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Abstract

This thesis concerns representation growth of finitely generated torsion-free nilpotent

groups. This involves counting equivalence classes of irreducible representations and

embedding this counting into a zeta function. We call this the representation zeta

function.

We use a new, constructive method to calculate the representation zeta functions of

two families of groups, namely the Heisenberg group over rings of quadratic integers and

the maximal class groups. The advantage of this method is that it is able to be used to

calculate the p-local representation zeta function for all primes p. The other commonly

used method, known as the Kirillov orbit method, is unable to be applied to these

exceptional cases. Specifically, we calculate some exceptional p-local representation

zeta functions of the maximal class groups for some well behaved exceptional primes.

Also, we describe the Kirillov orbit method and use it to calculate various examples

of p-local representation zeta functions for almost all primes p.





Chapter 1

Introduction

1.1 Introduction

This thesis applies the study of asymptotic group theory to nilpotent groups, in fact

finitely generated torsion-free nilpotent groups. For all N ∈ N we will count the

number of (equivalence classes of) complex irreducible representations of degree N of

a nilpotent group G, say rN(G). Studying the arithmetic properties of this sequence

for (not necessarily nilpotent) groups, is called representation growth. To aid our

study we embed these numbers as coefficients in a zeta function. The general idea of

representation growth, and in fact the field of asymptotic group theory, is to relate

arithmetic information associated to a group, which is possibly (but not necessarily)

encoded in a zeta function (for example abscissa of convergence, zeros, poles, and

functional equations) to group theoretic information (for example Hirsch length of the

group and its subquotients, nilpotency class, and length of derived series).

Let G be a finitely generated torsion-free nilpotent group. We call these groups

T -groups. Let χ be a 1-dimensional complex representation and ρ an n-dimensional

complex representation of G. We define the product χ ⊗ ρ to be a twist of ρ. Two

representations ρ and ρ∗ are twist-equivalent if, for some 1-dimensional representation

χ, then χ ⊗ ρ ∼= ρ∗. This twist-equivalence is an equivalence relation on the set of

irreducible representations of G. It is easy to check that the reflexive, symmetric, and

transitive properties hold. In [21] Lubotzky and Magid call the equivalence classes

twist isoclasses. We say Sρ, the twist isoclass containing an irreducible representation

ρ is of dimension n if and only if ρ is an n-dimensional representation. They also show

that there are only finitely many irreducible n-dimensional complex representations

up to twisting and that for each n ∈ N there is a finite quotient G(n) of G such
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1. Introduction

that each n-dimensional irreducible representation ρ of G is twist-equivalent to one

that factors through G(n); that is, for each irreducible representation ρ of dimension

n there is a twist-equivalent representation χ : G → GLn(C), and homomorphism

β : G(n) → GLn(C) such that χ = β ◦ α, where α : G → G(n) is the canonical

projection. Henceforth we call the n-dimensional complex representations of G simply

representations. We denote the number of twist isoclasses of irreducible representations

of dimension n by rn(G) or rn if no confusion will arise.

Consider the formal expression

ζ irrG (s) =
∞∑
n=1

rn(G)n−s.

If ζ irrG (s) converges on a right half plane of C, say D, where D := {s ∈ C | <(s) > α}
for some α ∈ R, we call ζ irrG : D → C the representation zeta function of G. For any

T -group such a D always exists [28, Lemma 2.1]. We call αG := α the abscissa of

convergence of ζ irrG (s). Let ζ irrG,p(s), where

ζ irrG,p(s) =
∞∑
n=0

rpn(G)p−ns

and p a prime, be the p-local representation zeta functions of ζ irrG (s). Considering the

domain D of ζ irrG,p(s) as above, we say αG,p := α is the p-local abscissa of convergence

of ζ irrG,p(s).

We know by [21, Theorem 6.6] that in each twist isoclass there exists a represen-

tation ρ such that ρ factors through a finite quotient. Since G is nilpotent, its finite

quotients are nilpotent and therefore decompose as a direct product of their Sylow-p

subgroups. Since the irreducible representations of direct products of finite groups are

the tensor products of irreducible representations of their factors, its representation

zeta function decomposes into an Eulerian product of its p-local representation zeta

functions and therefore ζ irrG (s) =
∏

p ζ
irr
G,p(s). Moreover, it was shown by Hrushovski

and Martin [14] that these p-local representation zeta functions are rational functions

in p−s.

This thesis deals with the representation zeta functions of certain families of T -

groups. We approach the problem of constructing these zeta functions in two ways.

One way, which we call the constructive method, calculates the p-local zeta functions of

some T -groups by constructing all of its twist isoclasses and then counting how many
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1.2 Layout of Thesis

n-dimensional twist isoclasses exist for each n ∈ N. The other way, which is known as

the Kirillov orbit method, counts certain structures, explained later, relating to the Lie

ring associated to a given T -group. Both methods have their strengths and weaknesses

and we compare these two methods later in this chapter.

We note that we give all presentations of a T -group G in terms of a Mal’cev

basis (see, for example, [1, End of Section 3]). As is standard in the literature, all

commutators that do not follow from the ones appearing in the chosen presentation

of a T -group are assumed to be trivial. We remind the reader of this fact at various

points in the thesis.

1.2 Layout of Thesis

The structure of this thesis is as follows. Chapter 1 is an introduction to the subject of

representation growth and the motivation behind its study. This chapter also includes a

section comparing the two different methods of calculating representation zeta functions

used in this thesis.

Chapter 2 contains the preliminaries. It gives definitions of concepts used in the

rest of the thesis, as well as some standard results using these concepts. Note that

everything in this section is standard but is included for the sake of completeness. At

the end of this chapter is a list of notation used throughout the thesis.

Chapter 3 introduces the constructive method and uses this method to calculate

all p-local representation zeta functions of the Heisenberg group over the integers of a

quadratic number field. Additionally in this section, we briefly mention how this result

is confirmed, and generalized, in [28].

Chapter 4 uses the constructive method to calculate most p-local zeta representation

functions of a family of maximal class groups of nilpotency class n, denoted Mn;

more specifically, we calculate all p-local zeta functions when p ≥ n and, for a given

prime p, the p-local zeta function of Mp+1. We calculate all p-local representation zeta

functions for M3 and M4, for which the structure of the twist-equivalent irreducible

representations of ”small prime”-power dimension (but not the p-local representation

zeta function) are of a more complicated form than in general.

Chapter 5 briefly explains the Kirillov orbit method developed by Voll in [29] to

calculate p-local representation zeta functions for almost all primes p. We then calculate

a number of p-local representation zeta functions of T -groups. Most of these T -groups

are given by Lie rings that appear in [9, Chapter 2]. This is in relation to a project with
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1. Introduction

Robert Snocken to calculate the representation zeta functions of all T -groups appearing

in that chapter. Finally, and in the same vein, we briefly mention results, together with

Snocken, that will appear in a future paper by us. Note that all calculations in this

chapter are performed by the author of this thesis; the only collaborative results are in

the final section of that chapter, which is titled appropriately.

Finally, Chapter 6 concludes the thesis. It notes some observations about work in

this thesis and describes possible future work in the area of representation growth of

T -groups, notably future work in regards to the constructive method.

Before we begin the mathematical part of the thesis, we give some background on

representation growth and an area that motivated its study, subgroup growth.

1.3 Subgroup Growth

Zeta functions have been used to study many different mathematical structures. Fa-

mously, Riemann zeta functions encode information about prime numbers. Zeta func-

tions have also been used to study number fields in algebraic number theory through

Dedekind zeta functions.

Zeta functions have been used to study various types of groups. For example, zeta

functions were used to count maximal subgroups of classical and alternating finite

simple groups by Liebeck and Shalev in [20]. In [19], by Liebeck, Martin, and Shalev,

zeta functions were used to extend the results of [20] to arbitrary finite simple groups.

The idea of using zeta functions to study representations of groups is motivated by

the subject of subgroup growth. In that area, one uses zeta functions to count finite

index subgroups; that is, if G is a group and an(G) := |{H ≤ G | |G : H| = n}| then

we can construct the subgroup zeta function:

ζ≤G (s) =
∞∑
n=1

an(G)n−s. (1.3.1)

Note that all an(G) are finite if G is finitely generated. If the coefficients an(G) count

normal subgroups of index n instead, we say that

ζ/G(s) =
∞∑
n=1

an(G)n−s (1.3.2)

is the normal subgroup zeta function of G.

Grunewald, Segal, and Smith [12] were the first to use the method of subgroup zeta
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1.4 Representation Growth

functions to study T -groups. In that paper, the authors set up some machinery and

methods to calculate both normal subgroup zeta functions and subgroup zeta functions.

These methods include calculating p-local zeta functions using p-adic integrals [12,

Section 2] and studying (possibly normal) subgroup zeta functions by studying Lie

ring zeta functions of the Lie ring associated to a given T -group which are simpler to

analyze; see [12, Sections 3-4] for details. The authors also calculate various examples

of (normal) subgroup zeta functions [12, Section 8], including the normal subgroup zeta

function of a family of groups for which we calculate the representation zeta function

in this thesis. Also in that paper, the authors show that both p-local subgroup and

normal subgroup zeta functions are rational polynomial functions in p−s. Moreover,

the degree of these functions are bounded independently of the prime p chosen. The

result that p-local representation zeta functions of T -groups are rational polynomial

functions, proven by Hrushovski and Martin in [14, Theorem 8.4], is analogous.

Many more examples of p-local subgroup, normal subgroup, and Lie ring zeta

functions have been calculated. In fact, du Sautoy and Woodward, in [9, Chapter

2] give a list of many examples of calculations performed. Most of the representation

zeta functions calculated in Chapter 5 of this thesis are of groups associated to Lie

rings which appear in the aforementioned chapter.

1.4 Representation Growth

The idea of using zeta functions to study representation growth was introduced in

[30], in which Witten studies compact Lie groups. Later, representation zeta functions

were studied in [22], where Lubotzky and Martin use representation zeta functions to

study arithmetic groups, and in [15] where Jaikin gives rationality results concerning

representation zeta functions of compact p-adic analytic groups with property FAb

(a group has property FAb if every open subgroup has finite abelianization). This

method uses Howe’s work [13] on the Kirillov orbit method and the concept of p-adic

integration to calculate the zeta functions.

Representation zeta functions of T -groups were first studied by Hrushovski and

Martin in [14] using model-theoretic methods. The study of representation growth of

T -groups was expanded by Voll in [29]. In that paper, Voll develops a method for cal-

culating p-local representation zeta functions for a given T -group G. This method, like

the method that appears in [15], involves Howe’s work in [13], particularly Theorem 1.a

and results from p-adic integration. Note that a large part of the method that appears

9



1. Introduction

in [29] is also used in that paper to study other types of growth, including subgroup

and subring growth. We briefly explain this method, as applied to representations of

T -groups, at the beginning of Chapter 5.

Stasinski and Voll, in [28], generalize Voll’s work in [29] to T -groups coming from

unipotent group schemes. The authors also generalize the functional equation that

appears in [29]. We mention more about these results later in this section.

Representation zeta functions have been used to study other classes of groups. We

briefly mention some work done in these areas. In [3] Avni et al. study compact p-

adic analytic groups and arithmetic groups. In [4], Avni et al. study representations

of arithmetic lattices and prove a conjecture by Larsen and Lubotzky. In [2] Avni

shows that arithmetic groups have representation growth with rational abscissa of

convergence. Bartholdi and de la Harpe, in [5], study representation zeta functions of

wreath products with finite groups. Craven, in [7], gives lower bounds for representation

growth for profinite and pro-p groups. In this paper it is shown that, for a profinite

group G with property FAb, Rn(G) ≥ c log n(log log n)1−ε for some constant c and any

ε > 0, where Rn(G) is the number of irreducible representations of G of dimension not

greater than n.

Since this thesis is concerned with representation growth of T -groups, we give a

list of important results used in the study of representation zeta functions, as well as

results obtained through the study of representation growth of T -groups.

Theorem 1.4.1 ([21, Theorem 6.6]). Let G be a T -group. For every n ∈ N there is a

finite quotient of G, say G(n), such that each n-dimensional irreducible representation

of G is twist-equivalent to one that factors through G(n). In particular, the number of

n-dimensional twist isoclasses is finite.

Theorem 1.4.2 ([14, Theorem 8.4]). For a given T -group G (and also for any finitely

generated nilpotent group with torsion) and for all primes p we have that ζ irrG,p(s) = A
B

where A,B are polynomials in p−s with coefficients, depending on p, in Z.

Note that this result was proved in [29, Proposition 3.1] by non-model-theoretic

means, but only for almost all primes p.

Theorem 1.4.3 ([29, Theorem D]). Let G be a T -group where d′ is the Hirsch length

of the derived group G′. Then, for almost all primes p, ζ irrG,p(s) satisfies the following

functional equation upon inversion of p:

ζ irrG,p(s)|p→p−1 = pd
′
ζ irrG,p(s). (1.4.1)

10



1.4 Representation Growth

This result is analogous to functional equations satisfied by (possibly normal)

subgroup zeta functions, although the functional equation in those cases does not

always exist and is of a slightly more complicated form. Let ∗ ∈ {≤, /}. Then, for

some (but not all) T -groups G,

ζ∗G,p(s)|p→p−1 = (−1)npa−bsζ∗G,p(s) (1.4.2)

for some n, a, b ∈ N. Examples of T -groups where these zeta functions satisfy the

functional equation above, and examples where there does not exist a functional

equation of this type, appear in [9, Chapter 2].

Stasinski and Voll generalize, for a restricted class of groups, both the result of

Hrushovski and Martin [14, Theorem 8.4] and the functional equation of Theorem

1.4.3.

Theorem 1.4.4 ([28, Theorem A]). Let GΛ be a unipotent group scheme as in [28, Sec-

tion 1.2] and O the ring of integers of a number field. Then there exists a finite set S of

prime ideals of O, t ∈ N, and a rational function R(X1, . . . , Xt, Y ) ∈ Q(X1, . . . , Xt, Y )

such that for every prime ideal p ⊂ O with p 6∈ S the following is true: there exist

algebraic integers λ1, . . . , λt depending on p such that, for all finite extensions D of Op

one has

ζ irrGΛ(D)(s) = R(λf1 , . . . , λ
f
t , q
−fs), (1.4.3)

where q is the residue field cardinality of Op, and f := f(D,Op) is the relative degree

of inertia. In particular, ζ irrGΛ(D)(s) is a rational function in q−fs. Furthermore, the

following functional equation holds:

ζ irrGΛ(D)(s)| q→q−1

λi→λ−1
i

= qfdζ irrGΛ(D)(s) (1.4.4)

for some d ∈ N as defined in [28, Section 1.2].

Also in that paper [28, Section 2.4], the authors generalize the Kirillov orbit method

introduced in [29] in the case of T -groups of nilpotency class 2 arising from unipotent

group schemes so that it can be used to calculate the p-local representation zeta function

for all primes p.

In subgroup growth, it was shown in [8, Theorem 1.1] that if, for some T -group G,

α is the abscissa of convergence of a p-local (possibly normal) subgroup growth zeta

function ζ∗G,p(s) then α ∈ Q+. While it is currently unknown whether p-local repre-

sentation zeta functions of T -groups have rational abscissas of convergence, Robert

11



1. Introduction

Snocken has observed [27] that, given α ∈ Q+, there exists a T -group G (in fact of

nilpotency class 2) such that, for almost all p, ζ irrG,p(s) has abscissa of convergence α.

Very few representation zeta functions of T -groups appear in the literature. We

now give a list of all of these functions appearing in print.

Theorem 1.4.5 ([23, Theorem 5]). Let H := 〈x, y, z | [x, y] = z〉 be the Heisenberg

group over the rational integers. The representation zeta function of H is

ζ irrH (s) =
ζ(s− 1)

ζ(s)
, (1.4.5)

where ζ(s) is the Riemann zeta function.

Theorem 1.4.6 ([10, Theorem 1.1]). Let H√d be the Heisenberg group over the integers

of some quadratic number field Q(
√
d), as defined in Chapter 3. The representation

zeta function of H√d is

ζ irrH√d(s) =
ζDQ(
√
d)

(s− 1)

ζDQ(
√
d)

(s)
, (1.4.6)

where ζDQ(
√
d)

(s) is the Dedekind zeta function of Q(
√
d).

Theorem 1.4.7 ([28, Theorem B]). Let n ∈ N and δ ∈ {0, 1}. We define the following

Z-Lie lattices:

Fn,δ = 〈x1, . . . , x2n+δ, yij, 1 ≤ i < j ≤ 2n+ δ | [xi, xj] = yij〉 (1.4.7)

Gn = 〈x1, . . . , x2n, yij, 1 ≤ i, j ≤ n | [xi, xn+j] = yij〉

Hn = 〈x1, . . . , x2n, yij, 1 ≤ i ≤ j ≤ n | [xi, xn+j] = [xj, xn+i] = yij〉

with all Lie brackets not appearing above assumed to be trivial. Let Fn,δ, Gn, and Hn

be the unipotent group scheme associated to the Lie lattices above. Let O be the ring of

integers of some number field K. Also, let m be so that n = 2m + ε where ε ∈ {0, 1}.
Then

ζ irrFn,δ(O)(s) =
n−1∏
i=0

ζDK (s− 2(n+ i+ δ) + 1)

ζDK (s− 2i)
(1.4.8)

ζ irrGn(O)(s) =
n−1∏
i=0

ζDK (s− n− i)
ζDK (s− i)

(1.4.9)

ζ irrHn(O)(s) =
ζDK (s− n)

ζDK (s)

m−1∏
i=0

ζDK (2(s−m− i− ε)− 1)

ζDK (2(s− i− 1))
. (1.4.10)
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1.5 Kirillov Orbit Method vs. Constructive Method

where ζDK (s) is the Dedekind zeta function of K.

Note that Theorems 1.4.5 and 1.4.6 can be seen as a special case of the preceding

theorem, where K = Q,Q(
√
d), respectively, and we consider the T -group, say, H1(O).

However, both Theorems 1.4.5 and 1.4.6 appeared chronologically before Theorem

1.4.7.

We also note that the forthcoming PhD thesis of Robert Snocken will contain a

wealth of calculations of representation zeta functions of T -groups. Noting that we do

not directly appeal to p-adic integration in this thesis, we also recommend Snocken’s

thesis as an introduction to the techniques of p-adic integration applied to calculating

representation zeta functions of T -groups.

1.5 Kirillov Orbit Method vs. Constructive Method

In this section we compare and contrast the two different methods of calculating repre-

sentation zeta functions of T -groups: the constructive method appearing in Chapters

3 and 4, and the Kirillov orbit method, first studied in [29] and used in Chapter 5 of

this thesis. Each method has its own strengths and weaknesses.

We call primes p which violate the hypotheses of Voll’s Kirillov orbit method

Kirillov-exceptional primes. Additionally, we call primes p for which the p-local repre-

sentation zeta function of a group G must be calculated in a special case constructive-

exceptional primes. If the context is clear, we shorten both to exceptional primes.

We call any prime that is not P-exceptional a non-P-exceptional prime, where P is

either “Kirillov” or “constructive.” Again, if no confusion will arise, we shorten this

to non-exceptional prime.

The constructive method is quite general. This method makes no extra hypotheses

besides the choice of group. The techniques shown in Chapters 3 and 4 could, in princi-

ple, be used to calculate the representation zeta function of any T -group. However, as

the complexity of the eigenspace structure of the irreducible representations increases,

the complexity of the calculation may increase as well. We do note that this method

relies on less mathematical machinery than the Kirillov orbit method and thus can be

appreciated with minimal technical background. This method explicitly constructs all

twist isoclasses of dimension pN , for some p and N , and thus it is easy to read off the

coefficients rpN (G) of the representation zeta function, without the need of a recursive

formula.

13



1. Introduction

The main benefit of the constructive method is that primes are not excluded by

the method itself, as opposed to the Kirillov orbit method. While there may be special

cases that occur in the calculation for certain primes, the p-local representation zeta

function of these primes can still be calculated. Provided one can do the calculation,

one can understand the entire representation theory of irreducibles of a T -group by the

constructive method. We are able to calculate all irreducible representations of groups

M3 and M4 (see Chapter 4) and thus their representation zeta functions. This is not

possible using the Kirillov orbit method.

While it is true that there are only finitely many of these Kirillov-exceptional primes,

comparing the p-local representation zeta functions of non-exceptional primes may not

be sufficient to distinguish two T -groups from each other. The constructive method

allows for the calculation of all p-local representation zeta functions, and thus one has

a finer invariant of T -groups.

The mathematically deeper methods that appear in [29] and [28] allow for easier

computations in many cases since, in these methods, one counts representations without

constructing them explicitly. The machinery that appears in [29], powered by deep

mathematical results including Hironaka’s resolution of singularities, allows one to

naively calculate p-local representation zeta functions by, essentially, linear algebra.

The Howe correspondence [13, Theorem 1.a] allows one, for almost all primes, to

linearize the computation of calculating the number of pN -dimensional irreducible

representations. However, Voll’s method does not explicitly (without using a linear

recurrence relation) give the coefficients rpN (G), for some non-exceptional p and some

N. This is because it parameterizes representations in a way different to dimension of

twist isoclass; see Chapter 5 for details.

A main strength of the Kirillov orbit method is the possibility to study p-local

representation zeta functions more generally than the constructive method. Indeed,

the functional equation of Theorem 1.4.3 is proved via the Kirillov orbit method. As it

presently stands, the constructive method seems unable to prove such a result. In fact,

using the Kirillov orbit method, one can understand much about p-local representation

zeta functions by understanding antisymmetric matrices over the ring Z/pNZ for each

N. This translates the problem of counting representations to linear algebra over the

ring of p-adic integers.

Also, as shown in [28], the Kirillov orbit method is able to use number-theoretic

information about a T -group to help study the p-local representation zeta functions.

Indeed, the representation zeta function of the group H√d in Chapter 3 can be fully

14



1.6 Comparing Subgroup and Representation Growth

calculated by the Kirillov orbit method that appears in [28]. The constructive method,

in its current form, “forgets” any number-theoretic structure and thus treats all T -

groups the same way.

1.6 Comparing Subgroup and Representation Growth

In all examples calculated so far, we find that representation zeta functions of T -

groups are of a simpler form than those of subgroup zeta functions. This is clear even

for groups with simple structure: for some d ∈ N, comparing

ζ≤Zd(s) =
d−1∏
i=0

ζ(s− i) (1.6.1)

and

ζ irrZd (s) = 1 (1.6.2)

one sees the difference in complexity immediately. This difference seems to increase,

in an informal sense, very rapidly; let L be the Lie ring G6,7, as defined in Table 5.1

in Chapter 5 and G the T -group associated to L by the exp map; see [26, Chapter 6].

Then, for almost all p,

ζ irrG,p(s) =
(1− p−s)2

(1− p1−s)(1− p2−s)
. (1.6.3)

However,

ζ/G,p(s) = (1− p−s)(1− p1−s)(1− p2−s)(1− p4−3s)(1− p3−4s) (1.6.4)

× (1− p5−5s)(1− p6−5s)(1− p6−6s)(1− p7−7s)W

where W is a polynomial in p, p−s of degree 40 and with 16 terms.

It is of note that both representation zeta functions and normal subgroup zeta

functions seem to be able to capture the number-theoretic information of a T -group,

at least in the case of the Heisenberg group over the integers of a number field K of

degree at most 3 over Q; that is, both the representation zeta function and normal

subgroup growth zeta function can be written in terms of Riemann zeta functions,

Dedekind zeta functions of K, and Euler products of polynomials in p, p−s; see [9,

Chapter 2], Chapter 3, and Theorem 1.4.7 for details. It is worth noting that Theorem

1.4.7 shows that this pattern holds for representation zeta functions for number fields

of arbitrary degree.
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1. Introduction

1.7 Main Results

We give a list of main results of this thesis. The following chapters give the workings

of these results in detail.

The main result of Chapter 3 is Theorem 1.4.6.

The following theorem is the main result of Chapter 4.

Theorem 1.7.1. Let Mn := 〈a1, . . . , an, b | [ai, b] = ai+1〉 be a family of maximal class

groups of nilpotency class n. Then for all p ≥ n, for p if n = p+1, and for p = 2, n = 4

the p-local representation zeta function of Mn is

ζ irrMn,p(s) =
(1− p−s)2

(1− p(n−2)−s)(1− p1−s)
. (1.7.1)

This implies that if n ∈ {2, 3, 4} then

ζ irrMn
(s) =

ζ
(
s− (n− 2)

)
ζ(s− 1)(

ζ(s)
)2 , (1.7.2)

where ζ(s) is the Riemann zeta function.

The main results of Chapter 5 are various examples of calculations of representation

zeta functions by the Kirillov orbit method. These results are too numerous to list here;

we direct the reader’s attention to Section 5.3.1 of Chapter 5 and to Table 5.2.
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Chapter 2

Preliminaries

2.1 Introduction

We begin by discussing the objects we intend to study. Nilpotent groups are, in some

sense, a generalization of abelian groups. Informally, while two elements a1, a2 in some

abelian group A commute “immediately”, two elements n1, n2 in a nilpotent group N

commute “eventually”.

There are many open questions about nilpotent groups. For example, it is still

unknown, in most cases, how many finite groups of order pn exist, for prime p and

n ∈ N (see, for example, [18]). Thus, there is still much to learn. This thesis deals

with examples of infinite, yet finitely generated nilpotent groups. To learn more about

T -groups and representations, see Appendix A of this thesis.

We note a few things for the remainder of this thesis. First, until indicated

otherwise, any arbitrary group G that appears in this thesis is a T -group. Second,

we always mean “complex representation” when we say “representation”.

