg, and if (Q1, Q2) does not meet

the input criteria of IterativeAlg then T does not display a tree twice, by Theorem 5.4. If

(Q1, Q2) meets the input criteria of IterativeAlg then we must have IterativeAlg returning

the statement “does not display a tree twice” upon input of (Q1, Q2). In which case suppose

for contradiction that T displays a tree twice. Then there exists two switchings R and W of T

such that (T |R)L = (T |W )L. Let RT1 and RT2 be two sets such that RT1 ⊆ XT1 , RT2 ⊆ XT2 ,

(RT1)L ∪ (RT2)L = (R)L, and (RT1)L ∩ (RT2)L = ∅. Likewise, let WT1 and WT2 be two sets
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such that WT1 ⊆ XT1 , WT2 ⊆ XT2 , (WT1)L ∪ (WT2)L = (R)L, and (WT1)L ∩ (WT2)L = ∅. Since

(T1)L 6= (T2)L and CT = ∅, we have (T1|RT1)L = (T2|WT2)L and (T2|RT2)L = (T1|WT1)L. By

Lemma 5.4, (T1)L | (RT1)L = (T2)L | (RT1)L and (T2)L | (RT2)L = (T1)L | (RT2)L. By Lemma

5.5, (Q1)L | (RT1)L ∩ (XQ1)L = (Q2)L | (RT1)L ∩ (XQ2)L and (Q2)L | (RT2)L ∩ (XQ2)L =

(Q1)L | (RT2)L ∩ (XQ1)L. By Theorem 5.5, (Q1)L |
(
RTp

)L ∩ (XQ1)L 6= (Q2)L |
(
RTp

)L ∩ (XQ2)L, for

some p ∈ {1, 2} - a contradiction. Therefore T does not display a tree twice.

6.2.2 Running-time of Basic0 Checker

The checks that are made in Basic0 Checker are checking whether or not two trees are isomorphic

(in the phylogenetic sense), and checking whether or not two trees are isomorphic is linear-time [29].

The maximum number of steps that Basic0 Checker can take is a polynomial in terms of the

number of leaves in T . This is the case because the number of maximal chains of fertile/(productive

sterile) major tree pairs starting at (T1, T2) is less than or equal to the number of leaves in T . In

order to get a maximal chain of fertile/(productive sterile) major tree pairs starting at (T1, T2) and

to carry out Step 5 in Basic0 Checker, IterativeAlg may be needed. The maximum number

of times that IterativeAlg can be employed is less than or equal to the number of leaves in T .

Moreover, we can find a one to one function from steps in Basic0 Checker to the leaves in T .

Therefore Basic0 Checker runs in time of O (|XT |).

6.3 Checking a Basic Cyclic Pair

A basic cyclic pair is modelled by its tree representation. The tree representation parsimoniously

displays basic0 representations. It would not be efficient to have to check every parsimoniously

displayed basic0 representation; hence we must prove that almost all the basic0 representations that

are parsimoniously displayed do not display a tree twice. We prove this with the help of two lemmas

that describe desirable configurations. In fact, the desirable configurations extend to basic cyclic

pairs, so a given basic cyclic pair may itself never display a tree twice, if it meets certain conditions.

Therefore, based on these lemmas that describe desirable configurations, we can get an algorithm

that will tell us when the basic cyclic pair is a desirable configuration or if it needs further checking.

If the basic cyclic pair needs further checking then it must have not met the conditions of the

desirable configuration lemmas. Hence the basic cyclic pair will meet some other set of conditions.

These other conditions lead to an algorithm for checking whether or not a basic cyclic pair displays

a tree twice.
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6.3.1 Desirable configuration algorithm

Here we present an algorithm for identifying whether or not a basic cyclic pair meets certain con-

ditions. If the basic cyclic pair does meet one of those conditions then it does not display a tree

twice. If it does not meet any one of those conditions then it will need further checking. As another

consequence of not meeting any of the conditions, the basic cyclic pair must be of one of three forms.

We will describe those three forms in the next subsection; for this current subsection, we need a

few more definitions. In a tree representation of a basic cyclic pair, we call two reticulation leaves

partners when each has come from the same reticulation vertex. Given a basic cyclic pair with

source v, we call a vertex x in the tree representing the basic cyclic pair a main ancestor when x is

an ancestor of ve1 or ve2 in the tree representing the basic cyclic pair. When we say that a vertex

x is an ancestor of partners what we mean is that there exists partners that are both descendants

of x. Likewise when we say a vertex is an ancestor of a fixed leaf. Of course, a vertex is a main

ancestor of partners when it is a main ancestor and an ancestor of partners. Likewise for a main

ancestor of a fixed leaf.

Definition 6.1. Let T be the representation of a basic cyclic pair B- (w, v, P1, P2). Let vi, where

i ∈ N, be a reticulation vertex in B- (w, v, P1, P2). In T , the reticulation leaves ve1
i , v

e2
i are called

partners. The partner of ve1
i is ve2

i , and the partner of ve2
i is ve1

i .

Example 6.1. The reticulation leaves ve1
1 and ve2

1 are partners in the following figure.

w

ve2
3 ve2

2

ve1
3ve2

1

ve1
1`2

ve1
2

x

T

Definition 6.2. Let T be the representation of a basic cyclic pair B- (w, v, P1, P2). We say that a

vertex x in T is a main ancestor when x is an ancestor of ve1 or ve2 .
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Example 6.2. The vertex x from Example 6.1 is a main ancestor when T represents the basic

cyclic pair B- (w, v2, P1, P2). We also see that x is a main ancestor of partners as well as a main

ancestor of a fixed leaf.

Algorithm : Desirable Config

Input : A tree T , with root ρ, representing a basic cyclic pair B- (w, v, P1, P2).

Output : The statement “does not display a tree twice” or the statement “needs further checking.”

Check if one of the following holds:

i. Both children of ρ are ancestors of partners.

ii. Both children of ρ are ancestors of a fixed leaf.

iii. One of the children of ρ is an ancestor of a fixed leaf whilst the other is an ancestor of partners.

iv. One of the children of ρ has a child that is a main ancestor of a fixed leaf.

v. One of the children of ρ has one child being a main ancestor of partners whilst the other child

is an ancestor of a reticulation leaf whose partner is a descendant of the other child of ρ.

vi. One of the children of ρ has both its children being ancestors of partners.

If any one of the above holds then return the statement “does not display a tree twice” otherwise

return the statement “needs further checking.”

6.3.1.1 Proof that Desirable Config works

We need to prove that if one of the conditions from i) to vi) hold then the basic cyclic pair does

not display a tree twice. In order to do that we need a few lemmas and a definition.

Definition 6.3. Let T be a tree on leaf set X. Let x, y ∈ X. We say that x and y form a cherry

when x and y have the same parent.

Example 6.3. In the following figure we see that the leaves 1 and 2 form a cherry, as do the leaves

3 and 4.
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3 4

5

Lemma 6.1. Let T be the tree representing a basic cyclic pair B- (w, v, P1, P2). Let T1, T2 be the

two maximal subtrees of T . Let ve1 ∈ XT1 and ve2 ∈ XT2. Let ρ be the root of T . If both children

of ρ are ancestors of a fixed leaf then T does not display a tree twice.

Proof. Suppose both children of ρ are ancestors of a fixed leaf then there exists a fixed leaf `1
such that `1 ∈ XT1 and there exists a fixed leaf `2 such that `2 ∈ XT2 . Let Γ be the reduc-

tion of B- (w, v, P1, P2) where Γ = {ve1 , ve2 , `1, `2}. Now T |Γ has only two switchings, namely

R1 = {ve1 , `1, `2} and R2 = {ve2 , `1, `2}. We see that ((T |Γ) |R1)L has the triple `v`1|`2 whilst

((T |Γ) |R2)L has the triple `v`2|`1, so, by Lemma 1.2, ((T |Γ) |R1)L 6= ((T |Γ) |R2)L. Therefore T |Γ

does not display a tree twice. Thus, by Corollary 4.1, B- (w, v, P1, P2) does not display a tree twice.

Therefore, by Theorem 4.1, T does not display a tree twice.

Lemma 6.2. Let T be the tree representing a basic cyclic pair B- (w, v, P1, P2). Let T1, T2 be the

two maximal subtrees of T . Let ve1 ∈ XT1 and ve2 ∈ XT2. Let ρ be the root of T . If one child of ρ

has both its children being ancestors of a fixed leaf then T does not display a tree twice.

Proof. Without loss of generality, suppose that the child of ρ that has both its children being

ancestors of a fixed leaf is the root of T1. Let AT1 and MT1 be the two maximal subtrees of T1. Let

ve1 ∈ XMT1
. Then there exists fixed leaves `1, `2 such that `1 ∈ XAT1

and `2 ∈ XMT1
. Let Γ be the

reduction of B- (w, v, P1, P2) where Γ = {ve1 , ve2 , `1, `2}. Now T |Γ has only two switchings, namely

R1 = {ve1 , `1, `2} and R2 = {ve2 , `1, `2}. We see that ((T |Γ) |R1)L has the triple `v`2|`1 whilst

((T |Γ) |R2)L has the triple `1`2|`v, so, by Lemma 1.2, ((T |Γ) |R1)L 6= ((T |Γ) |R2)L. Therefore T |Γ

does not display a tree twice. Thus, by Corollary 4.1, B- (w, v, P1, P2) does not display a tree twice.

