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ABSTRACT 

Explosive volcanic eruptions frequently expel ballistic projectiles, producing a significant 

proximal hazard to people, buildings, infrastructure and the environment from their high 

kinetic and thermal energies. Ballistic hazard assessments are undertaken as a risk 

mitigation measure, to determine probabilities of eruptions occurring that may produce 

ballistics, identify areas and elements likely to be impacted by ballistics, and the potential 

vulnerabilities of elements to ballistics.  

The 6 August, 2012 hydrothermal eruption of Upper Te Maari Crater, Tongariro, New 

Zealand ejected blocks over a 6 km2 area, impacting ~2.6 km of the Tongariro Alpine 

Crossing (TAC), a walking track hiked by ~80,000 people a year, and damaging an overnight 

hut along the track. In this thesis ballistic hazard and risk from Upper Te Maari Crater are 

assessed through a review of its eruptive history, field and orthophoto mapping of the 6 

August ballistic impact distribution, forward modelling and analysis of possible future 

eruption scenarios using a calibrated 3D ballistic trajectory model, and analysis of the 

vulnerability of hikers along the impacted Tongariro Alpine Crossing.  

Orthophoto mapping of the 6 August ballistic impact crater distribution revealed 3,587 

impact craters with a mean diameter of 2.4 m. However, field mapping of accessible regions 

indicated an average of at least four times more observable impact craters and a smaller 

mean crater diameter of 1.2 m. By combining the orthophoto and ground-truthed impact 

frequency and size distribution data, it is estimated that approximately 13,200 ballistic 

projectiles were generated during the eruption.  

Ballistic impact distribution was used to calibrate a 3D ballistic trajectory model for the 6 

August eruption. The 3D ballistic trajectory model and a series of inverse models were used 

to constrain the eruption directions, angles and velocities. When combined with eruption 

observations and geophysical observations and compared to the mapped distribution, the 

model indicated that the blocks were ejected in five variously directed eruption pulses, in 

total lasting 19 seconds.  The model successfully reproduced the mapped impact distribution 

using a mean initial particle velocity of 200 m/s with an accompanying average gas flow 

velocity over a 400 m radius of 150 m/s.  
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Assessment of the vulnerability of hikers to ballistics from the August eruption along the TAC 

utilised the modelled spatial density of impacts and an assumption that an average ballistic 

impact will cause serious injury or death (casualty) over an 8 m2 area. It is estimated that the 

probability of casualty ranged from 1% to 16% along the affected track (assuming an 

eruption during the time of exposure). Future ballistic hazard and vulnerability along the TAC 

are also assessed through application of the calibrated model. A magnitude larger eruption 

(than the 6 August) in which 10x more particles were ejected, doubled the affected length of 

the TAC and illustrated that the probability of casualty could reach 100% in localised areas of 

the track. In contrast, ballistics ejected from a smaller eruption did not reach the track as 

was the case with the 21 November 2012 eruption. The calibrated ballistic model can 

therefore be used to improve management of ballistic hazards both at Tongariro and also, 

once recalibrated, to other volcanoes worldwide.  
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CHAPTER 1: INTRODUCTION 

1.1 CONTEXT OF STUDY 

Volcanic eruptions produce a number of hazards that can impact society. Of these, volcanic 

ballistic projectiles, frequently ejected from explosive eruptions, represent a significant 

proximal hazard to people, buildings, infrastructure and the surrounding environment. Their 

high impact and sometimes thermal energies can result in death or serious injury (Blong 

1984; Baxter and Gresham 1997), building damage (Pistolesi et al. 2008; Wardman et al. 

2012; Jenkins et al. 2014), ignition of both buildings and the environment they impact (Zobin 

et al. 2002; Alatorre-Ibargüengoitia et al. 2006; Wardman et al. 2012), and damage to the 

surrounding environment. The impacts of volcanic hazards such as ballistic projectiles can 

be reduced through volcanic risk management including volcanic hazard and risk 

assessments, volcanic surveillance and risk mitigation strategies such as land use planning, 

eruption warnings and volcanic engineering. 

 

 Hazard assessments are undertaken to determine the likelihoods of events occurring that 

may produce hazards and the areas that may be impacted by these hazards (Thouret et al. 

2000; Alatorre-Ibargüengoitia et al. 2006; 2012). The likelihood of consequences (e.g. death 

or serious injury) from exposure to the hazard are determined in risk assessments (Blong 

1996). For ballistic risk assessments this may involves a review of the volcanic eruption 

history to determine past eruption magnitudes and frequencies to inform probabilities of 

future eruptions; determining the nature and extent of past ballistic distributions through 

field mapping or remote sensing, and possible future distributions through ballistic 

trajectory modelling; and identifying assets in the area that may be impacted, such as 

people and buildings, and their vulnerability to the hazard (e.g. likelihood of death or 

damage) (Nadim 2013).  

 

Ballistic hazard and risk assessments are used as the basis for risk management strategies, 

such as implementing evacuation and exclusion zones, designing engineering solutions for 

the built environment, and land use planning (Sparks et al. 2013).  However, creating a 

complete assessment can be challenging, requiring a large amount of information which can 
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be challenging to collect. For example, field mapping is time consuming, labour intensive 

and can be hazardous due to the risk of further eruption; subsequent ash deposition can 

obscure impact craters; and remote mapping may be limited by image resolution. As a 

result, those managing the risk of ballistic hazards at active volcanoes have tended to use a 

precautionary hazard assessment approach, where a concentric hazard zone is used to 

account for uncertainty in directionality of eruption pulses. The radius of the zone is 

typically identified by the maximum travel distance of a ballistic for various magnitude 

eruption scenarios, informed by field surveys or ballistic trajectory models (Alatorre-

Ibargüengoitia et al. 2006; 2012; Jolly and Taig 2012). However, this can lead to large areas 

being classified potentially hazardous which can compromise social and economic activities 

within those areas, especially if risk management treatments are applied. Balancing the risk 

to life against the impact of risk management treatments is a substantial issue for 

contemporary volcanic risk management (Sparks et al. 2013). Therefore there is increasing 

need and emphasis placed on producing quantifiable, transparent and customised ballistic 

hazard and risk assessments, especially in situations where social and economic activities 

require access to hazardous zones. 

A recent example of this was the 6 August, 2012 hydrothermal eruption at the Upper Te 

Maari Crater, Tongariro Volcano, New Zealand. The eruption produced a range of volcanic 

hazards including ashfall (as far away as Napier, ~110 km from the vents), at least three cold 

surges, a debris avalanche and ballistics (Lube et al. 2014; Pardo et al. 2014; Procter et al. in 

press). Ballistics and surges were considered to be the main threats to life produced in the 

eruption, with ballistics impacting a ~6 km2 area which included 2.6 km of the Tongariro 

Alpine Crossing (TAC), hiked by ~80,000 people each year, and Ketetahi Hut. It was the first 

eruption to occur from Upper Te Maari since 1899 (Scott and Potter 2014) and was followed 

by a smaller eruption on 21 November, 2012. This eruption is thought to have ejected 

ballistics, but were not ejected far enough to pose a risk to the TAC. There was concern that 

these events might have been the beginning of a prolonged episode, similar to the 1896 - 97 

eruption episode, which would create an ongoing ballistic and surge hazard to the TAC (see 

Jolly and Taig 2013). Ballistic hazard and risk assessments were completed prior to re-

opening of the TAC to the public, however, due to the risk of further eruption and the need 

for timely assessments, these were based on very preliminary field mapping data with 
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impact densities from a single area of interest (Ketetahi Hut) used to estimate hiker 

vulnerability for the entire affected track (from the August eruption; Jolly and Taig 2012; 

2013). 

This study aims to produce a detailed assessment of ballistic hazard and risk from Upper Te 

Maari Crater. This will be achieved through: 

1) A review of mapped ballistic distributions at other volcanoes around the world. 

2) A review of the eruptive history of Upper Te Maari and its eruptive styles and 

frequencies. 

3) Field and orthophoto mapping of the 6 August, 2012 ballistic impact crater 

distribution. 

4) Calibration of the Tsunematsu et al. (2013) ballistic trajectory model using the 6 

August ballistic impact distribution, and refinement of eruption parameters through 

inverse modelling. 

5) Forward modelling of three possible future eruption scenarios using the calibrated 

Tsunematsu model. 

6) Vulnerability analyses along the Tongariro Alpine Crossing, incorporating variations 

in ballistic impact density along the impacted track. 

1.2 RISK MANAGEMENT FRAMEWORK 

The risk management framework, produced by the International Standards Organisation 

(ISO), was used as a conceptual framing of this thesis. This framework provides different 

research organisations and research groups with a common guideline to risk reduction 

through a process of risk identification, analysis, evaluation and treatment (Figure 1; ISO 

2009). Following the Upper Te Maari eruptions, GNS Science utilised this framework to 

produce risk assessments, as such, the framework is outlined to show how this study 

contributes to managing the hazard and vulnerability associated with volcanic ballistic 

projectiles ejected from Upper Te Maari Crater, Tongariro (Jolly and Taig 2012; 2013). 
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Figure 1.  ISO 31 000 risk management framework (ISO 2009). 

 

Risk is a product of hazard and vulnerability and is expressed in the equation: 

 

Hazard x Vulnerability = Risk 

 

Hazard is defined as a natural event (such as a volcanic eruption) that has the potential to 

cause harm or loss of life and damage to buildings, infrastructure and the environment. The 

probability of occurrence of the event within a specific time period and a given area, and the 

magnitude of the event are also incorporated (Marker 2013; Nadim 2013). The term 

vulnerability refers to the degree to which a person, buildings or infrastructure is likely to 

experience harm, loss or damage from exposure to the hazard (Cutter 2013). Risk refers to 

the probability that harm, loss or damage will occur as a result of the hazard. 

 

The first step in the risk management process is to establish the context, including the scope 

and objectives, of the study. This is followed by risk identification in which all potential 



 
 

5 
 

volcanic hazards within a specific area are identified and their impacts characterised. This 

step also includes identifying all elements (i.e. people, infrastructure, buildings) that are at 

risk from the hazard and how they relate spatially and temporally with the hazard, and their 

potential vulnerabilities (Crozier and Glade 2005). In volcanic risk assessment, hazard maps 

are a primary communication tool used to portray this information to decision makers, the 

public and other scientists (Sparks et al. 2013; Appendix A). Hazards are identified through 

review of previous events that have occurred in the area of interest from geologic and 

literature investigations (Tilling 1989; Blong 1996; Sparks et al. 2013). Essentially, this step 

identifies all factors that require further investigation in the risk analysis step (Crozier and 

Glade 2005). In this study, based on the 2012 Te Maari eruptions, ballistics were identified 

as a considerable ongoing hazard and hikers along the Tongariro Alpine Crossing as 

elements that may be impacted, requiring further analysis. 

 

The risk analysis and evaluation steps focus on developing an understanding of the 

identified risks, in order for them to be compared and prioritised (ISO 2009). This involves 

assessments of the frequency and magnitude of the volcanic hazards and the vulnerabilities 

of the exposed elements. The assessments can be deterministic, probabilistic or a 

combination of both. Deterministic assessments use hypothetical eruption scenarios based 

on previous eruption data (typically the maximum credible events) to determine the impact 

of volcanic hazards on the elements. However, several limitations are evident including: 

uncertainty of risks due to subjective judgements by experts; scenarios can only be assessed 

one at a time; and the likelihood of the risks are not quantified (Kaye 2008). For this reason 

probabilistic assessments are increasingly desired. Probabilistic assessments are used to 

determine the probability of a hazard occurring and its associated damage from a range of 

scenarios (varying in magnitude and frequency), with limited subjective input. The degree of 

damage in each scenario can be determined by incorporating fragility functions into the 

probabilistic risk assessment. Vulnerability or fragility functions are probabilistic functions 

which relate the amount of damage to an element, or vulnerability, to hazard intensity (e.g. 

ashfall thickness, ballistic impact density). They are helpful during risk assessment as it can 

be seen under which conditions damage or disruption can occur and where mitigation 

measures may help reduce damage and risk. This information can also be presented in a 

hazards map to illustrate levels of hazard and risk around a volcano. A combination of 
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deterministic and probabilistic methods are used in this study to assess ballistic hazard and 

vulnerability from Upper Te Maari. Eruption frequency and magnitude are determined from 

the eruptive history of Upper Te Maari and a frequency-magnitude split used to estimate 

probabilities of occurrence for three eruption sizes (probabilistic). These scenarios are then 

modelled using a 3D ballistic trajectory model in order to analyse and compare hazard and 

vulnerability in possible future scenarios (semi-quantitative deterministic). 

 

Risk treatment, the final step in the risk management framework, is aimed at reducing the 

hazard and/or vulnerability of the elements within the affected area. Reduction of volcanic 

hazards in most cases is difficult and sometimes impossible as they are natural events that 

are not easily controlled (Blong 1996). Thus, it is more beneficial to focus on reducing the 

vulnerability rather than the hazard. Vulnerability can be reduced through: implementation 

of various mitigation strategies/actions/techniques developed through the integration of 

laboratory and field analysis; volcanic surveillance that may indicate volcanic unrest, leading 

to closures and evacuations; and education and communication with the public about the 

volcanic hazards and risks they may face and how they can reduce their personal 

vulnerability (Blong 1996; Tilling 2008). Vulnerability reduction at Upper Te Maari is 

ongoing. The hazard maps and analysis initiated in this thesis are presented to facilitate and 

promote vulnerability reduction at Upper Te Maari and other volcanoes worldwide. 

