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Abstract 

 

An LVL-concrete composite floor (LCC) is a hybrid flooring system, which 

was adapted from a timber-concrete composite (TCC) floor system. By replacing the 

timber or glulam joists with LVL joists, the strength of the floor was increased. 

However, the demand nowadays is to build longer spans and this may reduce the 

stiffness and lead to the floor being more susceptible to vibration problems. 

While the vibration problem may not be as critical as other structural issues, 

people could feel sick and not comfortable if the floor vibrates at the resonant 

frequency of the human body. Hence, this research focuses on the dynamic behaviour 

of long span LCC flooring systems. Experimental testing and finite element modelling 

was used to determine the dynamic behaviour, with particular regard to the natural 

frequency, fn and mode shape of an LCC floor.      

Initially, a representative series of LVL-concrete composite specimen types 

were built starting from (1) full-scale T-joist specimens, (2) reduced-scale (one-third) 

multi-span T-joist specimens and (3) reduced-scale (one-third) 3m x 3 m floor. The 

specimens were tested using an electrodynamic shaker. The SAP 2000 finite element 

modelling package was used to model and evaluate the full- and reduced-scale LVL-

concrete composite T-joist experimental results. Additionally, a 8m x 7.8 m LCC floor 

was modelled and analysed using SAP 2000. The behaviour of the 8m LCC floor was 

investigated through the changing of (1) concrete topping thickness, (2) depth of LVL 

joist, (3) different types of boundary conditions, and (4) the stiffness of the connectors.  

Both the experimental results and the finite element analyses agreed and 

showed that increased stiffness increased the natural frequency of the floor, and the 

boundary conditions influenced the dynamic behaviour of the LCC floor. Providing 

more restraint increased the stiffness of the floor system. The connectors' stiffness did 

not influence the dynamic performance of the floor.  

The study outcomes were based on a 8 Hz natural frequency limitation where 

the fundamental natural frequency of the LCC floor must exceed 8 Hz in order to 

prevent vibration problems. The research showed that a 8 m LCC long span floor can 

be constructed using  LVL joists of between 300 mm to 400 mm depth with a concrete 

thickness of 65 mm for the longer spans, and joists of between 150 mm to 240 mm 

depth in conjunction with a concrete topping thickness of 100 mm for the shorter spans.  
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CHAPTER 1 INTRODUCTION 

 

This thesis considers the dynamic performance of LVL-concrete composite 

(LCC) floor systems. LCC floor systems are hybrid structures in which solid timber or 

glued laminated timber beams are connected to a concrete slab in order to develop 

composite action. The new application of laminated veneer lumber (LVL) instead of 

sawn timber or glued laminated timber can further improve the performance of the 

timber-concrete composite (TCC) system. TCC and LCC are nearly the same, but LVL 

has higher strength and reduced variability, as a more reliable engineering material.  

The composite action has to resist slip forces between timber and concrete. 

According to Ceccotti (1995), the TCC structure is distinguished by a bending stiffness 

much higher than the simple timber beam or concrete slab on their own. In comparison 

with reinforced concrete floors, the TCC floors are lighter and more sustainable. In 

comparison with timber floors, they are characterised by greater strength and stiffness, 

increased thermal mass, better acoustic separation and they are less susceptible to 

vibration.  

These systems are an innovative system of timber structures to meet the 

demand for high-performance long-span floors. However, there is still a concern about 

serviceability vibration in the case of medium to long span LCC floors. These 

serviceability vibration problems can occur due to human activities like walking, 

running and jumping, which provide a repetitive loading on the floor. When the load 

variation has the same frequency as the natural frequency of the floor, resonance can 

occur and make other users feel uncomfortable and annoyed. 

As retrofitting the floor to eliminate resonance can be quite expensive and 

difficult, the best way is to design the floor properly at the start by having an adequate 

understanding of the physical phenomena and a regard for the consequences of poor 

design. Thus, a LCC floor system has been constructed and tested at the University of 

Canterbury in collaboration with Carter Holt Harvey Wood products, a local New 

Zealand manufacturer of LVL. The performance of dynamic behaviour, natural 
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frequency and mode shape of the LCC floor was investigated. The study was continued 

by carrying out finite element modelling using SAP 2000 software to verify the 

experimental work as well as to explore the influences of concrete topping thickness, 

LVL joist depth, boundary conditions and connection stiffness. A simple design method 

proposed for predicting the response of the LCC floor, for a complicated flooring 

system is discussed at the end of this research.   

 

1.1 Aims and Objectives of the Research 

The main objective for this research is  to provide a better understanding of the 

vibration performance of LCC floors. The investigation is focussed on the dynamic 

behaviour of LCC floors, including natural frequencies, damping ratio and mode 

behaviours, and also the effect of boundary conditions.  

In order to improve the knowledge of the dynamic behaviour of LVL-concrete 

composite T-joist floors and  to provide some recommendations to control the vibration 

of these floors, the following specific research objectives were developed: 

1. Experimentally characterise the dynamic performance (specifically the natural 

frequencies, equivalent viscous damping ratios and mode shapes) of full- and 

reduced-scale LVL-concrete composite floor system beams and floors. 

2. Implement numerical finite element modelling of the tested structures, full- and 

reduced-scale beams and floors, using the results from experimental modal 

analysis to verify the models. 

3. Propose a simple design method for control of vibration at the serviceability limit 

state based on finite element modelling results. 

 

1.2  Scope of the Research 

The scope of the investigation of the dynamic behaviour of LCC T-joist 

specimens and floors covered: 

i) Experimental testing using experimental modal analysis (EMA): 



3 
 

a. Full-scale, long-span beams with a representative range of cross-section and 

shear connector arrangements and positions. 

b. Full-scale, long-span beams in order to predict the dynamic stiffness from the 

service stiffness that others have shown can be reliably calculated from the 

mechanical properties of the composite system. 

c. Full-scale, long-span beams of varying lengths to verify the predictions for a 

range of span lengths. 

d. Full-scale long-span beams with different supports in order to indentify how 

the support stiffness affected the dynamic response. 

e. One-third (dimensionally) scaled beams in order investigate how the joist 

hanger properties affect the performance. 

f. One-third (dimensionally) scaled multiple-span beams to estimate the 

junction stiffness and its effects. 

g. One-third (dimensionally) scaled multiple-span beams to investigate the 

dynamic behaviour of adjacent beams. 

h. One-third (dimensionally) scaled multi-storey beams in order to investigate 

how the coupling moment at the ends of the beams affects the performance. 

i. One-third (dimensionally) scaled multi-storey beams to study the vibration 

energy transmitted between floors above and below. 

ii) Numerical finite element modelling: 

a. Modelling of all the tested floor systems which are listed above. 

b. Modelling of full-scale floors to investigate the dynamic performance 

behaviour while changing the parameters, including the boundary conditions 

of the system. 

c.  Modelling of full-scale floors to study the relationship between the 

deflection under a 1 kN applied at mid-span and the fundamental natural 

frequency, f1, of the LCC flooring system. 
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1.3 Methodology of the Research  

In order to achieve the research objectives, a series of LCC floor specimens 

were built as follows. Details of these specimens are described in Chapters 3 and 4. 

Specimen A : 8 m x 0.6 m full-scale LCC T-joist specimen. 

Specimen B : 8 m x 1.2 m full-scale LCC T-joist specimen. 

Specimen C : 10 m x 0.6 m full-scale LCC T-joist specimen. 

Specimen D : 3 m x 0.5 m x 4 span reduced-scale LCC T-joist specimen. 

Specimen E : One-third scale LCC T-joist floor. 

Experimental modal analysis (EMA) was performed to determine the dynamic 

parameters of LCC flooring systems. An electrodynamic shaker was used to excite the 

specimens, for which the harmonic signal was supplied through a signal generator. 

Beforehand, grid lines were drawn on the concrete slab to collect the required data at 

suitable points. The number of points was selected so as to obtain the mode shapes of 

all vibration modes of interest.  

The finite element  SAP 2000 software package was utilised to model the 

specimens, to obtain the modal parameters as well as to verify the experimental results. 

Furthermore, the numerical investigations focussed on concrete topping thickness, LVL 

joist depth, boundary conditions and the overall stiffness of the system, which affect the 

modal parameters of the LCC floors.   

 

1.4 Significance of the study 

Vibration serviceability issues are a concern in the case of medium to long 

span LCC floors. The problem may be even increased when LVL is used instead of 

sawn timber, due to the relatively high ratio of strength to Young's modulus. Timber is 

characterised by a high strength to weight ratio, which leads to reduced mass, but low 

Young's modulus which leads to reduced stiffness and susceptibility to vibration 

problems. The concrete slab, in fact, is relatively thin (40 to 70 mm) and the timber 

joists are quite flexible because of the low Young's modulus of timber.   

Full assessment of long span LCC beams and floor were conducted through 

EMA and FEA procedures. The purpose of the assessment was to investigate the 
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dynamic behaviour of the LCC floor and to ensure the LCC floor met the vibration 

serviceability limitation as suggested in Euro code 5 (CEN, 2005). Thus, the main 

contributions of this research  include: 

1. The assessment was conducted with different span lengths of LCC beams. 

The results show that the longest span for an LCC beam of the dimensions 

tested in this thesis is 8 m as the fundamental natural frequency is more 

than 8 Hz. The natural frequency for a 10 m beam was found to be less than 

8 Hz. The greater deflection and rotation of the 10 m beam could be seen 

during the experimental work. Thus, a 10 m beam floor is not 

recommended unless larger LVL beams are used, possibly in conjunction 

with a thicker concrete slab.   

2. According to the parametric study on an 8m x 7.8 m LCC floor, a minimum 

concrete topping thickness is proposed based on the standard size of LVL 

joist from a manufacturer. For an LVL joist depth of 150 mm to 240 mm 

with 63 mm breath, the minimum concrete thickness is 100 mm and for 

LVL joist depth  300 mm to 400 mm with 63 mm breath, the minimum 

concrete thickness is 65 mm. This is a guide for a designer to estimate the 

size of LCC floor to meet the vibration serviceability limit.  

3. A simple design method is recommended for controlling vibration based on 

the vibration serviceability limit state. The design method is based on finite 

element modelling (FEM). The FEM was better than hand calculation in 

terms of time and difficulty, especially for complex structures.  

 

1.5 Outline of Thesis 

Eight chapters are used to present the research work in this thesis. A brief 

summary of each chapter is discussed in this section.   

This Chapter 1 gives a brief introduction to this research including the research 

background, problems, and objectives and scope of the studies. The research was 

focused on serviceability problems of LCC floors.  
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Chapter 2 discusses previous research results that focus on (1) timber-concrete 

composite floor systems and (2) floor vibrations. The discussion begins with the 

development of timber-concrete composite systems, including background details and 

development of this system by other researchers. The connection between timber and 

concrete becomes the most important part of the system. Thus, most of the studies 

focus on the shear connectors, which are made from mechanical or adhesive fasteners.   

Later, the discussions concentrate on the investigation of floor vibration, 

including timber, steel, concrete and composite flooring systems. The design of 

vibration control recommended for each type of flooring system will give guidance to 

this research to generate a new guideline for vibration control of LCC flooring systems. 

Chapter 3 represents a step by step preliminary study on dynamic performance 

of full-scale LCC floors, including the vertical vibration methodology and data 

analysis, which will give guidance to the investigations of the multi-span and multi-

storey reduced-scale LCC specimens. To verify the experimental data, finite element 

modelling used the SAP 2000 software package to generate the predicted behaviour. 

Comparisons between experimental and modelling investigations on dynamic 

behaviour are discussed later in this chapter. 

Chapter 4 describes detailed construction of reduced-scale LCC T-joist 

specimens and LCC T-joist floors. The details were implemented from full-scale 

specimens, where 4 spans of LCC T-joist specimens were built with 2.8 m span length 

for each T-joist specimen. The four T-joist specimens were connected to each other 

with timber blocks (which act as columns) and the concrete was poured on the top as a 

continuous slab, to study the dynamic performance of multi-span behaviour. Later, the 

4-span specimens were cut and stacked on top of each other to study the vibration 

behaviour of a multi-storey building. To understand more about the vibration behaviour 

on large scale flooring systems, a 3m x 3m simply supported floor T-joist floor built by 

others was tested as part of this research programme.  Later, Chapter 4 discusses the 

results of the experimental investigation into reduced-scale LCC T-joist specimens and 

LCC T-joist floors. The vibration parameters, including natural frequencies and 

damping ratios of the principal modes of the specimens were obtained. Also, the 

transmissibility of the vibration energy between spans and storeys was investigated, 

with recommendations for design and construction of real buildings. 
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Chapter 5 discusses the correlation between finite element modelling and 

forced vibration test results, including natural frequencies and damping ratios of the 

principal modes of vibration. The vibration transmissibility between spans and storeys 

was also investigated.  

Chapter 6 discusses the dynamic behaviour of a full-scale 8 m x 7. 8 m LCC 

floor. The floor was modelled using the SAP 2000 software package and the modelling 

parameters were adopted from the previous model described in Chapter 4. The 

investigations were expanded by changing some parameters, including different types 

of boundary conditions, to get a better understanding of the vibration behaviour of these 

systems.   

Chapter 7 introduces new design proposals for limiting the vibrations of LCC 

flooring systems, including a proposed step-by-step method to design the floor using 

finite element software. This guide also presents what designers should have to know 

and what not to do in the process of designing for the serviceability limit of LCC 

flooring systems.  

Chapter 8 summarises and concludes the complete work in this research 

project. The recommendations for future research, which are mainly findings from this 

project, are also provided in this chapter. 

 

 

 

 

  



 
 

 
 

 

CHAPTER 2 LITERATURE REVIEW 
 

This chapter discusses previous research that focused on timber-concrete 

composite (TCC) floor systems, and floor vibration. The discussion begins with the 

development of timber-concrete, including background details and development of this 

system by a number of researchers. The connection between timber and concrete is the 

most important part of the system, thus, most of the studies focus on the shear 

connectors, which are made from mechanical or adhesive fasteners. The new system of 

TCC by replacing traditional timber joists by laminated veneer lumber (LVL) was 

introduced by Yeoh (2008), known as an LVL-concrete composite (LCC) floor in this 

study, is also discussed in this chapter.    

Later, the discussions concentrate on the investigation of floor vibration, 

including timber, steel, concrete and composite flooring systems. The design limitations 

for vibration control for each type of flooring system are used to generate a new 

guideline for LCC flooring systems 

 

2.1 Timber-concrete composite (TCC) floor system 

TCC floors are an efficient system to replace the traditional flooring systems. 

This system has improved the stiffness of the floors and can fulfil the latest 

requirements for flooring systems which require long spans and lightweight systems 

(Natterer et.al., 1996). TCC floor systems are a hybrid between concrete and timber 

adopted from stressed skin floor systems, where the upper timber flanges are replaced 

with concrete. This system requires shear connectors to transfer forces from the 

concrete slab to the timber joists. (Ceccotti, 1995) explained that timber-concrete 

composite structures represent a construction technique that can be used for both 

strength and stiffness upgrading of existing timber floors as well as in new buildings. 

This technique connected a solid or glued laminated timber beam with a concrete slab 

cast above, and included shear connectors to resist differential movement between the 

timber and concrete. 
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The coupling of a concrete layer on the compression side and a timber beam 

on the tension side of the composite cross section makes use of the advantageous 

properties of these materials in terms of strength and stiffness. In this way an effective 

structure characterized by relatively low weight can be obtained (Stojić and Cvetković, 

2001). The idea of using concrete and timber in a composite cross-section is a natural 

extension of an old technique, and it is even possible to attain full composite action if 

‘non-slip’ connections are used.  

The combination of the concrete and timber gave extra advantages that 

produced a structurally efficient section, rigid and light at the same time. Additionally, 

composite systems can have triple the load-carrying capability and up to six times the 

flexural rigidity of traditional timber floor systems, if the timber and concrete are well 

connected. A concrete topping increases the stiffness and strength of the floors, and can 

be used to construct up to 15 m long-span flooring systems. (Ceccotti, 1995). 

The advantages of the TCC systems and comparison between reinforced 

concrete and timber only systems are summarised in Table 2-1. 
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Table 2-1 Advantages of TCC Floor System 

Parameter 
Type of floor material 

Remarks 

Concrete TCC Timber 

Mass Heavy Moderate Light 

Wood has much lower density 

compared to concrete. Thus, 

TCC systems are much lighter 

compared to an all reinforced 

concrete system.  

Damping 

system 

Highly 

damped 

Highly 

damped 

Poorly  

damped 

TCC have relatively highly 

damping, about 2% of viscous 

damping, compared to a timber 

system.  

Sound 

Insulation 
Good Good Bad 

The air-transmitted noise is 

improved from the timber 

structure on account of the 

increased mass. Impact noise 

insulation is improved relative 

to an all concrete system, in 

terms of the greater damping. 

Fire 

performance 
Good Better Bad 

The upper concrete slab is an 

efficient barrier against fire 

propagation that increases fire 

resistance compared to a 

timber system. Timber ribs are 

more fire-resistant than pre-

fabricated pre-stressed 

concrete 

Total 

construction 

cost 

High Average Low 

These are comparisons to a 

concrete system based on total 

cost, owing to factors such as 

rapid construction, less 

concrete formwork and less 

shoring needed during 

construction. Also reduced 

foundations because of the low 

self-weight.  

source: (Ceccotti, 1995) 
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2.1.1 Development of TCC 

The development of TCC has focused on shear connectors between the timber 

and concrete topping. Ample research has been done to improve solutions for this 

connection system. The earliest development of the timber and concrete composite 

system dates back to the 1920’s and 1930’s.  The systems were initially developed in 

Europe in 1929 when Mueller patented a system of nails and steel braces that formed 

the connection between a concrete slab and the timber, and in 1939, Schwab applied for 

a patent on timber-concrete composite components as mentioned by Seibold (2004) in 

her literature. 

The development of TCC in Europe expanded in 1985 when Sprig introduced 

a new type of connector made of a doubled-headed screw. Another fastener was 

invented in 1992 by Provis using a special screw. The screw had a special thread on the 

lower part to allow for placement in the timber girder without having to drill a pilot 

hole first and the smooth upper shaft was anchored into the concrete. In 1993, Blaβ  

introduced several types of mechanical fasteners for TCC construction; (a) mechanical 

fasteners with pin-shaped joints, (b) mechanical fasteners with special connectors and 

(c) adhesive fasteners to create form closure.  A new innovation of timber-concrete 

composite systems called the HBV-system in 2000 was introduced by Bathon  with 

steel plates as a connector between the timber and concrete as reported by HBV-

Systeme (2003). 

Lukaszewska et.al (2006) and Lukaszewska (2009) tested different types of 

connectors to prevent the slip behaviour on the timber-concrete composite floor. The 

proposed connectors were (1) nail plate, (2) continuous steel mesh, (3) a set of 2 steel 

tubes with 20 mm diameter screw, (4) bent steel plate with nails, (5) bent steel plate 

with epoxy glued, (6) a set of steel tube with 20 mm diameter screw and notch in the 

joist and (7) 20 mm diameter dowels with flanges. The wooden shear anchor-keys with 

inclined nails were developed by Crocetti et. al (2010) as a connecter for timber-

concrete composite floors, which attached to the timber joist by glue or screws. Crocetti 

et al. (2015) added extra screws at both sides of the wooden anchor-keys. The functions 

of the screws were to get the proper anchorage of the shear anchor-key to the concrete 

topping and to reduce the risk of the anchor-key splitting as the specimen was loaded.    
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The development of a composite system using steel connectors was carried out 

at the University of Oregon, USA in 1930  (Benitez, 2000). Unlike Europe, where the 

composite systems developed because of renovating historical timber floors, in the 

USA, they focused more on low to medium rise construction. Work at Colorado State 

University by  Gutkowski  et. al. (2000) adopted a connection detail using notched 

shear keys with anchors in the timber-concrete composite floor system, which was 

proposed by (Natterer et.al., 1996). 

New Zealand introduced a composite system for bridges around 1970  (Nauta, 

1970). Glulam was used as beams in conjunction with 150 mm thick concrete slabs for 

heavy duty traffic loads.  

As mentioned previously, mechanical fasteners were used widely to tie 

together concrete slabs and timber joists. However, alternative products such as 

adhesives have been produced, which are capable of bonding the concrete both in wet 

and hardened conditions which create slip-free connections and decrease beam 

deflections (Brunner et  al., 2007). 

There is still strong uncertainty on the effectiveness of using a glued interface 

between the concrete slab and the timber beam, although some research has been 

carried out and presented (Brunner et al. (2007) and Hehl et al. (2014) ). However there 

is no research proving that the glued interface will remain effective in  the long-term - 

therefore there is concern about using a pure glued interface between the concrete slab 

and the timber beam, not only due to thermal strains and stresses, but also due to 

possible moisture variations in the timber, and drying shrinkage of the concrete slab 

which may produce problems (e.g. detachment) in the long-term.  

The relationship between the mechanical fasteners with their stiffness was 

summarized in Figure 2-1 which, (Ceccotti, 2002), range from the less stiffness 

connection (group a) to the stiffest connection (group d). Connections in group (a), (b) 

and (c) permit relative slip between concrete and timber, i.e cross-sections do not 

remain planar under load. Only connections in group (d) maintain planarity. Roughly 

speaking, systems with group (a) connections achieve 50% of the bending stiffness of 

systems with group (d) connections. The latter corresponds to fully composite action.     
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Figure 2-1 Timber-concrete interlayer connections; (a1) nails; (a2) glued reinforced 

concrete steel bars; (a3/4)screws; (b1/2) connectors (split rings and toothed plates); (b3) 

steel tubes; (b4) steel punched metal plates; (c1) round indentations in timber, with 

fasteners preventing uplift; (c2) square indentations, ditto; (c3) cup indentation and 

prestresses steel bars; (c4) nailed timber planks deck and steel shear plates slotted 

through the deeper planks; (d1) steel lattice glued to timber; (d2) steel plate glued to 

timber (Ceccotti, 2002) 
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2.1.2 Design  of  TCC floors 

The TCC system is designed using the gamma method as proposed in 

Eurocode 5. The flexural stiffness of the composite beam (EI)com is obtained using 

Equation 7.8, as recommended by Eurocode 5 (CEN, 2004b), i.e.: 

                                         
           

                        (2-1)                

where (EI)c is the flexural stiffness of concrete topping (Nm
2
), (EI)t is the 

flexural stiffness of the LVL joist (N/m
2
), Ec is the modulus elasticity of the concrete 

topping (N/m
2
), Et is the modulus elasticity of the LVL joist (N/m

2
), Ac is the concrete 

topping area (m
2
), and At is the LVL joist area (m

2
).     

The ac and at distances can be determined as below:           

    
       

              
                

       

              
                              (2-2a,  2-2b)  

            Where; 

            
  

 
     

    

 
                                                                                      (2-3)                    

    
 

   
          

   
 

                                                                      (2-4a, 2-4b) 

where seff is the effective spacing (mm) of connection, ks is the slip modulus of 

the connection (kN/m), tc is the thickness of concrete topping, tLVL is the thickness of 

LVL and tp is the thickness of permanent formwork.  The slip modulus is obtained from 

the push-out test as discussed in (Yeoh, 2010). The effective spacing of connection can 

be calculated as below: 

                                                                                                          (2-5)                   

where smin is minimum spacing of connection and smax is maximum spacing of 

connection along the beam span.  
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2.1.3 LVL-Concrete Composite Flooring System 

The TCC flooring system as mentioned before is a sandwich of concrete (as a 

slab) and timber (as a joist). The timber joist used is usually solid sawn timber. To 

improve the system strength, glued laminated (Glulam) timber was used to replace the 

solid timber (Van der Linden, 1999). However, he found that the engineered wood 

material, laminated veneer lumber (LVL), was designed to get better strength and 

material properties compared to Glulam. LVL also used widely in New Zealand and 

Australia, thus, in this research, LVL was used to replaced traditional solid timber or 

glued laminated (Glulam) timber joist in an LVL-Concrete Composite (LCC) flooring 

system. 