2.2 Number Theoretic Concepts

Much of the work in this thesis relies on solving polynomial equations modulo a prime

power. Underlying this concept is the theory of p-adic numbers. While we do not use

the concept explicitly in the thesis, we mention them here so that the reader can get a

feel for the connection between our work and p-adic numbers, and in particular, p-adic

integers.

Definition 2.2.1. Let p be a prime and let Ap = {0, 1, . . . , p − 1}. The set of p-adic

17



2. Preliminaries

numbers, denoted Qp, is the set of all formal series

∞∑
i=k

aip
i (2.2.1)

where k ∈ Z and ai ∈ Ap. The set of p-adic integers, denoted Zp, is the subset of p-adic

numbers such that k ≥ 0.

The p-adic integers can also be defined algebraically in terms of an inverse limit of

an inverse system. The field of fractions of Zp is then Qp (see, for example [11]). Also

note that, for any prime p, Z ⊂ Zp.

Definition 2.2.2. Let q :=
∑∞

i=k aip
i ∈ Qp. The p-adic valuation of q, denoted vp(q),

is defined by

vp(q) = min{i | ai 6= 0} (2.2.2)

If this does not exist, that is if q = 0, we say that vp(q) = ∞. If q is a p-adic integer,

we also say that

vp(q) mod pN = min{vp(q), N}. (2.2.3)

For this thesis we only consider vp(q) for q ∈ Z so vp(q) < ∞. An excellent

introduction to p-adic numbers and their properties is the book p-adic Numbers: An

Introduction by Gouvea [11].

In our work, we will have to count how many solutions of a polynomial equation

exist mod prime powers pN as N varies. A useful result for this counting is Hensel’s

Lemma. Indeed, we use this result in Chapter 3 to “lift” solutions of polynomial

equations. For details, see, for example, [11, Chapter 3.4].

Theorem 2.2.3 (Hensel’s Lemma). Let f(x) be a polynomial with integer (or p-adic)

coefficients and let f ′(x) be its formal derivative (i.e. for each non-constant term axn

in f(x) the corresponding term in f ′(x) is naxn−1 while constant terms disappear).

Then, for some s ∈ Z and k ∈ N, if

f(s) ≡ 0 mod pk and f ′(s) 6≡ 0 mod p (2.2.4)

then there exists an integer t such that

f(t) ≡ 0 mod pk+1 and t ≡ s mod pk (2.2.5)
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2.2 Number Theoretic Concepts

and this t is unique mod pk+1. Thus, if f(x) satisfying the conditions above has n

solutions mod pk, it also has n solutions mod pk+` for ` ∈ N.

We now introduce another type of zeta function from algebraic number theory. We

use this in Chapter 3. For more details see, for example, [6, Section 10.5].

Definition 2.2.4. Let K be an algebraic number field and OK its ring of integers.

Then ζDK (s) =
∑

I⊆OK (NK/Q(I))−s is the Dedekind zeta function of K where I runs

through the non-zero ideals of OK and NK/Q(I) is the norm of I with respect to Q.

The zeta function ζDK (s) has an Euler product decomposition

ζDK (s) =
∏

P⊆OK

1

1− (NK/Q(P ))−s
,

where P runs over all non-zero prime ideals of OK . This decomposition reflects the

unique factorization of ideals of OK .

We recall another standard definition; see, for example, [6, Section 3.3]. This

definition can generalize to number fields of larger index, however we limit ourselves

to the case of quadratic number fields.

Definition 2.2.5. Let p be a rational prime, d be a squarefree integer, Od be the

integers of a quadratic number field Q(
√
d) and consider the ideal (p) C Od. If (p) is

prime then p is inert. If (p) is the product of two distinct prime ideals then p splits. If

(p) is the square of a prime ideal then p is ramified.

This definition is equivalent to the equation x2 − ∆ ≡ 0 mod p having 0, 2, or 1

solution, respectively and where ∆ is the discriminant of Q(
√
d). We note that ∆ = 4d

if d ≡ 2, 3 mod 4 and ∆ = d if d ≡ 1 mod 4. We also note that there are only a

finite number of ramified primes and a prime p is ramified if and only if it divides the

discriminant of the number field.

The following is a well known result.

Proposition 2.2.6. Let p be a prime and Q(
√
d) be a quadratic number field. Then

the p-local Dedekind zeta function of Q(
√
d) is
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2. Preliminaries

ζDQ(
√
d),p

(s) =



1

1− p−2s
if p is inert,

(
1

1− p−s

)2

if p splits,

1

1− p−s
if p is ramified.

2.3 Representation Zeta Functions of T -Groups

We introduce a lemma to count 1-dimensional twist isoclasses. We leave the proof as

an exercise for the reader.

Lemma 2.3.1. For a T -group G, there is only 1 twist isoclass of dimension 1. That

is r1 = 1, where r1 is the first coefficient in ζ irrG (s).

Also, we introduce a definition that describes the form of representation zeta

function in terms of how many different general types of p-local representation zeta

functions occur in the Euler factorization of some representation zeta function.

Definition 2.3.2. Let ζ irrG (s) =
∏

p ζ
irr
G,p(s) be the representation zeta function of a T -

group G. We say that ζ irrG (s) is finitely uniform if there exists a finite set of polynomials

in two variables, say F , such that, for all primes p greater than some distinguished prime

p∗, there is a f ∈ F such that ζ irrG,p = f(p, p−s). If there is only one rational function

needed, that is if n = 1, then we say that ζ irrG (s) is uniform.

Note that we show that all representation zeta functions in this thesis are finitely

uniform and that all but the representation zeta function of H√d is uniform.

2.4 Non-Standard Notation

Definition 2.4.1. Let G be a T -group of nilpotency class c. Then G is a maximal

class group if h(G) = c+ 1.

Since we mention roots of unity often in the course of this thesis we use the following

notation.
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Definition 2.4.2. Let S∞p be all complex p`th roots of unity for all ` ∈ N ∪ {0} and

Skp be the pkth roots of unity for k ∈ N ∪ {0} (and note that, for k ≥ 1, the elements

of the set Skp\Sk−1
p are the primitive pkth roots of unity). Define s : S∞p → N such that

s(λ) = k if and only if λ ∈ Skp\Sk−1
p . If s(λ) = k we say that λ has depth k.

We introduce some notation in regards to integers mod pN for some prime p and

N ∈ N. Let

Z∗n,pN = (Z/pNZ)n \ (pZ/pNZ)n; (2.4.1)

that is, for n ∈ N, the set of n-tuples of elements of Z/pNZ such that at least one entry

is a unit.

The calculation of the irreducible representations of Mn will involve k-simplex

numbers. Let T0(0) = 1, T0(j) = 1, and Tj(0) = 0 for j ∈ N and recursively define

Tk(j) =
∑j

l=1 Tk−1(l) = Tk(j − 1) + Tk−1(j) for k ∈ N. The next lemma lists some

properties of these numbers that are needed in the thesis.

Lemma 2.4.3. Let i, j, k, b ∈ N, p be a prime, and Tk(j) be defined as above.

i. Tk(i) =
(
i+k−1
k

)
= i(i+1)...(i+k−1)

k!
.

ii. Tk(i)− Tk(j) = (i− j) γ
k!

for some γ ∈ Z.

iii. If p > k then for b ∈ N and 1 ≤ α ≤ p− 1 we have Tk(αp
b + j) = Tk(j) mod pb.

iv. Tk(j + 1) = Tk(j) + Tk−1(j) + . . .+ T0(j).

v. Tk(i+ j) =
∑k

l=0 Tl(i)Tk−l(j).

vi. If p > k then Tk(p
N − 1) = 0 mod pN .

Proof. i. Shown by an easy induction on k + i.

ii. By (i)

Tk(i)− Tk(j) =
i(i+ 1) . . . (i+ k − 1)− j(j + 1) . . . (j + k − 1)

k!

=
(ik − jk) + βk−1(ik−1 − jk−1) + . . .+ β1(i− j)

k!

for some coefficients β`. Since

(id − jd) = (i− j)
∑

d1+d2=d−1

id1jd2 ,
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the numerator of Tk(i) − Tk(j) does indeed have a factor of (i − j) and we have

proved what we wanted.

iii. Expanding out the numerator of Tk(αp
b + j) = (αpb+j)...(αpb+j+k−1)

k!
mod pb, it is

clear only one term, that is j · (j + 1) . . . · (j + k − 1), is not necessarily 0 mod pb.

iv. By the recursive definition of Tk(j) we have that Tk(j + 1) = Tk(j) + Tk−1(j + 1).

The result follows immediately by induction.

v. Assume that Tb(i + a) =
∑b

l=0 Tl(i)Tb−l(a) holds for values a, b such that a + b <

k + j. We have by definition that Tk(i + j) = Tk(i + (j − 1)) + Tk−1(i + j). Then

by inductive hypothesis

Tk(i+ j) =
k∑
l=0

Tl(i)Tk−l(j − 1) +
k−1∑
l=0

Tl(i)Tk−1−l(j)

= T0(i)
(
Tk(j − 1) + Tk−1(j)

)
+ T1(i)

(
Tk−1(j − 1) + Tk−2(j)

)
+ . . .

+ Tk−1(i)
(
T1(j − 1) + T0(j)

)
+ Tk(i)T0(j)

= T0(i)Tk(j) + T1(i)Tk−1(j) + . . .+ Tk−1(i)T1(j) + Tk(i)T0(j)

=
k∑
l=0

Tl(i)Tk−l(j).

vi. Consider

Tk(p
N − 1) =

(pN − 1)(pN) . . . (pN + k − 2)

k!

= pN
(pN − 1)(pN + 1) . . . (pN + k − 2)

k!

= αpN

for some α such that p - α. This is true since both k! and (pN−1)(pN +1) . . . (pN +

k − 2) are units mod pN .

As a corollary of (iii) we have the following.

Corollary 2.4.4. Let p be a prime, let k < p, let N ≥ 1, let 1 ≤ m ≤ N, let α ∈ N
such that p - α, and, for j ≥ 0, let

F (k, j) = αpmTk(j − 1). (2.4.2)

22



2.5 Lie Rings and Smith Normal Form

Then F (k, βpN−m + j + 1) = F (k, j + 1) mod pN for all β such that 1 ≤ β < pm and

all j such that 0 ≤ j ≤ pN−m − 1.

Proof. Consider F (k, βpN−m + j + 1). Then

F (k, βpN−m + j + 1) = αpm
(βpN−m + j) . . . (βpN−m + (j + k − 1))

k!
mod pN (2.4.3)

By Lemma 2.4.3(iii), and noting that pm(pN−m) = 0 mod pN , only the term with no

factor of pN−m survives mod pN ; that is,

αpm(βpN−m + j) . . . (βpN−m + (j + k − 1)) = αpmj(j + 1) . . . (j + k − 1) (2.4.4)

and thus F (k, βpN−m + j + 1) = F (k, j + 1).

2.5 Lie Rings and Smith Normal Form

Chapter 5 deals with the Kirillov orbit method. This method uses Lie rings associated

to T -groups to study their representation growth. We give some definitions in this

respect.

Definition 2.5.1. A Lie ring L := (L,+, [·, ·]) is a set together with two operations,

addition + and Lie bracket [·, ·], such that

• L is an abelian group with respect to +.

• [·, ·] is bilinear; that is, for x, y, z ∈ L,

[x+ y, z] = [x, z] + [y, z] and [x, y + z] = [x, y] + [x, z].

• [·, ·] satisfies the Jacobi identity; that is, for x, y, z ∈ L,

[x, [y, z] ] + [y, [z, x] ] + [z, [x, y] ] = 0.

• [·, ·] is antisymmetric; that is, for x, y ∈ L,

[x, y] + [y, x] = 0.

Analogous to groups, if L is a Lie ring andM,N ⊆ L then [M,N ] := span({[m,n] |m ∈
M,n ∈ N}).
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We note that we use the same notation for the Lie bracket as for commutators

of groups. Since the elements inside the brackets are from different structures, the

meaning should be clear by context. Also note that, for all Lie rings studied in this

thesis, each Lie ring has a Z-basis.

Example 2.5.2. Let H := 〈x, y, z | [x, y] = z〉 where all other commutators in the

presentation are trivial. This is usually called the Heisenberg Lie ring. For ax, ay, az ∈
Z let A := axx + ayy + azz ∈ H and define B and C similarly. Noting that [A,B] =

(axby − aybx)z it is easy to check that the Jacobi identity holds for A,B,C.

Definition 2.5.3. Define L0 := L and Li := [L,Li−1]. A Lie ring L is nilpotent if there

is a c ∈ N such that Lc = 0. The minimal c such that this property holds is called the

nilpotency class of L.

Example 2.5.4. An abelian group A, with the trivial Lie bracket [a1, a2] = 0 for all

a1, a2 ∈ A, is a nilpotent Lie ring of nilpotency class 1. The Heisenberg Lie ring H in

Example 2.5.2 has nilpotency class 2.

We introduce two concepts that are analogous to the same concepts in nilpotent

groups.

Definition 2.5.5. Let L be a nilpotent Lie ring. Define the Lie ring Hirsch length to

be h(L) := dim(L) and the Lie ring center to be Z(L) := Z := span{` ∈ L | [`, L] = 0}.

To calculate representation zeta functions using the Kirillov orbit method we must

consider the Smith Normal Form of certain matrices that encode the Lie bracket

behaviour of a Lie ring L. We now give definitions in this vein.

Definition 2.5.6. Let N be an n×m matrix over a principal ideal domain (or, more

generally, elementary divisor ring). There exist a n×n invertible matrix S and a m×m

24



2.5 Lie Rings and Smith Normal Form

invertible matrix F such that

SNF =



α1 0 0 . . . 0

0 α2 0 . . . 0

0 0
. . . . . . 0

αr

... 0
...

. . .

0 . . . . . . 0

...
...

0 . . . . . . 0



(2.5.1)

such that r ≤ min{n,m} and αi|αi+1 for 1 ≤ i ≤ r (note in the matrix above that

n > m; matrices for the other cases can be constructed similarly). We call SNF the

Smith Normal Form of N and denote this by SNF (N). The αi, which are unique up

to multiplication by units, are called the elementary divisors of SNF (N).

We define maps [xi, xj]y from L × L to Z/pNZ in the following way: let L have

a Z-basis {x1, . . . xd, xd+1, . . . , xd+e} and L′ have a Z-basis {xd+1, . . . , xd+e}. For y :=

(yd+1 . . . , yd+e) ∈ Z∗e,pN , if [xi, xj] =
∑d+e

k=d+1 αk(i, j)xk with αk(i, j) ∈ Z then [xi, xj]y =∑d+e
k=d+1 αk(i, j)yk.

Definition 2.5.7. Let L be a Lie ring and let L have a basis

{x1, . . . , xd, xd+1, . . . , xd+f , xd+f+1, . . . xd+e} such that {xd+1, . . . xd+e} is a Z-basis for

L′ and {xd+f+1, . . . xd+e} is a Z-basis for L′ ∩ Z(L). Let y := (yd+1, . . . , yd+e) ∈ Z∗e,pN .
Let R(y) be the (d+ f)× (d+ f) matrix defined by

Ri,j = [xi, xj]y (2.5.2)

for i, j such that 1 ≤ i, j ≤ d + f . We call R(y) the y-commutator matrix of L (or

simply commutator matrix). Note that this is all that is needed since basis elements

xd+f+1, . . . xd+e ∈ Z(L).
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Let S(y) be the last f columns of R; that is, the (d+ f)× f matrix defined by

Si,j = [xi, xj]y (2.5.3)

for i, j such that 1 ≤ i ≤ d+ f and d+ 1 ≤ j ≤ d+ f. We call S(y) the y-commutator

submatrix of L (or simply commutator submatrix). Note that if L has nilpotency class

2, then [L,L] ⊆ Z(L) and thus S is trivial.

Note that we always consider R and S mod pN .

The following lemma is used in Chapter 5 to determine elementary divisors of

commutator matrices.

Lemma 2.5.8. Let N ∈ N, p be a prime, and y := (y1, . . . , yd) ∈ Z∗d,pN . Let R := R(y)

be a d×d commutator matrix mod pN as defined earlier and let m := (pm1 , . . . , pmd) be

its elementary divisors. Then the elements in m occur in pairs; that is, m2i−1 = m2i

for i such that 1 ≤ i ≤ bd/2c and, if d is odd, pmd = 0.

Proof. We first explain the concept of simultaneous row and column operations. If a

row operation is performed with rows ri and rj for some i, j, (or just ri if the row is

scaled) then the same operations are performed with columns ci and cj next. It can

be shown that the antisymmetric property is invariant under simultaneous row and

column operations.

It is well known that the determinant of a d × d antisymmetric matrix is 0 if d

is odd. Thus, at least one elementary divisor must be 0 mod pN for all N. But since

elementary divisors have the property that pmi |pmi+1 it must be that pmd = 0 mod pN

Note that it is possible that other pmi = 0 mod pN as well.

For any a ∈ Z/pNZ we have that a = upk mod pN for some unit u and some k ≤ N.

Thus, the only possible factors of the elementary divisors are powers of p. Thus, to

calculate the Smith Normal Form of R mod pN , we are only concerned about the p-

adic valuation vp(·) mod pN of each entry of R. Since, for all primes p and a ∈ Z/pNZ,

vp(a) = vp(−a) (2.5.4)

R is symmetric entrywise by p-adic valuations of Ri,j. Note that all matrices below are

considered entrywise mod pN .

Let ra,b be the a, b entry ofR and choose i, j ≤ d such that vp(ri,j) is minimal. Then,

by Equation 2.5.4, we have that vp(rj,i) is also minimal. Without loss of generality,
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2.5 Lie Rings and Smith Normal Form

since we can perform simultaneous row and column transpositions to shift non-diagonal

entries, we can say that i = 1 and j = 2. So we have the matrix

0 r1,2 ? . . . ?

r2,1 0 ? . . . ?

? ? 0 . . . ?

...
...

...
. . .

...

? ? ? . . . 0


. (2.5.5)

Now, since vp(r1,2) = vp(r2,1) is minimal, we can add multiples of column 1 to the

other columns so that every entry of row 1 besides r1,2 is zero and simultaneously add

multiples of row 2 to the other rows so that every entry of column 1 besides r2,1 is zero.

So now we have the matrix 

0 r1,2 0 . . . 0

r2,1 0 ? . . . ?

0 ? 0 . . . ?

...
...

...
. . .

...

0 ? ? . . . 0


. (2.5.6)

We now can take multiples of row/column 1 and add them to the other row/columns

such that each entry, besides r1,2 and r2,1 is 0 in the second row and second column.

So now we have the matrix 

0 r1,2 0 . . . 0

r2,1 0 0 . . . 0

0 0 0 . . . ?

...
...

...
. . .

...

0 0 ? . . . 0


. (2.5.7)
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Finally, we transpose rows (or columns) 1 and 2. So now we have the matrix

r1,2 0 0 . . . 0

0 r2,1 0 . . . 0

0 0 0 . . . ?

...
...

...
. . .

...

0 0 ? . . . 0


. (2.5.8)

Let R′ be the d− 2× d− 2 matrix formed by omitting the first two rows/columns of

the matrix above. We note two facts. First, that R′ is antisymmetric; and second,

that if r′k,` is an entry of R′ such that vp(r
′
k,`) is minimal in R′ then vp(ri,j) ≤ vp(r

′
k,`).

Since the elementary divisors in Smith Normal Form are invariant up to units we have

determined m1 and m2 and m1 = m2. Thus, we can continue the process above to

obtain SNF (R) mod pN where m2i−1 = m2i for i such that 1 ≤ i ≤ bd/2c.

Definition 2.5.9. Let M be a matrix and let S be a a×a submatrix of M determined

by a rows and a columns of M. Then we call det(S) a a-minor of M.

We also use the following lemma to help us determine elementary divisors of

commutator matrices. Although this result is over a PID and commutator matrices

are defined mod pN , we can lift R to Z, use the following lemma, and then reduce mod

pN .

Lemma 2.5.10 ([24, Chapter 6]). Let M be a n × m matrix over a PID R such

that SNF (M) has elementary divisors α1, . . . , αr. For j ≤ max{m,n}, let ∆j be the

greatest common divisor of the j-minors of M and set ∆0 = 1. Then αj = ∆j/∆j−1

for all j ≤ r.
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2.6 List of Notation

2.6 List of Notation

Table 2.1 List of Notation

GLn(C) The n-dimensional general linear group over C; that is, the set of
invertible n× n matrices over C

SNp For N ∈ N ∪ {0} the set of pNth roots of unity; that is the set
{λ ∈ C |λpN = 1}. If N = ∞ then it is the set of all p`th roots of
unity for all ` ∈ N ∪ 0

s(λ) The depth of λ ∈ S∞p ; that is, s(λ) = N iff λ ∈ SNp \ SN−1
p

Tk(i) For i, k ∈ N, i(i+1)...(i+k−1)
k!

[a, b] For a, b ∈ G a group, the commutator aba−1b−1; for a, b ∈ L a Lie
ring, the Lie bracket of L

[A,B] For A,B ⊆ G a group, 〈[a, b] | a ∈ A, b ∈ B〉; for A,B ⊆ L a Lie
ring, span({[a, b] | a ∈ A, b ∈ B})

N ′ [N,N ] for either a group or Lie ring N

h(N) The Hirsch length of a group N or dim(N) of a Lie ring N

Z(N) The center of a group or Lie ring N

ζ(bs− a) The shifted Riemann zeta function
∑∞

N=1 N
a−bs, a, b ∈ Z

ζp(bs− a) The shifted p-local Riemann zeta function
∑∞

N=1(pN)a−bs

SNF (M) The Smith Normal Form of a matrix M

bxc The floor of (or greatest integer no greater than) x ∈ Q

a = b mod c The integers a and b are in the same equivalence class (mod c)

vp(n) The p-adic valuation of n ∈ Z; that is, for some prime p if n = apb,
where b is maximal, then vp(n) = b

φ(n) The Euler phi function of n; that is, the number of j ≤ n co-prime
to n.
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Chapter 3

Representation Growth of H√
d

3.1 Introduction

This chapter will consist of the construction of the irreducible representations and the

calculation of the representation zeta function of the Heisenberg group over the integers

of a quadratic number field, denoted H√d for some square-free d ∈ Z. This example

generalizes the calculation of the representation zeta function of the Heisenberg group

over the rational integers; this was calculated by Magid and Nunley [23] and later by

Hrushovski and Martin [14].

The calculation of the representation zeta function of H√d is performed by calcu-

lating the p-local factors separately as follows: first, for a pN -dimensional irreducible

representation ρ of H√d we study the eigenspace structure of ρ. Secondly, we choose

a basis for this representation and construct a canonical form for the image of each

generator for every twist isoclass. Finally, we count the number of representations with

different canonical forms, thus giving us the number of twist isoclasses of dimension pN

(we remind the reader that there are rpN twist isoclasses) and use the rpN as coefficients

in the zeta function.

Let d be a square-free integer and define Od to be the ring of integers of Q(
√
d).

The Heisenberg group over Od, which we denote H√d, is the group of 3 × 3 upper

unitrianglar matrices with entries in Od.

It is easily seen that the following six matrices generate H√d:
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3. Representation Growth of H√d

x =


1 1 0

0 1 0

0 0 1

 xd =


1 D 0

0 1 0

0 0 1



y =


1 0 0

0 1 1

0 0 1

 yd =


1 0 0

0 1 D

0 0 1



z =


1 0 1

0 1 0

0 0 1

 zd =


1 0 D

0 1 0

0 0 1



where D =
√
d if d = 2, 3 mod 4 and D = 1+

√
d

2
if d = 1 mod 4. Note that (1, D) is a

Z-basis for Od.

A presentation for this family of groups is given by

〈x, xd, y, yd, z, zd | [x, y] = z, [x, yd] = [xd, y] = zd, [xd, yd] = zd〉

if d = 2, 3 mod 4 and

〈x, xd, y, yd, z, zd | [x, y] = z, [x, yd] = [xd, y] = zd, [xd, yd] = z
d−1

4 zd〉

if d = 1 mod 4. We remind the reader that, by convention, commutators that do not

appear among the relations are trivial. It is easy to prove that, given a particular d,

the corresponding presentation is equivalent to the matrix presentation above.
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The main theorem of this chapter is as follows:

Theorem 3.1.1. Let H√d be the Heisenberg group over the ring of integers of Q(
√
d)

and ζDQ the Dedekind zeta function of a number field Q. Then the representation zeta

function of H√d is

ζ irrH√d(s) =
ζDQ(
√
d)

(s− 1)

ζDQ(
√
d)

(s)
.

We remark that this theorem also holds for the Heisenberg group over the rational

integers; that is, if Q(
√
d) is replaced by Q. See Equation 1.4.5 for this result.

3.2 The Constructive Method

In this section we introduce some general results about representations of some T -

groups. Lemma 3.2.2 is used in both this chapter and the following chapter to determine

the eigenspace structure of large abelian subgroups of the images of the irreducible

representations being studied.

3.2.1 Studying Eigenspaces of a Class of T -Groups

The representation zeta function of H√d will be calculated using a very constructive

approach. In general, for a T -group G, this approach has three main components:

• Study the eigenspace structure of an irreducible representation ρ(G).

• Using this knowledge of the eigenspace structure, show that all irreducible repre-

sentations are of some canonical form. Additionally, show that any set of linear

operators of this given form is indeed an irreducible representation of G.

• Count the number of irreducible representations constructed in the step above,

up to equivalence by twisting and isomorphism.

We call this general method the constructive method. We note that the steps above are

defined rather loosely. In future work, we plan to make the above procedure rigorous

and, hopefully, algorithmic.

