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Abstract 
 

Stress is associated with a vast array of negative outcomes for both physical and 

mental health.  Based on evidence that stress influences temperature, and that 

psychology and physiology influence each other, we investigated the novel possibility 

that reducing brain temperature reduces stress in a sample of 91 university students.  

We used head fanning to reduce brain temperature and measured this change with an 

infrared ear thermometer.  Participants were randomly assigned so that the fans faced 

toward half of the participants (cooling condition) and faced away from the other half 

(non-cooling control condition).  Differences in stress between conditions during the 

Vandenberg and Kuse (1978) Mental Rotations Test were then examined to test the 

hypotheses that (a) cooling would buffer stress and (b) that this would be mediated by 

changes in brain temperature, as indicated by ear temperature.  Participants in the 

cooling condition were less stressed (p = .02) and also performed better (p = .03) 

during the task but neither of these findings were mediated by ear temperature.  Thus, 

some uncontrolled variable(s), and not changes in temperature, may have been 

responsible for the effect of cooling on stress.  Alternatively, error in measuring brain 

temperature may have obscured the hypothesised causal relationship between 

temperature and stress.  More research is needed to confirm whether cooling the head 

is a simple way to manage stress. 
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The Effect of Cooling the Head to Reduce Brain Temperature 

on Stress 

Overview 

Despite being a difficult concept to define (Cooper & Dewe, 2008), stress is 

associated with a vast array of negative outcomes for both physical and mental health, 

including the two leading causes of death in the Western world: cancer and 

cardiovascular disease (Barlow & Durand, 2012; World Health Organisation, 2011).  

The related costs of stress are consequently reported in the millions of dollars each 

year, and methods to reduce stress are as valuable as they are desirable (Cooper & 

Dewe, 2008).  In this context, the present study investigated the novel possibility that 

reducing temperature reduces stress.  This was based on evidence that stress 

influences temperature, and that psychology and physiology influence each other, 

such that temperature might also influence stress.  We first review the literature 

relevant to our proposition and then report the results of an experiment to test it. 

Stress and Increased Temperature 

Body temperature 

Stress increases body temperature via arousal of the sympathetic branch of the 

autonomic nervous system that prepares the body for fight-or-flight (Taylor, 2012; 

Vinkers et al., 2008). This increase in temperature has been studied extensively in 

animals. For example, experiments with rodents have produced temperature increases 

of as much as 2°C in response to numerous animal models of psychological stress, 

including social defeat stress, handling stress, open-field stress, cage-change stress, 

cage-exchange stress, and anticipatory anxiety stress (Bouwknecht, Olivier, & Paylor, 

2007; Lkhagvasuren, Nakamura, Oka, Sudo, & Nakamura, 2011; Oka, Oka, & Hori, 

2001).  This phenomenon is so robust that it is used to test the anxiolytic properties of 

drugs in a procedure called the stress-induced hyperthermia paradigm (Van der 

Hayden, Zethof, & Olivier, 1997).  The first step in this procedure is to measure rectal 

temperature.  This provides a baseline temperature measurement and also operates as 

a stressor capable of increasing body temperature like the psychological stress models 

above.  Because stress-induced hyperthermia peaks within 10-15 minutes, another 

rectal temperature measurement is then taken after 10 minutes.  The increase in 

temperature between these two measurements represents the magnitude of the stress 
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response and allows researchers to test the anxiolytic properties of various drugs; if 

the response is diminished, a drug has an anxiolytic effect (Vinkers et al., 2008).  This 

effect is not limited to rodents either.  Increases in body temperature in response to 

stress have been reported in a diverse range of other species, including baboons, silver 

foxes, pigs, ground squirrels, rabbits, and even reptiles (where stress promotes heat-

seeking behaviour, the only way that they can raise body temperature; Bouwknecht et 

al., 2007; Cabanac & Gosselin, 1993). 

Although the relationship between stress and body temperature has received 

less attention in humans, the available evidence suggests that we respond to stress in a 

similar way.  This has mainly been studied in the context of students sitting exams.  

The first study of this kind was conducted by Marazziti, Di Muro, and Castrogiovanni 

(1992), who found that the mean axillary (armpit) temperature of psychiatry students 

was 0.60°C higher before a yearly exam than during a calm situation 2-3 weeks later.  

This finding was later replicated by Briese (1995), who found a similar increase in 

mean oral temperature of 0.18°C in medical students before a stressful exam 

compared with before a non-stressful lab demonstration three days later.  Thus, body 

temperature in humans also appears to be increased in response to psychological 

stress.  Additional evidence of this comes from case reports of people with elevated 

body temperatures in stressful situations such as during arguments or visiting a strict 

mother (Oka et al., 2001).  This is generally referred to as “psychogenic fever” and 

has been reported to increase temperature to as much as 39°C (human body 

temperature is normally regulated at approximately 37°C) and can remain high for 

weeks or even years (Oka et al., 2001). 

Brain temperature 

In contrast to body temperature, stress-related changes in brain temperature 

have not been emphasised in previous research.  A major reason for this is that 

measuring brain temperature directly requires invasive procedures that are 

inappropriate in healthy human populations.  Despite this, there is reason to believe 

that stress also increases the temperature of the brain.  A major determinant of brain 

temperature is the temperature of the arterial blood that goes to the brain (Harris & 

Andrews, 2005).  Because stress increases body temperature, this mechanism will 

bring warm blood from the body to the brain, increasing brain temperature upon 

arrival during stress.  In addition, the cognitive load of stress may further increase 

local temperatures within the brain due to heightened glucose metabolism, as seen 
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with cognitively demanding tasks (Gallup & Gallup, 2008).  Consistent with this, 

Wolf (1990, as cited in Zajonc, Murphy, & McIntosh, 1993) found that people who 

were stressed because they thought they had done poorly on an IQ test had increased 

forehead temperatures, which are an estimate of brain temperature (Kirk, Rainey, 

Vail, & Childs, 2009).  Finally, recent research on yawning as a compensatory brain 

cooling mechanism has shown that people yawn more when brain temperature is 

increased and yawn less when brain temperature is reduced (Gallup & Gallup, 2007, 

2008; Shoup-Knox, Gallup, Gallup, & McNay, 2010).  Because stressful situations 

are conducive to yawning in humans, nonhuman primates, and rats (Gallup & Gallup, 

2008), this further suggests that brain temperature, specifically, increases during 

stress.  Sympathetic nervous system activation in response to stress therefore 

increases body temperature in animals and humans, and is believed to increase brain 

temperature as well.  

The Interrelationship Between Psychology and Physiology 

As we have seen, stress influences temperature.  Conversely, it is possible that 

temperature influences stress because psychology and physiology influence each 

other.  Indeed, modern health psychology views stress and other health-related issues 

as the product of an interrelationship between biological, psychological, and social 

factors.  This is known as the biopsychosocial model (Engel, 1977; Schwartz, 1982).  

Central to this model is the idea that change in any of these factors will bring about 

change in the other factors as well (Taylor, 2012).  In other words, the causal 

relationships between these variables go both ways.  For the purposes of the present 

study, this means that psychological factors do not just influence physiology, as was 

once believed to be the case (e.g., Alexander, 1950; Dunbar, 1943), but physiological 

factors also influence psychology.   

A well-known example of this two-way relationship between psychology and 

physiology is the question: Do we smile because we are happy or are we happy 

because we smile?  Although counterintuitive, this latter proposition, based on the 

theorizing of Charles Darwin and William James (McIntosh, 1996), has slowly gained 

support.  An early experimental demonstration of this facial feedback effect was 

conducted by Strack, Martin, and Stepper (1988), who found that participants who 

held a pen in their mouth with their teeth (to imitate smiling) rated cartoons as more 

amusing than participants who instead held the pen with their lips (more like a frown).  

Similarly, Zajonc, Murphy, and Inglehart (1989) had participants produce vowel 
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sounds that mimicked facial expressions associated with various emotions and then 

rate their subjective mood.  The phonemes e and ah were associated with the most 

positive mood and the phoneme ü was associated with the worst mood.  These and 

other related studies (e.g., Kleinke, Peterson, & Rutledge, 1998; McIntosh, Zajonc, 

Vig, & Emerick, 1997) suggest that facial expressions influence the subjective 

experience of emotion. 