LVL is made from rotary peeled timber veneers which are glued together 

using a durable adhesive and laid up with parallel grain orientation to form a 

continuous billet, up to 12 m long and 1.2 m wide, usually having a thickness of 45, 63 

or 90 mm. Solid and Glulam timber have larger coefficients of variation for both 

strength (modulus of rupture) and stiffness (modulus of elasticity) compared to LVL, 

which is very strong (almost three times the strength of sawn timber), more reliable and 

with a higher modulus of elasticity (about 1.5 times the MOE of sawn timber) (Abd 

Ghafar, 2008).  

Researchers at the University of Canterbury in Christchurch, New Zealand 

have collaborated with Carter Holt Harvey Wood products, local LVL manufacturers 

and developed an experimental programme aimed at producing a semi-prefabricated 

LCC floor system for Australasian market demands. The programme started when  

Seibold (2004) studied the performance of LVL used as joist members in LCC systems, 

and investigated the best shear connection of the system. Seibold (2004) studied a 

series of different types of timber concrete composite connectors and found that the 

best performance in shear was obtained using a specimen with notched joists and coach 

screws, which resulted in high stiffness connections.  

Gross (2004) used LCC beams with the connector suggested by Seibold (2004)  

to determine the stiffness and strength of the system for use in long-span flooring 

applications. The beams were built in three different cases; (a) lightweight concrete 

with a strong shear connection, (b) pre-stressing the composite system beam with a 
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straight tendon using a strong shear connection, and (c) a pre-stressed beam with a 

draped tendon and a weaker shear connection. The results showed that the composite 

beam stiffness was increased sufficiently.   

Furthermore, Yeoh (2008, 2010) continued the study to optimise the notch 

geometry, both in mechanical and economical terms. He found that the best types of 

connectors for LCC flooring systems were (a) a 300 mm long rectangular notch cut in 

the LVL-joist and reinforced with a 16 mm diameter coach screw, (b) a triangular notch 

reinforced with the same coach screw, and (c) two 333 mm long toothed metal plates, 

pressed into the edges of the LVL joists.  

Yeoh (2010) also developed guidelines for their design and proposed a semi-

prefabricated panel LCC floor system as shown in Figure 2-2 and Figure 2-3. The ‘M’ 

section panel investigated included a single 400 x 63 mm LVL joist on each outer edge 

and a double LVL joist in the centre, and 17 mm thick plywood as permanent 

formwork. A series of LCC beams were built to study the static behaviour of the 

system. 8 m and 10 m long span LVL composite beams with six to eight connectors 

along the length were tested to failure.   

Unfortunately, the long span semi-prefabricated panel has potential 

serviceability problems, especially vibration issues. Even though the concrete slab will 

increase the mass and the damping due to the long simply supported spans, an 

uncomfortable human feeling of vibration and effects from rotating machines may 

exist. Hence, the investigation on dynamic behaviour was continued using the 

specimens built by Yeoh (2008). Details of the specimens will be discussed in Chapter 

3. 

Parallel to this, the University of Technology of Sydney also studied the 

performance of LCC flooring systems. The study began by  testing a series of 

connectors, with (1) normal screws, (2) SFS screws, (3) bird-mouth notch with coach 

screw and (4) trapezoidal notch with coach screw (Rijal, 2013). The results showed that 

both notches in connections (3 and 4) produced higher strength and stiffness compared 

to a screw only  connection.  The research continued using LCC beams having a 600 

mm x 75 mm concrete topping and 250 mm x 48 mm LVL joists, and 6 m span length, 

to carry out vibration tests (Rijal, 2013).  
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Figure 2-2 Proposed semi-prefabricated TCC floor system (Yeoh, 2008) 

 

Figure 2-3 Layout details of semi-prefabricated ‘M’ panel  (a) off-site panel,    

(b) ‘M’ panel connected to adjacent panels with concrete topping (dimension in mm) 

(Yeoh, 2008) 
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2.2 Floor Vibration  

The vibration serviceability problem of the floor has been a concern since the 

early 19
th

 century when in 1828 Tredgold stated that girders over long spans should be 

deep to avoid the inconvenience of not being able to move on the floor without shaking 

everything in the room (Allen and Murray, 1993). Since then, floor vibrations have 

been studied in order to determine the vibration behaviour due to human-induced loads 

and methods to prevent uncomfortable vibration on floors. 

These days, the vibration serviceability problem of a floor due to decreased 

floor mass and longer span lengths as demanded in a large variety of construction using 

long span floors. The vibration on floors happens due to cyclic motion which repeats 

itself, in particular over a certain interval of time, and affects its occupants during the 

course of their normal human activities.  

The activities that cause the serviceability problem are categorised as those 

due to continuous vibration or to transient vibrations. Human group activities such as 

dancing or jumping, or from the use of machinery, produce periodic forces and cause 

continuous vibration. If a periodic force has similar frequency to the natural frequency 

of the structure, the amplitude of the resultant motion is increased significantly, leading 

to the condition known as resonance. Impact force from human activities such as 

walking can generate transient vibrations. Such motion decays in propagation due to the 

available damping in the structural system.  

   A vibration can be translated into six degrees of freedom (DOF), of which 

three are translations and three are rotations through the centre of gravity in the x, y and 

z axes. The translational motions produce stresses due to bending, which translate as 

mode shapes from a vibration point of view. The research in this thesis only focuses on 

translational vibration behaviour.  
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2.2.1 Floor Vibration Assessment 

The vibration serviceability problem can be determined by investigating the 

vibration behaviour of the floor, such as the natural frequency and damping ratio. To 

get the vibration behaviour, the floor should be examined by experimental testing or 

finite element analysis. The earliest experimental work was performed by Tilden (1913) 

and Fuller (1924). Both studied the dynamic loads due to group activities on the floors. 

Tilden (1913) also investigated the effect of an individual person on the floor. The 

transient vibration problem was studied by exposing a group of persons to vertical and 

horizontal vibrations while standing on a platform as discussed by Reiher and Meister 

(1931), and Lenzen (1966) to investigate the damping performance of the floor. 

Testing was performed by Wiss and Parmelee (1974) to propose a rating factor 

as a function of the initial amplitude, the vibration frequency and the damping ratio. For 

this work, individuals were asked to rate their perceptions while standing and being 

seated on the floor in order to evaluate the human sensitivity due to transient vibration. 

Nelson (1974) also recommended using a rating curve, but with a greater damping ratio 

of the floor compared with the Wiss and Parmelee (1974) rating curve.    

Later, the force platform was used to study the effect of human activities in a 

group. Tuan and Saul (1985) investigated a group of persons in a weight range from 52 

kg to 98 kg simulating crowd movement in a stadium and proposed that a narrow-band 

live load spectrum with rhythmic jumping should be included when designing the 

serviceability of the floor system under these conditions. Ebrahimpour and Sack (1989 

& 1992) and Ebrahimpour  et. al (1996) measured the force imposed by individuals and 

groups of two and four people. A simplified expression for dynamic loads and a 

footstep frequency for walking tests were suggested of 1.5, 1.75, 2.0 and 2.5 Hz.    

The heel-drop test was developed by Lenzen (1966) to simulate a worst case 

transient event. This method was the simplest of the excitation methods, where a person 

stood in the middle of the floor, on the load cell platform, rose onto their toes and then 

dropped down so that their heels struck the floor (Blakeborough and Williams, 2003).  

The typical heel drop response is illustrated in Figure 2-4. The moment the 

person rose to their toes from the normal position, a small fluctuation appears until the 

initial reduction in vertical force occurs when the heel comes down.  The force 
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dramatically increased at the time of heel impact and was followed by the damped 

oscillation due to vertical vibration of the human body. 

 

 

 (b) Heel drop time history 

Figure 2-4 A person perform the heel drop test and the time history of the test 

The heel impact test was performed by Allen and Rainer (1976) to study 

human-induced walking loads on long-span steel-concrete composite floors with 

different percentages of critical damping ratios. The results suggested that the criterion 

for a 5 % damping ratio was in agreement with the Lenzen (1966) criterion. 

Rainer (1980)  determined that the heel drop test provided the most complete 

set of vibration characteristics compared to shaker tests and walking tests. Pernica 

and Allen (1982) tested a shopping centre floor area to determine the dynamic 

properties from heel impact forces and found that the method to calculate the 

fundamental natural frequency using the Dunkley approach was reasonable, having less 

than 10% difference in fundamental natural frequency between measured and 

calculation values.  

Soltis and Hunt (2002) evaluated the vibration properties and response on 

salvaged individual joists and a salvaged floor system with an impact hammer and a 

motor with an eccentric rotating mass attached to the floor decking.   They found that 

the impact hammer test was easy to apply and provided both natural frequency and 

damping ratio data, however the response was sometimes too weak. The force function 
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gave a stronger response and a more consistent result, but no damping ratio could be 

obtained.      

As the technology has grown with time, the vibration behaviour on floors is no 

longer solely dependent on dynamic testing, and finite element modelling has been 

conducted to evaluate experimental data. Pavic and Reynolds (2003) performed vertical 

force excitation testing using an electrodynamic shaker and calibrated the response with 

finite element modelling. 

The preliminary finite element modelling was developed to predict the 

vibration characteristics compared to judgement based on experience. El-Dardiry and Ji 

(2006) created a 3-D model for isotropic and orthotropic flat plates for steel-composite 

flooring systems and determined that the isotropic flat floor model was more accurate 

than the orthotropic flat floor model.   

 

2.2.2 Vibration Assessment on Timber-Concrete Composite (TCC) Floor 

Bernard  (2003) performed a series of dynamic tests on TCC floors. The 

research concentrated on the influences of concrete thickness, plywood thickness, joist 

size and spacing and also the specimen length. The impact hammer test and walking 

test were carried out to determine the vibration behaviour according to the research 

needs. As a result, Bernard found that the stiffness of the system had a major influence 

on the natural frequency and damping ratio. 

Bernard (2008) continued his research on lightweight Engineered Timber 

Floors (ETF) and performed 5 series of laboratory tests which concentrated on common 

design parameters (use of glue, nails and blocking), the effect of the joist spacing, span 

and lumped mass at the mid-span of the floor, and the effect of the post-tensioning with 

rubber inserts to improve the floor vibration response. The design features and the 

proposed remedy to improve floor vibration behaviour were found to be largely 

ineffective.   

ARUP (2012) and Franklin and Hough (2014)  performed the impact and 

footfall induced test on a 3 bay x 5 bay TCC office floor in Nelson Marlborough 

Institute of Technology (NMIT). The study points out that some local areas of floor 
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plate close to openings are predicted to exhibit potential vibration levels that exceed the 

comfort criterion for typical offices. In addition, the damping was estimated from the 

impact hammer test to be in the range 2.0 % to 3.0 %. The suggestion for modelling 

was 2.0 % damping.  

Rijal (2013) conducted the impact hammer test on 6 m TCC  beams and a 6 m 

and a 8 m timber floor module. The timber floor module was built using hySPAN 

cross-banded LVL as the top flange and hySPAN PROJECT LVL as the webs and 

bottom flanges. The natural frequencies for both floors were found to be more than 10 

Hz, and influenced by material properties, shear connectors, moisture content, bouncing 

at the supports and the boundary condition.   

Skinner et al. (2013) studied the influences of concrete topping for upgrading a 

timber floor. The concrete topping  increased the stiffness of an existing timber floor 

whilst minimising the load added to the existing structure and the change to the finished 

floor to ceiling height. The thickness of concrete topping suggested was between 0 to 

100 mm. Skinner (2013) determined the optimum thickness of concrete topping on an 

TCC floor, suggesting that 20 mm thickness of concrete topping was sufficient to 

increase the bending stiffness and improve the transient vibration response.  

 

2.2.3 Human  Perception of Floor Vibration 

The human perception of floor vibration is very complex and difficult to 

measure due to every person having their own perception. According to Ohlsson 

(1988), the three most important parameters for human perception of vibration are the 

duration, the activities on the floor, and the relative locations of the source and the 

affected human person.  

The evaluation of human response can be evaluated using a base curve as 

shown in Figure 2-5 as recommended by ISO (ISO 2631-2:1989). The sensitivity of 

human perception on the floor vibration can be evaluated by acceleration or velocity 

responses to fundamental natural frequency, fn as illustrated in Figure 2-5 (a) and  

Figure 2-5(b), respectively.  
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(a) Acceleration versus natural frequency, fn 

 

 
(b) Velocity versus natural frequency, fn 

 

Figure 2-5  Evaluation of human sensitivity by acceleration or velocity response versus 

natural frequency, fn 
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2.2.4 Design Criteria for Floor Vibration 

Traditional standards are recommended for evaluating the vibration of floors 

according to the maximum deflection at the mid-span of the floors, as a span to length 

ratio of 360. However, vibration design was neglected by only considering the static 

stiffness, only guaranteeing by proxy that the vibration due to dynamic loads would not 

be excessive. However, in some cases, this criterion was not satisfied because dynamic 

loading produced by human or machinery influenced the floor and gave an annoying 

feeling to the human subjects. Furthermore, the urban trends of buildings require longer 

span floors to accommodate larger open spaces in residential and light commercial 

construction. Thus, the design criteria to evaluate the vibrations of the floor have been 

expanded using the fundamental natural frequency and response acceleration.       

The pioneer design criteria was established by Reiher and Meister (1931) 

based on frequency–dependent human perceptibility and annoyance limits for vibration 

and developed a first chart as a reference for human perception on vibration based on 

the group performance on the floor. The chart is based on a displacement range of 0.01 

– 10 mm and a frequency range of 1 – 100 Hz as illustrated in Figure 2-6.  The chart 

scaled the human comfort into six categories, which were: (1) not perceptible, (2) 

slightly perceptible, (3) distinctly perceptible, (4) strongly perceptible, (5) disturbing 

and (6) very disturbing.   

After 36 years, the Reiher-Meister scale was modified by Lenzen (1966) and 

proposed a new curve based on vibration due to walking impact, with less than 5 % 

critical damping ratios, that the original scale be applied if the displacement is 

increased by a factor of ten as depicted in Figure 2-7. Lenzen reduced the scale into 

four categories only; (1) not perceptible, (2) slightly perceptible, (3) distinctly 

perceptible and (4) strongly perceptible.  

Lenzen (1966) also found that the damping and mass of the system were 

important parameters to prevent the vibration behaviour of the floor and more critical 

than the system stiffness. Later, methods for estimating vibration behaviour for steel T-

beams, such as frequency and displacement, was proposed as shown in Equations (2-6) 

and Equation (2-7).  
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Fundamental natural frequency,          
     

   
,                               (2-6)                               

Displacement,     
   

      
                                                                     (2-7)                                                  

where  g = 9.81 m/s
2
, Es = modulus of elasticity for steel, Ij = sum of 

transformed moment of inertias for all joists (mm
4
), W = total weight, l = span length of 

beam and P = force (N) for floors that have partitions.  
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Figure 2-6 Reiher-Meister scale 
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Figure 2-7 Modified Reiher-Meister scale 

Ohlsson (1988) created methodology to determine the vibration behaviour for 

timber floors by limiting the impulse velocity response, h'max and static deflection. 

However, this criterion was applicable only for timber floors with 8 Hz fundamental 

natural frequency, or above. The impulse velocity response, h'max of simply supported 

plates can be calculated as 

                                
              

       
                                                               (2-8) 

where n40 is the modal number corresponding to 40 Hz,  

Murray et al. (2003) proposed a design criterion to fulfil the human comfort.  

The criterion states that the floor system is satisfactory if the peak acceleration, ap, due 

to walking excitation as a fraction of the acceleration of gravity, g, determined from 

            
   

 
  

               

  
   

  

 
                                                     ( 2-9)                                                

where Po is a constant force representing the excitation, fn is the fundamental 

natural frequency of a joist panel, a beam panel or a combined panel as applicable,  is 
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the modal damping ratio and W is the effective weight supported by the beam or joist 

panel, or combined panel, as applicable. The value of parameters for Equation (2-9) are 

given in Table 2-2. 

Table 2-2 Recommended Values of Parameters, Po,  , and ao/g limit 

 Constant Force, 

Po (kN) 

Damping ratio,   

  

Acceleration limit, 

ao/g x 100 % (%) 

Office, 

residences, 

churches 

0.29 0.02 – 0.05* 0.5 

Shopping malls 0.29 0.02 1.5 

Footbridges  

(indoor) 

0.41 0.01 1.5 

Footbridges  

(outdoor) 

0.41 0.01 5.0 

Note :  

0.02  for floors with few non-structural components (ceilings, ducts, partitions,     

         etc) as can occur in open work areas and churches 

0.03  for floors with non-structural and furnishings, but with only small   

         demountable partitions, typical of many modular office areas 

0.05  for full height partitions between floors 

The following design criterion for rhythmic excitation is based on the dynamic 

loading function for rhythmic activities and the dynamic response of the floor structure: 

                                                 
 

    
 

    

  
                                     (2-10) 

 

where (fn)req is minimum natural frequency required to prevent unacceptable vibrations 

at each forcing frequency, fn, k is a constant (1.3 for dancing, 1.7 for lively concert or 

support event and 2.0 for aerobics), i is a dynamic coefficient (see Table 2-3) and ao/g 

is the limit of ratio of peak acceleration to the acceleration due to gravity (from Figure 

2-8) in the frequency range 4 – 8 Hz. 
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Figure 2-8 Recommended peak acceleration for human comfort for vibration 

due to human activity (source : Murray et al.,2003)   

 

 

 

 

Table 2-3 Recommended Acceleration Limits for Vibrations Due to Rhythmic 

Activities (Murray et.al, 2003) 

Occupancies Affected by the Vibration Acceleration Limit, % gravity 

Office or residential 0.4 – 0.7 

Dining or weightlifting 1.5 – 2.5 

Rhythmic activity only 4 - 7 
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The static deflection recommended by Ohlsson, as published in the Swedish 

Building Code, was for the deflection at midpsan to not exceed 1.5 mm when subjected 

to a 1 kN point load. For a uniformly distributed load, the limitation of deflection can 

be calculated as in Equation (2-11).  

                          
    

      
   

 

   
                                                                           (2-11)     

  The equation of natural frequencies for rectangular orthotropic floors, simply 

supported along all four edges, as in Equation (2-12) was adopted from Leissa (1969).  

         
  

    
                

 

 
 
 

      
 

 
 
 

                 (2-12) 

Ohlsson proposed a simplified equation to calculate fundamental natural 

frequency as in Equation (2-13), for the low values of Dy/Dx (≤0.01) (Weckendorf, 

2009).  

    
 

 
  

  

   
          (Hz)                                                     (2-13) 

Hu (2007) proposed a new design criterion based on a 1 kN static deflection 

and fundamental natural frequency for wood-framed timber floors. If the combination 

of the calculated fundamental natural frequency, fn (Hz) and 1 kN static deflection, d 

(mm) is larger than 18.7, then the floor is most likely acceptable to occupants in terms 

of its vibration serviceability and vice versa. The design criterion equation was as 

below: 

               
  

                                                       (2-14) 

or the simplified as  

    
  

    
 
    

                                                                       (2-15) 

where the fundamental natural frequency, fn and static deflection,   was 

following ribbed-plate model as in Equation (2-16) and Equation (2-17).  
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                                (2-16) 

    
  

    
   

 

 
 

 
 
 
     

  

  
 
 
     

 

 
 
 
   

                                  (2-17) 

where 

   
    

  
     (Nm) (system flexural rigidity in x-direction) 

    
    

  
 

 
 

     

          
  (Nm) (system flexural rigidity in y-direction) 

    
   

 

  
 

 

   
  (Nm)  (Shear rigidity of multi-layered floor deck + torsion     

ridigity of joist) 

  
 

 
 

 = mJ/b1 + s ts + c tc (kg/m
2
) 

mJ = per unit length of joist (kg/m) 

c = density of topping (kg/m3) 

s = density of sub-floor (kg/m3) 

tc = thickness of topping (m) 

ts = thickness of sub-floor (m) 

Gp  =   modulus of multi-layer floor deck (N/m
2
),  

EIp  =  multi-layer floor deck EI (Nm),  

EICJ  = composite EI of joist (Nm
2
),  

(EIb)
i
  = ith lateral bracing member (Nm

2
),  

k  = total number of rows of lateral bracing elements, 

b1  = spacing of joist (m),  

t  = width of joist (m),  

l = span of floor (m) and b is width of floor (m),  

h =  thickness of multi-layer floor topping (m),  

H  = height of floor system (joist depth + floor deck thickness (m)  

C = joist torsional constant 
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Later, Hu (2015) extended the design criteria by Hu (2007)  through the proper 

combination of floor stiffness and mass to control the vibration floor span can be 

calculated as below; 

   
 

    
   

     
     

     
          

     
                                                                     

where 

 

EIcom  =  effective composite bending stiffness 

mcom  =  mass per unit length (kg/m) 

Fscl  =  adjustment factor related to lateral stiffness  

 

Eurocode 5 (CEN, 2008b) proposes the range of timber floors performance 

based on the relationship of a and b, as illustrated in Figure 2-9. The floors were 

categorised in two parts, (1) better performance when the value of flexibility 

coefficient, a (mm/kN) is below 2 and (2) when the value of b is greater than 100, as 

shown in Figure 2-9 and Equation (2-16) and (2-17).  

 

 

Figure 2-9 Relationship between a and b (CEN, 2008b) 

 

 Eurocode 5 (CEN, 2008b) also uses 8 Hz fundamental natural frequency, fn, 

as a serviceability vibration limitation for residential timber floors. For floors with fn 

lower than 8 Hz, special investigation is required. If the floor has fn greater than 8 Hz, 

the following requirements should be as met with a = 1.5  and b = 100. 
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                        and                

                           (2-18) and (2-19)                                                                      

where w is the maximum instantaneous vertical deflection caused by a vertical 

concentrated static force F applied at any point on the floor, v is the unit impulse 

velocity response,   is damping ratio and fn is natural frequency. The value of v and fn 

can be estimated as from Equation (2-20) to Equation (2-22).  

   
             

         
                                                   (2-20) 

        
  

  
 
 

    
  

 
 
    

   
 
    

                                 (2-21) 

    
 

   
 

     

 
                                                          (2-22) 

where n40 is the number of first-order modes with natural frequencies up to 40 

Hz, m is the mass per unit area (kg/m
2
), b2 is floor width (m), L is the floor span length 

and (EI)l is the equivalent plate bending stiffness of the floor about an axis 

perpendicular to the beam direction (Nm
2
/m) and (EI)b is the equivalent plate bending 

stiffness (Nm
2
/m) of the floor about an axis parallel to the beams, where (EI)b < (EI)l. 

The design criteria based on a point load at midspan was also proposed by 

Ellingwood  and Tallin (1984), Australian/New Zealand Standard (AS/NZS, 2002), 

American Institute of Steel Construction (AISC), (Murray  et al., 2003).  

