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ABSTRACT
The timescape cosmology has been proposed as a viable alternative to homogeneous
cosmologies with dark energy. It realises cosmic acceleration as an apparent effect
that arises in calibrating average cosmological parameters in the presence of spatial
curvature and gravitational energy gradients that grow large with the growth of inho-
mogeneities at late epochs. Recently Kwan, Francis and Lewis have claimed that the
timescape model provides a relatively poor fit to the Union and Constitution super-
novae compilations, as compared to the standard ΛCDM model. We show this conclu-
sion is a result of systematic issues in supernova light curve fitting, and of failing to
exclude data below the scale of statistical homogeneity, z <

∼ 0.033. Using all currently

available supernova datasets (Gold07, Union, Constitution, MLCS17, MLCS31, SDSS-
II, CSP, Union2), and making cuts at the statistical homogeneity scale, we show that
data reduced by the SALT/SALT-II fitters provides Bayesian evidence that favours
the spatially flat ΛCDM model over the timescape model, whereas data reduced with
MLCS2k2 fitters gives Bayesian evidence which favours the timescape model over the
ΛCDM model. We discuss the questions of extinction and reddening by dust, and of
intrinsic colour variations in supernovae which do not correlate with the decay time,
and the likely impact these systematics would have in a scenario consistent with the
timescape model.

Key words: cosmology: cosmological parameters — cosmology: observations — cos-
mology: theory

1 INTRODUCTION

The enigma of a late epoch apparent acceleration of the
expansion of the universe is one of the greatest fundamen-
tal challenges we have ever faced in theoretical cosmology.
Our standard understanding is that this is probably due to
the present–day universe being dominated by a cosmological
constant or other fluid–like “dark energy” with an equation
of state, P = wρ, which violates the strong energy condi-
tion. However, this conclusion is based on the assumption
that the universe is well–described by a geometry which is
exactly a homogeneous and isotropic Friedmann–Lemâıtre–
Robertson–Walker (FLRW) model, with additional Newto-
nian perturbations. Observationally, however, the assump-
tion of homogeneity is open to challenges.

At the epoch of last scattering the matter distribution
was certainly very homogeneous, given the evidence of the
cosmic microwave background (CMB) radiation. Further-
more, if we look back to galaxies at large redshifts early
in cosmic history, such as those in the Hubble Deep Field,
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then the distribution is relatively homogeneous. However,
in the intervening aeons the matter distribution has be-
come very inhomogeneous through the growth of structure.
Large scale surveys reveal the present epoch universe to pos-
sess a cosmic web of structures, dominated in volume by
voids, with galaxy clusters strung in sheets that surround
the voids, and filaments that thread them. Surveys indicate
that 40-50% of the nearby universe is in voids of a char-
acteristic diameter of 30h−1 Mpc (Hoyle & Vogeley 2002,
2004). Once numerous additional minivoids (Tikhonov &
Karachentsev 2006) are included, the present epoch universe
appears to be void–dominated. Statistical homogeneity of
this structure appears only to be reached by averaging on
scales of order at least 100h−1 Mpc or more, where h is
the dimensionless parameter related to the Hubble constant
by H

0
= 100h km sec−1 Mpc−1. The problem of fitting a

smooth geometry to a universe with such a lumpy matter
distribution (Ellis 1984; Ellis & Stoeger 1984) is a nontrivial
one, but central to relating observations to the numerical
values of the averaged parameters which describe the Uni-
verse and its evolution as a whole.

The timescape (TS) cosmological model (Wiltshire
2007a,b, 2009) has been proposed as a potentially viable

http://arxiv.org/abs/1009.5855v2


2 Smale & Wiltshire

alternative to homogeneous cosmology with fluid-like dark
energy. It begins from the premise, consistent with obser-
vations of void statistics, that the present epoch universe is
strongly inhomogeneous on scales below the Baryon Acous-
tic Oscillation (BAO) scale of order 100h−1 Mpc, while ex-
hibiting a variance of density of order 8% in density for sam-
ple volumes larger than this scale (Hogg et al. 2005; Sylos
Labini et al. 2009). This is consistent with the growth of den-
sity contrasts with initially small fluctuations δρ/ρ∼ 10−4 in
dark matter at last scattering, without assuming evolution
by a single Friedmann scale factor for the whole universe
(Wiltshire 2009). The reason for a 100h−1 Mpc cutoff for
this “scale of statistical homogeneity” is that below this
scale density contrasts at last scattering are amplified by
the acoustic waves in the primordial plasma.

In the two–scale model of Wiltshire (2007a,b, 2009) cos-
mic evolution is determined by a Buchert average (Buchert
2000) over spatially flat wall regions, assumed to contain
all gravitationally bound structures, and negatively curved
voids. In the timescape scenario there is a crucial ingredi-
ent in the physical interpretation of the Buchert average,
which has not been pursued in other investigations using
the Buchert formalism. (See, e.g., Buchert (2008) for a re-
cent review.) In particular, given that the Buchert average
is a statistical average taken by volume, then for a universe
which is void–dominated at late epochs the local geometry
at a volume–average location can differ considerably from
that of sources and observers in gravitationally bound sys-
tems within galaxies within the wall regions. It is hypoth-
esised that quasi-local gravitational energy gradients result
from the density and spatial curvature gradients between
the two locations. In particular, a substantial difference in
clock rates arises cumulatively over the lifetime of the uni-
verse from the tiny relative volume deceleration of voids as
compared to wall regions (Wiltshire 2008). The magnitude
of this relative deceleration, typically of order 10−10 ms−2

over much of the lifetime of the universe, is consistent with
weak–field expectations, and may be understood conceptu-
ally in terms of a generalisation of the equivalence principle
(Wiltshire 2008).

The faintness of type Ia supernovae (SNe Ia) relative
to the expectations of matter–dominated homogeneous cos-
mologies then arises both as a consequence of: (i) the changes
to cosmic evolution that arise in a Buchert average of the
Einstein equations; and (ii) the growing differences in the
calibration of the notional clocks and rulers of an ideal
volume–average observer as compared to the actual clocks
and rulers of observers confined to gravitationally bound
systems. In particular, cosmic acceleration is an apparent
effect: a volume–average observer in a void would not infer
any cosmic acceleration, but observers in galaxies do (Wilt-
shire 2007a). This provides a natural solution to the cosmic
coincidence problem, since apparent acceleration is only reg-
istered once the void fraction reaches a critical threshold of
59%, typically near a redshift z∼ 0.9 (Wiltshire 2007a).

Leith, Ng & Wiltshire (2008) considered some prelim-
inary quantitative tests of the TS model, concentrating in
particular on the fit of the 182 SN Ia distance moduli in the
Gold dataset of Riess et al. (2007) (Riess07). It was found
that the TS model gave a relatively good fit to the Riess07
data, as compared to the spatially flat ΛCDM model. This
conclusion has recently been challenged by Kwan, Francis &

Lewis (2009), who concluded that the TS model proved to be
a poorer fit than the spatially flat ΛCDM model when tested
with the more recent and larger Union (Kowalski et al. 2008)
and Constitution (Hicken et al. 2009) SN Ia datasets. Fur-
thermore, the best–fit value of the TS dressed matter density
parameter was found by Kwan et al. (2009) to be driven to
values an order of magnitude smaller than the Leith et al.
(2008) fit Ωm0 = 0.33+0.11

−0.16 .
In this paper, we reply to Kwan et al. (2009) by inves-

tigating the fit of the TS model to a number of recent SneIa
datasets fit by different data reduction methods, giving care-
ful consideration to the systematic issues that arise when one
is dealing with a nonstandard cosmological model. These is-
sues were not considered by Kwan et al. In the course of our
investigations we have uncovered one error in the Leith et al.
(2008) paper: on account of a bug in a numerical code the
value of the Bayes factor that was quoted there was incor-
rect1. Rather than a Bayes factor, lnB = 0.27 in favour of
the TS model over the spatially flat ΛCDM model, the Bayes
factor relative to the Riess07 data is in fact lnB = −1.12
for the given priors with 0.01 6 Ωm0 6 0.5. In other words,
rather than being statistically indistinguishable, the Riess07
data in fact provides mild positive evidence in favour of the
spatially flat ΛCDM model as compared to the TS model.
This numerical error was not raised by Kwan et al. (2009),
however. Rather, the main criticism2 of Kwan et al. (2009)
is a relatively poor fit of the TS model to the Union and
Constitution datasets. As we will see, this conclusion relies

1 This numerical error in the routine used in the Bayesian inte-
gration does not affect any other numerical results given in Leith
et al. (2008).
2 In addition to the principal discussion of fits to SneIa data,
Kwan et al. (2009) also make some apparently critical remarks
about the TS model which deserve some reply. Firstly, Kwan et
al. comment that Birkhoff’s theorem is not relevant to the TS cos-
mology. However, Birkhoff’s theorem – namely the statement that
the unique spherically symmetric solution of the vacuum Einstein
equations is the Schwarzschild solution – is not relevant in any
circumstance in which the energy–momentum tensor of matter
is non-zero, which also includes the standard FLRW cosmology
with a dust or perfect fluid source. This comment is therefore
gratuitous. Secondly, Kwan et al. also state that the Newtonian
limit is not relevant in the TS cosmology. This remark is sim-
ply incorrect, and is presumably based on incomplete reading of
Wiltshire (2007a, 2008). In the absence of a simple background
geometry, which is the case in a genuinely inhomogeneous back-

ground, then the correct derivation of the Newtonian limit, to-
gether with post–Newtonian corrections, is a subtle and nontriv-
ial problem which is much more complicated than the case of the
standard perturbed FLRW universe, as was discussed in Sec. 8.4
of Wiltshire (2007a). One reason for proposing an extension of
the strong equivalence principle to the cosmological equivalence
principle (Wiltshire 2008) is the hope that it might ultimately
provide a framework for establishing a Newtonian limit in the
case that there are strong inhomogeneities in the background ge-
ometry. The fact that a post–Newtonian framework has not yet
been worked out in detail is simply due to the TS cosmology be-
ing work in progress. Finally, the claim that the TS model suffers
a “failure to provide any predictions on cosmological parame-
ters that are directly observable” (Kwan et al. 2009) is refuted
by Wiltshire (2009), where several cosmological tests with the po-
tential to distinguish the TS cosmology from the standard FLRW
cosmology are discussed in detail.
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on the näıve use of data which has been reduced assuming
the standard cosmology by the SALT methods. One partic-
ularly important consideration in analysing the data is that
a cut should always be made at the scale of statistical ho-
mogeneity expected in the TS model – a fact that Kwan
et al. omitted. We shall see that depending on the dataset
and fitting method used, in some cases the TS model pro-
vides a fit that is either statistically indistinguishable from
ΛCDM, or mildly favoured or disfavoured on Bayesian evi-
dence. However, given other unknown systematic differences
between the variants of the SALT and MLCS methods, at
present it is fair to say one cannot reliably distinguish the
TS and ΛCDM models on the basis of SNe Ia data alone.

The outline of the paper is as follows. In section 2 we
give a brief overview of the timescape cosmology, while in
section 3 we given an overview of the SN Ia light curve data
reduction methods. In section 4 we analyse the currently
available data, considering in particular the issues of recali-
brating the SALT light curve fitter, exclusion of data below
the statistical homogeneity scale, and differences between
the various SNe Ia datasets. In section 5 we discuss the im-
pact that unknown systematic issues, particularly concern-
ing intrinsic colours variations and reddening and extinction,
may have on the comparison of the TS model with the stan-
dard cosmology.

2 THE TIMESCAPE MODEL

In keeping with current observations that the volume of the
present epoch universe is dominated by voids (typically of
diameter ∼ 30h−1 Mpc and smaller) which are separated
and threaded by walls and filaments containing clusters of
galaxies, the timescape model is based on two scales: the spa-
tially flat wall regions which contain gravitationally bound
structures, and the voids, which are negatively curved. Large
gradients in Ricci scalar curvature are assumed to exist be-
tween the walls/filaments and the voids, consistent with ob-
servations that the latter have density contrasts close to
δρ/ρ∼−1 (Hoyle & Vogeley 2002, 2004). At any location the
local spatial curvature is in general different to any global
average, and in order to make sense of average cosmologi-
cal parameters this variance in local geometries must also
be taken into account (Wiltshire 2007a). Observers in any
region who try to fit a single FLRW geometry based on the
mistaken assumption that the global spatial curvature is the
same as the local value will determine different cosmological
parameters.

As observers in galaxies, our local average geometry, up
to a scale enclosing gravitationally bound galaxy clusters,
is assumed to be spatially flat on average and marginally
expanding at the boundary, with a FLRW–type geometry
with scale factor aw,

ds2fi = −dτ 2 + a2
w(τ )[dη

2
w + η2

wdΩ
2]. (1)

Finite infinity3 (Ellis 1984), denoted fi, demarcates the

3 Ellis (1984) gave a qualitative definition of finite infinity. The
definition adopted here (Wiltshire 2007a) is one possible realisa-
tion.

boundary between gravitationally bound and unbound sys-
tems (Wiltshire 2007a). The local geometry in the centre of
voids is similarly assumed to be given by a negatively curved
FLRW geometry with scale factor av, and a time parameter
τv which does not in general coincide with τ .