The facial feedback effect is not just restricted to smiling. Recent research has 

replicated it in people who have had botulinum toxin A treatment (commonly known 

as Botox) for frown lines, which temporarily paralyses the facial muscles involved in 

frowning (reviewed in Lewis, 2012).  A side effect of this treatment is impaired facial 

expression of negative emotions.  Consistent with the facial feedback effect, Lewis 

and Bowler (2009) found that these patients were significantly less depressed and less 

anxious than patients who received other forms of cosmetic treatment, and this was 

not due to differences in self-rated attractiveness.  Other emotions that are influenced 

by facial feedback effects include anger, fear, sadness, surprise, and disgust (Flack, 

2006; Lewis, 2012).  This research does not argue that facial expression is the sole 

determinant of emotion (McIntosh et al., 1997).  It is clearly not.  Instead, it supports 

the idea that psychology and physiology influence each other.   

Two-way relationships between psychology and physiology are also seen in 

the context of stress.  A good example of this is biofeedback, an intervention used to 

manage stress by reducing the physiological symptoms associated with it.  This is 

done by making functions of the autonomic nervous system that are involved in the 

stress response, such as heart rate and blood pressure, either visible or audible using 

physiological monitoring equipment (e.g., ECG for heart rate).  Using this feedback, 

people can learn to control these functions.  This procedure has reduced stress and 

anxiety in students (Henriques, Keffer, Abrahamson, & Horst, 2011), children 

(Wenck, Leu, & D’Amato, 1996), anxiety disorder patients (Reiner, 2008), and 

basketball players (Paul & Garg, 2012).  Although there are a number of possible 

mechanisms involved (McKee, 2008), this research suggests that people can reduce 

stress and anxiety by reducing the physiological symptoms that accompany it. Like 

facial feedback effects, this supports the idea that psychology and physiology 

influence each other.  
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Lessons from the Vascular Theory of Emotional Efference 

Because stress influences temperature, and psychology and physiology 

influence each other, temperature may also influence stress.  Further support for this 

proposition is derived from the vascular theory of emotional efference developed by 

Zajonc and colleagues (reviewed in Zajonc et al., 1993) to explain the facial feedback 

effect outlined above.  The vascular theory of emotional efference argues that various 

facial expressions alter the amount of air that can be inhaled through the nose in 

normal breathing, that this influences cooling of arterial blood flowing to the brain via 

the cavernous sinus, and that the changes in brain temperature produced influence the 

subjective experience of emotion.  To explain the relationship between brain 

temperature and emotion proposed by this theory, Zajonc and colleagues pointed out 

that, “since biochemical processes are temperature-sensitive, emotion-related 

neurotransmitters are sensitive as well” (1993, p.  212).   

These ideas are also relevant to stress. In particular, release of the stress 

hormone cortisol has been shown to be extremely sensitive to changes in temperature, 

such that the amount of circulating cortisol increases dramatically as temperature rises 

(Cameron et al., 2010).  Temperature may therefore influence the subjective 

experience of stress through its effects on the endocrine system (which includes the 

hypothalamic-pituitary-adrenal axis that stimulates cortisol production during stress; 

Barlow & Durand, 2012).  More specifically, because cortisol increases as 

temperature rises, increased temperature may increase stress and, conversely, reduced 

temperature may reduce stress.  This latter proposition is especially attractive because 

it could provide novel approaches to stress management and is supported by 

additional converging lines of evidence from research on sleep, exercise, and 

inflammation.  

Reduced Temperature and Stress 

First, like all mammals, humans normally sleep when their body temperature 

is at its coolest (due to natural fluctuations in the circadian rhythm of core body 

temperature; Glotzbach & Heller, 2000).  This is not a coincidence.  Additional 

research has shown that this reduction in core body temperature (via increased heat 

loss from the hands and feet) is actually crucial for the onset of sleepiness and sleep, 

and that this mechanism is believed to be partly involved in the sleep-promoting 

effects of drugs like benzodiazepines and alcohol (Kräuchi, Cajochen, Pache, 

Flammer, & Wirz-Justice, 2006).  This suggests that cooler body temperatures are 
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associated with relaxed psychological states and, further, that cooling may elicit these 

relaxed states. 

Second, regular aerobic exercise reduces temperature and stress. A previous 

study conducted by Baum, Bruck, & Schwennicke (1976) found that long-distance 

runners had lower resting body temperatures than physically untrained controls (but 

see also Soare, Cangemi, Omodei, Holloszy, & Fontana, 2011).  In addition to 

reducing temperature, exercise has been shown to reduce ratings of perceived stress 

and the incidence of stress-related health issues such as poor sleep quality, high blood 

pressure, and illness susceptibility (Brown & Siegel, 1988; Castro, Wilcox, 

O’Sullivan, Baumann, & King, 2002; King, Baumann, O'Sullivan, Wilcox, & Castro, 

2002).  Although there are a number of possible mechanisms involved in this effect 

(Taylor, 2012), the co-occurrence of lower temperatures and lower stress levels in 

physically fit individuals also suggests that cooler body temperatures may be 

associated with reduced stress.   

Finally, temperature is known to influence inflammation, which is related to 

stress.  Previous research has shown that psychological stress increases the production 

of pro-inflammatory cytokines that cause inflammation (Maes et al., 1998), and that 

this is mediated by the release of glucocorticoids (stress hormones like cortisol; 

Dobbs, Feng, Beck, & Sheridan, 1996).  These cytokines further stimulate 

glucocorticoid release in a positive feedback loop, which has been hypothesised to 

exacerbate the stress response (Cohen, Doyle, & Skoner, 1999).  Consistent with this, 

chronic inflammation is argued to be a contributing factor in the development of 

stress-related disorders such as anxiety and depression (Rook & Lowry, 2008).  

Importantly, inflammation is reduced when body and brain temperature is cooler 

(Whalen et al., 1997), suggesting that cooler temperatures may reduce stress by 

reducing inflammation. 

Towards an Experiment 

Based on the evidence outlined above, the aim in the present study was to test 

the novel possibility that reduced temperature reduces stress.  The reviewed research 

suggests that both body and brain temperature may influence stress.  However, 

because the subjective experience of stress is a psychological phenomenon and 

because the brain is the psychological organ, we chose to focus on brain temperature 

in this preliminary study.  We therefore needed to be able to manipulate and measure 

brain temperature in a sample of healthy volunteers.  Although neither is 
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straightforward, recent interest in the neuroprotective qualities of a cool brain 

following brain injury (therapeutic hypothermia; Mayer & Sessler, 2005) offers 

solutions to both of these issues.  

Manipulating brain temperature  

 In a review of the medical literature, Harris and Andrews (2005) identified a 

number of ways to reduce brain temperature and divided these into those that are 

invasive (and only appropriate in the medical context) and those that are not.  Of the 

non-invasive options, head fanning is a promising method that utilises natural cooling 

mechanisms of heat loss through the skull (Harris & Andrews, 2005; for anatomical 

considerations, see Zenker and Kubik, 1996).  Subsequently, Harris and colleagues 

(Harris, Andrews, & Murray, 2007) have shown that 30 minutes of head fanning of 

ambient air with electric fans produced a mean brain temperature reduction of 0.26°C 

in brain-injured patients.  This group then replicated this effect in healthy volunteers 

using a custom-built device that delivered high flow rates of cold air to the head.  

Within 30 minutes, this device reduced overall brain temperature, measured using 

magnetic resonance spectroscopy, by an average of 0.45°C (Harris, Andrews, 

Marshall, Robinson, & Murray, 2008).  For the purposes of our study, head fanning is 

therefore a simple but effective method of reducing brain temperature.  Because 

obtaining a head cooling device like the one used by Harris et al. (2008) was beyond 

the means of the present study, we instead adapted the procedure of Harris et al. 

(2007) and used bilateral head fanning of ambient air to reduce brain temperature.   

Measuring brain temperature 

Measuring brain temperature in healthy volunteers is complex because the 

invasive methods required to measure temperature directly are inappropriate (see 

Hlatky & Robertson, 2005).  Instead, the temperature of the brain must be estimated 

using an extracranial site of measurement.  Whereas many traditional core body 

temperature measurements are poor indicators of brain temperature, especially during 

rapid temperature change (Hlatky & Robertson, 2005), Mariak, White, Lyson, and 

Lewko (2003) demonstrated that the temperature of the tympanic membrane in the ear 

closely reflects changes in brain temperature (of particular relevance to the present 

study, these temperature changes were in response to head fanning).  Accordingly, 

tympanic membrane temperature is the leading non-invasive method of brain 

temperature estimation used in neurosurgical practice in the United Kingdom 
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(Johnston, King, Protheroe, & Childs, 2006). Tympanic membrane temperature can 

be assessed using an infrared ear thermometer that measures heat radiating out from 

the tympanum.  While this method is not perfect (e.g., McCarthy & Heusch, 2006), it 

is a simple and relatively inexpensive option that should nevertheless be sensitive to 

changes in brain temperature. We therefore chose to use tympanic temperature 

measured using an infrared ear thermometer as a non-invasive indicator of brain 

temperature in the present study.   