We introduce an important lemma that gives us much information about the

eigenspace structure of representations of certain, nicely behaved, T -groups. Before

this lemma, we give a definition regarding eigenspaces of a set of linear operators.

33



3. Representation Growth of H√d

Definition 3.2.1. Let L be a set of linear operators of a vector space V. If a subspace

W ⊆ V is an eigenspace of each L ∈ L then we say that W is a mutual eigenspace of

L.

Lemma 3.2.2. For some αj,k ∈ Z let G := 〈a1, . . . , an, b1, . . . bm | [ai, bj] = Ai,j〉,
where Ai,j :=

∏n
k=i+1 a

αj,k
k , be a T -group and let ρ be an irreducible pN -dimensional

representation of G. Also, let ρ(ai) = xi and ρ(bj) = yj for all i ≤ n and j ≤ m. Define

X := {x1, . . . , xn}, Y := {y1 . . . ym} and Xi,j := ρ(Ai,j). Then the mutual eigenspaces

of X are 1-dimensional and there are pN distinct mutual eigenspaces of X.

Proof. Let E := {E1, . . . , Et} be the set of mutual eigenspaces of X. We will show that

if v is an eigenvector of Ej1 then for any y ∈ Y the vector yv is an eigenvector of Ej2 for

some j1, j2 ≤ t. We then show that Y acts transitively on E and that all Ej ∈ E are of

the same dimension, in fact a p-power. Finally, we show that each Ej is 1-dimensional,

and t = pN .

It is clear, by definition, that xn commutes with all y ∈ Y. Let E ∈ E and let v ∈ E.
For a given yj ∈ Y, consider xnyjv. Since xn is central,

xnyjv = λn,jyjv (3.2.1)

for some λn,j ∈ C∗.
For all k < n, let λk be such that λkv = xkv. Now, as an induction, we choose

i < n and assume that, for each h > i, yjv is an eigenvector of each xh, with eigenvalue

λh,j. Then

λi−1yjv = yjλi−1v = yjxi−1v = Xj,i−1xi−1yjv = xi−1Xj,i−1yjv = xi−1λ
′yjv (3.2.2)

for some λ′ ∈ C∗. Note that the third equality is by the group relations and the

final equality is by the inductive hypothesis. Thus yjv is an eigenvector of xi−1 with

eigenvalue λi−1(λ′)−1. This induction tells us that if v is a mutual eigenvector of X

then, for all y ∈ Y, yv is also a mutual eigenvector of X.

Let v1,v2 ∈ E. For some xi and λ1, λ2 ∈ C∗ let

xiyjv1 = λ1yjv1 and xiyjv2 = λ2yjv2. (3.2.3)

It is clear that v1 + v2 ∈ E. Now consider

xiyj(v1 + v2) = xiyjv1 + xiyjv2 = λ1yjv1 + λ2yjv2. (3.2.4)
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3.2 The Constructive Method

Since yj(v1 + v2) must be an eigenvector of xi we have that λ1 = λ2 and yj · E = Ej

for some Ej ∈ E . Since yj is invertible it preserves dimension and dim(Ej1) = dim(Ej2)

for j1, j2 ≤ t. Also, since yj was arbitrary and ρ is irreducible, span(〈Y 〉 · E) must be

the entire space CpN and thus Y must act transitively on E . It follows, by counting,

that t = pr and dim(Ej) = ps for j ≤ t and r, s such that r + s = N.

LetB = 〈b1, . . . , bm〉. For an eigenspace E ∈ E let S = StabB(E), and let Y∗ := ρ(S).

Let W ⊆ E be a S-stable subspace. Let H = 〈S, a1 . . . , an〉 and let η : H → GLps(E)

be the restriction of ρ to H. Since E is a mutual eigenspace of each xi it is clear

that η(ai) = ΛiI for some scalars Λi and thus the η-stable subspaces are the S-stable

subspaces. Consider the B-orbit of W , say O. Since ρ is irreducible then dim(O) = pN

and since W is S-stable it must be that W = E. Thus E has no proper stable subspaces

and η is irreducible. By [21] η factors through a finite quotient up to twisting. By

assumption and Schur’s Lemma, since S is abelian, each y∗ ∈ Y∗ must be a scalar

matrix. Thus, since η is irreducible, dim(E) = 1. It then follows that all mutual

eigenspaces of X are 1-dimensional and |E| = pN . since 〈Y 〉 acts transitively on E .

We now concentrate our efforts specifically on H√d. In this regard, we have the

following lemma.

Lemma 3.2.3. Let ρ : G → GLN(C) be an irreducible representation and let J =

{x, y, xd, yd}. Then there exists a representation χ : H√d → GL1(C) such that 1 is an

eigenvalue of χ⊗ ρ(j) for each j ∈ J.

Proof. Let ρ : H√d → GLN(C) be an irreducible representation and for each j ∈ J

let λj be an eigenvalue of ρ(j). We can twist any irreducible representation by any

1-dimensional representation and remain in the same twist isoclass. We deduce that

we can choose a 1-dimensional representation χ such that χ(j) = (λj)
−1.

We call a representation good if 1 is an eigenvalue of all of the images of the non-

central generators.

We will show that the images of the generators of any irreducible representation of

H√d, up to twisting, can be written as matrices in a certain standard form. We also

show that any set of matrices satisfying this form is, in fact, an irreducible represen-

tation of H√d. Finally, if two irreducible representations are not twist-equivalent, this

standard form will necessarily differ for each representation.

Let p be a prime, n ≥ 1, and ρ : H√d → GLpN (C) be a good irreducible represen-

tation. Let

35



3. Representation Growth of H√d

A := ρ(x) Ad := ρ(xd)

B := ρ(y) Bd := ρ(yd)

Λ := ρ(z) Λd := ρ(zd).

Our aim is to determine conditions for Λ and Λd such that ρ is irreducible. Once

we establish these conditions, we choose a basis for CpN such that the images of our

generators in GLpN (C) are in a “nice” form. This basis will be chosen so that A and

Ad are diagonal matrices, B and Bd are block permutation matrices, and Λ and Λd

are scalar matrices. To avoid extra notation, for the rest of the chapter we do not

distinguish between a linear operator and its matrix with respect to some basis.

Since z and zd are central in H√d, by Schur’s lemma we must have that Λ and Λd are

homotheties; that is, scalar multiples of the identity matrix I. By [21, Theorem 6.6],

ρ, up to twisting, factors through a finite quotient of H√d, say H√d(p
N). Therefore,

without loss of generality, the representation ρ is such that the images of elements of

H√d under ρ must have finite order. Hence, for every g ∈ H√d(p
N) we have gk = e

for some minimal k. It then follows that
(
ρ(g)

)k
= I and the minimum polynomial of

ρ(g) is xk − 1. Since the kth roots of unity are distinct, this polynomial factors over

the complex numbers into k distinct linear factors. Thus A,Ad, B, and Bd must be

diagonalizable and have eigenvalues which are roots of unity, and Λ and Λd must be

roots of unity. It is important to note that twisting does not affect the diagonalizability

of the images of the generators; twisting is simply multiplication by scalars. Also, since

[A,Ad] = I, A and Ad are simultaneously diagonalizable.

We identify scalars with scalar matrices; in particular, for λ a root of unity, we will

call the matrix λI a root of unity as well.

Since ρ is irreducible the mutual eigenspaces of A,Ad are 1-dimensional. Also, since

there are pN mutual eigenspaces it is clear that s(Λ), s(Λd) ≤ N (see Definition 2.4.2

for notation). We let r = max{s(Λ), s(Λd)}. We can regard the mutual eigenspace of

A and Ad as 2-tuples of the form (λ, λd) for eigenvalues λ of A and λd of Ad. We choose

a mutual eigenspace E := (λ, λd).

We calculate which choices of Λ and Λd are permissible such that ρ is irreducible.

The structure of the calculation depends on the comparative depth of Λ and Λd. We

break the calculation into two cases: when s(Λ) ≥ s(Λd) and when s(Λ) < s(Λd). Let

Λdeep = Λ in Case 1 and Λdeep = Λd in Case 2. Also, let Λshallow be the other root of
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3.2 The Constructive Method

unity in each separate case. We write Λshallow in terms of Λdeep; that is,

Λshallow = Λ`
deep (3.2.5)

for some `. Note that p | ` in Case 2. Here, we remind the reader that by the group

relations of H√d we have that D = d if d = 2, 3 mod 4 and D = `+ d−1
4

if d = 1 mod 4.

By the group relations,

B · (λ, λd) = (Λdeepλ,Λ
`
deepλd) (3.2.6)

Bd · (λ, λd) = (Λ`
deepλ,Λ

D
deepλd)

in Case 1 and similarly

B · (λ, λd) = (Λ`
deepλ,Λdeepλd) (3.2.7)

Bd · (λ, λd) = (Λdeepλ,Λ
`D
deepλd)

We twist ρ such that E = (1, 1) and note that for any eigenspace (µ, µd) ∈ 〈B,Bd〉 ·E
we have that s(µ), s(µd) ≤ r.

We continue by taking the logarithm base Λdeep for all eigenvalues of A and Ad. For

the rest of the calculation we consider each 2-tuple mod pr. Thus

B · (log(1), log(1)) = B · (0, 0) = (1, `) (3.2.8)

Bd · (0, 0) = (`,D)

in Case 1 and

B · (0, 0) = (`, 1) (3.2.9)

Bd · (0, 0) = (1, `D)

in Case 2. Thus, the action

〈B,Bd〉 · (0, 0) = E1 := {(a+ b`, a`+ bD) | 0 ≤ a, b, < pr} (3.2.10)

in Case 1 and

〈B,Bd〉 · (0, 0) = E2 := {(a`+ b, a+ b`D) | 0 ≤ a, b < pr} (3.2.11)
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3. Representation Growth of H√d

in Case 2.

There are at most p2r different 2-tuples in each case. Since we want ρ to be pN -

dimensional irreducible it follows that r ≥ N/2 and that there are exactly pN different

2-tuples in each case. In this vein, we have the following lemma:

Lemma 3.2.4. In Case 1, let m be minimal such that `2 = D mod pr−m. Then, for

each a1 < pr there is an a2 < pr such that

(
a1 + (b+ pm)`, a1`+ (b+ pm)D) = (a2 + b`, a2`+ bD

)
. (3.2.12)

Additionally, each 2-tuple (a+b`, a`+bD) such that 0 ≤ a < pr, 0 ≤ b < pm is distinct.

In Case 2, let m be minimal such that `2D = 1 mod pr−m. Then

(
a1`+ (b+ pm), a1 + (b+ pm)`D

)
=
(
a2`+ b, a2 + b`D

)
. (3.2.13)

Additionally, each 2-tuple (a`+b, a+b`D) such that 0 ≤ a < pr, 0 ≤ b < pm is distinct.

Thus, ρ is irreducible if and only if N = r +m.

Proof. We begin with Case 1. We have, by assumption, that `2 = D mod pr−m. This

implies that

pm`2 = pmD mod pr. (3.2.14)

Choose a2 such that

a2 − a1 = pm` mod pr. (3.2.15)

Then Equation 3.2.14 implies that

(a2 − a1)` = pmD mod pr (3.2.16)

⇒(a2 − a1)` = (b+ pm − b)D mod pr

⇒a1`+ (b+ pm)D = a2 + bD mod pr.

By Equation 3.2.15

a2 − a1 = (b+ pm − b)` mod pr (3.2.17)

⇒a1 + (b+ pm)` = a2 + b` mod pr.

To prove that each 2-tuple is distinct, suppose, for 0 ≤ a1, a2 < pr and 0 ≤ b1, b2 < pm,

38



3.3 Choosing a Basis

that

(a1 + b1`, a1`+ b1D) = (a2 + b2`, a2`+ b2D). (3.2.18)

Splitting entry-wise and rearranging, Equation 3.2.18 implies that

a2 − a1 = (b1 − b2)` mod pr (3.2.19)

(a2 − a1)` = (b1 − b2)D mod pr. (3.2.20)

Combining Equations 3.2.19 and 3.2.20

(b1 − b2)`2 = (b1 − b2)D mod pr. (3.2.21)

For some maximal k ≤ m and for some α where p - α, we have that (b1 − b2) = αpk.

Thus Equation 3.2.21 implies that

αpk`2 = αpkD mod pr (3.2.22)

⇒`2 = D mod pr−k. (3.2.23)

But, since, by assumption, m is minimal such that `2 = D mod pr−m it must be that

k = m and thus b1 = b2. since b1, b2 < pm. It then follows immediately by Equation

3.2.19 that a1 = a2.

The details of the calculation for Case 2 are similar. Note that in Case 2 the

equivalent of Equation 3.2.15 is choosing a2 such that

a2 − a1 = pm`D mod pr. (3.2.24)

Assume ρ is pN -dimensional irreducible. Then, by the argument above, we have

pr+m distinct 2-tuples. By Lemma 3.2.2 there are pN distinct 2-tuples and thus r+m =

N. Now assume r+m = N. Then by the argument above we have pN distinct 2-tuples

and thus, by Lemma 3.2.2, ρ must be pN -dimensional irreducible.

3.3 Choosing a Basis

Let ρ be an irreducible representation. We write ρ in matrix form with a standard

basis. We show the construction for Case 1; Case 2 is similar.

We begin with the following lemma. This lemma will give us the basis structure

for A and B.
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Lemma 3.3.1. Let s(Λ) = r. The matrices A and B have pr eigenspaces of dimension

pm, where r+m = N. Similarly, Bd has, at most, pr eigenspaces of dimension at least

pm.

Proof. Let E1 be an eigenspace of A with, by twisting if necessary, eigenvalue 1. Since

[A,B] = Λ it is easy to show that B ·E1 is also an eigenspace of A. Let J1 = 〈B〉 ·E1.

Thus, it is clear that |J1| ≥ pr. Also, since [A,Bd] = Λd and s(Λd) ≤ s(Λ), we have, for

K1 := 〈Bd〉 ·E1 ⊆ J1. But since ρ is irreducible the action of 〈B〉 on the eigenspaces of

A must be transitive. Thus |J1| = pr. By symmetry, if E2 is, by twisting if necessary,

the eigenspace of B with eigenvalue 1, a similar argument shows that the action J2 :=

{〈A〉 · E2} is transitive and |J2| = pr. Noting that s(Λd) ≤ s(Λ) and s(Λ`2−D) ≤ s(Λ)

the result for Bd is similar.

The next corollary follows directly from the previous lemma:

Corollary 3.3.2. Bpr = Bpr

d = I.

Let EΛk be the eigenspace of A with eigenvalue Λk. Let ΘΛk be a basis for EΛk

where 0 ≤ k ≤ pr − 1. We now choose a basis Θ1 and construct the rest of the basis of

CpN by letting ΘΛk = Bk ·Θ1. Therefore we have a basis Θ = Θ1 ∪ . . . ∪ΘΛpr−1 for

CpN with respect to which A and Ad are diagonal. Since ρ is good, 1 is an eigenvalue

of A and Ad. Note, twisting ρ if necessary, that (1, 1) is a mutual eigenspace of A and

Ad and thus we can choose our basis such that (Ad)1,1 = 1.

In Case 1

A =



Ipm

ΛIpm

. . .

Λpr−1Ipm


, (3.3.1)

B =



0pm P

Ipm
. . .

. . . . . .

Ipm 0pm


(3.3.2)

where Ipm and 0pm are, respectively, the identity and null matrices of size pm. By

Corollary 3.3.2 we have that Bpr = I and thus P = Ipm .
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3.3 Choosing a Basis

Since [B,Bd] = I, [A,Bd] = Λd, and Λd = Λ`, a simple computation shows that the

matrix Bd is

Bd =



0pm R

. . . . . .

. . . R

R
. . .

. . . . . .

R 0pm


(3.3.3)

for some matrix block R, and the R in the first column is in the `th row. We determine

R later.

Finally, Ad is the matrix

Ad =



J

Λ`J

. . .

Λ(pr−1)`J


(3.3.4)

for some block J. by the relation [Ad, B] = Λd.

Using the relation [Ad, Bd] = Λ`2−D a straightforward computation shows that

[J,R] = Λ`2−D. So by Lemma 3.2.2, if E is the eigenspace of J with eigenvalue 1, then

Rk ·E = Λk(`2−D)E for any k. But Rk ·E = E only when pm | k, since `2 = D mod pr−m

exactly. Since J and R are of pm-dimensional, J has pm eigenspaces, each of dimension

1, and R acts transitively, that is as a pm-cycle, on these eigenspaces. By this result

and the fact that Bpr

d = I by Lemma 3.3.2 we could have chosen Θ1 at the beginning

of the subsection such that

J =



1

Λ`2−D

. . .

Λ(pr−1)(`2−D)


(3.3.5)
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3. Representation Growth of H√d

and

R =



0 1

1
. . .

. . . . . .

1 0


. (3.3.6)

Thus, we have determined the matrices of the images of the generators of ρ under a

canonical basis.

In Case 2

A =



Ipm

ΛdIpm

. . .

Λpr−1
d Ipm


, (3.3.7)

Bd =



0pm Ipm

Ipm
. . .

. . . . . .

Ipm 0pm


, (3.3.8)

Ad =



J

ΛlD
d J

. . .

Λ
(pr−1)lD
d J


, (3.3.9)

and
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3.3 Choosing a Basis

B =



0 R

. . . . . .

. . . R

R
. . .

. . . . . .

R 0


(3.3.10)

where the block R in the first column is in the `th row,

J =



1

Λl2D−1
d

. . .

Λ
(pr−1)(l2D−1)
d


(3.3.11)

and

R =



0 1

1
. . .

. . . . . .

1 0


. (3.3.12)

Now we check that all matrices of this form give us an irreducible representation

of H√d. This is clear; take matrices {A,B,Ad, Bd,Λ,Λd} of the forms above. Then

an easy calculation shows that the associated relations for H√d hold. Since z, zd are

commutators, they remain fixed under twisting. Since the matrices A,B,Ad, and Bd

are determined by Λ and Λd, two such ordered sets of matrices define twist-equivalent

representations if and only if they coincide.

43



3. Representation Growth of H√d

3.4 Counting Twist Isoclasses

For ease of discussion we introduce some notation. We call

`2 = D mod pr−m, `2 6= D mod pr−m+1 (3.4.1)

the Case 1 Conditions and

`2D = 1 mod pr−m, `2D 6= 1 mod pr−m+1, p|` (3.4.2)

the Case 2 Conditions. Note that the last condition of the Case 2 Conditions is because

s(Λ) < s(Λd).

The Case 2 Conditions imply that l is invertible mod p. However, since p|` in Case

2, there are only solutions to the Case 2 Conditions when r = m. Also note that, since

our roots of unity are elements of SNp the second condition of the Case 1 and Case 2

conditions does not apply when r = N.

The previous section allows us to calculate each ζ irrH√d,p
(s) by counting solutions to

the Case 1 and Case 2 Conditions for each N ≥ 1. To count the number of solutions

we use Hensel’s Lemma to lift solutions of the Conditions mod p if p is not ramified;

if p is ramified, the computation is nevertheless straightforward. We demonstrate the

computations and then summarize the results in a table. We note three things: there

are always (1− p−1)pr choices for Λ under Case 1 and Λd under Case 2, under Case 2

it is easy to see there are (1 − p−1)pN−1 solutions when r = m and 0 otherwise, and

by Lemma 2.3.1 there is only 1 irreducible twist-isoclass when N = 0. The following

cases assume N 6= 0.

Assume p is inert. In this case there are no solutions to the Case 1 or Case 2

Conditions unless r = m. Given Λ there are p
N
2 choices for Λd under Case 1. Therefore,

with Case 2 contributing (1− p−1)p
N
2 (p

N
2
−1) terms in the even case,

rpN =

(1− p−1)p
N
2 p

N
2 + (1− p−1)p

N
2 (p

N
2
−1) for even N

0 for odd N
(3.4.3)

and
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3.4 Counting Twist Isoclasses

ζ irrH√d,p(s) =
∞∑
N=0

rpNp
−Ns (3.4.4)

= 1 +
∞∑

N=2, N is even

(1− p−1)pN + (1− p−1)pN−1

= 1 +
∞∑

M=1

(1− p−2)(p2−2s)M

=
1− p−2s

1− p2−2s
.

Assume p splits. There are two solutions to the equation l2 = D mod p and Hensel’s

Lemma allows us to “lift” these solutions to solutions in Z/pr−mZ, thus giving us the

2 unique solutions to l2 = D mod pr−m. When r = N , there are two solutions to the

first condition of the Case 1 Conditions and therefore 2(1− p−1)pN choices for the pair

Λ and Λd under the Case 1 Conditions. If, for fixed r and m, r > m and m > 0 then

there are two solutions in Z/pr−mZ to the first condition of the Case 1 Conditions and

therefore 2pm solutions for 0 ≤ l ≤ pr− 1. Of these solutions, all but 2pm−1 satisfy the

second condition of the Case 1 Conditions. Therefore, given Λ, there are 2(1− p−1)pm

choices for Λd and, in total, 2(1− p−1)2pN choices for the pair Λ and Λd in Case 1. If

r = m = N
2

then there are pm solutions to the first condition of the Case 1 Conditions,

of which all but 2pm−1 satisfy the second condition of the Case 1 Conditions. Therefore

there are (1 − 2p−1)(1 − p−1)pN choices for the pair Λ and Λd in Case 1. Summing

all cases together, and noting that the Case 2 contribution is 0 in the odd case and

(1− p−1)pN−1 in the even case, we have

rpN =


2(1− p−1)pN + N−1

2
2(1− p−1)2pN if N is odd

2(1− p−1)pN + N−2
2

2(1− p−1)2pN

+(1− 2p−1)(1− p−1)pN + (1− p−1)pN−1 if N is even.

(3.4.5)

Strikingly, in both cases this simplifies to

rpN = ((1 + p−1) + (1− p−1)N)(1− p−1)pN

and therefore
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3. Representation Growth of H√d

ζ irrH√d,p(s) =
∞∑
N=0

rpNp
−Ns (3.4.6)

= 1 +
∞∑
N=1

(1− p−1)(p1−s)N [(1 + p−1) + (1− p−1)N ]

= 1 +
∞∑
N=1

(1− p−2)(p1−s)N +
∞∑
N=1

(1− p−1)2N(p1−s)N

= 1 +
(1− p−2)p1−s

1− p1−s +
(1− p−1)2p1−s

(1− p1−s)2

=

(
1− p−s

1− p1−s

)2

.

Assume p is ramified. This is the case if d = 0 mod p for any d or if p = 2 and

d = 2, 3 mod 4. Then there are solutions to the Case 1 and Case 2 Conditions when

r−m = 0 or r−m = 1. We break this computation into sections depending on d and

p.

If d = 2, 3 mod 4, p 6= 2, and d = 0 mod p then 0 is the solution to l2 = d mod p.

However, since d is squarefree, d = kp mod p2 for some invertible k ∈ Z/p2Z. Therefore

l2 = d has no solutions mod p2.

If d = 2, 3 mod 4 and p = 2 then l2 = d has a solution mod 2. However, since d is

a quadratic non-residue mod 4, it has no solutions mod 4.

If d = 1 mod 4 and d = 0 mod p then l2− l+ d−1
4

= 0 has the unique double solution

l = 2−1 mod p. And d = kp mod p2 for some invertible k ∈ Z/p2Z, since d is squarefree.

Then the above equation can be rearranged to the form (2l − 1)2 = kp mod p2, which

clearly has no solutions.

Thus, if r −m = 0, then there are pm solutions to the first condition of the Case 1

Conditions and all but pm−1 of these satisfy the second. Therefore, given Λ there are

(1 − p−1)pm choices for Λd and (1 − p−1)(1 − p−1)pN choices for the pair Λ and Λd in

Case 1 and, as usual, (1−p−1)pN−1 choices in Case 2. If r−m = 1, a similar calculation

to the ones above yield that there are (1− p−1)pN choices in Case 1. Therefore

rpN = (1− p−1)pN

and a routine calculation gives
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3.5 Results of Stasinski and Voll

ζ irrH√d,p(s) =
1− p−s

1− p1−s .

For easy reference, we now tabulate the preceding results in Table 3.1:

Table 3.1 p-local Representation Zeta Functions of H√d

prime behaviour rpN ;N > 0 ζ irrH√d,p
(s)

inert (1 + p−1)φ(pN) for even N ; 0 for odd N 1−p−2s

1−p2−2s

splits φ(pN)(N(1− p−1) + 1 + p−1)
(

1−p−s
1−p1−s

)2

ramified φ(pN) 1−p−s
1−p1−s

It is easy to see that αH√d,p = 1 for every prime p. By Proposition 2.2.6 we can say

that

ζ irrH√d(s) =
ζDQ[
√
d]

(s− 1)

ζDQ[
√
d]

(s)
.

3.5 Results of Stasinski and Voll

Groups of the following type are an important class of examples: let S be a group

scheme defined over a ring of integers O of a number field K, let O′ be a finite extension

of O, and let S(O′) be the group of O′-points of S. Suppose the group scheme S is

unipotent. Stasinski and Voll, in [28, Theorem A] and [28, Remark 2.3], show that for

non-zero prime ideals P CO′ the following Euler factorization holds:

ζS(O′)(s) =
∏
P

ζS(O′),P (s) (3.5.1)

where ζS(O′),P (s) counts continuous representations of S(O′P ) and where O′P is the

completion of O′ at P. For group schemes associated to a nilpotent Lie lattice the

authors also show that, for almost all prime ideals, the local representation zeta

functions behave uniformly under extension of scalars; that is, if O1 and O2 are finite
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3. Representation Growth of H√d

extensions of O then the local representation zeta functions of S(O1) and S(O2) can

be viewed as coming from a rational function whose form does not depend on the

choice of extension (see [28, Theorem A] for details). Theorem A also tells us that

almost all P -local representation zeta functions satisfy a functional equation which is

a refinement of [29, Theorem D] (see our Theorem 3.5.1 below) and, additionally, that

these local zeta functions are rational functions in q−fs, where q is the cardinality of the

associated residue field and f is the relative degree of inertia. Moreover, [28, Theorem

B] calculates P -local representation zeta functions of three families of groups arising

from unipotent group schemes.

