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Abstract

Background: Geothermal systems are commonly hosted in highly altered and
fractured rock. As a result, the relationships between physical properties such as
strength and permeability can be complex. Understanding such properties can assist
in the optimal utilization of geothermal reservoirs. To resolve this issue, detailed
laboratory studies on core samples from active geothermal reservoirs are required.
This study details the results of the physical property investigations on Rotokawa
Andesite which hosts a significant geothermal reservoir.

Methods: We have characterized the microstructure (microfracture density),
porosity, density, permeability, elastic wave velocities, and strength of core from the
high-enthalpy Rotokawa Andesite geothermal reservoir under controlled laboratory
conditions. We have built empirical relationships from our observations and also used
a classical micromechanical model for brittle failure. Further, we compare our results
to a Kozeny-Carman permeability model to better constrain the fluid flow behavior
of the rocks.

Results: We show that the strength, porosity, elastic moduli, and permeability are
greatly influenced by pre-existing fracture occurrence within the andesite. Increasing
porosity (or microfracture density) correlates well to a decreasing uniaxial compressive
strength, increasing permeability, and a decreasing compressional wave velocity.

Conclusions: Our results indicate that properties readily measurable by borehole
geophysical logging (such as porosity and acoustic velocities) can be used to constrain
more complex and pertinent properties such as strength and permeability. The
relationships that we have provided can then be applied to further understand
processes in the Rotokawa reservoir and other reservoirs worldwide.

Keywords: Geothermal; Uniaxial compressive strength; Permeability; Physical
properties; Elastic modulus; Microstructure
Background
Fractures on multiple scales are the dominant control on fluid flow in most geothermal

systems worldwide. Geothermal environments are prone to variable heat fluxes, dy-

namic fluid flow regimes, and active tectonics which impact the physical and mechan-

ical properties of the reservoir rocks in which they are hosted. The influence of such a

dynamic environment can render the host rocks highly altered, fractured, and micro-

structurally complex. As a result, the empirical correlation of physical properties to
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yield valuable relationships may not be entirely straightforward. Studies of these prop-

erties, and attempts to quantify how they relate to one another in the subsurface, can

greatly assist in the optimization and maintenance of geothermal resources (e.g., Gupta

and Sukanta 2006; DiPippo 2008; Grant and Bixley 2011).

Here, we detail the results of a systematic physical and mechanical property study on

the Rotokawa Andesite; the major reservoir unit within the high-enthalpy Rotokawa

Geothermal Field (Krupp and Seward 1987; Quinao et al. 2013), located within the

Taupo Volcanic Zone (TVZ), North Island, New Zealand (Figure 1). We first examine

the texture, mineralogy, petrology, and microstructure. The key physical properties are

then explicitly investigated: porosity, density, elastic wave propagation and dynamic

elastic moduli, uniaxial compressive strength, static elastic moduli, and permeability. We

empirically correlate the microcrack density of the andesite to the measured physical

properties. Further, we present empirical relationships of physical properties and clas-

sical micromechanical and geometrical models to predict both uniaxial compressive

strength and permeability, respectively. Our data is discussed in relation to the Rotokawa

Geothermal Field and their applicability to other geothermal resources worldwide.

Previous studies of relevance

The study of the core from geothermal systems can yield valuable information to assist

their modeling and understanding. For example, Stimac et al. (2004) present a study
Figure 1 Geothermal fields of the Taupo Volcanic Zone (TVZ), North Island, New Zealand. Core used for
this study was sourced from wells drilled in the Rotokawa Geothermal Field. (Adapted from Sewell et al. 2012).
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detailing the relationship between permeability and porosity from continuous core from

Tiwi geothermal field, Philippines. Their data show that permeability and porosity de-

crease with depth, with occasional deviations attributed to alteration and compaction.

However, the authors are careful to note that their work does not consider the influ-

ence of microfractures and their effect on relevant reservoir parameters. Lutz et al.

(2010) present a case history of the well core from the Desert Peak field (NV, USA) in

preparation for the stimulation of an enhanced geothermal system (EGS) by a thorough

evaluation of petrological strength and elastic moduli. The results of their study eluci-

date relationships between clay mineralogy, rock fabric, and permeability increases as a

result of mechanical shearing which support proposed hydraulic fracture operations in

Well 27-15 at Desert Peak.

The effect of hydrothermal alteration on the physical properties of geothermal core is

also a very significant area of research. Hydrothermal alteration can drastically change

the elastic wave velocities and permeabilities of rock in both the natural and laboratory

environment (Jaya et al. 2010; Kristinsdóttir et al. 2010; Pola et al. 2014). However,

coupled studies of physical properties such as porosity, permeability, and strength on

geothermal reservoir rocks have not been extensively presented. A detailed study of the

impact of a complex microstructure (microfractures and hydrothermal alteration) on

the rock physical properties of a geothermal system such as Rotokawa could serve to

greatly improve the understanding of reservoir processes at multiple scales.

Geothermal systems are more often than not associated with volcanic systems and

are often hosted in rocks sourced from extinct volcanic systems. By proxy, the study of

rocks from volcanic edifices can help to boost the understanding of processes within

geothermal reservoirs especially with regard to microfractures, which play an essential

role in controlling strength, porosity, permeability, elastic wave velocities, and elastic

moduli of rocks (Wu et al. 2000; Guéguen and Schubnel 2003; Pereira and Arson 2013;

Faoro et al. 2013; Pola et al. 2014; Heap et al. 2014). For example, Vinciguerra et al.

(2005) studied the influence of thermal stressing on basaltic samples. They show, using

elastic wave velocities, that the response of microstructurally variable basalts to thermal

stressing can be quite different. While fresh microlitic basalt exhibited severe reduc-

tions in P-wave velocity after exposure to 900°C, the P-wave velocity of porphyritic bas-

alt with a pervasive microcrack network did not change.

Similar dependence on the effect of microfractures on strength (Smith et al. 2009)

and permeability (Nara et al. 2011) has been investigated, with microfractures proving

to be deleterious to strength and to enhance permeability. Heap et al. (2014) showed,

for a suite of pervasively fractured andesites, that an increase in porosity from 8 to 29

vol% decreases strength by a factor of 8 and increases permeability by 4 orders of

magnitude. David et al. (1999) showed that mechanical and thermal microcracking in

granites results in significant changes to permeability and elastic wave velocities. Mech-

anical microcracking resulted in the development of P-wave velocity anisotropy, while

thermally microcracked samples showed little P-wave anisotropy. Additionally, per-

meability was much more varied in mechanically microcracked rocks than those in-

duced thermally, suggesting that thermal microcracks develop isotropically. Chaki et al.

(2008) investigated the role of thermal microcracking in granites and showed that elas-

tic wave propagation is attenuated by microcracks and the orientation of these thermal

microcracks (with regard to the original microstructure) plays a critical role in the
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propagation and attenuation of the waves. Faoro et al. (2013) provide a model for how

microcrack density within an isotropically microcracked sample can be modeled as a

function of aspect ratio and microcrack connectivity. Elastic moduli and elastic wave

velocities are strongly influenced by the morphology, distribution, and shape of pore

space in rocks and are substantially attenuated by the presence of microcracks (Stanchits

et al. 2006 and references therein).

The relationship between porosity and strength has been observed by many authors,

with general agreement that as the porosity of a sample (both rock and other engineer-

ing materials) increases, the strength decreases (e.g., Al-Harthi et al. 1999; Li and

Aubertin 2003; Kahraman et al. 2005; Chang et al. 2006; Diamantis et al. 2009; Ju et al.

2013; Baud et al. 2014; Heap et al. 2014). The geometry of the pores also has a signifi-

cant role in the strength of the materials both intrinsically and with respect to the dir-

ection of stress (Luping 1986). The microstructure of rocks can be changed by

increasing the crack damage (by mechanical and/or thermal stresses) as well as hydro-

thermal alteration (Heap et al. 2009; Nara et al. 2011; Pola et al. 2014); these changes

can be observed through the evaluation of destructive and nondestructive physical

property measurements (Pola et al. 2012 and references therein; Sousa et al. 2005).

Further, Pola et al. (2014) also show that hydrothermal alteration of volcanic rocks

can either strengthen or weaken rocks by decreasing or increasing their porosity,

respectively.