The ensemble of void and wall regions is assumed to
evolve by a Buchert average (Buchert 2000), with a volume–
averaged scale factor

ā3 = fvia
3
v + fwia

3
w ≡ ā3(fv + fw), (2)

where fvi ≪ 1 is the initial void fraction, and fwi = 1− fvi.
The Buchert equations determine ā3 in terms of an aver-
age volume expansion on spatial hypersurfaces comoving
with the dust. Consequently the scale factor ā is a statis-
tical quantity which cannot be directly assigned any local
geometrical meaning. It is therefore impossible to apply so-
lutions of the Buchert equations to observed quantities to
infer cosmological parameters until one provides: (i) an op-
erational definition of what is to be understood by “dust”;
and (ii) an operational means of relating a local average
geometry such as (1) to the volume-average ā.

The operational interpretation of the Buchert formalism
is not directly addressed in Buchert’s original work (Buchert
2000), although the broad issues were discussed by Buchert
& Carfora (2002, 2003). In the absence of a direct opera-
tional interpretation many authors have simply treated ā as
if it were the geometrical scale factor in an FLRW model,
with corresponding cosmological parameters4. However, in
the presence of strong inhomogeneities every observer can-
not be the same average observer, and variance in local
geometry can play an important role in parameter fitting.
With this in mind, Wiltshire (2007a,b, 2008, 2009) adopts
a fundamentally different approach to the operational inter-
pretation of solutions to the Buchert equations.

Firstly, it is assumed that dust particles are coarse–
grained on scales of order 100/h Mpc, on which there are no
appreciable average mass flows. Although atomic sized dust
is a perfectly valid description for cosmology at the epoch of
last scattering, once stars and galaxies form the dust in cos-
mological models is typically coarse–grained on scales larger
than that of galaxies, so that one need only deal with re-
gions with the same sign of the expansion rate, neglecting
the problems that arise when particle geodesics intersect and
pressure becomes significant. By coarse–graining on scales
on which average mass flows are not appreciable, we can
consistently consider cosmic evolution from last scattering
until the present epoch without having to consider energy
fluxes which are not included in the energy–momentum ten-
sor in Buchert’s scheme.

Given the coarse scale on which dust “particles” are de-
fined, we interpret Buchert’s time parameter, t, as a collec-
tive degree of freedom of a dust particle, which does not nec-
essarily coincide with the clock of an ideal isotropic observer,
namely one who detects an isotropic cosmic microwave back-
ground (CMB). In particular, it is assumed that on ac-
count of quasilocal gravitational energy gradients isotropic
observers in galaxies and voids have clock rates that de-
velop a significant variance cumulatively over the lifetime of

4 See, e.g., Buchert et al. (2006); Räsänen (2006, 2008); Mattsson
(2009); Larena et al. (2009); Wiegand & Buchert (2008); Mattsson
& Mattsson (2010).
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the universe. This means hypothetical observers in voids un-
bound to any structures will ultimately measure a different
mean CMB temperature from observers in galaxies. How-
ever, it does not affect cosmological observations directly,
since on account of structure formation we and all the ob-
jects we observe are necessarily in regions of greater than
critical density, which are contained within walls and keep
a cosmic time in step with ours.

The Buchert time parameter, t, is then that carried by
the clock of an isotropic observer in a region within a dust
particle where the local spatial curvature happens to coin-
cide with the volume–average spatial curvature. In a uni-
verse dominated in volume by voids, this will necessarily be
in a void, though not at a void centre. The proper time of
isotropic wall observers, τ , is related to t by the lapse pa-
rameter

γ̄ =
dt

dτ
.

Although backreaction, arising from the variance of the rel-
ative expansion rates of the voids and walls with respect to
any one set of clocks, is necessary to obtain apparent cosmic
acceleration, for realistic cosmological parameters (Wiltshire
2007a; Leith et al. 2008; Wiltshire 2009) the backreaction
is relatively small as a fraction of the total energy density
(< 5%). Thus in contrast to other approaches to Buchert av-
eraging (Buchert 2008), apparent acceleration is not derived
from backreaction alone. The crucial feature which leads to
apparent acceleration for realistic cosmological parameters
is the difference in clock rates between wall observers and
the volume average, which can typically grow to the order
of 38% by the present epoch (Leith et al. 2008).

To complete the operational interpretation of the so-
lutions to the Buchert equation, the volume average scale
factor ā is adapted to a spherically symmetric average met-
ric (Wiltshire 2007a)

ds2 = −dt2 + ā2(t)dη̄2 + A(η̄, t)dΩ2, (3)

in terms of the Buchert time parameter, where the area func-
tion A is defined by an average over the particle horizon vol-
ume (Wiltshire 2007a). An effective radial null cone average
in terms of the parameters of the wall geometry is then ob-
tained by conformally matching radial null geodesics of (1)
and (3) adapted to a common centre, to relate the conformal
time parameters ηw and η̄ according to

dηw =
f
1/3
wi dη̄

γ̄ (1− fv)
1/3

(4)

In place of (3), we then extend the metric (1) beyond
finite infinity to obtain a spherically symmetric average cos-
mological metric adapted to wall clocks,

ds2 = −dτ 2 + a2[dη̄2 + r2w(η̄, τ )dΩ
2] (5)

where a ≡ ā/γ̄, and

rw ≡ γ̄ (1− fv)
1/3 f

−1/3
wi ηw(η̄, τ ), (6)

with fv ≡ fvia
3
v/ā

3. It should be stressed that neither (3)
nor (5) are exact solutions of the Einstein equations, but
are effective average spherically symmetric geometries that
represent a solution of the statistical Buchert average of the
Einstein equations, when adapted to different clocks and
rulers.

Given the two metrics (3) and (5), there are also dif-
ferent sets of cosmological parameters. The independent
Buchert equations (Buchert 2000),

Ω̄m + Ω̄k + Ω̄Q = 1, (7)

ā−6∂t

(

Ω̄QH̄2ā6
)

+ ā−2∂t

(

Ω̄kH̄
2ā2

)

= 0, (8)

deal with the volume–average or bare parameters, rela-
tive to the metric (3). Here Ω̄m = 8πGρ̄

M0
ā3

0
/[3H̄2ā3],

Ω̄k = −kvf
2/3
vi f

1/3
v /[ā2H̄2], and Ω̄Q = −ḟv

2
/[9fv(1−fv)H̄

2]
are the bare matter, curvature and kinematic back-reaction
parameters respectively, H̄ ≡ ˙̄a/ā is the volume–average
or bare Hubble parameter, an overdot denotes a derivative
w.r.t. volume–average time, t, and the average curvature is
due to the voids only, which are assumed to have kv < 0.
The bare Hubble parameter satisfies the relation

H̄ = fvHv + fwHw, (9)

whereHv ≡ ȧv/av andHw ≡ ȧw/aw are the regional average
expansion rates of voids and walls, with respect to volume–
average time. It is convenient to define hr(t) ≡ Hw/Hv < 1.

Relative to the metric (5), one can also define dressed
parameters, which will take numerical values similar to those
of cosmological parameters in the FLRW models. Such pa-
rameters do not satisfy a relation such as (7), however. The
most relevant are the dressed matter density parameter

Ωm = γ̄3Ω̄m, (10)

and the dressed Hubble parameter

H ≡ 1

a

da

dτ
= γ̄H̄ − d

dt
γ̄ = γ̄H̄ − γ̄−1 d

dτ
γ̄ . (11)

The present epoch value of the dressed Hubble parameter
will coincide with the standard Hubble constant,H

0
, that we

infer observationally from measurements averaged over both
voids and walls on scales larger than the scale of statistical
homogeneity.

One feature of the TS model that is particularly rel-
evant for the analysis of luminosity distance data is that
below the scale of statistical homogeneity we will expect to
see significant variance in the Hubble flow. With respect to
any one set of clocks the underdense voids expand faster
than the more dense walls. Since voids dominate the vol-
ume of the universe, if we average only on nearby scales we
will typically measure a higher value of the Hubble constant
than the global average, H

0
. A measurement confined to our

own local wall, e.g., towards the Virgo cluster, would pro-
duce a lower value5. As we look out to greater and greater
distances, a typical line of sight will eventually intersect as
many walls and voids as the global average. Suppose that we
perform a spherically symmetric average over the sky to try
to determine the Hubble constant using only nearby mea-
surements within some given finite maximum radius, which

5 While this agrees with observation, astronomers typically talk
about “Virgo–centric infall” rather than the expansion rate being
less in regions of greater density. It is our view that such language,
which derives from a conceptual framework of Newtonian grav-
itational forces in a static space, is inappropriate on scales over
which the volume of space is expanding and therefore not well
described by a static Euclidean geometry. One should not talk
about “infall” unless the distance between two objects is actually
decreasing.
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is then varied. The Hubble “constant” inferred in this man-
ner should peak at the dominant void scale 30/h Mpc, i.e. at
z∼ 0.01, with a maximum value up to 17% greater than the
global average and then steadily decrease to near the global
average value when the scale of statistical homogeneity is
reached. The latter scale, which coincides with our scale for
the coarse–graining of dust, is about 100/h Mpc. These ex-
pectations are consistent with the recent data analysis of
Li & Schwarz (2008), and future observations would have
the potential to either rule out or strongly constrain the TS
scenario.

Since the scale of statistical homogeneity represents
a redshift of order z∼ 0.033, and since many supernovae
datasets contain a large number of supernovae below this
scale, there are many potential systematic issues to consider.
Such issues were not considered by Kwan et al. (2009), and
will represent an important ingredient in our reanalysis.

Provided we are sampling distance scales beyond the
scale of statistical homogeneity, then the luminosity distance
for wall observers is given by (Wiltshire 2007a)

d
L
= a

0
(1 + z)rw, (12)

where rw may be determined from (4) and (6).
The general solution for the two–scale average of the

Buchert equations was given by Wiltshire (2007b), and is ex-
pressed in terms of transcendental equations. It has four free
parameters, two of which may be expressed as the initial void
fraction, fvi, and the initial velocity dispersion hr(ti). For
initial conditions at last scattering consistent with the CMB
we take initial values 10−5 < fvi < 10−2, 1− hr(ti) = 10−5.
However, it turns out that the general solution is relatively
insensitive to these values, as there is an attractor solution
with hr(t) =

2

3
exactly, which the general solutions approach

to within 1% by redshifts z∼ 37 (Wiltshire 2007b). The solu-
tions then depend effectively on two free parameters, which
can be taken to be the dressed Hubble constant and dressed
matter density parameter at the present epoch.

For the tracker solution the dressed matter density pa-
rameter and void fraction at the present epoch are related
by

Ωm0 =
1

2
(1− fv0)(2 + fv0). (13)

Furthermore, for the tracker solution, (4), (6) and (12) sim-
plify to give (Wiltshire 2009)

d
L

= (1 + z)2t2/3
∫ t

0

t

2 dt′

(2 + fv(t′))(t′)2/3

= (1 + z)2t2/3(F(t
0
)− F(t)) (14)

where

F(t) ≡ 2t1/3 +
b1/3

6
ln

(

(t1/3 + b1/3)2

t2/3 − b1/3t1/3 + b2/3

)

+
b1/3√

3
tan−1

(

2t1/3 − b1/3√
3 b1/3

)

, (15)

and b ≡ 2(1−fv0)(2+fv0)/(9fv0H̄0
). For the tracker solution

wall time is related to volume–average time by

τ =
2

3
t+

4Ωm0

27fv0H̄0

ln

(

1 +
9fv0H̄0

t

4Ωm0

)

, (16)

and the bare Hubble constant to the dressed Hubble con-

stant by

H̄
0
=

2(2 + fv0)H0

4f2
v0 + fv0 + 4

. (17)

In the data analysis that follows, we used both the exact
solution with fvi = 10−4 and hr(ti) = 0.99999 at z = 1100,
and the tracker solution, and found that they gave essen-
tially identical results to the accuracy quoted.

3 SUPERNOVA IA DATA REDUCTION
METHODS

In this paper we consider two SN Ia light curve fitters. Cur-
rent fitting methods descend from those used in the original
discoveries of cosmic acceleration in 1998/1999: The Multi-
color Light Curve Shape fitter MLCS2k2 (Jha, Riess & Kir-
shner 2007) is the most recent incarnation of the LCS fitter
used by the High-Z Supernova Team (Riess et al. 1998), and
the SALT/SALT II (Spectral Adaptive Light curve Tem-
plate) fitters (Guy et al. 2005, 2007) improve the magnitude
calibration based on the width-luminosity relation used by
the Supernova Cosmology Project (Perlmutter et al. 1998).

Each method results in a distance modulus for each su-
pernova. However, distance moduli computed for the same
objects by the two fitting methods are not necessarily equal,
due in large part to the different treatment of systematic un-
certainties – in particular, colour variation due to dust ex-
tinction. It is very important when estimating cosmological
parameters from the data from various SN Ia observation
programmes that the data reduction process is consistent
across the whole dataset.

When one is investigating an alternative cosmological
model with SNe Ia, it is also vital to recognise that model
dependence is introduced into the cosmological parameter
estimation at different points in the data reduction process.
We now compare the MLCS2k2 and SALT/SALT II algo-
rithms in preparation for using their output distance moduli
to test the timescape model. More thorough comparisons of
these methods can be found in Hicken et al. (2009) and
in Kessler et al. (2009).