As a special case of [28, Theorem B], Stasinski and Voll prove the following result

which generalizes Theorem 1.4.6.

Theorem 3.5.1. Let K be an arbitrary algebraic number field and O its ring of

integers. Then

ζH(O)(s) =
ζDK (s− 1)

ζDK (s)
.

We remark that Theorem 3.5.1 was stated as a conjecture in an earlier version of

[10], before the appearance of [28].

We note that ζ irrH√d,p
(s) does indeed satisfy the functional equation of Theorem 1.4.3

if p is not ramified. Also, these p-local zeta functions satisfy the more general functional

equation, for all primes p, of Theorem 1.4.4. If the rational prime p =
∏j

i=1 Pi, where

Pi is a prime ideal of Od and j ∈ {1, 2}, is unramified, then it is easy to see that the

Euler product of the p-local representation zeta functions of H√d can be refined to an

Euler product of Pi-local Dedekind zeta functions by factorization.
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Chapter 4

Representation Growth of Mn

4.1 Introduction

This chapter will feature the construction of the irreducible representations of a family

of maximal class groups of nilpotency class n, denoted Mn. This is achieved by

calculating the irreducible representations of p-power dimension. Due to the large

abelian subgroup inside Mn, we can apply Lemma 3.2.2 and thus representation theory

of Mn is a good candidate for calculation by the constructive method. The large abelian

subgroup allows us to simultaneously diagonalize all but one element of the images of

the generators and reflected by this fact is the relatively simple eigenspace structure of

the irreducible representations. We note that the calculation is uniform for most primes,

in fact primes p not less than the nilpotency class n; denominators that appear in the

matrices of the representation are smaller than the prime considered and therefore

behave as units mod p. When the prime considered is smaller than n, the calculation

loses its uniformity and the structure of the matrices of the representation differs from

the non-exceptional cases. We will calculate the p-power irreducible representations

for certain well-behaved exceptional primes. Once we have calculated the representa-

tion theory of Mn, for almost all primes, we calculate the p-local representation zeta

function. We show that for non-exceptional primes, and some exceptional ones, that

the p-local zeta function does indeed satisfy the functional equation established by Voll

(Theorem 1.4.3).
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4. Representation Growth of Mn

4.2 Basic Results

Let Mn = 〈a1, . . . , an, b | [ai, b] = ai+1〉. We remind the reader that all commutators

that do not appear in the relations are trivial. We calculate the p-local representation

zeta function of each group in this family, denoted ζ irrMn,p
(s), by explicitly constructing

representatives of each twist isoclass. Let ρ be a pN -dimensional irreducible represen-

tation of Mn and let xi = ρ(ai) and y = ρ(b).

We refer often to certain subgroups of Mn. It is clear that for 2 ≤ k < n the group

Mk is isomorphic to a subgroup of Mn. With a slight abuse of notation we let the

subgroup Mk = 〈an−k+1, an−k+2, . . . , an, b〉.

4.2.1 Determining a Basis and Standard Form for the Images

of the Generators of ρ

In this section we will choose a basis for the image of ρ such that y is in the form of a

pN -cycle permutation matrix and such that each xi is diagonal with each diagonal entry

in a certain form, discussed later in the section. As in Chapter 3 it is not necessary

to state a basis to understand the eigenspace structure of ρ. However, as a canonical

basis is easy to determine in this case, we appeal to a basis as an indexing device on

the set of mutual eigenspaces of {x1, . . . , xn}. We begin by considering twisting. Since

x2, . . . , xn are commutators they are invariant under twisting. We can twist y and x1

by any complex number. We remind the reader that we can obtain every pN -power

irreducible representation of Mn by twisting a representative ρ from each twist isoclass.

Since all xi commute they are all simultaneously diagonalizable. By [21, Theo-

rem 6.6] all irreducible representations factor through a finite quotient (up to twist

equivalence) and thus by Schur’s lemma the central element xn is a scalar matrix.

By the group presentation of Mn it is clear we can apply Lemma 3.2.2. Let X =

{x1, . . . , xn}. Then we know the mutual eigenspaces of X are 1-dimensional and that

there are pN distinct mutual eigenspaces. Also, we have that 〈y〉 must permute the

eigenspaces of X transitively. Thus, y must act as a pN -cycle on the mutual eigenspaces

of X. We choose our basis, with basis vectors {e1, . . . , epN} such that the xi are diagonal

and
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4.2 Basic Results

y =



0 k

1
. . .

. . . . . .

1 0


(4.2.1)

for some k ∈ C∗. By cofactor expansion of y−λI, the characteristic equation is λp
N

= k,

and thus the eigenvalues of y are all of the pNth roots of k. However, we have the

freedom to twist y by k
−1

pN and therefore we can ensure the eigenvalues of y are all of

the pNth roots of unity. We can choose a representative of our twist isoclass such that

y is a pN -cycle permutation matrix under some choice of basis, or equivalently, we can

ensure that k = 1.

We set up some notation. Let λi,j be the jth entry on the diagonal of xi. We let

xn = λnI and λi = λi,1. Note that λn,j = λn for all j. By twisting we can ensure that

λ1 = 1. It will be shown that the λi,j, and thus ρ, are determined by the λ`, for all `

such that i ≤ ` ≤ n.

We now determine the structure of the matrices xi and the allowable values for the

λi. The next lemma is the base case for the inductive lemma following it. Although

we could start the induction with xn, this case is trivial. For purposes of elucidation,

we start this induction with xn−1. Note that the following two lemmas are true for all

primes.

Lemma 4.2.1. The matrix xn−1 has the form

xn−1 =



λn−1

λnλn−1

. . .

λp
N−1
n λn−1


. (4.2.2)

Moreover, λn is a pN th root of unity for any prime p; that is s(λn) ≤ N .

Proof. Since by our group relations [xn−1, y] = xn = λn we have that λn−1,j+1 =

λnλn−1,j for j = 1, . . . , pN − 1 and λn−1,1 = λnλn−1,pN . Combining these equations,

λn−1 = λp
N

n λn−1 and therefore λn ∈ SNp .

We remind readers of Lemma 2.4.3 for properties of numbers Tk(i). We define these
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4. Representation Growth of Mn

numbers in the paragraph directly before Lemma 2.4.3.

Lemma 4.2.2. For 1 ≤ i ≤ n − 1 we have that λi,j =
∏n

k=i λ
Tk−i(j−1)
k and thus the

matrix xi has the structure

xi =



λi ∏n
k=i λ

Tk−i(1)
k

. . . ∏n
k=i λ

Tk−i(p
N−1)

k


. (4.2.3)

Moreover

λp
N

i

n∏
k=i+1

λ
Tk−i(p

N−1)
k = 1. (4.2.4)

Proof. Assume

xi =



λi ∏n
k=i λ

Tk−i(1)
k

. . . ∏n
k=i λ

Tk−i(p
N−1)

k


(4.2.5)

for some i. By the group relation [xi−1, y] = xi we have, for some j ≤ pN -1, that

λi−1,j+1 = λi,j+1λi−1,j =

(
n∏
k=i

λ
Tk−i(j)
k

)
λi−1,j (4.2.6)

and

λi−1,1 = λiλi−1,pN . (4.2.7)

Combining the above equations for each j,

λi−1,j+1 = λi−1

n∏
k=i

λ
∑j
l=1 Tk−i(l)

k = λi−1

n∏
k=i

λ
Tk−i+1(j)
k (4.2.8)

and

λi−1,1 = λi−1λ
pN

i

n∏
k=i+1

λ
Tk−i(p

N−1)
k . (4.2.9)
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We have shown that, up to twisting and isomorphism, that any irreducible repre-

sentation must be of the form given above. We give this a name.

Definition 4.2.3. The matrices x1, . . . , xn, y are in standard form if the xi are in the

form of Lemma 4.2.2 and y is in the form of Equation 4.2.1. We say ρ is in standard

form if, under a chosen basis, the matrices x1, . . . , xn, y are in standard form.

4.2.2 Determining Possible Stable Subspaces

In this section we determine possible stable subspaces of a representation ρ in standard

form. We show that if ρ is not irreducible then it must have a certain proper stable

subspace; we name this VpN−1 . Thus, to determine if ρ is irreducible, we only need to

check if VpN−1 is a stable subspace of ρ. In this vein, let 0 ≤ k ≤ N and let Vpk be

the subspace spanned by 〈y〉 · (e1 + epk+1 + . . .+ e(pN−k−1)pk+1). Note two things: first,

Vpk has dimension pk as 〈y〉 · (e1 + epk+1 + . . . + e(pN−k−1)pk+1) consists of pk linearly

independent vectors; second, if Vpk is a stable subspace of ρ then so is Vpj for j ≥ k.

We define the n-tuple Λ(k) := (λ1,k, . . . , λn,k) where k is considered mod pN .

Lemma 4.2.4. For any k1, k2 if Λ(k1) = Λ(k2) then Λ(k1 + 1) = Λ(k2 + 1).

Proof. By Lemma 4.2.2, λi ∈ S∞p for all i and that λi,j+1 = λi+1,j+1λi,j for all j.

Consider Λ(k1 + 1). It is clear to see that λn,k1+1 = λn,k2+1 since λn is central. Now, as

our inductive step, choose h such that h ≤ n− 1 and assume that λi,k1+1 = λi,k2+1 for

all i > h Consider λh,k1+1. Then

λh,k1+1 = λh+1,k1+1λh,k1 . (4.2.10)

Our inductive hypothesis holds for the first factor of the right hand side of Equation

4.2.10 and the initial assumption holds for the second factor. Thus

λh,k1+1 = λh+1,k1+1λh,k1 = λh+1,k2+1λh,k2 = λh,k2+1. (4.2.11)

Since ρ is of dimension pN , Lemma 4.2.4 and elementary counting tells us that if,

for some β∗, j, and k, Λ(k) = Λ(β∗p
j + k) where p - β∗ then Λ(k) = Λ(βpj + k) for all β

such that 0 ≤ β ≤ pN−j − 1. This can be seen since β∗ is a unit in the additive group
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Z/pN−jZ and thus β∗ generates all of Z/pN−jZ. This argument gives us the following

corollary of Lemma 4.2.4.

Corollary 4.2.5. Let j be the smallest non-negative integer such that Λ(k) = Λ(βpj+k)

for all β such that 0 ≤ β ≤ pN−j − 1 and for any k. Then Vpj is a stable subspace of ρ

and Vpj−1 is not stable.

We define notation to this effect. Let H ≤Mn and let V(ρ|H) be the minimal stable

subspace Vpj , as in Corollary 4.2.5, of ρ|H . We say that V(ρ) = V
(
ρ(Mn)

)
.

We can, in fact, say more about this minimal subspace:

Corollary 4.2.6. If j is minimal such that Λ(1) = Λ(pj + 1) then V(ρ) = Vpj .

We attempt to use Corollary 4.2.6 as little as possible; calculations without the

power of this lemma are, in most cases, not much more effort and serve to remind the

reader of, and elucidate the reader to, the structure of the Vpj .

Corollary 4.2.7. Let ρ : Mn → GLpN (C) be a representation. Then, for k < n if

V(ρ|Mk
) = Vpj then V(ρ) = Vp` for some ` such that ` ≥ k.

We know that if Vpk is ρ-stable then so is Vpj for j ≥ k. Thus, we obtain the

following corollary:

Corollary 4.2.8. Let ρ be a representation of Mn. The representation ρ is irreducible

if and only if VpN−1 is not ρ-stable.

Throughout this chapter we use Corollary 4.2.8 to check if a representation ρ is irre-

ducible. We use Corollary 4.2.5 to determine the number of isomorphic representations

in standard form in one twist isoclass.

4.2.3 Determining Isomorphic Representations

Since representations in the same twist isoclass are equivalent under both twisting and

isomorphism, we determine when two representations in standard form are isomorphic.

We note that the results in this section are independent of the prime p. In this vein,

we have the following proposition.

Proposition 4.2.9. Let ρ1, ρ2 be pN -dimensional irreducible representations of Mn in

standard form. Then ρ1 and ρ2 are in the same twist isoclass if and only if there is

a 1-dimensional representation χ and a permutation matrix P ∈ GLpN (C) such that

ρ1 = Pχρ2P
−1.
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Since one direction is immediate, we prove the other direction with the following

lemma.

Lemma 4.2.10. For any prime p let ρ : Mn → GLpN (C) be irreducible and let P be a

matrix such that PxiP
−1 is diagonal for 1 ≤ i ≤ n and, up to twisting, PyP−1 = T1y

for some scalar T1. Then P = T2y
m for some 0 ≤ m ≤ pN − 1 and scalar T2.

Furthermore, up to twisting, PxiP
−1 and PyP−1 are in standard form.

Proof. Let X = {x1, . . . , xn}. We will show that since all elements of X are diagonal

with 1-dimensional mutual eigenspaces, P must be a generalized permutation matrix.

Then we show that since, up to scalars, P commutes with y that P must be a power

of y up to scalars. We then show that it follows that, up to twisting, PρP−1 is in

standard form.

Since all elements of X are diagonal and its mutual eigenspaces are 1-dimensional,

CGL
pN

(C)(〈X〉) = D, where, for a group G, CG(H) is the centralizer of H ⊆ G and

D ≤ GLpN (C) are the diagonal matrices. Since D is the centralizer of X and since X

has 1-dimensional mutual eigenspaces D is also the centralizer of PXP−1. Let NG(H)

be the normalizer of H in G. It is well known that NGL
pN

(C)(D) = P where P are the

generalized permutation matrices; that is, matrices with precisely one non-zero entry

in each row and column. And, since the mutual eigenspaces of X are all 1-dimensional,

P ∈ P .
If PyP−1 = T1y we twist ρ such that T1 = 1. We know that P must be in the

centralizer of y. Since y is a pN -cycle and only powers of pN -cycles commute with pN -

cycles in the symmetric group of pN elements we have that P = Tym for some diagonal

matrix T and m ∈ Z. But since P commutes with y and, of course, ym commutes with

y, T must as well. It follows that T must be a scalar matrix.

Conjugation of each xi by P, which is the same as conjugating by ym, for each i,

maps λi to λi,m+1. We can twist by some 1-dimensional representation χ such that

λ1,m+1 = 1 and thus by, Proposition 4.2.15 (or directly by Lemma 2.4.3(v)), χPρP−1

is in standard form.

The lemma above calculates all representations in standard form which are in the

same twist isoclass as ρ. Thus, we can deduce the “only if” direction of the proposition.

Remembering that representations in a twist isoclass are equivalent up to both

twisting and isomorphism, we make the following definition.
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Definition 4.2.11. Let ρ be irreducible and let xi, y, for i such that 1 ≤ i ≤ n, be in

standard form as defined earlier in the section. A shout is a matrix P such that, up to

twisting, PyP−1 and PxiP
−1 for i = 1 . . . n are in standard form. The representations

ρ and PρP−1 (note that Px1P
−1 may not be in standard form) are said to be equivalent

under shouting.

We now need to count how many representations in standard form are in the same

twist isoclass as ρ; that is, how many representations in standard form are twist-

equivalent to ρ. We say that two representations that satisfy these conditions are

equivalent under twisting and shouting [25]. If there are d twist-and-shout equivalent

representations, and if we are just counting representations in standard form then we

have overcounted by a factor of d. Thus, we must take this into account when counting

twist isoclasses. In this vein, we now have the following lemma.

Lemma 4.2.12. Let Sρ be the twist isoclass represented by ρ and let V(ρ|Mn−1) = Vpm .

Then there are pm representations in standard form in Sρ that are twist-and-shout

equivalent to ρ.

Proof. By Lemma 4.2.2 the entries of the xi are determined by the λi. So to determine

how many representations are twist-and-shout equivalent to ρ we must count the

number of choices of λi such that ρ∗ = χPρP−1 such that ρ∗ is in standard form

for some 1-dimensional representation χ.

For a shout P, let x′i = χPxiP
−1 for all i ≤ N and let λ′i be the first diagonal entry

of x′i. By Lemma 4.2.10, for some ` ≤ pN , y = p` and thus λ′i = λi,` for each i. Since ρ∗

is in standard form it must be that we chose χ such that λ′1 = 1.

By the argument above, our choice of ` gives us, up to our choice of twist χ a

representation that is twist-and-shout equivalent to ρ. It follows that the number

of representations twist-and-shout equivalent to ρ is the size of the set {Λ′(`) :=

(λ2,`, . . . , λn,`) | ` ≤ pN}. By Corollary 4.2.5, the size of this set is pm.

Note two things: first, that when we reference this lemma, we say we take shouting

into account; and second, since all entries of any xi differ by products of λj such

that j > i, this lemma implies that the depth of λ2 has no effect on the number of

twist-and-shout equivalent representations.

During the calculation of the p-local zeta functions that appear in this section, we

break computation into various cases that depend on the depths of the λi that we

choose. We note, without additional special mention except in one subcase, that each
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case is closed under shouting. For completeness, however, we have the following lemma

which can be applied to the various cases to show that they are closed.

Lemma 4.2.13. For some i and M let s(λi) = M, s(λi+1), . . . , s(λn) ≤ M. Then, for

all j, s(λi,j) ≤ s(λi).

Proof. Each λi,k = λiΛ where Λ is some product of the roots of unity λi+1, . . . , λn.

Also, s(λaλb) ≤ max{s(λa), s(λb)} for λa, λb ∈ S∞p . The result follows immediately

from these two facts.

4.2.4 Determining When ρ is Irreducible for Non-Exceptional

Primes

We note that the expressions Tk(i) contain a denominator of k!. We note that, for

representations of Mn, in standard form, it is always the case that k ≤ n − 1. For

primes p ≥ n, called the non-exceptional primes, the p-local zeta function will behave

uniformly. In the case where p < n the behaviour will be different. We call these p the

exceptional primes. We will show some examples of this exceptional behaviour later in

the chapter.

In this section we study the conditions for irreducibility of a pN -dimensional rep-

resentation ρ such that p ≥ n. If this is the case, then the Tk(i) terms that appear in

the calculation of the standard forms have denominators that are all units mod p. We

show that such a representation ρ is irreducible precisely when at least one of the λi is

a primitive pNth root of unity.

We must determine the possible values for the λi. In that vein, we have the following

lemma.

Lemma 4.2.14. For non-exceptional primes p ≥ n we have, for all i ≤ n, that λi ∈ SNp .

Proof. Equation 4.2.4 in Lemma 4.2.2 tells us that λp
N

i

∏n
k=i+1 λ

Tk−i(p
N−1)

k = 1 for each

i. By Lemma 2.4.3(vi), λ
Tk(pN−1)
j = 1 for all j < p. The result then follows immediately.

Let x1, . . . , xn, y be matrices in standard form and let ρ be the corresponding

representation. We will show that, for non-exceptional primes, ρ is irreducible precisely

when one of the xi has all pNth roots of unity on its diagonal. This implies that, at least

one of the λi, where i 6= 1, is in fact a primitive pNth root of unity. This will be shown

in two stages. First, if λi is the “first-from-the-bottom” primitive pNth root of unity
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then xi−1 has every pNth root of unity on its diagonal. More formally, if s(λi) = N for

some i 6= 1 and s(λk) ≤ N − 1 for all k such that i+ 1 ≤ k ≤ n then xi−1 has all pNth

roots of unity on its diagonal. Secondly, we show a stronger result that implies that if

none of the λi are primitive pNth roots of unity, that is s(λi) ≤ N − 1 for all i, then

there is a proper stable subspace. We use the full strength of the second lemma later

in the chapter.

We state the above as a proposition. The proof is a consequence of the two lemmas

following it.

Proposition 4.2.15. Let p ≥ n and ρ be a pN -dimensional representation of Mn in

standard form. Then ρ is irreducible if and only if there exists i with 2 ≤ i ≤ n such

that s(λi) = N.

Lemma 4.2.16. If s(λi) = N and s(λk) ≤ N − 1 for all k such that i + 1 ≤ k ≤ n

then all λi−1,j, where 1 ≤ j ≤ pN , are distinct pN th roots of unity.

Proof. Assume that s(λi) = N and s(λk) ≤ N−1 for i+1 ≤ k ≤ n. We can write these

non-primitive λk, for each k, as powers of λi. Let λk = λαkp
mk

i such that p - αk and

mk ≥ 1. For ease of display let αi = 1 and mi = 0. Let Aj =
∑n

k=i αkp
mkTk−i+1(j− 1).

Then, by Lemma 4.2.2 we can say

λi−1,j =
n∏

k=i−1

λ
Tk−i+1(j−1)
k = λi−1λ

Aj
i . (4.2.12)

We show that, for fixed i, the diagonal entries λi,j are pairwise distinct by dividing two

of them, say λi−1,s+1 and λi−1,t+1 with s ≥ t, and showing that if λi−1,s+1/λi−1,t+1 = 1

then s = t.

Consider the equation

λi−1,s+1

λi−1,t+1

= λ
As+1−At+1

i = 1. (4.2.13)
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Taking the logarithm base λi and working mod pN :

0 = As+1 − At+1 (4.2.14)

=
n∑
k=i

αkp
mkTk−i+1(s)−

n∑
k=i

αkp
mkTk−i+1(t)

= [αip
mi
(
T1(s)− T1(t)

)
+ . . .

+ αnp
mn
(
Tn−i+1(s)− Tn−i+1(t)

)
]

= (s− t) + [αi+1p
mi+1

(
T2(s)− T2(t)

)
+ . . .

+ αnp
mn
(
Tn−i+1(s)− Tn−i+1(t)

)
] mod pN .

By Lemma 2.4.3(ii), (s− t) is indeed a factor of each numerator of the right hand

side of Equation 4.2.14. Therefore, remembering that p ≥ n and noting that all

denominators are units mod p,

0 mod pN = As+1 − At+1 (4.2.15)

= (s− t)[1 + αi+1p
mi+1

γi+1

2!
+ . . .+ αnp

mn
γn

(n− i+ 1)!
]

for some γk. Since all mk ≥ 1 this implies that

1 + αi+1p
mi+1

γi+1

2!
+ . . .+ αnp

mn
γn

(n− i+ 1)!
6= 0 mod p (4.2.16)

and thus s − t = 0 mod pN and we conclude that s = t. We can now say that the

diagonal entries of xi−1 are pairwise distinct.

We prove the necessity of having at least one λi a primitive pN root of unity in the

following lemma. The idea is to show that if no λi is a primitive pNth roots of unity

then for 1 ≤ β ≤ pk−1 and 1 ≤ j ≤ pN−k, for some k, we have that λi,j = λi,βpN−k+j for

any i. Therefore Vpk is in fact a proper ρ-stable subspace of CpN . For ρ to be irreducible

this cannot be the case.

Lemma 4.2.17. Let λ∗ ∈ SNp \SN−1
p . For each i ≥ 2 let λi = λαip

mi

∗ where p - αi
and mi ≥ 1. Also, let m∗ = min{mi}. Then, for any i, λi,j = λi,βpN−m∗+j for all

1 ≤ β ≤ pm∗ − 1 and 1 ≤ j ≤ pN−m∗ .

Proof. Consider the expression Λ := logλ∗(λi,βpn−m∗+j+1) for some 0 ≤ j ≤ pn−m∗ − 1

where 1 ≤ β ≤ pm∗ . Then
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Λ mod pN = αip
mi + αi+1p

mi+1T1(βpN−m∗ + j) + . . . (4.2.17)

+ αnp
mnTn−i(βp

N−m∗ + j)

= αip
mi + αi+1p

mi+1(βpN−m∗ + j) + . . .

+ αkp
mk

(βpN−m∗ + j) . . . (βpN−m∗ + (j + k − i− 1))

(k − i)!
+ . . .

+ αnp
mn

(βpN−m∗ + j) . . . (βpN−m∗ + (j + n− i− 1))

(n− i)!

where the term involving k is a typical term. By Corollary 2.4.4, since m∗ ≤ mi for

all mi it follows that, if each numerator was expanded, all terms are 0 mod pN but the

terms that have no factor of pN−m∗ in the expansion of each numerator; that is

αkp
mk(βpN−m∗+j) . . . (βpN−m∗+j+k−1) = αkp

mk(j) . . . (j+k−1) mod pN (4.2.18)

for i ≤ k ≤ n. Therefore

Λ = αip
mi + αi+1p

mi+1T1(j) + . . .+ αnp
mnTn−i(j) mod pN (4.2.19)

= logλ∗(λi,j+1).

This completes the proof of the proposition.

4.2.5 Counting Twist-Isoclasses of Non-Exceptional ρ

Now that we have determined all irreducible representations up to twisting and iso-

morphism for the non-exceptional case, we count the number of twist isoclasses. We

do this by counting the number of ρ that have a basis such that they are in standard

form, and taking into account representations that are isomorphic under twisting and

shouting so we do not overcount. We remind the reader that one of the λi, for i ≥ 2,

must be a primitive pNth root of unity.

Regarding twist-and-shout equivalent representations, we have the following lemma
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that follows directly from Lemmas 4.2.12 and 4.2.17; notice the choices of p that are

valid for this lemma.

Lemma 4.2.18. For p ≥ n − 1 let ρ be an irreducible pN -dimensional representation

of Mn and let V(ρ|Mn−1) = Vpk . Then there are pk representations in standard form

equivalent to ρ under twisting and shouting.