Ellingwood  and Tallin proposed the deflection of the floor should not exceed 0.5 mm 

under a 2 kN force. Both AS/NZ Standard and AISC recommend that the deflection 

under a 1 kN point load should be less than 1 mm to get a better stiffness criterion.   

The limitation of natural frequency to control the serviceability problem was 

suggested to be between 5 Hz to 10 Hz, according to the material of the floor and the 

dynamic force that applied on the floor. Earlier researchers recommended 5 Hz natural 

frequency as design criterion where Allen and Rainer (1976) recommended that the 

minimum natural frequency requirement is between 5 Hz when floors are subjected to 

rhythmic motion. Later, Ungar and White (1978) proposed a limitation natural 

frequency of 5 Hz. If the fn is less than 5 Hz, the mass of the floor was supposed to be 

the governing parameter and if the fn is greater 5 Hz, the stiffness was believed to 

govern the response of floor.  
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The limitation of the natural frequency increased to higher than 5 Hz when 

Allen (1985) produced a design procedure for rhythmic activities and suggested that the 

minimum requirement for fundamental natural frequency is higher than 6 Hz. Smith 

and Chui (1988) proposed the requirement that the fundamental frequency of vibration 

for the floor is greater than 8 Hz. Wyatt (1989) recommended that the design criterion 

of requiring the natural frequency to be greater than 7 Hz, but if the frequency is greater 

than 9 Hz, the criterion becomes overly conservative because it ignores the benefits of 

decreased decay time. Allen and Murray (1993) studied the effects of human induced 

vibrations such as walking activities on steel floors and proposed that the natural 

frequency for offices and residential system must be beyond 9 Hz to control impulse 

vibration from footsteps based on harmonic resonance.  

The Steel Construction Institute (SCI) 2nd Edition  (Devine et. al, 2007) 

classified the floor into two categories; (1) a low frequency floor if the fundamental 

natural frequency was lower than 10 Hz and can be excited into resonance by walking, 

and (2) a high frequency floor if the fundamental natural frequency is over 10 Hz for 

general floors and the response to each individual is assumed to decay before the next 

footfall.  

In the United Kingdom, the traditional approach used to design conventional 

composite floors for serviceability criteria has been to check the primary and secondary 

beams independently for a minimum frequency of 4.0 Hz, and assuming that simply-

supported boundary conditions exist.  Zivanovic and Pavic  (2009) proposed a guideline 

based on randomness in the walking force. The checking procedure is still based on 

fundamental natural frequency and the cut-off frequency is 10 Hz. The floor was 

considered to be prone to resonant vibration under walking-induced force if the 

fundamental frequency is below 10 Hz. The human walking typically causes a transient 

response to the heel impact each step if the fundamental frequency is over 10 Hz.  

Human-imposed walking excitation was performed on four open-plan 

classroom floors (9 m x 7 m) by Zivanovic and Pavic  (2009). The testing protocol 

followed was the Technical Report 43 (Appendix G), UK Concrete Society, and 

brought to light a few drawbacks of the procedure. The floor cannot be classified as a 

low- or high-frequency floor due to the non-negligible frequency content in the 

measured response time history both below and above 10 Hz.  
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A summary of guidelines to control the vibration of timber floors is illustrated 

in Table 2-4, from Hu (2015). The deflection criterion is mentioned in rows 1 to 3. The 

floor deflection should be calculated under a uniformly distributed load or a 1 kN point 

load as suggested by CCMC (1997) and NRC (2010). The limitation of natural 

frequency in row 4, fn more than 14 Hz as proposed by Dolan et al. (1999) is very high 

compared to 8 Hz as mentioned by Ohlsson (1988) Smith and Chui (1988) and many 

others.  Later, Table 2-5 gives a summary of many different standards introduced to 

give some guidelines to limit the vibration for flooring systems, over the past 80 years 
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 Table 2-4 Summary of design methods to control vibrations in timber floors  

(Hu, 2015)  

 Design parameters 

 

Design criteria Reference 

1 UDL 

where  UDL = deflection 

under uniformly distributed 

load 

UDL < span/factor 

 

Factor can be 360,480 etc 

UDL method: 

Specifications of 

engineered wood 

products, U.S. 

Building Code 

2 1kN 

where 1kN = deflection under 

a 1 kN load in mm 

 

 

for span < 3 m,  

1kN  ≤ 2 mm 

 

for span ≥ 3 m, 

1kN  ≤ 8/span
1.3

 

 

NBC method: 

National Building 

Code of Canada 

(NBC) (NRC,2010) 

3 1kN   

where 1kN = deflection under 

a 1 kN load in mm 

 

for span < 3 m,  

     1kN  ≤ 2 mm 

 

for 5.5 m ≥ span ≥ 3 m,  

     1kN  ≤ 8/span
1.3

 

 

for 9.9 m ≥ span ≥ 5.5 m,  

     1kN  ≤ 2.55/span
0.63

 

for span  ≥  9.9 m,  

     1kN  ≤ 0.6 mm 

CCMC method: 

Canadian Wood 

Council et al. (1997) 

 

4 fn 

where fn = fundamental 

natural frequency 

fn > 14 Hz 

 

Dolan et al. (1999) 

5 fn, 1kN and Vpeak 

where Vpeak = peak velocity 

due to unit impulse 

 

1kN   < 1.5 mm 

fn > 8 Hz 

Vpeak < 100 
(fn -1)

 

 is damping ratio 

Eurocode 5 method: 

Ohlsson (1988) 

6 fn, arms 

where arms = root mean 

square acceleration 

fn > 8 Hz 

arms = 0.45 m/s
2
 

Smith and Chui (1988) 
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Table 2-5 Acceptance criteria over time (Murray et.al, 2003) 

Year Reference Loading Application Comments 

Cut-off 

Frequency 

(Hz) 

1931 
Reiher and 

Meister 
Steady State General Human response criteria - 

1966 Lenzen Heel-drop Office 
Design criterion using 

Reiher and Meister scale 
- 

1974 

International 

Standard 

Organization 

Various Various Human response criteria - 

1974 Wiss and Parlee Footstep Office Human response criteria - 

1975 Murray  Heel-drop Office 

Design criterion using 

Modified Reiher and 

Meister scale 

9 

1976 Allen and Rainer Heel-drop Office 
Design criterion based 

on experience 
- 

1981 Murray Heel-drop Office 
Design criterion based 

on experience 
- 

1984 
Ellingwood and 

Tailin 
Walking Commercial Design criterion - 

1985 
Allen, Rainer and 

Pernica 
Crowds Auditorium 

Design criterion related 

to ISO scale 
- 

1986 Ellingwood et al Walking Commercial Design criterion - 

1988 Ohlsson Walking 
Residential/Offi

ce 
Lightweight Floors 8 

1989 

International 

Standard ISO 

2231-2 

Various Buildings Human response criteria - 

1989 Wyatt Walking 
Office/Resident

ial 

Design criterion on ISO 

2631-2 
- 

1990 Allen Rhythmic Gymnasium 
Design criterion for 

aerobics 
- 

1993 Allen and Murray Walking 
Office/Commer

cial 

Design criterion ISO 

2631-2 
- 

2003 
Murray, Allen 

and Ungar 
Walking 

Office/Commer

cial 

Design criterion ISO 

2631-2 
9 

2009 
Zivanovic  and 

Pavic 
Walking 

Office/Commer

cial 
UK Concrete Standard 10 
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2.2.5 Use of Dampers to Control Floor Vibrations 

The floor vibration problem could be improved by improving the stiffness, the 

mass or the damping of the floor. However, changing the existing stiffness or mass of a 

floor is not economical and satisfactory especially if it involves major retrofit 

(Ljunggren, 2006). Another solution is to increase the damping by adding a non-

structural element on the floor or adding a mechanical damping device.  

Mechanical damping devices (referred to as “dampers”) can reduce the 

vibration problem and prevent discomfort from the floor vibration. Several methods or 

types of damper are found, however, tuned mass dampers (TMD), active control, semi-

active tuned vibration absorbers and visco-elastic dampers are commonly reported, as 

discussed by Ljunggren (2006). The earlier TMD had been developed by Lenzen 

(1966), using a simple system of mass-spring-dashpot to synchronize the floor’s natural 

frequency with the TMD’s natural frequency and hence dissipate the vibration energy. 

The used of TMDs continued especially for lightweight floors (Bachmann & Ammann, 

1987), gymnasiums (Thornton et. al, 1990), long-span floors (Webster and Vaicajtis, 

1992)_and long-span balconies of auditoriums (Setareh and Hanson, 1992).  

Later, a new TMD system introduced by Nguyen et al. (2012 and 2014) used 

viscoelastic materials to control the vibration issues of real office floors. 12 TMDs were 

applied on one bay of the office floor and walking and shaker tests were conducted to 

study the vibration behaviour. The results show that the peak response was reduced 

40% and the floor became acceptable from a human comfort perspective.  

 

2.3 Summary 

This chapter has reviewed the development of the timber-concrete composite 

(TCC) floors and the previous studies on floor vibration, especially on assessment of 

floors subjected to dynamic loads¸ and design guides to control the serviceability 

vibration problem of floors.  

The development of TCC concentrated on upgrading the stiffness of TCC's 

connectors. The connectors suggested ranged from nails only to notches with screws.  

The stiffness of the connector is important to prevent slip behaviour between the 
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concrete and timber.  Furthermore, the traditional timber joist was replaced by LVL to 

increase the strength of the floor since LVL has a  higher strength compared to other 

types of timber. However, the flexibility of the LVL was a concern when subjected to 

dynamic loads. 

The previous research showed that the natural frequency was one of the 

important parameters that influenced the sensitivity of humans to dynamic floor 

responses. The limitation of natural frequency was suggested to be from 5 Hz to 10 Hz, 

according to the types of dynamic loads, and flooring material. However, in this 

research, the limitation of natural frequency was focused on 8 Hz only after considering 

the flexibility of LVL and the LCC flooring as designed for long-spans.   

 

 

 



 
 

 
 

CHAPTER 3   FULL-SCALE LCC T-JOIST SPECIMENS 
 

This chapter presents a comprehensive study on the dynamic performance of 

full-scale LCC T-joist specimens including both experimental and finite element 

simulation. Initially, the LCC T-joist specimen system is described together with past 

experimental work by various researchers on LCC systems. The chapter follows with a 

detailed investigation of the dynamic performance of the LCC flooring systems. This 

preliminary investigation provides guidance for the subsequent investigation of 

reduced-scale LCC T-joist specimens and floor as described in Chapters 4 and 5.  

The investigation of the dynamic behaviour of LCC T-joist specimens was 

carried out using an electrodynamic shaker. The shaker was placed on the top of the 

specimens to conduct a vertical vibration test to determine the modal parameters of the 

specimens, including natural frequencies, damping ratios and mode shapes. A signal 

generator was connected to the electrodynamic shaker to generate the harmonic signal 

and excite the specimens. Due to limited equipment, only a single harmonic signal was 

applied, from 0 Hz to a maximum frequency, at 0.1 intervals, depending on resonance 

of the specimens. Later, when a digital signal generator was available, a sweep signal, 

from 2 Hz to 25 Hz, was used to verify the results from the single harmonic signal.   

To process the experimental data, a signal processing software package known 

as ME'scope was used. The data was processed using Fast Fourier Transform (FFT) 

method and curve fitting method to determine the modal parameters (natural frequency, 

damping ratio and mode shape).  

A post-test numerical analysis was carried out using the Sap 2000 finite 

element software package to compare with the experimental modal analysis (EMA) 

results. The modelling was important because the similar modelling was expending to 

analysis the full-scale LCC floor as discussed in Chapter 6.  
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3.1 LCC T-joist Specimen Details 

The investigation of LCC flooring systems were continued using the same 

specimens that been used to determine the static behaviour by Yeoh (2008). The 

specimens were built with a 400 mm x 63 mm LVL joist, with a 65 mm thick concrete 

topping. The concrete was reinforced with 12 mm reinforcement bars and poured on 17 

mm thick plywood sheathing, which provided permanent formwork, as shown in Figure 

3-1 (a). Composite action was provided by the rectangular notches cut from the top 

surfaces of the LVL joist, including a cutout in the plywood sheathing at the area of 

notches,  which were reinforced with 16 mm diameter coach screws, refer Figure 3-1 

(b) and Figures 3-2(b) to 3-4 (b). The advantages of this type of connection were 

reported by Seibold (2004), Deam et al. (2008) and Yeoh (2008, 2010)  Further 

construction details were given by Yeoh et al. (2008, 2010). 

However, the length of span and concrete topping width, including the length 

of the notches were design variations to help understand more about the specimen’s 

behaviour. The details of each specimen are described in Table 3-1 and illustrated in 

Figures 3-2 to 3-4. Timber block supports were relocated one (1) metre toward midspan 

of the specimen at both ends, to reduce the 8 m specimen to 6 m for the vibration test 

on the short beam, as described in Figure 3-5 for both specimens D and E.  The 8 m 

specimen was not cut to reduce the span in order to allow for re-use of the specimen for 

other tests. 

 

Table 3-1 Detail of LCC T-joist specimens 

Specimen Span 

(m) 

Breadth of concrete 

topping (m) 

Dimension of 

notches (mm) 

Cantilever arm  

(each end) (m) 

A 

(see Figure 3-2) 
8 0.6 150 x 25 - 

B 

(see Figure 3-3) 
8 1.2 150 x 25 - 

C 

(see Figure 3-4) 
10 0.6 300 x 25 - 

D 6 0.6 150 x 25 1 

E 6 1.2 150 x 25 1 
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               (a)                                                                      

 

 

 

                                                                      

 

Figure 3-1 (a) LVL-concrete composite specimen detail and  

                                 (b)  Notched connection detail 

(a) (b) 

 

 

 600 mm 

8
 m

 

 

Single LVL 

 

Figure 3-2 (a) 8 m LVL-concrete composite specimen with single LVL and 

 (b) 150 mm x 25 mm rectangular notches (Yeoh, 2010) 

(a) 

(b) 

 

65 mm thick concrete topping 

 

17 mm thick plywood sheathing 

 

400 mm x 63 mm LVL joist 

 
 

 

16 mm Ø coach screw 

 

Rectangular notch 
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(a)                                                               (b) 

 

 

 

 

 

 

 

 

 

 

  

(a)                                                               (b) 

 

 

 

 

 

1200 mm 

 

Double LVL 

 

Figure 3-3  (a) 8 m LVL-concrete composite specimen with double LVL and  

(b) 150 mm x 25 mm rectangular notches (Yeoh,2010) 

 

600 mm 

 

1
0

 m
 

 

Figure 3-4 (a) 10 m LVL-concrete composite specimen and  

                               (b) 150 mm x 25 mm rectangular notches (Yeoh,2010) 

 



43 
 

 

 

 

 

 

 

Boundary conditions were expected to affect the dynamic behaviour. Thus, three 

types of boundaries were considered. In the first type of boundary condition, solid timber 

blocks were used as a support at both ends of the beam. In the second type, a steel roller at 

one end of the beam replaced one of the timber blocks.  In the last type, steel rollers 

supported both ends of the beam. The sketches of the different end conditions are shown 

in Figure 3-6. In all of these tests, the ends of the beam were free to rotate on the supports 

and there was no clamping to restrict this rotation. 

 

         

 

(a) solid timber block at both ends of the beam 

 

 

            

 

(b) solid timber block at the one end and solid steel roller at the other  

                    end of the beam 

 

            

 

(c) solid steel roller at both ends of the beam 

 

Steel roller supports 

 

LCC beam 

 

Figure 3-6 Different types of support condition 

Figure 3-5 Layout of 6 m beam 

1 m 

 

1 m 

 

6 m 

 

LCC specimen 

 

Support 

 

LCC beam 

 

Timber block supports 

 

LCC beam 

 

Timber block  Steel roller 



44 
 

3.2 Experiment Modal Testing Method 

The procedure for modal testing of a building had been proposed by Reynolds 

and Pavic (2000), and Raebel et. al (2001), on an existing floor and a lightweight steel-

framed floor, respectively. Their experimental modal testing and analysis procedure 

was adopted for this research project, using available equipment and facilities in 

University of Canterbury’s structural laboratory, such as; 

1. Specimens set up on the lab strong floor, 

2. 4 no’s of accelerometers, and 

3. APS Dynamic electrodynamic shaker. 

 

The vibration test for this research consisted of a single input and  multi 

outputs (SIMO) that measured acceleration (g) simultaneously at several points, but all 

under the same single-point excitation. 

Grid lines were drawn along the LVL-joist to locate important node points, as 

illustrated in Figure 3-7. The sensors were attached at these node points to measure the 

vibration response from the specimens and were connected to a data recorder that was 

connected to the computer. Only the important points or nodes that are pointed out were 

attached with sensors to record the specimens response with the strongest response 

being detected at the point of maximum displacement, which was generally at the mid-

span of the specimens. To get the complete mode behaviour of the specimen, the 

sensors were placed along the specimens.  

 

 

 

 

 

 

Figure 3-7 Location of exciter and node points along the LVL joist 

Exciter 

L = 8 m @ 10 m 

Node points 1/3 L 

1/2 L 

     

  



45 
 

At the beginning, only four (4) roving sensors were available for this research 

to measure the vibration response on specimen A. At a later stage, four (4) additional 

sensors were supplied for the rest of vibration tests on specimens B, C and D, hence a 

total of eight (8) sensors were used. One sensor was placed on the shaker armature to 

record the input responses. The place of the sensor should be careful, either at node 

points (no displacement) or antinode points (maximum displacement) to get better 

mode shapes. 

The vertical force excitation was produced by an APS Dynamic 

electrodynamic shaker, which was placed on top of the specimens, as illustrated in 

Figure 3-7. The shaker was placed at two different locations, (a) at mid-span of the 

specimen (1
st
 test) and (b) at one-third length of the specimen (2

nd
 test). The second 

location was to ensure that higher modes (2
nd

 and 3
rd

 mode) were also excited, which 

were probably missed during the 1
st
 test (shaker at mid-span), as it was suggested by 

Reynolds and Pavic (2000) that the location of the exciter should be far away from the 

maximum point of deflection or antinodes of any of the important modes.  

The shaker excited the specimens with the excitation signals generated by the 

signal generator. A stepped sine signal was used to generate the excitation signal for all 

vibration tests as it was not possible to use broadband excitation signals in the 

structures laboratory. There were two main reasons for performing step sine testing. 

Firstly, a step sine excitation signal gives a signal to the shaker/amplifier system with a 

finite power output. This is important if there is a requirement to test a structure, which 

cannot be excited sufficiently using broadband excitation. Secondly, the sinusoidal 

excitation is the best form of excitation for quantifying any non-linearity in a test 

structure (Reynolds and Pavic, 2000). 

In this research, the signal frequency applied went from 0 Hz up to a 

maximum to find the maximum amplitude of the specimen, known as a pre-test. The 

range of the input frequency applied to the exciter was then decided based on the pre-

test results and changed depending on the specimen stiffness and the cross section. 

Then, the frequencies selected were based on the resonance of the specimen. If the 

specimen had a resonance at input frequency of 10 Hz, then the frequency applied was 

from 1 Hz to 20 Hz, in 0.1 Hz increments. This was done in order to plot the graph to 

determine the natural frequency and critical damping ratio for the specimens.  



46 
 

3.3 Modal Parameter Extraction Method 

The experimental modal parameters were estimated by a curve-fitting routine 

that was available in the ME'scope (ME'scope,2008) data processing software package. 

Initially, the single sinusoidal responses were combined manually using MATLAB to 

acquire the complete sinusoidal responses from a low frequency (i.e. 5 Hz) to a high 

frequency (i.e. 23 Hz). Before the test was conducted, a few trial and error 

measurements were performed to determine the optimum data acquisition parameters, 

as illustrated in Table 3-2, where the fundamental relationships are follows ; 

i. Time window length (s), T   = RL / 2.56 (BW) 

ii. Sample rate (Hz), SR   = RL/T 

       = 2.56 (BW) 

iii. Frequency resolution, FR  = 1 / T 

       = BW / 2.56 

where; 

  BW  =  usable frequency bandwith (Hz); 

  RL = record length using the number of the discrete points in                       

    the time history, often a fixed quantity on an FFT based  

    analyzer; 

FR = frequency resolution which is the frequency step between data 

   points 
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Table 3-2 Main digital data acquisition parameters adopted for FRF measurements 

Parameter description Parameter value 

Data acquisition time 197 s 

Excitation frequency limits 5 – 25 Hz 

Frequency span 20 Hz 

Number of frequency lines, RL 6400 

Frequency resolution, FR 0.03 Hz 

Total number of samples 16384 

Sampling frequency 83.3 Hz 

Number of averages 21 

Window Exponential ( = 0.01) 

 

Later, the measurement responses, which are in the time-domain, were 

converted to a Frequency Response Function (FRF) before the modal parameters for 

each specimen were derived. The analysis process was performed using the ME'scope 

software (ME'scope,2008  ). 

The ME'scope software includes single-degree-of freedom (SDOF) and multi-

degree-of-freedom (MDOF) curve-fitting methods to estimate the modal parameters. 

The SDOF method was divided into two methods, (1) a Co-Quad method and (2) a 

Peak method, which both approximated the modal parameters one mode at a time and 

no damping ratio is estimated with these methods. On the other hand, MDOF methods 

simultaneously estimate the modal parameters of two or more modes from the set of 

FRF measurements, using a polynomial method. The polynomial methods perform a 

least square error curve fit and obtain the global frequency and damping ratio for each 

mode from the curve fitting data. 

To begin with, the experimental measurement data was analysed using both 

the SDOF and MDOF curve-fitting methods. Both methods show similar results for the 

frequencies and mode shapes but the damping ratios were only obtained from the 

MDOF method. For the rest of the experimental data, only the MDOF curved-fitting 

method was used to estimate the modal parameters, as illustrated in Figure 3-8. 
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(a) frequency spectrum and curve-fit graph 

 

(b) Modal peak function 

Figure 3-8 Response of Specimen A 
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3.4 Dynamic performance of LCC T-joist specimens 

The investigation and observations were carried out on the LCC specimens to 

understand their vibration behaviour and to obtain the vibration parameters, especially the 

natural frequency or fundamental frequency of the systems. Some of the preliminary results 

have been published in Abd Ghafar (2008). The natural frequencies and damping ratios of 

each specimen are summarised in Table 3-3 Also, since the vibration test results are 

numerous, comparison results are presented in Table 3-4 to Table 3-7. 

Table 3-3 Results of vibration tests on  LCC simply supported specimens 

Specimen 

 

S

Support 

system 

Location of shaker 

S1 (mid-span) S2 (one-third span length) 

f1 

(Hz) 
1 

(%) 

f2 

(Hz) 

2 

(%) 

f3 

(Hz) 

3 

(%) 

f1 

(Hz) 

1 

(%) 

f2 

(Hz) 

2 

(%) 

f3 

(Hz) 

3 

(%) 

A  8 m x 0.6 m 

                 Block 9.2 0.8 27.8 0.5 50.1 0.1 9.2 0.5 27.2 0.6 50.5 0.1 

 Roller 8.7 0.6 25.4 0.4 50.1 0.1 8.0 0.4 25.6 0.5 49.5 0.1 

 Block & 

Roller 
9.1 0.8 26.3 0.5 50.0 0.1 9.0 0.62 26.0 0.5 50.0 0.1 

B  8 m x 1.2 m 

 Block 9.2 0.4 29.4 0.3 50.2 0.1 9.2 0.5 31.0 0.3 50.1 0.1 

 Roller 8.8 0.6 25.3 0.2 50.0 0.1 8.6 0.5 26.7 0.3 50.0 0.1 

 
Block & 

Roller 
9.2 0.6 27.2 0.3 50.0 0.1 8.9 0.5 28.0 0.3 50.0 0.1 

C 10 m x 0.6 m 

 Block 6.4 1.3 22.2 0.2 50.6 0.1 6.3 1.4 23.0 0.6 50.6 0. 