3.1 MLCS2k2

For each supernova, MLCS2k2 returns a distance modulus
µ = 5 log10(dL/10 pc) and its uncertainty via the MLCS2k2
model magnitude (Jha et al. 2007)

me,f
model = Me,f ′

+ µ+ pe,f
′

∆+ qe,f
′

∆2

+Xe,f ′

host +Xe,f
MW +Ke

f,f ′ . (18)

A model magnitude is fitted at each time point (indexed by
e, and defined relative to the time of maximum brightness),
and for each observer-frame filter index f . The model is de-
fined in UBVRI rest frame filters f ′, with the light curve
shape parameter ∆ representing the relation between lumi-
nosity and duration. Extinction due to dust is divided into
host galaxy Xhost and Milky Way XMW components, and
Kf,f ′ is the K-correction between rest-frame and observer-
frame filters. Obtaining a set of distance moduli takes two
steps. One first computes the model vectors Me,f ′

, pe,f
′

,
and qe,f

′

by minimising the distance modulus residuals of
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a training set of nearby SN Ia, which lie within the range
in which the Hubble line is linear, yet are sufficiently dis-
tant for their peculiar velocities to be negligible compared
with their Hubble-flow velocity. Secondly, one fits for the
distance moduli along with the remaining parameters, on
the assumption that SNe Ia at higher redshifts are identical
to those nearby.

The extinction terms are set up independently of these
fits. There is some colour dependence on the brightness in-
corporated in ∆, but there is also a significant colour de-
pendence on extinction by dust in the host galaxy and
in the Milky Way. Following Cardelli, Clayton & Mathis
(1989), MLCS2k2 characterizes the extinction by first defin-

ing ζe,f
′ ≡ Xe,f ′

/Ae,f ′

0 , where Ae,f ′

0 is the extinction in

passband f ′ at maximum light in B. Hence, ζe,f
′

(t = 0)

is defined to be 1, and ζe,f
′

encapsulates the time depen-
dence of the exinction. Then one fits for the coefficients αf ′

and βf ′

, defined by

Xe,f ′

= ζe,f
′
(

αf ′

+
βf ′

RV

)

A0
V , (19)

at maximum light, where R
V
is the ratio of the extinction in

the V -band to the colour excess E(B − V ). A “Milky Way-
like” reddening law, based on an average over a number of
lines of sight, has R

V
= 3.1. This has conventionally been as-

sumed to apply also in SN Ia host galaxies. However, Hicken
et al. (2009) and Kessler et al. (2009) find that this value
for R

V
overestimates host galaxy extinction. The question

of how to parameterise the extinction is complicated by a
degeneracy with Hubble bubble assumptions (Conley et al.
2007). Different groups use different values.

There are four model parameters for each SN Ia: the
distance modulus µ; the time of peak luminosity in the rest-
frame B-band; the shape-luminosity parameter ∆; and host
galaxy extinction AV . The estimates and uncertainties of
each parameter value are determined by marginalizing over
the three other parameter probability distribution functions
and taking the mean and rms of the resulting probability
distribution for the parameter of interest.

With a distance modulus and its uncertainty for each
supernova, cosmological parameter estimates are obtained
by minimizing the χ2 statistic:

χ2 =
∑

i

[µi − µ(zi, H0
,Ωm0)]

2

σ2
µi

(20)

where µ(zi, H0
,Ωm0) is the theoretical distance modulus cal-

culated for the redshift of the i-th SN Ia, based on a set of
cosmological parameters H

0
and Ωm0 for a spatially flat uni-

verse.

3.2 SALT/SALT II

Whereas the MLCS calibration uses a nearby training set
of SNe assuming a close to linear Hubble law, SALT (Guy
et al. 2005) uses the whole dataset to calibrate empirical
light curve parameters. SNe Ia from beyond the range in
which the Hubble law is linear are used, so a cosmologi-
cal model must be assumed in this method. Typically the
ΛCDM model is assumed. To deal with a determination of
empirical parameters for objects at unknown distances, the

absolute magnitude M and H
0
are combined as

M = M − 5 log10 h+ 5 log10 c+ 10. (21)

The distance modulus is then modeled as

µi = mmax
Bi

−M+ α(si − 1)− βci. (22)

The initial light curve standardization results in best fit val-
ues for the time of maximum B-band light, t0, the rest-frame
peak magnitude in the B-band,mmax

B , a stretch factor s, and
a colour parameter c, in which are combined the intrinsic su-
pernova colour and reddening due to dust in its host galaxy.

SALT II (Guy et al. 2007) builds on SALT by including
spectroscopic information to improve the wavelength res-
olution of the spectral templates. We use the relationship
between the SALT stretch parameter s and the SALT II pa-
rameter x1 given in Guy et al. (2007) in order to compute
cosmological parameters for SALT II SNe Ia with the same
program as we use for the SALT SNe Ia.

In MLCS2k2, the cosmological parameter estimation
step is “decoupled” from the distance modulus determina-
tion. In SALT, after obtaining the parameters s and c for
each SN Ia from the light curve fits, a magnitude for each
supernova is fitted via the equivalent expression to eq. (20),
and the cosmological parameters are obtained as part of the
same minimization, viz.

χ2 =
∑

i

[mBi −m(zi;α, β,M,Ωm0)]
2

σ2
mi

. (23)

This process results in global estimates of α, β, and M, and
a corresponding Ωm0. An additional “intrinsic” dispersion
is introduced to the SN Ia absolute magnitudes such that
one obtains a reduced χ2 of 1 for the best fit set of param-
eters (Guy et al. 2007). Consequently the published tables
of SN Ia distance moduli obtained with the SALT/SALT II
fitters retain a degree of model dependence. In the case of
the Union and Constitution datasets, the quoted distance
moduli were computed for a spatially flat (FLRW) universe
with a constant w.

There are many subtleties in the individual implementa-
tions of the SNe Ia reduction. The cosmological parameters
computed for the Union dataset of Kowalski et al. (2008)
are obtained from the χ2 equation (23) above, but with ad-
ditional nuisance parameters encoding the propagating sys-
tematic uncertainties (see their equation (5)).

3.2.1 Combining datasets

Since SALT uses the whole dataset, the global parameter
minimization needs to be rerun when new data is added.
When they augment the Union set with the nearby CfA3
SNe Ia to produce the Constitution dataset, Hicken et al.
(2009) first take the SALT parameters of the Union dataset,
mmax

B , s, and c, “out of the box” and calculate a best-fit cos-
mology incorporating a BAO prior in the cosmological fit:
χ2 = χ2

µ + χ2
BAO. The reason for this was presumably that

the BAO prior constrains the range of Ωm0 better than the
SNe Ia alone, and thus provided a more stringent assurance
that the new cosmological parameter estimation was in line
with the old one. Once the Union results were reproduced
with sufficient accuracy, the light curves of nearby Union
SNe Ia were run once again through SALT to ensure that
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the new mmax
B , s, and c values agreed with the Union ones,

and then the whole CfA3 sample was run through SALT, so
that it could be combined with the Union set without in-
troducing any significant offset. The uncertainty in the dis-
tance modulus σµ was calculated by Hicken et al. (2009) in a
way that differs from Kowalski et al. (2008). Essentially, the
σµ calculated by Hicken et al. (2009) contains adjustments
that ensure reproduction of the same uncertainty in w as in
Kowalski et al. (2008).

If one wishes to test a non-standard cosmological model
using SALT SNe Ia, as in the present study, the minimiza-
tion process in eq. (20) should at the very least be recalcu-
lated with the appropriate luminosity distance formula to
determine the empirical light curve parameters. However,
for consistency, the assumptions underlying the determina-
tion of the uncertainties in the χ2 minimization procedure
should ideally also be carefully rethought. The analysis must
be consistent across both standard and non-standard cosmo-
logical models in order to produce a meaningful Bayes fac-
tor. From the standpoint of the non-standard model, when
combining datasets as above one can no longer simply ma-
nipulate the uncertainties in such a way that published con-
straints for the parameter w of the standard cosmology are
more or less reproduced.

3.3 Systematic uncertainties

It has been noted in several studies, (e.g., Hicken et al.
(2009); Kessler et al. (2009); Komatsu et al. (2010)), that
there are possible discrepancies between SALT- and MLCS-
reduced datasets, and also between different implementa-
tions of the same fitters. This is a significant issue for our
investigation.

One direct way of quantifying the differences is to com-
pare the published distance moduli for the 140 SNe Ia com-
mon to the Riess07, Union and Constitution datasets. In
Fig. 1 we plot the differences between the published Riess07
and Constitution distance moduli for the 140 data points
they have in common. This shows that |µGold − µConst| .
1 mag. Individually these differences are quite significant
in some cases. However, the differences show no obvious
redshift-dependent trend so they should not bias the relative
estimates of cosmological parameters.

One should be careful not to draw the conclusion that
the differences seen in Fig. 1 are only to be found in com-
paring MLCS (used in the Riess07 gold sample) with SALT
(used in the Constitution sample). As discussed above, when
using the SALT fitter a global refit of all the empirical
light curve and cosmological parameters is required when
extra data is included in a sample. To illustrate the effect
of this, we have taken the same 140 SNe Ia common to the
Riess07, Union and Constitution datasets and have com-
puted a SALT fit to this subsample directly, assuming a
spatially flat ΛCDM model, using Conley’s publicly avail-
able simple cosfitter code6. In Fig. 2 we display the differ-
ences between these distance moduli and the corresponding
distance moduli of the same SNe Ia events as published in
the Constitution compilation. We see that the resulting scat-
ter is half of that in Fig. 1, even though the SALT method

6 http://qold.astro.utoronto.ca/conley/simple cosfitter/

Figure 1. Differences in published distance moduli between the
140 SNe Ia common to the Riess07 gold sample and the Consti-
tution sample, as a function of redshift.
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Figure 2. Differences in distance moduli between values pub-
lished in the Constitution sample, and the corresponding values
determined with simple cosfitter (ΛCDM) using only the sub-
sample of 140 SNe Ia plotted in Fig. 1, as a function of redshift.
H

0
= 65 km s−1 Mpc−1 .
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has been applied in each case. This is due to the variation
in the values of the parameters α, β and MB determined
from only 140 SNe Ia in the subsample, as compare to those
determined from all 397 SNe Ia in the full sample.7

Much more detailed studies of these sorts of issues have
already been conducted by various researchers, revealing a
complex picture.

In their comparison of the different fitters, Hicken et
al. (2009) found that SALT, SALT II, and MLCS2k2 pro-
duce light curve shape and color/reddening parameters that
agree well with each other and that it is in determining the
distance modulus that systematic offsets are introduced. For
example, SALT produces more scatter at high redshifts than
MLCS2k2, and the nearby MLCS17 distances are larger

7 Since the simple cosfitter implementation of SALT is not
perfectly identical to that used by Hicken et al. (2009), as a check
we reran simple cosfitter on the full Constitution sample. The
difference between the published fits and those computed with
simple cosfitter are indeed insignificant, as is shown in Fig. 3.
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Figure 3. Differences in distance moduli between published
values in the Constitution sample, and values determined with
simple cosfitter (ΛCDM) using the full Constitution sample,
as a function of redshift. H

0
= 65 km s−1 Mpc−1 .
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than in SALT. Such discrepancies will clearly affect the cos-
mological parameter fits. Hicken et al. (2009) note that al-
though there exist some trends in the µ(MLCS17)−µ(SALT)
differences versus shape parameter ∆ and color parameter β,
there are no trends versus redshift, which would indicate the
influence of hidden systematics and affect the cosmological
parameter fits (Wood-Vasey et al. 2007). These are grounds
for hope that retraining with larger datasets, combined with
a better treatment of systematic uncertainties, will reconcile
the differences. In the meantime, however, they found that
for the best cut samples, SALT and SALT II estimates of w
differ by 0.05–0.09 from the MLCS estimates.

After accounting for an anomaly in the rest-frame U -
band that affects the nearby SNe Ia with the SALT II fitter
and all except the nearby sample with the MLCS2k2 fitter,
Kessler et al. (2009) found a discrepancy of 0.31 in the value
of w estimated from one of their MLCS2k2 sample combina-
tions as compared to that of the corresponding sample from
the MLCS2k2 ESSENCE collaboration(Wood-Vasey et al.
2007). They show that this is due to different parameteri-
sations of the dust extinction term in different implementa-
tions of MLCS2k2.

When constraining dark energy parameters derived
from WMAP7+BAO+SN, Komatsu et al. (2010) found that
the parameters of the minimal 6-parameter ΛCDM model
changed depending on whether the SN Ia compilation used
SALT II or MLCS2k2 based on the SN sample of Kessler et
al. (2009). They noted that it is not presently obvious how to
properly incorporate systematic uncertainties into the like-
lihood analysis and thereby reconcile different methods and
datasets. Komatsu et al. (2010) use the Constitution sam-
ple when quoting canonical cosmological parameter values,
because it is an extension of the Union sample which they
used for the 5-year WMAP analysis.

3.3.1 The Hubble bubble

In addition to the general question of the effect of unknown
systematics on cosmological parameters, there is one partic-
ular systematic which is of interest for the TS model, namely
the possible existence of a Hubble bubble. As discussed in

Sec. 2 it is a feature of the TS model that we will observe
an apparent increase in the value of the Hubble constant
on scales less than the scale of statistical homogeneity at
z ∼ 0.033. A spherically symmetric average of the Hubble
rate over increasing local volumes will give a peak variance
of order 17% above the mean on scales z∼ 0.01, which then
steadily decreases until the scale of statistical homogeneity
is reached.