 

1.3 OUTLINES OF THESIS STRUCTURE/RESEARCH METHODOLOGY  

Chapter 1 provides an introduction to ballistic hazard, hazard and risk assessments and an 

overview of the risk management framework as a conceptual framework for this thesis. 

Chapter 2 is focussed on risk identification through a literature review on the geological 

setting, eruptive history of Te Maari and its eruptive frequency, ballistic impacts, ballistic 

distribution maps and ballistic models. Chapter 3 describes the field study on the 6 August 

2012 eruption ballistic distribution, results from the calibration of the ballistic trajectory 

model to the field results, and hazard assessments on this and two possible future eruption 

scenarios. Risk analysis and evaluation were completed through determination of 

vulnerability along the Tongariro Alpine Crossing (TAC) to a person at the time of exposure, 

for the three eruption scenarios. This was achieved through ascertaining the area of hazard 
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produced by a ballistic and the impact density from each scenario. Chapter 4 describes 

limitations of the study and opportunities for future work. Conclusions are drawn in Chapter 

5. 

 

Chapter 3 is a journal article which has been accepted and is in press as part of the Journal 

of Volcanology and Geothermal Research Special Issue: Tongariro Volcano. For this paper, I 

completed the vast majority of field mapping, orthophoto mapping and data analysis, as 

well as writing the vast majority of the paper. Collaboration with co-authors was required as 

part of data collection and manuscript preparation, which I outline here:  

 Ben Kennedy (senior supervisor; UC), Tom Wilson (co-supervisor; UC), Art Jolly 

(associate supervisor; GNS Science) and Gert Lube (associate supervisor; Massey 

University) provided discussion on data analysis and interpretation and conceptual 

development of the research as part of normal academic supervisory relationship.  

 Kae Tsunematsu, Mount Fuji Research Institute, collaborator. Kae ran the ballistic 

trajectory model from her computer in Japan, though using my field data and with 

me leading the source parameter selection and completing analysis. 

 Eric Breard, Massey University, collaborator. Eric provided additional data (~20 

crater locations) collected that outlined the edge of the ballistic field to the east and 

south, outside the orthophoto extent and which I was not able to reach in the field 

 Jo Pawson, University of Canterbury, collaborator. Field assistant - mapping.  

 Michael Rosenberg, GNS Science, collaborator. Provided block data GNS collected 

near the crater and around Ketetahi Hut in the days immediately following the 

eruption).  

 Shane Cronin, Massey University, collaborator. Provided discussion on data analysis 

and interpretation. 
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CHAPTER 2: LITERATURE REVIEW  

2.1 INTRODUCTION 

A literature review was conducted to address the thesis research aims and objectives by: 

understanding the geology of the study area; assessing Upper Te Maari’s eruption history to 

understand eruptive style and the frequency of eruptions; identifying impacts to people and 

buildings from ballistic strike; reviewing published ballistic distribution maps in relation to 

fully identifying hazards; and reviewing the progression of models of ballistic trajectory to 

introduce the model used in this study.  

2.2 GEOLOGICAL SETTING 

2.2.1 TAUPO VOLCANIC ZONE (TVZ) 

The boundary between the Pacific and Indo-Australian plates controls much of New 

Zealand’s current geology. In the northern part of New Zealand subduction of the oceanic 

Pacific Plate beneath the North Island (continental Indo-Australian Plate) occurs obliquely at 

a rate of 42 – 50 mm/yr. (Cole 1990; De Mets et al. 1994; Bibby et al. 1995). This is 

expressed by the Taupo-Hikurangi arc-trench system, contiguous with the northern Tonga-

Kermadec arc system, extending from the Hikurangi Trough east of the North Island to the 

Taupo Volcanic Zone at the western edge of the system (Carter 1980; Cole and Lewis 1981; 

Cole 1990). The Taupo Volcanic Zone (TVZ) denotes the currently active arc and back-arc 

basin and the location of active volcanism from the Late Pliocene (~2 Ma) to the Quaternary 

(Cole 1990; Wilson et al. 1995). The TVZ stretches from Ohakune to the edge of the 

continental shelf (~100 km offshore), some 300 km in length and at its maximum 60 km in 

width, in a NNE - SSW trend (Cole 1990; Wilson et al. 1995). Extension rates vary along the 

TVZ due to the oblique subduction and subsequent clock-wise rotation of the forearc, with 

~15 mm/yr occurring at the Bay of Plenty decreasing to <5 mm/yr close to the southern 

termination (Wallace et al. 2004; Reyners 2010).  

Volcanic composition in the TVZ ranges from basalt to rhyolite. However, andesitic 

volcanism and stratovolcanoes are dominant in the southern (Tongariro Volcanic Centre) 

and northern (Bay of Plenty) sections, while rhyolitic volcanism and calderas occur 

predominantly in the central section (Graham et al. 1995). Spinks et al. (2005) proposes that 
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the northern and southern sections have more dextral shear and smaller eruptive volumes 

compared with the central section which has greater eruptive volumes and is purely 

extensional. 

2.2.2 TONGARIRO VOLCANIC CENTRE (TgVC) 

The Tongariro Volcanic Centre (TgVC), located at the southern tip of the TVZ, is comprised of 

four large volcanoes (Tongariro, Ruapehu, Pihanga and Kakaramea), three smaller centres 

(Pukeonake, Mangakatote and Hauhungatahi) and four craters near Ohakune (Cole 1986; 

1990; Figure 2A). Eruptive products of the TgVC are predominantly calc-alkaline medium K 

andesites with minor occurrences of basalt and dacite (Cole et al. 1986; Graham and 

Hackett 1987). Based on the compositional variation in lava flows and pyroclastic units, 

Gamble et al. (1999), Hobden et al. (1999), Price et al. (2005) and Kilgour et al. (2013) 

propose that magma in the TgVC is erupted from a complex system of multiple small holding 

chambers, such as dikes and sills, in the crust and upper mantle rather than larger crustal 

magma reservoirs.  

Pebbles of Mt. Ruapehu andesite found in Lower Pleistocene conglomerates indicate 

volcanism at the TgVC has occurred for at least 300 ka (Fleming 1953). Many of the older 

vents of the TgVC (Kakaramea and Pihanga) are aligned in a SE orientation, differing from 

the younger post 20 ka vents that are oriented NNE – SSW (Cole et al. 1986; Graham and 

Hackett 1987). The younger vent lineation parallels the trend of the Taupo Fault Belt, a 

dense system of normal faults that accommodate the extension in the back-arc basin, and 

the present day subduction system (Graham and Hackett 1987; Berryman and Villamor 

1999).  

Tongariro Volcano, the second largest volcanic edifice (c. 60 km3) in the TgVC, is comprised 

of at least 17 overlapping composite volcanic cones, the youngest being Ngauruhoe (Cole et 

al. 1986; Hobden et al. 1999). K – Ar age determination by Hobden et al. (1996) indicates 

that Tongariro Volcano has been active for at least 275 ka, with the oldest units found at 

Tama Lakes. Main periods of cone growth were found to have occurred between 210 and 

200 ka, 130 and 70 ka, and 25 ka to the present day. Topping (1974) and Cole and Nairn 

(1975) divide the Tongariro lavas into older (>20 ka) and younger (<20 ka) episodes. Little 
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original topographic expression is left of the older lavas, inferred to have erupted from the 

NW – SE oriented line of vents. The younger lavas erupted from the NNE – SSW trending line 

of vents including North Crater, Blue Lake, Tama Lakes, Ngauruhoe, Red Crater and Te Maari 

(Cole 1978; Figure 2B). The latter three vents have also been the location of the most recent 

activity. 

 

Figure 2. Location map of A: volcanoes comprising Tongariro Volcanic Centre (TgVC) and B: young 

eruptive vents trending NNE – SSW (DEM is NZSoSDEM v1.0 09 Taumarunui 15 m).  

2.3 TE MAARI ERUPTION HISTORY 

The Te Maari craters, located on the NE flank of Tongariro, include Upper Te Maari crater 

(200 m in diameter), Lower Te Maari crater (400 – 500 m wide and 60 – 80 m deep circular 

crater) and a series of seven small explosion craters northeast of Lower Te Maari (Moebis 
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2010). Age dating of deposits in and around Te Maari suggests that the area may have been 

active for hundreds to thousands of years. Eruptions from Te Maari have ranged from rare 

Plinian events (~10 ka eruptions) to the more common and smaller hydrothermal events 

(summarised in Table 1). These have occurred both individually and as eruption episodes 

(1896 – 1897 and 2012). Ballistics were noted in only 3 of the 22 historical eruptions (the 15 

December, 1896 eruption, the 6 August, 2012 eruption studied in this thesis and the 21 

November, 2012 event), however may have been produced but gone unnoticed or 

unrecorded in more due to the remoteness of the location 100 years ago. Using all possible 

historical eruptions (22) over the 145 year eruption history, results in an average eruption 

frequency of 0.15 per year. However, the majority of the eruptions are grouped together in 

three periods of heightened activity (1869, 1892 – 1899, and 2012) over 145 years. The 

annual frequency of occurrence of a period of heightened activity during a period of 

dormancy is then 0.02 per year. The 2012 eruptions could be considered to be the beginning 

of a period of heightened activity that may still be ongoing, indicating the probability of 

eruption may be currently higher than the average frequency over 145 years. An average 

frequency of occurrence can be found using the 1892 – 1899 period of heightened activity in 

which 19 eruptions occurred over seven years, indicating an eruption frequency of 2.7 per 

year.  

Nairn et al. (1998) propose Lower Te Maari as a possible source of the Te Rato Lapilli and 

Poutu Lapilli, tephras of the ~10,000 ka multiple vent Tongariro Plinian eruption episode. 

Beneath the pyroclastic apron surrounding Upper Te Maari are multiple lava flows 

extending towards the NW and into Lower Te Maari Crater. Using dendrochronology, 

Topping (1974) dated the flows as having a maximum age of 1528AD. Local Maori often 

witnessed eruptions over the past few hundred years from Lower Te Maari (Cowan 1927), 

however the first written account of activity did not occur until 1839, when Bidwill recorded 

steam rising from the Northern slopes, likely Lower Te Maari (Gregg 1960).  

Accounts of historical eruptions from Upper Te Maari Crater were collated by Scott and 

Potter (2014) and inform much of the following summary of eruptive activity between 1869 

and 1899. 
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The first eruption from Te Maari recorded in written accounts occurred in early 1869 and is 

attributed to the formation of Upper Te Maari Crater (Cowan 1927). Hill (1891; 1892) 

describes an ash column with a “bright red flame” that deposited “dust, pumices and 

ashes". A further ash-producing eruption was recorded on the 30 November 1892 (New 

Zealand Herald, 6 December 1892; Gregg 1960; Cole & Nairn 1975). The latter produced a 

900 m high column consisting of ash and pumice lapilli, and pyroclastic density currents 

(PDCs) that reached SH46 around 3 km from the vent (Hill 1893). Pardo et al. (2014) propose 

that the eruption was hydrothermal or phreatomagmatic in nature. 

A series of eruptions, or an eruption episode, commenced on 13 November 1896 with two 

explosive eruptions of ash and lapilli with possible incandescence (Evening Post, 14 

November 1896; Otago Daily Times, 24 December 1896). Ash producing eruptions 

continued intermittently between the 24 November and the 1 December with larger 

eruptions on the 27 and 30 November (New Zealand Herald, 1 December 1896; Otago Daily 

Times, 24 December 1896). Samples of ash collected on the 29 November were very fine 

grained, suggesting the 27 November eruption may have been phreatomagmatic (Scott and 

Potter 2014). A few weeks later on the 15 December 1896, Upper Te Maari erupted again 

though more explosively than any of the previous eruptions in this episode. The eruption 

produced a >6 km high ash plume, which had a dark red glow at the base, depositing ash as 

far away as Napier. Incandescent blocks and bombs weighing up to 4 tonnes were ejected as 

far as 800 m from the vent and a 33 m wide rift was produced upslope. Deposits of “mud, 

stones and sand” produced in the eruption were found to extend to Ketetahi and Red Crater 

(Poverty Bay Herald, 16 December 1896; New Zealand Herald, 5 January 1897; Bay of Plenty 

Times, 13 January 1897; The Press, 16 January 1897; Friedlaender 1898). Pardo et al. (2014) 

propose that the “mud, stones and sand” may be surge deposits and that the eruption may 

be comparable to a Vulcanian style with the production of surges, incandescent ballistics 

and extensive ashfall. Ash eruptions were witnessed again on the 21 December 1896, 25 

January 1897 and 6 February 1897, with the latter said to be the largest plume witnessed in 

this sequence (Auckland Star, 21 December 1896; New Zealand Herald, 26 January 1897 & 

28 January 1897; Evening Post, 8 February 1897; Bay of Plenty Times, 12 February 1897). 

The final three eruptions in this sequence occurred on the 17 and 22 September and 18 

October 1897. The 22 September eruption consisted of steam and ash, however the nature 
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of the earlier and latter eruptions are not known (Poverty Bay Herald, 18 September 1897; 

Colonist, 21 October 1897).  Eruptive activity occurred again at Upper Te Maari between 29 

and 30 August 1899 producing an ash plume (New Zealand Herald, 6 September 1899).  