 Roller 6.4 1.4 20.3 0.2 50.0 0.1 6.3 1.4 20.5 0.5 40.6 0.1 

 
Block & 

Roller 
6.3 0.6 21.2 0.2 50.5 0.1 6.4 1.4 21.1 0.5 50.3 0.1 

D 6 x 0.6 

 Block 12.8 1.4 25.5 0.4 50.0 0.1 13.1 1.6 25.8 0.5 50.3 - 

 Roller 11.0 0.7 23.4 0.2 50.0 0.1 12.9 1.0 23.8 0.2 50.0 0.1 

 
Block & 

Roller 
12.5 0.7 22.5 0.3 50.0 0.1 12.4 0.4 22.0 0.3 50.0 0.1 

E 6 x 1.2 

 Block 12.3 1.7 21.1 0.2 50.1 0.1 12.4 1.3 20.7 0.3 50.1 0.1 

 Roller 10.0 1.4 19.6 0.2 50.0 0.1 10.3 1.1 18.4 0.1 50.1 0.1 

 
Block & 

Roller 
11.0 1.2 20.3 0.2 50.1 0.1 11.1 1.4 19.5 0.3 50.1 0.1 
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The results in Table 3-3 show that natural frequencies are more consistent 

compared to damping, where the damping for mode 1 varies from 0.4 % to 1.4 %. 

However, the damping in real buildings are more often in a range 2 % to 3 % 

depending on material, furniture in the room and attachments to the underside of the 

floor such as ceilings and services (ARUP, 2012).  

As mentioned before, two series of modal testing were conducted with 

different locations of the shaker (refer section 3.3) and the best results from these tests 

were selected to determine the first three modes of the specimens. The higher modes 

were not determined in this research, as the sensitivity of a human can feel a maximum 

frequency between 4 and 8 Hz for vibration in the vertical direction  and 0 to 2 Hz 

horizontally, and the vertical  vibration frequencies are the most important in design 

(Chapter 2, ISO, 1989).  

The modal parameters that are presented in these results were selected from 

the distinguished mode shape. The modal behaviour of the specimens should be similar, 

or almost similar, with the theory. Figure 3-9 shows the theoretical mode shape 

behaviour while Figure 3-10 shows the LCC specimen's mode shape behaviour from 

the vibration test.  

The identified mode shapes of the specimens are shown in Figure 3-10, where 

the shape was a half sine wave, up or down if not a node, as only first order effects 

were considered. Weckendorf, (2009) mentions that, the location of an anti-node and 

node of the specimens were important to identify, as the antinode was always in the 

mid-span of the specimens for an odd mode number (1 and 3) frequency while for even 

mode (2), the node was located at a similar location. Thus, to get better results for the 

mode shape, a smaller grid line should be used.  

Additional modes or coupled modes sometimes occurred during the test, which 

was due to movement from the supporting system, external vibration forces, or 

background noise, as well as a movement from the shaker itself during the resonant 

period. The modes that could not be fully identified were not included in the analysis, 

especially for second and third mode behaviours.  
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Figure 3-9 Theoretical mode shape for simply supported beam 

 

 

 

 

 
 

 

(i) 1
st
 mode 

 

 
 

 

 

 

(ii) 2
nd

 mode 

(a) 6 m  (b) 8 m 

   

Figure 3-10 The first three mode shape of 6 m and 8 m specimens from vibration tests 

 

During the tests, a couple of issues were discovered relating to: (1) the input 

signal frequency, and (2) movement on the supports. As mentioned before, the signal 

generator that was used in the early part of this research can only supply a single 

sinusoidal input frequency, and later using established software (Me’scope), the 

experimental data were combined from the lowest frequency to the highest frequency to 

obtain the modal parameters of the specimens (refer to section 3.3). Some important 

data was probably missed during this lengthy process, and could affect the results. 

Consequently, the vibration test on an 8 m x 0.6 m specimen was repeated using a 

sweep sinusoidal input frequency, as the equipment was only available in the final 

stages of this study. Hence, the test was repeated to validate the previous experimental 

data. 
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The methodology of this later testing and data analysis was similar to that 

mentioned in Section 3.2 and 3.3. Again, the shaker was located at two different places: 

(1) at the mid-span of the specimen, and (2) at one-third of span length specimen. Both 

cases provided a natural frequency of about 9 Hz and 27 - 28 Hz for first (1
st
) and 

second (2
nd

) modes, respectively. 

The comparison of the natural frequencies and damping ratios of the two 

different input signal vibrations are illustrated in Table 3-4. The percentage errors 

between these two experiments are between 1.5 % to 5.0 %. Small differences between 

the natural frequencies for both cases prove that the experimental results from a single 

signal sinusoidal frequency were accurate and the method can be used to determine the 

modal parameters of a specimen.   

 

Table 3-4 Comparison of modal properties between a single and a sweep sinusoidal 

vibration test on 8 m specimen 

Input signal frequency 

Location of shaker 

S1 (mid-span) S2 (one-third span length) 

f1  

(Hz) 

f2 

(Hz) 

f1 

(Hz) 

f2 

(Hz) 

Single sinusoidal  9.68 - 9.22 27.2 

Sweep sinusoidal 9.18 28.2 9.38 27.6 

Different (abs) 0.50 - 0.16 0.40 

Error (%) 5.17 - 1.74 1.47 

 

 

The second issue that had been noticed was the movement of the support 

system during the vibration experiments. As described in section 3.2, the support 

system at both ends of the specimens were stand alone without any extra support to 

make sure the support was perfectly rigid. Hence, the test on an 8 m x 0.6 m specimen 

was repeated with the timber block that supported the LCC specimen screwed to the 

ground, as shown in Figure 3-11, to compare the vibration behaviour before and after 

the supports were fixed. The same sweep signal frequency was applied to vibrate the 

specimen.  
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(a) before being fixed  

 

(b) after being fixed 

Figure 3-11 End support condition before and after being fixed to the ground   

 

The natural frequencies for the 8 m specimen before and after fixing the 

support system are as illustrated in Table 3-5 shows the differences between these two 

cases were small at about 0.4 to 2.5 % and are considered negligible. Thus, the 

movement of the support system during the vibration experimental for all specimens 

was neglected.   

Table 3-5 Comparison of modal properties between a non-fixed and a fixed support 

Input signal frequency 

 

S1 (mid-span) S2 (one-third span length) 

f1 (Hz) 
f2 

(Hz) 

f1 

(Hz) 

f2 

(Hz) 

Non-fixed support 9.18 28.2 9.38 27.6 

Fixed support 9.12 28.3 9.18 28.3 

Difference (abs) 0.06 0.10 0.20 0.70 

Error (%) 0.65 0.35 2.13 2.54 
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3.5 Effect of span length 

The relationship between the span and the vibration properties of the 

specimens are illustrated in Table 3-6. The span length was increased from 6 m to 10 

m, with 2 m intervals and as expected, the shorter specimen gave the highest value of 

natural frequency since this is related to the structural stiffness, but only applies to the 

first mode natural frequency. As shown, the longer specimens had more flexibility and 

slenderness compared to the shorter specimens. However, the third mode frequency 

was roughly similar for all the specimens, and the second mode frequency was difficult 

to analyse as more than one additional mode appeared.  

 

Table 3-6 Comparison of modal properties between different span lengths 

Specimen 

     (m
2
) 

f1 

 (Hz) 

1 

(%) 

f2 

(Hz) 

3 

(%) 

f3 

(Hz) 

3 

(%) 

A 8 x 0.6 9.1 

 

0.8 

 

26.3 

 

0.5 

 

50.0 

 

0.1 

  

C 10 x 0.6 6.3 

 

0.6 

 

21.2 

 

0.2 

 

50.0 

 

0.1 

  

D 6 x 0.6 12.5 

 

0.7 

 

22.5 

 

0.3 

 

50.0 

 

0.1 

  

 

 

3.6 Effect of topping width 

 The modal parameters of LCC specimens with a single joist were compared 

with LCC specimens with double joists, as illustrated in Table 3-7. Even though both 

specimens had different cross-section properties, their stiffnesses were similar for both 

specimens. The ratio of stiffness and mass of the LCC with a single joist to an LCC 

with double joists is 2:1. From the fundamental natural frequency equation, the natural 

frequency for a LCC with a single joist is          
 

   
 

     

    
   and the natural 

frequency for a LCC with double joists is          
 

   
 

      

     
, thus  
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f1-LCC = f2-LCC.  The experimental results agreed with the theory with differences in the 

fundamental natural frequency of the 6 m x 0.6 m and 6 m x 1.2 m specimens being 

only 1.80 %. The reason for this comparison was to check the vibration behaviour of 

the specimens when the scale is larger. In a  the real life scenario, double LVL joists 

will used on LCC flooring systems as will be discussed later in a subsequent chapter.  

 

Table 3-7 Comparison of modal properties between different topping widths 

Specimen 

     (m
2
) 

f1 

 (Hz) 

1 

(%) 

f2 

(Hz) 

2 

(%) 

f3 

(Hz) 

3 

(%) 

A 8 x 0.6 
9.1 0.8 26.3 0.5 50.0 0.1 

 

B 8 x 1.2 
9.2 0.6 27.2 0.3 50.0 0.1 

 

D 6 x 0.6 
12.5 0.7 22.5 0.3 50.0 0.1 

 

E 6 x 1.2 
11.0 1.2 20.3 0.2 50.1 0.1 

 

 

 

3.7 Effect of support stiffness 

Initially, the specimens were placed on timber blocks with no additional 

support to create a rigid support. Thus, small gaps or friction may have allowed small 

deflections and movements to occur at the ends. Placing a steel roller between the beam 

and timber block gave more flexibility to the boundary conditions of the system.  

Table 3-8 shows the natural frequencies and damping ratios of three different 

support systems used with the LCC specimens. The comparisons only focus on the first 

(1st) natural frequency, as the higher natural frequencies were not very different as 

discussed previously. The specimens with a timber block at both end supports were 

used as a reference for the other types of supports, since this support system had a 

higher stiffness compared to the other two support systems, and gave the highest value 

for the first natural frequency.  
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 Using roller supports at each end gives an unstable support system compared 

with the use of blocks, and block and roller support systems. Theoretically, this 

boundary system will provide the lowest natural frequency compared to the other 

support systems. The results in Table 3-8 show that for spans of 6 m and 8 m the roller 

supports had lower natural frequencies than for the block supports, but there was little 

differnce for the 10 m span. The experimental error including disturbances from outside 

sources and problems with the data analysis, as mentioned, before probably caused the 

unexpected results for the 10 m span.  

 

Table 3-8 Comparison of natural frequencies between different support conditions 

Specimen  

 (m
2
) 

Support 

types 

f1  

(Hz) 

f2  

(Hz) 

f3  

(Hz) 

A 8 x 0.6 

  Blocks 9.2 27.8 50.1 

  Roller 8.7 25.4 50.1 

 
 

Block and 

roller 
9.1 26.3 50.0 

C 10 x 0.6 

 Blocks 6.4 22.2 50.6 

 Roller 6.4 20.3 50.0 

 Block and 

roller 
6.3 21.2 50.5 

D 6 x 0.6 

 Blocks 12.8 25.5 50.0 

 Roller 11.0 23.4 50.0 

 Block and 

roller 
12.5 22.5 50.0 

 

This research found that the boundary conditions have a big influences on the 

vibration of the systems with the relationship between the fundamental natural 

frequencies being linear with the boundary rigidity stiffness and the flexibility of the 

LVL blocks used as the support system affected the results of the vibration tests. Thus, 

to get a better understanding, the interaction  between the support surface and LVL joist 

was modelled in SAP 2000, as illustrated in Figure 3-12. The LVL-concrete composite 
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beam was modelled as a block mesh and the rigid support was applied underneath. The 

force (point load) was applied on five nodes at the end of the block and the outer force 

is half of the force applied to the central three nodes of the  specimen.   

The results from the support modelling are shown in Figure 3-13, where the 

deflection occurred over the loaded area and a length of the beam near the support. The 

deflection represented the movement and indentation of the timber support. The 

effective support length could be obtained as the length of the timber support, as 

illustrated in Figure 3-14. The effective length was found to be approximately 80% of 

the loaded area, based on the finite element modelling results.  The remaining support 

systems will not be discussed in detail here, but there was approximately a 10% 

difference in deflection between the timber block support and the other types of support 

system. Thus, it shows that the timber block support is flexible and will affect the 

vibration behaviour of the system.  

 

 

 

 

 

Figure 3-12 (a) Boundary stiffness a timber block as support and (b) mesh model 

 

 

 

Figure 3-13 Finite element model 

 

 

TCC beam 
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Force 

 

Force 

 
Mesh model 

 Rigid support 
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(b) 

deflection 

 

Force 

 

Characteristic 
deflection 
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3.8 Finite Element  Modelling of LCC T-joist specimens 

Finite element analysis (FEA) has become commonly used as a tool to solve 

complicated stress problems using a system of points called nodes which make a grid 

called a mesh. Material and structural properties were assigned to the elements of the 

mesh, such as beam or shell elements to define how the structure will react to certain 

loading conditions.  

The finite element package, SAP 2000 v.14 (SAP2000, 1997) was used to 

model the LCC beams to evaluate the experimental modal analysis results using the 

same material properties and cross-section, with a modulus of elasticity for concrete of 

Ec = 30 MPa and for timber, Et = 12.7 MPa. The same procedure as described in section 

3.2 was applied in this analysis. Additionally, all elements were assumed to have 

isotropic material characteristics, including LVL, even though LVL is an orthotropic 

material, to get the optimum dynamic behaviour of the system. The complete properties 

of concrete and LVL are reported in Appendix A.  

The lumped mass system illustrated in Figure 3-15 was modelled in a 

preliminary study to find the dynamic behaviour of the TCC beam using the same 

configuration as discussed in section 3.2. A more refined finite element (FE) mesh is 

outlined in Figure 3-16. Nodes, corresponding to the lumped masses were modelled at 

200 mm centres. The connectors were modelled as spring elements with stiffness, k, as 

provided by Yeoh (2010). The spring elements were connected between the nodes of 

the two elements, while beam elements represented the LVL joist, and shell elements 

represented the concrete topping as illustrated in Figure 3-16. The serviceability slip 

Effective length 

deflection 

 
Fully stressed 
(uniform) 

 

unstressed 

 

Figure 3-14 Support effective width 
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modulus, k, was calculated by taking the tangent of the force and deflection relationship 

(refer to Figure 3-17).  Only 6 to 10 connectors were modelled for each beam 

(depending on the beam design). The remainder of the nodes were connected with 

spring elements (as link elements), but with very high stiffness. The purpose of this is 

to transfer the load from the concrete beam element to the LVL joist beam element as 

depicted in Figure 3-16.                           

Descriptions of the elements used are given below and the FEA SAP 2000 

model as illustrated in Figure 3-16 was used to assemble models of each of 

experimental assemblies described in the following chapters.  

Beam element – A 2-noded linear elastic beam element representing the 

orthotropic LVL joist with 6 DOFs. 

Shell element – A 4-noded shell element with bending and membrane 

capacity was used to model the concrete topping on this system.  

Link element – A 2-node link element was chosen to act as a spring element 

between the beam elements and the shell elements. This link element transferred loads 

from the shell to the beam elements, as a shear connector to the whole system. 

Joint mass – These  represented the shaker and steel masses that could be 

lumped at the selected joint. 

 

       

 

 

Figure 3-15 Lumped mass system  

lumped mass 

 

L  

 

EI 
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(i) Cross section                (ii) Shear connector       (iii) Rigid vertical links 

Figure 3-16 LCC finite element models 

 

 

 

Figure 3-17 Connection experimental load-slip curve (source: Yeoh (2010)) 

 

The finite element investigations of the effect of span length, topping width, 

and support stiffness on the LCC vibration behaviour followed the vibration testing. A 

summary of the first five modes from the full-scale LCC finite element results are 

presented in Table 3-9. Detailed discussions of the finite element results will be 

explained in Section 3.7, including the comparison between the vibration test and the 

analytical model results.  

The mode shapes from the finite element analyses are depicted in  

Figure 3-18. Only the mode shapes for specimen A (8 m x 0.6 m) and 

specimen D (6 m x 0.6 m) are presented because the modal behaviours of the 8 m and 

tan-1 k 

 

Nodes Notch (connector) 

LVL joist Support 

Concrete topping Shell element 

200 mm crs @ nodes 

Rigid vertical links 

Beam element Shear connectors 

Support 
200 mm crs @ nodes 
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10 m specimens were similar, as both specimens were simply-supported specimens. 

There was a difference with specimen D, which was simply supported with a 1 m 

cantilever arm at both ends. To verify the results for specimen D, a simply supported 

LCC specimen with a 6 m span length was modelled, as shown Figure 3-19. The 

differences between the 6 m specimens with and without a cantilever arm was 

negligible at 0.86 % . Thus, the one-meter cantilever arm did not have a big affect on 

the vibration behaviour.   

Table 3-9 Summary of results from the finite element modelling 

Specimen 

 

Support 

system 

f1 

(Hz) 

f2 

(Hz) 

f3 

(Hz) 

f4 

(Hz) 

f5 

(Hz) 

A  8 m x 0.6 m 

                 Block 10.0 20.7 39.6 57.8 81.1 

 Roller 9.4 19.5 37.9 55.8 80.0 

 Block and 

Roller 
9.7 20.1 38.8 56.7 80.2 

B  8 m x 1.2 m 

 Block 9.7 19.5 37.2 54.3 76.1 

 Roller 9.1 18.4 35.6 52.4 74.1 

 
Block and 

Roller 
9.4 19.0 36.4 53.3 75.3 

C 10 m x 0.6 m 

 Block 6.8 14.6 26.6 38.7 54.8 

 Roller 5.9 12.9 24.1 35.9 52.0 

 
Block and 

Roller 
6.3 13.8 25.3 37.4 53.4 

D 6 m x 0.6 m 

 Block 15.6 33.0 59.6 92.9 121.8 

 Roller 14.2 30.4 52.0 92.2 122.9 

 
Block and 

Roller 
14.8 31.6 54.2 92.5 124.1 

E 6 m x 1.2 m 

 Block 15.1 31.6 57.6 88.3 118.7 

 Roller 13.1 29.0 49.1 87.6 116.7 

 
Block and 

Roller 
14.4 30.0 51.2 87.9 118.0 
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(a) 6 m (b) 8 m 

 

Figure 3-18 Mode shapes from finite element modelling for 6 m and 8 m specimens 

 

 

  

  

(a) 6 m beam with cantilever arm (b) 6 m beam without cantilever arm 

Figure 3-19 Comparison of 6 m specimens with and without cantilever arm 

 

 

 

supports 

fn = 14.83 Hz 

 

fn = 14.64 Hz 

 

f1 = 14.83 Hz 

f2 = 31.61 Hz 

f3 = 54.21 Hz 

f4 = 92.53 Hz 

f5 = 124.08 Hz 

f1 = 9.66 Hz 

f2 = 20.12 Hz 

f3 = 38.75 Hz 

f4 = 56.74 Hz 

f5 = 80.17 Hz 
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3.9 Comparison between the modal test (EMA) and finite element  

modelling (FEA) 

The discussion of the comparison between the EMA and FEA only focuses on 

the fundamental frequency, since some of the higher modes from the EMA could not be 

obtained for some specimens. In addition, the fundamental natural frequency is the 

most important frequency for serviceability in a structural design compared to the 

higher frequencies.  

Table 3-10 shows the differences in fundamental natural frequency between 

analytical modelling and vibration test results, together with the percentage errors, 

based on the support systems of the specimens. The differences in the fundamental 

natural frequencies predicted from the FEA and EMA was moderately high with the 

average errors for specimens on blocks, rollers, and block and roller support systems 

being about 11.5 %, 13.0 % and 9.5 %, or 1.8 Hz, 1.1 Hz or 0.8 Hz, respectively. The 

flexibility of the support systems in the tests probably caused the big differences. As 

discussed before (see section 3.2), the specimens were placed on a LVL block which 

acted as the support system. The flexibility of the LVL block may have affected the 

overall vibration behaviour of the specimens. Meanwhile, the support systems in FEA 

modelling were more rigid than the real situation. 
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Table 3-10 Comparison between FEA and EMA for different support stiffnesses 

Specimen 

 
 

Support system 

Block 

(f1, Hz) 

Roller 

(f1, Hz) 

Block and 

Roller 

(f1, Hz) 

A                 

FEA 10.0 9.4 9.7 

EMA 9.2 8.7 9.1 

Difference (abs) 0.8 0.7 0.6 

Error % 10.0 7.4 6.2 

B 

FEA 9.7 9.1 9.4 

EMA 9.2 8.8 9.2 

Difference (abs) 0.5 0.3 0.2 

Error % 5.2 3.3 2.1 

C 

FEA 6.8 5.9 6.3 

EMA 6.4 6.4 6.3 

Difference (abs) 0.4 0.5 0 

Error % 5.9 8.5 0 

D 

FEA 15.6 14.2 14.8 

EMA 12.8 11.0 12.5 

Difference (abs) 2.8 3.2 2.3 

Error % 18.0 22.5 15.5 

E 

FEA 15.1 13.1 14.4 

EMA 12.3 10.0 11.0 

Difference (abs) 2.8 3.1 3.4 

Error % 18.5 23.7 23.6 

Mean 
Difference (abs) 1.5 1.1 0.8 

Error % 11.5 13.0 9.5 

 

 

 

 



65 
 

3.10 Damping from Impact Hammer Test  

The other method that has been used in this research was the impact hammer 

test, to determine the natural period and equivalent viscous damping. The Dytran model 

5803A instrumented impact hammer illustrated in Figure 3-20 (a) was used to provide 

an impulse point load. The 5.4 kg hammer head had a 22.2 kN piezoelectric transducer 

to directly measure the force applied to the specimen. On the other hand, the specimen 

responses were recorded by accelerometers attached on the beam.  

The beam specimens were excited on the upper surface as demonstrated in 

Figure 4.7 (a). The person using the hammer stood alongside the specimen. The 

hammer tip controls the excitation frequencies. Four types of hammer tip (soft, 

medium, tough and hard) were provided with the hammer. The softer tip provides 

mostly low frequency response due the longer duration of the impact. The soft and hard 

tips were used to investigate the different behaviour of the lower and higher 

frequencies. Ten impacts were applied at one point and the readings were averaged due 

to uneven force applied during the test. 

Striking the hammer on the specimen created a half-sine input curve as shown 

in Figure 3-20 (b), with two kinds of force pulse based on the hammer tip. Figure 3-21 

illustrates the specimen’s response.  The duration of the pulse related to the stiffness of 

the contacting surface. The stiffer tip provided a short pulse duration of higher 

frequency. Vice versa, the softer tip contributed to longer periods.  