Usually, very low redshift objects are left out of SNe
Ia samples because their peculiar velocities are a consider-
able fraction of their Hubble flow velocities, but depending
on the sample events with redshifts z >∼ 0.01 have been in-
cluded. Evidence of a Hubble bubble was found by Zehavi
et al. (1998), and confirmed by Jha et al. (2007), using a
MLCS2k2 sample with R

V
= 3.1. Modeling the expansion

law in terms of a single inner region void expanding faster
than the outer FLRW region, they found a drop in the Hub-
ble constant of δ

H
= (Hinner − Houter)/Houter = 0.065 at a

redshift z = 0.024. However, there exists a degeneracy be-
tween the existence of such a small scale Hubble bubble and
the treatment of reddening/extinction (Conley et al. 2007).

In the SALT-reduced samples, a Hubble bubble is found
if β = 4.1 is assumed – which is believed to roughly corre-
spond to the CCM89 value for reddening in the Milky Way
– but disappears if β < 4.1 (Conley et al. 2007). With
their MLCS31 sample (366 SNe Ia) Hicken et al. (2009) find
5.56σ evidence for a void at z = 0.028 with reduced am-
plitude δ

H
= 0.029. In their MLCS17 sample (372 SNe Ia)

by contrast, with R
V

= 1.7, they find 2.75σ evidence for a
negative void at z = 0.034 with δ

H
= −0.020.

It is clear that unknown systematic uncertainties in red-
dening and extinction of supernovae in their host galax-
ies will lead to different results regarding local inhomo-
geneities. Different groups have made different choices
about the minimum cutoff in light of these uncertain-
ties. Riess et al. (2007) took a minimum redshift z =
0.024, whereas Hicken et al. (2009) included data down to
z = 0.01. By contrast, Kessler et al. (2009), for their full
MLCS2k2 Nearby+SDSS+SNLS+ESSENCE+HST sample,
took a minimum redshift of z = 0.0218, based on the mid-
point of a ±0.06 variation in w with minimum redshift cuts
between 0.01 and 0.03.

The statistical nature of the apparent Hubble expansion
law expected in the TS model will differ from the empirical
models used in the above analyses of the Hubble bubble, as
we are not dealing with a uniformly expanding void inside a
background region. However, in general an increased mini-
mum redshift cut8 should be made in the TS model, a point
to which we will return in Sec. 4.3.

3.4 The value of H0 and cosmological fits

The overall normalisation of the luminosity distance depends
on the value of the Hubble constant, H

0
. However, one can-

not extract information about the value of the Hubble con-

8 The effects of minimum redshift cuts have also recently
been discussed for the Hubble bubble generated by single–void
Lemâıtre–Tolman–Bondi models (Sinclair, Davis & Haugbølle
2010). This will also have different characteristics to the apparent
Hubble bubble in the TS model.
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stant independently of a knowledge of the intrinsic luminos-
ity of standard candles, since uncertainties in the parameters
M and H

0
are degenerate with one another in the distance

modulus. The SALT fitter provides a global estimate of M
in which any uncertainties are combined according to (21),
and so say nothing about the value of H

0
directly. The value

of H
0
must be determined by an independent calibration.

In the MLCS method, the overall distance scale simi-
larly relies on the calibration of the magnitudes of nearby
SNe Ia, usually to the Cepheid distance scale (Freedman et
al. 2001; Sandage et al. 2006; Riess et al. 2009).

It is impossible therefore to infer the value of the Hubble
constant by a fit to SNe Ia data alone. However, for the
MLCS method, in which the uncertainties in the intrinsic
magnitudes have hopefully already been accounted for, the
fit of luminosity distances to a particular cosmological model
can nonetheless provide an estimate of the variance in H

0

values that are admissible for that model, given a particular
SNe Ia dataset. Since independent cosmological tests, such
as the determination of the angular diameter distance of the
sound horizon, or of the comoving baryon acoustic oscillation
scale, lead to different constraints onH

0
, in order to compare

the potential agreement of different tests Leith et al. (2008)
plotted confidence levels for the fit to the Riess07 gold data
in their Fig. 2, using the normalization assumed in the data9.
One should bear in mind that these confidence limits can be
translated up or down the H

0
-axis, depending upon what

overall normalization is assumed for the Hubble constant.
Constraints on the Hubble constant from WMAP and

baryon acoustic oscillations in the TS model were given in
Fig. 2 of Leith et al. (2008) and are reproduced in Fig. 4.
The constraints from WMAP are estimated by fitting the
angular scale of the sound horizon to within 2, 4 or 6%.
The BAO constraints are similarly estimated by assum-
ing that the dressed comoving scale of the sound hori-
zon matches the corresponding scale of 104 h−1 Mpc for
the ΛCDM model to within 2, 4 or 6%. Assuming that
these estimates roughly correct10 then Fig. 4 shows that
values of 57 <∼ H

0
<∼ 68 km sec−1 Mpc−1 would be admis-

sible in the TS scenario, but values as large as the recent
H

0
= 74.2± 3.6 km sec−1 Mpc−1 determined by the SH0ES

survey (Riess et al. 2009) would represent a severe challenge
to the model.

The determination of the value of the Hubble constant
is a complex problem from the viewpoint of the TS model,

9 Riess et al. (2007) did not state what value of H
0

was as-
sumed in their dataset, but stated that a systematic subtrac-
tion of 0.32 mag from their distance moduli would match the
Cepheid calibration of Riess et al. (2005). The question of the
Cepheid calibration is a matter of debate (Sandage et al. 2006;
Riess et al. 2009). Since a fit of the spatially flat ΛCDM model
to the unmodified Riess07 SNe Ia distance moduli gives a value
H

0
= 62.6±1.4km sec−1 Mpc−1 consistent with the value deter-

mined by Sandage et al. (2006), Leith et al. (2008) chose to use
the unmodified distance moduli of Riess et al. (2007). The recent
Cepheid calibration of Riess et al. (2009) is in disagreement with
the Sandage et al. (2006) calibration.
10 A direct comparison with the data requires that we compute
the expected angular anisotropy power spectrum for the TS model
in the case of the CMB, and also that all model dependent as-
sumptions in the data reduction of galaxy clustering data are
carefully re-examined in the case of the BAO analysis.

Figure 4. Parameter values in the (Ωm0,H0
) plane which fit

the angular scale of the sound horizon δ = 0.01 rad deduced
for WMAP (Bennett et al. 2003; Spergel et al. 2007), to within
2%, 4% and 6% (contours running top–left to bottom–right); as
compared to parameters which fit the effective comoving scale of

104h−1Mpc for the baryon acoustic oscillation (BAO) observed
in galaxy clustering statistics (Cole et al. 2005; Eisenstein et al.
2005), to within 2%, 4% and 6% (contours running bottom–left to
middle–right) which fit the angular diameter dis of Gold07 (Table
8), SDSS-II (Table 6), MLCS17 and MLCS31 (Table 9). In each
case an overall normalization of the Hubble constant from the
published dataset is assumed.

given that many of the crucial measurements are made be-
low the scale of statistical homogeneity, over scales on which
the local Hubble flow should exhibit quite large variability.
Indeed, the statistical properties of the observed fractional
variability of the Hubble flow (Li & Schwarz 2008) do seem
broadly consistent with the expectations of the TS scenario.
For concordance of the geometrical tests of average cosmo-
logical parameters, the real challenge is the baseline value
of H

0
, however.
Ideally the global average Hubble constant should be

determined only on scales significantly larger than the scale
of statistical homogeneity, z > 0.033, by methods which do
not depend on calibrations below that scale. The method
of determining H

0
via the time delays of multiply-imaged

quasars in strongly gravitationally-lensed systems fulfils this
criteria. This method has given a large variety of estimates
for H

0
(Oguri 2007). A recent new estimate of H

0
from ac-

curate time delay measurements with six years of data from
the quadruply imaged quasar HE 0435-1223 gives H

0
=

62+6
−4 km sec−1 Mpc−1 (Courbin et al. 2010). In considering

such estimates from the perspective of the TS model, one
must be careful to examine any assumptions which might
assume the standard cosmology.

The analysis of the Sunyaev–Zel’dovich effect and X–
ray data of galaxy clusters provides another method of con-
straining H

0
independently of calibration to standard can-

dles in the extragalactic distance ladder Reese et al. (2010).
If the standard ΛCDM angular diameter distance is replaced
by that of the TS model then this method could be easily
adapted to give further constraints in the (H

0
,Ωm0) param-

eter space. This is beyond the scope of the present paper,
and will be left to future work.
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Since we are not interested in the comparing other cos-
mological tests in this paper, we will not consider the ques-
tion of the value of H

0
further. Rather we will concentrate

on the comparison of the expansion history for the TS and
spatially flat ΛCDM models as determined by the luminosity
distances of various SNe Ia datasets.

4 SUPERNOVA ANALYSIS OF THE
TIMESCAPE MODEL

In this section we will test the TS model against all available
datasets. In view of the systematic uncertainties it is impor-
tant that we consider the effects of using the different fitters,
as well as additional possible systematic effects specific to
the TS model. In § 4.1, we discuss TS fits to the published
datasets “out of the box”. In § 4.2, we determine the extent
to which substitution of the TS luminosity distance calcu-
lation for the ΛCDM one in the simple cosfitter code
affects parameter estimation. We then investigate the ef-
fects of making sample cuts according to the redshift cor-
responding to the scale of statistical homogeneity in § 4.3.
Finally, in § 4.4 we discuss some systematic issues relevant
to MLCS2k2.

4.1 “Out of the box” data

Kwan et al. (2009) simply took the published values of the
Union and Constitution datasets, produced data fits and
concluded that the TS model was a relatively poor fit, with
the implication that the TS failed when presented with the
newer larger datasets. However, as we discussed above, given
that the Union and Constitution datasets are fit by SALT,
which implicitly assumes a homogeneous isotropic cosmol-
ogy to all distances in its data reduction, serious concerns
arise in using the SALT method. In fact, it was for this
reason that the MLCS–reduced data of Riess07 was used
by Leith et al. (2008) in preference to SALT–reduced SNLS
data.

For the purpose of subsequent comparison, we will
first collate TS cosmological parameter fits for all avail-
able datasets in Table 1 using the data “out of the box”.
The three datasets investigated in this manner by Kwan et
al. (2009) were the Riess07 gold data (Riess et al. 2007),
and the SALT-fitted Union (Kowalski et al. 2008) and Con-
stitution (Hicken et al. 2009) datasets. To these we add
the equivalent parameter fits for the SALT2, MLCS17 and
MLCS31 datasets of Hicken et al. (2009), the 288-SN Ia
Nearby+SDSS+ESSENCE+SNLS+HST sample of Kessler
et al. (2009), and the 557-SN Ia Union2 sample of Amanul-
lah et al. (2010). The MLCS17 and MLCS31 datasets share
many SNe Ia in common with the Constitution set, but were
fitted by MLCS2k2 with values for the extinction parame-
ter R

V
of 1.7 and 3.1 respectively. The value R

V
= 1.7

was found by Hicken et al. (2009) to give less scatter in the
Hubble residuals for a sample of nearby SNe Ia, in keeping
with previous studies which found the colour parameter β
in eq. (22) to be significantly lower than would be expected
if the host galaxy reddening law conforms to a Milky Way
reddening law (R

V
= 3.1). The SDSS-II data (Kessler et al.

2009) was fitted by MLCS2k2 with RV = 2.18. The Union2
dataset is fit with SALT II.

Table 1. Expectation values for the parameters for the timescape
model from SNe Ia data, using published SNe Ia data as se-
lected and reduced by the respective SNe Ia collaborations.
The bestfit value of Ωm0 is quoted in brackets in addition to
the expectation value. The MLCS17, MLCS31, and SALT2
datasets were published along with the Constitution dataset in
Hicken et al. (2009). The SDSS-II dataset is the full 288-object
dataset described in Kessler et al. (2009) and available from
http://das.sdss.org/va/SNcosmology/sncosm09 fits.tar.gz.
The sample size, N , and minimum χ2 are also tabulated.
S=SALT; S2=SALT2; M=MLCS2k2.

Dataset N χ2 Ωm0 fv0

Riess07 (M) 182 162.7 0.29+0.14
−0.13(0.33) 0.79+0.11

−0.12

Union (S) 307 319.6 0.12+0.14
−0.12(0.09) 0.91+0.09

−0.08

Const. (S) 397 470.8 0.10+0.08
−0.09(0.01) 0.93+0.06

−0.06

MLCS17 (M)1 372 403.1 0.18+0.12
−0.15(0.20) 0.87+0.09

−0.10

MLCS31 (M)1 366 432.8 0.07+0.04
−0.06(0.01) 0.95+0.02

−0.04

SALT2 (S2)1 352 346.8 0.11+0.11
−0.10(0.04) 0.92+0.08

−0.07

SDSS-II (M)2 288 240.8 0.38+0.11
−0.09(0.40) 0.72+0.05

−0.05

Union2 (S2)3 557 550.9 0.08+0.05
−0.07(0.01) 0.95+0.03

−0.04

1Hicken et al. (2009) 2Kessler et al. (2009) 3Amanullah et al.
(2010)

Table 2. Published values for Ωm0 for the ΛCDM model from
SNe Ia data, for comparison with Table 1. The Constitution value
of Ωm0 includes a BAO prior. The SDSS-II value includes BAO
and WMAP5 priors. Distance normalisation is arbitrary.