Hypotheses 

 The aim of this study was to experimentally test the novel possibility that 

cooling the head to reduce brain temperature could reduce stress.  To do this, we 

attempted to reduce brain temperature using head fanning and measured this change 

using an infrared ear thermometer.  We then examined differences in stress responses 

during a stressful cognitive task for a group of participants who received head fanning 

and a control group who did not.  This task was used to ensure that the participants 

were sufficiently stressed to allow us to detect a reduction in stress caused by cooling 

(i.e., the stressful task helped avoid the possibility of a floor effect in stress 

experienced by the participants).  We tested two hypotheses.  First, we hypothesised 

that head fanning would buffer stress responses during the task (Hypothesis 1).  

Second, we hypothesised that this would be mediated by a reduction in brain 

temperature, as indicated by ear temperature (Hypothesis 2).  If reducing the 

temperature of the brain does reduce stress, it would enhance our understanding of 

stress and the interrelationships between physiology and psychology generally, as 

well as offer novel approaches to the management of stress. 

Method 

Participants 

 We recruited 100 students from the University of Canterbury using 

advertisements posted around the university campus, the 100-Level Psychology 

Department Participation Pool and recruitment emails sent to undergraduate students 

in the Psychology Department.  Participants received a $10 shopping voucher or 

course credit (in the case of those drawn from the Participation Pool) for taking part.  

Of these 100 participants, nine were excluded from analysis: two knew the 
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experimenter well (which may have compromised the stressfulness of the task), one 

had language difficulties, and data for one was unusable due to equipment failure.  

The remaining five participants expressed extreme suspicion about either the 

temperature manipulation or stress manipulation during debriefing.  Subsequently, 

data from 91 participants (26 males and 65 females) aged between 18 and 45 years (M 

= 22.89 years, SD = 5.13) was used for analysis. 

Procedure and Apparatus 

 The participants were tested individually in a small laboratory room.  Upon 

arrival, participants were greeted and asked to take a seat before being provided with 

an overview of the study that explained the cover story.  Specifically, participants 

were told that we were investigating how white noise affects people’s psychology and 

physiology and, in particular, how it affects people’s performance on intelligence-

related tasks.  To that end, the participants were told that they would be exposed to 

some white noise and then given a short test of spatial intelligence, and that we would 

measure a number of related psychological and physiological factors throughout the 

experiment (namely, stress and temperature).  The ‘white noise’ was the sound of two 

fans placed in front of the participants (which were actually used to reduce brain 

temperature by fanning the head).  In this way, participants were blind to condition 

and to the true purpose of the study.  Participants were then given an information 

sheet and a consent form to sign.  Copies of these are provided in Appendix A.   

 Commencing the experiment, participants were given a questionnaire that 

assessed trait and state stress, mood, speed of thoughts, and enjoyment of spatial 

intelligence problems.  After completing the questionnaire, a baseline temperature 

measurement was taken in each ear.  The order of measurement was counterbalanced 

so that half of the participants had their temperature taken first in the left and then 

right ear throughout the study, and vice versa for the other half of the participants.  

All measurements were made by inserting a Braun ThermoScan Pro 4000® infrared 

ear thermometer (Braun, USA) into the ear canal of the participant.  A new disposable 

probe cover was used for each measurement to prevent cross-contamination and to 

ensure the most accurate recording, as per the manufacturer’s recommendations.  The 

thermometer’s temperature reading was sensitive to 0.1°C (e.g., 36.9°C).  The same 

experimenter performed all of the temperature measurements. 

Next, the participants underwent 12 minutes of fanning, which they were told 

was to expose them to white noise but which was really used to experimentally cool 
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the brain.  Two electric pedestal fans (Evantair, NZ) were positioned 90 centimetres 

in front and to either side of the participants’ chair at a height of 110 centimetres, 

tilted up towards the head and away from the torso to maximise head cooling.  The 

fans ran on the highest speed and without oscillation with a total airspeed of 

approximately 7.2 m s-1 (3.6 m s-1 each), comparable to the 8 m s-1 used by Harris et 

al. (2007).  Participants were randomly assigned to conditions so that the fans faced 

half of the participants (cooling condition; n = 43) but were turned around to face 

away from the other half of the participants (non-cooling control condition; n = 48).  

In this way, the participants’ experience between conditions was essentially identical 

except for the presence or lack of airflow (head fanning).  During fanning, 

participants in the cooling condition also had their arms covered with a towel to 

minimise body cooling.  In both conditions, the participants were asked to remain 

seated between the fans with their eyes open and to move as little as possible.  The 

experimenter waited quietly in an adjacent room while the fans were on.  Room 

temperature and relative humidity were assessed prior to fanning using a combined 

electronic thermometer/hygrometer (iROX, Switzerland) accurate to 0.1°C and 1% 

humidity.  Mean room temperature was 21.50°C (SD = 1.04°C; 18.1–23.6°C) and 

relative humidity was 37.90% (SD = 2.81%; 34–47%). 

After the 12 minutes, the fans were turned off and participants were given a 

second questionnaire, which assessed stress, mood and speed of thoughts.  Upon 

completing the questionnaire, ear temperature was measured as before. 

Next, participants performed the Vandenberg and Kuse (1978) Mental 

Rotations Test (MRT), updated by Peters et al. (1995) and slightly modified for 

presentation on a computer screen placed in front of participants.  The participants 

were told that the task would test whether white noise could help people to perform 

better on problems that require spatial intelligence.  However, we were really 

interested in the effect of cooling on the stress elicited by this task.  The MRT is a 

well-established test of spatial ability (Peters & Battista, 2008).  The test was 

comprised of 24 items, each consisting of a target figure and four comparison figures.  

Participants were required to correctly identify which two of these four comparison 

figures were rotated versions of the target figure.  See Figure 1 for an example MRT 

item.  The items were presented one at a time in a fixed order of increasing difficulty.  

Upon completion of an item, the next problem was presented (controlled by the 

experimenter).  To increase the stress elicited by the test, the participants only had 
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three minutes to work on the MRT (displayed on a countdown timer beside the 

computer screen).  In addition, they were told that to score well they should work as 

quickly and as accurately as possible and that their performance would be used to 

evaluate their spatial intelligence.  To add an element of social stress, the participants 

also communicated their answers verbally to the experimenter (comparison figures 

were labelled a, b, c and d) who recorded them.  The participants were provided with 

one practice problem before the test.   

After the test, participants were given two final questionnaires.  The first 

assessed stress, mood and speed of thoughts during the task and the second assessed 

basic demographics and the participants’ experience during the experiment.  Upon 

completion of these two questionnaires, the experimenter probed for suspicion before 

debriefing and thanking the participant. 

 

 
Figure 1. An example item from the MRT showing the target figure (on the left) and 
four comparison figures (on the right).  Figures (b) and (c) match the target. 

Materials 

Three questionnaires assessed stress at baseline before fanning (Questionnaire 

1), after fanning (Questionnaire 2), and after the MRT (Questionnaire 3) using the 

items: How would you rate your stress level right now (1 = not stressed at all, 9 = 

very stressed)?  How tolerable is your feeling of stress right now (1 = not tolerable at 

all, 9 = very tolerable)?  Right now, is your stress level lower or higher than it usually 

is (1 = lower than usual, 9 = higher than usual)?  How relaxed do you feel right now 

(1 = not relaxed at all, 9 = very relaxed)?  The items in Questionnaire 3 were re-

worded to refer to participants’ experience during the MRT.  For example, the item, 

“How would you rate your stress level right now?” became, “How would you rate 

your stress level during the spatial intelligence task?”.   

Ratings on these four items were averaged (reverse-scored where appropriate 

so that higher scores on the composite reflected higher stress) to create a stress 

composite score for each time point for data analysis (Cronbach’s alpha = .68, .79 and 

 
 
 
 
 
 
 
 



 14 

.72 for Questionnaires 1, 2 and 3, respectively).  These new variables were screened 

and one outlier (with a z score of -3.30, exceeding the 3.29 cut-off recommended by 

Tabachnick and Fidell, 2007) was removed from the control condition for 

Questionnaire 3. The Shapiro-Wilk test indicated that these composite variables were 

normally distributed (all ps > .06). 