Therefore, by Theorem 4.1, T does not display a tree twice.

Proposition 6.1. Let T be the tree representing a basic cyclic pair B- (w, v, P1, P2). Let T1, T2 be

the two maximal subtrees of T . Let ve1 ∈ XT1 and ve2 ∈ XT2. Let ρ be the root of T . If one of the

children of ρ has a child that is a main ancestor of a fixed leaf then T does not display a tree twice.
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Proof. Without loss of generality, suppose that the root of T1, call it ρ1, has a child that is a main

ancestor of a fixed leaf. Let x1, x2 be ρ1’s children. Let AT1 and MT1 be the two maximal subtrees

of T1, and let ve1 ∈ XMT1
. Let x1 be the root of AT1 and let x2 be the root of MT1 . We must have

x2 being the child of ρ1 that is a main ancestor of a fixed leaf; hence there exists a leaf ` ∈ XMT1
.

If XAT1
contains a fixed leaf then, by Lemma 6.2, T does not display a tree twice. Suppose XAT1

does not contain a fixed leaf then, since XAT1
6= ∅, there exists a reticulation leaf vem1 ∈ XAT1

,

where m ∈ {1, 2}. Consider the reduction Γ of B- (w, v, P1, P2) where Γ = {ve1
1 , v

e2
1 , v

e1 , ve2 , `}. We

will prove that T |Γ does not display a tree twice. Consider the two switchings R1, R2 of T |Γ where

R1 = {ve1 , vei1 , `} and R2 =
{
ve2 , v

ej
1 , `

}
where i, j ∈ {1, 2}. We see that ((T |Γ) |R1)L has either the

triple ``v|`v1 or `v`v1 |`, depending upon where ve1
1 and ve2

1 are in T |Γ. If one of ve1
1 or ve2

1 form a

cherry with ve1 then ((T |Γ) |R1)L has the triple `v`v1 |`, but in that case ((T |Γ) |R2)L must have the

triple `v1`|`v. If neither ve1
1 nor ve2

1 form a cherry with ve1 then we must have ` and ve1 forming a

cherry in T |Γ. In that case ((T |Γ) |R1)L has the triple `v`|`v1 whilst ((T |Γ) |R2)L has either ``v1 |`v

or `v`v1 |`. Therefore, by Lemma 1.2, T |Γ does not display a tree twice. Thus, by Corollary 4.1,

B- (w, v, P1, P2) does not display a tree twice. Therefore, by Theorem 4.1, T does not display a tree

twice.

Proposition 6.2. Let T be the tree representing a basic cyclic pair B- (w, v, P1, P2). Let ρ be the

root of T . If one of the children of ρ has a child that is a main ancestor of partners whilst the other is

an ancestor of a reticulation leaf, say vem1 , where m ∈ {1, 2}, such that ven1 , where n ∈ {1, 2} \ {m},

is a descendant of the other child of ρ then T does not display a tree twice.

Proof. We will show that every parsimoniously displayed basic0 representation does not display a

tree twice, which, by Theorem 5.2, shows that T does not display a tree twice. Let T ∗ be any basic0

representation that is parsimoniously displayed by T . Let T1
∗ and T2

∗ be the two maximal subtrees

of T ∗. Without loss of generality, suppose that ve1 ∈ XT1∗ . Let AT1∗ and MT1∗ be the two maximal

subtrees of T1
∗. Without loss of generality, suppose that ve1 ∈ XMT1∗

. Since T ∗ is a parsimoniously

displayed basic0 representation, we have {ve1
1 , v

e2
1 } ⊆ XT ∗ , and it follows from the hypothesis that

{ve1
1 , v

e2
1 } ∩XAT1∗

6= ∅. Therefore there exists a fixed leaf ` such that ` ∈ XMT1∗
, thus the root of

MT1∗ is a main ancestor of a fixed leaf. Hence, by Proposition 6.1, T ∗ does not display a tree twice.

Therefore T does not display a tree twice.

Proposition 6.3. Let T be the tree representing a basic cyclic pair B- (w, v, P1, P2). Let ρ be the

root of T . If one of the children of ρ has both its children being ancestors of partners then T does

not display a tree twice.
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Proof. We will show that every parsimoniously displayed basic0 representation does not display a

tree twice, which, by Theorem 5.2, shows that T does not display a tree twice. Let T ∗ be any

basic0 representation that is parsimoniously displayed by T . Let T1
∗ and T2

∗ be the two maximal

subtrees of T ∗. We must have CT1∗ or CT2∗ being non-empty. Without loss of generality, suppose

that CT1∗ 6= ∅. Let AT1∗ andMT1∗ be the two maximal subtrees of T1
∗. Since T ∗ is a parsimoniously

displayed basic0 representation, we must have CAT1∗
6= ∅ and CMT1∗

6= ∅. Therefore, by Lemma

6.2, T ∗ does not display a tree twice. Therefore T does not display a tree twice.

Theorem 6.2. If Desirable Config returns the statement “does not display a tree twice” then

the representation T does not display a tree twice.

Proof. If Desirable Config returns the statement “does not display a tree twice” then one of the

conditions i) to vi) is present in T . If condition i) holds then, by Lemma 5.1, T does not display a

tree twice. If condition ii) holds then, by Lemma 6.1, T does not display a tree twice. If condition

iii) holds then, by Lemma 5.2, T does not display a tree twice. If condition iv) holds then, by

Proposition 6.1, T does not display a tree twice. If condition v) holds then, by Proposition 6.2, T

does not display a tree twice. If condition vi) holds then, by Proposition 6.3, T does not display a

tree twice. Therefore T does not display a tree twice.

6.3.2 A representation that needs further checking

Given a representation of a basic cyclic pair such that having gone through the Desirable Config

algorithm the output was “needs further checking,” we look at what this means in terms of the form

of the representation. The only way that an output of “needs further checking” can occur is when

the representation satisfies none of the conditions i) to vi) of the Desirable Config algorithm.

This can occur when the representation is a basic0 representation, in which case we can send the

representation to Basic0 Checker. Suppose the representation is not a basic0 representation, and

let ρ be the root of the representation, then one of the children of ρ is an ancestor of partners,

but we can say more, namely that exactly one child of ρ is an ancestor of partners. Indeed, the

other child of ρ is neither an ancestor of partners nor an ancestor of a fixed leaf. Now we can say

something about the children of the child of ρ that is an ancestor of partners; exactly one could

be an ancestor of a fixed leaf and/or an ancestor of partners but it can not be a main ancestor of

a fixed leaf, and if it is a main ancestor of partners then its sibling can not be an ancestor of a

reticulation leaf whose partners is a descendant of the other child of ρ; hence all the descendants of

the sibling of the main ancestor of partners are reticulation leaves whose partners are descendants

of the main ancestor of partners.
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Lemma 6.3. Let T be the tree representing a basic cyclic pair B- (w, v, P1, P2). Let ρ be the root

of T . If Desirable Config outputs “needs further checking” and T is not a basic0 representation

then exactly one of ρ’s children, say x, is an ancestor of partners and x’s sibling is not an ancestor

of a fixed leaf. The children of x can have the following properties:

1. Both are neither ancestors of partners nor ancestors of fixed leaves.

2. The non-main ancestor is an ancestor of a fixed leaf and/or an ancestor of partners but is

not a main ancestor of a fixed leaf, whilst the other child is not an ancestor of partners nor

an ancestor of a fixed leaf

3. Exactly one is a main ancestor of partners and not an ancestor of a fixed leaf, and all the

descendants of the other child are reticulation leaves whose partners are descendants of the

main ancestor of partners.

Proof. See the above paragraph.

6.3.3 Checking a representation that needs further checking

If the representation that needs further checking is a basic0 representation then we send it to Basic0

Checker. If the representation is not a basic0 representation then it has one of three forms, based

upon the children of the one child of the root that is an ancestor of partners. The first form that the

representation can take is one in which both children are neither ancestors of partners nor ancestors

of fixed leaves. In this case all basic0 representations parsimoniously displayed by the representation

except two never display a tree twice, and the two basic0 representations that may display a tree

twice are easily identifiable. The second form that the representation can take is one in which the

non-main ancestor is an ancestor of a fixed leaf and/or an ancestor of partners but is not a main

ancestor of a fixed leaf, whilst the other child is not an ancestor of partners nor an ancestor of a

fixed leaf. In this case all basic0 representations parsimoniously displayed by the representation

except one never display a tree twice, so we only need to check one basic0 representation in this

case. The third form that a representation can take is one in which exactly one child is a main

ancestor of partners and not an ancestor of a fixed leaf, whilst all the descendants of the other child

are reticulation leaves whose partners are descendants of the main ancestor of partners. In this final

case all the representations, except one, that are displayed via a general switching that only switches

reticulation leaves that are descendants of the non-main ancestor of partners are desirable config-

urations. The one representation that possibly is not a desirable configuration has a vertex that
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is an ancestor of a fixed leaf, so if that is not a desirable configuration then it is of the second form.