Dataset N χ2 Ωm0

Union 307 310.8 0.29+0.05
−0.04

Constitution 397 — 0.28+0.04
−0.02

SDSS-II1 288 237.9 0.31+0.02
−0.02

Union22 557 — 0.274+0.040
−0.037

1These values come from table 13 in Kessler et al. (2009).
2Statistical and systematic uncertainties combined.

We have compiled Table 1 by our own analysis of the
data, with the prior11 0.01 6 Ωm0 < 0.95 used by Kwan et
al. (2009). For comparison, Table 2 shows ΛCDM parameter
values that were published with the respective datasets.

The parameter values quoted by Leith et al. (2008) and
Kwan et al. (2009) were those corresponding to the peak in
the probability distribution, at which the χ2 statistic is min-
imised. However, as Fig. 1 of Kwan et al. (2009) illustrates,
for the published Union and Constitution datasets the best-
fit value is driven to the edge of the parameter space at

11 Kwan et al. (2009) state that this prior corresponds to taking
a prior 10−5 < fvi < 10−2 on the void fraction at last scattering.
However, while the value of Ωm0 is closely related to fv0, it is
essentially independent of fvi on account of the existence of the
tracker solution. Leith et al. (2008) used the value fvi = 10−4

with the exact solution for all values of Ωm0; the value of Ωm0 is
essentially insensitive to the value fvi.



Supernova tests of the timescape cosmology 11

unrealistically small values of Ωm0, an issue we will discuss
further in Sec. 4.3. Given probability distributions such as
these that are significantly skewed relative to a Gaussian
distribution, a more typical estimate of any parameter θ is
given by the expectation value 〈θ〉 =

∫ +∞

−∞
θ w(θ) dθ, where

w(θ) is the normalised weight. While the bestfit value gives
the most probable individual parameters, the expectation
value is the average one would obtain given many measure-
ments of the parameter in many universes. In Table 1 we
have displayed the expectation values of Ωm0 and fv0, to-
gether with the bestfit value of Ωm0 for comparison. In the
cases in which the bestfit value of Ωm0 takes the smallest val-
ues, namely the Constitution, SALT2 and MLCS31 samples
of Hicken et al. (2009) and the Union2 sample of Amanullah
et al. (2010), the bestfit value of Ωm0 differs from the expec-
tation value by a factor close to one standard deviation.

The extremely small bestfit values of Ωm0 for the Union
and Constitution samples — or equivalently the unusually
large values of fv0 — match those found by Kwan et al.
(2009), which led these researchers to draw unfavourable
conclusions about the TS model. However, Kwan et al. rea-
soned that this was due to inclusion of extra data in the
Union and Constitution samples, as compared to the Riess07
sample. In particular, there are a larger number of SNe Ia
in the redshift range 0.35 < z < 0.4 in the Union sample,
and in the range 0 < z < 0.2 in the Constitution sample.
While the inclusion of SNe Ia at extremely close distances
below the scale of statistical homogeneity z < 0.033 is a
separate systematic issue that needs to be carefully investi-
gated, the results of the MLCS2k2–reduced samples in Ta-
ble 1 refute the claim of Kwan et al. (2009) that it is the
greater sample size that is the main issue12. The parameters
of the TS model are not sensitive to small changes in the SNe
Ia data, as Kwan et al. maintain. Rather, we see that the
primary question is the method of data reduction. While the
MLCS31 sample, fit with R

V
= 3.1 produces results close

to the SALT/SALT II fits, the MLCS17 sample, with the
largest number of SNe Ia fit by the MLCS2k2 method, yields
a bestfit value Ωm0 = 0.20+0.10

−0.17 , and the SDSS-II sample of
Kessler et al. (2009) a bestfit value of Ωm0 = 0.40+0.09

−0.11 . The
parameters found from the MLCS17 and SDSS-II samples
agree with those of the Riess07 Gold sample to within one
standard deviation.

We conclude that the MLCS-reduced SN Ia samples,
with appropriate treatment of host galaxy reddening, pro-
vide a better fit to the TS model than the SALT–reduced
samples. We will see in Sec. 4.3 that this carries through to
the Bayesian statistical evidence as well. Our results there-

12 Among other general statements Kwan et al. (2009) make
a particular comment: “The best-fitting parameters of the FB
model are extremely sensitive to small changes in the SNe Ia
data as it needs to compensate for these by a large variation in
fvi when fitted to an another redshift distribution with a different
amount of error on each SNe Ia. In addition, there is a special set
of values for fvi which will mimic ΛCDM parameters well, . . . ”
These statements – together with other statements about the role
of the initial void fraction, fvi – are erroneous, since as we have
already observed the values of Ωm0 and fv0 are insensitive to the
value of fvi. Kwan et al. (2009) appear to have not understood the
quantitative role of this parameter in the general exact solution
(Wiltshire 2007b).

Table 3. Expectation values for the parameters of the timescape
model from SALT-reduced SN Ia data, recomputed with the
timescape model luminosity distance. Distance normalisation is
arbitrary. The bestfit value of Ωm0 is in brackets.

Dataset N χ2 Ωm0 fv0

Union (TS) 307 350.6 0.13+0.10
−0.08(0.09) 0.91+0.07

−0.06

Union (ΛCDM) 344.1 0.28+0.03
−0.03(0.28)

Const. (TS) 397 319.7 0.13+0.09
−0.08(0.08) 0.91+0.06

−0.06

Const. (ΛCDM) 312.9 0.29+0.03
−0.03(0.28)

fore support the observation of Sollerman et al. (2009), who
find that for the SDSS-II supernovae of Kessler et al. (2009)
reduced with the MLCS2k2 fitter, nonstandard cosmological
models can provide a better fit to the data than the ΛCDM
model.

4.2 Recalibrating the SALT SNe Ia

Having established that the primary issue for the goodness
of fit of the TS model relative to the ΛCDM model is the
data reduction method used, we should examine the extent
to which implicit use of the ΛCDM model in data calibra-
tion affects the SALT/SALT II samples. It is difficult to
assess all the ways in which the assumption of a homoge-
neous cosmology is built into the SALT data reduction pro-
cedure. However, it is relatively straightforward to adapt the
simple cosfitter code, which implements the SALT pro-
cedure, to use the luminosity distance of other cosmological
models.

We replaced the module of simple cosfitter that im-
plements the spatially flat ΛCDM luminosity distance by
one that computes the TS luminosity distance (14). Leaving
the rest of the simple cosfitter code unchanged, we reran
the parameter fits. This amounts to taking the published
stretch and colour parameters for each supernova, and re-
computing Ωm0 along with the empirical parameters M, α
and β of eq. (22).

The values of Ωm0 and the minimum χ2 that result from
this reanalysis are displayed in Table 3. Since the compara-
ble published values for the ΛCDMmodel often include BAO
or WMAP priors, we also show the corresponding parameter
values we obtained ourselves using simple cosfitter ap-
plied to the spatially flat ΛCDM model. The results indicate
that the expectation values of Ωm0 increase only very slightly
from the values of Table 1. However, the bestfit value of Ωm0

is much closer to the expectation value for the Constitution
sample. The parameters α, β, and MB (calculated from M
with13 H

0
= 65 km s−1 Mpc−1 ) are shown in Table 4.

Both the TS and simple cosfitter results are well within
the uncertainties quoted in Hicken et al. (2009). Given that
the Constitution set contains the Union set, it is not sur-
prising that their corresponding Ωm0 values should be the
same, when calculated for each model, as Table 3 shows.
The addition of the new CfA3 SNe Ia to the Union sample

13 We will simply adopt the same Hubble constant normalization
as Hicken et al. (2009), who took this value.
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Table 4. Values for the global parameters from SALT-reduced
SN Ia data, computed by simple cosfitter with the ΛCDM and
TS luminosity distances.

Dataset α β MB

Union (TS) 1.32+0.12
−0.12 2.37+0.12

−0.12 -19.42

Union (ΛCDM)1 1.33+0.12
−0.12 2.38+0.13

−0.12 -19.46

Const. (TS) 1.29+0.10
−0.10 2.49+0.11

−0.11 -19.43

Const. (ΛCDM)2 1.31+0.10
−0.10 2.50+0.11

−0.11 -19.46

1Kowalski et al. (2008) values: α = 1.24+0.10
−0.10, β = 2.28+0.11

−0.11.
2Hicken et al. (2009) values: α = 1.34+0.08

−0.08, β = 2.59+0.12
−0.08,

MB = −19.46 with H
0
= 65 km s−1 Mpc−1 .

Figure 5. Differences in the distance moduli obtained by a SALT
fit to the Constitution sample using the simple cosfitter code
adapted to: (i) the spatially flat ΛCDM model, and, alternatively,
(ii) the TS model; as a function of redshift.
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changes the fits of the global parameters α, β, and M, and
consequently the estimate of Ωm0, but Table 4 shows these
changes are relatively small.

Overall the differences between Table 1 and Table 3 are
relatively small. In particular, whether or not the ΛCDM
or TS luminosity distance is assumed, the SALT-reduced
data still produces consistently higher fits to the present
epoch void fraction, fv0, than that of the MLCS-reduced
samples (other than MLCS31). The resulting Ωm0 values de-
pend only very weakly on whether the luminosity distance
assumed by the SALT fitter is a TS one or a ΛCDM one.
Furthermore, the distance moduli themselves show insignif-
icant differences: the difference between the two measures is
plotted in Fig. 5 (on the same scale as used in Figs. 1 and 2
for comparison).

Fig. 5 demonstrates that use of the TS luminosity dis-
tance is capable of reproducing the SALT ΛCDM results to
great precision. Thus the differences in the expectation val-
ues of cosmological parameters found in Table 1 between the
MLCS and SALT fitters must be a consequence of system-
atic differences, rather than the luminosity distance relation
assumed by SALT.

As a check that the differences between the fitters are
not simply a consequence of the inclusion of different SNe Ia
subsamples, we have compared the cosmological parameters

Table 5. Expectation values of Ωm0 (with bestfit values in brack-
ets), for the 140 SNe Ia common to the Riess07 Gold (R), Union
(U), and Constitution (C) samples. For the Union and Constitu-
tion subsamples the results of fits to the published data (p); and to
simple cosfitter fit data (f), are both shown. Bayes factors, with

priors 0.01 6 Ωm0 6 0.95 (and 55 6 H
0
6 75 km sec−1 Mpc−1

where relevant), for the TS model relative to the spatially flat
ΛCDM model are also given.

Dataset Ωm0 fv0 ln B

R140 0.33+0.15
−0.14(0.36) 0.76+0.13

−0.13 0.14

U140(p) 0.21+0.17
−0.20(0.23) 0.85+0.14

−0.13 0.43

U140(f) 0.16+0.12
−0.10(0.13) 0.89+0.07

−0.09 0.14

C140(p) 0.17+0.16
−0.16(0.17) 0.88+0.11

−0.12 0.56

C140(f) 0.18+0.12
−0.12(0.17) 0.87+0.09

−0.09 0.17

determined from the subsample of 140 SNe Ia common to
the Riess07 Gold, Union, and Constitution datasets, which
was used in generating Figs. 1 and 2. In Table 5 we show the
TS cosmological parameters determined using the both the
published data for the Riess07 dataset14, Union and Consti-
tution samples, and also our own SALT fit (with the TS lu-
minosity distance) of these 140 points alone. We see that the
subsets of published data values produce higher estimates of
Ωm0 for each sample than each of the complete sets given in
Table 1, and that the greatest percentage increase is for the
Constitution sample. Furthermore, a simple cosfitter fit
to the subsample of 140 SNe Ia alone also produces higher
estimates of Ωm0, which differ somewhat from the subsam-
ple of the published values only in the case of the Union
sample. However, in all cases the SALT–reduced Union and
Constitution subsamples still have a significantly lower value
of Ωm0 than the MLCS reduced Riess07 subsample. Conse-
quently, intrinsic differences in the MLCS and SALT meth-
ods appear to be the dominating cause of the variance in
cosmological parameter estimates for the TS model.

The Bayes factors, representing the integrated likeli-
hood of the TS model over that of the spatially flat ΛCDM
model have also been given in Table 5. By the Jeffreys scale
(Trotta 2008) these results indicate that the models are sta-
tistically indistinguishable for the subsample of 140 SNe Ia,
regardless of the fitter used. For the Riess07 Gold data this
is interesting, given that the whole sample of 182 SNe Ia
gives lnB = −1.20 with mild positive evidence in favour of
the ΛCDM model. Although the inclusion of the additional
42 SNe Ia in the Riess07 Gold sample does not greatly af-
fect the values of cosmological parameters, it significantly
changes the relative goodness of fit of the TS and ΛCDM
models. Since the Constitution sample simply augments the

14 For the subsample of 140 SNe Ia from Riess07 gold dataset
a fit of the Hubble constant gives H

0
= (61.4+1.4

−1.5, 62.3+1.4
−1.8)

km sec−1 Mpc−1 for the TS and spatially flat ΛCDM models re-
spectively as compared to the respective values H

0
= (61.7+1.2

−1.1,

62.6 ± 1.3) km sec−1 Mpc−1 for the full sample of 182 SNe Ia.
As remarked in Sec. 3.4 this is not an absolute determination
of H

0
, as the data assumes an overall calibration; but relatively

speaking, the favoured value of H
0
is only very slightly reduced

by restricting to the subsample.
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Union sample with more recent data, the reason for the ex-
clusion of the 42 SNe Ia in question boils down to the dif-
ferences in the selection cuts of Kowalski et al. (2008) as
compared to those of Riess et al. (2007).