Geological significance of the Rotokawa Andesite

The TVZ is a rifted arc associated with the Hikurangi subduction system in which the

Pacific plate descends beneath the Australasian plate (Cole 1990; Wilson et al. 1995),

and hosts active volcanism and multiple associated hydrothermal systems (Bibby et al.

1995; Rowland and Sibson 2004; Rowland et al. 2010). The Rotokawa field is one of

these active hydrothermal systems and has been the subject of exploration for mineral

resources (sulfur and gold deposits) and, for many years, was the subject of detailed in-

vestigation into its use as a commercial geothermal resource (Collar and Browne 1985;

Krupp and Seward 1987; Hedenquist et al. 1988). More recently, electricity generation

has been realized at Rotokawa following the installations of the Rotokawa I (1997) and

Nga Awa Purua (2010) generation stations (Legmann and Sullivan 2003; Bloomberg

et al. 2012). The more recent of these installations, the Nga Awa Purua power station,

hosts the single largest geothermal turbine installation in the world and has a gener-

ation capacity >140 MWe which is approximately 3 % of New Zealand’s electricity con-

sumption (Horie and Muto 2010).

The main production zone for the installations at Rotokawa is from that of the

Rotokawa Andesite, a series of lavas, pseudo-breccias, and breccias. The movement of

fluid through the andesite is predominantly along fracture networks (Rae 2007; Massiot

et al. 2012). The andesite overlies basement of Miocene greywacke and is capped by a

sequence of volcaniclastic and sedimentary units: Reporoa Group, Wairakei Ignimbrite,

Waiora Formation, and Huka Falls Formation (Krupp and Seward 1987; Rae 2007). The

andesite is gray to green and occasionally purple in color, depending on alteration

within the reservoir; alteration is less intense in the lavas and more intense in the

breccia and pseudo-breccia (Ramirez and Hitchcock 2010). Production of reservoir

fluids is sourced from the Rotokawa Andesite by 12 wells in the central part of the field
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(Figure 2), and re-injection of spent fluids is done through 5 wells along the southeastern

margin of the field (Powell 2011).

Methods
Study source material

The samples used in this study were sourced from Rotokawa production wells RK27L2,

RK28, and RK30 (Figure 2). The measured depths (total borehole length measured

from drilling rig floor), orientations, and corrected true vertical depths (TVD) are listed

in Table 1. The original cores were approximately 6-m long and 100-mm diameter, and

were initially described by the GNS Science Wairakei Research Centre, New Zealand,

in a series of internal industry reports detailing the respective production wells from

surface to total depth (TD). These reports describe the stratigraphic sequences of the

wells and rock types, hydrothermal alteration, and locations of the wells (Rae et al.

2009; Rae et al. 2010; Ramirez and Hitchcock 2010).

At the University of Canterbury (UC), the cores were catalogued and cut into work-

able cylinders approximately 100 mm in length. These smaller sections were over-cored

to obtain smaller cylindrical samples 40 mm in diameter and ranging from 80 to

100 mm in length. All samples were machined so that their end faces were flat and par-

allel in accordance with ISRM standards (Ulusay and Hudson 2007).
Figure 2 Rotokawa geothermal field and production and injection wells used within the field. Wells
RK27L2, RK28, and RK30 were the source of the core used in this study and are outlined with dashed boxes
in the figure.



Table 1 Detail of core retrieval points from within the Rotokawa Andesite reservoir

Well name Measured depth
of core points (m)

True vertical depth
(meters below reference level)

Inclination from
vertical (degrees)

Azimuth from
north (degrees)

RK28 ST1 2,310 to 2,316 −2,215 to 2,221 21.94 50.91

RK27 L2 2,120 to 2,126 −2,001 to 2,007 27.31 88.11

RK30 L1 2,320 to 2,326 −2,175 to 2,182 20.11 218.47

Measured depths are given as measured from the elevation of the drilling rig floor, true vertical depths are corrected to
subsurface elevations, inclination is the deviation from vertical, and azimuth is the orientation of the borehole trajectory.
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Microstructural characterization

The strength, porosity, permeability, and acoustic velocities can be significantly influ-

enced by the presence of microfractures in a sample. Therefore, we deemed it necessary

to develop a fundamental understanding of the microfracture densities in the samples.

In order to characterize these features, 10 polished thin sections were prepared from

offcuts of the cylinders used for the property characterization described below. The

thin sections were prepared perpendicular to the core axis (X-Y plane) and, using re-

flected light thin section photomicrography (at ×40 magnification), were examined for

microfracture densities using the methods suggested by Underwood (1970) and fur-

ther described by Richter and Simmons (1977), Wu et al. (2000), and Heap et al.

(2014). In each thin section, an 11 × 11 mm2 area was selected, which was subdi-

vided into sections of 1 × 1 mm2. The number of cracks that intersected a grid

array of parallel and perpendicular lines that were spaced at 0.1 mm was counted.

This allowed the calculation of the crack surface area per unit volume according

to Equation 1 (Underwood 1970):

Sv ¼ π=2Pl þ 2− π=2ð ÞPll ð1Þ

where Sv is the crack surface area per unit volume (in mm2/mm3), Pl is the number of

perpendicular lines crossed by crack intersections, and Pll is the number of parallel

lines crossed by crack intersections. We also characterized the anisotropy of microfrac-

ture distribution using Equation 2 (Underwood 1970):

Ω23 ¼ Pl−Pll=Pl þ 4=π – 1ð ÞPll ð2Þ

Density and porosity measurements

Once the samples were cut and ground flat and parallel, they were washed with water

to remove any debris from sample preparation. They were then immersed in distilled

water under vacuum of about 100 kPa for 24 h. Samples were taken out of the water

and were weighed after their surface water had been removed. The samples were then

placed into a laboratory oven at 105°C and dried until a constant mass was observed.

Subsequently, they were removed from the oven and held in a dessicator until further

characterization was implemented. Sample lengths and diameters were measured to

within 0.01 mm. The connected porosity and dry bulk density of the samples were cal-

culated following the methods recommended by Ulusay and Hudson (2007).

Characterization of elastic wave velocities and dynamic elastic moduli

The compressional wave (Vp) and shear wave (Vs) velocities and dynamic elastic mo-

duli were measured using a GCTS (Geotechnical Consulting and Testing Systems,
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Tempe, AZ, USA) Computer Aided Ultrasonic Velocity Testing System (CATS ULT-100)

apparatus with axial P- and S-wave piezoelectric transducers (Figure 3). The resonance

frequency of the transducers was 900 kHz, pulse acquisition rate was 20 MHz, and 108

waveforms were captured for each sample. The velocities were collected under a constant

uniaxial stress of 10 MPa via a Tecnotest servo-controlled 3,000 kN loading frame

(Technotest, Modena, Italy) (Figure 3). The stress of 10 MPa was used to ensure a con-

sistent waveform across the specimens and that applied stress was consistent for all

measurement cycles. This was determined to be below microcrack closure and open-

ing stress by analyzing the change in axial strain as the sample was loaded to 10 MPa

(Eberhardt et al. 1998). There was no change in axial strain and absence of acoustic

emissions (AEs) during the initial loading (Brace et al. 1966; Martin and Chandler

1994; Lion et al. 2005; Nicksiar and Martin 2012); this ensured a good quality inter-

pretation of the first arrival time of elastic wave pulses. Using these data, we deter-

mined the dynamic Poisson’s ratio and Young’s modulus using Equations 3 and 4

(Guéguen and Palciauskas 1994), respectively:

V d ¼ Vp2−2Vs2
� �

=2 Vp2− Vs2
� � ð3Þ

Ed ¼ ρVs2 3 Vp2−4Vs2
� �� �

= Vp2− Vs2
� � ð4Þ
Where Vp is compressional wave velocity in meters per second, Vs is shear wave vel-

ocity in meters per second, Ed is the dynamic Young’s modulus in pascal, Vd is the dy-

namic Poisson’s ratio, and ρ is density in kilograms per cubic meter. Our physical
Acoustic Velocity 
Acquisition
(GTCS CATS)

Tecnotest Load Controller
Data Recording
and Piston Control

Load Cell 

SamplePiezoelectric 

Transducers
LVDT

Servo Cylinder

Loading Frame

Height Regulation Platens

Figure 3 Loading frame set-up for acquisition of elastic velocities at the University of Canterbury.
The frame is a Tecnotest 3,000 kN loading frame and a stress of 10 MPa was applied to each sample cycle
to ensure a consistent waveform and quality picking of the first arrival time of the acoustic pulses (note
that the figure is not to scale).
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property characterizations are summarized in Table 2. In addition to the determination

of the elastic moduli from our elastic wave velocity measurements, we also utilized the

method of Martínez-Martínez et al. (2011) to characterize the spatial attenuation of the

compressional waveform anisotropy (Equation 5):

αs ¼ 20 log Ae=Amaxð Þ=L ð5Þ

where αs is spatial attenuation in decibels per centimeter, Ae is the maximum ampli-
tude emitted by the piezoelectric crystal, Amax is the recorded maximum amplitude of

the pulse after passing through the sample, and L is the length of the sample in meters.