Three additional items were included in these questionnaires: Right now, does 

it seem like the thoughts passing through your mind are moving slower or faster than 

they usually move (1 = slower than usual, 9 = faster than usual)?  Are you in a good 

or bad mood right now (1 = very good mood, 9 = very bad mood)?  How strong is this 

emotion (1 = not strong at all, 9 = very strong)?  These items were included out of 

interest only and were not analysed in this study.1 

Four additional items were included in Questionnaire 1 to allow us to examine 

whether trait stress and enjoyment of spatial intelligence problems moderated the 

effect of cooling on stress during the MRT: Over the course of the past two weeks, 

how stressed have you been feeling (1 = very relaxed, 9 = very stressed)?  Over the 

course of the past two weeks, how quickly have you been able to relax after stressful 

experiences (1 = not at all quickly, 9 = very quickly)?  Do you tend to become 

stressed easily (1 = not easily at all, 9 = very easily)?  How much do you enjoy spatial 

intelligence problems like the one below (1 = not at all, 9 = very much)?  This last 

question was followed by an example problem from the MRT. 

The fourth and final questionnaire (Questionnaire 4) assessed basic 

demographics (gender, age, height, native language, and years spoken English for 

those with a different native language) and participants’ experience during fanning 

using the questions: How did you find the noise of the fans (1 = unpleasant, 9 = 

pleasant)?  How did you find the airflow from the fans (1 = unpleasant, 9 = pleasant)?  

Questionnaire 4 also included a number of exploratory items that were not analysed in 

the present study.  Copies of the four questionnaires are provided in Appendix B. 

Results 

Manipulation Checks 

 First, we examined whether head fanning did in fact reduce brain temperature, 

as indicated by ear temperature. To do this, the left and right ear temperature 

                                                
1 There was no effect of condition on these variables (all ps > .40). 
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measurements were averaged at each time point (before fanning, after fanning) to 

minimise the impact of asymmetrical temperatures (see Boyce et al., 2002).  One 

outlier (with a z score of -3.52) was deleted from the cooling condition after fanning.  

As shown in Table 1, the mean (and standard deviation) for ear temperature after 

fanning was 36.51 (0.32) for the cooling condition and 37.06 (0.25) for the control 

condition. This difference was statistically significant when controlling for ear 

temperature before fanning using a one-way between-groups ANCOVA, F (1,87) = 

258.01, p < .001, partial eta squared = .75.  As expected, ear temperature was reduced 

in the cooling condition relative to the control condition. Head fanning therefore 

appeared to work as intended.  Room temperature and humidity did not moderate this 

effect (both ps > .19).2  

We then examined whether participants found the MRT stressful using a 

paired-samples t-test.  Stress composite scores increased significantly from before (M 

= 3.87, SD = 1.29) to after the task (M = 5.74, SD = 0.98), t (89) = -13.32, p < .001 

(one-tailed), eta squared = 0.67, with a mean increase in stress scores of 1.87 (95% CI 

= 1.59: 2.15).  This confirmed that participants found the task stressful and that it was 

therefore appropriate for investigating the effects of head fanning on stress.  

 
Table 1. Means (and standard deviations) for measures of ear temperature, stress, and 
task performance in the two conditions.   

 Ear Temperature Stress Task Performance 

Condition Pre- 
fanning 

Post- 
fanning 

Pre- 
fanning 

Post- 
fanning 

Post- 
task 

Number  
Correct 

Number  
Attempted 

Control 37.00 37.06 4.28 3.82 5.97 4.98 10.58 

(n = 48) (0.26) (0.25) (1.21) (1.25) (0.87) (2.87) (3.98) 

Cooling 36.98 36.51 4.26 3.89 5.48 6.44 10.72 

(n = 43) (0.31) (0.32) (1.08) (1.36) (1.04) (3.54) (4.77) 

Main Analyses 

Cooling effects on stress 

We hypothesised that head fanning would buffer stress during the spatial 

intelligence task (Hypothesis 1).  That is, we expected (a) that cooled participants 

would be less stressed during the task than control participants and (b) that this 

difference would not be due to a direct effect of the fanning procedure on stress, 

                                                
2 See the Other Moderators section below for the procedure used in these analyses. 
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evidenced by comparable stress levels between conditions immediately after fanning.  

This was tested using two one-way between-groups ANCOVAs with fanning 

condition (cooling, control) as the independent variable, stress composite scores (from 

either Questionnaire 3 or Questionnaire 2, respectively) as the dependent variable, and 

baseline stress composite scores as the covariate.  

As shown in Figure 2A, after adjusting for baseline scores, participants in the 

cooling condition (adjusted M = 5.49, SE = .14) were significantly less stressed during 

the task than participants in the control condition (adjusted M = 5.97, SE = .14), F (1, 

87) = 5.94, p = .02, partial eta squared = .06.  As expected, cooling reduced stress 

during the task.  Furthermore, this was not due to a direct effect of the fanning 

procedure, as there was no significant difference in stress scores after fanning 

between the cooling (adjusted M = 3.89, SE = .18) and control (adjusted M = 3.82, SE 

= .17) conditions, F (1, 88) = 0.09, p = .76, partial eta squared = .001 (see also Table 

1).  As expected, participants in the cooling condition were less stressed during the 

task and this was not due to a direct effect of the fanning procedure on stress levels.  

This supports the hypothesised stress-buffering role of cooling. 

 

 
Figure 2. Mean stress (A) and performance (B) during the task by condition.   

Mediation of cooling effects on stress 

We hypothesized that head fanning would buffer stress due to a reduction in 

brain temperature, as indicated by ear temperature (Hypothesis 2).  To examine this 

hypothesis, we first calculated the change in ear temperature during fanning by 

regressing post-fanning temperature on pre-fanning temperature (i.e., partialing out 

pre-fanning temperature).  The unstandardized residual produced represents the post-

fanning ear temperature controlling for the pre-fanning ear temperature (see Martens 

et al., 2010).  The correlations between this and the other main variables are reported 

in Table 2.  

 
 
 
 
 
 
 
 
 
 
 
 

A B 
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We then computed a simple mediation model to examine whether this ear 

temperature residual mediated the relationship between condition and stress during 

the task using a non-parametric approach developed by Preacher and Hayes (2004, 

2008).  In this analysis, condition was the independent variable, stress during the task 

was the dependent variable, and residualized ear temperature was the mediator.3   

Baseline stress was controlled for by entering it as a covariate.  Using the macros 

provided (Preacher & Hayes, 2008), a bootstrapping procedure based on 5000 

samples was used to estimate a 95% bias-corrected and accelerated confidence 

interval (BCa; Preacher & Selig, 2012) around the indirect effect (i.e., the effect of 

condition on stress through the mediator, ear temperature).  The indirect effect is 

considered statistically significant when this confidence interval does not include 

zero.  This method is recommended over the traditional Baron and Kenny (1986) and 

Sobel (1982) tests of mediation when dealing with small sample sizes like ours 

because these tests require large samples to achieve adequate power and to meet key 

assumptions respectively, which would increase the likelihood of Type II error in the 

present analysis (Frazier, Tix, & Barron, 2004; Hayes, 2009; MacKinnon, Lockwood, 

Hoffman, West, & Sheets, 2002).  However, for the sake of convention, we also 
                                                
3 We decided to use temperature change instead of post-fanning ear temperature as the 
mediator in this analysis to be consistent with the dependent variable, stress, which was also a 
change score (from baseline).  This decision was not clear-cut, however, so we also computed 
the mediation model using post-fanning temperature as the mediator.  The results were 
essentially the same. 
 

Table 2. Correlations between measures of ear temperature, stress, and task performance. 

Measure 1 2 3 4 5 6 7 

1. Pre-fanning temperature -  .601 **  .000  .172  .070  .133 -.067 

2. Post-fanning temperature  -  .799 **  .141  .041  .317 ** -.266 * 

3. Temperature change 
residual   -  .026 -.001  .289 ** -.283 ** 

4. Pre-fanning stress    -  .463 **  .230 * -.024 

5. Post-fanning stress     -  .341 ** -.167 

6. Post-task stress      - -.172 

7. Task performance                  
(number correct)       - 

Significant correlations are in bold.  * p < .05 (2-tailed).  ** p < .01 (2-tailed). 
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report the unstandardized regression coefficients required for testing mediation 

according to Baron and Kenny’s (1986) causal steps method and the results of the 

Sobel (1982) test (see Preacher and Hayes, 2004, for explanation of these methods). 