 

Figure 3-20  A person striking the specimen and the time history of the impact force 
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Figure 3-21 Beam responses from impact hammer test 

 

The data processing began by calculating the natural frequency and critical 

damping ratio for each reading. Each hammer test was carried out ten times at one 

point. Then, the average of ten natural frequencies and damping ratios was calculated 

and the natural frequency and damping ratio for each specimen were obtained. The 

repeat of testing at one point was necessary due to higher modes interfering with the 

desired fundamental mode early in the response. Once higher modes are attenuated 

sufficiently, the fundamental response has only a data acquisition sampling error.  The 

logarithmic decrement method was applied to obtain the natural frequencies and critical 

damping ratio of the specimen according to the following equations (see also Figure 

3-22); 
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Figure 3-22  Decay of motion 

 

The hardness of the surface does not affect the critical damping ratio of the 

specimens. However, the hardness of the surface influenced the acceleration amplitude 

and length of period. The peak acceleration was calculated based on the decay motion 

of the impulse vibration. This calculation was based on the assumption that the beam 

vibrates in fundamental mode only. Damping ratios of 2.3 % and 1.5 %, were obtained 

respectively, as shown in Figure 3-23 . These damping ratios are similar to the of 1 % 

to 4.5 % as recommended in the AISC design guide (Murray et. al, 2003) for 

unfurnished floors (1%) to floors with a partitions (4.5 %) 

 

 

Figure 3-23  Critical damping ratio 
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3.11 Conclusion and Summary 

The LCC flooring system was introduced in the University of Canterbury as an 

alternative to existing flooring systems (Yeoh, 2010). A series of tests were carried out 

including electrodynamic shaker tests to understand the vibration behaviour of the 

system, including obtaining the vibration parameters for serviceability design purposes. 

As there were limitations on space and time, only full-scale LVL-concrete composite 

specimens or beams were constructed, as preliminary studies for this research.  

The studies included the influences of span length, width length and the 

support system. Vibration testing and finite element modelling were conducted to 

obtain the vibration parameters, natural frequencies, damping ratios and mode shapes. 

Results from both methods were closed with the error percentage not more than 30 %. 

Thus, it can be concluded that the finite element modelling was suitable to use for 

further research.    

As expected, the rigidity of the boundary condition has an influence on the 

vibration behaviour and properties of the system. The flexibility of the LVL timber 

block gave more influence on the vibration behaviour and reduced the natural 

frequency. Hence, a two-way flooring system is stiffer than a simply supported system 

and therefore is expected to have a greater natural frequency (Abd Ghafar et. al, 2008) 

and this will be discussed later in the following chapters. 

Two parameters that have been discussed in this chapter are the span length 

and topping width of the specimens. Both of these parameters changed the natural 

frequencies of the system as they are affect the stiffness of the system. As is known, the 

stiffness is inversely proportional to the natural frequency. The reason for both 

parameters being studied was to understand the basic behaviour of  floor systems and 

whether these systems have a low frequency or high frequency response. 

 Referring to Figure 3-24, the natural frequency for the 6 m and 8 m beams 

were more than 8 Hz, however the natural frequency for the 10 m beam was less than 8 

Hz. Thus, the 8 m long span was reasonable to construct and further study was 

discussed in Chapter 6. The detailed design of an LCC floor, including the design 

guide, will be discussed in Chapter 7.  
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Figure 3-24 Natural frequency limitation for a LCC flooring system 

 

 

4 

5 

6 

7 

8 

9 

10 

11 

0 2 4 6 8 10 12 14 16 

S
p

a
n

 (
m

) 

Natural Frequency (Hz) 

EMA 

FEA 

Special investigation needed 

 

Should satisfied the requirements 

 

High frequency floor 

 

Low frequency floor 

 

8 Hz limitation 

 



 
 

 
 

 

CHAPTER 4 EXPERIMENTAL MODAL ANALYSIS (EMA) ON 

REDUCED SCALE LVL-CONCRETE COMPOSITE (LCC)  

T-JOIST SPECIMENS   
 

In this chapter, details of Experimental Modal Analysis (EMA) and Finite 

Element (FE) modelling of reduced-scale LCC T-joist specimens and floor are 

presented. The details were implemented from the full-scale LCC specimens discussed 

in Chapter 3. The reduced-scale LCC specimens that were built and tested were: 

i. Multi-span specimens: Four (4) spans of LCC T-joist specimens built with 

2.8 m span length for each T-joist specimen. The T-joists specimens were 

connected to each other with timber blocks (which simulate a supporting 

beam) and the concrete was poured on the top as a continuous slab. After 

each test, the concrete slab was then cut to reduce the number of spans from 4- 

to 3-, 2- and one. 

ii. Multi-storey specimens: The single span specimens (which were cut from the 

multi-span specimen) were stacked on top of each other to simulate a multi-

storey system, of 2-, 3-, 4-storeys, and a 2-storey 2-bay system.    

iii. Single-bay T-joist floor: A 3 m x 3 m simply supported floor was built using 

150 mm x 45 mm joists at 500m spacing and 250 mm x 45 mm supporting 

lateral beams. 

Vibration shaker tests were conducted to determine the modal parameters. The 

EMA was adopted from Chapter 3 (refer section 3.3), only the location of the 

electrodynamic shaker was different, based on the number of spans. The test setup for 

each specimen will be explained later in this chapter.  
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4.1 Construction Detail of Reduced Scale specimens 

The multi-span specimens were built in order to understand the vibration 

behaviour between spans and the influences of the boundary conditions. However, due 

to limited space in the laboratory, the multi-span specimens were constructed to 

approximately one-third scale of the full scale specimens, The construction details  

were similar to the single bay, simply supported, floor described later in section 4.1.3. 

There was no attempt to apply the principles of similitude to the reduced scale tests, as 

the reduced scale specimens were separately modelled using FEM (refer to Chapter 5).   

 

4.1.1 Multi-span specimen detail   

Each of the four spans making up the reduced scale, simply supported beam 

was built as illustrated in Figure 4-1 (a). The joist was 2870 mm long with a cross 

section of 250 x 45 mm connected to 300 x 65 mm timber blocks at each end using 

standard joist hangers. Six rectangular 100 x 45 mm notches were cut the top surface of 

the LVL beam to create the shear connector between the LVL joist and the concrete 

topping. Two 6 mm diameter coach screws were installed in the centre of the notch to 

improve the performance of the connection system. The four beams were connected 

together by screwing the timber blocks together to simulate a supporting beam and 7 

mm plywood sheathing was nailed to the LVL joists as permanent formwork for the 

500 mm wide x 25 mm thick concrete topping. The concrete was reinforced with 25 

mm x 25 mm wire mesh as shown in Figure 4-1(b). 

The concrete topping was poured continuously across the tops of the simply-

supported LVL-joists as shown in Figure 4-1(c). The concrete topping was continuous 

over the supports for all of the multi-span tests. The concrete slab was then 

subsequently cut, as shown in Figure 4-2, in order to reduce the number of spans from 

4- to 3-, 2- and eventually, one. 
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(a) Simply supported LVL beam 

 

(b) Top view of the 4-span LVL beam before the continuous concrete 

topping was poured 

 

 (c) 4-span LVL beam with continuous concrete topping 

Figure 4-1 Photographs of the multi-span system 
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Figure 4-2  Concrete topping being cut to split the beams 

 

 

4.1.2 Multi-storey specimen detail  

The effect of vibration on one floor to another floor (either underneath or above) 

was investigated by placing the single-span specimens one above the other in a stacked 

configuration, without any mechanical connection between the beams (refer Figure 4-3). 

In this way, 2-storey, 3-storey and 4-storey systems were tested.    

Furthermore, a 2-storey, 2-bay system was re-constructed by re-screwing the 

timber block supports and pouring a cement grout to re-connect the concrete topping as 

depicted in Figure 4-4 to study more details on multi-span flooring systems.  

 

 

 

 

Beams were split to 

two parts 

 

Beams were split to 

two parts 
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(a) 2-storey system 

 

(b) 3-storey system 

 

 (c) 4-storey system 

Figure 4-3 Multi-storey single-bay systems 

 

 

             (a) 2-storey 2-bay system                          (b) re-connected beam  

Figure 4-4  2-storey, 2-bay T-joist beams 

 

Cement grout 

 

Cement grout 
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4.1.3 Single-bay T-joist floor details 

A single 3 m x 3 m floor was built from 150 mm x 45 mm joists at 500 mm 

spacing and 250 mm x 45 mm lateral supporting beams with 2694mm joist length.  A 

25 mm concrete topping was poured on 7 mm plywood sheathing which provided a 

permanent formwork. Shear resistance between the concrete topping and the timber 

joist was provided the notch connectors in cut in the LVL joists and reinforced with 6 

mm diameter coach screws.  The joists were connected to the 250 mm x 45 mm 

primary beams with joist hangers. The floor plan layout and the detail cross section are 

illustrated in Figure 4-5 and Figure 4-6, respectively. Thus the floor was a one-third 

reduced-scale specimen of a house floor.  

 

Figure 4-5  Floor plan layout (dimension in mm) 

 

Figure 4-6  Cross-section A - A 

A A 
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4.2 Dynamic performance of multi-span specimens 

Forced vibration tests were carried out on each multi-span specimen to 

determine the vibration behaviour of the multi-span flooring system. The excitation 

signal applied went from 5 Hz to 25 Hz, with a 0.1 Hz interval. The test setup for each 

multi-span specimen is depicted in Table 4-1. The shaker was located at the midspan of 

the outer span of the specimens, with accelerometers attached along the LVL joist. The 

shaker was then relocated to another span, for the 3-span and 4-span specimens, to 

understand the transmissibility of the vibration wave between entire spans. 

Table 4-1 shows the results of the vibration test multi-span specimens. The 

fundamental natural frequency of the first (1
st
) mode was easy to determine due to the 

location of the shaker at mid-span, as this is the anti-node location for odd mode 

numbers (1, 3) as discussed before in Chapter 3.  

 

Table 4-1 Results of vibration test on LCC multi-span specimens 

Specimen 

 

f1 

(Hz) 

1 

(%) 

f2 

(Hz) 

2 

(%) 

f3 

(Hz) 

3 

(%) 

1- span       

           
24.2 1.0 47.3 0.34 57.6 0.1 

2-span 

 
21.1 0.1 42.4 0.1 61.4 0.1 

3-span  (Setup 1) 

 

 

21.7 1.3 43.1 0.2 64.0 0.3 

3-span  (Setup 2) 

 

 

23.3 0.7 46.4 0.8 69.6 0.2 

4-span   

 

 

22.2 1.9 43.8 0.1 72.1 0.3 

 

 

 

 

shaker 



77 
 

The mode shapes for the multi-span specimens are illustrated in Figure 4-7. 

The mode shape for the 1-span specimen was obvious for both the first (1
st
) and (2

nd
) 

second modes. However, when the number of spans increased, the mode shapes were 

difficult to recognise, especially for the second (2
nd

) mode and higher, probably due to 

the wave propagation between spans, arising from close mode behaviour.  Pavic et. al 

(2002) states that having two identical floors  with the modes of the two adjacent floor 

levels having very close natural frequencies there is the potential to enhance the 

vibration transmitted between the floors.   

Figure 4-7(iii) and (iv) show the mode shape of the 3-span specimen with two 

test setups, where the shaker is located at one of the outer beams (as setup 1), and at an 

inner beam (as setup 2). When the span was excited at one of the outer beams, the other 

end beam gained about one-quarter of the excitation energy, transmitted through the 

inner beam. The wave reduced due to the material damping, energy dissipated to the 

ground, and probably due to the boundary conditions of the system. When the shaker 

was relocated to the inner beam, the tests showed that the energy split to the left and 

right spans produced different amplitude deflections at these spans. 

The transmissibility of the vibration energy between end spans through the 

inner spans obtained during the force vibration test on the 4-span specimen is illustrated 

in Figure 4-7 (v) to Figure 4-7 (vii). The shaker was located at three (3) different 

places: at the mid-span of the outer span (setup 1), and at the mid-span of both inner 

spans (setups 2). When the shaker excited the outer span, the vibration energy 

transmitted to the other end span through the inner spans, produced an amplitude that 

was about half the amplitude produced at the span with the shaker. The wave 

propagation was also found for the second (2
nd

) mode behaviour. However, the 

vibration behaviour for the multi-span specimens were difficult to interpret on account 

of the vibration transmissibility, distraction from outside noise, and the movement at 

the edges of the specimen. Thus, analytical modelling was performed to provide clearer 

insight as discussed in detail in the following chapter. 
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(i) 1-span specimen 

 

 

  

 

(ii) 2-span specimens 

 

 

 
 

 

(iii) 3-span specimens (test setup 1) 

  

 
  

 

(iv) 3-span specimens (test setup 2) 

 

 
  

 

(v) 4-span specimens (test setup 1) 

 

(a) Test setup (b) 1
st
 mode (c) 2

nd
 mode 

Figure 4-7 Multi-span mode shape 

 

 

4.3 Dynamic performance of multi-storey specimens 

The multi-span specimens were cut and stacked together to perform the multi-

storey specimens, as explained in section 4.2. The shaker was located on the top span 

and accelerometers were attached along the span at each storey. The same signal 

frequency was applied as on the multi-span specimen tests, i.e. ranging  from 5 Hz to 

25 Hz, with a 0.1 Hz interval. The test method was adopted from section 3.3 (see 

Chapter 3). The test setup for multi-storey specimens as illustrated in Table 4-2.  

 

shaker 
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Table 4-2 Result summary of multi-storey specimens 

Specimen 

 

f1 

(Hz) 

1 

(%) 

f2 

(Hz) 

2 

(%) 

f3 

(Hz) 

3 

(%) 

1- storey 

    

 

24.2 0.1 47.3 0.35 57.6 0.1 

2-storey 

 
20.0 1.0 39.1 0.21 53.5 0.1 

3-storey 

 

 

18.2 0.1 35.7 0.10 53.5 0.1 

4-storey 

 

 

21.1 0.9 35.0 0.10 47.7 0.2 

 

The mode shapes of the multi-storey specimens are illustrated in Figure 4-8. 

Because the specimens were stacked on top of each other without additional support 

caused movement at the edge of the specimens. The movement on the upper specimen 

introduced an additional coupled mode and may have affected the vibration behaviour 

of the system. 

The modal shape for the lower span became flatter compared to that of the 

upper span for the first, second and third modes of the 2-span specimen as presented in 

Figure 4-8 (i). However, the middle span of the 3-storey specimen (refer Figure 4-8 (ii)) 

had a modal shape with a similar amplitude to that of the top span displacement 

amplitude, but the shape was in the opposite direction. The lower span mode shape was 

less curved compared to the two (2) spans above. The mode shapes for the 4-storey 

specimen were different to the other storey specimens. The top storey, where the shaker 

was located, was less curved than the lower storey, and both middle storeys  showed a 

higher curvature in the second mode. Meanwhile, the lower span showed a  half sine 

curve for the third mode. It shows that the vibration energy travelled between storeys. 

Unfortunately, a coupled mode appeared and the real behaviour of the multi-storey 

system could not be understand sufficiently from these vibration tests. The multi-storey 

specimens were also modelled in a finite element software package to get more 

understanding of how the vibration energy dissipated, is discussed in subsequent 

chapter.  

shaker 
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(i) 2-storey specimen 

 

 

 
 

  

(ii) 3-storey specimen 

 

 

 
   

(iii) 4-storey specimen 

 

(a) Test 

setup (b) 1
st
 mode (c) 2

nd
 mode (d) 3

rd
  mode 

Figure 4-8 Multi-storey mode shape 

 

 

4.4 Dynamic performance of a single-bay floor  

A larger scale specimen was built to investigate the vibration behaviour of an 

LCC flooring system. A reduced-scale 3 m x 3 m LCC floor was built and tested by 

electrodynamic shaker to obtain the natural frequencies and mode shapes of the 

specimen. Details of the specimens is explained in section 4.1.3. In a similar method to 

that for the full-scale LCC specimen (refer Chapter 3), the accelerometers were placed 

at the mid-span of the each joist across the floor as illustrated in Figure 4-9. The shaker 

was first located at the middle point on the floor and later relocated to one-third of the 

floor length, in order to determine the asymmetric and symmetric modes.  

Masses were selected that matched the shaker mass and placed on the floor 

over each joist at mid span. The natural frequency of the system noticeably decreased. 

The addition of masses is shown in Figure 6.10 to decrease the resonance frequency of 
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the specimen from 17.3 Hz to 14.7 Hz. Extra masses provided better performance of 

vibration behaviour, with only one peak resonance found in the floor’s response.  

 

 

 

 

  

(a) Setup 1 (b) Setup 2 (c) Setup 3 

Figure 4-9 Vibration test layout for single-bay floor 

 

f1 =17.3 Hz,  = 0.69  

 

 

f1 = 19.9 Hz,  = 0.03 

 

 

f1 =14.7 Hz,  = 0.2 

 

 
(i) 1

st
 mode 

f2 =34.6 Hz,  = 0.01 

 

 

f2 = 35.8Hz,  = 0.18 

 

 

f2 = 44.1 Hz,  = 0.17 

 

 

(ii) 2
nd 

mode 

f3 =51.9 Hz,  = 0.24 

 

 

f3 = 53.5 Hz,  = 0.03 

 

 

f3 = 58.9 Hz,  = 0.04 
 

 
(iii) 3

rd
 mode 

(a) Setup 1 (b) Setup 2 (c) Setup 3 

Figure 4-10 Mode shape for single-bay floor 

 

The natural frequencies and mode shapes for the single-bay floor are depicted 

in Figure 4-10. The mode shapes with additional masses provided a clear curve shape 

compared to other setup tests. While the additional masses probably influence the 

results, however without additional mass the acceleration responses had coupling mode 

issues and extraneous noises. The issues occurred due to the vibration that occured at 

shaker 

accelerometer 
mass 
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the centre of the floor and the shaker weight probably was more heavy compared to the 

concrete topping.  

Peak accelerations for both experiments, with and without extra masses, were 

plotted as illustrated in Figure 4-11 and show that the floor without extra masses gave 

higher peak acceleration compared to the floor with extra masses. End moments issued 

also discovered on this flooring system, for both test configurations, due to the joist-

beam connection.    

 

 

Figure 4-11 Mode shapes curve to the perpendicular of the joist span 

 

4.5 Conclusion and Summary 

The forced vibration tests were conducted on reduced-scale, multi-span, multi-

storey specimens, as well as reduced-scale single-bay and 2-bay 2-storey flooring 

systems. The forced vibration tests were carried out to determine the vibration 

behaviour including the natural frequencies, damping ratios and mode shapes of the 

specimens and floors. An electrodynamic shaker was used to excite the specimens and 

floors, along with accelerometers were attached on the specimens and floor to record 

the acceleration response.  

The experiment found that vibration energy was transmitted between spans, 

and an end span obtained more vibration energy if the other end span was excited, 

compared to the inner spans, with the vibration energy being transmited through the 
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inner spans. The transmitted vibration energy provided close modes between spans or 

storeys, with the mode shapes difficult to identify, especially for 2
nd

 and 3
rd

 modes, 

however the global mode shapes could be recognised. This situation applied for both 

multi-span and multi-storey flooring systems. Detailed investigation on the vibration 

transmissibility is discussed in the next chapter where the results of finite element 

modelling are presented.   

 

 



 
 

 
 

 

CHAPTER 5  ANALYTICAL MODELLING OF REDUCED SCALE LCC  

T-JOIST  SPECIMENS AND FLOORS 
 

This chapter discusses the results of analytical modelling of reduced-scale T-

joist specimens and floors. The vibration parameters, natural frequencies and mode 

shapes were determined using the eigenvalue analysis in the finite element software 

package, SAP 2000. The FE results were compared with the experimental investigation 

results (refer Chapter 4) to understand better the vibration behaviour of LCC T-joist 

flooring system.  

The model description follows the analytical model as explained before in 

section 3.5 (refer Chapter 3). Three major elements were used in these models as shown 

in Figure 5-1.  The concrete topping and timber blocks were modelled by shell 

elements, while the LVL joists were modelled as beam elements, and the shear 

connectors and joist hangers were represented by link elements. 

 

Concrete topping 

Shell element 

Timber block 

LVL joist Beam element 

Shear connector 

Link element 

Joist hanger 

Structure components FE modelling element 

Figure 5-1 FE modelling elements representing structure components  

 

The properties of the concrete and LVL joists are given in Appendix A. The 

cross section and the simplified elastic model are illustrated in Figure 5-2. As explained 

previously, the shear connectors were assigned as link elements in the x-axis direction, 

to model the slip modulus behaviour. However, to transfer loads from the concrete 
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topping to the LVL joists, rigid links were used to connect these two elements as shown 

in Figure 5-2 (b).  

 

 

 

(a) Elevation view of the real structure 

 

 

 

 

(b) Finite element model 

 

(c) The superimposed position of the FE model on the real structure 

Figure 5-2 FE model for continuous T-joist specimen 
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Figure 5-3 shows the details of timber blocks, joists and joist hangers, which 

later were transformed to three springs whose stiffnesses were considered during the 

analysis in the same way as shown in Figure 5-2. The descriptions and the stiffness 

value are shown in  

Table 5-1, which also applies to the spring shown in Figure 5-2.  

 

 

 

 

 

 

 

Figure 5-3 Details of timber block, joist and joist hanger (unit in mm) 

 

Table 5-1 Stiffness properties of the springs  

Description Stiffness, k (N/m) 

Stiffness of the joist perpendicular to the grain, kj 2.3 x 10
7
 

The shear stiffness of the screwed connection 

between the notch hanger and the timber block, ks 

1.86 x 10
7
 

Stiffness of shear connector, kc Refer to Appendix A 

 

The dimensions of the timber block area and the effective area for the joist 

hanger are illustrated in Figure 5-3 and were used to calculate the stiffness properties as 

shown in  

Table 5-1. The calculation procedures are described below: 

(i) Joist stiffness, kj 

    
     

 

 
 

                                                                (5-1) 

LVL joist  ( 150 x 45mm) 

(a) Timber block  

Concrete topping 

Joist 

500  
65  

250  

(b) LVL Joist   (c) Joist hanger  

75 + 47 

150  

47  
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                                                       = 23 N/mm;                                               

(ii) Joist hanger (screws) stiffness, ks 

    
  

 
                                                           (5-2) 

                         from NZS 3603:1993 clause 4.2 and 4.3, the slip deflection could be 

calculated from Equation 5. 

   
         

 

  
                                                 (5-3) 

                       where; 

        = 1 (from Table E1) 

   P     = applied nail load  

   =  500 N 

     
         = nominal strength for a single nail with short term loading 

    = 860.3 N 

 

   Thus, 

   
            

        
 

         = 0.043 

   and 

    
     

     
  

              = 4.7 kN/mm (for one screw) 

                                                           = 4.7 x 4 = 18.8 kN/mm (for four screws) 
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Based on these modelling properties and elements, the FE modelling of the 

reduced-scale specimens, namely: (1) multi-span specimens, (2) multi-storey 

specimens, (3) single-bay T-joist floor and (4) 2-storey, 2-bay T-joist floor, was carried 

out.  

 

5.1 Multi-span specimens 

The predicted natural frequencies of the multi-span specimens are given in 

Table 5-2. The natural frequencies for each specimen were determined over the range 

from the first mode natural frequency (i.e 18 Hz) to a maximum natural frequency of 

about 90 Hz, depending on the mode behaviour of each specimen. The natural 

frequencies for a 1-span LCC specimen are shown up to the third mode behaviour. 