We break the computation into two cases. First, assume s(λk) = N for some k

such that 3 ≤ k ≤ n. In this case there are altogether (1− p−(n−2))p(n−2)N choices for

λ3, . . . , λn. We can choose any pNth root of unity for λ2 and therefore there are pN

choices for this. By Lemma 4.2.18 we must divide by pN to take shouting into account.

Now assume s(λ2) = N and s(λi) ≤ N − 1 for 3 ≤ i ≤ n. There are (1 −
p−1)pN choices for λ2. If max{s(λk)} = ` 6= 0 for 3 ≤ k ≤ n then we have (1 −
p−(n−2))p(n−2)(N−`) choices for these. By Lemma 4.2.18 we must divide by pN−`. If

max{s(λk)} = 0 for 3 ≤ k ≤ n then all of the λ3, . . . , λn are the p0th root of unity,

namely 1. Since we have no freedom to shout in this case, we are not overcounting.

Summing these two cases together we have, for N ≥ 1,

rpN = (1− p−(n−2))p(n−2)NpNp−N (4.2.20)

+
N∑
l=1

(1− p−1)pN(1− p−(n−2))p(n−2)(N−l)p−(N−l)

+ (1− p−1)pN
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and

ζ irrMn,p(s) =
∞∑
N=0

rpNp
−Ns = 1 +

∞∑
N=1

(1− p−(n−2))p(n−2)NpNp−Np−Ns (4.2.21)

+
∞∑
N=1

N−1∑
`=1

(1− p−1)pN(1− p−(n−2))p(n−2)(N−`)p−(N−`)p−Ns

+
∞∑
N=1

(1− p−1)pNp−Ns

= 1 + (1− p−(n−2))
∞∑
N=1

(p(n−2)−s)N

+ (1− p−1)(1− p−(n−2))
∞∑
N=1

p(n−2)Np−Ns
N−1∑
l=1

(p3−n)`

+ (1− p−1)
∞∑
N=1

(p1−s)N .

Summing some geometric series we have

ζ irrMn,p(s) = 1 + (1− p−(n−2))
p(n−2)−s

1− p(n−2)−s (4.2.22)

+ (1− p−1)(1− p−(n−2))
∞∑
N=1

(p(n−2)−s)N
p3−n − (p3−n)N

1− p3−n

+ (1− p−1)
p1−s

1− p1−s

= 1 + (1− p−(n−2))
p(n−2)−s

1− p(n−2)−s

+ (1− p−1)(1− p−(n−2))

(
∞∑
N=1

p3−n(p(n−2)−s)N − (p1−s)N

1− p3−n

)

+ (1− p−1)
p1−s

1− p1−s .
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Thus

ζ irrMn,p(s) = 1 + (1− p−(n−2))
p(n−2)−s

1− p(n−2)−s (4.2.23)

+
(1− p−1)(1− p−(n−2))

1− p3−n

(
p1−s

1− p(n−2)−s −
p1−s

1− p1−s

)
+ (1− p−1)

p1−s

1− p1−s

and a routine calculation of Equation 4.2.23 yields that

ζ irrMn,p(s) =
(1− p−s)2

(1− p(n−2)−s)(1− p1−s)
. (4.2.24)

Note in particular that ζ irrMn,p
(s) |p→p−1= pn−1ζ irrMn,p

(s) and thus this zeta function does

indeed satisfy the correct functional equation as in Theorem 1.4.3. By Equation 4.2.24

we can also say that the p-local abscissa of convergence is

αMn,p = n− 2 (4.2.25)

for n ≥ 3. If n = 2, that is for the Heisenberg group H ∼= M2, then a factor of (1−p−s)
in the numerator cancels with the factor (1 − p(n−2)s) in the denominator. It follows

that, for all primes p,

αM2,p = 1. (4.2.26)

4.3 Some Exceptional Prime Calculations

In the section above we dealt with the case when p ≥ n. We remind readers that the

fact that these primes did not divide the denominators of the Tk(i) terms made the

computation uniform across all of these primes. In this section we study some cases

when p < n.

4.3.1 The p-local Representation Zeta Function of Mp+1

For a prime p, we study the p-local representations of Mn when n = p+1. We calculate

the exceptional prime representation growth zeta function ζ irrMn,p
(s).

Note that, unlike the non-exceptional calculation, p is fixed by our choice of

group for this calculation.
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Let ρ be a pN -dimensional representation. We will determine the choices of λi for

which ρ is irreducible. By Lemma 4.2.2 we can choose a basis such that, for each xi,

xi =



λi ∏p+1
k=i λ

Tk−i(1)
k

. . . ∏p+1
k=i λ

Tk−i(p
N−1)

i


. (4.3.1)

We divide this calculation into two cases: when s(λp+1) = N and when s(λp+1) ≤
N − 1. Furthermore, we break the second case into two sub-cases: when there is a λi

with 3 ≤ i ≤ p such that s(λi) = N and when there is no such λi. Call these cases

Case 1, and Case 2, respectively. We call Case 2’s respective subcases Case 2.1 and

Case 2.2. Note that, since p is not exceptional when considering ρ|Mp (and we remind

the reader that Mp = 〈y, x2, . . . , xp+1〉), we can apply Lemma 4.2.18 when determining

the number of representations twist-and-shout equivalent to some irreducible ρ.

Case 1 Assume that s(λp+1) = N.

By [14, Theorem 8.4], ρ|M2 is an irreducible representation. It is clear, since Ti(p
N−1) =

0 mod pN for i < p by Lemma 2.4.3(vi), that we can use Equation 4.2.4 in Lemma 4.2.2

to show that s(λi) ≤ N for i 6= 2 and

λp
N

2

p+1∏
k=3

λ
Tk−1(pN−1)
k = 1. (4.3.2)

Since s(λi) ≤ N for 3 ≤ i ≤ p by Lemma 2.4.3(vi) the preceding equation simplifies

to

λp
N

2 λ
Tp(pN−1)
p+1 = 1. (4.3.3)

The p-simplex number

Tp(p
N − 1) =

(pN − 1)
(
pN
)
. . . (pN + p− 2)

p!
(4.3.4)

=
(pN − 1)

(
pN−1

)
. . . (pN + p− 2)

(p− 1)!

= αpN−1

for some α such that p - α. So s(λαp
N−1

p+1 ) = 1 and λp
N

2 = (λαp
N−1

p+1 )−1. So s(λ2) = N + 1
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and there are pN choices for λ2 to make Equation 4.3.3 hold. So there are (1− p−1)pN

choices for λp+1 and pN choices for each λi where 2 ≤ i ≤ p. By Lemma 4.2.18 we must

divide by pN to take shouting into account. Therefore in this case there are

(1− p−1)pNp(p−1)Np−N (4.3.5)

= (1− p−1)p(p−1)N

twist isoclasses. Note that the right hand side of Equation 4.3.5 is also the contribution

to rpN in the non-exceptional case for when s(λp+1) = N.

Case 2 Now assume s(λp+1) ≤ N − 1.

It is clear, since Ti(p
N − 1) = 0 mod pN for i < p by Lemma 2.4.3(vi) and since

λ
Tp(pN−1)
p+1 = 1 by Equation 4.3.4, that we can say that s(λi) ≤ N for 2 ≤ i ≤ p+ 1. We

now break this case into subcases.

Case 2.1 For i such that 3 ≤ i ≤ p, assume one of s(λi) = N, say λk. Then, since

p ≥ k, by Proposition 4.2.15 ρ|Mp+1−k+2
is an irreducible representation. Thus ρ is

irreducible. In this case there are (1− p−(p−2))p(p−2)N choices for λi, p
N choices for λ2,

and pN−1 choices for λp+1. By Lemma 4.2.18 we must divide by pN to take shouting

into account. Thus there are

(1− p−(p−2))p(p−2)NpN−1pNp−N = (1− p−(p−2))p(p−1)N−1 (4.3.6)

twist isoclasses in this case. We note that the contribution to rpN in this case is the

same contribution to rpN for non-exceptional primes.

Case 2.2 Finally, assume s(λi) ≤ N − 1 where 3 ≤ i ≤ p. Note that in this case

ρ|Mp has VpN−1 as a proper stable subspace so by Lemma 4.2.8 it is not irreducible. If

s(λp+1) = 0 then Mp+1 is isomorphic to Mp and by Proposition 4.2.15 ρ is irreducible

if and only if s(λ2) = N .

Now let s(λp+1) ≥ 1. We choose λ∗ such that s(λ∗) = N and write each λi in terms

of it; that is, let λi = λαip
mi

∗ , p - αi, m2 ≥ 0, and mi ≥ 1 for 3 ≤ i ≤ p+ 1.

We appeal to Lemma 4.2.8 and determine when 〈y, x1〉 does not have VpN−1 as a

proper stable subspace. This implies that λ1,j 6= λ1,βpN−1+j for some 1 ≤ β ≤ p−1 and

1 ≤ j ≤ pN−1. Consider λ1,βpN−1+j+1 for 0 ≤ j ≤ pN − 1. If N = 1, then in order for ρ

not to be trivial, λ2 = −1 and it is easily verified that x1 is not scalar so VpN−1 is not

a stable subspace. Since we want ρ to be irreducible this must be the case. Now, for
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N ≥ 2,

Λ := logλ∗(λ1,βpN−1+j+1) (4.3.7)

= α2p
m2(βpN−1 + j) + α3p

m3
(βpN−1 + j)(βpN−1 + j + 1)

2
+ . . .

+ αp+1p
mp+1

(βpN−1 + j) . . . (βpN−1 + j + p− 1)

p!
mod pN .

By Corollary 2.4.4 and keeping in mind that mi ≥ 1 for 3 ≤ i ≤ p+1 this simplifies

to the following:

Λ = α2p
m2βpN−1 +

(
α2p

m2j + α3p
m3
j(j + 1)

2!
+ . . . (4.3.8)

+ αpp
mp
j(j + 1) . . . (j + p− 2)

(p− 1)!

)
+ αp+1p

mp+1−1 (βpN−1 + j) . . . (βpN−1 + j + p− 1)

(p− 1)!
mod pN .

Note that the last term has a denominator of (p−1)! since the factor of p was subtracted

from mp+1. We have that

Λ =

(
logλ∗(λ1,j+1)− αp+1p

mp+1−1 j(j + 1) . . . (j + p− 1)

(p− 1)!

)
+
[
α2p

m2(βpN−1) (4.3.9)

+αp+1p
mp+1−1 (βpN−1 + j) . . . (βpN−1 + j + p− 1)

(p− 1)!

]
mod pN .

Let Q be the term in the square brackets above. Expanding Q

Q = α2p
m2(βpN−1) + αp+1p

mp+1−1 j(j + 1) . . . (j + p− 1) + Ω + Ω′

(p− 1)!
mod pN (4.3.10)

= α2p
m2(βpN−1) + αp+1p

mp+1−1 j(j + 1) . . . (j + p− 1) + Ω

(p− 1)!
mod pN

where

Ω = βpN−1

p−1∑
i=0

j(j + 1) . . . (j + p− 1)

j + i
(4.3.11)

and Ω′ is terms of higher degree than pN (which are clearly 0 mod pN). We can say

that exactly one of j, (j + 1) . . . , (j + p − 1) is divisible by p, say for i = ι. It follows
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that only one term of
∑p−1

i=0
j(j+1)...(j+p−1)

j+i
is in fact not a multiple of p. Therefore we

have

βpN−1

p−1∑
i=0

j(j + 1) . . . (j + p− 1)

j + i
= βpN−1 j(j + 1) . . . (j + p− 1)

j + ι
(4.3.12)

= βpN−1(−1 + ap) mod pN

by Wilson’s Theorem, and for some a. Thus

Q = α2p
m2(βpN−1) (4.3.13)

+ αp+1p
mp+1−1 j(j + 1) . . . (j + p− 1) + βpN−1(−1 + ap)

(p− 1)!
mod pN .

Therefore

Λ =

(
logλ∗(λ1,j+1)− αp+1p

mp+1−1 j(j + 1) . . . (j + p− 1)

(p− 1)!

)
+

[
α2p

m2(βpN−1)

+ αp+1p
mp+1−1 j(j + 1) . . . (j + p− 1)− βpN−1

(p− 1)!

]
mod pN

= logλ∗(λ1,j+1) + [βpN−1(α2p
m2 + αp+1p

mp+1−1)] mod pN

Since we want ρ to be irreducible the sum inside the round brackets in the previous

equation must not be divisible by p; that is

α2p
m2 + αp+1p

mp+1−1 6= 0 mod p. (4.3.14)

We now enumerate the cases when we do indeed have a factor of p. If m2 ≥ 1 and

mp+1 ≥ 2 then we clearly have a factor of p so this cannot be the case if ρ is

irreducible. Now assume mp+1 = 1. Then we have a factor of p in the left hand

side of Equation 4.3.14 only when m2 = 0 and α2 = −αp+1 mod p. Finally, assume

m2 = 0 and mp+1 6= 1. Then it is clear that α2p
m2 + αp+1p

mp+1−1 6= 0 mod p. We have

irreducible representations when mp+1 = 1 or m2 = 0 except when mp+1 = 1,m2 = 0,

and α2 6= −αp+1 mod p.

We still need to take shouting into account. Therefore, by Lemma 4.2.18, we must
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divide our count, if we enumerated the representations in this case at this stage, by

pm∗ where m∗ = max{s(λ3), . . . , s(λp+1)}. Note that the shouting behaviour, since p

is non-exceptional when considering ρ|Mp , is the same as in the non-exceptional case.

This ends the case distinctions.

We note that the only difference between the rpN for this exceptional prime and

the rpN for non-exceptional primes is the situation when we can choose λ2 and λp+1

such that (still thinking of all λi written as powers of λ∗) mp+1 = 1 and m2 ≥ 1,

which gives us additional irreducible representations, and when mp+1 = 1,m2 = 0,

and α2 6= −αp+1 mod p, which gives us representations that are no longer irreducible.

Therefore, starting with rpN calculated for non-exceptional primes, we can add the

cases where our choices of λi give us additional representations and subtract the cases

where we lose representations.

Let C be rpN for non-exceptional primes, that is the sum in (4.2.20). The situation

where mp+1 = 1 and m2 ≥ 1 would not correspond to irreducible representations

for non-exceptional primes, but do for exceptional primes. There are (1 − p−1)pN−1

choices for λp+1 and pN−1 choices for λ2 in this case. Remembering that we assumed

that s(λi) ≤ N − 1 for 3 ≤ i ≤ p then there are p(p−2)(N−1) choices for these λi. By

Lemma 4.2.18 we must divide by pN−1 to take shouting into account. Therefore we

must add

(1− p−1)pN−1pN−1p(p−2)(N−1)p−(N−1) = (1− p−1)p(p−1)(N−1) (4.3.15)

to C.

The situation where mp+1 = 1, m2 = 0, and α2 = −αp+1 mod p would correspond to

irreducible representations for non-exceptional primes, but not for exceptional primes.

There are (1−p−1)pN choices for λ2 and, given our choice for λ2, there are pN−2 choices

for λp+1 in this case. Remembering that we assumed that s(λi) ≤ N − 1 for 3 ≤ i ≤ p

then there are p(p−2)(N−1) choices for these λi. By Lemma 4.2.18 we must divide by

pN−1 to take shouting into account. Therefore we must subtract

(1− p−1)pNpN−2p(p−2)(N−1)p−(N−1) = (1− p−1)p(p−1)(N−1) (4.3.16)
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from C. Notice that (4.3.15) = (4.3.16). Therefore

rpN = C (4.3.17)

and

ζ irrMp+1,p
(s) =

(1− p−s)2

(1− p((p+1)−2)−s)(1− p1−s)
(4.3.18)

by Equation 4.2.21.

This result, and the result from the previous section, gives us the entire irreducible

representation theory, as well as the representation zeta function of M3. In fact, we can

say that

ζ irrM3
(s) =

(
ζ(s− 1)

ζ(s)

)2

. (4.3.19)

4.3.2 The 2-local Representation Zeta Function of M4

We have a complete understanding of the irreducible representations of M3. The aim

of this section is to do the same for M4. Our previous work leaves us with only one p-

local zeta function to calculate; the previous section calculates the 3-local zeta function

and 2 and 3 are the only exceptional primes. Therefore once we calculate the 2-local

representation zeta function we have ζ irrM4
(s) in its entirety.

Note, for ease of computation, we calculate r2(M4) separately later in this section.

Until noted otherwise we assume the condition that N ≥ 2.

In keeping with the style of the general cases earlier, and for elucidation if one

wishes to generalize this calculation, we do not simplify the expressions (1 − 2−1) to

2−1 as far in the calculation as possible.

Let ρ : M4 → GL2N (C) be a representation. By Equation 4.2.4 in Lemma 4.2.2

λ2N

4 = 1, (4.3.20)

λ2N

3 λ
T2(2N−1)
4 = 1, (4.3.21)

and

λ2N

2 λ
T2(2N−1)
3 λ

T3(2N−1)
4 = 1. (4.3.22)

Therefore, by Equation 4.3.20, s(λ4) ≤ N.

Before we begin counting twist isoclasses we must determine the possible depths of
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4. Representation Growth of Mn

λ2 and λ3. Assume s(λ4) ≤ N − 1. Then, by Equation 4.3.4, λ
T2(2N−1)
4 = λ

T3(2N−1)
4 = 1

and by Equation 4.3.21 λ2N

3 = 1 so s(λ3) ≤ N. If s(λ3) ≤ N − 1 then λ
T2(2N−1)
3 = 1

and by Equation 4.3.22 λ2N

2 = 1 so s(λ2) ≤ N. If s(λ3) = N then, by Equation 4.3.4,

λ
T2(2N−1)
3 = λ−2N−1

3 and therefore s(λ−2N−1

3 ) = 1. By Equation 4.3.22 we have that

λ2N

2 = λ2N−1

3 and thus λ2N

2 must satisfy this equation. So λ2N

2 = −1 and s(λ2) = N + 1.

Now assume s(λ4) = N. Then, by Equation 4.3.4, λ
T2(2N−1)
4 = λ

T3(2N−1)
4 = λ−2N−1

4

and therefore s(λ−2N−1

4 ) = 1. By Equation 4.3.21,

λ2N

3 = λ2N−1

4 (4.3.23)

and thus λ2N

3 must satisfy this equation. So λ2N

3 = −1 and s(λ3) = N+1. By Equation

4.3.4, λ
T2(2N−1)
3 = λ−2N−1

3 and, by Equations 4.3.22 and 4.3.23, λ2N

2 = λ2N−1

3 λ2N−1

4 =

λ2N+2N−1

3 = λ
(1+2)2N−1

3 . Note that we leave (1 + 2) in this form since we wish to stress

that it is in fact (1 + p). Thus s(λ
(1+2)2N−1

3 ) = 2 and λ2N

2 must satisfy Equation 4.3.22.

So λ2N

2 = ±
√
−1 and s(λ2) = N + 2.

Any choices of λ2, λ3, and λ4 that satisfy Equations 4.3.20, 4.3.21, and 4.3.22

are well defined representations. We now check which choices give us irreducible

representations, as we want ρ to be irreducible. To do this, we break up the domain of

choices into eight parts and calculate each part’s contribution to r2N (M4). Table 4.1

lists this information.

Table 4.1 Table of Cases for M4

Case s(λ4) s(λ3) s(λ2) Other
Conditions

No. of twist iso-
classes, N ≥ 2

1 = N = N + 1 = N + 2 (1− 2−1)422N+3

2 = N − 1 = N = N + 1 α3 = 3 mod 4 (1− 2−1)322N

3 = N − 1 ≤ N − 1 ≤ N (1− 2−1)22N−2

4 ≤ N − 2 = N = N + 1 (1− 2−1)222N−1

5 ≤ N − 2 = N − 1 = N 0

6 ≤ N − 2 ≤ N − 2 = N See Table 4.2 on
page 71

7 ≤ N − 2 = N − 1 ≤ N − 1 See Table 4.3 on
page 71

8 ≤ N − 2 ≤ N − 2 ≤ N − 1 0
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Table 4.2 Case 6 of Table 4.1

N Case Relationship of s(λ3) and s(λ4) No. of twist isoclasses

= 2 6.4 s(λ3) = s(λ4) = 0 2

=3
6.2 s(λ3) ≤ 1, s(λ4) = 1 (1− 2−1)223

6.4 s(λ4) = 0 (1− 2−1)23(1 + (1− 2−1))

≥ 4

6.1 s(λ3) > s(λ4) + 1, s(λ3) ≥ 2, s(λ4) 6= 0
[
(1−2−1)2N

(
(2N−4−1)

− (1− 2−1)(N − 4)
)]

6.2 s(λ3) < s(λ4) + 1, s(λ4) 6= 0 (1− 2−1)2N(2N−3 − 2−1)

6.3 s(λ3) = s(λ4) + 1, s(λ4) 6= 0 (1− 2−1)22N(2N−2 − 2)

6.4 s(λ4) = 0 (1 − 2−1)22N(1 + (1 −
2−1)(N − 2))

Table 4.3 Case 7 of Table 4.1

N Case No. of twist isoclasses

= 2 1

≥ 3
7.1 (1− 2−1)22N−4

7.2 (1− 2−1)222N−2

Case 1: Since s(λ4) = N we have, by Case 1 of Section 4.3.1, that ρ|M2 is

irreducible. Therefore ρ is indeed an irreducible representation of M4. By Equations

4.3.20, 4.3.21, and 4.3.22 there are (1 − 2−1)2N choices for λ4, (1 − 2−1)2N+1 choices

for λ3, and (1 − 2−1)22N+2 choices for λ2. Since, by Case 1 of Section 4.3.1, we know

that ρ|M3 is irreducible, we have that V(ρ|M3) = V2N . Thus, by Lemma 4.2.12, we must

divide by 2N to take shouting into account. So in this case we have

(1− 2−1)42N2N+12N+22−N = (1− 2−1)422N+3 (4.3.24)

twist isoclasses.

Case 2: By Case 2.2 of Section 4.3.1, ρ|M3 is reducible. Appealing to Lemma 4.2.8

we must check whether V2N−1 is a stable subspace of 〈y, x1〉. We write each root of

unity in terms of a primitive 2N+1th one. Let λ∗ = λ2, λi = λαi2
mi

∗ for some αi such

that 2 - αi,m4 = 2, m3 = 1, and i ∈ {3, 4}.

We use Corollary 4.2.6 at this point. Now, noting that 2 · (2N−1)2 = 0 mod 2N+1

for N = 2, consider λ1,2N−1+1:
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Λ := logλ∗(λ1,2N−1+1) (4.3.25)

= (2N−1) + 21−1α3(2N−1)(2N−1 + 1)

+ α422−1 (2N−1)(2N−1 + 1)(2N−1 + 2)

3
mod 2N+1

= 2N−1

(
1 + α3 + α421 2

3

)
mod 2N+1

= logλ∗(λ1) + 2N−1 [1 + α3] mod 2N+1

So the expression in the square brackets above is a multiple of 4 if and only if

V2N−1 is a 〈y, x1〉-stable subspace. Let Q be the aforementioned expression. It is clear

that Q = 0 mod 4 precisely when α3 = 3 mod 4. This means that we are only free to

choose half of the elements of SN2 /S
N−1
2 for λ3. Thus, there are (1− 2−1)2N−1 choices

for λ3, (1 − 2−1)2N+1 choices for λ2, and (1 − 2−1)2N−1 choices for λ4. Since ρ|M3 is

not irreducible it has at least V2N−1 as a stable subspace. But since s(λ4) = N − 1, by

Corollary 4.2.7, V(ρ|M3) = V2N−1 . Thus, by Lemma 4.2.12 we must divide by 2N−1 to

take shouting into account. So in this case we have

(1− 2−1)2N−1(1− 2−1)2N+1(1− 2−1)2N−12−(N−1) (4.3.26)

= (1− 2−1)322N

twist isoclasses.

Case 3: By Case 2.2 of Section 4.3.1, ρ|M3 is irreducible and therefore ρ is irre-

ducible. There are (1 − 2−1)2N−1 choices for λ4, 2N−1 choices for λ3, and 2N choices

for λ2. By Lemma 4.2.12 we must divide by 2N to take shouting into account. So in

this case we have

(1− 2−1)2N−12N−12N2−N (4.3.27)

= (1− 2−1)22N−2

twist isoclasses.

Case 4: By Case 2.2 of Section 4.3.1, ρ|M3 is irreducible and therefore ρ is irre-

ducible. There are 2N−2 choices for λ4, (1− 2−1)2N choices for λ3, and (1− 2−1)2N+1

choices for λ2. By Lemma 4.2.12 we must divide by 2N to take shouting into account.
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So in this case we have

2N−2(1− 2−1)2N(1− 2−1)2N+12−N (4.3.28)

= (1− 2−1)222N−1

twist isoclasses.

Cases 5 and 6: We note for both cases s(λ2) = N and s(λ4) ≤ N−2. We have, by

Case 2.2 of Section 4.3.1, that ρ|M3 has V2N−1 as a proper stable subspace. Appealing

to Lemma 4.2.8, we check whether V2N−1 is a stable subspace of 〈y, x1〉. We let λ∗ = λ2

and write each λi as a power of λ∗; that is, let λ4 = λα42m4

∗ and λ3 = λα32m3

∗ such that

2 - αi m3 ≥ 1, m4 ≥ 2, and i ∈ {3, 4}. If m4 = N then by Case 2.2 of Section 4.3.1, ρ is

irreducible if and only if m3 6= 1. If m3 = N it is easy to show that logλ∗(λ1,2N−1+1) 6= 1.

We leave this to the reader. Assume that m3,m4 6= N.