Algorithm : Form i) Checker

Input : A tree T , with root ρ, representing a basic cyclic pair B- (w, v, P1, P2). The maximal

subtrees of T are labeled T1, T2, and the maximal subtrees of T1 are labeled AT1 ,MT1 , whilst the

maximal subtrees of T2 are labeled AT2 ,MT2 . We also have ve1 ∈ XMT1
and ve2 ∈ XMT2

. In

addition, exactly one child of ρ, without loss of generality let it be the root of T1, which we call x,

is an ancestor of partners whilst the other child of ρ is not an ancestor of a fixed leaf. No child of

x is an ancestor of a fixed leaf nor an ancestor of partners.

Output : The statement “displays a tree twice” or the statement “does not display a tree twice.”

1. Send the tree (T |G1)L to Basic0 Checker where G1 = XT2 ∪(
XT1 \

{
vemi ∈ XAT1

|`vi ∈
(
XAT1

)L
∩
(
XMT1

)L})
, where m ∈ {1, 2} and i ∈ N. If

the statement “does not display a tree twice” is outputted from Basic0 Checker then go

to Step 2. Otherwise return the statement “displays a tree twice.”

2. Send the tree (T |G2)L to Basic0 Checker where G2 = XT2 ∪(
XT1 \

{
vemi ∈ XMT1

|`vi ∈
(
XAT1

)L
∩
(
XMT1

)L})
. Output the statement outputted

by Basic0 Checker.

Proposition 6.4. Let T be the representation of the basic cyclic pair B- (w, v, P1, P2). Let the root

of T be ρ. Let the maximal subtrees of T be labeled T1, T2, and let the maximal subtrees of T1

be labeled AT1 ,MT1. Similarly, let the maximal subtrees of T2 be labeled AT2 ,MT2. We also have

ve1 ∈ XMT1
and ve2 ∈ XMT2

. In addition, exactly one child of ρ, without loss of generality let it

be the root of T1, which we call x, is an ancestor of partners whilst the other child of ρ is not an

ancestor of a fixed leaf. No child of x is an ancestor of a fixed leaf nor an ancestor of partners. If

Form i) Checker returns the statement “does not display a tree twice” then T does not display a

tree twice, and if Form i) Checker returns the statement “displays a tree twice” then T displays

a tree twice.

Proof. If the statement “displays a tree twice” is returned then, since (T |G1)L and (T |G2)L are

both basic0 representations parsimoniously displayed by T , T displays a tree twice, by Theorem 5.2.

If the statement “does not display a tree twice” is outputted then both (T |G1)L and (T |G2)L do not

display a tree twice. We now want to show that every other basic0 representation parsimoniously

displayed by T does not display a tree twice. Take any basic0 representation T ∗ parsimoniously
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displayed by T . Then T ∗ = (T |G)L where G is a general switching such that G = XT2 ∪ (XT1 \G∗)

where G∗ ⊆ Q =
{
vemi ∈ XT1 |`vi ∈

(
XAT1

)L
∩
(
XMT1

)L}
, for m ∈ {1, 2} and i ∈ N, and for all

vemi ∈ Q exactly one of ve1
i , v

e2
i is in G∗. If G = G1 or G = G2 then we are done, so suppose

G 6= G1 and G 6= G2 then there exists vemj ∈ G∗, where j ∈ N, such that vemj ∈ XMT1
and

`vj ∈
(
XAT1

)L
∩
(
XMT1

)L
, and there exists veni ∈ G∗, where n ∈ {1, 2}, such that veni ∈ XAT1

and

`vi ∈
(
XAT1

)L
∩
(
XMT1

)L
. Therefore the root of the representation T ∗ has a child whose children

are both ancestors of a fixed leaf. Hence, by Lemma 6.2, T ∗ never displays a tree twice. Therefore,

by Theorem 5.2, T never displays a tree twice.

Algorithm : Form ii) Checker

Input : A tree T , with root ρ, representing a basic cyclic pair B- (w, v, P1, P2). The maximal

subtrees of T are labeled T1, T2, and the maximal subtrees of T1 are labeled AT1 ,MT1 , whilst the

maximal subtrees of T2 are labeled AT2 ,MT2 . We also have ve1 ∈ XMT1
and ve2 ∈ XMT2

. Exactly

one child of ρ, without loss of generality let it be the root of T1, which we call x, is an ancestor of

partners whilst the other child of ρ is not an ancestor of a fixed leaf. In addition, the root of AT1

is an ancestor of partners or an ancestor of a fixed leaf, whilst the root of MT1 is neither.

Output : The statement “displays a tree twice” or the statement “does not display a tree twice.”

1. Check if (T |G1)L is a basic0 representation, where G1 = XT2 ∪(
XT1 \

{
vemi ∈ XMT1

|`vi ∈
(
XAT1

)L
∩
(
XMT1

)L})
, where m ∈ {1, 2} and i ∈ N. If it

is then send it to Basic0 Checker, and return output.

2. If (T |G1)L is not a basic0 representation then take any basic0 representation parsimo-

niously displayed by (T |G1)L and send it to Basic0 Checker. Return output from Basic0

Checker.

Proposition 6.5. Let T be the representation of the basic cyclic pair B- (w, v, P1, P2). Let the root

of T be ρ. Let the maximal subtrees of T be labeled T1, T2, and let the maximal subtrees of T1

be labeled AT1 ,MT1. Similarly, let the maximal subtrees of T2 be labeled AT2 ,MT2. We also have

ve1 ∈ XMT1
and ve2 ∈ XMT2

. The root of AT1 is an ancestor of partners or an ancestor of a fixed

leaf, whilst the root of MT1 is neither. In addition, the root of T1 is an ancestor of partners, whilst

the root of T2 is not an ancestor of a fixed leaf nor an ancestor of partners. If Form ii) Checker

returns the statement “does not display a tree twice” then T does not display a tree twice, and if

Form ii) Checker returns the statement “displays a tree twice” then T displays a tree twice.
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Proof. If (T |G1)L is a basic0 representation then we must have the root of AT1 being an ancestor

of a fixed leaf and not an ancestor of partners whilst the root of T1 is an ancestor of partners.

Hence a similar (and shorter) proof to that of the proof that Form i) Checker works can be used

in that case. Suppose (T |G1)L is not a basic0 representation then the root of AT1 is an ancestor

of partners. If we take any general switching of form G = XT2 ∪ (XT1 \G∗) where G∗ ⊆ Q ={
vemi ∈ XT1 |`vi ∈

(
XAT1

)L
∩
(
XMT1

)L}
, where m ∈ {1, 2} and i ∈ N, and for all vemi ∈ Q exactly

one of ve1
i , v

e2
i is in G∗, then, provided G 6= G1, (T |G)L can be reduced to a desirable configuration.

Hence T displays a tree twice if and only if (T |G1)L displays a tree twice. Since (T |G1)L is not a

basic0 representation, if there exists a basic0 representation parsimoniously displayed by (T |G1)L

that displays a tree twice then (T |G1)L displays a tree twice. Take any basic0 representation T ∗

parsimoniously displayed by (T |G1)L then it has the following form: exactly one of its maximal

subtrees, say T1
∗, has a fixed leaf. Moreover, exactly one of the children of the root of T1

∗ is an

ancestor of a fixed leaf and is not a major ancestor of a fixed leaf. If Basic0 Checker returns

“does not display a tree twice” when T ∗ is inputted then T ∗ does not display a tree twice, and every

other basic0 representation parsimoniously displayed by (T |G1)L will return “does not display a tree

twice” when inputted into Basic0 Checker (see Basic0 Checker algorithm). Hence if “does not

display a tree twice” is outputted then every basic0 representation parsimoniously displayed by

(T |G1)L does not display a tree twice. Thus (T |G1)L does not display a tree twice, which implies

that T does not display a tree twice. If the statement “displays a tree twice” is outputted then

(T |G1)L displays a tree twice, and this implies that T displays a tree twice.

Algorithm : Form iii) Checker

Input : A tree T , with root ρ, representing a basic cyclic pair B- (w, v, P1, P2). The maximal

subtrees of T are labeled T1, T2, and the maximal subtrees of T1 are labeled AT1 ,MT1 , whilst the

maximal subtrees of T2 are labeled AT2 ,MT2 . We also have ve1 ∈ XMT1
and ve2 ∈ XMT2

. The root

of T1 is an ancestor of partners, and the root of MT1 is a main ancestor of partners, whilst the root

of AT1 is neither an ancestor of partners nor an ancestor of a fixed leaf. There is also no descendant

reticulation leaf of the root of AT1 that has its partner as a descendant of the root of T2. In addition,

the root of T2 is neither an ancestor of partners nor an ancestor of a fixed leaf.

Output : The statement “displays a tree twice” or the statement “does not display a tree twice.”

1. Take (T |G1)L, where G1 = XT2 ∪
(
XT1 \

{
vemi ∈ XAT1

|`vi ∈
(
XAT1

)L
∩
(
XMT1

)L})
, for m ∈

{1, 2} and i ∈ N, and send it to Desirable Config. If we get the statement “needs further

checking” then send (T |G1)L to Form ii) Checker, and return output. Otherwise return
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output from Desirable Config.