Uniaxial compressive strength testing and static elastic moduli

Uniaxial compressive strength (UCS) was determined using a Technotest 3,000 kN,

servo-controlled loading frame (Figure 4). Four strain gauges (20-mm strain gauges

with a gauge factor of 2.12 supplied by Tokyo Sokki Kenkyujo Co. Ltd. (TML)

Shinagawa-ku, Tokyo, Japan) were glued onto each sample. Two vertical gauges mea-

sured axial strain and two laterally oriented gauges measured radial strain; care was

taken to ensure that the strain gauges were perpendicular to their respective axes of de-

formation. The specimens were deformed at a constant strain rate of 1.0 × 10−5 s−1

(controlled by linear variable differential transformer, LVDT) at ambient laboratory

temperature and humidity conditions. During experimentation, AE output was moni-

tored using Physical Acoustics Corporation MISTRAS’ AE node acquisition system

(Princeton Jct, NJ, USA). Two physical acoustics WSα AE transducers (100 to 900 kHz

operating frequency) were attached to the samples at the top and base, and hit counts,

waveforms, energy, and amplitude of the received signals were recorded during sample

deformation. AE monitoring was used during deformation as a proxy for microcracking

as AEs are generated by the release of energy from a material during the propagation

and nucleation of microcracks (Eberhardt et al. 1998; Diederichs et al. 2004). We uti-

lized arbitrary AE energy units (the area under the received waveform signal) for com-

parison of AE activity across the datasets. Once stress-strain curves were obtained and

AE data are processed, we calculated the static elastic moduli for each specimen
Table 2 Results of quantitative microstructural characterization

Sample name Crack density for
intercepts parallel
to orientation axis
P || (mm−1)

Crack density for
intercepts perpendicular
to orientation axis
P | (mm−1)

Crack area per
unit volume
Sv (mm2/mm3)

Anisotropy
factor Ω2,3

Connected
porosity
(vol%)

27_21_0B 13.73 13.53 13.06 0.01 14.91

28_10_5A 4.10 4.41 8.33 0.06 7.47

27_20_4_B 1.83 2.06 3.77 0.08 4.37

27_3_3B 4.77 4.77 9.55 0.01 9.81

30_22_4A 2.77 2.62 5.48 0.01 6.49

28_10_9B 3.84 3.90 7.71 0.03 7.42

28_12_1 4.83 4.65 9.59 0.02 7.89

30_21_1B 2.93 2.91 5.85 0.01 7.47

27_21_3A 5.80 5.13 11.31 0.09 16.3

28_10_6C 2.97 2.87 6.38 0.05 5.97

As discussed in the section on microstructural characterization, crack densities were calculated on thin section samples
to ascertain crack areas per unit volume using the optical microscope method (Underwood 1970).
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Figure 4 Loading frame set-up for determining uniaxial compressive strength (UCS) at University of
Canterbury. Testing was carried out using TML strain gauges and MISTRAS acoustic emission monitoring
equipment. Loading during axial differential stressing was achieved through a constant strain rate of
1.0 × 10−5 s−1 (not to scale).
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utilizing Equations 6 and 7 with the tangent deformation modulus at 50 % of the max-

imum peak stress (Ulusay and Hudson 2007). In addition, we selected portions of the

stress-strain sequence to identify crack closure, crack initiation, unstable crack propa-

gation, and, ultimately, crack coalescence and sample failure (Martin 1993; Eberhardt

et al. 1998; Takarli et al. 2008; Heap and Faulkner 2008):

Es ¼ Δσa=Δεað Þ ð6Þ
vs ¼ − Δεr=Δεað Þ ð7Þ

where Es is the static Young’s modulus (Pa), vs is the static Poisson’s Ratio, σa is the

differential axial stress (Pa), εa is the axial strain, and εr is the radial strain.

Permeability measurements

Gas (argon) permeability measurements were made at the Laboratoire de Déformation

des Roches, Université de Strasbourg (France). The 40-mm diameter specimens were

over-cored to a diameter of 20 mm and cut and ground flat and parallel to a nominal

length of 40 mm. The new samples were then re-evaluated by the triple-weight method

to obtain porosity via the Archimedes’ method (Ulusay and Hudson 2007) and oven-

dried under vacuum at 40°C until no change in sample mass was observed. The samples

were then jacketed with viton sleeves, placed between two steel end-caps and lowered into

the pressure vessel (Figure 5). A confining pressure of 2 MPa was applied to the sample

(provided by distilled water), and permeability measured using the transient method (or

pulse-decay method). For the permeability measurements, an initial differential pore



Figure 5 Gas permeameter used to measure permeability at University of Strasbourg (not to scale).
Confining pressure of 2 MPa was applied using distilled water as the pressurizing media, and pore fluid was
dry argon gas supplied at 1.5 MPa for a net effective pressure of 0.5 MPa.
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pressure was applied to the sample, the upstream inlet was then closed, and the pore pres-

sure decay monitored over time. The downstream fluid pressure (Pdown) was the ambient

atmospheric pressure, and the maximum upstream fluid pressure (Pup) was set so the

pressure differential was 0.5 MPa. Permeability was then calculated using Equation 8

(after Brace et al. 1968):

kgas ¼ 2ηL=Að Þ V up= Pup
� �2− Pdownð Þ2

� �
ΔPup=Δt
� � ð8Þ

where kgas is the gas permeability, η is the viscosity of the pore fluid, A is the cross-

sectional area of the sample, Vup is the volume of the upstream pore pressure circuit

(approximately 7 cm3), Pup is the upstream pore pressure, Pdown is the downstream

pore pressure, and t is the time. By plotting ΔPup as a function of time, the local slope

of the curve is computed to determine the temporal variation of the permeability kgas. To

check whether our data should be corrected for Klinkenberg’s ‘slip flow’ (Klinkenberg

1941), we plotted the measured gas permeability as a function of the inverse of the mean

pore fluid pressure, Pmean. For the transient method, since Pdown is constant, the decay of

Pup through time corresponds to the decay of the mean pore pressure Pmean. We found

that, in all cases, the Klinkenberg correction should be applied:

ktrue ¼ kgas 1þ b= Pmeanð Þ ð9Þ

where ktrue is the true gas permeability, b is Klinkenberg slip factor, and Pmean is the

mean pore fluid pressure.
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Results
In the following section, we present our data and observations on petrology, micro-

structure (quantitative microfracture analysis), macrostructure (bulk density, porosity,

acoustic wave velocities, and dynamic moduli), strength relations (by UCS testing), and

finally the ability of the rock to transmit fluid (permeability) of the Rotokawa Andesite.

Petrology

The Rotokawa Andesite shows moderate to intense hydrothermal alteration with the

groundmass and phenocrysts showing replacement of original mineralogy. Fractures

and occasional veins of quartz, calcite, anhydrite, and epidote occur, and amygdales

within the sample are often filled with chlorite, calcite, hematite, pyrite, and chalced-

ony, often with quartz rims (Figure 6). Alteration is pervasive with the original mineral

assemblages typically replaced by secondary hydrothermal alteration species, with some

specimens showing very little original mineralogical texture. Plagioclase feldspars have

been altered to albite, adularia, occasional calcite, and rare pyrite, and ferromagnesian

minerals have been replaced by chlorite, quartz, calcite, and occasional epidote. Micro-

fractured phenocrysts (Figures 6 and 7) are abundant and many relict phenocrysts

retain original texture are but replaced by secondary mineralization. The average phe-

nocryst size is 0.5 to 1 mm with occasional plagioclase near 1.5 to 2 mm; amygdales

also range from 1 to 1.5 mm in size. The alteration chemistry of the samples indicates

that this portion of the reservoir is dominated by chlorite/epidote alteration. The de-

gree of alteration is relatively consistent across the core we have sampled with most

primary mineralogies replaced by secondary alteration products. Microfracture mi-

neralization indicates that these networks may have been conductive pathways for fluid

migration (i.e., the presence of chlorite clays, adularization of plagioclase, calcite, and

quartz rimming of fractured matrix); we typically observe chlorite, calcite, and quartz

as alteration mineralogies with occasional epidote centers within the fractures. Back-

scatter scanning electron microscopy (SEM) was utilized to further reiterate the complex

interaction of fractures and vesicles in the specimens (Figure 7). At several different mag-

nifications, we see an abundance of microfractures in the samples as well as a clear depic-

tion of the complex alteration mineralogy displayed by the andesite.