 

An increase in seismicity beneath the northern slopes of Tongariro was noted by GNS 

Science from the 12 July 2012 (Jolly et. al. 2014). Sampling of fumaroles near Upper Te 

Maari commencing on the 21 July 2012 also revealed an increase in magmatic signatures 

(Christenson et al. 2013). This unrest preceded a hydrothermal eruption from Upper Te 

Maari Crater on the 6 August 2012 at 11:52pm NZST (Rosenberg 2012). The eruption 

generated a debris avalanche, ~8 km high ash plume, multiple surges and ballistic blocks 

that travelled up to 2.3 km from vent (Crouch et al. 2014; Lube et al. 2014; Procter et al. in 

press). A more detailed description is provided in Chapter 3.  

Three months after the August eruption on 21 November 2012, a second smaller event 

occurred. This eruption happened during the day (1:25pm NZST) and was both recorded on 

monitoring webcams and observed by hikers along the Tongariro Alpine Crossing (TAC). An 

ash column (3 – 4 km in height) and two small low density pyroclastic flows were generated 

though did not travel more than a few hundred metres. Finger jets can be seen in videos of 

the eruption, likely carrying ballistics, however there is no evidence to show them travelling 

far from the vents (Scott and Fournier 2012a; Scott and Fournier 2012b). 
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Table 1. Historical eruptions of Upper Te Maari (modified from Scott and Potter 2014) 

Date Description of activity References 

Early 1869 
Ash eruption, probable formation of Upper Te Maari Crater, Possible 

Strombolian eruption ("bright red flame in ash cloud, would burst at top of 
ash cloud and fall in little pieces like snow") 

Hill 1891 & 1892; Cowan 1927; Cole and Nairn 1975 

30 Nov. 1892 Ash eruption ~900m in height, accompanied by PDCs New Zealand Herald (6 December 1892); Cole and Nairn 1975 

13 Nov. 1896 2 explosive ash-lapilli eruptions Evening Post (14 November 1896); Otago Daily Times (24 December 1896) 

24 Nov. 1896 Explosive ash eruption New Zealand Herald (25 November 1896); Otago Daily Times (28 November 1896) 

25 - 30 Nov. 
1896 

Ash eruptions on most days (6 in total), larger eruptions on the 27th 
(possibly phreatomagmatic due to fine grained ash) and 30th.  

New Zealand Herald (1 December 1896); Otago Daily Times (24 December 1896); 
New Zealand Herald (1 December 1896) 

1 Dec. 1896 Ash eruptions continued, brown ash component Evening Post (1 December 1896); Friedlaender 1898 

15 Dec. 1896 
Explosive Vulcanian eruption >6 km in height, 15 minutes long, ash column 
with dark red glow at base, ejected incandescent blocks/bombs, extensive 

fine and pumiceous ash fall as far as Napier, possible surges 

Poverty Bay Herald (16 December 1896); The Press (16 January 1897); 
Friedlaender 1898; Pardo et al.2014 

21 Dec. 1896 Ash eruption Auckland Star (21 December 1896) 

25 Jan. 1897 Ash eruption New Zealand Herald (26 & 28 January 1897) 

6 Feb. 1897 Ash eruption, largest seen in eruptive sequence Bay of Plenty Times (12 February 1897) 

17 Sept. 1897 Eruption (no information on whether steam or ash) Poverty Bay Herald (18 September 1897) 

22 Sept. 1897 Eruption of steam and "smoke" NZ Herald (23 September 1897) 

18 Oct. 1897 Eruption (no information on whether steam or ash) Colonist (21 October 1897) 

29-30 Aug. 1899 Ash eruption New Zealand Herald, 6 September 1899 

6 Aug. 2012  
Magmatic hydrothermal eruption. Produced 8 km ash column, debris 

avalanche, ballistics up to 2.3 km, and at least 3 PDCs 
Rosenberg 2012; Crouch et al.2014; Lube et al.2014; Procter et al. in press 

21 Nov. 2012 Eruption producing ash column and PDCs Scott and Fournier 2012a 
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2.4 BALLISTIC HAZARD IMPACTS 

Volcanic ballistic projectiles constitute a major proximal hazard to people, infrastructure and 

the surrounding environment. Particles range from centimetres to metres in diameter and 

may be juvenile (bombs) or lithic (blocks) in nature (Steinberg and Lorenz 1983; Yamagishi 

and Feebrey 1994; Bower and Woods 1996; Alatorre-Ibargüengoitia et al. 2012). They can 

travel up to ~10 km from the vent (Steinberg and Lorenz 1983; Alatorre-Ibargüengoitia et al. 

2012) at up to hundreds of metres per second (Minakami 1942; Nairn and Self 1978; 

Fagents and Wilson 1993).   

 

Figure 3. Damage to Ketetahi Hut from ballistics ejected in the 6 August, 2012 Upper Te Maari 

eruption. The ballistic penetrated the roof (A), passing through two bunk beds (B) before puncturing 

through the floor (photo credit: Emma Rhodes). 

 

Projectiles have high kinetic and impact energies, capable of penetrating buildings and 

causing serious injury or death to those they strike (Figure 3). Alatorre-Ibargüengoitia et al. 

(2012) estimate the kinetic energy of projectiles from VEI 2 – 4 eruptions to be ~106 J – far 

greater than the energy needed (400 – 1000 J) to penetrate a metal sheet roof (Jenkins et al. 

2014). Ballistics ejected in the 2010 eruption of Pacaya Volcano, Guatemala punched 

through metal sheet roofs and additionally ignited some of the impacted dwellings (due to 
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the high thermal energy) ~3 km from the vent (Wardman et al. 2012; Jenkins et al. 2014). 

Fires were also started by ballistics during the 1994 – 1998 eruptions of Popocatépetl 

(Delgado-Granados et al. 2001) and the 1999 – 2001 eruption at Colima (Zobin et al. 2002).  

 

Blong (1984) describes accounts of both injury and death as a result of ballistic strike from 

volcanic eruptions. Three children suffered from fractured skulls in the 1902 Soufriere St 

Vincent eruption, and one victim had his thoracic cavity pierced and collar bone broken in 

the June 1914 eruption of Mt Lassen. In the March 1944 eruption of Vesuvius three fatalities 

occurred from falling bombs up to 5 km from the vent. Five people died and seven were 

seriously injured from ballistics in the 14 January 1993 eruption of Galeras Volcano, 

Colombia (Baxter and Gresham 1997). Injuries included skull, jaw, temporal bone, hand and 

leg fractures, burns, concussion, and lacerations and contusions. Kinetic energies >80 J are 

suggested by Baxter and Gresham (1997) to be the threshold of lethality of ballistics. They 

propose a particle weighing 10 kg carries a 90 % probability of death travelling at 6 – 13 m/s. 

Ballistic velocities are generally much faster than this, thus presenting a high level of hazard 

and vulnerability to people. However, the probability that a person is hit by a ballistic is 

dependent on the distribution and impact density around a volcano. 

 

2.5 BALLISTIC IMPACT DISTRIBUTION MAPS 

 

Ballistic impact distribution maps are used to identify the nature and extent (e.g. size and 

shape of the ballistic field and the variation of impact density) of the ballistic hazard. 

Published maps are not common and, when they are published, are often incomplete 

(either only displaying the outer edges of the field or only portions of the field) (Minakami 

1942; Nairn and Self 1978; Self et al. 1980; Yamagishi and Feebrey 1994; Robertson et al. 

1998; Houghton et al. 2011). This is due to a multitude of reasons including: the risk of 

further eruption; subsequent deposition of ash or precipitation obscuring craters; the time 

consuming and labour intensive nature of field mapping; and when mapping can be done 

remotely (e.g. aerial photos, video, thermal imagery) is hampered by resolution. Maps can 

include locations of ballistic particles, impact craters when ballistics are not easily found, or 

a combination of the two. Impact maps can be used to understand eruption dynamics such 
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as direction, angle and velocity, and can indicate size of eruption (how far ballistics 

travelled). They are important constituents of volcanic hazard maps. 

 

Complete maps have been produced by Pistolesi et al. (2008) and Gurioli et al. (2013). A 

combination of field surveys and aerial photos were used by Pistolesi et al. (2008) to map 

the impact field produced by the 5 April 2003 eruption of Stromboli. Both crater and blocks 

were located, though blocks <2 m in diameter were not visible on the aerial photos. An 

asymmetric distribution around the vent was noted, with two concentrated narrow zones to 

the NE and WSW. Blocks travelled up to ~2 km from the vents and were up to 3.5 m in 

diameter. Gurioli et al. (2013) also used a combination of aerial photos and fieldwork, 

though with the addition of thermal imagery, to map a complete Strombolian bomb field 

produced in the 21 January 2010 eruption of Stromboli. This was possible due to the 

different dispersal direction from other major eruptions. The SSE – SW directed field 

consisted of 780 bombs between 7 and 459 cm in diameter that travelled up to 429 m from 

the vent. Impact density was calculated and ranged up to 100 x 10-3 m2. 

 

More commonly the distribution maps that are produced are incomplete, with only the 

outer edges of ballistic fields mapped to ascertain the maximum range. Minakami (1942) 

mapped the outer edge of the ballistic fields produced by the April 20 1935, April 16 1937 

and June 7 1938 Vulcanian eruptions of Asama Volcano. The ballistic fields were found to be 

distributed asymmetrically around the vent in the latter two eruptions, with particles up to 

1 m and 7.5 m in diameter travelling ~3.4 and 4.5 km respectively. The earlier eruption 

produced a nearly symmetrical strew field extending ~2.8 km from the vent. Nairn and Self 

(1978) provided a map highlighting the approximate range of ballistic ejecta from the 

February 1975 Vulcanian eruptions of Ngauruhoe. The map, however, excluded the eastern 

and southern sides of the volcano (possibly due to accessibility as mapping was completed 

solely by field surveys) and no individual impact locations were presented. They did state 

that ejected blocks were up to 27 m in diameter and impact craters up to 2 m in diameter 

were found as far as 2.8 km from the vent. Yamagishi and Feebrey (1994) and Robertson et 

al. (1998) also outlined the maximum extent of the ballistic fields from the respective 1988 - 

89 Vulcanian Tokachidake (~1 km) and Sub-Plinian 17 September 1996 Soufriere Hills (~2.1 
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km with impact craters up to 6 m in diameter and blocks up to 1.2 m) eruptions, though do 

not provide individual impact locations. 

 

The boundary of the ballistic field and 200 blocks and bombs in eight radiating profiles (from 

the vents) were mapped by Self et al. (1980) from the Ukinrek Maar eruptions in 1977. Two 

distributions were found: an earlier eruption had ejected blocks 2 – 3 m in diameter up to 

700 m from the crater increasing in size with distance; and a later eruption of bombs and 

blocks that travelled the same distance as the previous distribution but projectiles 

decreased in size with distance.  

 

Isopleth maps of ballistic fields are presented in Kilgour et al. (2010) and Houghton et al. 

(2011). Kilgour et al. (2010) mapped the ballistic fallout from the 25 September 2007 

Surtseyan eruption of Mt. Ruapehu, though again individual ballistic locations are not 

presented. A combination of orthophoto analysis and field surveys (though limited due to 

the risk of further eruption) were used to map the northerly directed strew field in which 

blocks up to 2 m were ejected up to 2 km from the vent. Ballistic ejecta (<50 cm in diameter) 

from the 19 March 2008 eruption of Kilauea were mapped by Houghton et al. (2011). 

However, the ~300 m wide field directed toward the SE could not be mapped in its entirety 

due to part of the field being located within the crater. 

 

A greater level of detail included in distribution maps creates a greater understanding of the 

hazard and more accurate hazard maps. Nine of the eleven ballistic fields mapped in these 

eruptions are asymmetric in shape, indicating that the eruptions were directed. These 

directions may be preferential in multiple eruptions resulting in directional zones of 

increased hazard, rather than the simplified concentric zones produced using a maximum 

travel distance. Complete maps (rather than just field outlines) allow impact density to be 

calculated – another factor that can define zones of varying hazard. Generally the complete 

maps utilised more resources including aerial photos, thermal imagery and field work 

compared with the incomplete maps that relied mainly on fieldwork, likely limited by time 

constraints and the possibility of further eruptions.  
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2.6 BALLISTIC MODELS 

Ballistic blocks and bombs generated in volcanic eruptions decouple from the eruptive 

column to follow nearly parabolic trajectories (Minakami 1942; Wilson 1972; Fagents and 

Wilson 1993). Models of particle transport are valuable tools in both ascertaining eruption 

dynamics (correlating initial particle velocity with deposition distance) and modelling and 

assessing ballistic hazard.  

 

To determine the initial velocities of ballistics ejected from eruptions of Asama volcano, 

Japan, Minakami (1942) created a mathematical expression that related ejection velocity 

and angle to the distance the ballistic travelled (based on mapping of the outer edges of the 

impact field), including the effects of drag and wind speed.  