4.3 The Statistical Homogeneity Scale

There are a huge number of potential sources of systematic
errors, which, treated differently in the MLCS and SALT
fitters, might be responsible for the differences in parameter
estimates obtained for the TS model. As we have already dis-
cussed in Sec. 3.3.1, in the TS model an average Hubble flow
is only expected on scales greater than the statistical homo-
geneity scale15 (SHS). Thus for consistency, in performing
any parameter fits on the TS model, a cut should be applied
to data at redshifts below the SHS.

For the SALT datasets the inclusion of significant num-
bers of SNe Ia below the SHS could conceivably bias the
global fits of α, β, M and Ωm0. The potential impact of
the SHS on the MLCS datasets is less clear, as the fitter is
trained using a set of nearby SNe Ia that are far enough into
the Hubble flow for peculiar velocities to be negligible, yet
still close enough for the linear Hubble law to hold (Jha et
al. 2007). In practise, the training set includes some SNe Ia
within the SHS, so there may be systematic issues associated
with the SHS, just much more subtle.

As a first check on whether the discrepancy between the
values of Ωm0 determined by the SALT and MLCS methods
can be accounted for by making cuts at the SHS scale, we
have determined parameters for fits to the TS model with
cuts made: (i) by excluding objects at redshifts z < 0.024,
which corresponds to the H

0
dSN ≃ 7400 kmsec−1 Hubble

bubble partition assumed by Jha et al. (2007); Riess et al.
(2007) and Hicken et al. (2009)); and (ii) by excluding ob-
jects with redshifts z < 0.033, corresponding to the esti-
mated scale of statistical homogeneity, 100/h Mpc. The re-
sulting values of Ωm0 are compared with the values obtained
from the full dataset in Table 6. Bayes factors for a fit of the
TS model relative to the spatially flat ΛCDM model are also
displayed.

In all cases the relevant cuts lead to somewhat larger
values of Ωm0, with the exception of the subsample of 140
SNe Ia from the Riess07 Gold dataset, which was discussed
in Table 5. In the SALT cases the increase in the expectation
value of Ωm0 is not particularly large. However, the bestfit
value of Ωm0 increases generally by a factor of three from
the full sample to the SHS cut sample. Since the bestfit
value of Ωm0 is much closer to the expectation value for
the SALT samples once SHS cuts are made, it shows that
the fits are no longer so strongly skewed away from being
Gaussian with bestfit values of Ωm0 at unreasonably small
values. This demonstrates that the main criticism of Kwan
et al. (2009) is invalid once the SHS cut is made.

15 We prefer to the terminology “statistical homogeneity scale”
to the more commonly used “Hubble bubble” terminology, since
the latter is often taken to be a single large local void. In the
ΛCDM context, such a feature is, strictly speaking, anomalous.
In the TS model an apparent Hubble bubble at any typical wall
location is an expected for averages below the statistical homo-
geneity scale, given the dominance of of 30/hMpc diameter voids
by volume in the late epoch universe.

Table 6. Parameter values for SN Ia datasets, applying ho-
mogeneity scale cuts, the first at the Hubble bubble radius of
zmin = 0.024 (e.g. Jha et al. (2007)), the second at zmin = 0.033,
corresponding to the scale of statistical homogeneity estimated to
be ∼ 100 h−1 Mpc. Expectation values of Ωm0 are shown, with
bestfit values in brackets. For the SALT/SALT–II fits (Union,
Constitution, SALT2, Union2) the parameters have been recom-
puted by adapting simple cosfitter to the TS model in each
case.

Dataset z cut N χ2 Ωm0 lnB

Gold
> 0.024 182 162.7 0.30+0.14

−0.13(0.33) -1.20

> 0.033 169 151.8 0.31+0.15
−0.13(0.34) -1.18

R140
> 0.024 140 102.7 0.33+0.16

−0.14(0.36) 0.14

> 0.033 132 96.2 0.26+0.20
−0.25(0.30) 0.78

MLCS17
None 372 401.7 0.18+0.13

−0.15(0.20) 0.77

> 0.024 282 315.7 0.17+0.13
−0.16(0.19) 0.37

> 0.033 234 260.2 0.19+0.14
−0.17(0.21) 0.57

MLCS31
None 366 429.5 0.07+0.05

−0.06(0.01) -1.57

> 0.024 278 332.2 0.09+0.08
−0.08(0.01) 0.13

> 0.033 229 263.3 0.11+0.11
−0.10(0.03) 1.09

SDSS-II
None 288 240.8 0.39+0.11

−0.09(0.40) 0.09

> 0.024 284 238.4 0.40+0.11
−0.10(0.41) 0.27

> 0.033 272 214.5 0.42+0.10
−0.10(0.44) 0.53

Union
None 307 350.6 0.13+0.10

−0.08(0.07) -2.04

> 0.024 288 333.4 0.15+0.10
−0.09(0.14) -1.53

> 0.033 275 318.0 0.18+0.11
−0.11(0.20) -0.86

Const.
None 397 319.6 0.13+0.09

−0.08(0.06) -1.54

> 0.024 351 293.8 0.13+0.09
−0.08(0.09) -1.57

> 0.033 309 275.9 0.16+0.10
−0.10(0.15) -1.06

SALT2
None 351 402.5 0.10+0.08

−0.06(0.02) -2.25

> 0.024 278 342.1 0.11+0.08
−0.06(0.03) -2.22

> 0.033 235 305.5 0.13+0.09
−0.07(0.09) -1.55

Union2
None 557 520.3 0.09+0.07

−0.08(0.05) -2.65

> 0.024 504 483.5 0.10+0.08
−0.06(0.09) -2.25

> 0.033 457 428.4 0.10+0.08
−0.06(0.15) -3.46

CSP
None 56 62.3 0.11+0.08

−0.10(0.01) -4.23

> 0.024 47 69.1 0.12+0.13
−0.11(0.01) -4.03

> 0.033 43 46.0 0.13+0.12
−0.12(0.01) -3.34

In all the MLCS2k2 cases, the Bayes factor improves
in favour of the TS model with the redshift cuts, but the
improvement is weak and, with the exception of MLCS31,
generally not enough to statistically distinguish the models.
For the SALT reduced data, by contrast, the data generally
indicate mild positive evidence against the TS model on the
Jeffreys scale (Trotta 2008). For all SALT datasets apart
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Figure 6. Bestfit values (solid line) and expectation values (dot-
ted line) of Ωm0 for successive redshift cuts for eight SNe Ia
samples. The probability distributions for SALT Ωm0 fits (left
column) make a transition from negative skew to positive skew,
while those MLCS samples (right column) which already provide

better fits to the TS model are always positively skewed.
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from Union2 the Bayesian evidence in favour of the ΛCDM
model is weaker once the SHS cut is applied.

In order to further test the issue of redshift cuts, we have
repeated our analysis by applying a cut at redshifts which
range from the minimum value in each dataset up to zmin =
0.08. The results are shown in Figs. 6 and Figs. 7. The Bayes
factor for the SHS (zmin = 0.033) cut on the Union2 sample
turns out to mark the beginning of a downward trough in
an otherwise increasing trend.

Fig. 6 provides a direct demonstration of how exclud-
ing the SNe Ia below the SHS leads to to a better agree-
ment between the bestfit and expectation values of Ωm0 in
the SALT/SALT II reduced datasets. In fact, it also re-
veals differences between the SALT and SALT II fitters.
For the Union and Constitution datasets, reduced by SALT,
we see that below the SHS the bestfit value is below the
expectation value, i.e., negatively skewed. For cuts in the
range 0.03 <∼ zmin <∼ 0.05 the bestfit and expectation values
of Ωm0 are roughly comparable for these samples, while for
zmin >∼ 0.05 the bestfit value is positively skewed. For SALT2
and Union2, reduced by SALT II, the bestfit value remains
negatively skewed for cuts up to zmin <∼ 0.055.

In the case of the datasets that the TS model fits well
– Riess07 Gold, MLCS17 and SDSS-II – the skew is always
positive, i.e., the bestfit value is greater than the expectation
value. The skew is larger for the cuts at higher redshifts, par-

ticularly for the Gold and SDSS-II samples. For MLCS31,
the bestfit value is negatively skewed, and the fit is gen-
erally poor, in the sense that this peak probability is very
significantly skewed.

These results suggest that the way that the SALT fitters
treat nearby objects – the inclusion of large numbers of them
as well as the treatment of their color variations and host
galaxy dust – does affect the TS cosmology fits.

Finally, for completeness we have added the recently
published first dataset from the Carnegie Supernova Project
(CSP) (Freedman et al. 2009) to Table 6. This is a much
smaller dataset than the others. The CSP differs from other
projects by working in the near infrared, and consequently
the data is differently reduced. However, in analysing their
data Freedman et al. (2009) have adopted a reduced–χ2 = 1
approach, conceptually similar to the approaches used in the
SALT/SALT-II fits. Nuisance parameters, including R

V
, are

determined by minimising Hubble residuals for the whole
diagram. In Table 6 we have only presented fits to the
TS model for the “out of the box” data of Freedman et
al. (2009), which was fit to a FLRW model with con-
stant dark energy equation of state parameter, w. To be
more confident about the conclusions we should redo the
data reduction for the TS model. However, such a task
requires considerable effort, and we will defer this until
such a time as significantly more data is available. At this
stage we note that Freedman et al. (2009) found a value
of R

V
= 1.74 ± 0.27 (stat)±0.01 (sys), considerably lower

than the Milky Way RV = 3.1 value, which is consistent
with the values of the corresponding values of β typical in
the SALT/SALT-II fits. Furthermore, the very low expec-
tation values of Ωm0 are most consistent with SALT2 and
Union2. While the bestfit value of Ωm0 is essentially driven
to zero, giving an extremely skewed distribution, we must
recall that this was also the case for Union2 “out of the box”
data in Table 1 before the SALT-II parameters were recom-
puted for the TS luminosity distance. Given the similarity
in approach, we would expect an improvement in the best-
fit values if the TS luminosity distance was assumed in the
data reduction.

4.4 Systematic issues for MLCS

The erratic results from MLCS31 (R
V

= 3.1) for the min-
imum redshift cuts in Figs. 6 and Figs. 7, and the rela-
tively stable results from MLCS17 (R

V
= 1.7) and SDSS-II

(R
V
= 2.18) suggest that while the MLCS samples are bet-

ter fit by the TS model, such fits are still highly affected by
the treatment of dust extinction and reddening. However,
the issues are much subtler than simply the value of R

V

assumed. In particular, the Riess07 gold dataset (Riess et
al. 2007) and the MLCS31 dataset (Hicken et al. 2009) are
both fit with R

V
= 3.1 and yet they produce expectation

values of Ωm0 which differ by a factor of three, once the SHS
cut is made. Similarly, the MLCS17 dataset (Hicken et al.
2009) and SDSS-II dataset are both fit with low R

V
values,

respectively 1.7 and 2.18, while producing expectation val-
ues of Ωm0 which differ by a factor of two, for the SHS-cut
samples.

These large differences in the probable values of Ωm0

suggest that the different assumptions in sample selection
made with different versions of MLCS2k2 have a very signif-
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Figure 7. Bayesian evidence: lnB for the TS model relative to the spatially flat ΛCDMmodel for successive redshift cuts for nine SNe
Ia samples. The SALT/SALT II reduced sets are in the left panel, the MLCS2k2 reduced samples in the right panel.
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icant impact in the determination of TS model parameters.
As a check, we have redone the analysis of Table 6 for the
following samples: Sample A of the 76 SNe Ia common to the
Riess07 Gold and MLCS31 datasets; and Sample B of the 74
SNe Ia common to the Riess07 Gold and MLCS17 datasets.
The two samples include the same SNe Ia apart from four
objects – three SNe Ia, SN 1999gp at z = 0.026, SN 1991U
at z = 0.033, and SN 1992J at z = 0.046 are in Gold and
MLCS31 but not in MLCS17, and one, SN 2004D4dw at
z = 0.961, is in Gold and MLCS17 but not in MLCS31. We
have tested the both samples in full, and with a SHS cut. Of
the four SNe Ia not common to both Sample A and Sample
B, only one, SN 1999gp is below the SHS, though SN 1991U
at z = 0.033 is borderline. In addition, we make a final cut
to include the 66 SNe Ia above the SHS which are common
to both samples.

From Table 7 we see that the expected and bestfit
values of Ωm0 for the Riess07 Gold sample are somewhat
reduced relative to those of the full sample given in Ta-
ble 7, and that they agree with the corresponding values for
the MLCS31 and MLCS17 subsamples within the 1σ un-
certainties. Nonetheless there are still some differences in
the central expectation values, particularly in the case of
the MLCS31 sample. Since the Gold and MLCS31 samples
assume the same R

V
= 3.1, the differences might be a conse-

quence of the different assumptions about extinction priors
(Jha et al. 2007) made in the different implementations of
MLCS2k2.