Quantitative two-dimensional microstructural analysis

We evaluated the microfracture density of 10 specimens as a function of crack surface

area per unit volume (Table 2). These samples were selected to represent the range of

connected porosities observed within the sample set. We found that the crack area per

unit volume in our samples ranges from 3.77 to 13.06 mm2/mm3 and appears to be in-

dependent of the alteration and mineralogy of the specimens. The calculated anisotropy

factor (Ω2,3), indicates that the microcracks are isotropic (Table 2).

Porosity and bulk density

Bulk density decreases as connected porosity increases, as expected for samples of simi-

lar composition (Figure 8A). Bulk dry densities of the samples range from 2.29 to

2.65 g/cm3, with a mean value of 2.49 g/cm3. The connected porosities range from 4.37

to 16.3 vol%, with a mean value of 8.44 vol%. While there is some variation in the

distribution of pores/vesicles in the samples, we observe that the microcrack density



Figure 6 Thin section photomicrographs of the Rotokawa Andesite. (A) Plane-polarized light of RK28
2310.6C andesitic pseudo-breccia with plagioclase laths (plag.), groundmass is altered plagioclase, abundant
magnetite (mag.), and amygdale (amg.). (B) Cross-polarized light of RK28 2310.6C clearly shows alteration
fabrics of the brecciated andesite with plagioclase (plag.) and amygdales filled with chlorite (cl.) and rimmed
by quartz (qtz.). (C) Plane-polarized light view of RK27_L2 2121.4A showing andesitic breccia with plagioclase
with slight adularia alteration (plag.) and amygdale (amg.) filled with chlorite (cl.), quartz (qtz.), and highly altered
pyroxene (pyx.) in lower portion of image. (D) Cross-polarized light view of RK27_L2 2121.4A shows chlorite infill
of a large amygdale (amg.) in the center of the photomicrograph and quartz rim (qtz.), plagioclase (plag.), and
highly altered pyroxene (pyx.). (E) Plane-polarized light view of RK30 2322.4A shows highly altered
and microfractured plagioclase phenocryst with intense alteration and replacement by chlorite (cl.),
epidote (ep.), calcite (cal), possible biotite (bio.), and small plagioclase showing evidence of adularia
alteration (plag.). (F) Cross-polarized light of RK30 2322.4A illustrates microfracture network and veining with
alteration products of quartz (qtz.), epidote (ep.), biotite (bio.), calcite (cal.), and plagioclase (plag.).
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exerts an important control on the porosity and density, as illustrated by the cor-

relation between crack area per unit volume and connected porosity presented as

Figure 8B.

Ultrasonic wave velocities, dynamic elastic moduli, and spatial attenuation

Measurements made on dry samples under ambient (pressure and temperature) con-

ditions yielded axial P-wave velocities from 3,627 to 4,556 m/s with a mean value of

4,106 m/s, and axial S-wave velocities between 2,160 to 2,752 m/s with a mean value of



Figure 7 Backscattered scanning electron microscope photomicrographs of Rotokawa Andesite.
Samples A to C are from RK28 at 2,310.6 m depth and D to F are from RK27 at 2,121.1 m depth. (A)
Andesite with abundant ferromagnesian minerals (mag.), altered amygdale (amg.), and highly scattered
magnetites (mag. bright hues). (B) Detail of a fractured plagioclase phenocryst showing the microfractured
texture (frac.) and occasional magnetite (mag.). (C) Detail of a fracture infill showing chloritization (cl.) and
abundant ferromagnesian minerals (mag.). (D) Groundmass of RK27 sample; pervasive fracturing is not
apparent at this magnification but the porous network is quite apparent with pyroxene (pyx.), chlorite (cl.),
and plagioclase (plag.). (E) Replacement mineralogy of likely pyroxene phenocryst (pyx.) showing abundant
chloritization (cl.) and dissolution textures. (F) Detail of relict pyroxene and abundant chlorite (cl.) with
abundant microfractures (cl.) apparent in the sample mass.
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2,510 m/s (Table 3). Porosity and P-wave velocities show moderate correlation: samples

with higher porosities have slower elastic wave velocities, as seen in Figure 8C. The

crack area per unit volume also correlates well with P-wave velocity (Figure 8D). The

axial spatial attenuation for the andesites ranges from 8.39 to 28.74 dB/cm (Figure 9).

Figure 9 shows that there is no clear trend between spatial attenuation and P-wave vel-

ocity. Dynamic Poisson’s ratio and dynamic Young’s modulus were in the range of 0.13

to 0.23 and 24.6 to 45.9 GPa, respectively (Table 3).



Figure 8 Relationships of porosity, density, crack area, and compressional wave velocity for
Rotokawa Andesite. (A) Connected porosity versus dry bulk density for Rotokawa Andesite calculated
using the dual weight method of (Ulusay and Hudson 2007). (B) Crack area per unit volume (Sv) plotted
versus connected porosity for samples representing the range of values measured within the measured
dataset. (C) Connected porosity (vol%) using the dual weight method versus axial compressional wave
velocity (Vp) as measured under a stress of 10 MPa which was determined to be below the crack
closure stress (see text for further detail). (D) Crack area per unit volume (Sv) versus compressional
wave velocity (Vp).
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Uniaxial compressive strength and static elastic moduli

In order to characterize the mechanical behavior of the Rotokawa Andesite, the 22

samples of Table 3 were loaded in compression to failure. The dataset shows a large

range of UCS (as observed for the other physical properties), from 60 to 211 MPa. The

stress-strain behavior of the andesites is very similar across the range of strengths, as

shown in Figure 10, which reports curves that best represent the dataset and behavior

of the Rotokawa Andesite under uniaxial compression. All specimens in the dataset

show brittle behavior as evidenced by the stress-strain relationships and bolstered by

analysis of the AE activity. An increase of AE between dilatancy (σcd) and failure is a

benchmark of brittle failure (e.g., Brace and Bombolakis 1963; Rutter 1986; Ashby and

Sammis 1990; Heap and Faulkner 2008), as seen in Figure 10. Weaker specimens

showed lower overall AE energy output than higher strength specimens. Static Young’s

moduli range between 19.9 and 43.7 GPa and static Poisson’s ratio between 0.09 and

0.34. Our data shows that as porosity and crack surface area increases, the UCS of the



Table 3 Physical property measurements of 22 samples used in destructive testing of Rotokawa Andesite
Sample source_well
sample name

Bulk dry
density (g/cm3)

Connected
porosity (vol%)

Vp (m/s) Vs (m/s) Spatial
attenuation (dB/cm)

UCS
(MPa)

Static Young’s
modulus (GPa)

Dynamic Young’s
modulus (GPa)