Appealing to Corollary 4.2.6, consider λ1,2N−1+1, noting that a(a + 1) is even for

any a and 22N−2 = 0 mod 2N :

Λ := logλ∗(λ1,2N−1+1) (4.3.29)

= (2N−1) + α32m3−1(2N−1)(2N−1 + 1)

+ α42m4−1 2N−1(2N−1 + 1)(2N−1 + 2)

3
mod 2N

= logλ∗(λ1) + 2N−1
[
1 + α32m3−1

]
mod 2N .

So when the term in the square brackets above, say Q, is not 0 mod 2 then λ1 =

1 6= λ1,2N−1+1. It follows that V2N−1 is not a stable subspace of ρ and therefore ρ is

irreducible. Thus Q is 0 mod 2 when m3 = 1; that is when s(λ3) = N − 1. So in Case

5 there are no irreducible representations.

If m3 ≥ 2 it is clear that Q 6= 0 mod 2. Thus, in Case 6 there are 2N−2 choices for

λ4, 2N−2 choices for λ3, and (1− 2−1)2N choices for λ2.

We now need to analyze the shouting behaviour for this case. It is clear, since

V(ρ|M2) = V2s(λ4) by Lemma 4.2.18 and Corollary 4.2.7, that there are at least 2s(λ4) =

2N−m4 twist and shout-equivalent representations. We now determine V(ρ|M3). Let

m4 6= N. We deal with the case m4 = N in the next lemma. Also, note that we use

the power of Corollary 4.2.6 for this computation.
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Consider, for some k such that 1 ≤ k ≤ m4,

Λ := logλ∗(λ2,2N−k+1) (4.3.30)

= α32m32N−k + α42m4−12N−k(2N−k + 1) mod 2N

= 2N−k
[
α32m3 + α42m4−1(2N−k + 1)

]
mod 2N .

We now determine V(ρ|M3) for each possible choice of m3 and m4. For the following

lemma let Q be the sum in the square brackets above. If Q = 0 mod 2k then λ2,1 =

λ2,2N−k+1 and Vpk is a proper stable subspace of ρ|M3 .

Lemma 4.3.1. Let m4 6= N and let m∗ = min{m3,m4 − 1}. If m3 6= m4 − 1 then

V(ρ|M3) = V2N−m∗ . If m3 = m4 − 1 then V(ρ|M3) = V2N−m4 .

If m4 = N then V(ρ|M3) = V2N−m3 .

Proof. Assume m4 6= N. If m3 6= m4 − 1 the maximum value of k such that Q =

0 mod 2k is min{m3,m4−1}. If m3 = m4−1 then, since both terms in Q are of the same

2-adic valuation, the maximal value of k is at least m4. However, since V(ρ|M2) = V2s(λ4) ,

by Corollary 4.2.7 it follows that V(ρ|M3) = V2s(λ4) .

Now let m4 = N. Then,

Λ := logλ∗(λ2,2N−k+1) (4.3.31)

= α32m32N−k = 0 mod 2N

when k ≤ m3. Thus k is maximal when k = m3. Noting that V(ρ|M2) = Vp0 , we have

that V(ρ|M3) = V2s(λ3) when m4 = N.

We now count the number of twist isoclasses. To do this we break the computation

into four subcases. Note that, in all subcases, there are (1− 2−1)2N choices for λ2. For

the first three subcases we assume that s(λ4) 6= 0.

Case 6.1 For some M such that 2 ≤M ≤ N −2, let s(λ3) = M > s(λ4)+1. There

are (1−2−1)2M choices for λ3 and 2M−2−1 choices for λ4. Since s(λ3) = M > s(λ4)+1

by Lemmas 4.2.12 and 4.3.1 we must divide by 2M to take shouting into account. Thus,
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in this subcase there are

(1− 2−1)2N
N−2∑
M=2

(1− 2−1)2M(2M−2 − 1)2−M (4.3.32)

= (1− 2−1)2N
N−2∑
M=3

(1− 2−1)(2M−2 − 1)

= (1− 2−1)2N(1− 2−1)
(
(2 + . . .+ 2N−4)− (N − 4)

)
= (1− 2−1)2N

(
(2N−4 − 1)− (1− 2−1)(N − 4)

)
twist isoclasses. Note that (2M−2 − 1) = 0 when M = 2.

Case 6.2 For some M such that 1 ≤ M ≤ N − 2, let s(λ4) = M and s(λ3) <

s(λ4) + 1 = M + 1. Note that this implies that s(λ3) ≤ M and thus it follows that

this subcase is closed under shouting. There are (1 − 2−1)2M choices for λ4 and 2M

choices for λ3. By Lemmas 4.2.12 and 4.3.1 we must divide by 2M+1 to take shouting

into account. Thus in this subcase there are

(1− 2−1)2N
N−2∑
M=1

(1− 2−1)2M2M2−(M+1) (4.3.33)

= (1− 2−1)2N
N−2∑
M=1

(1− 2−1)2M−1

= (1− 2−1)2N(1− 2−1)(1 + . . .+ 2N−3)

= (1− 2−1)2N(2N−3 − 2−1)

twist isoclasses.

Case 6.3 For some M such that 2 ≤M ≤ N −2, let s(λ3) = M = s(λ4)+1. There

are (1 − 2−1)2M choices for λ3 and (1 − 2−1)2M−1 choices for λ4. Since s(λ3) = M =

s(λ4) + 1 by Lemmas 4.2.12 and 4.3.1 we must divide by 2M−1 to take shouting into
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account. Thus, in this subcase there are

(1− 2−1)2N
N−2∑
M=2

(1− 2−1)22M2M−12−(M−1) (4.3.34)

= (1− 2−1)2N
N−2∑
M=2

(1− 2−1)22M

= (1− 2−1)22N(1− 2−1)(4 + . . .+ 2N−2)

= (1− 2−1)22N(2N−2 − 2)

twist isoclasses.

Case 6.4 Assume s(λ4) = 0. Let s(λ3) = M for 0 ≤ M ≤ N − 2. If M > 0 there

are (1 − 2−1)2M choices for λ3 and there is 1 choice for λ3 if M = 0. There is only 1

choice for λ4. By Lemmas 4.2.12 and 4.3.1 we must divide by 2M to take shouting into

account. Thus in this subcase there are

(1− 2−1)2N

(
1 +

N−2∑
M=1

(1− 2−1)2M2−M

)
(4.3.35)

= (1− 2−1)2N
(
1 + (1− 2−1)(N − 2)

)
twist isoclasses.

This ends the subcase distinctions.

Thus, summing together all subcases, there are

(1− 2−1)2N
(
(2N−4 − 1)− (1− 2−1)(N − 4)

)
+ (1− 2−1)2N(2N−3 − 2−1) (4.3.36)

+ (1− 2−1)22N(2N−2 − 2) + (1− 2−1)2N
(
1 + (1− 2−1)(N − 2)

)
= (1− 2−1)2N(2N−2 + 2N−4 − 2−1)

twist isoclasses in Case 6 when N ≥ 4. When N = 3 we sum together Cases 6.2 and

6.4. Thus there are

(1− 2−1)23
(
(1− 2−1) + 1 + (1− 2−1)

)
(4.3.37)

= 8
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twist isoclasses in Case 6. When N = 2 we only include Case 6.4 and thus there are

(1− 2−1)22(1) = 2 (4.3.38)

twist isoclasses in Case 6.

Cases 7 and 8: We note for both cases s(λ2) ≤ N − 1 and s(λ4) ≤ N − 2. As

with the previous two cases we have, by Case 2.2 of Section 4.3.1, that ρ|M3 has V2N−1

as a proper stable subspace. We check whether V2N−1 is a stable subspace of 〈y, x1〉.
As usual, we choose a λ∗ ∈ SN2 /S

N−1
2 and write each λi as a power of λ∗; that is

λ4 = λαi2
mi

∗ such that 2 - αi, m2 ≥ 1, m3 ≥ 1, m4 ≥ 2, and i ∈ {2, 3, 4}.

Appealing to Corollary 4.2.6, consider λ1,2N−1+1 noting that a(a+1) is even for any

a and 22N−2 = 0 mod 2N :

Λ := logλ∗(λ1,2N−1+1) (4.3.39)

= α22m22N−1 + α32m3−12N−1(2N−1 + 1)

+ α42m4−1 2N−1(2N−1 + 1)(2N−1 + 2)

3
mod 2N

= logλ∗(λ1) + 2N−1[α22m2 + α32m3−1] mod 2N .

Clearly if m3 ≥ 2 then the expression in the square brackets above, say C, is 0 mod 2

and V2N−1 is indeed a stable subspace of ρ. If m3 = 1 then C is not 0 mod 2 and V2N−1

is not a stable subspace of ρ. Therefore ρ is irreducible. So in Case 8 there are no twist

isoclasses. In Case 7 there are 2N−2 choices for λ4, (1 − 2−1)2N−1 choices for λ3, and

2N−1 choices for λ2.

We now determine the behaviour of shouting in this case. It is easy to see that

V(ρ|M2) = V2s(λ4) and thus V(ρ|M3) is no smaller than V2s(λ4) .

Let N ≥ 3; we calculate the case when N = 2 separately later in the section. We

write λ3, λ4 in terms of some λ∗ ∈ SN2 \SN−1
2 in the usual way, with m3 = 1 and m4

such that 2 ≤ m4 ≤ N . If m4 = N then it is easy to show that V(ρ|M3) = V2N−1 .

Now assume m4 6= N. As in Case 6, we use the power of Corollary 4.2.6. Consider

Λ := logλ∗(λ2,2N−k+1) for k such that 1 ≤ k ≤ m4. Then

Λ = α32 · 2N−k + α42m4−12N−k(2N−k + 1) mod 2N (4.3.40)

= 2N−k[α32 + α42m4−1(2N−k + 1)]
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Let Q be the terms in the square brackets above.The expression Q = 0 mod 2k if and

only if λ2,1 = λ2,2N−k+1 and thus V2N−k is a proper stable subspace of 〈y, x2〉. We break

this computation into two subcases.

Case 7.1 Assume m4 > 2

It is clear that if m4 > 2 then, since m3 = 1, by Equation 4.3.40 the maximal k such

that λ2,1 = λ2,2N−k+1 is when k = 1. Thus V(ρ|M3) = V2N−1 . Note that V2N−1 is also

minimal when m4 = N. Let s(λ4) = M where M ≤ N − 3. In this subcase there are

2N−1 choices for λ2, (1− 2−1)2N−1 choices for λ3 and 2N−3 choices for λ4. By Lemma

4.2.12 we must divide by 2N−1 to take shouts into account. Thus, in this subcase, there

are

2N−1(1− 2−1)2N−12N−32−(N−1) = (1− 2−1)22N−4 (4.3.41)

twist isoclasses.

Case 7.2 Assume m4 = 2

If m4 = 2 then Q = 0 mod 22 and, since V(ρ|M2) = V2N−2 , then by Corollary 4.2.7

V(ρ|M3) = V2N−2 . There are 2N−1 choices for λ2, (1 − 2−1)2N−1 choices for λ3, and

(1−2−1)2N−2 choices for λ4. By Lemma 4.2.12 we must divide by 2N−2 to take shouting

into account. Thus, in this subcase there are

(1− 2−1)22N−12N−12N−22−(N−2) = (1− 2−1)222N−2 (4.3.42)

twist isoclasses.

This ends the subcase distinctions.

Summing together these two subcases there are, for N ≥ 3,

(1− 2−1)22N−4 + (1− 2−1)222N−2 = (1− 2−1)22N−4(1 + 22(1− 2−1)) (4.3.43)

twist isoclasses.

Now assume N = 2. Then s(λ4) = 0 and thus x4 = I. A short calculation shows

that λ2,1 = λ2,3 and, by Corollary 4.2.6, V2 is a minimal stable subspace. By Lemma

4.2.12 we must divide by 2 to take shouting into account. There are 21 choices for λ2,

(1− 2−1)21 = 1 choice for λ3, and 1 choice for λ4. Thus, in this subcase there is

2 · 1 · 1 · 2−1 = 1 (4.3.44)

twist isoclass.
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This ends the case distinctions.

We now consider the case whenN = 1. Note that, for clarity, we will call ι the square

root of −1. By Equation 4.3.20, s(λ4) ≤ 1; that is, λ4 ∈ {1,−1}. If λ4 = −1, then by

Equation 4.3.21 we have that λ3 ∈ {ι,−ι} and, by Equation 4.3.22, λ2 ∈ {±
√
ι,±
√
ι}

such that λ2
2 = −λ3.

If λ4 = 1 then, by Equation 4.3.21, λ3 ∈ {1,−1}. If λ3 = 1 then by Equation 4.3.22

and, since ρ is not the identity representation, λ2 = −1. If λ3 = −1 then, by Equation

4.3.22, λ2 ∈ {ι,−ι}.

A set of choices of the λi gives us an irreducible representation if and only if λi,1 6=
λi,2 holds for at least one 1 ≤ i ≤ 3; that is, one of the following is true:

λ4 6= 1 (4.3.45)

λ3λ4 6= 1 (4.3.46)

λ2λ3λ4 6= 1. (4.3.47)

It is easy to see that all of our choices of sets of λi give us irreducible representations.

For triples (λ4, λ3, λ2) it is easy to check that the pairs[
(−1, ι,

√
ι), (−1,−ι,−

√
−ι)
]
,
[
(−1, ι,−

√
ι), (−1,−ι,

√
−ι)
]
, [(1,−1, ι), (1,−1,−ι)]

are twist-and-shout equivalent. Therefore we can say that

r2(M4) = 4. (4.3.48)

We count the number of twist isoclasses for N = 2, 3 separately as well. Summing

Cases 1 through 8 for N = 2 we have

r4(M4) = (1− 2−1)427 + (1− 2−1)324 + (1− 2−1)22 + (1− 2−1)223 + 2 + 1 (4.3.49)

= 8 + 2 + 2 + 2 + 2 + 1

= 17.
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For N = 3, also summing Cases 1 through 8, we have

r8(M4) = (1− 2−1)429 + (1− 2−1)326 + (1− 2−1)24 (4.3.50)

+ (1− 2−1)225 + 8 + (1− 2−1)22(3)

= 32 + 8 + 8 + 8 + 8 + 6

= 70.

We can now compute the 2-local representation growth zeta function of M4 by summing

together the number of twist isoclasses from Cases 1 through 8. Keeping in mind

that there is one 1-dimensional twist isoclass, four 2-dimensional twist isoclasses,

17 4-dimensional twist isoclasses, and 70 8-dimensional twist isoclasses we have the

following:

ζ irrM4,2
(s) = 1 + 4 · 2−s + 17 · 2−2s + 70 · 2−3s (4.3.51)

+
∞∑
N=4

[
(1− 2−1)422N+3 + (1− 2−1)322N

+ (1− 2−1)22N−2 + (1− 2−1)222N−1

+ (1− 2−1)2N(2N−2 + 2N−4 − 2−1)

+ (1− 2−1)22N−4(1 + 22(1− 2−1))
]

2−Ns.

Inputting this equation into Maple gives us that

ζ irrM4,2
(s) =

(1− 2−s)2

(1− 21−s)(1− 22−s)
. (4.3.52)

Note that this result is the same as the zeta function for non-exceptional primes in

Equation 4.2.24. It is then easy to check that this does satisfy the functional equation

in Theorem 1.4.3.

Now that we have the p-local representation zeta functions of M4 we can now state

the global representation zeta function:

ζ irrM4
(s) =

ζ(s− 1)ζ(s− 2)

(ζ(s))2
. (4.3.53)

This completes the proof of Theorem 1.7.1.
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Chapter 5

Examples Using Kirillov Orbit

Method

5.1 Introduction

In this section we calculate the representation zeta functions of various T -groups

associated to Lie rings by the Mal’cev correspondence, using techniques found in [13]

and [29]. First, we explain the Kirillov orbit method and how it works. We then

calculate some examples, most coming from [9, Chapter 2]. The third part gives some

theoretical results calculated along with Robert Snocken.

We slightly abuse notation in this section. If L is the Lie ring associated to some

group G, we “equate” G and L and, for non-Kirillov-exceptional primes, denote the

p-local representation zeta function of G as ζ irrL,p(s).

5.2 Kirillov Orbit Method for Representations

5.2.1 Definitions and Explanation of the Method

For this section, all Lie rings are nilpotent. Also we remind the reader that Z∗n,pN is

defined to be the set of n-tuples of elements of Z/pNZ such that at least one entry in

the n-tuple is a unit. More precisely, let Z∗n,pN := (Z/pNZ)n \ (pZ/pNZ)n.

Before stating results we give a brief overview of the correspondence between T -

groups and Lie rings. Let Tr1(n,R) be the set of n × n upper-unitriangular matrices

and let Tr0(n,R) be the set of n × n strictly upper-triangular matrices over the ring

R. By [26, Chapter 5] we can embed a T -group G as a subgroup of Tr1(n,Z) for some
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5. Examples Using Kirillov Orbit Method

n; say this subgroup is T (G). Since the elements of T (G) are matrices we can take

the matrix logarithm map log : T (G) → Tr0(n,Z) (see, for example, [26, Theorem

1, Section 6]). If T (G) satisfies certain conditions, which we will discuss later, then

log
(
T (G)

)
is a Lie ring and we can use this fact to study T (G) by way of Howe’s

application [13] of the Kirillov orbit method to T -groups. We identify T (G) and G for

the rest of the chapter.

In order to explain the Kirillov orbit method properly, we need a number of

definitions. We give them here, before any explanation of the method.

Definition 5.2.1. Let G be a T -group. If L := log(G) is a Lie ring we say that L is

the Lie ring associated to G.

Definition 5.2.2. Let G be a T -group and let H ≤ G. We say H is saturated if gn ∈ H
implies that g ∈ H for all g ∈ G and n ∈ Z. We call the smallest saturated subgroup

containing H the isolator of G and denote the isolator by Hs. Note that, if we regard

a Lie ring L as an abelian group, we can extend these definitions to Lie rings.

Definition 5.2.3. Let G be a T -group of nilpotency class c such that L := log(G)

is a Lie ring. We say that L is elementarily exponentiable (or e. e. ) if and only if

[L,L] ⊆ c!L. We say G is e. e. if and only if L is e. e.

For the rest of this section let L̂ := hom
(
L,C∗

)
be the set of abelian group

homomorphisms to C∗, where L := log(G) is the Lie ring associated to some e. e.

T -group G.

Definition 5.2.4. Let G be an e. e. T -group. For ψ ∈ L̂ we call the minimal n such

that ψ(nL) = 1, if such an n exists, the period of ψ.

For the rest of this section we assume that G is e. e. We combine some results

mentioned in [29, Section 3.4] into a theorem.

Theorem 5.2.5. Let G be a T -group. There is a Lie algebra over Q, say L := LG(Q),

of dimension h(G) such that the Q-span of log(G) is L. Moreover, there exists a

subgroup H ≤ G of finite index such that L := logH is a Lie subring of L and that L

is e. e.

By [14, Theorem 8.5] we know that for almost all primes, in fact primes not dividing

|G : H|, twist isoclasses of irreducible representations of H of dimension pN are in 1-1

correspondence with twist isoclasses of G of dimension pN .
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5.2 Kirillov Orbit Method for Representations

Thus, to study the twist isoclasses of a group G, we can pass to a finite index

subgroup H such that logH is an e. e. Lie ring. However, this is at the cost of not

being able to calculate the p-local representation function of G for finitely many primes.

For an e. e. T -group G and its associated Lie ring L there is an adjoint action of G

on L given by inner automorphisms of G: Ad(g)(`) = log(g−1 exp(`)g) = `+[log g, `]+

(higher terms) where the Lie terms of commutator order ≥ 3 can be computed in terms

of the Baker-Campbell-Hausdorff formula. This adjoint action gives us the following

co-adjoint action of G on L̂ :

Ad∗(g)(ψ)(`) = ψ(Ad(g)(`)) = ψ(`)ψ([log g, `])ψ(higher terms). (5.2.1)

We briefly explain the correspondence between twist isoclasses and co-adjoint orbits.

See [13, Theorem 1.a] and [29, Section 3.4] for details.

Let S be a finite set of primes and let FS = {n ∈ N | n is divisible by some s ∈
S}. Then the following is true: the set of all finite Ad∗-orbits of ψ ∈ L̂ of period

n ∈ N\FS is in bijective correspondence with the set T of twist isoclasses of irreducible

representations of G such that each Ad∗-orbit U uniquely corresponds to a twist

isoclass of dimension |U |1/2. If a twist isoclass t ∈ T is of dimension k then all twist

isoclasses of dimension k appear in T. Since the set of these orbits is indeed in bijective

correspondence with the corresponding set of twist isoclasses, we can count these orbits

instead; this is the thrust of the Kirillov orbit method.

By [29, Section 3.4], these twist isoclasses are determined by the behaviour of ψ(L′s);

that is, if ψ1|L′s = ψ2|L′s then ψ1 and ψ2 are associated to the same twist isoclass (see [13,

Lemmas 1-4] for details). For the remainder of this paragraph, we say h(L′s) = d′. If ψ

has period pN then ψ(`) ∈ SNp for ` ∈ L′s. Furthermore, there exists at least one element

`∗ ∈ L′s such that ψ(`∗) ∈ SNp \SN−1
p . We define ΨpN := {ψ ∈ L̂ | ψ has period pN} and,

since a basis of L′ contains d′ elements, we can identify ΨpN with Z∗d′,pN , by identifying

SNp with Z/pNZ.
Voll’s method for calculating p-local representation zeta functions, based on Howe’s

parametrization, is as follows. We refer the reader to the preliminaries in Section 2.5

for definitions that appear in the following two paragraphs; e. g. Smith normal form,

commutator (sub)matrix, and [g, h]y.

We start by giving conditions on our T -group. Let G be a e. e. T -group and L

be its associated Lie ring with basis {x1, . . . , xd, xd+1, . . . , xd+f , xd+f+1, . . . xd+e} such

that {xd+1, . . . xd+e} is a Z-basis for L′ and {xd+f+1, . . . xd+e} is a Z-basis for L′∩Z(L)

(without loss of generality, but at the cost of finitely many primes, we can assume that
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we can choose a basis this way; see [29, Proposition 3.1]).

LetNN,m,n be the number of y := (yd+1, . . . , yd+e) ∈ Z∗e,pN such that SNF (R(y)) mod

pN has elementary divisors m := (pm1 , . . . pmd+f ) and SNF (S(y)) mod pN has elemen-

tary divisors n := (pnd+1 , . . . , pnd+f ), where R := R(y) is the y-commutator matrix of

L and S := S(y) is the y-commutator submatrix of L.

Theorem 5.2.6 (Voll). For almost all primes p,

ζ irrG,p(s) = 1 +
∞∑
N=1

∑
m

∑
n

NN,m,np
AmspBn (5.2.2)

where Am = −
∑d+f

i=1 (N −mi)/2, Bn = −
∑d+f

j=d+1(N − nj).

We use Equation 5.2.2 to calculate examples of p-local zeta functions later in the

chapter. However, in order to calculate these zeta functions, we need to be able to

calculate the elementary divisors of R(y) and S(y). We can use Lemmas 2.5.8 and

2.5.10 to do this calculation.

We give an example of a commutator matrix and a commutator submatrix. Let L

be a Lie ring with the basis {x1, x2, x3, x4, w1, w2 | [x1, x2] = w1, [x3, x4] = w1, [x1, y] =

w2 }. Then a basis for L′ is {w1, w2} and a basis for L′∩Z(L) is {w2}. We choose y :=

(y1, y2) ∈ Z∗2,pN . Thus [x1, x2]y = [x3, x4]y = y1 and [x1, w1]y = y2. The commutator

matrix is

R =



x1 x2 x3 x4 w1

x1 0 y1 0 0 y2

x2 −y1 0 0 0 0

x3 0 0 y1 0

x4 0 0 −y1 0 0

w1 −y2 0 0 0 0

 (5.2.3)

and the commutator submatrix is

S =



w1

x1 y2

x2 0

x3 0

x4 0

x5 0

. (5.2.4)

We label the rows and columns of R and S in one calculation. We hope that this gives
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the reader a feel for constructing these matrices. Further matrices are not labeled, but

the labeling should be fairly obvious from the group presentation.

As mentioned earlier, the idea is to study the representation growth of T -groups by

studying nilpotent Lie rings associated to these groups, as in Theorem 5.2.5. In fact,

if we choose an e. e. Lie ring L then [L,L] ⊆ c!L = L mod pN for almost all p (since

c! would be a unit mod pN) and for any N ∈ N. By the Baker-Campbell-Hausdorff

formula there is a bijection exp : L→ G for some T -group G [26, Chapter 6]. In fact,

we can assume, for any Lie ring L, that L is e. e. at the cost of being able to calculate

p-local representation zeta functions for finitely many primes.

We note that Theorem 5.2.6 only holds for all but finitely many primes. We say

we lose a prime p∗ if the hypothesis of Theorem 5.2.6 does not apply for p∗; that is,

if p∗ is Kirillov-exceptional. We now list the ways we lose primes when calculating

representation zeta functions of T -groups using Theorem 5.2.6. First, if we pass to

a finite index subgroup of our T -group G, say H, then, by [29, Section 3.4], we lose

all p∗ such that p∗ | |G : H|. Secondly, by Howe’s parametrization [13, Theorem 1.a]

we lose all primes p∗ such that p∗ | 2|G′s : G′|. Next, by [29, Corollary 3.1], for all

but finitely many primes |G : Gψ| = |L : Radψ| and |G : Gψ,2| = |L : Lψ,2|, where

Gψ,Radψ, Gψ,2, and Lψ,2 are defined in [29, Section 3.4]. Thus, we lose all primes p∗

where these equalities do not hold. Also, by assuming that L has the basis structure

in Theorem 5.2.6 we lose finitely many primes p∗. Finally, by [29, Section 2.2], we lose

primes p∗ such that, for any y-commutator matrix R of G, R is a zero matrix mod p∗.