Proposition 6.6. Let T be the representation of the basic cyclic pair B- (w, v, P1, P2). Let the root

of T be ρ. Let the maximal subtrees of T be labeled T1, T2, and let the maximal subtrees of T1

be labeled AT1 ,MT1. Similarly, let the maximal subtrees of T2 be labeled AT2 ,MT2. We also have

ve1 ∈ XMT1
and ve2 ∈ XMT2

. The root of T1 is an ancestor of partners, and the root of MT1 is a

main ancestor of partners, whilst the root of AT1 is neither an ancestor of partners nor an ancestor

of a fixed leaf. There is also no descendant reticulation leaf of the root of AT1 that has its partner

as a descendant of the root of T2. In addition, the root of T2 is neither an ancestor of partners

nor an ancestor of a fixed leaf. If Form iii) Checker returns the statement “does not display a

tree twice” then T does not display a tree twice, and if Form iii) Checker returns the statement

“displays a tree twice” then T displays a tree twice.

Proof. Let G be any general switching of form G = XT2 ∪ (XT1 \G∗) where G∗ ⊆ Q ={
vemi ∈ XT1 |`vi ∈

(
XAT1

)L
∩
(
XMT1

)L}
, where m ∈ {1, 2} and i ∈ N, and for all vemi ∈ Q ex-

actly one of ve1
i , v

e2
i is in G∗. We see that if G 6= G1 then (T |G)L never displays a tree twice.

Therefore T displays a tree twice if and only if (T |G1)L displays a tree twice. If the statement

“does not display a tree twice” is returned then (T |G1)L does not display a tree twice, by Proposi-

tion 6.5 or Theorem 6.2. If the statement “displays a tree twice” is returned then (T |G1)L displays

a tree twice, by Proposition 6.5. Therefore if Form iii) Checker returns the statement “does not

display a tree twice” then T does not display a tree twice, and if Form iii) Checker returns the

statement “displays a tree twice” then T displays a tree twice.

6.3.4 Basic cyclic pair algorithm

The algorithm for checking whether or not a basic cyclic pair displays a tree twice is to first get

the tree representing the basic cyclic pair. Then send that tree representation to Desirable

Config. If we get the statement “needs further checking” then we check if the tree represents

a basic0 representation. If it does then we send it to Basic0 Checker. If it does not then

it is of one of three forms, so we check what form it is of then send it to the corresponding

form checker algorithm. The algorithm for checking whether or not a basic cyclic pair displays a

tree twice is polynomial-time, because all the subroutines of the algorithm run in polynomial-time.

Algorithm : Basic Checker

Input : A tree T , with root ρ, representing a basic cyclic pair B- (w, v, P1, P2). The maximal
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subtrees of T are labeled T1, T2, and the maximal subtrees of T1 are labeled AT1 ,MT1 , whilst the

maximal subtrees of T2 are labeled AT2 ,MT2 . We also have ve1 ∈ XMT1
and ve2 ∈ XMT2

.

Output : The statement “displays a tree twice” or the statement “does not display a tree twice.”

1. Send T to Desirable Config. If Desirable Config returns “needs further checking” then

go to the next step. Otherwise return output of Desirable Config.

2. If T represents a basic0 representation then send T to Basic0 Checker and return output.

Otherwise go to the next step.

3. If T is of form i) then send T to Form i) Checker and return output. Otherwise go to the

next step.

4. If T is of form ii) then send T to Form ii) Checker and return output. Otherwise go to

the next step.

5. Send T to Form iii) Checker and return output.

Theorem 6.3. Let T be the representation of the basic cyclic pair B- (w, v, P1, P2). Let the root of

T be ρ. Let the maximal subtrees of T be labeled T1, T2, and let the maximal subtrees of T1 be labeled

AT1 ,MT1. Similarly, let the maximal subtrees of T2 be labeled AT2 ,MT2. We also have ve1 ∈ XMT1

and ve2 ∈ XMT2
. If Basic Checker returns the statement “does not display a tree twice” then T

does not display a tree twice, and if Basic Checker returns the statement “displays a tree twice”

then T displays a tree twice. Moreover, Basic Checker runs in O (|XT |).

Proof. All the work of this chapter gives the result.
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Chapter 7

An Efficient Algorithm for Deciding

whether or not a Phylogenetic

Network Displays a Tree Twice

7.1 Introduction

This chapter is the culmination of Chapters 4, 5, and 6. For any given phylogenetic network, we

present an efficient algorithm that decides whether or not the network displays a tree twice. The

first task is to find any avoidable reticulation vertices in the network. If the number of vertices in

the network exceeds a quadratic polynomial in terms of the number of leaves in the network then

the network has an avoidable reticulation vertex or a trivial cyclic pair. A trivial cyclic pair is a

tree-path cyclic pair that has exactly one two-way tree-path reticulation with respect to its source,

namely its sink, and there is no tree-path from the source to a leaf. If a network does not have any

avoidable reticulation vertices nor any trivial cyclic pairs then the number of vertices in the network

is bounded by a quadratic polynomial in terms of the number of leaves in the network. Therefore

the first step in finding avoidable reticulation vertices in a network is to count the number of vertices

in the network. Since we assume that the number of leaves in a network is reasonable, if the bound

is not exceeded then the number of vertices in the network is reasonable. In order to decide whether

or not a network has an avoidable reticulation vertex, for each reticulation vertex in the network

we delete it then see if we can still reach every leaf in the network from the root of the network.

If we can then the reticulation vertex that we deleted was an avoidable reticulation vertex. If we

can not then the reticulation vertex that we deleted was not an avoidable reticulation vertex. If the

network has an avoidable reticulation vertex then the network displays a tree twice. If the network
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does not have any avoidable reticulation vertices then we start finding cyclic pairs. The number

of cyclic pairs in the network can be exponential in terms of the number of reticulation vertices in

the network, because for a given reticulation vertex there could be at most 2k−1 cyclic pairs that

use the given reticulation vertex, where k is the number of reticulation vertices in the network.

Fortunately, in such a situation at least 2k−1 − 2 of the cyclic pairs never display a tree twice, so

that we only ever have to find and check at most two cyclic pairs for each reticulation vertex in

the network. We check a given cyclic pair in the network by sending the tree representation of the

associated basic cyclic pair of the processed cyclic pair of the given cyclic pair to Basic Checker.

If Basic Checker returns the statement “displays a tree twice” then the network displays a tree

twice, and if Basic Checker never returns the statement “displays a tree twice” then the network

does not display a tree twice. In this way we get an efficient algorithm that decides whether or not

a network displays a tree twice.

7.2 Checking whether or not a Network has any Avoidable Retic-

ulation Vertices

In this section we present an efficient algorithm that decides whether or not a network has any

avoidable reticulation vertices.

7.2.1 A bound on the number of vertices in a network without any avoidable

reticulation vertices nor any trivial cyclic pairs

Here we establish a bound on the number of vertices in a network without any avoidable reticulation

vertices nor trivial cyclic pairs. If a reticulation vertex is not avoidable then there exists a leaf such

that every path from the root to the leaf passes through the reticulation vertex. There are two

types of unavoidable reticulation vertex: The first type has a tree-path to a leaf, which we call

a tree-path-to-leaf reticulation vertex, whilst the second type does not have a tree-path to a leaf,

which we call a blocked reticulation vertex. The first thing to notice about a blocked reticulation

vertex is that there exists a tree-path starting at the blocked reticulation vertex that finishes at the

source of a tree-path cyclic pair. In a network without any avoidable reticulation vertices nor any

trivial cyclic pairs, the tree-path cyclic pairs whose source is a tree-path descendant of a blocked

reticulation have at least two two-way tree-path reticulations with respect to their source, and those

two two-way reticulations are either tree-path-to-leaf reticulations and/or blocked reticulations. In

this way we can differentiate between different types of blocked reticulation vertices based on the
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two-way tree-path reticulation vertices with respect to the source of the tree-path cyclic pair whose

source is a tree-path descendant of a given blocked reticulation vertex.

Definition 7.1. Let N be a network on leaf set X. A tree-path cyclic pair N - (w, v, P1, P2) is a

trivial cyclic pair when v is the only two-way tree-path reticulation with respect to w, and there is

no tree-path from w to a leaf in X.

Example 7.1. In the following network, the tree-path cyclic pair that has w as its source and v as

its sink, whilst one of its main paths is in red and the other is in blue, is a trivial cyclic pair.
ρ

1

2

3 4
5

6 7

8

w

9

10

v

x

u

Lemma 7.1. Let N be a network without any avoidable reticulation vertices. If there exists a trivial

cyclic pair N - (w, v, P1, P2) in N then N displays a tree twice.

Proof. Suppose that N - (w, v, P1, P2) is a trivial cyclic pair in N . Consider the tree T representing

the associated basic cyclic pair of the processed cyclic pair of N - (w, v, P1, P2). We see that T ’s two

maximal subtrees are T1 = ve1 and T2 = ve2 ; hence (T1)L = (T2)L. Thus, by Proposition 5.1, T

displays a tree twice. Therefore the associated basic cyclic pair can not be reduced to a desirable

configuration, so, by Corollary 4.2, N displays a tree twice.

Definition 7.2. Let N be a network on leaf set X. A vertex u is a tree-path descendant of another

vertex x if there exists a tree-path from x to u.

Example 7.2. In Example 7.1, u, w, and v are all tree-path descendants of x.

Definition 7.3. LetN be a network on leaf setX. A reticulation vertex v is called a tree-path-to-leaf

reticulation when there exists a leaf ` ∈ X that is a tree-path descendant of v.
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Example 7.3. We see that the reticulation vertex v in Example 7.1 is a tree-path-to-leaf reticula-

tion.