While in most cases the Bayesian evidence for the TS
model relative to the spatially flat ΛCDM model is improved
for the subsamples of Table 7, the most striking change
comes about when the MLCS17-excluded SNe Ia SN 1991U
and SN 1992J are excluded from the SHS–cut Gold and
MLCS31 A samples, reducing these from 68 to 66 objects.
The effect of this is to substantially increase Ωm0 in both
cases, to remove a dramatic negative skew of the bestfit
Ωm0 in the Gold subsample, and to change the Bayesian ev-
idence by an order of magnitude, (a factor 3 in B), in the

Table 7. Parameter values for SN Ia datasets, applying homo-
geneity scale cuts, to the 76 SNe Ia common to Riess07 Gold and
MLCS31 (Sample A); and to the 74 SNe Ia common to Riess07
Gold and MLCS17 (Sample B).

Dataset z cut N χ2 Ωm0 lnB

A Gold
> 0.024 76 60.7 0.20+0.20

−0.19(0.13) 0.73

> 0.033 68 51.0 0.19+0.19
−0.18(0.02) 0.41

> 0.033 66 41.3 0.23+0.24
−0.22(0.23) 0.84

A MLCS31
> 0.024 76 76.6 0.14+0.13

−0.13(0.01) 0.09

> 0.033 68 65.7 0.13+0.11
−0.12(0.01) -0.73

> 0.033 66 51.9 0.16+0.16
−0.15(0.01) 0.40

B Gold
> 0.024 74 50.5 0.24+0.23

−0.23(0.26) 0.80

> 0.033 67 41.3 0.23+0.23
−0.22(0.23) 0.93

B MLCS17
> 0.024 76 76.2 0.18+0.20

−0.17(0.11) 0.93

> 0.033 67 74.5 0.18+0.19
−0.17(0.01) 0.86

case of the MLCS31 subsample. We have not investigated
the reasons for the exclusion of SN 1991U and SN 1992J in
the MLCS17 sample; however, they do indeed appear to be
outliers in the present analysis. To test this hypothesis, we
have recomputed the Riess07 Gold and MLCS31 entries of
Table 6 with the three MLCS17-excluded SNe Ia removed.
The effect of removing two SNe Ia on these larger samples
might expected to be less. Nonetheless, the SHS-cut samples
do show a dramatic change. The Bayesian evidence for the
TS model is significantly increased in each case.

Finally, given that individual SNe Ia which were ex-
cluded from either the MLCS17 or MLCS31 samples by
Hicken et al. (2009) are potential outliers, (at least for the
ΛCDM model), we recompute Table 6 for the 352 SNe Ia
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Table 8. Recalculation of Table 6 for the Riess et al. (2007) Gold
sample and the Hicken et al. (2009) MLCS31 samples, with three
low redshift SNe Ia that were excluded by Hicken et al. (2009)
from their MLCS17 sample, SN 1991U, SN 1992J and SN 1999gp,
excluded.

Dataset z cut N χ2 Ωm0 lnB

Gold
> 0.024 179 151.0 0.34+0.13

−0.11(0.36) -0.77

> 0.033 167 139.9 0.31+0.15
−0.13(0.34) -0.63

MLCS31
None 363 414.9 0.08+0.05

−0.07(0.01) -1.27

> 0.024 276 317.2 0.10+0.08
−0.09(0.01) 0.50

> 0.033 227 248.4 0.13+0.13
−0.12(0.08) 1.68

Table 9. Recalculation of Table 6 for the 352 SNe Ia common to
both the MLCS31 and MLCS17 samples of Hicken et al. (2009).

Dataset z cut N χ2 Ωm0 lnB

MLCS17
None 352 366.9 0.16+0.13

−0.15(0.17) 1.20

> 0.024 266 293.8 0.16+0.14
−0.15(0.18) 1.10

> 0.033 219 238.1 0.19+0.14
−0.18(0.21) 1.37

MLCS31
None 352 403.4 0.08+0.05

−0.07(0.01) -1.31

> 0.024 266 310.0 0.09+0.09
−0.08(0.01) 0.39

> 0.033 219 242.1 0.12+0.12
−0.11(0.07) 1.55

common to both MLCS31 and MLCS17 samples, using each
R

V
normalization. The results are shown in Table 9. For

the SHS-cut samples, there is no overall change to the Ωm0

parameter for the MLCS17 sample, but the bestfit value of
MLCS31 sample is increased to be more in line with the Ta-
ble 8 result. There is now positive Bayesian evidence for the
TS model versus the spatially flat ΛCDMmodel for MLCS17
as well as MLCS31 with the SHS cut.

While the analysis of this section has not been able
to resolve the issue of how similar R

V
values can lead to

quite different expectation values of Ωm0, as evidenced by
the Riess07 Gold sample versus the MLCS31 sample, or by
the SDSS-II sample versus the MLCS17 sample, it does show
that the question of extinction priors, and the SNe Ia ex-
cluded by particular priors, may be crucial to this. Ideally
one should re-evaluate the MLCS2k2 parameter fitting using
the TS model at the outset.

4.5 Parameter sensitivity in the timescape model

The parameter Ωm0 is much more sensitive to the method
of data reduction in the case of the TS model than is the
case for the ΛCDM model. Of course, we have not explored
the goodness of fit of the ΛCDM model when cuts are made
at the SHS in the same way that we have for the TS model,
as there is no theoretical rationale for doing so.

In order to understand differences in the degree of sen-
sitivity of parameter estimation between the two models, let
us consider the fit of the MLCS2k2 data once a SHS cut is

Figure 8. Confidence limits for the TS model fits to z > 0.033
cut samples of Gold07 (Table 8), SDSS-II (Table 6), MLCS17 and
MLCS31 (Table 9). In each case an overall normalization of the
Hubble constant from the published dataset is assumed.
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Figure 9. Confidence limits for the ΛCDM model fits to z >

0.033 cut samples of Gold07 (Table 8), SDSS-II (Table 6),
MLCS17 and MLCS31 (Table 9). In each case an overall nor-
malization of the Hubble constant from the published dataset is
assumed.
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made. In Fig. 8 we display confidence contours for the SHS
(z > 0.033) cut Gold sample of Table 8, the SDSS-II sample
of Table 6, and the MLCS17 and MLCS31 samples of Ta-
ble 9. (In all cases SNe Ia events excluded from either the
MLCS17 or MLCS31 samples have been cut.) Correspond-
ing plots for the spatially flat ΛCDM model are shown in
Fig. 9. Equivalent contour plots for SALT-reduced samples
are not shown, since the value of H

0
is marginalised over in

the SALT data reduction process.
Clearly there are some differences which are intrinsic to

the data reduction method, since even in the ΛCDM model
the best fit value of the matter density parameter varies
from 0.40 ± 0.04 for the SDSS-II sample to 0.26 ± 0.03 for
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the MLCS31 sample. The fact that the dressed matter den-
sity parameter of the TS model is more sensitive than the
corresponding value of Ωm0 for the ΛCDM model is essen-
tially a consequence of different manner in which the pa-
rameters Ωm0 and H

0
affect the luminosity distances in the

two models. In the case of the ΛCDM model the confidence
contours are at roughly 45◦ for the scale chosen in Fig. 9.
By contrast, although the area of the contours is comparable
in both models, on the same scale the confidence contours
for the TS model are close to vertical, especially for the
smaller values of Ωm0 ∼ 0.3. Thus in the case of the TS
model the parameter H

0
is more tightly constrained than

in the ΛCDM model, given whatever overall normalization
of absolute magnitudes is assumed in the data, while the
parameter Ωm0 is less constrained.

Physically, these differences can be understood to be a
consequence of the fact that on one hand the ΛCDM model
has actual accelerating expansion, whereas the apparent ac-
celeration in the TS model is less pronounced and its lumi-
nosity distance is closer to that of an empty Milne universe.

5 DISCUSSION

Even with a SHS cut there remain considerable systematic
issues – probably concerning extinction and reddening by
dust, and intrinsic SNe Ia colour variations – which need
to be resolved before one can draw any reliable conclusions
about the goodness of fit of one cosmological model over
another. These issues have been discussed by many other
groups – see, e.g., Hicken et al. (2009); Freedman et al.
(2009); Kessler et al. (2009); Sullivan et al. (2010); Lam-
peitl et al. (2010).

5.1 Reddening by dust

There are at least four possible sources of dust: (i) dust in the
Milky Way; (ii) dust in the host galaxy; (iii) dust in the local
circumstellar environment of the supernova event; and (iv)
dust in the intergalactic medium. Whereas Milky way dust,
with the reddening law R

V
= 3.1 is well understood, we do

not have direct a priori knowledge of the other three possible
sources of dust. The present status of our understanding
is that while there appears to be no direct evidence of an
intergalactic gray dust which would significantly alter the
SNe Ia luminosity distance relations, the situation regarding
dust within the host galaxy, and within the supernova local
environment, is a complex one.

5.1.1 Host galaxy dust

The nature of dust in the host galaxy would appear to be the
most significant systematic unknown, given that assuming
different values of R

V
can lead to substantial differences in

the MLCS2k2 fitters, and similarly for the value of β in the
SALT/SALT-II fitters. Superficially, the results of Table 9
might appear to favour the MLCS17 over the MLCS31 sam-
ple for the TS model, given the lower value of χ2. However,
it is noticeable that the results for the MLCS17 sample show
essentially no change with the cuts made up to the SHS. By
contrast, the Bayesian evidence for the TS model over the

spatially flat ΛCDM model shows a marked improvement in
Tables 8 and 9 when the SHS cut is applied.

For consistency of the TS scenario an apparent Hubble
bubble feature should be seen below the SHS. Consequently
the most likely expectation for reddening and extinction by
dust consistent with the above results is that, at least at low
redshifts, the reddening law for dust in other galaxies is close
to the R

V
= 3.1 law of the Milky Way. Independent sup-

port for such a conclusion is provided by the recent studies
of Finkelman et al. (2008, 2010) and Folatelli et al. (2010)
(CSP).

Finkelman et al. (2008, 2010) studied dust lanes in 15
E/S0 galaxies with z < 0.033, and determined extinction
properties by fitting model galaxies to the unextinguished
parts of the images in each of six spectral bands, and then
subtracting these from the actual images. They found an
average value R

V
= 2.82 ± 0.38 for 8 galaxies in their first

study (Finkelman et al. 2008), and R
V

= 2.71 ± 0.43 for
7 galaxies in their second investigation (Finkelman et al.
2010). These values are a little lower than the Milky Way
value but consistent with it within the uncertainties.

Folatelli et al. (2010) investigated the reddening law
properties of SNe Ia in host galaxies at z < 0.08 using
well-sampled, high-precision optical and near-infrared light
curves. Although a value of R

V
≃ 1.7 was obtained for the

whole sample, once two very highly reddened objects SN
2005A and SN 2006X were excluded, a value of R

V
≃ 3.2,

similar to the Milky Way one, was obtained by comparison of
colour excesses. In contrast to the results obtained by com-
parison of colour excesses Folatelli et al. (2010) found that
fits of absolute magnitude gave R

V
≃ 1–2, even when the

two highly reddened SNe Ia were excluded. This discrepancy
suggests that in addition to the normal interstellar redden-
ing produced in host galaxies, there is an intrinsic dispersion
in the colours of normal SNe Ia which is correlated with lu-
minosity but independent of the decline rate. This would
suggest that the low R

V
values inferred in the MLCS17 and

SDSS-II analyses may be anomalous, and furthermore that
there may be intrinsic systematic problems with the empir-
ical methodology assumed by the SALT/SALT-II fitters.

5.1.2 Supernova circumstellar dust

The actual picture may be further complicated, however, if
the local circumstellar environment of individual SNe Ia is
important for a significant subclass of events. That this is
potentially the case was borne out by a recent analysis of
Wang et al. (2009). They found that within a sample of 158
relatively normal SNe Ia, roughly one third of the objects
displayed high photospheric velocities, as determined from
Si II λ6355 absorption lines. The high velocity sample of
SNe Ia were found to be on average ∼ 0.1mag redder than
the larger group of “normal” supernovae. This high veloc-
ity sample includes the two very highly reddened objects SN
2005A and SN 2006X, whose exclusion16 led to the R

V
≃ 3.2

16 Of the events in common to the analysis of Folatelli et al.
(2010) and Wang et al. (2009) all apart from three objects SN
2004ef, SN 2005A and SN 2006X are classified by Wang et al.
(2009) as “normal”. Wang et al. (2009) note that there is no
sharp division between their normal and high velocity groupings
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estimate of Folatelli et al. (2010). This could either mean
that the high velocity sample have intrinsically red B – V
colours or that they are associated with dusty local environ-
ments. Evidence for the second possibility is directly seen
in the case of SN 2006X in the nearby Virgo cluster spiral
galaxy17 M100 (Patat et al. 2007; Wang et al. 2008a,b). A
model with multiple scattering of photons by circumstellar
dust is found to steepen the effective extinction law (Goobar
2008). Wang et al. (2009) found that their reddened high ve-
locity subsample preferred a lower extinction ratio R

V
≃ 1.6

as compared to R
V

≃ 2.4 for the normal group, which is con-
sistent with this theoretical model. The difference of the R

V

value of the normal group from the corresponding value of
Folatelli et al. (2010) may be a further hint of a possible
intrinsic colour dispersion of the normal group.

If the sample of Wang et al. (2009) is representative
then perhaps of order one third of SNe Ia could have a dif-
ferent effective R

V
. We note, for example, that 78 objects

are common18 to the sample of Wang et al. (2009) and the
MLCS17 sample (Hicken et al. 2009). Of these 27 are classi-
fied as “high velocity” by Wang et al. (2009), and the rest as
“normal”, which are the same rough proportions as the full
sample. However, one must take great care in making gen-
eralizations based on low redshift samples, as low redshift
SNe Ia are often discovered by targeting galaxies of partic-
ular types, such as massive galaxies. This could introduce
significant statistical biases as compared to SNe Ia sampled
at higher redshifts.