Static
Poisson’s ratio

Dynamic
Poisson’s ratio

RK_27_L2_21.5B 2.44 10.72 4,005 2,443 14.63 85.99 19.9 35.1 0.24 0.2

RK_27_L2_21.8A 2.33 13.49 3,850 2,363 16.47 79.91 25.2 31.2 0.26 0.2

RK_27_L2_23.2A 2.56 6.61 4,182 2,490 22.48 105.26 31.2 38.9 0.19 0.23

RK_27_L2_20.4B 2.65 4.37 4,556 2,752 22.53 211.05 37.7 45.9 0.25 0.21

RK_27_L2_21.1C 2.37 13.1 3,877 2,405 23.6 69.53 21.5 32.5 0.18 0.19

RK_27_L2_3.3B 2.45 9.81 3,937 2,331 23.51 95.78 32.4 29.9 0.13 0.18

RK_27_L2_21.0B 2.34 14.91 3,752 2,337 8.4 60.13 28.1 30.6 0.12 0.17

RK_27_L2_21.3A 2.29 16.3 3,627 2,160 15.13 70.57 30.4 24.6 0.16 0.17

RK_28_10.6C 2.5 5.97 4,350 2,652 18.27 146.2 43.7 42.4 0.27 0.2

RK_28_10.8C 2.53 6.72 4,147 2,537 11.67 109.91 27.2 39.1 0.34 0.2

RK_28_10.9B 2.51 7.42 4,285 2,615 14.67 137.31 32.4 41.5 0.2 0.2

RK_28_13.2A 2.55 6.97 4,013 2,531 18.53 146.21 38.3 37.2 0.24 0.19

RK_28_10.5A 2.45 7.47 4,220 2,578 14.83 130.71 27.4 38.8 0.25 0.21

RK_28_11.5A 2.51 7.62 4,403 2,555 10.06 152.76 35.6 37.4 0.27 0.13

RK_28_12.1 2.49 7.89 4,010 2,460 12.23 115.01 29.3 36.2 0.22 0.14

RK_30_20.4A 2.57 5.3 4,002 2,495 10.39 140.97 33.6 36.9 0.09 0.15

RK_30_21.0A 2.55 6.84 4,070 2,508 11.17 126.53 26.4 39.8 0.14 0.15

RK_30_21.1B 2.54 7.47 4,352 2,659 28.75 157.93 25.8 43.2 0.17 0.2

RK_30_21.7B 2.56 6.28 4,154 2,588 19.91 162.71 28.3 41.1 0.22 0.18

RK_30_22.3B 2.53 7.51 4,133 2,550 21.72 137.97 31.5 39.2 0.23 0.19

RK_30_22.4A 2.56 6.49 4,181 2,582 20.27 148.44 34.4 40.7 0.18 0.19

RK_30_22.5B 2.56 6.41 4,236 2,628 23.43 150.71 33.6 42.1 0.09 0.16

Mean 2.49 8.44 4,106 2,510 17.39 124.62 30.6 37.5 0.2 0.18

Standard deviation 0.09 3.23 221 133 5.512 37.01 5.5 5.1 0.06 0.03

Siratovich
et

al.G
eotherm

alEnergy
2014,2:10

Page
15

of
31

w
w
w
.geotherm

al-energy-journal.com
/content/2/1/10



Figure 9 Spatial attenuation (αs) of axial compressional P-wave velocity of Rotokawa Andesite.
Attenuation was calculated by the method suggested by Martínez-Martínez et al. (2011) utilizing
transmission of the ultrasonic wave and maximum attenuation of the waveform plotted versus axial
compressional wave velocity (Vp) obtained under an axial stress of 10 MPa.
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rock decreases (Figure 11A,B). Further, the UCS increases as axial P-wave velocity in-

creases (Figure 11C).

Permeability

Our argon permeability measurements show that for the tested samples, permeability

ranges from 9.82 × 10−18 m2 to 1.66 × 10−16 m2 (Table 4). The results show a trend of

increasing permeability with increasing porosity (Figure 11E). We observe that three of

the samples contain macrofractures (black stars on Figure 11E,F) and have higher per-

meabilities that slightly deviate from the trend of the dataset. We also note that as

permeability increases, the axial compressional wave velocity decreases (Figure 11F);

further, those samples with distinct macrofractures show lower compressional velocities

and higher permeabilities when compared with samples of similar porosity.

Discussion
Micromechanical interpretation

We have shown that the Rotokawa Andesite contains a pervasive network of isotropic

microcracks. Due to their isotropic distribution, the majority of these microcracks are

consistent with the results of thermal stressing (Fredrich and Wong 1986; Reuschlé

et al. 2006; Wang et al. 1989; David et al. 1999; Heap et al. 2014). Indeed, the Rotokawa

Andesite has experienced several cycles of heating and cooling: the initial eruption of

the andesite, burial in a faulted graben, hydrothermal alteration, and the eventual ex-

humation during core recovery (Rae 2007; Lim et al. 2012). Our microstructural ana-

lysis has highlighted that the pervasive microcracking appears independent of lithology,

original mineralogy, and secondary (hydrothermal alteration) mineralogy.

The intense microcracking in our samples has shown to be a significant factor in all

of the measured physical properties. First, microcracking has greatly reduced the propa-

gation velocity of elastic waves through the andesite. We see a clear correlation of crack

area per unit volume (Sv) to the observed compressional wave velocities (Figure 8D) and

interpret this to be attenuation of the compressional wave through the cracked intracrys-

talline and intercrystalline boundaries that are abundant in the andesite (e.g., Figures 3

and 4). Many authors (e.g., Vinciguerra et al. 2005; Keshavarz et al. 2010; Blake et al. 2012;



Figure 10 Stress–strain behavior of the Rotokawa Andesite. Samples were subject to constant strain
rate loading (1 × 10−5/s) and monitored for associated arbitrary acoustic emission energy output. All
samples in this study display brittle failure. (A) Samples with low UCS generally develop a single fracture
plane. (B) Samples near mean UCS develop several fracture planes. (C) Samples with very high UCS showed
explosive, catastrophic failure into several large and small pieces with no distinct failure plane.
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Heap et al. 2014) have also shown that the elastic wave velocities can be highly attenuated

by the presence of microcracks.

Second, the crack surface area and UCS have yielded an excellent correlation

(Figure 11B). As noted by Walsh (1965a, b), David et al. (1999), and Chaki et al.

(2008), the density of the cracks within a specimen is critical in dictating its strength. The

development of microcracks during uniaxial compression, and the coalescence of these

cracks (newly formed and pre-existing), leads to the failure of the sample (Brace et al.

1966; Bieniawski 1967). In samples that already show relatively high crack densities, less



Figure 11 Key empirical relationships of the Rotokawa Andesite. (A) Connected porosity (vol%)
plotted versus uniaxial compressive strength (MPa) for Rotokawa Andesite at ambient pressures and
temperatures. (B) Crack area per unit volume (Sv) as measured from reflected light thin sections (method
recommended by Underwood 1970) plotted versus uniaxial compressive strength (UCS) for the Rotokawa
Andesite. (C) Axial P-wave velocity (Vp) as measured at ambient temperatures under an axial load of
10 MPa versus uniaxial compressive strength values for the Rotokawa Andesite at ambient temperature. (D)
Axial compressional wave velocity (Vp) plotted versus connected porosity (vol%) as measured by the dual
weight method (Ulusay and Hudson 2007). (E) Semi-log plot of connected porosity measured by the triple-
weight method (Ulusay and Hudson 2007) versus argon gas permeability with effective pressure of 0.5 MPa.
(F) Semi-log plot of axial compressional wave velocity (Vp) plotted versus argon gas permeability.
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energy is required to coalesce existing cracks and thus they are inherently weaker (David

et al. 1999; Ferrero and Marini 2001; Keshavarz et al. 2010). By utilizing AE monitoring

during our UCS testing, we observe that fewer events occur during uniaxial compression

in weaker samples than those with higher strength (Figure 10), indicating that there are

far more pre-existing cracks in the weaker samples (Hardy 1981; Eberhardt et al. 1998;

Nicksiar and Martin 2012). Thus, the presence of pre-existing microcracks in the

Rotokawa Andesite is shown to exert a strong control on their uniaxial compressive

strength.