As shown in Figure 3, cooling reduced ear temperature (b = -0.54, p < .001) 

but this did not predict differences in stress during the task when controlling for 

condition (b = 0.71, p = .28), although this relationship was in the expected direction 

(i.e., as ear temperature reduced, so did stress).  In addition, condition was a 

significant predictor of stress when ear temperature was absent from the model (b = -

0.50, p = .01) but when the mediator was included this direct path was no longer 

significant (b = -0.12, p = .76).  Although this pattern of results is suggestive 

according to Baron and Kenny’s (1986) criteria, the fact that zero fell inside the 95% 

BCa confidence interval (-1.15 to 0.30) indicated that the mediation effect was not 

significant.  The Sobel test, which also tests the significance of the mediation effect, 

supported this (z = -1.10, p = .27).  Thus, although cooling reduced subsequent stress 

during the task, our results do not clearly support the hypothesis that this was 

mediated by a reduction in brain temperature, as indicated by ear temperature 

(Hypothesis 2).  This unexpected finding can be interpreted in two ways: either (a) 

brain temperature did mediate the effect of condition on stress but we could not 

measure it accurately, or (b) brain temperature was not involved and some other 

difference(s) between conditions was responsible for the lower stress levels of cooled 

participants during the task.  We will examine these two possibilities in the 

Discussion.   

 

 
Figure 3. Ear temperature change as a mediator of the relationship between condition 
and stress during the task.  Path coefficients are unstandardized beta weights.  The 
beta weight for the relationship between condition and stress when controlling for ear 
temperature is in parentheses.  The z-value (and associated p-value) refers to the 
Sobel test result.  Results were controlled for baseline stress.  * p < .05 and ** p < .01. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Condition 

Ear Temperature  

Stress 

‐.54**  .71 

‐.50* (‐.12) 

(z = ‐1.10, p = .27) 
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Ancillary Analyses 

Cooling effects on performance 

Although not hypothesised, we also examined the effect of fanning condition 

(cooling, control) on spatial intelligence task performance, measured as the number of 

items correct, using a one-way between-groups ANOVA.  As shown in Figure 2B, 

participants in the cooling condition (M = 6.44, SD = 3.54) got significantly more 

items correct than those in the control condition (M = 4.98, SD = 2.87), F (1, 89) = 

4.73, p = .03, eta squared = .05.  This analysis was then repeated using the number of 

items attempted on the spatial intelligence task (i.e., how quickly participants worked 

through the problems) as the dependent variable to test whether this result was simply 

due to a difference in the speed-accuracy trade-off (Fitts, 1954) between conditions.  

For example, cooling might have slowed people down so that they attempted fewer 

questions but got more right, thus increasing the number of items correct.  However, 

as shown in Table 1, there was no significant difference in the number of items 

attempted between the cooling (M = 10.72, SD = 4.77) and control conditions (M = 

10.58, SD = 3.98), F (1, 89) = .02, p = .88, eta squared = .00.  This means that the 

improved performance of participants in the cooling condition was not due to 

differences in the speed of response.  Therefore, in addition to being less stressed 

during the spatial intelligence task, participants in the cooling condition also did better 

than those in the control condition. 

Mediation of cooling effects on performance 

To examine whether the relationship between condition and task performance 

was mediated by residual ear temperature, we computed a simple mediation model as 

before.  The pattern of results was similar to the model for stress.  As shown in Figure 

4, the reduced ear temperature of participants in the cooling condition (b = -0.54, p < 

.001) again failed to predict differences in task performance when controlling for 

condition (b = -3.67 p = .09).  This relationship did however approach significance 

and was in the expected direction (i.e., as ear temperature reduced, performance 

increased).  Condition was also a significant predictor of task performance when ear 

temperature was absent from the model (b = 1.47, p = .03) but not when it was 

included  (b = -.53, p = .70).  Nevertheless, as with stress, the 95% BCa confidence 

interval included zero (-0.52 to 4.31), indicating that, despite this pattern of results 

being suggestive, the indirect effect was not statistically significant and that ear 
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temperature did not mediate the effect of cooling on task performance.  The Sobel test 

supported this (z = -1.73, p = .08).  

 

 
Figure 4. Ear temperature change as a mediator of the relationship between condition 
and task performance.  Path coefficients are unstandardized beta weights.  The beta 
weight for the relationship between condition and performance when controlling for 
ear temperature is in parentheses.  The z-value (and associated p-value) refers to the 
Sobel test result.  * p < .05 and ** p < .01. 

Testing the interrelationship between stress and performance 

 Participants in the cooling condition were less stressed and performed better 

during the spatial intelligence task.  These outcomes may have been related, as stress 

and performance are known to influence each other (e.g., Muse, Harris, & Feild, 

2003).  Thus, cooled participants may have either (a) performed better on the task 

because they were less stressed (i.e., cooling improved performance because it 

reduced stress) or (b) were less stressed because they performed better on the task 

(i.e., cooling reduced stress because it improved performance).  Alternatively, the 

beneficial effects of cooling may have been independent.  Two mediation analyses 

were conducted as before to examine these possibilities.  Baseline stress composite 

scores were entered as a covariate in these analyses.  However, the 95% BCa 

confidence intervals included zero when testing both stress (-0.09 to 0.70) and 

performance (-0.20 to 0.02) as mediators.  The reduced stress and improved 

performance of cooled participants during the task therefore appeared to be 

independent.   

Gender effects 

 We then checked for the presence of a gender effect in this study.  A series of 

2 (cooling, control) by 2 (male, female) between-groups ANCOVAs and ANOVAs 

showed a significant main effect of gender on both stress and performance, 

 
 
 
 
 
 
 
 
 
 

Condition 

Ear Temperature  

Performance 

‐.54**  ‐3.67 

1.47* (‐.53) 

(z = ‐1.73, p = .08) 
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respectively.  Men were less stressed (men = 5.16 ± 0.97; women = 5.97 ± 0.89), F (1, 

85) = 10.95, p = .001, partial eta squared = .11, and also performed better (men = 6.92 

± 3.93; women = 5.17 ± 2.85), F (1, 87) = 4.88, p = .03, partial eta squared = .05, than 

women during the task.  However, there were no significant interaction effects (all ps 

> .30) and controlling for gender did not alter the significance of the mediation 

analyses, indicating that gender did not affect any of the results reported above.   

Other moderators 

Finally, we examined whether the additional variables outlined in the Method 

section (three trait stress items and one enjoyment of spatial intelligence problems 

item) moderated the relationships between fanning condition and stress and 

performance reported above.  Because these variables were continuous, moderation 

was tested using hierarchical multiple regression.  A dummy-coded variable that 

represented fanning condition (0 = control, 1 = cooling) and the mean-centered 

moderator variable of interest were entered in the first step, and the interaction 

between the two was entered in the second step.  Mean-centered baseline stress 

composite scores were controlled for when examining stress by entering them 

separately before the other variables (Frazier et al., 2004; Tabachnick & Fidell, 2007).  

None of the interaction terms from these analyses reached significance (all ps > .10), 

indicating that these additional variables did not moderate our earlier findings. 

 

Discussion 

Summary of Results 

This study examined the novel possibility that cooling the head to reduce brain 

temperature reduces stress.  This was based on the observation that stress increases 

body and brain temperature and that this kind of relationship between psychology and 

physiology can go both ways.  After a baseline period, participants sat for 12 minutes 

with two running electric fans facing either toward (cooling condition) or away 

(control condition) from them.  They then completed a stressful spatial intelligence 

task.  Stress was assessed at baseline, after fanning, and after the task.  Temperature, 

measured using an infrared ear thermometer, was assessed at baseline and after 

fanning.  The results partially supported our hypotheses. 
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First, we hypothesised that head fanning would buffer stress responses during 

the task (Hypothesis 1).  Our results were consistent with this hypothesis.  We found 

that cooled participants were less stressed than controls during the spatial intelligence 

task, and that this was not due to differences in stress immediately after fanning.  This 

finding is unique within psychology but is consistent with evidence from the 

physiological literature supporting an association between cooling and reduced stress. 

Second, we hypothesised that head fanning would buffer stress because it 

reduced brain temperature, as indicated by ear temperature (Hypothesis 2).  Our 

results did not support the mediation model proposed by this hypothesis.  Although 

cooling reduced ear temperature and stress during the task (and these variables were 

positively correlated, as expected), stress was not significantly related to changes in 

ear temperature in the model. 