Definition 7.4. Let N be a network on leaf set X. A reticulation vertex v is called a blocked

reticulation when it is not an avoidable reticulation nor a tree-path-to-leaf reticulation.

Example 7.4. In the following network we see that the reticulation vertex v is a blocked reticula-

tion.
ρ

v1

2

3 4
5

6

7 8

9 10

11

Lemma 7.2. Let N be a network on leaf set X. Let v1 be a reticulation vertex in N . If v1 is a

blocked reticulation then there exists a tree-path cyclic pair N - (w, v, P1, P2) such that w is a tree-path

descendant of v1.

Proof. Suppose there does not exist a tree-path cyclic pair N - (w, v, P1, P2) such that w is a tree-

path descendant of v1. Suppose v1 is not a tree-path-to-leaf reticulation; hence every tree-path from

v1 ends at a reticulation vertex. Let D be the set of all such reticulation vertices. Let P be the

subset of D such that v′ ∈ P if and only if every directed path from the root of N to v′ passes

through v1. Suppose P 6= ∅ then there exists v′′ ∈ P such that v′′ has no ancestors in P, and

there exists a tree-path cyclic pair N - (w, v′′, P1, P2) such that w is a tree-path descendant of v1 - a

contradiction. Hence P = ∅, so that for every v′ ∈ D there is a directed path from the root of N

to v′ that avoids v1. Hence for every leaf ` ∈ X there is a path from the root of N to ` that avoids

v1. Thus v1 is an avoidable reticulation vertex.
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Definition 7.5. Let N be a network on leaf set X. Let v be a blocked reticulation in N . Let

Ω be the set of tree-path cyclic pairs N - (w, v′, P1, P2) such that w is a tree-path descendant of v.

We call v a blocked0 reticulation when for each N - (w, v′, P1, P2) ∈ Ω every two-way reticulation

with respect to w is a tree-path-to-leaf reticulation. We call v a blockedp reticulation, where p ∈ N,

when for each N - (w, v′, P1, P2) ∈ Ω every two-way reticulation with respect to w is either a tree-

path-to-leaf reticulation or a blockedg reticulation, where g ∈ N ∪ {0} and g < p, and there exists

N - (w1, v1, P
′
1, P

′
2) ∈ Ω such that v1 is a blockedp−1 reticulation.

Example 7.5. The network shown has v1 as a blocked0 reticulation, v3 as a tree-path-to-leaf

reticulation, and v2 as a blocked1 reticulation.

v1

v2

v31

2

3 4
5

6

7

11

9

10

8

12

Lemma 7.3. Let N be a network on leaf set X such that N has no avoidable reticulations nor

any trivial cyclic pairs. Let the set of all blocked reticulations in N be called B. Let the set of

all blockedp reticulations in N, where p ∈ N ∪ {0}, be called Bp. If |B| = n for some n ∈ N then

|B| = |Bq|+|Bq−1|+. . .+|B1|+|B0|, for some q ≤ n−1. Moreover, |Bg| ≥ 1 for all g ∈ {0, 1, . . . , q},

and for all t ∈ N such that t > q we have |Bt| = 0.

Proof. Suppose |B| = n for some n ∈ N. We claim that there exists k ≤ n − 1 such that |Bk| ≥ 1

and |Bk+1| = 0. Consider q = n− 1. If |Bq| = 0 then it follows from the definition of a blockedq+1

reticulation that |Bq+1| = 0; in fact, it follows that |Bt| = 0 for all t ∈ N such that t > q. Hence
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we can show that there exists k ≤ q − 1 such that |Bk| ≥ 1 and |Bk+1| = 0. Suppose that |Bq| ≥ 1

and suppose for contradiction that |Bq+1| ≥ 1. By the definition of a blockedq reticulation and

|Bq| ≥ 1, we have |Bq−1| ≥ 1; similarly, |Bq−2| ≥ 1, and it follows that for all g ∈ {0, 1, . . . , q} we

have |Bg| ≥ 1. Again by the definition of a blockedq reticulation, we see that Bq ∩ Bq−1 = ∅; it

follows that Bq+1 ∩Bq ∩ . . .∩B1 ∩B0 = ∅. Therefore |Bq+1|+ |Bq|+ . . .+ |B1|+ |B0| > n. It is the

case that |B| ≥ |Bq+1|+ |Bq|+ . . .+ |B1|+ |B0|; hence |B| > n - a contradiction. Thus there exists

k ≤ n−1 such that |Bk| ≥ 1 and |Bk+1| = 0. All in all we get |B| = |Bq|+ |Bq−1|+ . . .+ |B1|+ |B0|,

for some q ≤ n− 1. Moreover, |Bg| ≥ 1 for all g ∈ {0, 1, . . . , q}, and for all t ∈ N such that t > q we

have |Bt| = 0.

Lemma 7.4. Let N be a network on leaf set X such that N has no avoidable reticulations nor

any trivial cyclic pairs. Let the set of all blocked reticulations in N be called B. Let the set of all

blockedp reticulations in N, where p ∈ N ∪ {0}, be called Bp. Let Tr be the set of tree-path-to-leaf

reticulations in N . Then |Tr| ≤ |X|, |B0| ≤ |Tr|, and |Bq| ≤ |Bq−1| for all q ∈ N.

Proof. We want to find a one to one function from the set of tree-path-to-leaf reticulations in N to

the set of leaves in N . Let v be any tree-path-to-leaf reticulation in N then there exists a leaf `v ∈ X

such that `v is a tree-path descendant of v. We see that no other tree-path-to-leaf reticulation in N

has `v as a tree-path descendant, so define the function f : Tr → X as f (v) = `v. Hence f is a one

to one function. Similarly, there exists a one to one function from the set of blocked0 reticulations

to the set of tree-path-to-leaf reticulations. Let v1 be any blocked0 reticulation in N then there

exists a tree-path cyclic pair N - (w, v′, P1, P2) such that w is a tree-path descendant of v1. We see

that v′ is a tree-path-to-leaf reticulation and every directed path from the root of N to v′ passes

through w. Since N - (w, v′, P1, P2) is a tree-path cyclic pair, no blocked0 reticulation in N, except

for v1, has v′ as a tree-path descendant, so define f1 : B0 → Tr as f1 (v1) = v′. Hence f1 is a one to

one function. Likewise, there exists a one to one function from the set of blockedq reticulations to

the set of blockedq−1 reticulations for all q ∈ N. Therefore |Tr| ≤ |X|, |B0| ≤ |Tr|, and |Bq| ≤ |Bq−1|

for all q ∈ N.

Proposition 7.1. Let N be a network on leaf set X such that N has no avoidable reticulations nor

any trivial cyclic pairs. Let the set of all blocked reticulations in N be called B. Let the set of all

blockedp reticulations in N, where p ∈ N ∪ {0}, be called Bp. Let Tr be the set of tree-path-to-leaf

reticulations in N . Then |B| ≤ (q + 1) |X| for some q ∈ N ∪ {0}, and (q + 2) ≤ |X|.

Proof. By Lemma 7.3, |B| = |Bq| + |Bq−1| + . . . + |B1| + |B0|, for some q ∈ N ∪ {0}. By Lemma

7.4, it follows that |Bg| ≤ |X| for all g ≤ q, where g ∈ N ∪ {0}. Hence |B| ≤ (q + 1) |X|. Since
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N has no trivial cyclic pairs, for each tree-path cyclic pair N - (w, v1, P1, P2) there are at least two

two-way reticulations with respect to w, or there is exactly one two-way reticulation with respect

to w and there is a tree-path from w to a leaf in X. Consider any blockedq reticulation v in N .

Then there exists a tree-path cyclic pair N - (w, v1, P1, P2) such that w is a tree-path descendant of

v and v1 is a blockedq−1 reticulation. There exists another two-way reticulation with respect to w,

so let us assume that that two-way reticulation is a tree-path-to-leaf reticulation. Now consider v1

- it follows that there exists a tree-path cyclic pair N -
(
w1, v2, P

1
1 , P

1
2
)
such that w1 is a tree-path

descendant of v1 and v2 is a blockedq−2 reticulation (assuming that q ≥ 2). There exists another

two-way reticulation with respect to w1, so let us assume that that two-way reticulation is a tree-

path-to-leaf reticulation. We can continue like this until we reach a blocked0 reticulation vq, and

there exists a tree-path cyclic pair N - (wq, vq+1P
q
1 , P

q
2 ) such that wq is a tree-path descendant of vq

and vq+1 is a tree-path-to-leaf reticulation. There exists another reticulation with respect to wq, and

that two-way reticulation is a tree-path-to-leaf reticulation. Hence there are at least (q + 2) tree-

path-to-leaf reticulations v′ that are descendants of v such that every directed path from the root

of N to v′ passes through v. Therefore (q + 2) |Bq| ≤ |Tr|, and, by Lemma 7.4, (q + 2) |Bq| ≤ |X|.

Now, by Lemma 7.3, |Bq| ≥ 1, so (q + 2) ≤ |X|
|Bq | and

|X|
|Bq | ≤ |X|; thus (q + 2) ≤ |X|.