 

The initial velocity of ballistics ejected in the 1968 eruption of Arenal Volcano was estimated 

using a model derived by Fudali and Melson (1972). In the absence of ballistic size 

(projectiles broke and scattered on impact), the authors used impact energy derived from 

crater size and a series of ballistic trajectory calculations to estimate ballistic size and 

maximum initial velocity. Both this and the previous model assume a spherical ballistic 

shape to determine their drag coefficient.  

 

The first mathematical algorithm that modelled ballistic trajectories was developed by 

Wilson (1972). Trajectory was expressed through a rectangular coordinate system and a 4th 

order Runge-Kutta method, taking into account gravity and drag forces (assuming a 

cylindrical shape rather than spherical due to its aerodynamic properties) and allowing for 

changes in atmospheric properties with height. Wilson explored fall times of clasts of 

varying size and density from various heights, and the ranges of clasts ejected as a function 

of initial velocity, ejection angle and clast density and size. Steinberg and Lorenz (1983) 

apply a variation of this model to improve previous particle velocity estimates at Asama 

(Minakami 1942), Arenal (Fudali and Melson 1972) and Shiveluch Volcanoes.  

 

Calculations and models prior to the 1990s assumed a still, ambient atmosphere into which 

ballistics were ejected. This resulted in overestimations of drag on particles and 
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subsequently initial particle velocity. Fagents and Wilson (1993) recognised that the air 

overlying the vent is displaced en masse in volcanic explosions, at speeds initially 

comparable to the ejected clasts. Ballistics are essentially coupled initially with the displaced 

surrounding air, reducing the drag force to nearly zero, until the air and ballistics 

progressively decouple at which time drag increases. An additional model describing the 

explosion process is applied prior to the trajectory model devised by Wilson (1972). The 

ejected material initially behaves as a coherent plug before reaching a maximum velocity, at 

which the ballistics are then launched into the decelerating gas flow field.  Once launched, 

trajectory is then modelled using the Wilson (1972) model (though drag is now proportional 

to the square of the ballistic velocity relative to the moving air, rather than the still 

atmosphere in the original model).  

 

Bower and Woods (1996) followed Wilson (1972) and Fagents and Wilson (1993) in using 

equations of motion to model ballistic trajectory. Their model differs, however, from 

Fagents and Wilson in that they model the trajectory of ballistics from small eruptions, 

ejected from above the crater after separating from the collapsing jet at the crater rim and 

encountering a still atmosphere. Bower and Woods (1996) propose particles are accelerated 

when coupled with the jet phase within the conduit and vent until a shockwave is produced 

as the jet meets the crater, causing the jet to decelerate but the ballistics to decouple and 

continue with their original velocity. 

 

‘Eject!’, a computer programme modelling ballistic trajectory, was developed by Mastin 

(2001) to allow users to model their own scenarios. Following Wilson (1972), trajectory is 

modelled using a rectangular coordinate system and a Runge-Kutta method. Users can 

define the drag coefficient, ballistic shape, particle density and diameter, atmospheric 

properties, ejection angle and initial velocity. A function quantifying the zone (distance) of 

reduced drag around the vent was also added, similar to Fagents and Wilson (1993).  

 

In previous models the drag coefficients used were of geometrical shapes (e.g. sphere, cube 

and cylinder). Alatorre-Ibargüengoitia & Delgado-Granados (2006) measured the drag 

coefficients (Cd) of volcanic particles in a subsonic wind tunnel. They found that Cd 

depended mainly on particle shape and texture and that the lowest Cd values should be 
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applied in models to calculate maximum possible range. These results were then 

incorporated into a ballistic trajectory model. Alatorre-Ibargüengoitia et al. (2012) coupled 

this model with an eruptive model that considered caprock acceleration and consumption of 

energy during fragmentation, informing ballistic velocity.   

 

The aforementioned ballistic models, and the many others not mentioned, consider 

movement of particles only in two dimensions and are only capable of modelling individual 

particles. Tsunematsu et al. (2013) developed a three dimensional model that simulates the 

trajectory of multiple ballistics and includes the effects of particle collision – something not 

previously considered. The model is also the first to output the spatial distribution of the 

ejected ballistics on the ground (assuming a flat surface), allowing direct comparison to 

impact distribution maps. Trajectories are modelled using equations of motion and a 

discrete event simulation method. Required input parameters include rotation and 

inclination angle (ejection angle and standard deviation), initial particle velocity, particle 

density and diameter, ejection direction, displacement of ejection points from the vent 

centre (spread of ejection points), the number of particles ejected (per burst if more than 

one eruption burst), and time interval between bursts. The model, originally designed for 

Strombolian eruptions, is utilised for hydrothermal eruptions in this study, and the effects of 

drag and the initial coupling of particles and gas jet is also introduced. 

 

  



 
 

22 
 

CHAPTER 3:  RESEARCH COMPONENT 

3.1 INTRODUCTION 

Chapter 3 contains the new research component of this study in which field and orthophoto 

mapping of the 6 August ballistic distribution, calibration of the Tsunematsu (2013) model, 

forward modelling of possible future eruption scenarios and vulnerability analyses along the 

TAC are presented.  It draws on the literature review undertaken in Chapter 2. The chapter 

is structured in the follow way: 

 Detailed overview of the 6 August, 2012 Upper Te Maari eruption. 

 Methodology describing how orthophoto and field mapping of the 6 August ballistic 

distribution were carried out, past ballistic trajectory models and the adopted 

Tsunematsu et al. (2013) model, and how ballistic vulnerability is calculated. 

 Results of both the spatial and crater size distribution from ballistic block impacts of 

the 6 August 2012 eruption, obtained through a combination of orthophoto mapping 

and ground truthing. The crater distribution is then combined with acoustic data, 

observations of vent morphology, and eyewitness accounts of the eruption to 

parameterise a ballistic trajectory model (Tsunematsu et al. 2013). 

 Discussion in which the calibrated model is used to forward model the ballistic 

hazard from two other possible future eruption scenarios. Ballistic vulnerability 

along the impacted TAC is then calculated using the method described in the 

methodology, for the 6 August modelled distribution as well as the two possible 

future scenarios. 

 Conclusion summarising main results. 

 

3.2 OVERVIEW OF 6 AUGUST 2012 ERUPTION OF UPPER TE MAARI 

On 6 August 2012 at 23:52 (GMT +12) a small ~19 s hydrothermal eruption occurred at 

Upper Te Maari, following a collapse and subsequent debris avalanche from the 

hydrothermally altered western flank of the crater (Jolly et al. 2014, Procter et al. in press). 

The eruption formed a ~430 m long arcuate fissure, split into a wider (>50 m) and deeper 
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(~30 m) western section closest to the collapse scarp, and a narrower (>10 m) and shallower 

(>10 m) eastern side upslope of Upper Te Maari crater. Eyewitness accounts describe three 

short-lived explosions that produced eruption clouds: the first emanating from the East at 

an angle <45° (from vertical), followed by a shallower (>45° from vertical) eruption cloud 

from the West, with a final central eruption producing a vertical ash column (Lube et al. 

2014). GeoNet acoustic monitoring data shows five pulses of eruption, each with a duration 

of 3 - 5 s (Jolly et al. 2014).  

Sampling and analysis of the gas geochemistry from nearby fumaroles, taken prior to 

eruption, indicated an injection of magma at shallow depths, however, analysis of the 

erupted ash did not indicate the presence of juvenile material (Christenson et al. 2013; 

Pardo et al. 2014). This suggests that the eruption was caused by flank collapse induced 

decompression of a pressurized hydrothermal system, likely enhanced by shallow-seated 

magma (Pardo et al. 2014). Surges were produced from the eastern and western directed 

explosions, as evidenced by the asymmetric extent of the mapped deposit (Lube et al. 

2014). Ballistic blocks were dispersed over a ~6 km2 area, impacting the Ketetahi Hut and 

~2.6 km of the TAC, at its closest 1.2 km from the vents and traversed by ~80,000 people 

annually. The hut suffered damage, with blocks penetrating the roof and floor. This was the 

first eruption from Upper Te Maari since 1899 (Scott and Potter 2014) and there was 

concern that the August event might have been the beginning of a prolonged episode that 

would create ongoing ballistic hazards on the TAC (Figure 4). Thus, analysis of the ballistic 

hazard and risk was required prior to the reopening of the track to the public. A smaller 

subsequent eruption occurred on 21 November 2012, though ballistics are not thought to 

have travelled further than a few hundred metres from the vents. 
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Figure 4. A: Location map of the Tongariro Volcanic Centre within the Taupo Volcanic Zone in the 

North Island, New Zealand. B: Digital Elevation Model (DEM) (NZSoSDEM v.1.0 09 Taumarunui 15 m) 

of the northern section of Tongariro showing Upper Te Maari Crater and the surrounding craters. 

Red square indicates study area. 

3.3 METHODOLOGY 

3.3.1 ORTHOPHOTO MAPPING 

An initial study of the distribution of ballistics from the 6 August eruption was performed 

using high resolution orthophotos (ground-sample distance of 0.2 m), collected on the 8 – 9 

November, 2012 (prior to the November eruption). A 100 x 100 m spaced grid was placed 

over the orthophotos to allow for systematic mapping of impact craters. Identification of 

impact craters was more difficult where craters were <2 m in diameter due to the resolution 

limits of the orthophotos. 
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3.3.2 FIELDWORK 

Field campaigns followed the orthophoto mapping to ground-truth the mapped craters and 

collect data that could not be retrieved from the orthophotos. Fieldwork was conducted in 

eight locations, chosen at varying distances and azimuths (N, NW and W) from the vents to 

investigate changes in crater size and density with distance and direction from vent (Figure 

5). Surveyed areas were ~10 m in width and up to 160 m in length. However, the extent of 

the area ground-truthed varied at each location due to time constraints and the impact 

density in the area. Thus, when the number of impacts mapped by orthophoto were 

compared with those ground-truthed, standardised 200 m² areas were used to maintain 

continuity.  

 

Figure 5. Orthophotos of Upper Te Maari Crater outlining the W, NW and N transects used in data 

analysis and the 8 locations where fieldwork was conducted (only the impact density comparison 

areas are shown, though the total area ground truthed is larger). The active Upper Te Maari Crater 

and fissure are delineated.  
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At each impact crater, the location was recorded via GPS (NZTM2000), both crater and block 

(if found) dimensions collected and notes taken on the lithology and degree of alteration of 

the block. Where possible, the angle of impact (from horizontal) was measured by taking 

the angle from the middle of the crater to the middle of the block. This measurement could 

only be taken from narrow, steep-walled ‘burrow type’ craters in which blocks had 

remained buried within the crater. As the orthophotos do not fully cover the entire area 

impacted by ballistics, field surveys were required to find the outermost edge of the ballistic 

field on the eastern side (Breard et al. 2014).  

3.3.3 BALLISTIC TRAJECTORY MODEL  

Inverse modelling can use characteristics of the ballistic field to estimate eruption 

parameters. Many models have been developed to model ballistic trajectory (Minakami 

1942; Fudali and Melson 1972; Wilson 1972; Steinberg and Lorenz 1983; Fagents and Wilson 

1993; Bower and Woods 1996; Mastin 2001; Alatorre-Ibargüengoitia and Delgado-Granados 

2006; Alatorre-Ibargüengoitia et al. 2012) though only consider particles moving in two 

dimensions and one particle at a time. However, the Tsunematsu et al. (2013) model 

considers multiple particles in three dimensions, includes the effects of particle collision and 

computes a two dimensional particle distribution on the ground surface (assuming a flat 

surface). The output of a particle distribution of all modelled particles allows direct 

comparison to impact distribution maps, ideal for reverse modelling to obtain eruption 

parameters. A parameterised and validated model can then be used to investigate future 

eruption scenarios to produce ballistic hazard and risk maps.  

The Tsunematsu et al. (2013) model was adopted in this study and developed further to 

include the effects of drag on ballistic particles, using a finite difference method to solve the 

following equation (Alatorre-Ibargüengoitia et al. 2012): 

 
(1) 

 

Where, v = (vx, vy, vz) is particle velocity, u is the wind or gas flow velocity, t is time, A is 

surface area of particle, Cd is the drag coefficient, ρa is air density, m is the particle mass, and 

 is the gravitational acceleration.  
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The drag coefficient (Cd) is set to 0.7. This value was based on the work of Alatorre-

Ibarguëngoitia and Delgado-Granados (2006). The majority of particles found in the field 

were sub-angular and relatively smooth in texture (closest to a Cd of 0.7), with some porous 

and rough (closest to a Cd of 0.6).  

The model required the input of eruption parameters including vent location, number of 

eruption pulses and particles erupted in each pulse (if multiple pulses), rotation angle 

(ejection angle of particle; Figure 6), inclination angle (standard deviation of rotation angle; 

Figure 6), particle density and diameter, initial particle velocity, and displacement of 

ejection points from the vent centre (spread of point sources at each vent). As each pulse 

was run separately with its own eruption parameters, no particle interaction occurred 

between the separate pulses; rather particle collisions only occurred within each pulse.  