Permeability is one of the most important properties of a geothermal system. In this

study, we have seen that porosity (and bulk sample density) and strength are related to

the extent of the microcracking in the andesite. We did not measure the crack surface

area in the samples used for our permeability measurements (the samples will be used

for future studies; calculating crack surface area required destructive thin section



Table 4 Results of density, porosity, argon permeability, and acoustic velocity
measurements for Rotokawa Andesite

Sample source: well
number, depth, name

Bulk dry
density (g/cm3)

Connected
porosity (vol%)

Argon
permeability (m2)

Axial P-wave
velocity(m/s)

RK_27_L2_2120.4A_1 2.55 7.24 1.78E−17 3,943

RK_27_L2_2120.4A_2 2.55 7.06 9.82E−18 4,318

RK_27_L2_2121.1A 2.34 13.97 1.25E−16 3,621

RK_27_L2_2123.3A_1 2.48 9.22 3.32E−17 3,911

RK_27_L2_2123.3A_2 2.46 10.25 4.13E−17 3,793

RK_27_L2_2123.7A_1 2.52 9.73 3.69E−17 3,840

RK_27_L2_2123.7A_2 2.50 10.35 3.72E−17 3,704

RK_27_L2_2124.1B_1 2.54 7.63 3.24E−17 3,954

RK_27_L2_2124.1B_2 2.56 6.93 2.81E−17 4,032

RK_27_L2_2121.0A_1 2.42 13.14 1.66E−16 3,532

RK_27_L2_2121.0A_2 2.33 14.23 6.09E−17 3,642

RK_28_2310.3A_1 2.46 9.94 4.26E−17 3,760

RK_28_2310.3A_2 2.48 9.70 4.44E−17 3,650

RK_28_2310.8A_1 2.50 8.95 3.45E−17 3,830

RK_28_2310.8A_2 2.50 9.22 3.43E−17 4,076

RK_28_2310.9C_1 2.46 10.30 3.21E−17 3,725

RK_28_2310.9C_2 2.53 7.64 1.65E−17 4,096

RK_28_2311.1B_1 2.55 7.04 1.53E−17 4,259

RK_28_2311.1B_2 2.56 7.35 2.05E−17 4,190

RK_28_2311.3B_1 2.50 9.10 3.21E−17 4,026

RK_28_2311.3B_2 2.49 9.17 2.50E−17 4,183

RK_30_2320.6A_1 2.53 7.90 7.10E−17 3,765

RK_30_2320.6A_2 2.56 7.79 1.70E−17 4,061

RK_30_2321.0B_1 2.50 8.24 2.50E−17 3,762

RK_30_2321.0B_2 2.54 8.47 2.50E−17 4,164

RK_30_2321.2B_1 2.58 7.11 2.38E−17 4,235

RK_30_2321.2B_2 2.55 6.98 2.37E−17 4,122

RK_30_2321.5A 2.57 6.92 2.60E−17 3,965

RK_30_2322.3A_1 2.54 7.61 2.44E−17 4,016

RK_30_2322.3A_2 2.57 6.83 2.27E−17 4,069
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preparation). However, we can, by proxy, assume a correlation between permeability

and the extent of the microfracture network. We show that there is a clear inverse rela-

tionship between the sample’s permeability and P-wave velocity such that as permeabil-

ity increases, compressional wave velocity decreases (Figure 11F). These results are

consistent with the many investigations have shown a clear link between reduced elas-

tic wave velocities and increased permeability (David et al. 1999; Vinciguerra et al.

2005; Chaki et al. 2008; Nara et al. 2011; Faoro et al. 2013; Heap et al. 2014). While we

have not measured the relationship of crack density to permeability directly in our

dataset, we show that Sv and Vp are inversely related (Figure 8D), and a similar rela-

tionship exists between Vp and permeability. Therefore, we can infer that those sam-

ples with higher crack surface areas will be inherently more permeable.
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Key empirical relationships

In this section, we present relationships of singular variables that could be readily and

easily measured either using photomicrography or geophysical logging tools and their

correlation to more complicated and pertinent physical properties. All of these parame-

ters are singularly measurable variables that do not rely on complex formulae for their

derivation (such as dynamic Young’s Modulus or Poisson’s ratio) and so have been se-

lected to be the key relationships that we present with relevance to the Rotokawa

Andesite.

Porosity and UCS

An exponential correlation between sample porosity and UCS exists (Figure 11A).

Such correlations have been utilized by several authors (e.g., Vernik et al. 1993; Li and

Aubertin 2003; Palchik and Hatzor 2002; Kahraman et al. 2005; Chang et al. 2006;

Palchik 2013; Pola et al. 2014) for a variety of clastic and volcanic rocks and concrete

materials. These authors present empirical fits for the correlation of physical properties

versus UCS and show a wide range of correlation within their respective datasets with

R2 values from near 0.6 to as high as 0.95. We propose that our empirical fit between

porosity and UCS (an exponential fit with a correlation factor of 0.82, Figure 11A) can

provide useful estimations of the strength of the reservoir rocks within the Rotokawa

Andesite reservoir. By utilizing estimations of UCS derived from the correlation of por-

osity, the minimum strength of the rocks can be applied to important engineering is-

sues such as wellbore stability (Chang et al. 2006; Schöpfer et al. 2009).

Vp and UCS

There is an exponential correlation between strength and Vp with an R2 value of 0.74

(Figure 11C). As noted by Kahraman (2001), the relationship between Vp and UCS is

generally nonlinear and the higher the strength of the material, the more scattered the

data points. Heap et al. (2014) came to similar conclusions following measurements on

andesitic rocks from Volcán de Colima (Mexico). In our study, there is an increasing

trend of strength with increasing Vp but, as shown in Figure 9, there is a high degree

of spatial anisotropy with respect to Vp such that a robust correlation of strength to

elastic wave velocity is difficult to obtain. However, Vp is a widely utilized logging tool

in borehole geophysics (Chang et al. 2006), and using the correlation that we have ob-

tained, a minimum strength criteria could be established from the response of the log-

ging tool. This is an important correlation as geophysical logging is much easier, faster,

and more efficient than cutting spot cores (as the core for this study was obtained),

and so the development of empirical correlations to constrain strength such as that

seen in Figure 11B can help mitigate risk and reduce the cost associated with geother-

mal drilling programs.

Vp and porosity

Correlations between Vp and porosity show an increasing trend of porosity with de-

creasing Vp (Figure 11D, also observed by Al-Harthi et al. 1999; Rajabzadeh et al. 2011;

Tugrul and Gurpinar 1997; Heap et al. 2014). This can be attributed to both the pore

structure distribution and the degree of microcracking within the andesites. It is clear

from microstructural analysis (using both optical and scanning electron microscope
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analyses) that a large proportion of the porosity in the Rotokawa Andesite is likely to

be composed of (macro- and mesoscale) fractures and microcracks (e.g., Figures 6 and 7).

An explanation for the variation and wide distribution of the elastic wave velocity

data for samples with similar porosities (specifically with regard to those data that

range from 4,000 to 4,400 m/s) is that there must be a variable pore (vug/vesicle) con-

tent or hydrothermal alteration between the samples. The presence of pores will greatly

augment the porosity (due to their aspect ratio) but will have comparatively little in-

fluence, compared to the microcracks, on the P-wave velocity. The application of our

exponential relationship (Figure 11D) can give a rough approximation for seismic vel-

ocities derived from connected porosity, or vice versa. This may be useful during the

drilling of additional wells at Rotokawa where porosity can be measured at the wellsite

and yield a rough approximation for P-wave velocities and, as such, tie back to our em-

pirical correlations of strength (Figure 11C).

Permeability and porosity

Our permeability and porosity data show that there is a clear trend of increasing poros-

ity with increased permeability for the Rotokawa Andesite (Figure 11E), a common ob-

servation in multiple lithologies (e.g., Heard and Page 1982; Géraud 1994; Stimac et al.

2004; Chaki et al. 2008; Watanabe et al. 2008; Heap et al. 2014). We observe that our

relationship between porosity and permeability can be described by a power law correl-

ation and is consistent with the Kozeny-Carman relation (Guéguen and Palciauskas

1994, see the ‘Application of micromechanical and geometrical permeability models’

section). The dependence of permeability on porosity is generally explained by the as-

sumption that a more connected pore space (cracks and pores) provides more efficient

pathways for fluid migration (e.g., Costa 2006; Chaki et al. 2008). We do however need

to consider those data points that have a very similar value of permeability (approxi-

mately 3.2 × 10−17 m2, Table 4), with a porosity range of 7.6 to 10.3 vol% that indicate

that there is variability of the samples with respect to permeability that may be reflected

in the tortuosity of the porous network. This is consistent with the findings of Bernard

et al. (2007) and Heap et al. (2014) such that the permeability in volcanic rocks is

highly dependent upon connectivity of the microstructure.