Finally, although we had no hypotheses about task performance, we also 

found that cooled participants performed better on the spatial intelligence task than 

controls.  This finding is consistent with previous research on the association between 

thermal stressors and cognitive performance, which has shown that slight cold can 

enhance performance (Hancock, Ross, & Szalma, 2007).  However, as with stress, our 

results did not support the mediation model that ear temperature mediated this effect.  

Importantly, the improved performance of cooled participants in our study did not 

account for their reduced stress during the task, or vice versa. 

Key Limitations and Future Research Directions 

Although lower stress levels during the task in the cooling condition suggest a 

role of temperature in this effect, changes in temperature did not clearly mediate the 

relationship between condition and stress.  This challenges the theoretical basis for 

our experiment: that reduced brain temperatures could buffer stress.  As mentioned in 

the Results, this unexpected finding can be interpreted in either of two ways.  First, 

brain temperature may have mediated the effect of condition on stress but we could 

not show it.  Alternatively, brain temperature may not have been involved and some 

other difference(s) between conditions meant that cooled participants were less 

stressed during the task.  We will examine these two possibilities below and discuss 

the implications for future research. 

The accurate measurement of human brain temperature is a complex matter 

that is complicated further when dealing with healthy populations (Hlatky & 

Robertson, 2005).  We were unable to measure brain temperature directly in the 
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present sample because this requires invasive medical procedures.  Instead, we 

measured tympanic temperature with an infrared ear thermometer to estimate the 

temperature of the brain.  This method was simple, inexpensive and, importantly, 

non-invasive, making it appropriate for use with the healthy volunteers in our sample.  

However, it is not perfect and issues with its validity and reliability may have 

obscured the causal relationship between brain temperature and stress that we hoped 

to demonstrate. 

First, the validity of tympanic membrane temperature as an indicator of brain 

temperature is debated (e.g., Brengelmann, 1993; Cabanac, 1993).  In support of its 

use, Mariak and colleagues (Mariak, Lewko, Luczaj, Polocki, & White, 1994; Mariak, 

White, Lewko, Lyson, & Piekarski, 1999) and Schuhmann et al. (1999) found that 

tympanic temperature measured using thermocouples placed on the tympanic 

membrane closely followed changes in intracranial temperature measured directly in 

anaesthetized patients during neurosurgery.  Replicating this, Mariak et al. (2003) 

further showed that tympanic temperature was positively and highly correlated to 

changes in intracranial temperature in response to face fanning in non-anaesthetized 

patients after neurosurgery.  Although comparison of tympanic and intracranial 

temperatures in healthy volunteers is precluded by the invasive nature of direct 

intracranial temperature measurement, Mariak et al. (2003) argue that this correlation 

would be stronger in healthy people who lack intracranial pathologies that can impede 

heat transfer within the brain.   

In contrast, Stone, Young, and Smith (1995) and Shiraki et al. (1988) failed to 

find a relationship between tympanic temperature and intracranial temperature during 

rapid temperature change as part of neurosurgery and in response to face fanning in a 

case study of a neurosurgical patient, respectively.  Part of the explanation for these 

contradictory findings is likely attributable to the existence of temperature gradients 

within the brain (Mariak, 2002).  Thus, tympanic temperature may indicate the 

temperature of one part of the brain but not another, making comparisons between 

studies that use different intracranial sites of measurement difficult.  Consistent with 

this, Mariak et al. (1999) found that tympanic temperature reflected intracranial 

temperature in the subdural space but not between the frontal lobes and cribriform 

plate.  Subsequently, these authors proposed that tympanic temperature might reflect 

global brain temperatures but be insensitive to local temperature differences within 

the brain, though the issue is by no means settled (e.g., Simon, 2007). 
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Second, there are recognised issues with the reliability of measuring tympanic 

temperature using an infrared ear thermometer.  In a study comparing the 

performance of four different infrared ear thermometers to that of a thermocouple 

placed directly on the tympanic membrane of the opposite ear, Imamura et al. (1998) 

found that, despite being accurate on average, there was too much variation in 

measurements (SD = 0.8°C) to recommend them for clinical use.  A major reason for 

this unreliability is improper placement of the infrared ear thermometer, resulting in a 

temperature measurement of part of the ear canal and not the tympanic membrane 

(Childs, Harrison, & Hodkinson, 1999; McCarthy & Heusch, 2006).  Because of this, 

Heusch, Suresh, and McCarthy (2006) recommend taking three temperature 

measurements in each ear and using the highest of these, as the tympanic membrane is 

hotter than the surrounding ear tissue (Helton, 2010).  Cerumen (ear wax) in the ear 

canal can also produce inaccuracies.  We used a new disposable probe cover for each 

temperature measurement to reduce the impact of cerumen but only one measurement 

was taken in each ear. 

A final issue in the present study is that surface cooling of the ear in response 

to fanning may have contaminated ear temperature measurements in the cooling 

condition.  The cooler temperatures of these participants might therefore be an 

artefact of the cooling procedure and not indicative of brain temperature.  Although 

we cannot discount this possibility when using an infrared ear thermometer, 

especially if it was not positioned accurately, it is reassuring to note that Mariak et al. 

(2003) have shown that the temperature of the tympanic membrane is unaffected by 

head fanning when it is measured directly.  In this study, fanning did not just produce 

a reduction in tympanic temperature, as would be expected if cooling of the ear 

contaminated this measure.  Instead, tympanic temperature reliably reflected brain 

temperature, regardless of whether it increased, decreased, or stayed the same (head 

fanning did not uniformly reduce brain temperature in this study because Mariak et al. 

studied neurosurgical patients who had a range of different temperature profiles and 

pathologies that influenced this response).  This suggests that the temperature of the 

tympanic membrane, at least, is unaffected by surface cooling of the ear in response 

to fanning. 

 Thus, although infrared ear thermometers seem like a simple and inexpensive 

method of estimating brain temperature in healthy populations (like our sample), the 

issues with their validity and reliability leave substantial room for measurement error. 
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Measurement error like this can cause the effect of the mediator on the outcome 

variable to be underestimated in a mediation model, limiting the ability to 

demonstrate mediation (Frazier et al., 2004).  The path coefficients in our mediation 

models (see Figures 3 and 4) were consistent with this, as the path between the 

mediator (ear temperature) and the outcome variable (stress or performance) was not 

significant in either model.  Thus, it is possible that a reduction in brain temperature 

did mediate the lower stress levels of cooled participants in the present study, as 

hypothesised, but that our data could not show this.   

The accurate measurement of brain temperature in healthy populations is 

therefore a major issue and one that needs to be addressed in any future research.  

Ideally, more direct methods of measuring brain temperature should be used.  

Promising non-invasive options include magnetic resonance spectroscopy, zero heat 

flow thermometry, and multifrequency microwave radiometry (Harris & Andrews, 

2005).  Of these, magnetic resonance spectroscopy, which uses magnetic resonance 

imaging techniques to assess temperature, is the most promising, having been used 

successfully to non-invasively measure brain temperature in healthy volunteers in a 

number of studies  (e.g., Childs, Hiltunen, Vldyasagar, & Kauppinen, 2007; Harris et 

al., 2008; Shiloh et al., 2008).  Purpose-built devices are also emerging (e.g., 

Children’s Hospital of The King’s Daughters, 2011; Dittmar et al., 2006).  These 

methods were beyond the budget of this exploratory study.  However, based on our 

results, we believe that a more thorough investigation of the role of brain temperature 

in the relationship between cooling and stress is warranted. 

However, if the failure to demonstrate mediation was not due to measurement 

error, we must consider the possibility that brain temperature was simply not involved 

in the relationship between cooling and stress in this study.  Consistent with this, it 

has been argued that fanning-induced brain cooling only occurs when people are in a 

state of hyperthermia, and not when temperature is normal, as in our sample (Mariak 

et al., 2003).4  If this were the case, some other uncontrolled variable(s) that differed 

between conditions must account for the reduced stress of cooled participants.  Two 

such variables may be white noise and experimenter bias.   