As a reminder, if we do not lose a prime p, we say that p is non-exceptional.

We note that, for the following calculations, there is no discussion of which primes are

exceptional primes; we feel that the work involved to determine the exceptional primes,

checking each of the conditions in the previous paragraph, would be too long to include

in this thesis.

5.3 Examples Using the Kirillov Orbit Method

Note that, for ease of display, in this section we let t = p−s, Am = −
∑a

i=1(N −
mi)/2 and Bn = −

∑b
i=1(N − ni). Also, for these calculations, we always consider

vp(·) mod pN .

We calculate, using the Kirillov Orbit Method, the p-local representation zeta

function of a family of Lie rings that are generalizations of a family of maximal class
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Lie rings (see, for example, [9, Chapter 2]). Let k ≥ 2, q ≥ k, and let Mq,k be the Lie

ring with basis

Mq,k :=

y, x1, . . . , xq, z2, . . . , zk−1

[y, xi] = zi+1 if 1 ≤ i ≤ k − 2,

[y, xi] = xi+1 if k − 1 ≤ i ≤ q − 1

 . (5.3.1)

Thus a basis for M ′
q,k is {z2, . . . , zk−1, xk, . . . , xq} and a basis for M ′

q,k ∩ Z(Mq,k) is

{z2, . . . , zk−1, xq}. We note, for Mq,k, the nilpotency class c = q − k + 2, h(Mq,k) =

q+ k− 1, h(Z(Mq,k)) = k− 1, and h(M ′
q,k) = q− 1. This calculation in the case when

k = 2, was originally performed by Christopher Voll in personal communication with

the author. We note that Mq,2 is indeed Mq as defined in Chapter 4 and that the

following calculation confirms Theorem 1.7.1 for all but finitely many primes. While

the details have not been checked, we believe that it can be shown that this calculation

applies for all primes p > n, though this bound is not necessarily tight.

5.3.1 Calculation the p-local Representation Zeta Function of

Mq,k

For a := (a2, . . . , aq) ∈ Z∗q−1,pN we state the a-commutator matrix of Mq,k:

R =



y x1 x2 . . . xq−1

y 0 a2 a3 . . . aq

x1 −a2 0 0 . . . 0

x2 −a3 0 0 . . . 0
...

...
...

...
. . .

...

xq−1 −aq 0 0 . . . 0

. (5.3.2)

The commutator submatrix S is

S =



xk xk+1 . . . xq−1

y ak+1 ak+2 . . . aq

x1 0 0 . . . 0

x2 0 0 . . . 0
...

...
...

. . .
...

xq−1 0 0 . . . 0

. (5.3.3)
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Note that if k = q then S does not exist. This is to be expected, since Mq,q is of

nilpotency class 2.

Let m := (pm1 , . . . , pmq) be the elementary divisors of SNF(R) and n := (pn1 , . . . , pnq−k)

be the elementary divisors of SNF(S). One of a2, . . . , aq, say aj, is a unit mod pN and,

by Lemma 2.5.8, m1 = m2 = 0. From the structure of R it is clear that all i-minors,

where i ≥ 2, are 0. Thus, by Lemma 2.5.10, m3 = m4 = . . . = mq = N. It also clear

that n1 = min{vp(ai) | k + 1 ≤ i ≤ q} and ni = N for i ≥ 2.

Since SNF(R) is invariant for any choice of (a2, . . . , aq) ∈ Z∗q−1,pN we have that

Ams = −
∑q

i=1(N −mi)s/2 =
∑2

i=1(N −mi)s/2 = −Ns/2−Ns/2 = −Ns. We break

up the domain in terms of vp(n1).

First, assume (ak+1, . . . , aq) ∈ Z∗q−k,pN . Thus

n1 = min{vp(ai) | k+ 1 ≤ i ≤ q} = 0. In this case there are (1−p−(q−k))p(q−k)N choices

for (ak+1, . . . , aq) and p(k−1)N choices for (a2, . . . , ak). Therefore we have, in this section

of the domain Z∗q−1,pN , that NN,m,n = (1− p−(q−k))p(q−1)N and Bn = −N.

Now assume (ak+1, . . . , aq) /∈ Z∗q−k,pN . Thus one of a2, . . . ak is a unit and

min{vp(a2), . . . , vp(ak)} = 0. Thus there are (1−p−(k−1))p(k−1)N choices for (a2, . . . , ak).

We break up the domain further: let j = min{vp(ak+1), . . . , vp(aq)}. Thus, for each j

such that 1 ≤ j ≤ N − 1, there are (1 − p−(q−k))p(q−k)(N−j) choices for (ak+1, . . . , aq).

Therefore we have, in this section of the domain and for each j, NN,m,n = (1 −
p−(k−1))(1− p−(q−k))p(k−1)Np(q−k)(N−j) and Bn = −(N − j).

Finally, let vp(ai) = N for k + 1 ≤ i ≤ q. There is 1 choice for (ak+1, . . . , aq). Thus,

in this section of the domain, NN,m,n = (1− p−(k−1))p(k−1)N and Bn = 0.

Combining each section of the domain

ζ irrMq,k,p
(s) = 1 +

∞∑
N=1

NN,m,np
AmspBn (5.3.4)

= 1 +
∞∑
N=1

(1− p−(q−k))p(q−1)Np−Nsp−N

+
∞∑
N=1

N−1∑
j=1

(1− p−(k−1))(1− p−(q−k))p(k−1)Np(q−k)(N−j)p−Nsp−(N−j)

+
∞∑
N=1

(1− p−(k−1))p(k−1)Np−Ns.
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5. Examples Using Kirillov Orbit Method

Simplifying the above equation and substituting t := p−s

ζ irrMq,k,p
(s) = 1 +

∞∑
N=1

(1− p−(q−k))(pq−2t)N (5.3.5)

+
∞∑
N=1

(1− p−(k−1))(1− p−(q−k))(pq−2t)N
N−1∑
j=1

(p−(q−k−1))j

+
∞∑
N=1

(1− p−(k−1))(pk−1t)N .

Note that if k = q − 1 then q − k − 1 = 0 and the subsum in the second sum of

Equation 5.3.5 cannot be expressed as a geometric progression. Assume this is not the

case. Calculating geometric series and progressions and simplifying we obtain

ζ irrMq,k,p
(s) = 1 +

(1− p−(q−k))pq−2t

1− pq−2t
(5.3.6)

+ (1− p−(q−k))(1− p−(k−1))
∞∑
N=1

(pq−2t)N
p−(q−k−1) − (p−(q−k−1))N

1− p−(q−k−1)

+
(1− p−(k−1))pk−1t

1− pk−1t
.

Inputting Equation 5.3.6 into Maple this simplifies to

ζ irrMq,k,p
(s) =

(1− t)(1− pk−2t)

(1− pk−1t)(1− pq−2t)
. (5.3.7)

Now assume k = q − 1. Then, calculating geometric series and simplifying,

ζ irrMq,q−1,p
(s) = 1 +

(1− p−1)pq−2t

1− pq−2t
(5.3.8)

+ (1− p−1)(1− p−(q−2))
∞∑
N=1

(pq−2t)N(N − 1)

+
(1− p−(q−2))pq−2t

1− pq−2t
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Continuing to simplify,

ζ irrMq,q−1,p
(s) = 1 +

(1− p−1)pq−2t

1− pq−2t
(5.3.9)

+
(1− p−1)(1− p−(q−2))

1− p−(q−k−1)

(
pk−1t

1− pq−2t
− pk−1t

1− pk−1t

)
+

(1− p−(q−2))pq−2t

1− pq−2t
.

Inputting Equation 5.3.9 into Maple this simplifies to

ζ irrMq,q−1,p
(s) =

(1− t)(1− pq−3t)

(1− pq−2t)2
. (5.3.10)

In this case ζ irrMq,q−1,p
(s) has a double pole at s = q − 2.

Note that Equation 5.3.7 with k set to q−1 is Equation 5.3.10 and thus we can say

Equation 5.3.7 holds for all q, k as defined at the start of the section. Also note that,

when k = 2, Equation 5.3.5 is the same as Equation 4.2.24 in Chapter 4. Finally, note

that if k = q then the (1 − pk−2t) term in the numerator cancels with the (1 − pq−2t)

term in the denominator.

It is easy to see that αMq,k,p = q − 2 if k 6= q and αMq,q ,p = q − 1. Also, ζ irrMq,k,p
(s)

does satisfy the functional equation in Theorem 1.4.3.

5.3.2 Calculation of Some Lie Rings from Chapter 2 of du

Sautoy and Woodward [9]

Table 5.1 is a list of Lie rings, and some invariants, for which we calculate the rep-

resentation zeta function using the Kirillov orbit method. Note that these Lie rings

appear in [9, Chapter 2]. In a future paper with Robert Snocken, we plan to give

p-local representation zeta functions for all Lie rings in that chapter.

Table 5.2 is a table of the Lie rings above, their non-exceptional p-local represen-

tation zeta functions, and their local abscissas of convergence, denoted αL,p.

To calculate SNF(R) of a r× r matrix R, by Lemma 2.5.10, we only need to know

its minors. In fact, since there exist 2-minors with unit determinant in all examples

computed in this section, we have m1 = m2 = 0. The commutator matrices R in

the examples below are, at most, of dimension 5, and when they are of maximum

dimension, Lemma 2.5.8 tells us that m5 = N. Since m2i = m2i−1 for i ≥ 1, for a R of

dimension 5 we need to only compute the minimum valuation 4-minor of R. When R
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Table 5.1 List of Lie Rings Studied

L Presentation h(Z(L)) h(L) h(L′) c

F3,2 〈x1, . . . , x5|[x1, x2] = x3,
[x1, x3] = x4, [x2, x3] =
x5〉

2 5 3 3

G5,3 〈x1, . . . , x5|[x1, x2] = x4,
[x1, x4] = x5, [x2, x3] =
x5〉

1 5 2 3

G6,7 〈x1, . . . , x6|[x1, x3] = x4,
[x1, x4] = x5, [x2, x3] =
x6〉

2 6 3 3

G6,12 〈x1, . . . x6|[x1, x3] = x5

[x1, x5] = x6, [x2, x4] =
x6〉

1 6 2 3

G6,14 〈x1, . . . , x6|[x1, x3] = x4,
[x1, x4] = x6, [x2, x3] =
x5,
[x2, x5] = γx6〉 γ ∈ Z

1 6 3 3

G27A 〈x1, . . . , x7|[x1, x2] = x6,
[x1, x4] = x7, [x3, x5] =
x7〉

2 7 2 2

G37C 〈x1, . . . , x7|[x1, x2] = x5,
[x2, x3] = x6, [x2, x4] =
x7,
[x3, x4] = x5〉

3 7 3 2

G257K 〈x1, . . . , x7|[x1, x2] = x5,
[x1, x5] = x6, [x2, x5] =
x7,
[x3, x4] = x7〉

2 7 3 3
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Table 5.2 p-local Representation Zeta Functions of Groups Associated to Lie Rings in
Table 5.1

L ζ irrL,p(s) αL,p

F3,2

(1− t)2

(1− pt)(1− p2t)
2

G5,3

(1− t)(1− pt2)

(1− pt)(1− p2t2)
1

G6,7

(1− t)2

(1− pt)(1− p2t)
2

G6,12

(1− t)(1− t2)

(1− pt)(1− pt2)
1

G6,14

(1− t)(1− t2)

(1− pt2)(1− p2t)
2

G27A

(1− t)(1− pt2)

(1− pt)(1− p2t2)
1

G37C

(1− t)(1− p4t2)

(1− p5t2)(1− p2t)

5
2

G257K

(1− t)2(1− pt2)

(1− pt)2(1− p2t2)
1

is 4×4 we need only calculate det(R). In the examples below the size of the submatrix

S is at most a 5× 2 matrix, so calculating SNF(S) is not very difficult.

We give the explicit details of the calculations of the non-exceptional p-local repre-

sentation zeta functions of two Lie rings: G37C and G257K . In the other examples, we

state the necessary pieces of information so one could recreate the calculations without

(hopefully) too much difficulty. Note that the geometric series that appear in these

examples are readily calculable, so we need not appeal to p-adic integration to assist

us in the calculations. This p-adic integral approach is explained, for example, in [16,

Section 2.3].

5.3.3 Calculating the p-local Representation Zeta Function of

G37C

Let (a5, a6, a7) ∈ Z∗3,pN . We begin by stating the commutator matrix:
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5. Examples Using Kirillov Orbit Method

R =



0 a5 0 0

−a5 0 a6 a7

0 −a6 0 a5

0 −a7 −a5 0


(5.3.11)

Note that the nilpotency class of G37C is 2 and thus there is no commutator

submatrix S. Obviously, det(R) = a4
5 and thus by Lemma 2.5.10, for SNF(R), m3 =

m4 = vp(a
2
5). So, for N ∈ N,

SNF(R) =



1 0 0 0

0 1 0 0

0 0 a2
5 0

0 0 0 a2
5


mod pN . (5.3.12)

We note that we must be careful here; if vp(a5) ≥ N/2 then vp(a
2
5) = 2vp(a5) ≥ N

and it follows that a2
5 = 0 mod pN . Thus, if 2vp(a5) ≥ N then m3 = m4 = N.

We break up the domain of Z∗3,pN : first, let vp(a5) = 0 and vp(a6), vp(a7) ≤ N. In

this section of the domain there are (1− p−1)pN choices for a5 and pN separate choices

for both a6 and a7. Thus

NN,m = (1− p−1)pNpNpN = (1− p−1)p3N . (5.3.13)

Since vp(a5) = 0 we have that m3 = m4 = 0 and thus

Ams = −
4∑
i=1

(N −mi)s/2 = −4(Ns/2) = −2Ns. (5.3.14)
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Now assume (a6, a7) ∈ Z∗2,pN and a5 /∈ Z∗1,pN . There are (1 − p−2)p2N choices for

(a6, a7) and we further break up the domain for a5. Let bxc be the greatest integer not

greater than x.

Assume vp(a5) = k < N/2. Note that this implies that 1 ≤ k ≤ bN/2c. Then there

are (1− p−1)pN−k choices for a5 and m3 = m4 = 2k. Thus, for each k,

NN,m = (1− p−2)p2N(1− p−1)pN−k (5.3.15)

and

Ams = −
4∑
i=1

(N −mi)s/2 = −(2N + 2(N − 2k))s/2 = −2(N − k)s. (5.3.16)

Now assume that vp(a5) = k ≥ N/2 and k 6= N. Note that this implies that

bN/2c ≤ k ≤ N − 1. Then there are (1 − p−1)pN−k choices for a5 and, since we are

considering SNF(R) mod pN and 2k ≥ N, we have that m3 = m4 = N. Thus, for each

k,

NN,m = (1− p−2)p2N(1− p−1)pN−k (5.3.17)

and

Ams = −
4∑
i=1

(N −mi)s/2 = −(2N + 2(N −N))s/2 = −Ns. (5.3.18)

Now assume that vp(a5) = N. Thus there is 1 choice for a5 and

NN,m = (1− p−2)p2N . (5.3.19)

It is clear that m3 = m4 = N and thus

Ams = −
4∑
i=1

(N −mi)s/2 = −(2N + 2(N −N))/2s = −Ns. (5.3.20)

Thus
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ζ irrG37C ,p
(s) = 1 +

∞∑
N=1

(1− p−1)p3Np−2Ns (5.3.21)

+
∞∑
N=1

(1− p−2)p2N

bN2 c∑
k=1

(1− p−1)pN−kp−2(N−k)s

+
N−1∑

k=bN
2
c+1

(
(1− p−1)pN−kp−Ns

)
+ p−Ns

 .

If N is even bN/2c = N/2 and if N is odd bN/2c = (N − 1)/2. So to compute this

p-local zeta function we calculate Equation 5.3.21 separately for even and odd N. We

write N = 2M for even N and N = 2M − 1 for odd N, where M ≥ 1.

Thus

ζ irrG37C ,p
(s) = 1 +

∞∑
M=1

(1− p−1)p6Mp−4Ms (5.3.22)

+
∞∑

M=1

(1− p−2)p4M

(
M∑
k=1

(1− p−1)p2M−kp−2(2M−k)s

+

(
2M−1∑
k=M+1

(1− p−1)p2M−kp−2Ms

)
+ p−2Ms

)

+
∞∑

M=1

(1− p−1)p6M−3p−(4M−2)s

+
∞∑

M=1

(1− p−2)p4M−2

(
M−1∑
k=1

(1− p−1)p(2M−1)−kp−2((2M−1)−k)s

+

(
2M−2∑
k=M

(1− p−1)p(2M−1)−kp−(2M−1)s

)
+ p−(2M−1)s

)
.
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Simplifying, and substituting t := p−s

ζ irrG37C ,p
(s) = 1 + (1− p−1)

p6t4

1− p6t4
(5.3.23)

+
∞∑

M=1

(
(1− p−2)p4M

(
(1− p−1)p2M t4M

M∑
k=1

(p−1t−2)k

+ (1− p−1)p2M t2M
2M−1∑
k=M+1

(p−1)k + t2M

))

+ (1− p−1)p−3t−2 p6t4

1− p6t4

+
∞∑

M=1

(
(1− p−2)p4M−2

(
(1− p−1)p2M−1t4M−2

M−1∑
k=1

(p−1t−2)k

+ (1− p−1)p2M−1t2M−1

2M−2∑
k=M

(p−1)k + t2M−1

))

Summing the geometric series of index k and rearranging we obtain

ζ irrG37C ,p
(s) = 1 + (1− p−1)

p6t4

1− p6t4
(5.3.24)

+
∞∑

M=1

(
(1− p−2)p4M

(
(1− p−1)(p2t4)M

p−1t−2 − (p−1t−2)M+1

1− p−1t−2

+ (1− p−1)(p2t2)M
(p−1)M+1 − (p−1)2M

1− p−1
+ (t2)M

))
+ (1− p−1)p−3t−2 p6t4

1− p6t4

+
∞∑

M=1

(
(1− p−2)p4Mp−2

(
(1− p−1)(p2t4)Mp−1t−2p

−1t−2 − (p−1t−2)M

1− p−1t−2

+ (1− p−1)(p2t2)Mp−1t−1 (p−1)M − (p−1)2M−1

1− p−1
+ (t2)M t−1

))
Inputting Equation 5.3.24 into Maple, this simplifies to

ζ irrG37C ,p
(s) =

(1− t)(1− p4t2)

(1− p2t)(1− p5t2)
. (5.3.25)

Note that Equation 5.3.25 satisfies the functional equation of Theorem 1.4.3.
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5.3.4 Calculating the p-local Representation Zeta Function of

G257K

This calculation is of a Lie ring of nilpotency class 3. Thus, we have a submatrix S
whose Smith Normal Form must be calculated, as well as the Smith Normal Form of

the commutator matrix R. Like the previous examples, we will split the domain into

sections and calculate each section independently. Let (a5, a6, a7) ∈ Z∗3,pN . We begin

by stating R :

R =



0 a5 0 0 a6

−a5 0 0 0 a7

0 0 0 a7 0

0 0 −a7 0 0

−a6 −a7 0 0 0


. (5.3.26)

We also state the submatrix S:

S =



a6

a7

0

0

0


. (5.3.27)

By calculating the 4-minors of R we can then determine SNF (R) mod pN . By

Lemma 2.5.8, m5 = N and we can use this lemma to determine the elementary divisors

of SNF (R). Thus,M4, the set of 4-minors of R, calculated by taking the determinant

of all 4× 4 submatrices of R, is

M4 = {0, a4
7, a

2
5a

2
7, a

2
6a

2
7, a5a

3
7, a6a

3
7, a5a6a

2
7}. (5.3.28)
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If vp(a7) = 0 then min{vp(x) | x ∈ M4} = vp(a
4
7) = 0. If vp(ai) = 0 where i ∈ {5, 6},

then min{vp(x) | x ∈ M4} = vp(a
2
i a

2
7) = vp(a

2
7). It then follows by Lemma 2.5.10 that

m3 = m4 = vp(a7).

It is easy to see, for SNF(S), that Bn = −(N − n1) = −(N −min{vp(a6), vp(a7)}).

For the first section on the domain, let vp(a7) = 0. Then m3 = m4 = 0 and

Ams = −
4∑
i=1

(N −mi)s/2 = −2Ns. (5.3.29)

Since vp(a7) = 0 we also have that n1 = 0 so

Bn = −N − 0 = −N. (5.3.30)

In this section there are (1− p−1)pN choices for a7 and pN separate choices for each of

a5 and a6. Thus, in this section of the domain,

NN,m,n = (1− p−1)pNpNpN = (1− p−1)p3N . (5.3.31)

Now let vp(a6) = 0 and vp(a7) = k where 1 ≤ k ≤ N. For each k we have that

m3 = m4 = k and

Ams = −
4∑
i=1

(N −mi)s/2 = −2(N + (N − k))s/2 = −(2N − k)s. (5.3.32)

Since vp(a6) = 0 we have that n1 = 0 so

Bn = −N − 0 = −N. (5.3.33)

In this section there are (1 − p−1)pN choices for a6, pN choices for a5, and, for each

k 6= N, (1− p−1)pN−k choices for a7. Thus in this section of the domain, and for each

k 6= N , we have

NN,m,n = (1− p−1)pNpN(1− p−1)pN−k = (1− p−1)2p3N−k (5.3.34)
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and if k = N we have 1 choice for a7 and therefore

NN,m,n = (1− p−1)pNpN = (1− p−1)p2N . (5.3.35)

Now let vp(a5) = 0 and vp(ai) be such that 1 ≤ vp(ai) ≤ N − 1 for i ∈ {6, 7}. Let

vp(a6) = k and vp(a7) = `. In this section of the domain, m3 = m4 = ` for each k and

Ams = −
4∑
i=1

(N −mi)s/2 = −2(N + (N − `))s/2 = −(2N − `)s. (5.3.36)

For each k and ` we have that n1 = min{k, `}. Thus, for each choice of k and `

Bn = −(N −min{k, `}). (5.3.37)

In this section there are (1 − p−1)pN choices for a5, (1 − p−1)pN−k choices for a6, and

(1 − p−1)pN−` choices for a7, for each choice of k and `. Thus in this section of the

domain we have that

NN,m,n = (1− p−1)pN(1− p−1)pN−k(1− p−1)pN−` = (1− p−1)3p3N−k−`. (5.3.38)

Now let vp(a5) = 0, vp(a6) = k, where 1 ≤ k ≤ N − 1, and vp(a7) = N. In this

section of the domain we have that m3 = m4 = N and thus

Ams = −
4∑
i=1

(N −mi)s/2 = −2(N + (N −N))s/2 = −Ns. (5.3.39)

For each k we have that n1 = min{k,N} = k and thus, for each k,

Bn = −(N − k). (5.3.40)

In this section there are (1 − p−1)pN choices for a5, (1 − p−1)pN−k choices for a6, for

each k, and 1 choice for a7. Thus in this section of the domain

NN,m,n = (1− p−1)pN(1− p−1)pN−k = (1− p−1)2p2N−k. (5.3.41)
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Now let vp(a5) = 0, vp(a6) = N, and vp(a7) = k, where 1 ≤ k ≤ N − 1. In this

section of the domain we have that m3 = m4 = k and thus

Ams = −
4∑
i=1

(N −mi)s/2 = −2(N + (N − k))s/2 = −(2N − k)s. (5.3.42)

For each k we have that n1 = min{N, k} = k and thus, for each k,

Bn = −(N − k). (5.3.43)

In this section there are (1− p−1)pN choices for a5, 1 choice for a6, and (1− p−1)pN−k

choices for a7, for each k. Thus in this section of the domain

NN,m,n = (1− p−1)pN(1− p−1)pN−k = (1− p−1)2p2N−k. (5.3.44)

Finally, let vp(a5) = 0 and vp(a6) = vp(a7) = N. In this section of the domain

m3 = m4 = N and thus

Ams = −
4∑
i=1

(N −mi)s/2 = −2(N + (N −N))s/2 = −Ns. (5.3.45)

We have that n1 = min{N,N} = N and thus

Bn = 0. (5.3.46)

In this section of the domain there are (1− p−1)pN choices for a5 and 1 choice each for

a6 and a7. Thus in this section of the domain

NN,m,n = (1− p−1)pN . (5.3.47)

Combining the results for each section of the domain
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ζ irrG257K ,p
(s) = 1 +

∞∑
N=1

(
(1− p−1)p3Np−2Nsp−N (5.3.48)

+
N−1∑
k=1

(1− p−1)2p3N−kp−(2N−k)sp−N

+ (1− p−1)p2Np−Nsp−N

+
N−1∑
k=1

N−1∑
`=1

(1− p−1)3p3N−k−`p−(2N−`)sp−max{N−k,N−`}

+
N−1∑
k=1

(1− p−1)2p2N−kp−Nsp−(N−k)

+
N−1∑
k=1

(1− p−1)2p2N−kp−(2N−k)sp−(N−k)+

+ (1− p−1)pNp−Ns
)
.

Simplifying and substituting t := p−s we have

ζ irrG257K ,p
(s) = 1 +

∞∑
N=1

(
(1− p−1)(p2t2)N (5.3.49)

+ (1− p−1)2(p2t2)N
N−1∑
k=1

(p−1t−1)k

+ (1− p−1)(pt)N

+ (1− p−1)3(p2t2)

[
N−1∑
k=1

N−1∑
`=1

p−kp−`t−`pmin{k,`}

]

+ (1− p−1)2(pt)N
N−1∑
k=1

1

+ (1− p−1)2(pt2)N
N−1∑
k=1

(t−1)k

+ (1− p−1)(pt)N
)
.