 

Figure 6. Rotation angle (angle of ejection from vertical (γ)) and inclination angle (standard deviation 

or variation of rotation angle (θ)) model parameters (modified from Tsunematsu et al., 2013). 

 

3.3.4 BALLISTIC VULNERABILITY 

The area impacted by a ballistic and the density of impacts over an area can be used to 

calculate the ballistic vulnerability or probability of casualty (serious injury or fatality) at a 

certain location. Both the flight path (in which a person would be struck by the ballistic 

before impact with the ground occurs) and radial impact area (including the block, crater 
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excavation and debris apron) are combined to ascertain the total area of hazard (Figure 7). 

The flight path hazard area can be calculated using impact angles measured in the field and 

the dimensions of a person (taken here as 2 m in height and 1 m in width). Secondly, a radial 

area of impact is produced by a ballistic. This area of hazard is determined using the crater 

diameter and width of a person outside the crater to include serious injury or fatality 

(casualty) within the surrounding ejecta apron. To calculate the length of the hazard posed 

by the flight path of the ballistic (L) the following equation is used: 

L = 2 / tan Ia            (2) 

Where Ia is the angle of impact (from horizontal). The area of hazard produced by the 

ballistic flight path outside of the radial hazard area is found using:  

     At = (L – (½ C + P)) P            (3) 

Where At is the flight path area of hazard (in Figure 7 this is constrained by the width of a 

person as this is generally greater than the width of a ballistic), C is the crater diameter and 

P is the diameter of a person. If L <  + P then At is not applicable as no additional flight 

path hazard outside of the radial hazard area is produced. Where the block is larger than the 

diameter of a person, the block diameter (B) is substituted for P when multiplying the flight 

path length. The total area of ballistic hazard (Ah) is then: 

 

    (4) 
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Figure 7. Area of hazard (likely to cause casualty) from a ballistic impact. A: Hazard produced from 

flight path, where the length of the hazardous area increases with shallowing trajectory angles. B: 

Total area of ballistic hazard, combining radial hazard from crater formation and shrapnel 

production, and flight path hazard. Grey shading indicates additional area of hazard produced by 

ballistic flight path (At) and hatching indicates total area of ballistic hazard (Ah). 

 

The crater rather than the block is used in these equations for two reasons: 1) in many cases 

the block is not found or it fragments on impact and thus its true size is not known or may 

then be underestimated. This would result in an underestimation of the ballistic hazard 

area; and 2) the crater provides the best estimate on the area of hazard as it represents a 

damage zone where casualty is probable, and also encompasses the ballistic itself. The 

ballistic size does not need to be known (nor the density or substrate condition) to calculate 

the area of hazard when using the crater to inform this calculation, and can then be 

calculated when the block cannot be found. 

The size of the debris apron or how far the debris or shrapnel travels from the impact crater 

may also increase the area of hazard. Pistolesi et al. (2008) noted from the 5 April, 2003 

eruption of Stromboli that impacts with hard rock surfaces produced centimetre to 

decimetre sized shrapnel up to tens of metres from the impact.  Impact craters 7 m in 

diameter ejected soil debris and lava fragments up to 28 m and 15 m from the crater, 

A

B

2 
m
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Crater ( )

Person ( )



 
 

30 
 

respectively in the 2011 Shinmoedake eruption (Maeno et al. 2013). However, debris aprons 

measured in the field were, on average, 110% greater in size than the crater diameter and 

blocks generally impacted soil and vegetation (Figure 8). Further work is needed to 

determine whether impact by shrapnel would cause fatality, or only injure those in the 

vicinity (and the extent of injuries that would occur).  

Impact density is also needed to calculate ballistic vulnerability. The area of ballistic impact 

hazard was then divided by the impact density from Arc Map (using the Kernel density 

function) to calculate ballistic vulnerability along the TAC for each eruption scenario. 

3.4 RESULTS 

3.4.1 SPATIAL DISTRIBUTION OF IMPACT CRATERS 

The orthophoto analysis yielded 3,587 craters up to 2.3 km from the vents, with diameters 

ranging between 0.3 m – 10.8 m (Figure 8 & 9). The ballistic field displays a highly 

asymmetric shape, reflecting the directed blasts and multiple eruption pulses (Figure 9A). 

Craters cluster more densely in the WNW ~1,000 m away from the vents, with densities 

between 2,000 – 6,549 craters/km² (Figure 9B). Clustering on a smaller scale also occurs in 

the NNE and ESE with densities between 1,000 - 3,000 craters/km². Two areas are noted for 

their lack of observed impact craters. The first is within ~100 - 200 m of the vent area and 

the second is on the c.1528AD lava flow.  
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Figure 8. Images of ballistic impact craters highlighting the variation in diameter, impacted substrate 

and production of debris aprons. A: Ballistic fragments within a large symmetrical crater in thinner 

vegetation. B: Smaller more ‘burrow-like’ crater within thicker vegetation. C: Large crater with a 

debris apron composed of the fragmented block and an orange-brown soil. 
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Figure 9. Ballistic impact crater distribution from the August 2012 eruption of Upper Te Maari (see 

Appendix B (a) for individual crater locations and diameters). A: Distribution of craters is delineated 

by size (mean crater diameter). B: Kernel density of craters per km². 
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3.4.2 RELATIONSHIP BETWEEN CRATER SIZE, DISTANCE AND DIRECTION FROM THE VENTS 

AND THE CRATER SIZE DISTRIBUTION WITHIN THE BALLISTIC FIELD 

The crater size distribution from the orthophotos was analysed in discrete 750 m wide 

concentric rings radiating away from the vents (0 – 750 m, 750 – 1500 m, and 1500 – 2250 

m). Mean crater sizes of 2.5, 2.3 and 2.7 m were found respectively (Figure 10A). An 

increase in mean diameter can be seen in the medial to distal rings (750 – 2250 m) showing 

that there is a general increase in crater size with distance, and therefore larger blocks 

generally travelled further than smaller blocks (due to the effects of energy and drag – 

without which ballistic trajectory would be independent of mass). To investigate whether 

crater size varied at different azimuths around the vents, three transects (towards the N, 

NW and W) ~100 m wide and spanning the entire ballistic field, were studied from the 

orthophotos (Figure 5). The W and NW transects have a larger proportion of smaller craters 

than the N transect with mean diameters of 2.4 m, 2.2 m and 2.7 m respectively (Figure 

10B).  

Comparing the crater size distribution between the orthophoto mapped and field mapped 

craters highlights the difference in size and quantity found (Figure 10C). The mean crater 

size for all orthophoto mapped craters was 2.4 m, compared to a 1.2 m mean for the field 

mapped craters. Only 19% of the orthophoto mapped craters were <1.5 m in diameter 

compared to the 74% of field mapped craters.  

The number of ground-truthed craters was compared to the number mapped using the 

orthophotos in a 200 m² area at each ground-truthed location (Figure 5). A large 

discrepancy is apparent between the number of craters found using the orthophotos  

(minimum 1, maximum 5) and those mapped in the field (minimum 5, maximum 21).  An 

average ratio of 1 orthophoto crater to 4.5 ground-truthed craters was calculated, indicating 

that the actual ballistic density may be approximately four times greater than that mapped 

solely using the orthophotos (Table 2). Since the orthophoto analysis missed many of the 

small craters and significantly underestimated the true ballistic density, it is clear that a 

combined orthophoto-fieldwork approach (with higher resolution orthophotos) is needed to 

avoid significant hazard implications.  
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Figure 10. Impact crater size distribution found from orthophoto mapping and ground-truthed data. 

A: Orthophoto impact crater size distribution divided into 750 m concentric rings radiating from the 

vents. B: Orthophoto impact crater size distribution at different azimuths from the vents. C: Impact 

crater size distribution mapped from the orthophotos, from all ground truthed data (see Appendix B 

(b) for raw fieldwork data), and the corrected distribution combining both orthophoto and ground 

truthed distributions.  
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Table 2. Number of impact craters mapped from the orthophotos compared to the number of 

impacts found when ground truthed, within a 200 m² area at each of the eight ground-truthed 

locations (selected from larger ground-truthed areas). 

 

3.4.3 RELATIONSHIP BETWEEN CRATER SIZE AND BLOCK SIZE 

Establishing a general relationship between block size and crater dimension is an important 

tool for approximating the size of blocks ejected in an eruption when only their impact 

craters can be easily mapped. Crater size is largely controlled by the kinetic energy of the 

block: a larger block with greater mass has more kinetic energy than a smaller, lighter one 

when travelling at the same velocity and will therefore create a 

larger impact crater.  

Where possible, measurements of blocks were taken alongside their craters in the field. 

Only those blocks thought to be whole, and their respective craters, were used. The mean 

diameter (to allow description of asymmetry) of both the block and crater were calculated 

and a best fit relationship (a power law with an r² = 0.51) found showing a general 

correlation between increasing block size and increasing crater size (Figure 11). This 

relationship allows for the description of smaller block diameters (<0.25 m) that aren’t 

encompassed in a weaker linear relationship (r² = 0.45). This method differs from that used 

by Breard et al. (2014) in that data is combined from all four block lithologies (Defined by 

Breard et al. as Type 1: dense andesitic lava (davg = 2.4 g/cm3); Type 2: andesitic scoria or 

vesicular lava (davg = 1.3 g/cm3); Type 3: breccia, agglomerates and agglutinate blocks (davg = 

2.1 g/cm3); Type 4: intermediate density columnar jointed andesitic lava (davg = 2.1 g/cm3); 
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all with varying degrees of alteration) to seek a universal relationship regardless of clast 

density or substrate type. Breard et al. exclusively considered the most common block 

lithology of Type 1 and generally focussed on larger craters (>2.5 m) to reveal a more 

defined relationship between block and crater size.  

The broader spread of crater diameters in the combined data set is not solely due to the 

effect of clast density (Type 2 shows a narrower data spread and steeper trend however 

Type 1, though a broader data set, also shows the same trend with craters <2 m in 

diameter). It is more likely that the broad data spread is the result of variance in substrate 

(vegetation thickness and soil strength) and/or from variation in particle velocity (both 

within a single pulse and also between the multiple pulses) and therefore impact energy. A 

particle travelling at a faster velocity has more kinetic energy than one, with the same mass, 

travelling slower and will therefore create a larger impact crater.  

 

Figure 11. Relationship between block and crater size found in the field (using all lithologies). A 

power law relationship (y = 0.3507x0.3941) was found to be the best fit with a low R² value of 0.51. 
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3.4.4 BALLISTIC TRAJECTORY MODEL 

The Tsunematsu et al. (2013) ballistic trajectory model was applied to the results of the 

orthophoto mapping and field campaigns to evaluate the eruption parameters for the 

August 6 eruption and to assess the ballistic hazard in future eruption scenarios. To allow for 

comparison with the field mapped crater distributions, the model particle diameters were 

converted to crater diameters using the relationship in Figure 11. Many eruption 

parameters were partially constrained by observations, however in addition, 49 inverse 

models were then run in order to further constrain some parameters.  

3.4.4.1 MODEL PARAMETERS AND RESULTS FOR THE AUGUST 2012 ERUPTION 

3.4.4.1.1 NUMBER OF ERUPTION PULSES, VENT LOCATION AND DIRECTION OF PARTICLE 

DEPOSITION 

The vent locations and number of eruption pulses set the initial model conditions. GeoNet 

acoustic sensors recorded at least five pressure pulses (presumed to indicate the onset of 

eruption) each with a duration of 3 – 5 seconds (Jolly et al. 2014; Figure 12). The relative 

eruption energy for each pulse is given by the integral of the pressure differential (ΔP) and 

the relative energy release of the eruption sequence. Jolly et al. (2014) found that Pulses 1 

and 4 each had ~20% of the total energy release of the eruption, while the third pulse 

included ~50% of the total eruption energy. The two smallest pulses (2 and 5) each released 

5% of the total energy.  

Consistent with the acoustic sensors, local residents witnessed three major eruption pulses 

(minor eruptions 2 and 5 were not witnessed) (Lube et al. 2014). They reported that the first 

occurred to the East at <45° (from vertical), the second to the West at >45° (from vertical), 

followed by a vertical eruption column. The eastern and western trending surge deposits 

support the eyewitness accounts, with Lube et al. (2014) attributing the eastern deposit to 

Pulse 1 and the western deposit to Pulse 3. Stratigraphic logs of the eastern surge deposit 

revealed a second subunit not belonging to the 1st pulse. Lube et al. (2014) attribute this 

unit to Pulse 2, with Pulse 4 the vertical cloud seen by eyewitnesses. 
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The asymmetric shape of the ballistic field and impact crater densities also reflects multiple 

pulses and directionality of the pulses. Higher crater densities are noted in the W – WNW, N 

– NNE and ESE. The ESE density is attributed to Pulse 1, NNE to Pulse 2, W – WNW to Pulse 

3, and N to Pulse 4 (defining the eruption ‘directions’ in Table 3). The second pulse must 

have been directed at a similar angle and eastern direction to be masked by the first larger 

pulse. 

 

 

Figure 12. Acoustic data highlighting the start of six coherent phases. Arrows point to the pressure 

pulse onset for an initial emergent phase (0) followed by 5 impulsive pressure pulses (1 – 5) which 

are presumed to indicate the onset of eruptions (modified from Jolly et al. 2014). 
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Table 3. Eruption parameters for each of the five pulses.  