An obvious difference between conditions was the magnitude of white noise 

generated by the fans, which would have been louder and more intense for 

participants in the cooling condition because the fans faced them directly (whereas the 

                                                
4 However, Harris et al. (2008) have shown that this is possible in normothermic people. 
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fans faced away in the control condition).  Previous research on the relationship 

between white noise and stress is mixed, but there is evidence for a link between the 

two, with some studies finding that white noise increases stress (Liu, Iwanaga, 

Shimomura, & Katsuura, 2007; Miki, Kawamorita, Araga, Musha, & Sudo, 1998), 

decreases stress (Lopez, Bracha, & Bracha, 2002), or has no effect (Hartikainen-sorri, 

Kirkinen, Sorri, Anttonen, & Tuimala, 1991).  It is therefore possible that the 

observed differences in stress during the task was due to differences in white noise 

magnitude between conditions, especially because participants may have been 

particularly aware of the white noise as it was part of the cover story for the 

experiment (i.e., participants believed that we were studying how white noise affected 

physiology and psychology).  To investigate this, we performed an additional analysis 

examining participants’ responses to the Questionnaire 4 item, “How did you find the 

noise of the fans?” (1 = unpleasant, 9 = pleasant) using a one-way between groups 

ANOVA with condition (cooling, non-cooling) as the independent variable.  If 

differences in white noise magnitude were responsible for the different stress levels 

then we would expect this to be reflected in ratings on this item.  However, there was 

no significant difference between conditions on ratings of fan noise (cooling = 5.65 ± 

1.90; control = 5.67 ± 1.66), F (1, 89) = 0.002, p = .97, eta squared = .00, suggesting 

that participants’ perception of white noise was similar between conditions.  

Furthermore, as reported in the Results, there was no difference in stress levels 

immediately after fanning between conditions, indicating that the differences in white 

noise magnitude between conditions had no direct effect on stress levels.  It is 

therefore unlikely that white noise can account for the differences in stress observed 

between conditions.   

A less obvious but potentially more relevant difference between conditions 

may have been in the behaviour of the experimenter, due to experimenter bias and, in 

particular, expectancy effects (see Rosenthal, 2002).  Expectancy effects occur when 

an experimenter unintentionally treats participants differently in order to elicit 

responses that confirm his or her hypothesised expectations, and are especially likely 

when the experimenter is not blind to conditions, as in the present study.  Thus, 

because the experimenter knew which condition the participants were in, he could 

have, for example, been friendlier toward cooling condition participants during the 

spatial intelligence task to minimise the stressfulness of this situation and confirm the 

hypothesis that participants in the cooling condition would be less stressed during the 
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task.  Consistent with this possibility, “warmer” clinicians have been shown to elicit 

better performance on intelligence tests than clinicians who are “cooler”, more 

threatening or strange (Rosenthal, 1969).  Although clearly important, the 

experimenter in our study was not blind to conditions in order to keep the already 

complicated experimental procedure as simple as possible.   

In summary, on the basis of this study alone, we are unable to determine 

whether the reduced stress of cooled participants was due to changes in brain 

temperature, as hypothesised, or due to some uncontrolled third variable(s), of which, 

experimenter bias is most plausible.  To address these issues, future research should 

seek to reproduce the relationship between cooling and stress observed in this study 

using a double-blind design and, ideally, an alternative cooling method that does not 

produce white noise.  Such alternatives include ice packs and cooling caps or helmets 

that are used to cool the surface of the head using conduction (as opposed to 

convection with fans; for a review, see Harris & Andrews, 2005).  These methods 

have been used successfully to cool superficial regions of the brain in adult humans 

(Corbett & Laptook, 1998; Mellergård, 1992).  As discussed above, the accurate 

measurement of brain temperature in healthy populations should also be emphasised 

in any future research.   

Additional Limitations 

This study has some obvious limitations beyond those discussed above.  First, 

the majority (71%) of participants in our sample were female.  Because males and 

females respond to stress differently (Kajantie & Philips, 2006; Taylor et al., 2000; 

Wang et al., 2007) and have different tympanic temperature profiles (Helton & Carter, 

2011; Heusch et al., 2006) our results may not represent male responses to cooling 

accurately because the actual male sample size was small (n = 26).  Reflecting this, 

the difference in stress during the task between conditions did not reach significance 

when examining males alone (p = .07).  A larger proportion of males is necessary to 

examine possible sex differences in the stress-buffering effect of cooling.  

Unfortunately, time and resource constraints prevented us from achieving this in the 

present study.  It also remains to be seen whether people from different age groups, 

professions, and cultures benefit from cooling in a similar way.   

A second and related limitation is the use of self-report data to measure stress.  

Although self-report methods are useful for investigating subjective phenomena such 

as perceived stress, there are well-recognised issues with data obtained this way.  The 
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main concerns include problems with bias, socially desirable responding, and the 

reliability and validity of scales (Barker, Pistrang, & Elliot, 2002; Razavi, 2001).  For 

example, women respond more extremely than men on rating scales like those used in 

the present study to measure stress (Crandall, 1973; Hamilton, 1968; Newcomb, 

Huba, & Bentler, 1986), contributing further to the issues of generalizability outlined 

above.  Given these limitations of self-report data, it would be useful to supplement 

ratings of perceived stress with measures such as heart rate, which indicates 

sympathetic nervous system arousal during stress (Kajantie & Philips, 2006).  

Similarly, it was perhaps unwise to create our own stress questionnaire when 

established measures that have well-documented validity and reliability are available.  

These include the Dundee Stress State Questionnaire (DSSQ; Matthews, Joyner, 

Gilliland, Huggins, & Falconer, 1999; Matthews et al., 2002), the related Short State 

Stress Questionnaire (SSSQ; Helton, 2004; Helton, Fields, & Thoreson, 2005), and 

the Perceived Stress Scale (PSS; Cohen, Kamarck, & Mermelstein, 1983). 

Conclusion and Implications 

 In summary, the conclusions that can be made on the basis of this study alone 

are limited.  Additional research is required to replicate the stress-reducing effect of 

cooling observed here and to identify the causal mechanisms involved, paying 

particular attention to the accurate measurement of brain temperature.  It also remains 

to be seen whether a similar effect occurs with different methods of cooling, different 

kinds of stress, different settings and different populations.  Pending further research, 

then, reducing the temperature of the brain may be a simple way to reduce stress, with 

implications for its management. 

Most obviously, cooling could help to reduce stress in performance-orientated 

high-stress situations like the spatial intelligence task in the present study.  Students 

sitting exams, air traffic controllers at busy airports, and neurosurgeons operating to 

measure brain temperature directly might all benefit from cooling beforehand.  This 

could be as simple as installing fans or air conditioning units aimed at head height in 

these workplaces.  The improved task performance of cooled participants in our study 

suggests that cooling may also have additional benefits in these situations. 

Alternatively, cooling may be useful as a general stress-management 

technique akin to progressive muscle relaxation (Jacobson, 1938), mindfulness 

meditation (Jain et al., 2007), or the relaxation response (Benson, 1975).  For 

example, people who meditate for 10-20 minutes each day report feeling less stressed 
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and this is reflected in stress hormones levels (Barlow & Durand, 2012; Benson, 

1975, 1984).  In the present study, 12 minutes of head fanning buffered stress in a 

stressful situation.  Although it is unclear how long this effect lasts, it is possible that, 

used daily, cooling could reduce stress in a similar way.   

 Finally, our findings could have implications for the current understanding of 

the interrelationship between temperature and stress.  Whereas stress is known to 

influence the temperature of the body and the brain via sympathetic nervous system 

arousal (Vinkers et al., 2008), the present study suggests that changes in temperature 

may also influence stress.  We examined the therapeutic side of this and found some 

evidence that cooling reduces stress.  The opposite, that increasing temperature could 

increase stress, may be worth investigating as well.  Similarly, although we focused 

on brain temperature, changes in body temperature may also affect stress.  Based on 

the results of this study, we believe that further research on this and other related 

questions in the relationship between temperature and stress is warranted.  
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Appendix A – Information Sheet and Consent Form 
 
 

 
 
 

INFORMATION SHEET 
 

PSYCHOLOGICAL AND PHYSIOLOGICAL EFFECTS OF WHITE NOISE 
University of Canterbury, 
Department of Psychology 

 
 
The experimenter and his colleagues are researching the effects of white noise on a 
variety of psychological and physiological measures. If you agree to participate, you 
will be asked to: (1) undergo a white noise exposure period (sitting between two 
running fans), (2) complete a short cognitive task, (3) fill out questionnaires about the 
task and other related psychological issues, and (4) permit the recording of 
physiological data, including measurement of ear temperature using an ear 
thermometer which will require the experimenter to come into close contact with your 
head. The procedure won’t exceed one hour. You have the right to discontinue the 
experiment at any time, penalty-free, and still receive compensation for your 
participation.  
 