However, for the 2-, 3- and 4-span LCC specimens, the natural frequencies were 

determined up to the 6
th

, 9
th

 and 12
th

 modes as depicted in Table 5-2. 

 

 Table 5-2 Prediction of natural frequency for multi-span specimens 

Specimen 

 

Mode 

1, 

f1 

(Hz) 

Mode 

2,  

f2 

(Hz) 

Mode 

3, 

f3 

(Hz) 

Mode 

4, 

f4 

(Hz) 

Mode 

5,  

f5 

(Hz) 

Mode 

6, 

f6 

(Hz) 

Mode 

7,  

f7 

(Hz) 

Mode 

8,  

f8 

(Hz) 

Mode 

9,  

f9 

(Hz) 

Mode 

10,  

f10 

(Hz) 

Mode 

11,  

f11 

(Hz) 

Mode 

12,  

f12 

(Hz) 

1- span 18.9 40.99 80.5 - - - - - - - - - 

2- span 18.9 20.4 40.8 44.8 80.1 87.4 - - - - - - 

3- span 18.9 19.6 21.2 40.8 42.8 46.8 80.0 83.7 91.1 - - - 

4- span 18.9 19.3 20.4 21.6 40.7 41.6 45.0 47.7 79.9 82.1 87.2 92.8 

 

The fundamental natural frequencies from each specimen were 18.9 Hz for all 

specimens, as shown in Table 5-2. However, as the number of spans was increased, 

closer natural frequencies were obtained. This is because, for the multi-span flooring 

system that had identical properties for each span, the local mode frequencies of each 

span were very close (Pavic et.al, 2002). For a 2-span LCC specimen, two close local 

mode behaviours occurred at modes 1 and 2, modes 3 and 4, and modes 5 and 6. 
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Comparable behaviour occurred for 3- and 4-span LCC specimens. However, for a 3-

span LCC specimen, three close local modes were determined and for the 4-span LCC 

specimen, four close local modes were predicted. Thus, the number of close local 

modes was proportional to the number of spans.  

The mode shape behaviour of the multi-span specimens is illustrated from 

Figure 5-4 to Figure 5-9. Theoretically, the first mode behaviour shows a half-sine 

curve and the second mode shows a full-sine curve. The third and forth modes have the 

shape of one and half sine curves and two full-sine curves, respectively. These 

particular shapes were also shown by the 1-span LCC specimen (refer to Figure 5-4). 

The mode shape behaviours changed when the 1-span LCC specimens had an 

adjacent span. The local mode behaviour of each span dominated the global mode 

behaviour of the system for each mode. For a 2-span LCC specimen, the mode shape 

behaviour was a half-sine curve for modes 1 and 2, for each span. However, the 

position of the curves were different. For the first mode, span 1 showed a hogging 

shape while span 2 was sagging, and both spans had a hogging shape for the second 

mode. The full-sine curve appeared at the third and fourth modes. Both spans had 

similar properties, thus the mode shape behaviour was also comparable.  

On the other hand, the 3- and 4-span LCC specimens showed different 

behaviour for the mode shapes. The fundamental natural frequencies of both specimens 

show that the mode shapes were almost similar for each span (refer to Figure 5-6 and 

Figure 5-8). However, at some points, either the inner span(s) or the outer spans 

dominated the global mode of the system. Figure 5-6 and Figure 5-7 show that the inner 

span for a 3-span LCC specimen governed the global mode at modes 3, 6 and 9 and the 

rest of the modes were dominated by the outer spans, except for mode 1. Referring to 

Figure 5-8 and Figure 5-9, the even numbered global modes were governed either by 

the inner spans or by the outer spans. The odd numbered global mode shapes show an 

almost similar curve deflection for each span, but in opposite deformation.    
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Mode Span 1 Span 2 Span 3 Span 4 

1 

f1 = 18.9 Hz 

 
- - - 

2 

f2 = 40.9 Hz 

 
 

- - - 

3 

f3 = 80.5 Hz 

 
 

- - - 

4 

f4 = 130.2 Hz 

 

- - - 

Figure 5-4 Natural frequency and mode shape for 1-span specimen 
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Mode Span 1 Span 2 Span 3 Span 4 

1 
f1 = 18.9 Hz 

 

- - 

2 
f2 = 20.4 Hz 

 

- - 

3 

f3 = 40.8 Hz 

 

- - 

4 
f4 = 44.8 Hz 

 

- - 

5 
f5 = 80.1 Hz 

 

- - 

6 
f6 = 87.4 Hz 

 

- - 

Figure 5-5 Natural frequency and mode shape for 2-span specimen 
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Mode Span 1 Span 2 Span 3 Span 4 

1 

f1 = 18.8 Hz 

 

- 

2 

f2 = 19.6 Hz 

 

- 

3 

f3 = 21.2 Hz

 

- 

4 

f4 = 40.8 Hz

 

- 

5 

f5 = 42.8 Hz 

 

- 

6 

f6 = 46.8 Hz 

 

- 

Figure 5-6 Natural frequency and mode shape for 3-span specimen 
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Mode Span 1 Span 2 Span 3 Span 4 

7 

f7 = 79.9 Hz

 

- 

8 

f8 = 83.7 Hz

 

- 

9 

f9 = 91.1 Hz

 

- 

Figure 5-7 Natural frequency and mode shape for 3-span specimen (cont.) 
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Mode Span 1 Span 2 Span 3 Span 4 

1 

f1 = 18.9 Hz

 

2 

f2 = 18.3 Hz

 

3 

f3 = 20.4 Hz

 

4 

f4 = 21.6 Hz

 

5 

f5 = 40.7 Hz

 

6 

f6 = 42.0 Hz

 

Figure 5-8 Natural frequency and mode shape for 4-span specimen 
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Mode Span 1 Span 2 Span 3 Span 4 

7 

f7 = 45.0 Hz

 

8 

f8 = 47.7 Hz

 

9 

f9 = 79.9 Hz

 

10 

f10 = 82.1 Hz

 

11 

f11 = 87.2 Hz

 

12 

f12 = 92.8 Hz

 

Figure 5-9 Natural frequency and mode shape for 4-span specimen (cont')
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5.2 Multi-storey specimens 

The first six mode shapes and natural frequencies of a 2-storey specimen are 

depicted in Figure 5-10. The odd numbered global modes were dominated by the 

second storey behaviour, while the even numbered global modes were dominated by 

the first storey behaviour.  The natural frequencies of the first two global modes were 

very close, due to identical members, as discussed previously.  

Figure 5-11 shows the first nine modes of the 3-storey specimen. The first 

three mode natural frequencies were very close, namely 19.1 Hz, 22.0 Hz and 23.4 Hz 

for global modes 1, 2 and 3, respectively. The third storey behaviour dominated the 

local modes 1, 4 and 7. The remaining modes showed predominant first and second 

storey behaviour.  

When the number of storey increased to 4 (see Figure 5-12), the behaviour of 

the specimens was different. The first five global modes were closely spaced at 19.2 

Hz, 22.9 Hz, 23.0 Hz, 23.0 Hz and 24.2 Hz. The natural frequencies for the second five 

global modes were 41.9 Hz, 51.1 Hz, 51.3 Hz, 51.7 Hz and 56.0 Hz. Then, the third 

five global mode natural frequencies were determined as 82.7 Hz, 99.6 Hz, 99.6 Hz, 

101.0 Hz and 110.0 Hz. The top storey dominated the local modes for modes 1, 6 and 

11. 

  

Mode 1, f1 = 19.0 Hz (2nd storey) 
Mode 2, f2  = 23.0 Hz (1st storey) 

  
Mode 3, f3 = 41.3 Hz (2nd storey) Mode 4, f4 = 51.7 Hz (1st storey) 

 

 

 
 

 

 

Mode 5, f5 = 81.4 Hz (2nd storey) Mode 6, f6 = 101.3 Hz (1st storey) 

Figure 5-10 Natural frequencies and mode shapes for a 2-storey specimen  
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Mode 1, f1 = 19.1 Hz (3rd storey) 
Mode 2, f2  = 23.0 Hz (1st and 2nd storey) Mode 3, f3 = 23.4 Hz (1st and 2nd storey) 

   
Mode 4, f4 = 41.6 Hz (3rd storey) Mode 5, f5 = 51.2 Hz (1st and 2nd storey) Mode 6, f6 = 52.9 Hz (1st and 2nd storey) 

 

 

 
 

 

 

 

 

Mode 7, f7 = 82.1 Hz (3rd storey) Mode 8, f8 =99.9 Hz (1st and 2nd storey) Mode 9, f9 = 104.3 Hz (1st and 2nd storey) 

 

Figure 5-11 Natural frequencies and mode shapes for a 3-storey specimen 
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Mode 1, f1 = 19.2 Hz (4th  storey) 
Mode 2, f2  = 22.9 Hz  (1,2,3 storey) Mode 3, f3 = 23.0 Hz (1,2,3 storey) Mode 4, f4 = 23.0 Hz (1,2,3 storey) Mode 5, f5 = 24.2 Hz (1,2,3 storey) 

 

 

    

Mode 6, f6 = 41.9Hz (4th  storey) Mode 7, f7 = 51.1 Hz (1,2,3 storey) Mode 8, f8 = 51.3 Hz  (1,2,3 storey) Mode 9, f9 = 51.7 Hz  (1,2,3 storey) Mode 10, f10 = 56.0 Hz (1,2,3 storey) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mode 11, f11 = 82.7 Hz (4th  storey) Mode 12, f12 = 99.6 Hz (1,2,3 storey) Mode 13, f13 = 99.6 Hz (1,2,3 storey) Mode 14, f14 = 101.0 Hz (1,2,3 storey) Mode 15, f15 = 110.0 Hz (1,2,3 storey) 

 

Figure 5-12 Natural frequencies and mode shapes for a 4-storey specimen 
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The investigation of the vibration behaviour of multi-span and multi-storey 

specimens continued using a reduced-scale 2-bay and 2-storey LCC specimen with the 

results  illustrated in Figure 5-13. Figure 5-13 shows the first four mode shapes and 

natural frequencies of the specimen. The top floor behaviour dominates the first two 

modes and the first storey dominates the third and fourth mode behaviour. 

 

Span 1 Span 2 

 
(a) Mode 1 ( 2

nd
 storey) , f1 = 18.9 Hz 

 

 

(b) Mode 2 (2nd storey) , f2 = 20.6 Hz 

 

 

(c) Mode 3 (1st  storey) , f3 = 22.7 Hz 

 

 

(d) Mode 4 (1st  storey) , f4 = 23.8 Hz 

 

Figure 5-13 Mode shape behaviour for a 2-bay, 2-storey specimen 
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5.3 Single-bay T-joist floor 

The mode shapes of a single-bay T-joist floor and the corresponding natural 

frequencies from mode 1 to mode 6 obtained by FEA, are shown in Figure 5-14. The 

associated mode shapes for the first natural frequency was the simple bending mode 

(refer to Figure 5-14 (a)) at 14.33 Hz. While the second and third natural frequencies 

are associated with full-sine mode shapes, which were transverse to the joists and the 

main beams, respectively, as illustrated in Figure 5-14 (b) and (c).  

 

 
 

(a)  Mode 1, f1 = 14.3 Hz (b) Mode 2, f2 = 27.4 Hz 

 
 

(c) Mode 3, f3 =  35.7 Hz (d) Mode 4, f4 =  46.2 Hz 

 
 

(e) Mode 5, f5 =  47.1 Hz (f) Mode 6, f6 =  64.4 Hz 

Figure 5-14 Natural frequencies and mode shapes for a single-bay 3 m x 3 m floor 
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5.4 Discussion  

A series of EMA tests and FEA modelling were conducted to determine the 

modal parameters of reduced-scale LCC specimens and a floor, as discussed earlier in 

this chapter and chapter 4, including the vibration behaviour of the system. Here, the 

comparison between these two methods of investigation are elaborated. 

The comparison of the fundamental natural frequencies from FEA and EMA 

results for reduced-scale specimens are illustrated in Table 5-3 for multi-span and 

multi-storey LCC specimens. The differences between the modelling and measured 

fundamental frequencies were not negligible with an error of about 11.7% to 27.9%, for 

the multi-span specimens. However, for the multi-storey specimens, the differences 

were close being 4.2% to 9.9% or 0.8 Hz to 1.9 Hz.   

Table 5-3 Comparison of fundamental natural frequency, f1 

 Fundamental natural frequency, f1 (Hz) 

Specimens 1-span 2-span 3-span 4-span 2-storey 3-storey 4-storey 

FEA 18.92 18.89 18.88 18.88 19.02 19.10 19.20 

EMA 24.20 21.10 21.70 22.20 20.00 18.20 21.10 

Different 

(abs) 
5.28 2.21 2.80 3.32 0.80 0.90 1.90 

Error % 27.91 11.70 14.83 17.58 4.20 4.71 9.89 

 

Table 5-4 shows that the differences between the FEA and EMA fundamental 

natural frequencies for a single-bay LCC floor were very close with an error of only 

0.37 Hz or 2.6 %. The frequency for mode 2 was under predicted by 1.94 Hz or 7.1 % 

and mode 3 was over-predicted by 1.75 Hz or 3.8 %.  

Table 5-4 Comparison of the natural frequencies of a single-bay LCC floor 

 

Specimen 

 

 (f1, Hz) (f2, Hz) (f3, Hz) 

Single-bay T-

joist floor                 

FEA 14.33 27.36 46.15 

EMA 14.70 29.30 44.40 

Different (abs) 0.37 1.94 1.75 

Error % 2.6 7.1 3.8 
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  When analysing the acceleration responses from the EMA, there were 

difficulties in determining the correct mode shape of the specimens, except for a 1-span 

LCC specimen. Close mode frequencies occurred that were difficult to recognise. The 

location of the shaker affected the vibration behaviour of the specimens. During the 

testing, the shaker was located only at the mid-span, thus some important data was 

probably missed, especially for the higher modes. Hence, only the fundamental natural 

frequencies of all specimens were determined easily. Additionally, there was noise 

from the machines and other instruments operating in the laboratory, as well as vehicle 

movements outside of the building that disturbed some readings.  

On the other hand, the FEA modelling provided all the natural frequencies of 

the specimens. The close mode frequencies were determined and the vibration 

behaviour of the multi-span and multi-storey specimens was easily understood. The 

vibration energy transmitted between spans and storeys was significant.  

The mode shapes calculate using by the FEA were compared with 

experimental measurements. The modal shapes of the reduced-scale specimens are 

illustrated in Figure 5-15 to Figure 5-17. The mode shapes of the specimens were very 

similar, but the amplitudes were different, depending on where the shaker was located. 

The FEA modelling shows more accurate shapes, which contain more detail than the 

vibration patterns obtained from EMA. The mode shapes of the EMA were generated 

from the acceleration response along the joist, whilst  3D modelling was used in FEA.  
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f1 = 24.2 Hz f1 =18.9 Hz 

(i) 1-span 

 

 

 

f1 =21.1 Hz f1 = 18.8 Hz 

(ii) 2-span 

 

 

 

 
 

 

 

f1 = 21.7 Hz f1 =18.89 Hz 

(iii) 3-span 

 

 

 

 
 

 

 

 

f1 = 22.2 Hz f1 = 18.8 Hz 
(iv) 4-span 

 

(a) EMA (b) FEA 

Figure 5-15 Comparative mode shapes for multi-span LCC specimens 
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f1 = 24.2 Hz f1 =18.9Hz 

(i) 1-storey 

 

 

 

 
 

 

 

 

f1 =21.1 Hz f1 = 19.0  Hz 

(ii) 2- storey  

 

 

 
 

 

 

 

f1 = 21.7 Hz f1 =19.1  Hz 

(iii) 3- storey 

 

 

 

 
 

 

 

f1 = 22.2 Hz f1 = 23.0 Hz 
(iv) 4- storey 

 

(a) EMA (b) FEA 

Figure 5-16 Comparative mode shapes for multi-storey LCC specimens 
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f1 =14.7 Hz f1 =14.33 Hz 

(i) mode 1 

 

 

  
f2 = 29.3 Hz f2 = 27.4 Hz 

(ii) Mode 2 

 

 

  
f3 = 44.4 Hz f3 = 46.2 Hz 

(iii) Mode 3 

 

(a) EMA (b) FEA 

Figure 5-17 Comparative mode shapes  for the single-bay LCC floor 

 

5.5 Summary and Conclusions 

The analytical modelling was performed to validate the experimental modal 

analysis (EMA) results using the modal analysis method in the SAP 2000 software 

package, for reduced-scale LCC T-joist specimens and floor. Only natural frequencies 

and mode shape were determined during the modal analysis. The vibration behaviour of 

the specimens and floor were more easily understood compared to the EMA, due to the 

effect of close mode frequencies.  

The modal analysis showed local mode frequencies were very close and the 

number of close local modes was proportional to the number of spans due to the 
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identical properties for each span and storey. For multi-storey specimens, the top storey 

dominated the 1
st
 mode behaviour since the sources of the excitation, the shaker was 

located at the top storey. 

The differences between natural frequencies of multi-span and multi-storey 

specimens from EMA and FEA results were fairly high, especially for mode 1. A big 

percentage error was determined resulting from close mode natural frequencies which 

were difficult to isolate from the EMA data. By contrast, the FEA provided all natural 

frequencies of the specimens. However, the comparisons for the single-bay LCC floor 

were close due to the floor being only single-span and with no close mode effects.   

The main conclusions from FE modelling of reduced-scale LCC T-joist 

specimens and floor can be summarised as follows: 

1. There is a slight trend for the natural frequencies of the isolated components to 

decrease when they form part  of a structural system.  

2. Where two nominally identical floors make up either a two storey building or a 

two span beam, close mode natural frequencies occur. 

3. A varying level of vibration transmission between two floors, having close 

mode natural frequencies has been identified. 

4. Many of the mode shapes clearly show a discontinuity at the supports, which 

suggested the span responses are possible less influenced by adjacent span 

than they would be if the beams were continuous across the spans.  

5. While the multi-span and multi-storey systems had slightly lower natural 

frequencies than the frequencies of the isolated components, this was not as 

significant as it was for the single-bay floor. 

6. Conversely, there is still adequate connectivity for energy to be transmitted to 

distant spans (both vertical and horizontally) and cause sympathetic resonance.  

 



 
 

 
 

CHAPTER 6 ANALYTICAL MODELLING OF FULL-SCALE T-JOIST 

LCC  FLOOR 
 

This chapter discusses the analytical modelling of a full-scale T-joist LCC 

floor. The full-scale T-joist LCC floor model was an enlarged model based on the 

reduced-scale LCC specimens which were tested and modelled earlier (refer to Chapter 

5). Due to limitations of space and time, the full-scale T-joist LCC floor could not be 

constructed. However, the reduced-scale LCC model was verified with the 

electrodynamic shaker test as discussed in Chapters 4 and 5.  

The purpose of this chapter is to predict the vibration parameters and 

behaviour of the full-scale flooring system.  The discussion also includes the influences 

of concrete topping thickness, LVL joist depth, stiffness of shear connector, and the 

boundary conditions on the vibration behaviour of a full-scale T-joist LCC floor. In 

addition, the full-scale floor was checked using the established design guide (CEN, 

2004b) to make sure the floor would satisfy the serviceability limit state.  

 

6.1 8 m x 7.8 m T-joist LCC floor model 

The full-scale T-joist LCC floor was modeled using the SAP 2000 software 

package, to determine the vibration behaviour. The full-scale model was implemented 

from the reduced-scale model (refer to Chapter 5), including the material cross-section 

and properties. The full-scale T-joist LCC floor was modeled up to an 8 m span length 

and 7.8 m width, using six (6) notched connectors located along the joist, as illustrated 

in Figure 6-1. The properties of the connectors were as discussed in Chapter 5.  

Initially, a floor strip of 8 m x 0.6 m was implemented in the SAP 2000 

software package, refer to Figure 6-1 . Later, the strip was expanded 13 times to build 

an 8 m x 7.8 m T-joist LCC floor, as illustrated in Figure 6-2. Since the concrete 

topping breadth of the strip was 0.6 m, it was not possible to model a square 8 m LCC 

floor.   
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Figure 6-1  FE model of a floor strip of 8 m x 0.6  

 

 

 

 

 

Figure 6-2  The model of an 8 m x 7.8 m T-joist LCC floor 

 

 

 

Connectors 

Connectors 

7.8 m 

8 m 

2 

7 

 1 panel of LCC 

 specimen 

1  

3 
4 

5 

6 

8 
9 

10 

13 
12 

11 

(b) Restraint at timber block  support 

(a) 8 m x 7.8 m T-joist LCC floor 
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The mesh size is one of the important parameters in the finite element 

modelling. To select an accurate size of mesh, the model needed to be run several times 

until the results converged to the same value of the natural frequency. The analyses 

were started from the bigger size to the smaller size of the mesh. The mesh ratio size 

(b/d) was kept lower than two (2). It is important to have a sufficiently dense mesh to 

ensure accuracy of the results at the same time. However, the number of elements 

should not be too large, to reduce computational time when carrying out the analyses. 

Thus, the mesh size that was selected based on the number of nodes in this study, as 

shown in Figure 6-3. The number selected from Figure 6-3 was for a one strip of LCC 

floor.  Thus, for the complete LCC floor, the number of nodes used was 121x13=1573. 

 

Figure 6-3 Natural frequency vs number of nodes for mesh size of the floor strip   

During the analysis, a local mode behaviour was found, especially on the 

timber block supports. The local mode behaviour appears in the results, especially at 

high frequencies, and the results with local mode behaviour were eliminated. However, 

in some cases, the local mode behaviour on the timber blocks emerged at low 

frequencies. To eliminate the local mode behaviour, the timber block support model 

was restrained in translation in the x-direction (parallel to the joist axes), and in rotation 



110 
 

about the y- and z-axes. In the real situation, the timber blocks represent a main beam 

in the structure and have higher strength and stiffness compared to the LVL joist.   

 

6.2 8 m x 7.8 m T-joist LCC floor behaviour 

Four different types of support condition were selected to study the behaviour 

of the LCC floor system, as illustrated in Figure 6-4 and as listed below. 

(a) B1 : fixed support at each end.  

 

(b) B2 : restraint along the joist edge and fixed support at each end 

 

(c) B3 : restraint along the joist edge  

 

(d) B4 : restraint along four edges. 

 

 

The support systems in this model were replicated as closely as possible to the 

supports in real conditions. The timber block, which acts as a beam, was modeled with 

the Young’s modulus of the LVL (ELVL) applied parallel to the grain, to allow for the 

flexibility of the timber block.  

Furthermore, during the analysis, the local mode behaviour of the timber block 

was pointed out, especially on the LCC floor with B1 support system (refer to Figure 

6-4 (a)), not in global flooring system. In this study, only the global mode behaviour 

was of interest.  However, the local mode behaviour influences the overall behaviour of 

the floor, which in this case, decreased the natural frequency.  

Thus, fixed support was applied at each ends together with restraints at both 

edges of concrete topping, as illustrated in Figure 6-4 (b) known as B2 support system. 

This system was almost similar with actual situation. But, the local mode behaviour 

was detected as well although not as much as LCC floor with B1 support system.  