 

The model requires vent area and location as a control on the ejection of particles (termed 

by Tsunematsu et al. as the displacement of ejection points from the vent centre). Together, 

the geomorphology of the fissure area, eyewitness accounts, DEM and LiDAR mapping were 

used to infer possible vent locations.  The vent location of Pulse 1 is inferred to be at the 

eastern end of the eastern fissure, based on the eyewitness accounts. The second pulse 

originated from the eastern end of the west segment of the fissure, inferred from the 

arcuate features (potential vents) observed in the area. Lube et al. (2014) and Procter et al. 

(in press) also note crater-like features within the western fissure. Consistent with a low 

angled jet (from horizontal), as described by eyewitnesses, Pulse 3 is proposed to have 

originated from the top of the debris avalanche scarp where it meets the western fissure, 

where a small depression can be seen in the DEM (Procter et al. in press). To achieve such a 

low angled jet (from horizontal), as described by eyewitnesses, the vent had to be located 

outside the fissure to not be hindered by the fissure walls. Subsidence may have 

accompanied this pulse and helped to form the western end of the fissure. Based on the 

eyewitness accounts and differential LiDAR, Pulse 4 originated from Upper Te Maari crater 

(Procter et al. in press). The location of Pulse 5 is discussed later.  

 

3.4.4.1.2  NUMBER OF ERUPTED PARTICLES 

The number of erupted particles, important in controlling the impact crater density, was 

based on the number of impacts mapped from both the orthophotos and through ground-

truthing. Two discrepancies are apparent from the earlier analyses: 
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1. The ground-truthed distribution underestimates the occurrence and number of very 

large craters (no craters >6 m in diameter were found), though craters up to 10.8 m 

in diameter were mapped on the orthophotos (Figure 10C). 

2. The orthophoto distribution underestimates the occurrence and number of very 

small craters (only 19% of craters are <1.5 m in diameter, compared to the 74% 

found ground-truthing; Figure 10C). 

To correct these discrepancies and approximate the true number of particles ejected, the 

frequency and size distribution data is combined from each of the mapping techniques 

(Figure 10C). Confidence is placed in the relative abundance of craters >2.5 m mapped on 

the orthophotos (which is estimated as a conservative lower bound for which craters can be 

identified correctly on the orthophotos) and also in the relative abundance of all ground-

truthed craters <2.5 m in diameter. Therefore the relative ratios of the number of ground-

truthed craters <2.5 m in each size bracket (e.g. 0 – 0.5 m) to the number of ground-truthed 

craters in the 2.5 – 3 m size bracket can be calculated. These ratios can then be used to 

recalculate the number of mapped orthophoto craters in the 0 – 2.5 m diameter range by 

multiplying each ratio by the number of craters mapped using the orthophotos in the 2.5 – 3 

m size bracket (Figure 10C). This results in a total of 13,243 ballistics ejected in the August 

eruption. 

 

The number of particles ejected in each pulse is defined in this model by the acoustic energy 

(Figure 12). The acoustic amplitude is assumed to reflect eruption energy, with the relative 

energy reflecting the relative number of particles ejected. For example, the third pulse was 

the largest and expended ~50% of the eruption energy, and is therefore assumed to have 

ejected 50% of the total number of ballistics (defined in ‘Number of particles per burst’ in 

Table 3 as 6621). Another way to calculate the eruption energy for each pulse is to use the 

power law relationship (in which the vent area is related to the eruption energy) defined 

and used by Goto et al. (2001) and Lube et al. (2014). However, as there is not a high degree 

of certainty surrounding the proposed vent areas, this method was not applied and instead 

the acoustic energy method was used. 
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3.4.4.1.3   PARTICLE DENSITY AND DIAMETER 

Particle density and diameter are important controls on the transport of the erupted 

particles. In the field, four main block lithologies (dense andesite lava, vesicular scoria or 

lava, polylithic breccia, and angular intermediate density andesite lava) were observed and 

sampled. Density measurements were taken of each type and assigned to the appropriate 

blocks mapped in the field (c.f. Breard et al. 2014). A mean density (weighted by occurrence) 

calculated from all mapped blocks (2,170 kg/m³), and the standard deviation (386 kg/m³), 

were used for the model particle density (Table 3). The mean (0.36 m) and standard 

deviation (0.23 m) particle diameters of all whole blocks found in the field were used (Table 

3). These particle diameters are consistent with the mean block diameter (0.38 m) found 

using the approximate mean corrected crater diameter (1.2 m) and the relationship from 

Figure 11.  

3.4.4.1.4   ROTATION ANGLE 

Rotation angles (angle of particle ejection from vertical) for the five pulses were estimated 

from the eyewitness accounts and mapped crater distribution.  Proposed angles were tested 

until the model runs matched the mapped distribution. The mapped crater distribution 

shows a slightly higher density of craters towards the north, indicating that the near vertical 

Pulse 4 was likely ejected at a slight northward angle (~20°). Pulses 1 and 3 correspond to 

the directed blasts identified by the eyewitnesses. The area of higher crater density found to 

the WNW (Pulse 3), has a best fit rotation angle of 70°.The area of increased crater density 

in the ESE (Pulse 1) has a best fit rotation angle of 30° toward the ESE. The inferred Pulse 2, 

not witnessed by the local residents, likely had a rotation angle close to that of Pulse 1 for it 

to have been obscured by the preceding pulse. An angle of 45° is therefore suggested as this 

then reproduces the slightly protruding NNE edge of the ballistic field. 

 

3.4.4.1.5   INCLINATION ANGLE 

The inclination angle (defined in the Tsunematsu model as the standard deviation of the 

rotation angle) is significant in controlling the lateral spread of the impacts.  It was initially 

estimated, based on the concept that a wider distribution of ballistics from an eruption 
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pulse implied a larger inclination angle. The value was then iteratively refined by fitting the 

model to the mapped crater distribution. Best fit was achieved by assigning all pulses an 

inclination angle of 10°, with the exception of Pulse 3 which had a wider area of distribution 

and was assigned a 20° inclination angle (Table 3). 

 

3.4.4.1.6   PARTICLE COLLISIONS 

Inter-particle collision can cause a change in particle trajectories, and in particular, travel 

distances (Tsunematsu et al. 2013). The transfer of momentum when a larger particle 

collides with a smaller particle can cause the smaller particle to travel further than its 

original trajectory. Tsunematsu et al. (2013) found that particles travelled further when only 

1 – 2 collisions occurred (more than this caused the opposite effect) and when there was a 

significant difference in mass between the colliding particles, the smaller particles travelled 

further and faster. Particle size was found to have increased with distance in the 1977 

eruption of the Ukinrek Maars, Alaska, and the August 1997 eruptions at Soufriere Hills, 

Montserrat (Self et al. 1980; Druitt et al. 2002). Field observations from the August eruption 

showed a general increase in crater size with distance, though smaller craters were found at 

similar distances from the vents as larger craters. Therefore particle collision is proposed as 

a factor influencing particle distribution. To test the effect of particle collisions, two 

simulations were run comparing the effects of collision and no collision. As expected, 

smaller particles travelled further in the collision-included model, resulting in smaller mean 

crater sizes distally than those modelled without collision. In the case with particle collision, 

the most distal particles also travelled ~100 m further than those modelled without 

collision. After demonstrating that particle collisions were an important factor in the 

modelled impact distributions, all subsequent model runs included collision by default. 

3.4.4.1.7   INITIAL PARTICLE VELOCITY (Vi) 

The initial particle velocity, together with rotation angle, is significant in controlling the 

radial extent of particles. To determine the velocity, varying speeds (100 – 400 m/s) were 

tested (incorporating both a mean and standard deviation) and the outputs compared with 

the mapped distribution. The results from two model runs with initial particle velocities of 

200 m/s (Figure 13A) and 400 m/s (Figure 13B) are presented, highlighting substantially 
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different results. The 200 m/s run produced a more confined spatial distribution than that 

seen in the field, where only the outlying particles reached the TAC. Particle velocity was 

then increased to 400 m/s, which produced a spatial distribution that generally matched the 

mapped distribution, except for the halo of minimal impacts around the vents. However, 

these initial models assumed particle ejection into a still atmosphere in which displacement 

of surrounding air or coupling with the gas rich jet phase was not incorporated (Fagents and 

Wilson 1993; Bower and Woods 1996).  

 

3.4.4.1.8   GAS FLOW VELOCITY (Vg) AND DISTANCE OVER WHICH THIS AFFECTS PARTICLE 

TRANSPORT 

 

Gas flow velocity and the point where ballistic particles decouple from the eruption column, 

are important controls on the lateral and radial distribution of the impacts. It is assumed 

that on eruption the ballistics and gas jet are ejected at the same velocity (i.e. completely 

coupled) but that the jet velocity then decreases while the ballistics continue to travel faster 

than the expanding jet due to inertia (the jet and ballistics are partially coupled).  Therefore, 

the relative drag acting on the ballistic particles increases with time.  At some point, the 

particles exit the gas flow completely and are decoupled from this for the rest of their 

trajectory.  

Because the August eruption happened at night, particle and gas flow velocity could not be 

determined using visual observations. Instead, it needed to be approximated using eruptive 

features and deposits. Initial model runs assumed eruption into a still atmosphere. To 

improve the subsequent runs a gas flow function was added that reduced the drag acting on 

the particle during transport.  Since the true value of the gas flow velocity is unknown, and 

also decreases with time and distance from the vents, a mean value was estimated from the 

initial particle velocity and the approximate initial pyroclastic surge velocity. The 

approximate initial pyroclastic surge velocity and the distance from where it was initiated 

determines the final gas-flow velocity acting on the ballistic particles, and also the radial 

distance from the vents at which complete decoupling occurs (after which the particles 

follow entirely ballistic trajectories). Lube et al. (2014) determined initial surge velocities 

(final gas flow velocity) of up to 100 m/s with the surges initiating between 100 – 1,000 m 
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from the vents. An approximate initial average particle velocity of 200 m/s and an average 

gas flow velocity of 150 m/s over a 400 m radius (the effective gas flow radius applied in this 

model) from eruption to surge initiation (at which point it is assumed the ballistics are 

completely decoupled from the gas flow) best fit the mapped crater distribution (Figure 

13C). 
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Figure 13. Spatial and size distribution of impact craters from: A: modelled eruption using a 200 m/s mean initial particle velocity. B: modelled eruption using a 400 m/s mean initial particle 

velocity. C: Best fit modelled eruption with 200 m/s mean initial particle velocity coupled with 150 m/s average gas flow velocity. D: Mapped orthophoto distribution (significantly 

underestimating the true dispersal) from 6 August, 2012 eruption of Upper Te Maari (Figure. 9A). Detailed data from models is available in Appendix B (c – e). 
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Though the run with an initial particle velocity of 400 m/s fitted the mapped distribution 

relatively well, it did not include the effects of ballistic and jet coupling (as proposed by 

Bower and Woods 1996), thus the combination of a 200 m/s initial particle velocity, 150 m/s 

average gas flow velocity over a 400 m distance and the other aforementioned parameters 

(Table 3) produced the best fit (based on visual comparison) with the mapped distribution. 

In order to reduce the number of variables in the model runs, the same velocity (both initial 

particle and gas flow) and standard deviation is assumed for all pulses. The best fit is 

presented within this constraint.  

Particles in the best-fit model reach the same distances as the orthophoto mapped 

distribution and a radial area of minimal deposition (of predominantly larger impacts) 

surrounding the vents was produced – a feature also noted in the analysis of the mapped 

distribution. This feature is attributed to the coupling of the gas flow and ballistic particles 

which reduces the drag acting on particles and carries the particles further before 

deposition. De’Michieli Vitturi et al. (2010) also noted an increase in travel distance with the 

inclusion of a background flow field in their modelling. The modelled Pulse 1 represents the 

poorest fit to particle travel distance. For this pulse the minimum modelled particle travel 

distance is greater than the mapped distribution in the area. This may indicate that it had a 

slower velocity than the other pulses, and in the case of Pulse 1 the assumption of similar 

velocities of the different pulses may not be ideal. However, this would require many more 

model runs and Monte Carlo modelling to confirm.  

The best-fit parameters outline the most appropriate scenario based on the available 

independent data, observations and the 49 inverse models run investigating initial particle 

velocity, gas flow velocity, angle of particle ejection, and eruption directionality. Future 

ballistic modelling (using this model) would benefit from more quantitative analyses and 

Monte Carlo analyses to confirm these findings. The best fit parameters for the 6 August, 

2012 Upper Te Maari eruption are presented in Table 3. 

In summary the results of the study show: 

1. The impact crater size and count is significantly underestimated considering only 

orthophoto data.  
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2. Impact crater density and the shape of the ballistic field support multiple eruption 

pulses and directions consistent with observations. 

3. Parameterised Tsunematsu modelling including the effect of drag on particles and 

entrainment with the gas flow reproduces the spatial distribution including ballistic 

field asymmetry and a proximal halo of low impact density. 