Your privacy is completely assured. Your name will not be linked to any of the data 
that you generate in this study. To achieve this, the consent form with your name on it 
will be stored separately from the data that you provide in the course of the procedure. 
Furthermore, this data will only be accessed by the research team: Andrew Knox, 
Andy Martens and Deak Helton. Please note that an MSc (the finished product of this 
research) is a public document accessible via the UC library database.  
 
If you have any questions or concerns regarding this study, please contact Andrew 
Knox at amk76@uclive.ac.nz or Andy Martens at andy.martens@canterbury.ac.nz. 
 
This project has been reviewed and approved by the University of Canterbury Human 
Ethics Committee.  
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CONSENT FORM 
 

PSYCHOLOGICAL AND PHYSIOLOGICAL EFFECTS OF WHITE NOISE 
University of Canterbury, 
Department of Psychology 

 
 
I have read and understood the information sheet outlining the above-named research. 
By signing this form I explicitly consent to participate in the procedure with the 
knowledge that my data will be used in an analysis that may lead to a publication in a 
psychology journal. I understand that my privacy will be preserved – in other words, 
that my name will not be associated with any of my responses during this study. 
 
I am aware that I may withdraw from the procedure at any time, free of penalty, and 
have my data disregarded and destroyed. I understand that if I do so, I will still 
receive class credit or compensation for the study. 
 
Name (please print): ___________________________________________________ 
 
Signature: ______________________________ 
 
Date: __________________________________ 
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Appendix B – Questionnaires 
I. Stress and Mood Assessment 

 
Stress and changes in mood are natural responses to everyday events that are 
experienced by everybody. Moreover, research shows that stress levels and mood 
change throughout the day, for a variety of reasons. Because of this, we will be asking 
you to rate your stress level and mood at different times over the course of the study. 
Please read the following questions carefully and respond by circling the number or 
option that most accurately represents how you feel. Please answer as honestly as 
possible. 
 
1) Over the course of the past two weeks, how stressed have you been feeling? 

2) Over the course of the past two weeks, how quickly have you been able to relax 
after stressful experiences? 

3) Do you tend to become stressed easily? 

4) How would you rate your stress level right now?  

5) How tolerable is your feeling of stress right now? 

6) Right now, is your stress level lower or higher than it usually is? 

7) How relaxed do you feel right now? 

8) Right now, does it seem like the thoughts passing through your mind are moving 
slower or faster than they usually move? 

9) Are you in a good or bad mood right now? 

10) How strong is this emotion? 

1 2 3 4 5 6 7 8 9 
 Not stressed at all Very stressed Moderately stressed 

1 2 3 4 5 6 7 8 9 
 Not tolerable at all Very tolerable Moderately tolerable 

1 2 3 4 5 6 7 8 9 
 Very relaxed Very stressed Neutral 

1 2 3 4 5 6 7 8 9 
 Very good mood Very bad mood Neutral 

1 2 3 4 5 6 7 8 9 
 Not strong at all Very strong Moderate 

1 2 3 4 5 6 7 8 9 
 Not relaxed at all Very relaxed Moderately relaxed 

1 2 3 4 5 6 7 8 9 
 Not at all quickly Very quickly Moderately quickly 

1 2 3 4 5 6 7 8 9 
 Not easily at all Very easily Moderately 

1 2 3 4 5 6 7 8 9 
 Slower than usual Faster than usual Neutral 

1 2 3 4 5 6 7 8 9 
 Lower than usual Higher than usual Neutral 
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II. Spatial Intelligence Question Assessment 
 

Below is an example of a spatial intelligence question. We are interested in assessing 
whether this kind of problem is one you find enjoyable or not. Please look it over and 
answer the question below. 
 
1) How much do you enjoy spatial intelligence problems like the one below? 

 

  

 

1 2 3 4 5 6 7 8 9 
 Not at all Very much Moderately 
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I. Stress and Mood Assessment 2 
 

For each question below, please circle the number or option that most accurately 
represents how you feel. Please answer as honestly as possible. 
 
1) How would you rate your stress level right now?  

2) How tolerable is your feeling of stress right now? 

3) Right now, is your stress level lower or higher than it usually is? 

4) How relaxed do you feel right now? 

5) Right now, does it seem like the thoughts passing through your mind are moving 
slower or faster than they usually move? 

6) Are you in a good or bad mood right now? 

7) How strong is this emotion? 

 
 
  

1 2 3 4 5 6 7 8 9 
 Not stressed at all Very stressed Moderately stressed 

1 2 3 4 5 6 7 8 9 
 Not tolerable at all Very tolerable Moderately tolerable 

1 2 3 4 5 6 7 8 9 
 Very good mood Very bad mood Neutral 

1 2 3 4 5 6 7 8 9 
 Not strong at all Very strong Moderate 

1 2 3 4 5 6 7 8 9 
 Not relaxed at all Very relaxed Moderately relaxed 

1 2 3 4 5 6 7 8 9 
 Slower than usual Faster than usual Neutral 

1 2 3 4 5 6 7 8 9 
 Lower than usual Higher than usual Neutral 
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I. Stress and Mood Assessment 3 
 

The following questions ask about your experience during the spatial intelligence 
task. Therefore, for each question below, please circle the number or option that most 
accurately represents how you felt during the spatial intelligence task. Please answer 
as honestly as possible. 
 
1) How would you rate your stress level during the spatial intelligence task?  

2) How tolerable was your feeling of stress during the spatial intelligence task?  

3) During the spatial intelligence task, was your stress level lower or higher than it 
usually is? 

4) How relaxed did you feel during the spatial intelligence task? 

5) During the spatial intelligence task, did it seem like the thoughts passing through 
your mind were moving slower or faster than they usually move? 

6) Were you in a good or bad mood during the spatial intelligence task?  

7) How strong was this emotion? 

8) How much did you enjoy the spatial intelligence task?  

  

1 2 3 4 5 6 7 8 9 
 Not stressed at all Very stressed Moderately stressed 

1 2 3 4 5 6 7 8 9 
 Not tolerable at all Very tolerable Moderately tolerable 

1 2 3 4 5 6 7 8 9 
 Very good mood Very bad mood Neutral 

1 2 3 4 5 6 7 8 9 
 Not strong at all Very strong Moderate 

1 2 3 4 5 6 7 8 9 
 Not relaxed at all Very relaxed Moderately relaxed 

1 2 3 4 5 6 7 8 9 
 Not at all Very much Moderately 

1 2 3 4 5 6 7 8 9 
 Slower than usual Faster than usual Neutral 

1 2 3 4 5 6 7 8 9 
 Lower than usual Higher than usual Neutral 
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I. General Characteristics Questionnaire 
 

1) Gender:   M / F  2) Age: ________      3) Height: _____ (cm) 
 
4) At approximately what time did this session begin? _____________________ 

 
5) What is your first/native language? _______________________  

If your first/native language is not English, please specify how long you have 
spoken English for: _____________________ 

 
6) Have you had a cold, flu or other similar illness in the past week?  Yes  /  No 

If yes, please specify what and whether you are still experiencing symptoms: 
_______________________________________________________________ 
_______________________________________________________________ 

 
7) How many times do you exercise aerobically (e.g. running, swimming, rugby… 

any exercise that gets your heart rate up) in an average week?  
 
 
8) On average, when you exercise aerobically, how long do you exercise for (in 

minutes)? ________________________ 
 
9) Did you drink caffeine today (e.g. coffee, energy drinks)? (circle one)  Yes  /  No 

If Yes, how long ago did you finish the drink? _________________ 
 

10) Did you drink alcohol today? (circle one)  Yes  /  No 
If Yes, how long ago did you finish the alcohol? _________________ 

 
11) Have you had panadol, nurofen or aspirin today? (circle one)  Yes  /  No 

If Yes, how long ago did you take the drug? _________________ 
 

12) How did you find the noise of the fans? 

13) How did you find the airflow from the fans? 

14) Did you shiver at all while the fans were on?   

Yes   No 

15) Did you mainly breathe through your mouth or nose while the fans were on? 

Mouth   Nose 

16) Finally, briefly describe what you thought about during the 12-minute white noise 
exposure period. 

_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________ 
 

1 2 3 4 5 6 7 8 9 
 Unpleasant Pleasant Neutral 

1 2 3 4 5 6 7 8 9 
 Unpleasant Pleasant Neutral 

0 1 2 3 4 5 6 7 8+ 
 