With respect to microstructure, we have shown that the porosity is very closely

linked to crack surface area (Figure 8D) and, thus, that increasing crack density corre-

sponds to a sample with a higher permeability. The three samples that lie slightly out-

side the trend of the dataset display distinct mesofractures (black stars in Figure 11E,F)

and that these mesofractures greatly enhance the permeability of the samples without

significantly increasing their porosity. These specimens show higher than average per-

meability for their porosity, which supports the conclusions of Stimac et al. (2008) that

meso- and macrofractures are critical in controlling the permeability of geothermal res-

ervoir systems. On the large scale, macrofractures are necessary for fluid production

from geothermal reservoirs, but the microstructural characteristics of the host rocks

cannot be neglected when considering fluid flow, storage capacity, and total permeabil-

ity of the reservoir (Jafari and Babadagli 2011).

The robust relationship between porosity and permeability has wider-scale reservoir

applications where the need to understand reservoir rock permeability (the mass itself,

not those portions with highly macroscopic fractures e.g., Massiot et al. 2012) is important
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for reservoir forecasting and modeling. Measurements of porosity can then yield a good

approximation of the permeability of the intact reservoir rock at Rotokawa through our

power law correlation (Figure 11E). However, we urge caution if the porosity falls outside

our measured range. As porosity is a readily measureable property by geophysical logging

tools (Ellis and Singer 2008), the response from such a tool, together with our empirical

fit, can give engineers and geoscientists an approximation of the matrix permeabilities in

the Rotokawa Andesite.

Permeability and acoustic velocities

There is a clear inverse relationship between our measurements of permeability and

P-wave velocity (Figure 11F) such that the more permeable the sample, the slower the

compressional wave velocity. These findings are consistent with the findings of many

other authors (e.g., Vinciguerra et al. 2005; Chaki et al. 2008; Nara et al. 2011; Heap

et al. 2014). The correlation of such properties is an excellent tool for understanding

the micro- and mesoscopic fracture networks and their relation to permeability in the

Rotokawa Andesite as follows: (1) we have shown that the porosity and crack density

are closely linked (Figure 8A), (2) acoustic velocity and crack density are closely linked

(Figure 8D), and (3) there is a power law correlation of Vp and permeability (Figure 11F).

Thus, there is a direct link of P-wave velocity to permeability that is reliant on the crack

densities of the samples. The relationship we present in Figure 11F shows a power-law fit

which would indicate that the hydraulic radii of the pore space (pore and cracks) are simi-

lar in size but that the higher the concentration of cracks, the higher the permeability we

observe (Bourbie and Zinszner 1985).

Similarly, there are occasional mesofractures (with apertures less than 1-mm width;

we note that these fractures are much smaller than those described in Massiot et al.

2012) in the samples that deviate from the rest of the dataset (black stars, Figure 11F).

The presence of these macrofractures increases permeability (by a factor of 2) and also

appears deleterious to elastic wave propagation (all the three samples containing meso-

fractures have low elastic wave velocities, although we cannot separate the influence of

meso- and microcracks on the velocities of these samples). Further, elastic waves are

useful for the detection of cracks in rock and concrete (Chaki et al. 2008; Heap et al.

2013), and a decreased elastic wave velocity correlates well to more permeable media

which is observed by the three outlying, higher permeability, lower elastic wave velocity

samples.

The correlation between elastic wave velocity and permeability outside the laboratory

has potentially far-reaching value for the prediction of reservoir permeability interac-

tions from wireline logging and larger-scale seismic and microseismic surveys. There is

a complex microseismic network installed at Rotokawa, and the location of earthquake

activity has been closely linked to macroscopic permeability within the reservoir (Sewell

et al. 2013; Sherburn et al. 2013). The existing model of the velocity structure at depth

could then be further refined using our acoustic velocity and permeability data for res-

ervoir rock matrix. This may allow a deeper and more accurate understanding of the

distribution of permeability at depth.

Additionally, the data we have presented can also be used to infer values of matrix

permeability from acoustic wireline logs (dipole sonic) used during exploration at nearby

Ngatamariki Geothermal Field (Wallis et al. 2009). Should similar geophysical logging be
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used in future wells drilled at Rotokawa, the matrix permeability may be estimated using

the relationship we present here. In addition, the coupling of these data with microseismic

data could allow a significant increase in understanding the complexity of the Rotokawa

Andesite reservoir. While we are aware that macrofractures augment the elastic wave vel-

ocity during routine acoustic profiling (e.g., Barton and Zoback 1992), our laboratory data

show that although samples containing mesofractures (i.e., on the sample scale) are

shifted to higher permeabilities and elastic wave velocities, they do not stray too far away

from the trend extrapolated from our power-law relationship. Despite this, we urge a cer-

tain degree of caution, based on the potential presence of large-scale fractures, when esti-

mating permeability using our derived permeability-elastic wave velocity relationship.

Application of micromechanical and geometrical permeability models

Extracting empirical relationships between laboratory-derived rock properties is useful;

however, the parameters are not easily related to independently measurable quantities

(i.e., they lack a physical basis). Micromechanical (e.g., the wing-crack model of Ashby

and Sammis 1990) and geometrical permeability models (e.g., the Kozeny-Carman rela-

tion, Guéguen and Palciauskas 1994) can be better constrained as the parameters used

in such models have a clear physical meaning. In this section, we attempt both sliding

wing-crack modeling and Kozeny-Carman permeability modeling to investigate the

microstructural controls on deformation and fluid flow, respectively.

Micromechanical modeling

Micromechanical modeling can provide useful insights in the mechanics of compressive

failure in brittle rock (Wong and Baud 2012). Since the rocks of this study contain high

microcrack densities, we will use the sliding wing-crack model of Ashby and Sammis

(1990). This model idealizes the rock microstructure as an elastic continuum embedded

with inclined (45°) microcracks (of length 2c). These microcracks act as stress concen-

trators for the initiation of ‘wing’ cracks when the frictional resistance of the closed

crack is overcome and the stress at the tip of the crack exceeds the critical stress inten-

sity factor (KIC). The cracks can then propagate in the direction of the maximum prin-

cipal stress. Eventually, the cracks coalesce, resulting in the failure of the elastic medium.

In the case of uniaxial compression, Baud et al. (2014) derived an analytical approxima-

tion to estimate UCS:

UCS ¼ 1:346ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2‐

p
μ

K Icffiffiffiffiffi
πc

p D−0:256
0 ð10Þ

where μ is the friction coefficient of the sliding crack and D0 is an initial damage par-

ameter that is a function of the angle of the initial microcrack with respect to the max-

imum principal stress and the initial number of sliding cracks per unit area (Ashby and

Sammis 1990).

The analytical solution (that assumes an initial crack angle of 45°) presented above

contains five parameters. We have, through experimental data and observations, a good

handle on three of the parameters: (1) we have measured the UCS of 22 samples

(Table 3), (2) μ rarely deviates from 0.6 to 0.7 (Byerlee 1978), and (3) c can be determined

from optical microscopy (we determined c by measuring the approximate average length

of the microcracks under the microscope). We do not have a laboratory-determined value
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for KIC. While the KIC of andesite has been previously measured to be about 1.5 MPam0.5

(Ouchterlony 1990; Obara et al. 1992; Tutluoglu and Keles 2011; Nara et al. 2012), there

is no guarantee that this value is representative of the Rotokawa Andesite, which is likely

to be lower than these values due to hydrothermal alteration. We therefore have chosen a

slightly lower KIC of 1.0 MPam0.5 for our analysis. Using our UCS data, we can solve

Equation 10 to assign a value of D0 to each experiment (using μ = 0.6; KIC = 1.0; c =

0.001 m). The goal of such analysis, assuming that the other parameters remain roughly

constant between different samples/cores, is to estimate D0 using an easily measured

physical property, such as Vp (therefore allowing us to predict rock strength, using the

micromechanical model, from Vp measurements alone). Our analysis shows that D0

ranges from 0.0019 to 0.26 for the 22 measured samples (with average of 0.039). D0 is

plotted against the crack area per unit volume (Sv) and Vp in Figure 12 and indicates that