3.5 DISCUSSION 

3.5.1 MAPPED BALLISTIC IMPACT DISTRIBUTION 

The variation in mean crater size at varying azimuths from the vents possibly reflects 

different sources and sizes of eruption. Breard et al. (2014) describe the fissure walls as 

being composed of beds of poorly sorted breccias, diamictons and agglutinates that vary in 

the size of the clasts (up to 1 m in diameter blocks at the saddle between the western and 

eastern segments of the fissure), thickness, lateral extent and degree of hydrothermal 

alteration. The inner wall stratigraphy of Upper Te Maari Crater is described by Hobden 

(1997) as composed of an upper bedded tuff breccia underlain by a massive mega-block tuff 

breccia with lithics <2 – 3 m in diameter.  It is possible that the variation in the mean crater 

sizes reflects the local deposit properties at each of the eruption source localities: Upper Te 

Maari Crater is likely the source of Pulse 4 which produced the northern ballistic field; and 

Pulses 3 and 5 likely originated from the western segment of the fissure, producing the 

western ballistic field. A large directed blast is thought to have produced the W-NW ballistic 

distribution, with a smaller eruption pulse from Upper Te Maari crater the source of the 

northern section of the field. The blocks that produced the W-NW impact field also likely 

experienced more fragmentation from the larger, more explosive eruption, than those in 

the north of the field. This is consistent with experimental results that show larger eruption 

energies produce smaller grain-sizes (Kueppers et al. 2006).  

3.5.2 EFFICIENCY OF EXPLOSION ENERGY CONVERSION INTO BALLISTIC KINETIC ENERGY 

The presented field and modelling results can be taken further to help constrain energy 

conversions during hydrothermal eruptions. The crater diameter frequency distribution 

(Figure 10C) and the empirical relationship of crater diameter vs block size (Figure 11) can 
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be combined with the total number of ballistics to compute a block size frequency curve and 

the total numbers of blocks for each size interval. Using the mean particle density, the total 

ballistic mass can be constrained to ~1.2x106 kg. The total kinetic energy expended by the 

ballistics can then be calculated using the initial particle velocity of 200 m/s, resulting in a 

total of 1.7x1010 Nm. This is roughly 0.1% of the bulk explosion energy released during the 

eruption (c.f. Jolly et al. 2014; Lube et al. 2014). In comparison, the efficiency of energy 

conversion into the kinetic energy of the blast-like surges is almost an order of magnitude 

higher. 

3.5.3 BALLISTIC TRAJECTORY MODEL  

Model parameters for four pulses of eruption have been presented; however, the proposed 

best-fit model includes the impact distributions from five eruption pulses. The 5th pressure 

pulse distinguished by Jolly et al. (2014) is preceded by a negative release of energy before 

releasing ~5% of the total eruption energy (Figure 12). They suggest the negative release 

may be the result of subsidence in the vent region or the entrainment of air into the 

eruption column from the 4th pulse. The 5th pulse was not observed by the eyewitnesses, 

like the 2nd pulse, and no evidence of an associated surge has been found (though a surge 

may not have been produced in this instance). Nevertheless, in this analysis the mapped 

distribution could be best reproduced by including all five of the eruption pulses and 

assuming each produced ballistics. Without the ejection of ballistics in Pulse 5, the south-

western extent of the ballistic field could not be reproduced. An increased crater density in 

the WSW – SW indicates a slightly angled blast (Figure 9) and subsequently an ejection angle 

of ~20° produced the best fit in the Tsunematsu model. The final (5th) event in the sequence 

is thought to have originated from the middle of the western segment of the fissure, where 

a vent-like feature is observed missing material. 

Given the good correspondence between the modelled parameters and the observed 

ballistic data, the new model can be utilised for assessing the ballistic hazard from future 

eruptions. In the next section, the calibrated model is applied to two eruption scenarios for 

the Upper Te Maari vent region, and the potential vulnerability from such eruptions to 

hikers on the TAC is examined. 
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3.5.4 APPLICATION OF THE CALIBRATED MODEL TO FUTURE BALLISTIC HAZARD FROM 

UPPER TE MAARI 

Analysis of future ballistic hazard and vulnerability along the TAC is possible through the 

application of the calibrated Tsunematsu model. Risk assessments completed following the 

2012 eruptions considered three possible future eruption scenarios: (1) a smaller eruption, 

based on the November 2012 event, (2) an eruption of the same size as the August 

eruption, and (3) a magnitude larger eruption (Jolly and Taig 2013; Jolly et al. in press). This 

approach is followed in this study, analysing the particle distribution from each of the 

scenarios modelled. Magnitude, in this case, defines the quantity of ballistics produced e.g. 

a magnitude larger scenario produces 10 times the number of ballistics than the August 

eruption (reflecting an increase in eruption energy). Accompanying this is an increase or 

decrease in both initial particle and gas velocities, as well as flow radius. Applying a 

frequency-magnitude split of the earlier determined, more simplistic, average frequency of 

eruption (0.15 per year) to estimate the probability of occurrence in the next year of the 

three possible future scenarios, produces probabilities of 0.139, 0.01 and 0.001 respectively. 

A smaller eruption, based on the 21 November, 2012 eruption of Upper Te Maari, was 

modelled to analyse the hazard associated with smaller eruptions (Figure 14A). In this 

scenario, only one eruption pulse was generated, from Upper Te Maari Crater. Ten times 

fewer particles than the August eruption were modelled, at speeds of 100 m/s based on 

particle velocities from the 1988 - 89 Tokachidake, Japan eruption (with an eruption mass an 

order of magnitude less than the August eruption; Yamagishi & Feebrey 1994; Woods 1995; 

Breard et al. 2014 and Procter et al. in press). Particles were ejected vertically, with a 10° 

inclination angle, similar to the eruption column seen in the November eruption. Video 

analysis of the 21 November eruption showed finger jets extending up to ~300 m above the 

vent before being enveloped in the ash column likely representing the point of block 

decoupling and reflecting a 300 m gas flow velocity radius for the scenario modelled. A 75 

m/s average gas flow velocity was applied in this model, averaged from surge velocities of 

40 – 90 m/s from similar sized eruptions of Soufriere Hills (Calder et al. 1999) and the 

aforementioned 100 m/s initial particle velocities.  
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Figure 14. Impact crater distributions from possible future eruption scenarios modelled using the 

Tsunematsu et al. (2013) ballistic trajectory model (see Appendix B (f – g) for detailed data). A: 

Impact crater size distribution of a smaller eruption similar in size to the November 2012 eruption, 

with a 100 m/s average initial particle velocity coupled with a 75 m/s average gas flow velocity over 

a 300 m distance. B: Impact crater size distribution of a magnitude larger eruption from Upper Te 

Maari, with an average initial particle velocity of 400 m/s coupled with an average gas flow velocity 

of 250 m/s over a 600 m distance. 
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In the magnitude larger scenario (Figure 14B) all but three of the eruption parameters 

remained the same as those modelled in the August eruption, as a multiple pulse eruption 

with directed blasts towards the TAC is also likely in the future. The number of particles 

ejected in this scenario was increased tenfold (from the August impact estimate) to match 

the increased eruption magnitude. Initial particle and average gas flow velocities were also 

increased, to 400 m/s and 250 m/s respectively. Fagents and Wilson (1993) report particle 

velocities of up to 400 m/s from the magnitude larger 1968 eruption of Arenal volcano (an 

estimated 2±1 x 106 m³ of material was erupted, compared with the 6.3 x 105 m³ excavated 

from the fissure and Upper Te Maari Crater) and accordingly was the value applied in the 

model. Gas flow velocity in this scenario was derived from a surge velocity of 100 m/s and 

an initial particle velocity of 400 m/s. Surge velocities of the 1997 Soufriere Hills eruptions 

(analogous in size to the proposed scenario) ranged up to 90 m/s (Calder et al. 1999). 

Although the August Upper Te Maari eruption was smaller in size than those of Soufriere 

Hills, surge velocities are thought to have been up to 100 m/s, thus the faster 100 m/s surge 

velocity was adopted (Lube et al. 2014). As the distance at which the gas flow no longer 

influences ballistic trajectory is difficult to estimate and observations of distances of 

decoupling are rare, a value (600 m) was applied, in line with those found from  modelling of 

clasts coupled with a carrier flow field in de’ Michieli Vitturi et al. (2010).   

Like the 21 November eruption, the smaller model scenario poses no ballistic hazard to the 

TAC, with ballistics falling well short of the track. However, the particle distribution from the 

larger eruption scenario is much denser and more widespread than the August 2012 

eruption (Figure 14B) due to the increased particle number. A greater proportion of the 

track is inundated with ballistics, increasing the area of ballistic hazard and risk. Both of the 

eruption scenarios display the halo of minimal deposition proximal to the vents, though a 

wedge radiating toward the west in the larger scenario shows greater deposition due to the 

low ejection angle of Pulse 3 (70° from vertical). Only larger craters are visible within the 

halo of the smaller scenario, suggesting that the larger ballistics followed paths uninhibited 

by coupling with gas flow, with smaller particles carried further before deposition due to gas 

flow entrainment – a feature not observed in the faster velocity models. Further 

investigation is needed to understand the relationship between particle size, the distance 

travelled and the velocity of the gas flow. 
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 3.5.5 BALLISTIC VULNERABILITY ALONG THE TONGARIRO ALPINE CROSSING  

The impact distributions from the 6 August eruption and the scenarios modelled here 

highlight the significant ballistic hazard to the TAC. Around 80,000 people walk the track 

each year, therefore a key risk management task following the August eruption was to 

calculate the probability of a person being in an area where a ballistic would cause serious 

injury or death along the impacted length of the TAC (henceforth the probability of 

casualty), from possible future eruptions. In their risk assessment, Jolly and Taig (2012) 

calculated the probability of fatality for the area of track next to Ketetahi Hut. A 7 m² radial 

area of impact hazard was calculated from a block 1 m in diameter, considering only the 

hazard from crater formation. This calculation was revised in this study, using the average 

crater diameter found in the field; including the hazard of block fragmentation and 

production of shrapnel assuming a person is standing at the edge of the crater; and 

incorporating the hazard along the ballistic flight path prior to impact as impact angles 

measured were as low as 30° from horizontal.    

For the analysis in this study, the area of ballistic hazard (within which 100% casualty is 

assumed) was calculated using the average crater size (1.2 m found from ground-truthing) 

and average impact angle (59° from horizontal) produced by the August eruption, to find a 

mean ballistic hazard area of 8 m² per impact (Figure 7B). This value was then divided by the 

varying impact densities along the TAC to generate conditional probabilities of casualty from 

each specific eruption scenario (assuming an eruption during the time of exposure). Using 

the orthophoto mapped August eruption densities as an example, the first major bend in 

the TAC south of Ketetahi Hut is found to be located in an area with an impact density of 

3,000 – 4,000 per km² (Figure 9B). This is converted into m² resulting in 1 impact per 333 m² 

and 1 impact per 250 m² respectively. The probability of casualty can then be calculated, 

producing a probability along the TAC beside Ketetahi Hut of 0.02 – 0.03 or up to 3% (8/333 

= 0.02; 8/250 = 0.03). 

The probability of casualty from ballistic strike along the TAC is presented from the mapped 

distributions, modelled distributions, and the two eruption scenarios (Figure 15). The 

highest probabilities of being struck are located on the first bend south of Ketetahi Hut in all 

but the magnitude larger scenario. At this location, the probability of casualty is 2 to 3% 
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(calculated above) from the orthophoto distribution (Figure 15A). When scaled up to match 

the ground-truthed impact densities (rounded to a scaling factor of 4 from Table 2), 

probabilities increase up to 16% (Figure 15B). The best fit model distribution exhibits 

probabilities of casualty similar to that of the scaled mapped distribution, reflecting the 

models ability to reproduce the observed impact distributions (Figure 15C). The difference 

between the orthophoto probabilities and the scaled and modelled probabilities is owed 

directly to the underestimation of the ballistic density using an ‘orthophoto only’ approach. 

Hence a clear outcome of this work is to emphasise the importance of both high resolution 

orthophotos and ground-truthed data within a sophisticated ballistic modelling paradigm.  

 

Figure 15. Ballistic vulnerability or probability of casualty assuming an eruption during the time of 

exposure, along the Tongariro Alpine Crossing calculated using the impact densities from: A: 

Orthophoto mapping; B: Orthophoto impact densities scaled to those observed in the field 

comparisons; C: Best-fit model of August eruption; D: Magnitude larger eruption scenario. 

In the smaller eruption scenario, casualty by ballistic strike on the TAC would not occur, as 

ballistics did not travel further than ~700 m from the vent. In contrast, the impact densities 

along the affected TAC in the larger eruption scenario are so high that the probability of 

casualty reaches 100% (along a 150 m length north and 75 m length south of Ketetahi Hut). 
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Additionally, the length of the TAC located within the ballistic impact field in this scenario 

increased by 50% from 2.6 km found in the August eruption, to 5.2 km (Figure 15D). It must 

be emphasized that the scenarios modelled are only two possibilities out of countless 

potential eruption scenarios, and that slight changes in the eruption parameters modelled 

(such as number of ejected particles or direction of the blast) can drastically change the 

impact density and, consequently, the probability of casualty. The ballistic trajectory model 

therefore is an important tool in assessing future ballistic hazard and risk from Upper Te 

Maari. 