Theorem 7.1. Let N be a network on leaf set X such that N has no avoidable reticulations nor

any trivial cyclic pairs. Let the set of all blocked reticulations in N be called B. Let the set of all

blockedp reticulations in N, where p ∈ N ∪ {0}, be called Bp. Let Tr be the set of tree-path-to-leaf

reticulations in N . Then |V | ≤ 2
(
|X|2 + |X|

)
− 1, where V is the set of vertices in N .

Proof. Since N has no avoidable reticulations, k = |B|+ |Tr|, where k is the number of reticulation

vertices in N . By Proposition 7.1 and Lemma 7.4, we have |B| + |Tr| ≤ (q + 1) |X| + |X|. Thus

k ≤ (q + 2) |X|. By Proposition 7.1, (q + 2) |X| ≤ |X|2. Hence k ≤ |X|2. By [26, Equation 5], we

have |X|+ k = |V |+1
2 , so |V |+1

2 ≤ |X|2 + |X|. Therefore |V | ≤ 2
(
|X|2 + |X|

)
− 1.

7.2.2 An algorithm for deciding whether or not a network has an avoidable

reticulation vertex

It is simple to decide whether or not a network has an avoidable reticulation vertex. For any given

reticulation vertex in the network, delete the given reticulation vertex and then see if there is a

directed path from the root of the network to any given leaf in the leaf set of the network. If for

every leaf in the leaf set of the network there still remains a directed path from the root of the

network to it then the given reticulation vertex is an avoidable reticulation vertex. If there exists a

leaf in the leaf set of the network such that there is no longer a directed path from the root of the
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network to it then the given reticulation vertex is not an avoidable reticulation vertex. In this way

we can decide whether or not a network has an avoidable reticulation vertex.

Algorithm: Avoidable Finder

Input: A network N on leaf set X with root ρ.

Output: The statement “has an avoidable reticulation vertex” or the statement “does not have an

avoidable reticulation vertex.”

1. Make a list of reticulation vertices in N, call them v1, v2, . . . , vk, where k ∈ N.

2. If the list from the previous step is empty then go to Step 7. Take the first reticulation vertex

on the list, say vi where i ∈ {1, 2, . . . , k}.

3. Delete vi in N, and, for each leaf ` ∈ X, see if there is a directed path from ρ to `.

4. If there exists a leaf ` ∈ X such that there is no longer a directed path from ρ to `, after vi is

deleted in N, then delete vi from the list of reticulation vertices in N and return to Step 2.

5. If for each leaf ` ∈ X there is still a directed path from ρ to ` even after vi is deleted in N

then go to Step 6.

6. Return the statement “has an avoidable reticulation vertex.”

7. Return the statement “does not have an avoidable reticulation vertex.”

Lemma 7.5. Let N be a network on leaf set X with root ρ. If Avoidable Finder returns the

statement “has an avoidable reticulation vertex” then N has an avoidable reticulation vertex, and

if Avoidable Finder returns the statement “does not have an avoidable reticulation vertex” then

N does not have an avoidable reticulation vertex.

Proof. Suppose Avoidable Finder returns the statement “has an avoidable reticulation vertex”

then there exists a reticulation vertex v in N such that for each leaf ` ∈ X there is a directed path

from ρ to ` after v is deleted in N . This means that for every leaf ` ∈ X there is a directed path

from ρ to ` that avoids v. Therefore v is an avoidable reticulation vertex in N . Suppose Avoidable

Finder returns the statement “does not have an avoidable reticulation vertex” then let v′ be any

reticulation vertex in N . When v′ is deleted in N there exists a leaf `′ ∈ X such that there is no

directed path from ρ to `′. This means that every directed path in N from ρ to `′ passes through

v′. Therefore every reticulation vertex in N is not an avoidable reticulation vertex.
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7.3 Finding Cyclic Pairs that Need Checking

Here we present an algorithm for finding cyclic pairs that need checking, in a network without any

avoidable reticulation vertices. The cyclic pairs that do not need to be checked are the cyclic pairs

with three or more reticulation vertices on their main paths. These cyclic pairs do not need to be

checked because they can be reduced to desirable configurations, and therefore they do not display

a tree twice.

Algorithm: Cyclic Pair Finder

Input: A network N on leaf set X without any avoidable reticulation vertices.

Output: A list of cyclic pairs.

1. Make a list of reticulation vertices in N, call them v1, v2, . . . , vk, where k ∈ N.

2. If the list from the previous step is empty then go to Step 14. Otherwise take the first element

vi, where i ∈ {1, 2, . . . , k}, on the list of reticulation vertices.

3. Find a cyclic pair that involves vi, and let it be called N -
(
w1
i , vi, P

i
1, P

i
2
)
. Let the number of

reticulation vertices on P i1 be KP i1
, and let the number of reticulation vertices on P i2 be KP i2

.

4. If KP i1
≥ 2 and KP i2

≥ 2 then go to Step 11 followed by Step 12.

5. If KP i1
> 2 and KP i2

= 1 then go to Step 11 followed by Step 13.

6. If KP i1
= 1 and KP i2

> 2 then go to Step 12.

7. If KP i1
= 2 and KP i2

= 1 then go to Step 10 followed by Step 11 then go to Step 13.

8. If KP i1
= 1 and KP i2

= 2 then go to Step 10 followed by Step 12.

9. If KP i1
= 1 and KP i2

= 1 then go to Step 10 followed by Step 13.

10. Add N -
(
w1
i , vi, P

i
1, P

i
2
)
to the list of cyclic pairs.

11. Let v1
i be the reticulation vertex on P i1 such that there exists a tree-path from v1

i to vi. Let e
v1
i

1

be the reticulation edge of v1
i that is not on P i1. Find a cyclic pair N -

(
w2
i , vi, P̂

i
1, P̂

i
2

)
such that

P̂ i1 has the edge ev
1
i

1 . Let the number of reticulation vertices on P̂ i1 be K
P̂ i1
, and let the number

of reticulation vertices on P̂ i2 be K
P̂ i2
. If K

P̂ i1
= 2 and K

P̂ i2
= 1 then add N -

(
w2
i , vi, P̂

i
1, P̂

i
2

)
to the list of cyclic pairs. If K

P̂ i1
≥ 2 and K

P̂ i2
≥ 2; or K

P̂ i1
> 2; or K

P̂ i2
> 2 then do not add

N -
(
w2
i , vi, P̂

i
1, P̂

i
2

)
to the list of cyclic pairs.
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12. Let v2
i be the reticulation vertex on P i2 such that there exists a tree-path from v2

i to vi. Let

e
v2
i

1 be the reticulation edge of v2
i that is not on P i2. Find a cyclic pair N -

(
w2
i , vi, P̃

i
1, P̃

i
2

)
such that P̃ i2 has the edge ev

2
i

1 . Let the number of reticulation vertices on P̃ i2 be K
P̃ i2
, and

let the number of reticulation vertices on P̃ i1 be K
P̃ i1
. If K

P̃ i2
= 2 and K

P̃ i1
= 1 then add

N -
(
w2
i , vi, P̃

i
1, P̃

i
2

)
to the list of cyclic pairs and go to Step 13. If K

P̃ i2
≥ 2 and K

P̃ i1
≥ 2; or

K
P̃ i2
> 2; or K

P̃ i1
> 2 then go to Step 13.

13. Delete vi from the list of reticulation vertices and return to Step 2.

14. Return the list of cyclic pairs.

Lemma 7.6. Let N be a network on leaf set X without any avoidable reticulation vertices. Let L be

the list of cyclic pairs outputted by Cyclic Pair Finder, upon input of N . Let N - (w, v, P1, P2) be

a cyclic pair of N . Let KP1 be the number of reticulation vertices on P1, and let KP2 be the number

of reticulation vertices on P2. If N - (w, v, P1, P2) is not on L then either KP1 ≥ 2 and KP2 ≥ 2; or

KP1 > 2 and KP2 = 1; or KP1 = 1 and KP2 > 2.

Proof. (Proof by contrapositive.) Suppose that KP1 = 1 and KP2 = 1 then there is only one cyclic

pair involving v, and we would have found it in Step 3 of Cyclic Pair Finder and subsequently

added it to L; hence N - (w, v, P1, P2) is on L. Without loss of generality, suppose that KP1 = 2

and KP2 = 1. Let v∗ be the reticulation vertex on P1 such that v is a tree-path descendant of v∗.

Let N - (w′, v, P ′1, P ′2) be the cyclic pair found in Step 3 of Cyclic Pair Finder. Let KP ′1
be the

number of reticulation vertices on P ′1, and let KP ′2
be the number of reticulation vertices on P ′2.

Without loss of generality, suppose that v∗ is on P ′1. If KP ′2
= 1 then we must have P2 = P ′2. In Step

11 of Cyclic Pair Finder we would have found N - (w, v, P1, P2) and added it to L, so suppose

that KP ′2
≥ 2. Let v∗2 be the reticulation vertex on P ′2 such that v is a tree-path descendant of v∗2.

Then w is a tree-path descendant of v∗2. In Step 11 of Cyclic Pair Finder we would have found

N - (w, v, P1, P2) and added it to L. Therefore N - (w, v, P1, P2) is on L.

Proposition 7.2. Let N be a network without any avoidable reticulation vertices. Let

N - (w, v, P1, P2) be a cyclic pair of N . Let L be the list of cyclic pairs that is returned when Cyclic

Pair Finder is applied to N . If N - (w, v, P1, P2) is not on L then the associated basic cyclic pair

of the processed cyclic pair of N - (w, v, P1, P2) can be reduced to a desirable configuration.