D0 increases as Sv increases (Figure 12A). While this may appear logical (D0 is a function

of the initial crack density), it serves as an encouraging proof of the concept. The increase

in D0 with crack density is not linear; D0 increases more rapidly beyond 10 mm−1

(Figure 12A). We also see that Vp decreases with increasing D0; in detail, Vp decreases

rapidly as D0 increases from 0 to 0.05 and then decreases more gradually above 0.05. Un-

fortunately, the relationship between D0 and Vp is a little more clouded (the data are

more scattered, Figure 12B) and probably represents variable vesicle density (the model

assumes that vesicles do not play a role in failure in compression) and hydrothermal alter-

ation (we assume that KIC and the average crack lengths are constant). The conclusion of

this pilot analysis is that the variability within the Rotokawa Andesite is potentially too

large to permit meaningful microstructural wing-crack modeling, but greater success

could be achieved with laboratory-determined values for KIC. Therefore, if micromechani-

cal modeling is to be deployed as a feasible method to predict the strength of Rotokawa

Andesite reservoir rocks, the samples/cores should be grouped by their alteration, and

KIC measured for each alteration group.
Figure 12 Results of geometric modeling for Rotokawa Andesite. (A) Initial damage parameter D0 as
predicted by Equation 10 and described by Baud et al. (2014) plotted versus calculated crack densities by
the method of (Underwood 1970). (B) Prediction of compressional wave velocity (Vp) as a function of the
initial damage parameter D0 the relationship between D0 and Vp shows a moderate correlation with high
initial damage parameter but becomes quite clouded in those samples with a very small calculated D0

(see text for further expansion on this relationship).
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Permeability modeling

Kozeny-Carman models are those that use the notion of a hydraulic radius (see Guéguen

and Palciauskas 1994) to correlate porosity and permeability. Forms of the Kozeny-

Carman relation have previously been used in the study of volcanic rocks (e.g., Saar and

Manga 1999; Costa 2006; Bernard et al. 2007; Heap et al. 2014), while others have used a

heavily simplified version (e.g., Rust et al. 2003; Mueller et al. 2005; Lavallée et al. 2013).

The Kozeny-Carman relation is of the form:

kKC ¼ φ rHð Þ2
bτ2

ð11Þ

where kKC is the permeability, φ is the connected porosity, b is a geometrical factor, τ is

the tortuosity of the equivalent channel (i.e., the ratio of its actual to nominal length),

and rH is the hydraulic radius (i.e., the volume of pores divided by the surface of the

pores). The power law exponent for our data (excluding those samples with macrofrac-

tures) is about 2.2 (Figure 11E) and is therefore consistent with the Kozeny-Carman

model (Bourbie and Zinszner 1985; Doyen 1988). In detail, one would expect a power

law exponent of 2 or 3 if the elements controlling the permeability are tubes or cracks,

respectively (Guéguen and Palciauskas 1994). Our power law exponent is between these

two values. This is somewhat surprising, considering the pervasive fracture network in

these materials, but could reflect flow through a combination of cracks and tubes or

our limited porosity range. Since the entire dataset can be described by a single power

law exponent, we conclude that within our limited range of connected porosities, there

is no dramatic shift in pore space connectivity or tortuosity, as was the case for

Fontainebleau sandstone at a porosity of 9 vol% (Bourbie and Zinszner 1985) and andesite

samples from Volcán de Colima (Mexico) at a porosity of about 11 vol% (Heap et al.

2014). Extrapolating to porosities outside this range may be treacherous especially to

lower porosities where samples may become subject to a higher power law exponent.

However, within the dataset, the model predicts an increase in permeability of a factor

of 1.5 for an increase in porosity of 1 vol% (an increase not uncommon for rock follow-

ing a thermal stressing episode; e.g., Chaki et al. 2008).

Application of results to geothermal exploration and utilization

The relationships between porosity, acoustic wave velocities, strength, and permeability

are valuable for understanding a geothermal reservoir. Our data indicate strong corre-

lations between these parameters, as observed by Stimac et al. (2004, 2008) amongst

others. The data we have obtained are from cores sourced from three production wells.

Such materials are very expensive to obtain, time consuming, and, if coring did not go

as planned, can pose great risk of losing the well (Finger and Blankenship 2010; Hole

2013). The microstructural and empirical correlations presented in this study can be

applied to new wells drilled in geothermal environments and can help refine studies on

pre-existing wells, if our correlations hold true at the reservoir scale. Some physical pa-

rameters, such as porosity and elastic wave velocities, are easily obtainable through the

use of down-hole geophysical logging suites. The empirical correlations shown in this

study (bolstered by our application of classical models) show that readily measurable

physical properties may therefore be used to predict more complex and pertinent proper-

ties such as strength and permeability. Such correlations and calibrations are common in
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the hydrocarbon industry especially during exploration drilling (e.g., Vernik et al. 1993

and references therein), and we consider that our dataset can help improve the un-

derstanding of the Rotokawa reservoir while minimizing the risk to future drilling

operations.

A clear understanding of the factors that control reservoir rock permeability is funda-

mental for the planning of stimulation and enhancement operations that may be neces-

sary as the Rotokawa field and reservoir dynamics change with continued production.

The need to drill additional wells or re-work pre-existing wells may become apparent

and the ease at which the reservoir can accept and deliver fluids (i.e., its permeability)

will be of utmost importance. The thermal stimulation of injection wells has taken

place at Rotokawa for some time by the injection of power-plant condensates and spent

brines (Siega et al. 2009), but the technique may play a significant role in enhancing

production wells at some future stage.

Therefore, a deeper understanding of how permeability may be increased through

stimulation is important. The application of models such as the Kozeny-Carman may

provide insight to permeability enhancement. An increase in the porosity of reservoir

rock by 1 vol%, according to the geometrical model, should increase the permeability

by a factor of 1.5. In the case of an aging field and aging wellbores, such an increase

could greatly extend the life of the field. In the interests of keeping geothermal projects

commercially economic, the fundamental understanding of the reservoir rock proper-

ties become essential to the continued utilization and management of the field.

Conclusions
Our study provides a comprehensive evaluation of the physical and mechanical proper-

ties of the Rotokawa Andesite through a multi-disciplinary approach. We have evalu-

ated the Rotokawa Andesite from the microstructural to macroscopic scale and have

presented robust datasets that permit the correlation and comparison of important

physical properties to geothermal exploitation. A comprehensive understanding of how

the relationships of microstructural texture influence key physical properties such as

strength and permeability, essential for the optimal utilization of a geothermal resource

have been investigated.

Further, we summarize our conclusions as follows:

1. We have shown that the presence and intensity of microfracturing in the Rotokawa

Andesite are the predominant controlling factors on physical and mechanical

properties. The behavior of these properties is also shown to be largely independent

of the alteration mineralogy as we see similar alteration intensities in the samples

we have studied.

2. Guided by a systematic understanding of role of microfractures, we show that

empirical correlations of strength and porosity can be developed and applied to

field scale engineering problems. We have shown that as the porosity increases, the

strength decreases and elastic wave velocities are attenuated. Similarly, we show

that permeability increases with increased porosity and reduced acoustic velocity.

These findings are applicable if geophysical logging tools be used after the drilling

of wells to ascertain properties such as porosity; our dataset provides useful means

to address complex reservoir problems.
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3. We further boost our empirical correlations by applying classical physical models

based on sound physical theory to predict both UCS and permeability through

understanding of the microstructure. We have applied these models with some

success, but these models are best-suited for homogeneous, isotropic materials.

Further work to constrain these models should include laboratory investigations of

fracture toughness (KIC) and the factors that influence this variable. However, our

fit for the damage criterion D0 is acceptable and builds the foundations for future

understanding and may permit the construction of similar better constrained

models.

4. The study comprises a large dataset with a goal to further push the knowledge that

can be sourced from a geothermal environment such as the Rotokawa Andesite.

The properties that we have evaluated are very difficult to constrain without direct

information from rocks sourced from the reservoir. Geothermal reservoirs are

complex, and harsh environments from which the recovery of intact core can

present a significant and financially risky challenge. The results that we present

here help us to understand this complex reservoir environment by their application

to field scale engineering and geological issues.

5. Our analyses have provided quantifiable and measurable physical properties of the

Rotokawa Andesite. However, the dataset is not exhaustive. Further studies need to

be carried out to replicate near-reservoir conditions in the laboratory and should

focus on permeability at the high confining pressures and temperatures found in

the reservoir. Additionally, mechanical testing such as triaxial, tensile strength, and

fracture toughness experiments should be conducted under high-temperature

conditions, potentially in the presence of reservoir-type fluids to aid in predictions

of reservoir behavior and geomechanical modeling under conditions as close as

possible to those found in the reservoir.
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