Furthermore, the local mode was reduced by restraint on all the four edges of 

the LCC floor, as shown in Figure 6-4 (d). This system also against the vertical 

displacement on either timber blocks or edge of the joists, but increased the stiffness of 

the LCC floor system.  However, the local mode behaviour happens on the high 
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frequency. The B2 support system (refer to Figure 6-4 (c)) was selected to understand 

the LCC floor behaviour with two edges restrained support system.  

Timber beam

Edge of concrete topping

Fixed support

 

(a) Fixed support at each end (B1) 

Support along the concrete 

topping edge

Fixed support

 
 

(b) Support along concrete topping edge and fixed 

at each end (B2) 

 

Support along the timber 

beam

 
 

(c) Support along timber block (B3) 

 

Support along the concrete 

topping edge

Support along the timber 

beam

 

(d) Support along four sides (B4) 

Figure 6-4 Different types of support system 
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Figure 6-5 illustrates the natural frequency for first six modes of the LCC floor 

with different types of support systems. From the overall results, the LCC floor with B4 

support system presents the highest value of natural frequency for all modes, compared 

to other support systems. This is because restraint at all the edges increased the stiffness 

of the system and increased the natural frequency as well. Also related to this, the floor 

with B1 support system had the lowest value of natural frequency due to the diminished 

support stiffness.  

However, the natural frequencies were close for modes 1 and 2, between 5.88 

Hz to 9.12 Hz and 8.61 Hz to 11.28 Hz, respectively. At mode 3, the natural 

frequencies were close for except LCC floor with B4 system. The differences of the 

natural frequencies were large for higher mode frequencies.  

The mode shapes of the LCC floor is illustrated in Figure 6-6 with different 

types of support systems. All the behaviour acted as a plate except for the LCC floor 

with B3 support system, which acted as a beam. It is because all the three support 

systems, B1, B2 and B4 have a restraint at each end and for B2 only restraint along the 

timber joist.   
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Figure 6-5 Natural frequency of different types of support systems 

 

 

 

  

 

B3 

B4 

B2 

B1 
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 Support systems 

Mode 

 

 

 

 

 

   

1 

    

2 

    

3 

    

Figure 6-6  Mode shapes of LCC floor with different types of support system 

B1 B2 B3 B4 
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Figure 6-6  Mode shapes of LCC floor with different types of support system (continued) 

 Support systems 

Mode 

 
 
 
 
 

   

4 

    

5 

    

6 

    

B1 B2 B3 B4 
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6.3 Effect of connector stiffness 

Figure 6-7 shows the first mode natural frequency of the full-scale LCC floor 

for five different types of connectors. Three connectors were selected as suggested by 

Yeoh (2010), with the stiffness of each connector being:  (1) K1 = 80.2 kN/mm, (2) K2 

= 146 kN/mm and  (3) K3 = 247 kN/mm. Additionally two extra stiffnesses were added, 

of K0 = 0 kN/mm and  K4 = 10
8
 kN/mm to represent no slip and rigid stiffness 

connection of the LCC flooring system, respectively. The differences of the connector 

stiffnesses were generated between two types of support system, B2 and B4 (refer 

section 6.2 for details), with restraint on two side edges and restraint on four side edges, 

respectively.    

Obviously, the flooring system with restraint on all the edges gave the higher 

value of natural frequency, with the increase of the floor stiffness. This behaviour was 

also applicable when the connector stiffness was changed. The natural frequency was 

rising with the increase of the connector stiffness. However, the differences are small 

for mode 1 until mode 4, except for the K0 connector stiffness. It seems clear that 

changing the stiffness of connectors did not greatly influence the vibration behaviour of 

the LCC floor especially for lower modes (from mode 1 until mode 4). In general 

however, the natural frequencies increased equivalent with the connector stiffness. The 

behaviour was changed for the higher modes, 5 and 6, as the domination of the higher 

stiffnesses were shown especially for the floor with B4 support system. 
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              Note : K0 = no slip,  

                        K1,K2 & K3 = according to Yeoh (2010),  

                        K4 = rigid stiffener connector 

 

Figure 6-7  Comparison of natural frequency for different types of connector stiffness 

 

6.4 Effect of concrete topping thickness  

The effect of the concrete topping thickness on the dynamic behaviour of LCC 

floors was studied with a range of between 25 mm to 200 mm, with 25 mm intervals 

and in addition the 65 mm thickness due to the proposed design by Yeoh (2010) (refer 

to Chapter 3). The size of LVL joist for this modelling was 400 mm x 63 mm. 

Theoretically, the natural frequency is influenced by the mass and stiffness of 

the floor. The natural frequency was increased by a lower mass or a higher stiffness of 

the floor and the natural frequency was reduced with a higher mass and a less stiff floor 

as found by Mertens et al (2007), Rijal et al (2010), Skinner (2013) and Abd. Ghafar et 

al (2008). However, the behaviour of the LCC floor did not agree with the theory in 

certain cases as illustrated in Figure 6-8 and   
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Figure 6-10. 

Figure 6-8 shows the first six modes of behaviour of LCC floor, with variation 

of concrete topping thickness and using only 400 mm LVL joist depth.  For mode 1 

behaviour, the natural frequency was reduced when concrete topping thickness was 

increased from 25 mm up to 75 mm. When the thickness of concrete topping was 

increased to 200 mm, the natural frequency was lifted up as depicted in Figure 6-8.  

This behaviour also applied for mode 2. On the other hand, the behaviour was changed 

for mode 3 until mode 6, where the trend was not as smooth as for mode 1 and mode 2,. 

Again, this behaviour is a result of the local mode behaviour at the timber support 

block.  

 

Figure 6-8 The first six modes of vibration with increasing concrete topping thickness 

 

6.5 Effect of  LVL joist depth 

The size of LVL joist was used as manufactured by Carter Holt Harvey Wood 

products. The depths of the LVL considered were 150 mm, 170 mm, 200 mm, 240 mm, 

300 mm, 360 mm and 400 mm with widths of 45 mm and 63 mm. However, in this 

research, 63 mm width LVL was used. 
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As mentioned before, the natural frequency was increased by a higher stiffness 

of the floor. By increasing the LVL depth, the natural frequency a rose as well, as 

shown in Figure 6-9. This behaviour was true for mode 1 and mode 2 only. For higher 

modes, mode 3 to mode 6, the behaviour was changed due to the local mode of the 

timber block behaviour. For lower mode, mode 1 and mode 2, no local mode behaviour 

was detected. However, the mode behaviour with a local mode was ignored in this 

research. 

The first mode natural frequency for LVL depth 150 mm was 6.02 Hz and the 

deeper LVL depth, 400 mm was 12.01 Hz. For the other types of LVL depth, 200 mm, 

250 mm, 300 mm and 350 mm, the natural frequencies were 6.33 Hz, 6.85 Hz, 7.60 Hz, 

8.82 Hz and 10.21 Hz, respectively. The percentage differences were increased from 5 

% to 10 %  comparing between LVL joist depths.   

 

Figure 6-9 The first six modes of vibration with increasing depth of LVL joist 

 

 

 

 



120 
 

 

6.6 Relationship between concrete topping thickness and LVL joist depth 

As shown in Figure 6-10, the vibration behaviour of the LCC floor was 

governed mainly by (1) mass and (2) stiffness, for linear elastic response. Furthermore, 

the damping ratio, support conditions and human occupancies also gave influences on 

the overall floor vibration behaviour.  These results described the behaviour of mode 1 

only. Figure 6-10 (a) and (b) show that the natural frequencies rose with increasing 

thickness of the concrete topping. However, when the LVL joist depth was varied from 

150 mm to 200 mm, the behaviour was changed. The natural frequency decreased at the 

second point and rose up again at 65 mm of concrete topping thickness. In this case, 

vibration of the LCC floor system was governed by mass. This behaviour remained for 

the LCC floor with 240 mm and 300 mm depth of LVL joist. Later, for higher LVL 

joist depths, the natural frequency reduced at 25 mm to 75 mm of concrete topping 

thickness; refer to Figure 6-10 (c) to (e). And then, the natural frequency increased with 

the thickness of concrete topping as depicted in Figure 6-10 (f) and (g) when the LCC 

floor was dominated by stiffness of the system.  

Figure 6-11 shows that the natural frequency generally increased linearly with 

the depth of the LVL. However, the differences between the natural frequencies were 

smaller when the concrete topping was thicker. This is probably due to the mass of the 

concrete which governed the behaviour of the LCC floor compared to the LVL joist. It 

indicates that the vibration behaviour of LCC was governed by the mass of the concrete 

topping and the stiffness of the LVL joist. For less deep LVL joists, the mass of the 

concrete controls the behaviour. But, when the depth of the LVL increased, at some 

point, the behaviour was dominated by the stiffness of the LVL. Probably, the 

composite action also affects the behaviour before the mass takes over the behaviour 

again.  

The results from analytical modelling were compared with theoretical 

calculations from Eurocode 5 (CEN, 2005) using the formula discussed in Chapter 2. 

The percentage difference between the two first mode natural frequencies for an 8 m x 

7.8 m LCC floor with varying thickness of concrete topping and LVL joist depth is 

depicted in Table 6-2. The results show that the predicted behaviour was similar to the 

analytical modelling with the maximum percentage error about 21%. The pattern of the 
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natural frequency behaviour when increasing the concrete topping thickness or the LVL 

joist depth also agree with the behaviour from the analytical study. This shows that the 

analytical modelling results could be useful and acceptable.  

Finally, recommendations can be made on the minimum concrete topping 

thickness for several categories of manufacturer standard sizes of LVL joist as 

tabulated in Table 6-1.  For smaller LVL joists, between 150 mm to 240 mm depth, the 

minimum concrete topping thickness is 100 mm and for LVL joist from 300 mm to 400 

mm depth, the minimum concrete topping is 65 mm. The suggestion was made based 

on the 8 Hz limitation of natural frequency as discussed in previous chapter. 

 

Table 6-1 Limitation of concrete topping thickness for 8  m x 7.8 m LCC floor 

LVL joist (h x b) mm 
Minimum concrete topping thickness 

(mm) 

150 x 63 

100 
170 x 63 

200 x 63 

240 x 63 

300 x 63 

65 360 x 63 

400 x 63 
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Figure 6-10 Comparison of natural frequencies for different concrete topping thickness 
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Figure 6-11 Comparison of natural frequencies for different LVL joist depths
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Table 6-2  Percentage difference between SAP model and Eurocode 5 formula 

 
Fundamental natural frequency, f1 (Hz) 

LVL 

joist size 

(mm x 

mm) 

Concrete 

thickness, 

tc (mm) 

25 50 65 75 100 125 150 175 200 

150 x 63 

SAP 4.81 5.31 6.02 6.58 8.09 9.78 11.72 13.85 15.9 

Euro 5 3.95 4.51 5.28 5.87 7.47 9.15 10.87 12.6 14.35 

Different 

(abs) 
0.86 0.8 0.74 0.71 0.62 0.63 0.85 1.25 1.55 

Error % 21.77 17.74 14.02 12.10 8.30 6.89 7.82 9.92 10.80 

170 x 63 

SAP 5.43 5.69 6.33 7.09 8.29 9.95 11.86 13.76 15.81 

Euro 5 4.53 4.81 5.5 6.05 7.6 9.23 10.93 12.65 14.39 

Different 

(abs) 
0.9 0.88 0.83 1.04 0.69 0.72 0.93 1.11 1.42 

Error % 19.87 18.30 15.09 17.19 9.08 7.80 8.51 8.77 9.87 

200 x 63 

SAP 6.15 6.31 6.85 7.31 8.65 10.3 12.46 13.82 16.81 

Euro 5 5.46 5.34 5.89 6.38 7.81 9.39 11.06 12.75 14.48 

Different 

(abs) 
0.69 0.97 0.96 0.93 0.84 0.91 1.4 1.07 2.33 

Error % 12.64 18.16 16.30 14.58 10.76 8.83 12.66 8.39 16.09 

240 x 63 

SAP 7.37 7.16 7.60 8.00 9.21 10.67 12.5 14.68 16.17 

Euro 5 6.83 6.17 6.52 6.91 8.17 9.66 11.26 12.92 14.61 

Different 

(abs) 
0.54 0.99 1.08 1.09 1.04 1.01 1.24 1.76 1.56 

Error % 7.91 16.05 16.56 15.77 12.73 10.46 9.92 13.62 10.68 

300 x 63 

SAP 9.16 8.55 8.82 11.14 10.17 11.56 13.1 14.67 17.09 

Euro 5 9.10 7.63 7.67 7.90 8.86 10.18 11.66 13.24 14.88 

Different 

(abs) 
0.06 0.92 1.15 3.24 1.31 1.38 1.44 1.43 2.21 

Error % 0.66 12.06 14.99 41.01 14.79 13.56 12.35 10.80 14.85 

360 x 63 

SAP 10.95 10 10.21 10.46 11.26 12.8 14.11 15.81 17.72 

Euro 5 11.58 9.31 9.05 9.1 9.75 10.84 12.18 13.65 15.23 

Different 

(abs) 
0.63 0.69 1.16 1.36 1.51 1.96 1.93 2.16 2.49 

Error % 5.44 7.41 12.82 14.95 15.49 15.31 15.85 15.82 16.35 

400 x 63 

SAP 12.12 11.00 11.1 11.12 12.03 13.5 14.77 16.62 18.63 

Euro 5 13.33 10.52 10.06 10.00 10.43 11.37 12.59 14 15.5 

Different 

(abs) 
1.21 0.48 1.04 1.12 1.6 2.13 2.18 2.62 3.13 

Error % 9.08 4.56 9.36 11.20 15.34 15.78 17.32 18.71 20.19 
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6.7 Conclusion and Summary 

A series of finite element modelling was carried out to analyse and understand 

the dynamic behaviour of the LCC flooring system. A few parameters were highlighted 

during the analysis including the thickness of concrete topping, the LVL joist depth and 

the stiffness of the connectors. As expected and discussed before, the higher stiffness 

increased the natural frequency of the system and the higher mass lowered the natural 

frequency.  

Besides, local mode behaviour was found at the timber block supports, which 

reduced the natural frequency of the LCC floor. To reduce the effect of this local mode 

behaviour, all edges of the LCC floor should be restrained. However, too many 

restraints will increase the stiffness of the LCC floor system and this boundary 

condition should applied carefully during the finite element analysis.   

During the analysis, the vibration behaviour of the LCC floor was found to be 

governed by both stiffness and mass of LVL and concrete topping. When the concrete 

topping is increased, the stiffness of the LCC floor also increased due to (i) an increase 

in stiffness of the LCC floor with respect to the LVL only beam (which is a positive 

effect); and (ii) an increase in mass, due to the weight of the concrete (which is a 

negative effect in terms of vibration. 

 The limitation of concrete topping thickness and LVL joist depth was 

proposed in this chapter, especially for 8 m x 7.8 m LCC floor, based on the 8 Hz 

limitation of natural frequency. For the deeper LVL joists, from 300 mm to 400 mm 

depth, a minimum thickness of 65 mm is suggested. For smaller LVL joists between 

150 mm to 240 mm depth, concrete topping with minimum thickness of 100 mm is 

recommended.   

 

 

  

 



 
 

 
 

CHAPTER 7 DESIGN FOR VIBRATION OF LVL- CONCRETE 

COMPOSITE   (LCC)  FLOORS 
 

This chapter presents design guidance to estimate the dynamic behaviour of 

long span LCC floors, based on the 8 Hz limitation of fundamental natural frequency, 

f1.  

7.1 Introduction  

The LVL-concrete composite (LCC) floor is one of the solutions for timber 

flooring systems. LVL is more flexible than steel and concrete, so the flexibility of the 

LVL causes large deflections if LVL is used with traditional timber floors which have 

long spans. Associated with this, the resonant frequency of the floor will decrease, and 

humans will feel uncomfortable if they can feel the vibration of the floor.   

As discussed in Chapter 2, the traditional approach to verify the vibration limit 

has been to determine the deflection of the floor under 1 kN point load applied at 

midspan, and check that the deflection does not exceed 2 mm. However, due to design 

demand nowadays, which requires medium to long spans of floor, the natural 

frequency, fn becomes more important. The limitation of  fn depends on the stiffness and 

mass of the flooring system.  

Established standard design procedures (refer section 7.2) give guidance to 

estimate the fundamental natural frequency and recommend the limits that should be 

satisfied. This chapter provides some recommendation for the designer on the vibration 

limitation of long span LCC floors. The guidance includes both an advanced design 

method and a simple design method. The equations in the simple design method have 

been used to propose the recommended thickness of the concrete topping for different 

joist sizes of a LCC floor with a span of 8.0m. 
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7.2 Design criteria 

The design criteria have been discussed in detail in Chapter 2 (refer to 2.2.3). 

There are no specific requirements to classify floor behaviour exactly as comfortable or 

non-comfortable, because the vibration serviceability criterion is very subjective 

compared to limit state design for strength or deflection. However, lots of researchers 

have recommended a limitation of natural frequency, between 6 Hz to 10 Hz of 

fundamental natural frequency (Allen and Murray (1993), Ohlsson (1988), Wyatt 

(1989), Smith and Chui (1988), CEN (2004b), Pavic (2009) and Rijal (2013)). Thus, for 

this research, the 8 Hz fundamental natural frequency was preferred as a limitation of 

vibration serviceability for LCC floors.  

7.3 Preliminary design 

I. Eurocode static design procedure 

The first step in any design will be to estimate the member sizes and the 

topping concrete thickness. The static design procedure from Eurocode 5 is 

recommended for this purpose. 

II. Suggested concrete topping thickness 

Suggested values of the minimum concrete topping thickness are proposed 

below. The thickness is based on the standard sizes of LVL joists from manufacturers 

as illustrated in Table 7-1, but only applicable for 8 m spans.  The minimum concrete 

topping thickness in Table 7-1 was obtained by using the finite element method in 

Section 7.4 and as discussed in Chapter 6. For a floor with a span of 8.0 m and a width 

of 7.8m. For LVL joist depth 150 mm to 240 mm with 63 mm breath, the minimum 

concrete thickness is 100 mm and for LVL joist depth 300 mm to 400 mm with 63 mm 

breath, the minimum concrete thickness is 65 mm. This is as a guide for designer to 

estimate the size of LCC floor accordingly to 8 Hz fundamental natural frequency of 

vibration serviceability limit. However, for different dimension of floor, the designer 

needs to design either by advanced design or simple design method as discussed in 

sections 7.4  and 7.5.   
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Table 7-1 Suggested topping thickness for LCC floors based on 8 Hz limitation 

LVL joist (h x b) mm 
Minimum concrete topping 

thickness (mm) 

150 x 63  

100 
170 x 63 

200 x 63 

240 x 63 

300 x 63 

65 360 x 63 

400 x 63 

 

7.4 Advanced design method 

For the advanced design method, it is proposed to use finite element modelling 

(FEM) to determine the natural frequencies and mode shapes of the LCC floor. The 

FEM is useful particularly for complex structures. The use of finite element methods is 

the most suitable procedure to accurately assess the floor response and will give a better 

prediction than that given by the hand calculation method.  

FEM is a numerical method, using several elements to create the structure and 

then analysis using the mathematical equations, with software aids. The SAP 2000 

FEM that has been used in this research is similar to general FEM procedures, however 

some details need to be taken account of during the process. The advanced design 

method consist three major procedures as below: 

 

A. PRE-PROCESSING 

Pre-processing is the process to input all the data and to do the modelling of 

the structure into the SAP 2000 software package. No specific methodology is required, 

however a simple guideline as follow; 
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1. Insert the material properties 

Generally, SAP 2000 requires input data for material properties as 

below; 

For concrete: 

 Modulus of Elasticity, E 

 Poisson's ratio, µ 

 Shear Modulus, G 

 Weight per unit volume 

 Mass per unit volume 

 Compressive strength, fc  

For LVL: 

 Modulus of Elasticity, E in three directions (E1, E2 and E3) 

 Poisson's ratio, µ for three planes (µ12, µ13,  µ23) 

 Shear Modulus, G for three planes (G12, G13 and G23) 

 Weight per unit volume 

 Mass per unit volume 

Note that a local coordinate system for LVL as orthotropic material is 

defined where Direction 1 is parallel to the grain, while Directions 2 and 3 are 

perpendicular to the grain.  

2. Insert the section properties 

The estimation of the dimension of the concrete topping and the LVL 

joists should be determined through the static design procedure, as proposed in 

Eurocode 5.  

Insert the geometry of the structure. See Section 3.5 for more detailed advice on 

elements and masses in the finite element model. 

 The concrete topping should be modelled as shell elements 

 The LVL joists should be modelled as beam elements 

 The shear connectors should be modelled as link or spring elements. 
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3. Model the structure 

After all the properties have been assigned, the next step is model the 

structure. See Section 3.5 for more detailed advice. By following the step 

described below, the model of the floor can be constructed. 

 Define the dimensions of the floor. i.e. the span, the width of the floor, 

the joist spacing, and number of beams. 

 Determine the type of shear connection between the LVL joists and the 

concrete topping. 

  Define the boundary conditions including the type of end supports, 

edge supports, and the number of continuous spans.  

 Define the joist hangers or other end supports. 

 Define a finite element grid and insert finite elements for the joists, the 

concrete topping, the shear connectors, and the end supports.   

 

4. Applied load cases 

To determine the dynamic floor behaviour, few load cases should be 

applied as list below; 

 Normal design loads for static design 

 1 kN at mid span for simple estimation of dynamic response 

 Modal analysis for detailed estimation of dynamic response with Ritz 

method.  
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B. PROCESSING 

The processing step is carried out by the computer. The computation time will depend 

on the complexity of the model. 

 

C. POST- PROCESSING 

The results are determine in the post-processing step.  

 Determine the deflections, natural frequency, mode shape.  

 Modify the structural sizes or topping thickness as necessary. Re-run 

the analysis to get acceptable behaviour. 

 

From the analysis previously described for LCC flooring system, it is clear that 

the following parameters and modelling details should be considered.  

i. Local axis  

The definition of the local axis of each point or member in finite element 

modelling is very important to understand especially for applying the 

material properties of LVL as an orthotropic material and the stiffness of 

the connectors. Wrong interpretation of the local axis will give inaccurate 

results.   

ii. Local mode behaviour 

LVL has lower Young’s Modulus compared to other materials like steel or 

concrete, producing higher flexibility. This flexibility of the LVL will 

affect the local mode behaviours, especially on the timber beam. Local 

mode behaviour will change the behaviour of the LCC system and reduce 

the natural frequency. Thus, timber beam should be restrained to increase 

the stiffness as well as to avoid the local mode behaviour. Other than that, 

each edge support (which is represented as a column) should be assumed 
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as a fixed support to give more accurate results provided that all of the 

input variables are assessed correctly.  

iii. Mass 

The mass of the floor should be input equivalent to the self-weight of the 

floor and all other permanent loads that might be present.  

iv. Stiffness of multi-span or multi-storey 

It is quite complicated to model multi-span or multi-storey TCC floors. 

The stiffness of the continuity of the span over the supports or the stiffness 

of the structure between adjacent floors should be included. Column 

sections should be considered as pinned at both ends.   

v. Joist hanger stiffness 

The flexibility of joist hangers at the support end of the floor should be 

accounted for in the modelling, because the joist hanger flexibility will 

affect the floor behaviour. The stiffness should be calculated as described 

in Chapter 3.  

vi. Mesh 

There are no hard and fast rules for the size of the finite elements (or finite 

element mesh), but, in general, if the number of elements can be doubled 

without significantly changing the frequencies, then there are sufficient 

elements and the model should be adopted.  