(5.3.50)
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Let Q be the double sum in square brackets. This can be broken up into three

different sums depending on k and `, say Q1, Q2, and Q3, when k > `, k < `, and

k = `, respectively. Then

Q1 =
N−1∑
k=2

k−1∑
l=1

(p−1)k(t−1)`, (5.3.51)

Q2 =
N−2∑
k=1

N−1∑
`=k+1

(p−1t−1)`,

Q3 =
N−1∑
k=1

(p−1t−1)k.

Summing the series with index ` we have

Q1 =
N−1∑
k=2

(p−1)k
t−1 − (t−1)k

1− t−1
, (5.3.52)

Q2 =
N−2∑
k=1

(p−1t−1)k+1 − (p−1t−1)N

1− p−1t−1
.

Thus, substituting Q1 +Q2 +Q3 for Q we have

ζ irrG257K ,p
(s) = 1 +

∞∑
N=1

(
(1− p−1)(p2t2)N (5.3.53)

+ (1− p−1)2(p2t2)N
N−1∑
k=1

(p−1t−1)k

+ (1− p−1)(pt)N

+ (1− p−1)3(p2t2)

[
N−1∑
k=2

(p−1)k
t−1 − (t−1)k

1− t−1

+
N−2∑
k=1

(p−1t−1)k+1 − (p−1t−1)N

1− p−1t−1
+

N−1∑
k=1

(p−1t−1)k

]

+ (1− p−1)2(pt)N
N−1∑
k=1

1

+ (1− p−1)2(pt2)N
N−1∑
k=1

(t−1)k + (1− p−1)(pt)N
)
.
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Summing the series with index k it follows that

ζ irrG257K ,p
(s) = 1 +

∞∑
N=1

(
(1− p−1)(p2t2)N (5.3.54)

+ (1− p−1)2(p2t2)N
p−1t−1 − (p−1t−1)N

1− p−1t−1

+ (1− p−1)(pt)N

+ (1− p−1)3(p2t2)

[
t−1

1− t−1
· (p−1)2 − (p−1)N

1− p−1

− 1

1− t−1
· (p−1t−1)2 − (p−1t−1)N

1− p−1t−1

+
p−1t−1

1− p−1t−1
· p
−1t−1 − (p−1t−1)N−1

1− p−1t−1

−(N − 2)
(p−1t−1)N

1− p−1t−1
+
p−1t−1 − (p−1t−1)N

1− p−1t−1

]
+ (1− p−1)2(pt)N(N − 1)

+ (1− p−1)2(pt2)N
t−1 − (t−1)N

1− t−1

+ (1− p−1)(pt)N
)
.

Inputting Equation 5.3.54 into Maple, this simplifies to

ζ irrG257K ,p
(s) =

(1− t)2(1− pt2)

(1− pt)2(1− p2t2)
. (5.3.55)

Note that Equation 5.3.55 satisfies the functional equation of Theorem 1.4.3.

5.3.5 Other p-local Representation Zeta Functions

The other p-local representation zeta functions are computed similarly to the two

calculations above. Without going through the calculations explicitly, for each Lie

ring we give the commutator matrix R, the submatrix S, the possible values for the mi

and ni, as well as the final sum of NN,m,np
AmspBn for each section of the domain. For

zeta functions of Lie rings L in Table 5.1, let QL be such that ζ irrL,p(s) = 1 +
∑∞

N=1QL.

F3,2

For (a3, a4, a5) ∈ Z∗3,pN ,
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R =


0 a3 a4

−a3 0 a5

−a4 −a5 0


(5.3.56)

and

S =


a4

a5

0


. (5.3.57)

Since R is a 3× 3 matrix, m1 = m2 = 0 and m3 = N when we calculate SNF(R).

For SNF(S), n1 = min{vp(a4), vp(a5)}. It follows that, for (a3, a4, a5) ∈ Z∗3,pN ,

QF3,2 = (1− p−2)(p2t)N + (1− p−1)3(p2t)N
N−1∑
k=1

(2k − 1)(p−1)k (5.3.58)

+ (2(1− p−1)(N − 1)(1− p−1)(pt)N + (1− p−1)(pt)N

The first term of QF3,2 is the case when one of vp(a4), vp(a5) = 0. The second term is

when vp(a3) = 0, vp(a4) = k, and vp(a5) = `, for some k, ` such that 1 ≤ k, ` ≤ N − 1.

When doing this calculation, note that the double sum that would be in this term

can be replaced by the single sum above, due to the double sum’s symmetry in k

and `. The third term is when vp(a3) = 0, one of vp(a4), vp(a5) = N, and the other

vp(a4), vp(a5) = k where 1 ≤ k ≤ N − 1. The final term is when vp(a3) = 0 and

vp(a4) = vp(a5) = N.

Inputting Equation 5.3.58 into Maple we obtain

ζ irrF3,2,p
(s) =

(1− t)2

(1− pt)(1− p2t)
. (5.3.59)
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G5,3

For (a4, a5) ∈ Z∗2,pN ,

R =



0 a4 0 a5

−a4 0 a5 0

0 −a5 0 0

−a5 0 0 0


(5.3.60)

and

S =



a5

0

0

0


. (5.3.61)

We have that det(R) = a4
5 and thus, for SNF(R), we have m3 = m4 = 2vp(a5). For

SNF(S), it is clear that n1 = vp(a5). It follows that, for (a4, a5) ∈ Z∗2,pN , we have

QG5,3 = (1− p−1)(pt2) + (1− p−1)2p2M

(
t4M

M−1∑
k=1

(t−1)k + t2M
2M−1∑
k=M

1

)
(5.3.62)

+ (1− p−1)2p2M−1

(
t4M−2

M−1∑
k=1

(t−1)k + t2M−1

2M−2∑
k=M

1

)
+ (1− p−1)(pt)N

where 2M = N if N is even and 2M − 1 = N if N is odd. The first term is when

vp(a5) = 0. The second term is when vp(a4) = 0 and vp(a5) = k for even N, where

1 ≤ k ≤ N − 1. The first subterm in the second term is when k < N/2 and the second

subterm is when k ≥ N/2. The third term is when vp(a4) = 0 and vp(a5) = k for odd

N, where 1 ≤ k ≤ N − 1. The first subterm in the second term is when k < N/2
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and the second subterm is when k ≥ N/2. The fourth term is when vp(a4) = 0 and

vp(a5) = N.

Inputting Equation 5.3.62 into Maple we obtain

ζ irrG5,3,p
(s) =

(1− t)(1− pt2)

(1− pt)(1− p2t2)
. (5.3.63)

G6,7

For (a4, a5, a6) ∈ Z∗3,pN ,

R =



0 0 a4 a5

0 0 a6 0

−a4 −a6 0 0

−a5 0 0 0


(5.3.64)

and

S =



a5

0

0

0


. (5.3.65)

We have that det(R) = a2
5a

2
6 and thus, for SNF(R), we have m3 = m4 = vp(a5)+vp(a6).

For SNF(S), it is clear that n1 = vp(a5). It follows that, for (a4, a5, a6) ∈ Z∗3,pN , we
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have

QG6,7 =

[
(1− p−1)(p2)N

(
(1− p−1)(t2)N

1− (t−1)N

1− t−1
+ tN

)]
(5.3.66)

+

[
(1− p−1)pN

(
(1− p−1)(pt2)N

p−1t−1 − (p−1t−1)N

1− p−1t−1
+ tN

)]
+

[
(1− p−1)pN

(
(1− p−1)2(pt2)N

(
p−1t−1

1− p−1t−1
· t
−1 − (t−1)N

1− t−1

−(p−1t−1)N+1

1− p−1t−1
· p− p

N

1− p

)
+ (1− p−1)2(pt)N

(
(p−1)N+1

1− p−1
· p− p

N

1− p

−(N − 1)
(p−1)N

1− p−1

))]
+
[
(1− p−1)(p2t)Np−1

]
+
[
(1− p−1)2(pt)N(N − 1)

]
.

Note that we put square brackets around each term, for clarity, in the equation above.

The first term is when vp(a6) = 0. The first subterm of this term is when vp(a5) 6= N

and the second subterm is when vp(a5) = N. The second term is when vp(a5) = 0

and vp(a6) 6= 0. The first subterm of this term is when vp(a6) 6= N and the second

subterm is when vp(a6) = N. The third term is when vp(a4) = 0, vp(a5) = k,

and vp(a6) = ` where 1 ≤ k, `,≤ N − 1. The first subterm of this term is when

vp(a5) + vp(a6) < N and the second subterm is when vp(a5) + vp(a6) ≥ N. The fourth

term is when vp(a4) = 0, vp(a5) = N, and vp(a6) 6= 0. Finally, the fifth term is when

vp(a4) = 0, vp(a5) = k, and vp(a6) = N, where 1 ≤ k ≤ N − 1.

Inputting Equation 5.3.66 into Maple we obtain the strikingly simple

ζ irrG5,3,p
(s) =

(1− t)(1− pt2)

(1− pt)(1− p2t2)
. (5.3.67)
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G6,12

For (a5, a6) ∈ Z∗2,pN ,

R =



0 0 a5 0 a6

0 0 0 a6 0

−a5 0 0 0 0

0 −a6 0 0 0

−a6 0 0 0 0


(5.3.68)

and

S =



a6

0

0

0

0


. (5.3.69)

The 4-minors of R areM4 := {0, a4
6, a

2
5a

2
6,−a5a

3
6}. Thus, when vp(a6) = 0 we have that

m3 = m4 = 0. When vp(a5) = 0 then m3 = m4 = vp(a6). It is clear that, for SNF(S),

n1 = vp(a6). It follows that

QG6,12 = (1− p−1)(pt2)N + (1− p−1)2(pt2)N
t−1 − (t−1)N

1− (t−1)
+ (1− p−1)(pt)N . (5.3.70)

The first term is when vp(a6) = 0. The second term is when vp(a5) = 0 and vp(a6) = k

where 1 ≤ k ≤ N − 1. The third term is when vp(a5) = 0 and vp(a6) = N.
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Inputting Equation 5.3.70 into Maple we obtain

ζ irrG6,12,p
(s) =

(1− t)(1− t2)

(1− pt)(1− pt2)
. (5.3.71)

G6,14

We impose the additional condition on p that γ is a unit mod p. Since, when we

calculate SNF(R) and SNF(S), multiplication by units does not change the valuation

of a6 and all 4-minors are monomial, we can omit γ. Thus, for (a4, a5, a6) ∈ Z∗3,pN ,

R =



0 0 a4 a6 0

0 0 a5 0 a6

−a4 −a5 0 0 0

−a6 0 0 0 0

0 −a6 0 0 0


(5.3.72)

and

S =



a6 0

0 a6

0 0

0 0

0 0


. (5.3.73)

The 4-minors of R are M4 := {0, a2
5a

2
6, a

4
6, a

2
4a

2
6, a

3
6a4,−a3

6a5,−a4a5a
2
6}. Calculating

SNF(R), if vp(a4) = 0 then m3 = m4 = vp(a6). If vp(a5) = 0 then m3 = m4 = vp(a6)

as well. Finally, if vp(a6) = 0 then m3 = m4 = 0. It is clear, for SNF(S), that
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n1 = n2 = vp(a6). It follows that

QG6,14 = (1− p−1)(pt2)N + (1− p−2)(p2)N
(

(1− p−1)(p−1t2)N
pt−1 − (pt−1)N

1− pt−1

)
(5.3.74)

+ (1− p−2)(p2t)N .

The first term is when vp(a6) = 0. The second term is when one of vp(a4), vp(a5) = 0

and vp(a6) = k where 1 ≤ k ≤ N − 1. The final term is when one of vp(a4), vp(a5) = 0

and vp(a6) = N.

Inputting Equation 5.3.74 into Maple we obtain

ζ irrG6,14,p
(s) =

(1− t)(1− t2)

(1− p2t)(1− pt2)
. (5.3.75)

G27A

For (a6, a7) ∈ Z∗2,pN ,

R =



0 a6 0 a7 0

−a6 0 0 0 0

0 0 0 0 a7

−a7 0 0 0 0

0 0 −a7 0 0


. (5.3.76)

Since G27A has nilpotency class 2 there is no submatrix S.
The 4-minors of R areM4 := {0, a4

7, a
2
6a

2
7,−a6a

3
7}. Calculating SNF(R), if vp(a7) =

0 then m3 = m4 = 0. If vp(a6) = 0 then m3 = m4 = vp(a7). It follows that

QG27A
= (1− p−1)(p2t2)N + (1− p−1)2(p2t2)N

p−1t−1 − (p−1t−1)N

1− p−1t−1
(5.3.77)

+ (1− p−1)(pt)N .

The first term is when vp(a7) = 0. The second term is when vp(a6) = 0 and vp(a7) = k
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where 1 ≤ k ≤ N − 1. The final term is when vp(a6) = 0 and vp(a7) = N.

Inputting this into Maple we obtain

ζ irrG27A,p
(s) =

(1− t)(1− pt2)

(1− pt)(1− p2t2)
. (5.3.78)

Note that, for all examples that have been calculated, the p-local representation

zeta functions satisfy the functional equation of Theorem 1.4.3.

5.4 Joint Results With Robert Snocken

We briefly state some work on bounding the p-local abscissa of convergence of repre-

sentation zeta functions of T -groups that will appear in a forthcoming paper by Robert

Snocken and the author of this thesis. As a reminder, the concept of saturation was

defined in Definition 5.2.2.

Theorem 5.4.1. Let L be a saturated Lie ring of nilpotency class 2 associated to some

e. e. T -group G such that L′ and Z(L) are also saturated. Let h(L) = d, h(L′) = d′,

and h(Z) = e. Let L∗ ⊆ L be the saturated abelian Lie subring of L with maximal

dimension, say h(L∗) = r. Let αL,p be the p-local abscissa of convergence of ζ irrL,p(s).

Then, for almost all p,
2d′

d− e
≤ αL,p ≤ d′. (5.4.1)

Moreover, if r − e ≥ d− r then, for almost all p,

αL,p ≥
d′

d− r
. (5.4.2)

These bounds represent another step in the process of obtaining group theoretic

information from p-local representation zeta functions.
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Chapter 6

Conclusion

6.1 Introduction

In this thesis we have calculated the representation zeta function of two families of

T -groups by a constructive method. This method allowed the calculation of certain

p-local representation zeta functions that could not be calculated by the Kirillov orbit

method. Also, we calculated the p-local representation zeta functions of various T -

groups, most of these groups appearing in [9, Chapter 2], using the Kirillov orbit

method. To conclude, the final chapter of this thesis consists of two sections: first,

we make some observations about the properties of representation zeta functions of

T -groups. Second, we mention some questions to be answered by future research.

6.2 Observations

Here are some observations we have made due to the research completed in this thesis.

Observation 6.2.1. There exists two non-isomorphic T -groups, say G1 and G2, such

that ζ irrG1
(s) = ζ irrG2

(s).

Let H be the discrete Heisenberg group and let G1 = H × H. Since irreducible

representations of direct products of finite groups are tensor products of irreducible

representations of these groups,

ζ irrG1
(s) =

(
ζ(s− 1)

ζ(s)

)2

. (6.2.1)
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by [23]. Let G2 = M3 as in Chapter 4. By Equation 4.3.19,

ζ irrG2
(s) =

(
ζ(s− 1)

ζ(s)

)2

. (6.2.2)

It is clear that G1 6∼= G2; for example, these two groups are of different nilpotency class.

Observation 6.2.2. We remind the reader that we call a prime p a Kirillov-exceptional

prime if the hypotheses of the Kirillov orbit method does not hold for p. There exist

T -groups, say for example a group G, such that ζ irrG,p(s) is finitely uniform in p, p−s for

all primes, including Kirillov-exceptional primes; that is, as in Definition 2.3.2, p∗ = 2.

By [13, Theorem 1.a] the prime p = 2 is a Kirillov-exceptional prime. By Equation

4.3.19 in Chapter 4 we know that

ζ irrM3
(s) =

(
ζ(s− 1)

ζ(s)

)2

(6.2.3)

and thus the 2-local representation zeta function is of the same form as the other p-

local representation zeta functions. The results calculated by the constructive method

suggest that, since these exceptional p-local zeta functions are not “truly” exceptional,

there may be a generalization of the Kirillov orbit method that is valid for all primes,

at least for T -groups of a relatively simple structure. In fact, Stasinski and Voll [28,

Section 2.4] do this for T -groups of nilpotency class 2.

6.3 Questions and Future Work

To date, there has not been a p-local representation zeta function calculated such that

it is truly exceptional, in the sense that the p-local representation zeta function does

not satisfy the usual functional equations. All p-local representation zeta functions

that have been calculated do indeed satisfy the functional equations of Theorems 1.4.3

and 1.4.4. Indeed, a natural question arises:

Question 6.3.1. Does there exist a group G and a prime p such that the p-local

representation zeta function of G is truly exceptional; that is, it does not satisfy the

functional equation in Theorem 1.4.4?

The calculation of the p-local representation zeta functions of M3 and M4 suggest

that it is possible that there are no truly exceptional primes; however, it may be nothing
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more than a fluke that the p-local representation zeta functions, for each of the groups,

are uniform in p, p−s. To make a conjecture either way, we suspect more examples of

p-local representation zeta functions, for Kirillov-exceptional p, need to be calculated.

This would most likely involve use of the constructive method.

Since representation zeta functions are built from groups it is very likely that we

are able to extract group-theoretic data from representation zeta functions. In fact,

from Theorem 1.4.3, we can determine the Hirsch length of the derived subgroup.

Question 6.3.2. Can we determine other group-theoretic information from represen-

tation zeta functions of T -groups?

We suspects that we can determine much more from the form of the zeta function.

In fact, the bounds on abscissas of convergence that appear in Chapter 5 are a start

to discovering this hidden information. Work in representation growth of other classes

of groups has given some results. For example, in the case of complex semi-simple

algebraic groups, say we pick one and call it G, it was shown by Larsen and Lubotzky

[17] that the abscissa of convergence of the representation zeta function of G, say αG,

has the following property:

αG =
r

k
(6.3.1)

where r is the Lie rank of G and k is the number of positive roots of G.

The Kirillov orbit method is very useful for calculating the p-local representation

zeta functions for almost all primes. However, for some exceptional prime p∗, if the

number of pN∗ -dimensional twist isoclasses grows much faster than the number of non-

exceptional pN -dimensional twist isoclasses, we may not be able to determine the global

abscissa of convergence. We ask the following question:

Question 6.3.3. For a T -group G and a Kirillov-exceptional prime p∗, can the abscissa

of convergence αG,p∗ be larger than p-local abscissas of non-exceptional primes; that is,

larger than max{αG,p | p is non-exceptional}?

If it is possible, then the constructive method gains more importance to determining

the overall rate of representation growth.

Of the T -groups studied, both in this thesis and in the literature, all of the

representation zeta functions are products of shifted Dedekind zeta functions and their

inverses. This phenomenon does not happen subgroup growth. Therefore, it may be
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of interest to study groups for which their representation zeta function is as described

above.

Question 6.3.4. Are all representation zeta functions products of shifted Dedekind

zeta functions and their inverses? If not, which T -groups have representation zeta

functions that are of this form?

We suspect that the answer to the first question is “no”. This agrees with the

expectation of Stasinski and Voll in [28, Section 1.1]. The groups for which repre-

sentation zeta functions have been calculated, so far, have been of a relatively simple

structure. It is very possible that this behaviour does not occur for sufficiently complex

groups. Assuming the answer to the first question is negative, an answer to the second

question might give an interesting family of T -groups to study. This may reflect some

group-theoretic property (see Question 6.3.2).

In Chapter 4 we calculated various p-local the representation zeta function of the

groups Mn. During the course of that calculation, especially the calculation of ζ irrM4,2
(s),

we split the domain of possible choices of roots of unity into different cases. However,

this sectioning was, essentially, ad-hoc; that is, there was no other reason to split the

domain in this way other than ease of calculation. There may be a more natural way

to break up the domain so that the calculation is more straightforward. However, we

were not able to describe a better, more intuitive, sectioning of the domain.

Project 6.3.5. Find more natural case distinctions for the constructive-exceptional

prime calculation of ζ irrM4,2
(s).

If this is possible, it may help in generalizing the constructive method to a larger

class of groups. Indeed, since the “un-natural” sectioning occurs only during the

calculation of exceptional cases, finding a better sectioning of the domain might lead

us to a better understanding of T -groups, and in particular, a better understanding of

their finite quotients of “small prime”-power order.
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Appendix A

Elementary Concepts

We begin by defining an important concept in the study of nilpotent groups.

Definition A.6. Let G be a group. For g, h ∈ G we call [g, h] := ghg−1h−1 the

commutator of g and h. Let H,K be subsets of G. The commutator [H,K] is defined

as 〈{[h, k] | h ∈ H, k ∈ K}〉.

Definition A.7. Let G be a group. Then G is nilpotent if the lower central series

G0 := G, Gi := [G,Gi−1] terminates in a finite number of steps; that is, there is an

c ∈ N∪ {0} such that Gc = 1. The minimal c such that Gc = 1 is called the nilpotency

class of G.

Example A.8. Any abelian group A is nilpotent; since all elements of A commute,

G1 = [A,A] = 1 and thus A has nilpotency class 1.

Example A.9. The quaternion group Q8 := 〈−1, i, j, k | − 12 = 1, i2 = j2 = k2 =

ijk = −1〉 of order 8 is a nilpotent group of class 2. We have that G1 = {1,−1} and

G2 = [Q8, {1,−1}] = 1.

There are many equivalent definitions of nilpotent groups; see any graduate text-

book on group theory for details. We give one equivalent definition that is important

for our study.

Theorem A.10. A finite group G is nilpotent if and only if it is the direct product of

all of its Sylow subgroups.
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Now that we have introduced the idea of nilpotent groups, we can continue to define

the groups studied in this thesis. We call these T -groups.

Definition A.11. Let G := 〈P | R〉 be a group defined by a set of generators P and

a set of relations R. We say that G is finitely generated if |P | <∞.

Definition A.12. Let G be a group. We say that G is torsion-free if and only if the

only element g ∈ G such that gk = 1 for any k ∈ N is 1.

Definition A.13. We say a group G is a T -group if and only if G is a finitely generated

torsion-free nilpotent group.

Example A.14. The discrete Heisenberg group H := 〈x, y, z | [x, y] = z〉 is a T -group.

From now on, until indicated otherwise, any arbitrary group G that appears in this

thesis is a T -group.

We introduce an invariant of T -groups that, informally, measures the amount of

infiniteness in our group.

Definition A.15. The Hirsch length of a T -group G is the number of infinite factors

in a polycyclic series of G. We denote this by h(G).

Example A.16. Let M3 = 〈y, x1, x2, x3 | [y, x1] = x2, [y, x2] = x3〉 where all other

commutators in the presentation are trivial. Then M3 has the lower central series

G0 := M3, G1 = 〈x2, x3〉, G2 = 〈x3〉, G3 = 1. (A.1)

Thus

G2/G3 = Z, G1/G2 = Z, G0/G1 = Z2 (A.2)

and h(M3) = 1 + 1 + 2 = 4.

We study nilpotent groups by way of linear algebra. For a group G the idea is

to find a set of matrices (or, more generally, linear operators) ρ(G) which, under

multiplication, behaves the same way as G. Once we have this set, we can use linear

algebraic techniques to study our group. This is the basic idea behind the general

subject of representation theory.

Definition A.17. Let V be a n-dimensional vector space and G a group. The function

ρ : G → GL(V ), where GL(V ) is the general linear group of V, is a representation if

and only if it is a homomorphism; that is, for g, h ∈ G, ρ(gh) = ρ(g)ρ(h). We say that

ρ has dimension n.
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In this thesis, the vector space V is usually Cn and we denote this general linear

group as GLn(C). In the same manner, we always mean “complex representation” when

we say “representation”.

Example A.18. Let K be the Klein-4 group generated by elements a, b. Then ρ : K →
GL2(C) defined by

ρ(a) =

 1 0

0 −1

 ρ(b) =

 −1 0

0 1

 (A.3)

is a representation.

Definition A.19. Let ρ : G→ GLn(V ) be a representation. We say a subspaceW ⊆ V

is a ρ(G)-stable subspace if W is closed under the action of G; that is, ρ(g)w ⊆ W for

all g ∈ G and w ∈ W.

Definition A.20. A representation ρ : G → GL(V ) is irreducible if and only if the

only ρ(G)-stable subspaces of V are the trivial subspace and V itself.

Note that, since a representation ρ is a homomorphism of groups, ρ is completely

determined by ρ(a) for all a ∈ P where P is a generating set of the group.

Example A.21. Let ρ be the representation in Example A.18. Since all elements of

ρ(K) are diagonal, the subspace spanned by the vector v := (1, 0)T is ρ-stable. Indeed

span(v) is a stable subspace for any representation χ : A→ GL2(C) of an abelian group

A.

The four representations ρ∗ : K → C such that ρ∗(a) = ±1, ρ∗(b) = ±1 are

irreducible. In fact, it is clear that any 1-dimensional representation is irreducible.

Two results we use in this thesis are corollaries of the standard representation

theoretic result Schur’s Lemma. We combine the needed results into one lemma:

Lemma A.22. Let ρ : G → GLn(C) be an irreducible representation. If, for g ∈ G,

ρ(g) commutes with ρ(G) then ρ(g) must be a scalar matrix. Additionally, if ρ(G) is

abelian then ρ is 1-dimensional.
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