Proof. Suppose N - (w, v, P1, P2) is not on L then there must be too many reticulation vertices

on P1 and/or P2. Let KP1 be the number of reticulation vertices on P1, and let KP2 be the

number of reticulation vertices on P2. Then, by Lemma 7.6, either KP1 ≥ 2 and KP2 ≥ 2; or
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KP1 > 2 and KP2 = 1; or KP1 = 1 and KP2 > 2. Without loss of generality, suppose that

KP1 > 2 and KP2 = 1 then there exists a reticulation vertex v1 on P1 such that v1 6= v and v

is a tree-path descendant of v1, and there exists another reticulation vertex v2 on P1 such that

v2 6= v1 and v1 is a tree-path descendant of v2. Since N has no avoidable reticulation vertices,

v1 is either a tree-path-to-leaf reticulation vertex or a blocked reticulation vertex; likewise, v2

is either a tree-path-to-leaf reticulation vertex or a blocked reticulation vertex. Without loss of

generality, suppose that both v1 and v2 are blocked reticulation vertices then there exists a tree-

path cyclic pair N - (w′, v3, P
′
1, P

′
2) such that w′ is a tree-path descendant of v1, and there exists a

tree-path cyclic pair N - (w′′, v4, P
′′
1 , P

′′
2 ) such that w′′ is a tree-path descendant of v2. Now consider

the associated basic cyclic pair B- (w, v, P ∗1 , P ∗2 ) of the processed cyclic pair of N - (w, v, P1, P2).

Consider the tree representation T of B- (w, v, P ∗1 , P ∗2 ). Let Γ be the reduction of T where Γ =

{ve1 , ve2 , ve1
3 , v

e2
3 , v

e1
4 , v

e2
4 }. We see that T |Γ never displays a tree twice, by Proposition 6.3, as one

child of the root of T |Γ has both its children being ancestors of partners. Therefore the associated

basic cyclic pair of the processed cyclic pair of N - (w, v, P1, P2) can be reduced to a desirable

configuration. The case when KP1 ≥ 2 and KP2 ≥ 2 is similar.

7.4 The Efficient Algorithm

We now have all the tools that we need in order to create an efficient algorithm for deciding

whether or not a phylogenetic network displays a tree twice. Given a phylogenetic network, the

first step is to count the number of vertices in the network. If the number of vertices in the network

exceeds 2
(
|X|2 + |X|

)
− 1, where |X| is the number of leaves in the network, then the network has

an avoidable reticulation vertex or a trivial cyclic pair; in both cases the network displays a tree

twice. If the number of vertices in the network does not exceed 2
(
|X|2 + |X|

)
− 1 then we run the

network through Avoidable Finder. If the statement “has an avoidable reticulation vertex” is

outputted then the network displays a tree twice. If the statement “does not have an avoidable

reticulation vertex” is outputted then the network does not have any avoidable reticulation vertices,

and in that case we run the network through Cyclic Pair Finder. For each cyclic pair on

the list of cyclic pairs outputted by Cyclic Pair Finder, we get the tree representation of the

associated basic cyclic pair of the processed cyclic pair of that cyclic pair, and we send that tree

representation to Basic Checker. If Basic Checker returns the statement “displays a tree

twice” then the network displays a tree twice. If Basic Checker returns the statement “does

not display a tree twice” for each cyclic pair on the list of cyclic pairs then the network does not

display a tree twice. Since we assume that the number of leaves in the network is reasonable,
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the algorithm for deciding whether or not a phylogenetic network displays a tree twice is efficient.

Algorithm: Displays Twice

Input: A phylogenetic network N on leaf set X.

Output: The statement “displays a tree twice” or the statement “does not display a tree twice.”

1. Start counting the number of vertices in N . If the count exceeds 2
(
|X|2 + |X|

)
− 1 then go

to Step 5.

2. Send N to Avoidable Finder. If the statement “has an avoidable reticulation vertex” is

returned then go to Step 5.

3. Send N to Cyclic Pair Finder, and let the list of cyclic pairs that is outputted be called

L. For each cyclic pair N - (w, v, P1, P2) on L send the tree representation T of the associated

basic cyclic pair of the processed cyclic pair of N - (w, v, P1, P2) to Basic Checker. If the

statement “displays a tree twice” is returned then go to Step 5.

4. Return the statement “does not display a tree twice.”

5. Return the statement “displays a tree twice.”

Theorem 7.2. Let N be a phylogenetic network on leaf set X. If Displays Twice returns the

statement “displays a tree twice,” upon input of N, then N displays a tree twice, and if Displays

Twice returns the statement “does not display a tree twice,” upon input of N, then N does not

display a tree twice.

Proof. Suppose Displays Twice returns the statement “displays a tree twice,” upon input of N,

then either the number of vertices in N exceeds 2
(
|X|2 + |X|

)
− 1; or Avoidable Finder returns

the statement “has an avoidable reticulation vertex”; or Basic Checker returns the statement

“displays a tree twice,” upon input of the tree representation of the associated basic cyclic pair of

the processed cyclic pair of one of the cyclic pairs on the list of cyclic pairs outputted by Cyclic

Pair Finder. If the number of vertices exceeds 2
(
|X|2 + |X|

)
−1 then, by Theorem 7.1, N has an

avoidable reticulation vertex or a trivial cyclic pair. If N has an avoidable reticulation vertex then,

by Lemma 1.3, N displays a tree twice, and if N has a trivial cyclic pair then, by Lemma 7.1, N

displays a tree twice. If Avoidable Finder returns the statement “has an avoidable reticulation

vertex,” upon input of N, then, by Lemma 7.5, N has an avoidable reticulation vertex; hence N

displays a tree twice. If Basic Checker returns the statement “displays a tree twice,” upon
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input of the tree representation T of the associated basic cyclic pair of the processed cyclic pair

of one of the cyclic pairs on the list of cyclic pairs outputted by Cyclic Pair Finder, then, by

Theorem 6.3, T displays a tree twice. Thus T ’s associated basic cyclic pair can not be reduced to

a desirable configuration. Therefore, by Corollary 4.2, N displays a tree twice. Suppose Displays

Twice returns the statement “does not display a tree twice,” upon input of N, then the number of

vertices in N does not exceed 2
(
|X|2 + |X|

)
− 1, and Avoidable Finder returns the statement

“does not have an avoidable reticulation vertex,” upon input of N, which implies that N does not

have an avoidable reticulation vertex, by Lemma 7.5. Therefore Basic Checker returns “does not

display a tree twice,” upon input of the tree representation of the associated basic cyclic pair of the

processed cyclic pair of any cyclic pair on the list of cyclic pairs outputted by Cyclic Pair Finder,

upon input of N, which implies that the associated basic cyclic pair of the processed cyclic pair of

any cyclic pair on the list of cyclic pairs can be reduced to a desirable configuration. By Proposition

7.2, the associated basic cyclic pair of the processed cyclic pair of any cyclic pair not on the list

of cyclic pairs outputted by Cyclic Pair Finder can be reduced to a desirable configuration.

Therefore the associated basic cyclic pair of the processed cyclic pair of any cyclic pair in N can be

reduced to a desirable configuration; thus, by Corollary 4.2, N does not display a tree twice.

Theorem 7.3. Let N be a phylogenetic network on leaf set X, and let V be the set of vertices of

N . Displays Twice runs in quartic-time in terms of |X|.

Proof. Displays Twice stops if the number of vertices in N exceeds 2
(
|X|2 + |X|

)
− 1, so the

maximum number of steps Displays Twice can take in its first step is 2
(
|X|2 + |X|

)
− 1. The

second step of Displays Twice employs the algorithm Avoidable Finder, and the maximum

number of steps Avoidable Finder can take is k, where k is the number of reticulation vertices

in N . Provided that we get to the second step, the maximum number of steps that the second

step can take is less than or equal to 2
(
|X|2 + |X|

)
− 1, as k ≤ |V | and |V | ≤ 2

(
|X|2 + |X|

)
− 1.

The third step of Displays Twice employs Cyclic Pair Finder and Basic Checker. The

running time of Basic Checker is of O (|XT |), where T is the tree representation of a basic cyclic

pair. Now |XT | ≤ 2 |V |, where V is the vertex set of N . Since |V | ≤ 2
(
|X|2 + |X|

)
− 1, we

see that, in this case, Basic Checker runs in O
(
|X|2

)
. Since the number of cyclic pairs that

Cyclic Pair Finder can find is less than or equal to two times the number of vertices in N and

|V | ≤ 2
(
|X|2 + |X|

)
− 1, we see that Displays Twice runs in O

(
|X|4

)
.

127



Chapter 8

A Class of Locally Independent

Networks

8.1 Introduction

This chapter is about a class of phylogenetic networks for which there exists a quadratic-time

algorithm for counting the number of distinct trees displayed by a network in the class. A network

that is in that class is called a locally independent network. It is shown in this chapter that a

locally independent network has no avoidable reticulation vertices, no blocked reticulation vertices,

and no trivial cyclic pairs. It follows that the size of the leaf set of a locally independent network

bounds the number of vertices in the network. This allows one to count the number of distinct

trees displayed by a locally independent network in quadratic-time in terms of the leaf set of the

network.