3.6 SUMMARY 

The 6 August 2012 hydrothermal eruption of Upper Te Maari Crater, Tongariro ejected 

blocks over a 6 km² area in which ~2.6 km of the Tongariro Alpine Crossing is located. The 

distribution of ballistic impact craters was mapped through a combination of orthophoto 

analysis and field surveys. With the application of a new ballistic trajectory model to the 

mapped distributions, monitoring data and eyewitness accounts, eruption parameters were 

constrained and the August ballistic distribution successfully reproduced. The model, now 

calibrated with the 6 August eruption, was used to assess future ballistic hazard from Upper 

Te Maari and the probability of casualty during these eruptions.  Conclusions from this 

chapter are presented in Chapter 5. 
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CHAPTER 4: LIMITATIONS AND FUTURE WORK  

Chapter 4 discusses the limitations of the research presented in Chapter 3.  It also discusses 

opportunities for future research directions.   

 

Volcanic risk assessments require often detailed hazard and vulnerability information to 

produce a credible result.  Simple assessments require minimal inputs, but have high 

uncertainties.  As society demands greater responsiveness, functionality and transparency 

for volcanic risk assessments, and volcanologists improve their understanding of hazardous 

processes, there is the opportunity to improve the accuracy of the risk assessments. 

However, this requires risk models to become increasingly sophisticated.  They rely on 

models (numeric, empirical or statistical) to forecast the extent and intensity of hazards; and 

on detailed vulnerability information, including temporal and spatial location of assets and 

asset’s performance when exposed to different hazard intensities (i.e. fragilities).  However, 

as with all scientific studies there are limitations to what data can be collected or is 

available, of our understanding of how processes influence system results and the 

performance of models replicating a real system or process.  

 

The following paragraphs outline and discuss limitations of the research undertaken in this 

study and identify how future research opportunities can address some of these limitations. 

 

4.1 BALLISTIC MODELLING. 

As with any numeric model, limitations are based on the accuracy of the input parameters 

and the assumptions made in the mathematics of the model, many of which were discussed 

in Chapter 3. However, the well constrained best fit ballistic distribution in comparison with 

the mapped distribution gives confidence in the models assumptions and inputs (Section 

3.4.4.1.8). 

 

The ballistic model required a number of input parameters to produce a ballistic distribution 

that could be compared to the mapped distribution, constraining eruption parameters and 

calibrating the model (Section 3.4.4.1). Inverse modelling produced a best-fit scenario of all 

eruption parameters that matched the mapped distribution. One assumption of the 6 
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August best-fit scenario which could be improved on by further modelling is that all 

eruption pulses were erupted at similar mean velocities. The best fit distribution (Figure 

13C) illustrates that this assumption was valid for Pulses 2 - 5 as these distributions 

relatively fit the mapped distribution, however, Pulse 1 does not. The modelled Pulse 1 

distribution has a greater minimum travel distance than the mapped distribution, either due 

to the modelled average initial particle velocity being too high or the rotation angle being 

too shallow. Eyewitnesses stated Pulse 1 was ejected at an angle <45° from vertical, so 

accordingly steeper angles between 30° (the best fit angle) and 20° were tested (angles <20° 

were considered too close to vertical) though these did not improve the fit of the 

distribution. Therefore, particle velocity was the parameter attributed to the inconsistent 

distribution. In future when calibrating mapped distributions with modelled scenarios, 

velocity should be tested separately for each pulse, rather than assuming all pulses were 

erupted at the same velocity. However, time constraints invoked by computing time limited 

the number of models that could be run in this study. 

 

Another limitation of the best fit scenario is that a semi-quantitative deterministic approach 

was taken to determine eruption parameters. Though variations of each parameter were 

tested (49 models in total), it was not done systematically, quantitatively or statistically, 

rather best fit was determined from visual comparison. To support and confirm these 

findings probabilistic analyses, such as Monte Carlo analyses, need to be completed. This 

was not possible in the available timeframe, though is the goal of future work. 

 

Many models prior to 1990s overestimated particle velocity assuming ballistics were ejected 

into a still atmosphere. As ballistics are initially partially coupled with the expanding jet, 

drag on particles is reduced until decoupling from the jet (Section 2.6). To introduce a zone 

of reduced drag around the vent, as included in previous models, two functions were added 

to the model: an average gas flow velocity and the radius over which the gas flow acts to 

reduce the drag (partial coupling of the gas flow with the ballistics) (Section 3.4.4.1.8). These 

functions, however, carry a limitation. They assume that the expanding gas flow travels at a 

constant velocity, though slower than the particle velocity, throughout a designated 

distance of reduced drag. This is not realistic as it is widely accepted that the gas flow and 

entrained ballistics are coupled initially, travelling at the same velocity, progressively 
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decelerating and decoupling. Ballistics retain much of their momentum while the gas jet 

decompresses and decelerates at a faster rate (Fagents and Wilson 1993; Bower and Woods 

1996; Mastin 2001). Future use of the model would benefit from the introduction of a gas 

flow velocity decay rate or, alternately, a drag increase rate rather than set distances and 

speeds at which the gas interacts with the particle. This is ongoing work with Kae 

Tsunematsu, the creator of the model, which will introduce this code into the model. 

 

4.2 HAZARD PROCESS 

In situations where only impact craters can be easily mapped as blocks may have shattered 

on impact or cannot be found (as was the case for this study), approximations of ballistic 

size may be made from crater size using a relationship between the two (Section 3.4.3). 

Investigations into whether a relationship could be found between block size and crater size 

found a weak power-law relationship from a broad spread of data. It became apparent that 

there may have been two trends in the data, one between 0 and 2 m crater diameter, and 

the other >2 m, though only one relationship could be applied to the data (the overall 

relationship). Block lithology/density was thought to be controlling the different trends, 

however this could not be confirmed (Type 2 blocks only created craters <2 m from the 

locations sampled, though Type 1 produced craters between 0 and 6 m in diameter). Future 

work on this relationship should investigate the effect substrate type and strength as well as 

vegetation type and thickness has on crater size and whether this could explain the two 

relationships found. An experimental set up including a pneumatic “volcano canon” has 

been developed at the University of Canterbury to investigate these parameters. More data 

points on the lithology and crater size would also be beneficial to further constrain this 

relationship. 

 

4.3 VULNERABILITY 

Calculations of vulnerability of hikers along the TAC included the area of hazard from an 

individual ballistic (section 3.3.4). A component of this area of hazard is a debris/shrapnel 

apron (Figure 7). It is proposed that serious injury or death could occur in this radius from 

pieces of shattered ballistic (secondary ballistics) or ejecta from the crater though the extent 

of potential injuries or threshold at which this would occur is not known. Further research 
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and experimentation is needed to quantify the speed and energy of the shrapnel as well as 

at what speeds and pressures cause injury or death. The new experimental apparatus at the 

University of Canterbury has also been designed to assess this. 
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CHAPTER 5: CONCLUSIONS 

Chapter 5 presents conclusions of this thesis.  It primarily draws from the research 

presented in Chapter 3, but also the wider context of volcano risk management as 

presented in Chapters 1 and 2. 

 

In this study ballistic hazard from Upper Te Maari Crater, Tongariro is assessed through: 

1) A review of ballistic distributions mapped around volcanoes. 

2) A review of the eruptive history of Upper Te Maari and its eruptive styles and 

frequencies. 

3) Field and orthophoto mapping of the 6 August, 2012 ballistic impact crater 

distribution. 

4) Calibration of the Tsunematsu ballistic trajectory model using the 6 August ballistic 

impact distribution, and refinement of eruption parameters through inverse 

modelling. 

5) Forward modelling of three possible future eruption scenarios using the calibrated 

Tsunematsu model. 

6) Vulnerability analyses along the Tongariro Alpine Crossing, incorporating variations 

in ballistic impact density along the impacted track. 

The size, shape and density of the ballistic impact field are critical pieces of data for a 

ballistic hazard assessment. The review of ballistic distributions from volcanoes around the 

world showed that in most cases the distribution of ballistics from individual eruptions are 

strongly asymmetric around the vent from directed eruptions and the density of impacts is 

rarely reported.  

The Te Maari vents have been the source of large Plinian eruptions in the past, though 

newspaper articles and early notes from local observers and scientists have shown that the 

recent history of Upper Te Maari has been dominated by small hydrothermal or 

phreatomagmatic events. An average frequency of eruption of 0.15 per year was calculated 

using all 22 historical eruptions over 145 years.  

Orthophoto analysis and field mapping revealed that a 6 km2 asymmetric ballistic impact 

field was produced in the 6 August, 2012 eruption of Upper Te Maari. Multiple pulses of 
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eruption varying in directionality were witnessed by nearby residents, noted in the acoustic 

record and supported by the ballistic field’s asymmetry and areas of increased impact crater 

density in the W - NW, N - NNE and ESE. Initial analysis of orthophotos taken after the 

eruption located 3,587 impact craters, though ground truthing of selected sites revealed this 

an underestimation with the number of ejected ballistics found to be on average 

approximately four times greater (~13,200). This was in large part due to resolution limits of 

the orthophotos in which craters <2 m in diameter proved difficult to identify. 

Eruption parameters were constrained and the August ballistic distribution successfully 

reproduced with the application of a new ballistic trajectory model to the mapped 

distribution, combined with monitoring data and eyewitness accounts. An average initial 

particle velocity of 200 m/s partially coupled with the expanding jet over a 400 m distance, 

travelling at, on average, 150 m/s was found to produce a ballistic distribution that best fit 

the mapped distribution. The inclusion of a gas flow velocity function produced a zone of 

reduced drag around the vent and recreated the vent proximal radial zone of minimal 

impacts seen in the mapped distribution. This suggests that the initial entrainment of 

ballistics in the expanding jet is an important parameter in the vent-proximal transport of 

ballistic particles. Now calibrated, the model was used to assess two additional possible 

scenarios of future ballistic hazard.  

A smaller eruption similar in size to the November 2012 eruption and a magnitude larger 

eruption (than the 6 August) were modelled to assess ballistic hazard from a range of 

possible future eruption sizes. Ballistics ejected in the smaller eruption did not reach the 

TAC, posing no hazard to hikers. The length of TAC inundated with ballistics increased by 

50% to 5.2 km in the larger scenario, with tens times more ballistics ejected than the August 

eruption.  

As ~80,000 people hike the track each year, vulnerability analyses were included in the 

hazard assessment. Probability of casualty (serious injury or death) along the impacted TAC 

(assuming eruption during time of exposure) ranged up to 0.16 or 16% in the modelled 

August eruption and reached 100% near Ketetahi Hut in the larger scenario.  

The capability of the calibrated model to create and model future ballistic hazard scenarios 

and produce distribution maps to allow comparison with eruption distributions is therefore 
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a powerful tool that can be used to improve management of ballistic hazard and risk at 

Upper Te Maari as well as at other volcanoes worldwide. 
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APPENDICIES  

APPENDIX A: VOLCANIC HAZARD MAPS AS A MEDIUM FOR HAZARD ASSESSMENTS 

Volcanic hazard maps have been used for many years to assess and present actual and 

potential hazards (Sparks et al. 2013). Maps may present a single hazard or an 

amalgamation of hazards, depending on the need and use of the map. The level of detail in 

hazard maps can vary, depending on location and accessibility, available data, the needs of 

the audience and time (whether it is a crisis or non-crisis situation). For example in a crisis 

situation where ongoing eruptions are likely, the need for in depth hazard analysis may be 

superseded by the need for a rapidly produced, easy to understand multi-hazard map 

suitable for the general public. Whereas, a hazard map produced with greater time in a non-

crisis event, designed to be read by scientists, will be more in-depth including modelled 

scenarios, probabilistic assessments and may be specific to a particular hazard. 

 

Volcanic hazard maps may be prepared using various components including: (1) field 

surveys, aerial photo and remote sensing analysis of the geology, topography and the 

nature and extent of hazards; (2) review of historical data including scientific reports and 

articles, books, site investigations, maps, photos and media reports for hazardous events 

and their frequency and magnitude; and (3) modelling of possible future hazards based on 

past behaviour. This may be deterministic with set scenarios, or probabilistic using random 

variables to account for uncertainty such as BET or Monte Carlo analyses (Marker 2013). 

 

Maps generally use zonation as a means to distinguish decreasing areas of hazard (Sparks et 

al. 2013). They may show maximum distance (e.g. ballistics, pyroclastic flows, lahars) or 

thickness (e.g. ashfall) and probability of occurrence of one or multiple scenarios, or may 

show susceptibility (the tendency of an area to be impacted by certain hazards – not 

including the moment of occurrence or potential damage or losses; Dominguez-Cuesta 

2013), exposure (elements that may be affected by a hazardous event, usually 

encompassing temporal and spatial aspects; (Birkmann 2013)), or vulnerability. 
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APPENDIX B: ELECTRONIC APPENDIX 

- (a) Orthophoto mapped crater locations and diameters 

- (b) Raw fieldwork data 

- (c) Modelled 200m-s no flow velocity data 

- (d) Modelled 400m-s no flow velocity data 

- (e) Modelled best fit (to the 6 August eruption) data 

- (f) Modelled smaller eruption scenario data 

- (g) Modelled magnitude larger eruption scenario data 