Furthermore, much needs to be done to understand the
astrophysics of nonstandard circumstellar dust, as the rel-
ative proportion of objects could be affected by evolution.
For example, it has been suggested that the nonstandard
dust of SN 2006X might be due to circumstellar material ac-
creted from a companion star in the red giant phase (Patat
et al. 2007). If the nature of the companion star to a SN Ia

when the photospheric velocity approaches a lower value, so that
blending can occur to some extent. The object SN 2004ef is the
only one treated as normal by Folatelli et al. (2010) while being
placed in the high velocity sample by Wang et al. (2009).
17 The circumstellar material around SN 2006X was identified by
the presence of time-variable and blue-shifted Na I D features by
Patat et al. (2007), and from a light echo by Wang et al. (2008b).
Spectroscopic and photometric analysis of extinction due to cir-
cumstellar dust around SN 2006X has been parameterised with
R

V
= 1.48±0.06 (Wang, Li & Filippenko 2008a). VLT spectropo-

larimetry (Patat et al. 2009) provides independent confirmation
that the intervening dust is different in nature from typical Milky
Way dust. SN 2006X is an unusual SN Ia, however, having one
of the highest expansion velocities ever observed, as well as being
very highly reddened. A further sample of 31 SNe Ia has been
studied for the presence of the same Na I D features as SN 2006X
by Blondin et al. (2009). The only object in their sample other
than SN 2006X which exhibited such features was the highly red-
dened SN 1999cl, which is classified as a “high velocity” object
by Wang et al. (2009). There are 24 objects in common to the
studies of Wang et al. (2009) and Blondin et al. (2009) includ-
ing SN 2006X and SN 1999cl. Of the 22 objects which do not
exhibit variable Na I D features, 17 are classed as “normal” by
Wang et al. (2009) and 5 as “high velocity”. This suggests Na I
D variability may not be systematically related to nonstandard
dust.
18 These objects are all at low redshifts, z < 0.06, and some 86%
are within the SHS.

progenitor is important in characterizing nonstandard dust,
then the relative statistics of such events may change with
redshift.

5.1.3 Intergalactic dust

The possible cumulative effects of intergalactic dust ejected
from galaxies has been investigated by Ménard et al.
(2010a), who analysed the reddening of ∼ 85, 000 quasars at
z > 1 due to the extended halos of 20 million SDSS galaxies
at z ∼ 0.3. They found that on large scales dust extinction
has a wavelength dependence described by19 RV ≃ 4.9±3.2.
The cumulative presence of intergalactic dust along the line
of sight turns out not to affect the colour-magnitude-stretch
scaling relations, but does bias cosmological parameters in
the standard cosmology at a level comparable to current
statistical errors, i.e., a few percent (Ménard et al. 2010b).
Accounting for the intergalactic dust led to a 6% increase
in Ωm0 for the spatially flat ΛCDM model. Given the in-
creased sensitivity of Ωm0 in the TS model to changes in the
treatment of SNe Ia systematics, this bias may have an even
greater impact, and should be fully investigated.

5.2 Intrinsic colour variations

As discussed in Sec. 5.1.1 above the analysis of Folatelli et
al. (2010) suggests that there may be an intrinsic dispersion
in the colours of normal SNe Ia which is correlated with
luminosity but independent of the decline rate. This may
be significant in understanding the dramatic differences for
the TS model between the results of the MLCS2k2 fits and
the SALT/SALT–II fits, given that the latter rely on an
empirical parameterisation in which the effects of intrinsic
colour dispersion are degenerate with those of reddening by
dust.

Much effort has gone into both theoretical and obser-
vational studies which attempt to find direct correlations
between SN Ia luminosity and particular effects, including
metallicity of the progenitor, age of the progenitor, asymme-
tries of the explosion, central density and C/O ratio etc20.
While these effects could account for further secondary cor-
rections to the light curve fitting which need to be performed
to account for intrinsic colour variations, a great many more
studies are required to sort out the physics. Indeed, there is
a possibility that different effects are involved in a manner
which may make them difficult to disentangle as the progen-
itor population evolves over cosmological time scales.

It is well established that the age of progenitor system is
a key variable affecting SNeIa properties, a feature which has
been known since the early work of Hamuy et al. (1995), who
observed that in their nearby sample, brighter SNeIa tend to
occur in late-type galaxies. A broad division of SNe Ia can
be made into “prompt” and “delayed” groups (Scannapieco
& Bildsten 2005). The former group comprise intrinsically
brighter slow-declining SNe Ia which come from a young
stellar population and have a rate proportional to the star

19 The analysis of Ménard, Kilbinger & Scranton (2010b) as-
sumed the slightly lower value R

V
= 3.9± 2.6.

20 For a detailed list of references see Sec. 2 of Höflich et al.
(2010).
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formation rate (∼ 0.5Gyr timescale), while the latter group
consists of intrinsically dimmer fast decliners, which take
several Gyr to explode and come from much older popula-
tions with a rate proportional to the mass of the host galaxy
(Sullivan et al. 2006). Since star formation rate increases
over the redshift ranges in which SNe Ia occur, the number
of “prompt” SNe Ia will increase with redshift, and therefore
the mean luminosity of the population should increase with
redshift (Howell et al. 2007).

It is quite possible that it is intrinsic effects related to
the differences between the prompt and delayed events which
are not fully accounted for with the current light curve fit-
ters. However, light curve corrections can reverse the trends
in the underlying population if the fitter only assumes a
single class of standardizable object, when there is actually
more than one. Recent studies by Sullivan et al. (2010) and
Lampeitl et al. (2010) both find a statistically significant cor-
relation between SN Ia luminosity and host galaxy type. In
particular, more passively evolving galaxies tend to host SNe
Ia which, after light curve correction are of order 0.1mag
brighter than those in galaxies with high specific star for-
mation rates. The passively evolving galaxies are generally
more massive, and so there is a related correlation, which
has also been observed in earlier work with smaller nearby
samples (Kelly et al. 2010). Sullivan et al. (2010) studied
SNLS data using the SiFTO light curve fitter, which uses
a similar methodology to SALT. They found that events
of the same light-curve shape and colour were on average
0.08mag brighter, at 4σ confidence, for the the passively
evolving subclass of SNe Ia. The passively evolving subclass
also favoured smaller values of the SALT-like parameter β
than those in galaxies with significant star formation, at
the 2.7σ confidence level. Very similar results were obtained
by Lampeitl et al. (2010) using SNLS data and both the
SALT-II and MLCS2k2 fitters. For MLCS2k2, the favoured
value of the parameter R

V
is found to be different between

the two subclasses, with values R
V
∼ 1 favoured by the pas-

sively evolving subclass and RV ∼ 2 by the the star-forming
hosts.

Both Sullivan et al. (2010) and Lampeitl et al. (2010)
recommend correcting light curves based on two sets of SN
Ia templates, depending on galaxy types. Since the effective
Ωm0 parameter of the TS cosmology is more sensitive to the
differences between different light curve fitters, it would be
extremely interesting to test what effect this would have.

6 CONCLUSION

In conclusion, we find that the principal criticism of the
TS cosmology made by Kwan et al. (2009) does not hold
up when the issues surrounding the systematics of SN Ia
data reduction are thoroughly investigated. In particular,
the unreasonably small bestfit values of Ωm0 (or equivalently
the unreasonably high bestfit values of the void fraction, fv0)
for the full Union and Constitution datasets are an artifact
of failing to exclude SNe Ia below the scale of statistical
homogeneity from the analysis. Such a cut must be made for
the purpose of consistency with the TS model, given that an
apparent Hubble bubble with certain characteristics will be
found below the SHS. The main issue is not the size of the

datasets, as Kwan et al. (2009) claimed, but the systematics
of the data reduction methods.

We have shown that when suitable cuts are made
then the SALT/SALT-II fitters, as currently implemented,
provide Bayesian evidence to favour the spatially flat
ΛCDM model over the TS model. However, by contrast the
MLCS2k2 similarly provide Bayesian evidence that favours
the TS model over the spatially flat ΛCDM model. Basi-
cally, both models are a very good fit and it is the light
curve fitting systematics that underlie the few percent level
differences which have to be sorted out to distinguish the
two cosmologies.

As yet these systematics are not fully understood, and
involve many subtleties. For example, the value of Ωm0 =
0.42 ± 0.10 obtained for the TS model with the SHS-cut
SDSS-II sample is twice the corresponding value for the
SHS-cut MLCS17 sample, Ωm0 = 0.19+0.14

−0.17 , despite their
similar R

V
values. It is clear that the differences do not in-

volve a single parameter alone. Nonetheless, given that an
apparent Hubble bubble below the scale of statistical homo-
geneity is a feature of the TS scenario, the differences be-
tween SHS cuts applied to the MLCS17 and MLCS31 sam-
ples suggest consistency for the TS scenario if galaxies which
host “normal” SNe Ia events have a reddening law with RV

value close to the Milky way value, R
V

≃ 3.1, at least at low
redshifts. Distinguishing “normal” SNe Ia from other events
may be further complicated by

• the existence of a subclass of events with nonstandard
dust, possibly related to circumstellar dust, as evidenced by
the study of Wang et al. (2009);

• the existence of an intrinsic colour variation, uncorre-
lated with decline rate, which distinguishes “normal” SNe
Ia in passively evolving galaxies from those in galaxies with
significant star formation, as evidenced by many studies in-
cluding the recent studies of Sullivan et al. (2010) and Lam-
peitl et al. (2010).

In our opinion systematic questions should ideally be
resolved by detailed studies which attempt to understand
the astrophysics involved with as few cosmological assump-
tions as possible, rather than purely empirical correlations
based on homogeneous cosmologies. For example, in trying
to sort out systematics at the percent level the current ap-
proach is often to test how variation of empirical parameters
affects Hubble residuals, using a standard ΛCDM model or
a homogeneous dark energy cosmology with fixed equation
of state parameter, w. However, such a parameterisation has
no meaning for the TS cosmology, as was demonstrated in
Fig. 3 of Wiltshire (2009), where the equivalent w(z) deter-
mined from a perfectly smooth luminosity distance relation
was found to be ill–defined at z∼ 1.7.

Furthermore, from the viewpoint of the TS model dis-
tinctions based on Hubble residuals should not be used below

the scale of statistical homogeneity, z <∼ 0.033, since a nat-
ural variance in the Hubble flow is to be expected below
this scale. The only scales within which Hubble residuals
would be a safe determinant of empirical correlations would
be over those scales beyond the SHS over which an effective
linear global average Hubble law pertains, e.g., on scales
0.033 <∼ z <∼ 0.1. Beyond such a scale any Hubble residuals,
whether based on the ΛCDM model, the TS model or any
other model, are cosmology-dependent.
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For a simple two model comparison it would be impor-
tant to fully re-perform the MLCS reduction, including cuts
based on extinction priors, using the TS model from the out-
set. Likewise, the changes to Hubble residuals with different
classes of SN Ia light curves for passively evolving galaxies,
as opposed to star-forming galaxies, should be investigated.

Given that the issue of dust extinction and reddening
laws is so entangled with the question of intrinsic colour
variations, we really require many independent studies, such
as those of Finkelman et al. (2008, 2010), which examine
reddening laws in other galaxies without any reference to
SNe Ia.

Cosmology is a unique science, in the sense that its most
basic quantity – distance – can only be determined by as-
suming a cosmological model when interpreting measure-
ments such as spectra, apparent magnitudes and angles on
the sky. We have to be careful to recognize how the cosmo-
logical models we assume affect our approach to data reduc-
tion. The TS model is a well-motivated alternative to the
standard ΛCDM model with some very different properties
to homogeneous cosmologies and cannot be parameterised
by a well-defined dark energy equation of state parameter,
even though the luminosity distance is close to that of FLRW
models. The differences between the two models are at the
same level as the current systematic uncertainties in SN Ia
data reduction which need to be disentangled. We therefore
hope that the TS model might be used alongside the stan-
dard cosmology as a test bed for trying to determine which
systematic effects are truly astrophysical, and which might
have an origin in cosmological assumptions.
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Corredoira M., 2009, Astron. Astrophys. 505, 981.

Tikhonov A. V., Karachentsev I. D., 2006, ApJ 653, 969.
Trotta R., 2008, Contemp. Phys. 49, 71.
Wang X., Li W., Filippenko A. V., 2008, ApJ 675, 626.
Wang X., Li W., Filippenko A. V., Foley R. J., Smith N.,
Wang L., 2008, ApJ 677, 1060.

Wang X. et al., 2009, ApJ 699, L139.
Wiegand A., Buchert T., 2010, Phys. Rev. D 82, 023523.
Wiltshire D. L., 2007a, New J. Phys. 9, 377.
Wiltshire D. L., 2007b, Phys. Rev. Lett. 99, 251101.
Wiltshire D. L., 2008, Phys. Rev. D 78, 084032.
Wiltshire D. L., 2009, Phys. Rev. D 80, 123512.
Wood–Vasey W. M. et al., 2007, ApJ 666, 694.
Zehavi I., Riess A. G., Kirshner R. P., Dekel A., 1998, ApJ
503, 483.