8.2 Definition and Properties of a Locally Independent Network

Here we define what a locally independent network is, as well as showing that a locally independent

network has no avoidable reticulation vertices. This leads to a bound on the number of vertices of

a locally independent network in terms of the leaf set of the network.

Definition 8.1. A cyclic pair N - (w, v, P1, P2) has the tree-path to a leaf property when there exists

a tree-path from w to a leaf of N .

Example 8.1. In the following figure, the cyclic pair that has w as its source and v as its sink has

the tree-path to a leaf property. The cyclic pair that has w′ as its source and v′ as its sink does not

have the tree-path to a leaf property.
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Definition 8.2. Let N be a network such that every cyclic pair N - (w, v, P1, P2) of N is a maximal

tree-path cyclic pair with the tree-path to a leaf property. Then N is said to be a locally independent

network.

Example 8.2. The following network is an example of a locally independent network.

w

w′
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6 7
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Definition 8.3. Let N be a network on leaf set X. Let N - (w, v, P1, P2) be a cyclic pair of N . Let

v′ be a two-way tree-path reticulation with respect to w. We say that v′ is a main two-way tree-path

reticulation with respect to w when the two tree-paths from w to v′ are edge-disjoint.

Example 8.3. In the network from Example 8.2 we see that the reticulation vertex labeled v is a

main two-way tree-path reticulation with respect to w′, whilst the reticulation vertex labeled v′ is

a two-way tree-path reticulation with respect to w′ but not a main two-way tree-path reticulation

with respect to w′.
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Lemma 8.1. Let N be a network. If N is a locally independent network then N has no avoidable

reticulation vertices.

Proof. Suppose that N has an avoidable reticulation vertex. Let v be an avoidable reticulation

vertex of N such that there are no descendants of v that are themselves avoidable reticulation

vertices. Hence every tree-path starting at v ends at an unavoidable reticulation vertex. Let the set

of all such unavoidable reticulation vertices be called D. Since v is an avoidable reticulation vertex,

there exists a reticulation vertex v′ ∈ D such that v′ is not a two-way tree-path reticulation with

respect to v. There is no way that v′ can form a maximal tree-path cyclic pair. Therefore N is not

a locally independent network.

Lemma 8.2. Let N be a locally independent network on leaf set X. Let V be the vertex set of N

then |V | < 4 |X|.

Proof. Let k be the number of reticulation vertices in N . By Lemma 8.1, N has no avoidable

reticulation vertices, and, since every cyclic pair in N has the tree-path to a leaf property, there are

no blocked reticulation vertices nor any trivial cyclic pairs in N . Therefore, by Lemma 7.4, k ≤ |X|.

By [26, Equation 5], |X|+ k = |V |+1
2 . Thus 2 (|X|+ k)− 1 = |V |, and |V | ≤ 2 (2 |X|)− 1, because

k ≤ |X|. Therefore |V | < 4 |X|.

8.3 An Equivalence Relation

Let N - (w, v, P1, P2) be any cyclic pair in a locally independent network N . By definition,

N - (w, v, P1, P2) is a maximal tree-path cyclic pair with the tree-path to a leaf property. Hence

we can immediately get the tree T (w,v,P1,P2) representing the associated basic cyclic pair of

N - (w, v, P1, P2). Let N - (w, v′, P ′1, P ′2) be any other cyclic pair that shares the same source as

N - (w, v, P1, P2), namely w. We see that the tree T (w,v′,P ′1,P ′2) representing the associated basic

cyclic pair of N - (w, v′, P ′1, P ′2) is isomorphic to T (w,v,P1,P2). Thus we can define an equivalence

relation on the set of cyclic pairs in N .

Definition 8.4. Let N - (w, v, P1, P2) and N - (w′, v′, P ′1, P ′2) be two cyclic pair in a locally indepen-

dent network N . We say that N - (w, v, P1, P2) and N - (w′, v′, P ′1, P ′2) are related when w = w′. We

call this relation the locally independent relation on N .

Example 8.4. In the network from Example 8.2, the two cyclic pairs that have w as their source

are related under the locally independent relation.

130



Lemma 8.3. Let N be a locally independent network. The locally independent relation on N is an

equivalence relation.

Proof. It is easy to see that the locally independent relation on N is reflexive, symmetric, and

transitive.

8.4 Algorithm

The locally independent relation on N partitions the set of cyclic pairs in N into equivalence classes.

Let J be any such equivalence class of N . Let N - (w, v, P1, P2) be any representative of J . We now

need to count the number of trees displayed by the associated basic cyclic pair of N - (w, v, P1, P2).

Let k be the number of main two-way tree-path reticulation vertices with respect to w in the

associated basic cyclic pair of N - (w, v, P1, P2). It is the case that the number of networks/trees

displayed by the associated basic cyclic pair of N - (w, v, P1, P2), via general switchings with the

following property: for each reticulation vertex v′ that is not a main two-way tree-path reticulation

with respect to w both reticulation edges of v′ are in the general switchings, is either 2k or 2k − 1.

This is the case because N - (w, v, P1, P2) is a maximal tree-path cyclic pair with the tree-path to a

leaf property. That fact together with the fact that a representative cyclic pair of one equivalence

class is completely independent of a representative cyclic pair of another equivalence class leads to

the following algorithm.

Algorithm : CountingLocal

Input : A locally independent network N together with an index j.

Output : The number of distinct trees displayed by N .

1. Compile the list of all sources of cyclic pairs in N, call them w1, w2, . . . , wn. If there are no

cyclic pairs in N then return the number one.

2. Set the index j to be one.

3. If j = n+ 1 then multiply all the numbers together on the list from Step 1 and return output.

4. For wj find a cyclic pair N -
(
wj , vj , P

j
1 , P

j
2

)
, and get the tree Tj representing

N -
(
wj , vj , P

j
1 , P

j
2

)
, where Tj has maximal subtrees T j1 , T

j
2 and T j1 has maximal subtrees

AT j1
,MT j1

.
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5. Relabel the maximal subtrees of Tj such that XT j1 contains a fixed leaf, and relabel the

maximal subtrees of T j1 such that XA
T j1

contains a fixed leaf.

6. If XT j2 or XM
T j1

contains a fixed leaf then go to Step 8.

7. If
(
T j2
)L
|
(
XM

T j1

)L
=
(
MT j1

)L
then on the list from Step 1 replace wj with the number

2kj − 1, where kj is the number of main two-way tree-path reticulations with respect to wj ,

and return to Step 3 setting j to be j + 1. Otherwise go to Step 8.

8. On the list from step 1 replace wj with the number 2kj and return to Step 3 setting j to be

j + 1.

Theorem 8.1. Let N be a locally independent network. CountingLocal returns the number of

distinct trees displayed by N upon input of N . Moreover, CountingLocal runs in polynomial-

time.

Proof. If N is a tree then CountingLocal will return the number one at Step 1. Hence Count-

ingLocal returns the number of distinct trees displayed by N when N is a tree. Suppose N is

not a tree then N has cyclic pairs. Let all the sources of cyclic pairs in N be compiled into a list,

say w1, w2, . . . , wn. Let wj be any such source in N, so j ∈ {1, 2, . . . , n}. Let N -
(
wj , vj , P

j
1 , P

j
2

)
be a cyclic pair that has wj as its source. We see that N -

(
wj , vj , P

j
1 , P

j
2

)
is a representative of

an equivalence class under the locally independent relation. Let Tj be the tree representing the

associated basic cyclic pair of N -
(
wj , vj , P

j
1 , P

j
2

)
. Let the maximal subtrees of Tj be T j1 , T

j
2 , and

relabel the maximal subtrees of Tj so that XT j1 contains a fixed leaf. Let the maximal subtrees of T j1
be AT j1 ,MT j1 , and relabel the maximal subtrees of T j1 so that XA

T j1
contains a fixed leaf. Suppose

that Tj displays exactly pj distinct representations via the general switchings with the following

property: for each reticulation vertex v in the associated basic cyclic pair of N -
(
wj , vj , P

j
1 , P

j
2

)
,

that is not a main two-way tree-path reticulation with respect to wj , both ve1 and ve2 are in the

general switchings. It is the case that pj can either be 2kj or 2kj − 1, where kj is the number

of main two-way tree-path reticulation with respect to wj in the associated basic cyclic pair of

N -
(
wj , vj , P

j
1 , P

j
2

)
. If pj is 2kj − 1 then Tj displays a representation twice, and the only way that

Tj can display a representation twice is when
(
T j2
)L
|
(
XM

T j1

)L
=
(
MT j1

)L
; hence wj is replaced

by 2kj − 1 in CountingLocal. If pj is 2kj then
(
T j2
)L
|
(
XM

T j1

)L
6=
(
MT j1

)L
, or at least one of(

XT j2

)
,

(
XM

T j1

)
contains a fixed leaf, in either case we see that wj is replaced by 2kj in Count-

ingLocal. Since N is a locally independent network, we see that the number of distinct trees
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displayed by N is p1×p2× . . .×pn. It follows that CountingLocal returns the number of distinct

trees displayed by N . The maximum number of cyclic pairs that need to be checked is less than or

equal to the number of vertices in N . By Lemma 8.2, we have |V | < 4 |X|. For a locally independent

network, it takes linear-time to get the tree representing a basic cyclic pair; hence the running time

of CountingLocal is of O
(
|X|2

)
.
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