 

7.5 Simple design method 

A simple design method is the easy way to make the first assumptions on the 

dynamic behaviour of the floor. By using the basic formulae given below, the 

fundamental natural frequency of the LCC floor could be determined.     

In many cases the edge condition parallel to the floor joist may be neglected, 

and the frequency may be approximated by  

                          
 

   
 

        

    
                                                              ( 7-1) 
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where (EI)com is the composite flexural stiffness (Nm
2
), mcom is the composite 

mass per unit length (kg/m) and l is the span length (m).  

If the floor system consists of both joists and beams, the fundamental 

frequency of the floor system is reasonably well approximated by (Murray et.al, 2003): 

          
        
           

 

        
          

                                                                   ( 7-2) 

       where  

      fn,floor  = fundamental natural frequency of the floor system (Hz), 

     fn,joist  = fundamental natural frequency of the joist alone (Hz), 

     fn,beam = fundamental natural frequency of the beam supporting the joist (Hz) 

 

Otherwise, to get more accurate result, the fundamental frequency, fn of a LCC 

floor system, is calculated from the plate theory by Timoshenko (1964); 

    
 

   
 

        

    
         

 

 
 
 

  
 

 
 
 

 
     

     
                    (7-3) 

 

where (EI)com is the composite flexural stiffness (Nm
2
), (EI)x is the stiffness of 

floor joists and slab per unit width, (EI)y is the stiffness of floor slab per unit width in a 

perpendicular direction to the joists, b is the floor width, mcom is the composite mass per 

unit length (kg/m) and l is the span length (m).  

The flexural stiffness of the composite beam (EI)com is obtained using the 

Equation 7.4, as recommended by Eurocode 5 (CEN, 2004b) and as mentioned in 

section 2.1.1; 

                                         
           

                       (7-4) 

where (EI)c is the flexural stiffness of concrete topping (Nm
2
), (EI)t is the 

flexural stiffness of LVL joist (N/m
2
), Ec is the modulus elasticity of concrete topping 
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(N/m
2
), Et is the modulus elasticity of LVL joist (N/m

2
), Ac is the concrete topping area 

(m
2
), At is LVL joist area (m

2
).     

 

The ac and at distances can be determined as below:           

    
       

              
                

       

              
                              (7-5a, 7-5b) 

            Where; 

                   
  

 
     

    

 
                                                                                    (7-6) 

    
 

   
          

   
 

                                                                      (7-7a, 7-7b) 

where seff is the effective spacing (mm) of connection, ks is the slip modulus of 

the connection (kN/m), tc is the thickness of concrete topping, tLVL is the thickness of 

LVL and tp is the thickness of permanent formwork. The slip modulus was obtained 

from the push-out test as discussed in Chapter 2. However, when designing for floor 

vibration, the serviceability stiffness should be considered, as the dynamic stiffness of 

the floor was found to be 10 % higher than the static stiffness, where the ksls,dynamic = 1.1 

x  ksls,static.   

The effective spacing of connections can be calculated as below 

                                                                                              (7-8) 

where smin is minimum spacing of connections and smax is maximum spacing of 

connections along the beam span. 

 

7.6 Worked Example 

The simple design method was applied to a simply-supported LVL-concrete 

composite floor spanning 8 m with 400 x 63 mm joists and a 600 x 65 mm concrete 

slab. The calculation was evaluated for the walking vibration of a residential or 

commercial office floor.  
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a. Material properties 

 

i. Concrete 

Concrete topping thickness, tc  = 0.065 m 

Concrete topping width,bc =  0.6 m 

Density, c      = 2400 kg/m
3
 

Modulus Young, Ec    = 30 x 10
9
 N/m

2
 

Moment Inertia, Ic  = bh
3
/12 

     = 1.37 x 10
-5

 m
4
 

Mass, mc    = Ac c  

= 0.065 * 0.065 * 2400 

= 93.6 kg/m 

             

ii. LVL   

LVL thickness, tLVL  = 0.4 m 

LVL width, bLVL   = 0.063 m 

Density, t    =  620 kg/m
3
 

Modulus Young, Et    =  12.7 x10
9
 N/m

2
 

Moment Inertia, It   = bh
3
/12 

     = 3.36 x 10
-4

 m
4
 

Mass, mt    = At t  

= 0.063 * 0.4 * 620 

=  15.62 kg/m 

 

iii. Permanent formwork 

Thickness of permanent formwork, tp  = 0.017 m 

 

 

b. Effective stiffness for composite, (EI)com 

 

  The connection slip modulus, ks = 2.47 x 10
8 
N/m

2
, 

(Use a rectangular notch (50 mm x 300 mm) with 16 mm diameter coach 

screw (refer to Appendix A)),  

 

  Take, 

  Maximum spacing, smax  = 1.394 m 

  Minimum spacing, smin  = 0.831 m 

 

Use Equation (7-8) 

Effective spacing of connection, seff  = 0.75 smin + 0.25 smax 

     = 0.972 m 

 

Concrete gamma coefficient from Equation (7-7a) is: 
   

 

      
 

   
          

   
 

            = 0.585 
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Use Equation (7-6) and (7-5a) 

 

   
  

 
     

    

 
          = 0.25  

 

      
       

              
                  = 0.08 

  

                 
       

              
   = 0.17                                                                        

 

 

Thus,  Effective stiffness for composite, (EI)com (refer to Equation 7-4) 

 

(EI)com = EcIc + Et It + 1EcAcac
2
 + 2EtAtat

2 
= 1.83 x 10

7
 N/m

2 

 

 

c. Fundamental natural frequency 

 

Refer to Equation  7.1  

             
 

   
 

       

    
  

   

              =  10 Hz > 8 Hz  

 

Thus, the floor is satisfactory as suggested in Eurocode 5 (CEN, 2004b). 

 

 

d. Evaluation (refer Hu (2015)) 

 

There no standard design methodology or guidance for timber-composite floor 

established, as mentioned by FPInnovation (2013). Therefore, another method 

is suggested to evaluate the satisfactory of the floor using Hu's (2015) method, 

as discussed in section 2.2.4. The reason is the wood-framed floor that 

proposed by Hu (2015) similar to the LCC floor, especially the wood-frame 

with concrete topping. However, the Hu (2015) method does not consider the 

composite action on the floor.  

From Equation (2-18)  ; 

  
 

    
   

     
     

     
          

     
  

where; 
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Fscl  = 0.0294 + 0.536 K1
0.25 

+0.516K1
0.5

 - 0.31K1
0.75

 

K1 =   
  

     
,     

Kj =  
     

  
  = 3.57 x 10

4
 N/m, 

KL = 
                

  
  

Use joist spacing, b1 = 0.6 m 

Thus, KL=  8.9 x 10
6
 N/m, 

 K1 = 0.004 and Fscl = 0.19 

Use Equation (2-18) 

 

    
   

     
     

     
          

     
   = 8.75 m, which is more than the trial span of 8 m, 

therefore the vibration-controlled span is satisfactory.   

The example of this calculation method using Matlab code is given in 

Appendix B.  

 

7.7 Summary  

This chapter has given a methodology for design of LCC floors, either by hand 

calculation or sophisticated finite element modelling. Both methods will give a 

prediction of the dynamic floor behaviour, however, the finite element modelling will 

give a much more accurate prediction, provided that all of the input variables are 

assessed correctly.  



 
 

 
 

CHAPTER 8  CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER WORK 

This chapter summarises and concludes the complete work in this research 

project. Also, the recommendations for future research, which are mainly findings from 

this research, are provided in this chapter.  

8.1 Research objectives 

The three objectives of this research were given in Chapter 1 as follows: 

1. Experimentally characterise the dynamic performance (specifically the natural 

frequencies, equivalent viscous damping ratios and mode shapes) of full- and 

reduced-scale LVL-concrete composite floor system beams and floors. 

2. Implement numerical finite element modelling of the tested structures, full- 

and reduced-scale beams and floors, using the results from experimental 

modal analysis to verify the models. 

3. Propose a simple design method for control of vibration at the serviceability 

limit state based on finite element modelling results. 

Objectives 1 and 2 have been met fully, as described in the thesis. Objective 3 

has been addressed in Chapter 7, and is summarised below. 

 

8.2 Research  Summary 

The aim of this research was to improve the knowledge of the dynamic 

behaviour of LVL-concrete composite (LCC) T-joist flooring system, and to provide 

some recommendations to structural engineers to control the vibration of these 

structures. To get a better understanding of the vibration behaviour of LCC floors, 

experimental modal analysis (EMA) tests and finite element analysis (FEA) were 

carried out.  

This research began with the experimental modal analysis (EMA) tests on the 

6m, 8m and 10m LCC T-joist specimens, to study the vibration behaviour, as discussed 



139 
 

in Chapter 3. Then, the experimental works were verified with finite element analysis 

(FEA) using the SAP 2000 software package. Both EMA and FEA results show that the 

fundamental natural frequencies for 6 m, 8 m and 10 m LCC specimens were 15 Hz, 9 

Hz and 6 Hz, respectively. It showed that the 6 m and 8 m LCC specimens were over 

the limitation of 8 Hz natural frequency as suggested by Ohlsson (1988) and Eurocode 

5 (CEN, 2004b). However, the natural frequency of the 10 m LCC specimens was 

under the limitation of 8 Hz natural frequency. 

As expected, the longer the specimen, the lower the natural frequency. Thus, it 

is suggested that the suitable limitation span length for the tested floor geometry should 

not be more than 8 m. In addition, the rigidity of the boundary conditions had a big 

influence on the vibration behaviour.  Changing the boundary support condition from 

flexible (steel roller) to stiffer (timber block) increased the natural frequency of the 

floor system, helping to push the natural frequency above 8 Hz. 

The experimental results show a general trend for the natural frequencies of 

isolated flooring components to decrease when they form part of a larger structural 

system, and there is a slight trend for the natural frequencies of the isolated components 

to decrease in proportion to the number of similar spans and storeys. 

Further research on the effect of topping thickness and LVL joist thickness 

was discussed in Chapter 6. The elastic vibration behaviour of the LCC floor was 

governed by both stiffness and mass of the LVL and the concrete topping. When the 

concrete topping thickness is increased, the stiffness of the LCC floor also increases 

due to (i) an increase in stiffness of the LCC floor with respect to the LVL only beam 

(which is a positive effect); and (ii) an increase in mass, due to the weight of the 

concrete (which is a negative effect in terms of vibration).  

The transmission of vibration energy was determined through the multi-span 

and multi-storey specimens. With multiple floor systems, the vibration energy was 

found to be dissipated and transmitted between spans and storeys. The outer span 

received more vibration energy compared to the inner span as illustrated in Chapters 4 

and 5. Also, the local mode natural frequency of each span or storey was dominated by 

the global mode natural frequency, according to the mode shape behaviour of the 

specimens. 
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8.3 Recommendations for designers  

1. The recommended design criterion for LCC floors is the widely 

accepted limit of 8Hz for the natural frequency of vibration. Floors 

with a lower frequency than this will often be unacceptable to users. 

2. There is a hierarchy of design methods for assessing the vibration 

performance of LCC floors, listed in order of increasing accuracy and 

increasing work for the designer: 

a. Static deflection of 1mm under a point load of 1kN. 

b. Equations for the Simple Design Procedure described in Chapter 7. 

c. Detailed finite element analysis, for the Advanced Design 

Procedure, as described in Chapter 7. 

3. To obtain accurate results, even for simple floors, a finite element analysis 

is recommended. However, the input parameters and the modelling 

techniques should be considered carefully, as discussed in Chapter 7, 

especially for the local mode behaviour. 

4. For complex floors that are quite impossible to design by hand, a finite 

element analysis  is the only way of assessing the vibration frequency of 

the floor. 

5. The longest practical span for an LCC flooring system such as described 

herein, is recommended to be 8m. For spans greater than 8m, the floors 

may have an issue with deflections and vibration problems may occur.  For 

floors spanning more than 8 m, the stiffness would need to be increased by 

using bigger joists or a thicker topping, or both. Another possibility would 

be to try a reduced joist spacing, or find a way to increase the damping. 

6. Designers of some buildings may need to take precautions to ensure that 

floor vibrations in one part of the building are not transmitted to other 

sections of flooring at the same level, or to floors on other storeys of the 

building. 
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8.4 Recommendations for Further Research  

1. A methodology has been presented in this thesis for the verification of 

analytical models through experimental testing of component parts of real 

structures. However, due to the limited time and resources available to this 

project, only a small number of structures were actually tested in the 

laboratory. Thus, it is recommended that more testing be carried out on full 

scale floors in real buildings, so that the vibration behaviour may be 

understood better, leading to improved design guidelines. 

2. In this research, the effects of adjacent beams on multi-span flooring systems 

were investigated using only limited number of tests of a reduced-scale (one-

third scale) 4-span LVL-concrete composite T-joist specimen. It is 

recommended that, to increase the confidence of the conclusion drawn in this 

thesis, a larger number of tests are required on full-scale TCC flooring 

systems, including tests in real buildings.  

3. The effect of boundary conditions was partly investigated during the 

experimental work. Some end moment fixity was provided by letting the 

specimen stand by its own on the laboratory floor. It is recommended that in 

future tests, a wider range of support conditions should make sure that there is 

no movement at both ends of the specimens during the testing.  

4. The propagation of vibration waves was observed during the impact tests on 

multi-span LVL-concrete specimens. Future studies should include the effects 

of wave propagation in detail, to understand the effect on adjacent beams and 

on other floors, where the vibration energy is transmitted between floors. 

5. Finite Element Analysis was applied to all the tested LVL-concrete composite 

specimens and multi-span LVL-concrete composite specimens. For realistic 

floors, the FEA was only applied to one typical floor. Hence, it is 

recommended that the FEA should be applied to a much wider range of full-

scale LVL-concrete composite flooring systems. 

6. There should be more experimental study of the vibration criteria for a floor 

subject to human walking excitation, including the effects of damping.  



142 
 

REFERENCES 

Abd Ghafar, N. H, (2008). Forced vibration testing on LVL-concrete composite floor system, 

7
th

 Fib Phd Symposium in Stuttgart, Germany, pp. 1-6. 

Abd Ghafar, N.H., Deam, B., Fragiacomo, M. & Buchanan, A. (2008). Vibration 

performance of LVL-concrete conposite floor systems. 10
th

 World Conference on 

Timber Engineering WCTE, vol. CD. Miyazaki, Japan. 

Abd Ghafar N H, Deam, B., Fragiacomo, M., Buchanan, A. (2008). Susceptibility to 

Vibrations of LVL-Concrete Composite Floors. Workshop Italiano Sulie Composite. 

Benevento, Ilaty: University Degli Studi Del Sannio. 

Allen, D. E., & Murray, T. M. (1993). Design criterion for vibrations due to walking. 

Engineering Journal, 30(4), 117–129. 

ARUP (2012). Technical Report on Nelson Marlborough Institute of Technology Arts and 

Media Building - Vibration and Acoustic Study, Opus, Australia. 

AS/NZS, (2002). AS/NZS 1170.0:2002 Structural design actions. Part 0: General Principles. 

Sydney and Wellington (Jointly publish). 

Bachmann, H. & Ammann, W. ,(1987). Vibrations in Structures: Induced by Man and 

Machines, IABSE-AIPCIVBH, Zurich, Switzerland. 

Bernard, E. S. (2008). Dynamic Serviceability in Lightweight Engineered Timber Floors. 

Journal of Structural Engineering, 134(2), 258–268. 

Bernard, S. (2003). Vibration of composite timber and concrete flooring. Victoria, Australia: 

Forest & Wood Products Reseach & Development Corporation. 

Benitez, M.F. (2000). Development and testing of timber/concrete shear connector. 

Proceddings of the World Conference on Timber Eingineering 2000. Vancauver, BC, 

Canada, paper 8.3.2 

Blakeborough, A., & Williams, M. S. (2003). Measurement of floor vibrations using a heel 

drop test. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 

156(4), 367-371.  

Brunner, M., Romer, M., & Schnuriger, M. (2007). Timber-concrete-composite with an 

adhesive connector (wet on wet process). Materials and Structures/Materiaux et 

Constructions, 40(1), 119–126.  

Canadian Construction Materials Centre (CCMC), (1997). Development of Design 

Procedures for Vibration Controlled Spans using Engineered Wood Members. Canadian 

Wood Council, DMO associates, Quaile Engineering Ltd., Forintek Canada Corp. 

Ottawa.  

Ceccotti, A. (1995). Timber-Concrete Composite Structures. Timber Engineering, Step 2 (1st 

Edition). Centrum Hout, The Netherlands. 



143 
 

Ceccotti, A. (2002). Composite concrete-timber structures. Progress in Structural 

Engineering and Materials, 4(3), 264–275. 

CEN (2004b). Design of timber structures. In Part 1-1: General rules and rules for buildings. 

Brussels, Belgium. 

Crocetti, R, Sartori, T & Flansbjer, M. (2010). Timber-Concrete Composite Structures with 

Prefabricated FRC Slab, World Conference on Timber Engineering, Italy. 

Crocetti, R, Sartori, T & Tomasi, R (2015). Innovative Timber-Concrete Composite 

Structures with Prefabricated FRF Slabs, Journal of Structural Engineering, 141(9), 1-

10 

Deam B, Fragiacomo M, Gross LS (2008). Experimental behaviour of prestressed 

LVLconcrete composite beams. Journal of  Structural Engineering - ASCE. 134(5), 801-

809. 

Devine, P.J, Smith, A.L. & Hicks, S.J (2007). Design Guide on the Vibration Floors (2
nd

 

Edition). The Steel Construction Institute (SCI). Berkshire, United Kindom 

Dolan, J. D. et al. (1999). Preventing Annoying Wood Floor Vibrations. Journal of Structural 

Engineering,Vol.125 (1), 19-24. 

Ebrahimpour, A  et. al,  (1996). Measuring and Modeling Dynamic Loads Imposed by 

Moving Crowds. Journal of Structural Engineering, 122(12), 1468–1474. 

 Ebrahimpour, A., & Sack, R. L. (1989). Modeling Dynamic Occupant Loads. Journal of 

Structural Engineering, 115(6), 1476–1496.  

Ebrahimpour, A., & Sack, R. L. (1992). Design Live Loads for Coherent Crowd Harmonic 

Movements. Journal of Structural Engineering, 118(4), 1121–1136.  

El-Dardiry, E., & Ji, T. (2006). Modelling of the dynamic behaviour of profiled composite 

floors. Engineering Structures, 28(4), 567–579.  

Ellingwood, A. &  Tallin, B. (1984). Structural serviceability: floor vibrations. Journal of 

Structural Engineering, 110(2), 410–419. 

Franklin K & Hough R.,  (2014). Modelling and measurement of the dynamic performance of 

a timber concrete composite floor. In Wood Engineering Conforence (p. CD). Quebec 

City, Canada. 

Fuller, A. H. (1924). Dynamic effects of moving floor loads - stresses measured in the floor 

and balcony of a college gymnasium. Am Arch Arch, 126(11), 455–456. 

FPInnovations (2013). Technical Guide for the Design and Construction of Tall Wood 

Building in Canada. Quebec. 

Gross, S. L. (2004). Experimental testing on prestressed timber-concrete composite beams. 

Civil Engineering. University of Canterbury, New Zealand. 



144 
 

Gutkowski, R,  Balogh, J., Natterer, Brown, K., Koike, E. &Etournaud, P, (2000). Laboratory 

tests of composite wood-concrete beam and floor specimens. Sixth World Conference on 

Timber Engineering. Whistler. 

Hehhl, S., Tannert. T., Meena, R. and Vallee, T., (2014). Experimental and Numerical 

Investigations of Groove Connections for a Novel Timber-Concrete Composite System. 

Journal of Performance of Constructed Facilities, 28(6), A4014010 

Hu, L.J., (2007). Design Guide for Wood-framed Floor Systems. Canadian Forest Service 

Report N0. 32. Quebec:FPInnovations.  

Hu, L. J., (2015). Mid-rise Wood-Frame Construction Handbook, First Edition, 

FPInnovations, Quebeq. 

ISO (1989). ISO 2631-2:1989 evaluation of human exposure to whole-body 

    vibration - part 2: Continuous and shock-induced vibration in buildings (1 to 80Hz). 

Lenzen, K. H. (1966). Vibration of steel joist-concrete slab floors. American Institute of Steel 

Construction -- Engineering Journal, 3(3), 133–136. 

Ljunggren, F., (2006). Floor Vibration - Dynamic Properties and Subjective Perception,  

Lulea University of Technology, Sweden. 

Mertens, C., Martin, Y., & Dobbels, F. 2007. Investigation of the vibration behaviour of 

Timber-Concrete composite floors as part of a performance evaluation for the Belgian 

building industry. Building Acoustics, 14 (1), 25-36. 

Murray, T.M,   Allen, D.E. & Ungar, E.E., (2003). Floor Vibration due to Human Activity. 

United States of America: American Institute of Steel Construction. 

Natterer, J.,  Hamm, J.,  & Favre, P.,  (1996). Composite wood-concrete floors for 

multistorey buildings. In Wood Engineering Conforence (Vol. 3, pp. 3425–3431). 

Omnipress, Madison, Wls. 

National Research Council (NRC), (2010). National Building Coe of Canada (NBC). 

National Research Council of Canada, Ottawa. 

Nauta, F. (1970). Composite Glulam beam-reinforced concrete deck bridges. Test report 364, 

Central labs. 

Nelson, F. C. (1974). Subjective rating of building floor vibration. Sound and Vibration, 8, 

34–37. 

Nguyen, T., Gad, E., Wilson, J. & Haritos, N.,( 2012). Improving a current method for 

predicting walking-induced floor vibration , Steel and Composite Structures, 13 (2), pp 139-

155.  

 

Nguyen, T., Gad, E., Wilson, J. & Haritos, N. (2014). Mitigating foot fall induced 

 vibration in long-span floors, Australian Journal of Structural Engineering, 15(1), pp. 

97-109, 



145 
 

Ohlsson, S (1988). Springiness and human-indiced floor vibrations – A design guide.Swedish 

Council for Bulding Research , Stockholm, Sweden 

Pavic, A., & Reynolds, P. (2003). Modal testing and dynamic FE model correlation and 

updating of a prototype high-strength concrete floor. Cement and Concrete Composites, 

25(7), 787–799.  

Pavic, A., Widjaja, T., & Reynolds, P. (2002). The use of modal testing and FE model 

updating to investigate vibration transmission between two nominally identical building 

floors. In International Conference on Structure Dynamics Modeling–Test, Analysis, 

Correlation and Validation (pp. 347-355). 

Pernica, G., &  Allen, D.E,  (1982). Floor vibration measurements in a shopping centre. 

Canadian Journal of Civil Engineering, 9(2), 149. 

Rainer, J. H. (1980). Dynamic tests on a steel-josit concrete-slab floor. Canadian Journal of 

Civil Engineering, 7(2), 213–224. 

Reiher, H., & Meister, F. (1931). The effect of vibration on people. Forschung Im 

Ingenieurwesen, 2(11), 381–386 (in German). Retrieved from  

Reynolds, P., Pavic,A. (2000). Quality Assurance Procedures for the Modal Testing of 

Building Floor Structures. Experimental Techniques, 24(4), 36-41.  

Rijal, R., Samali, B. & Crews, K. (2010). Dynamic performance of the timber-concrete 

composite flooring systems, Australasian Conference on the Mechanics of Structures 

and Materials (ACMSM) 21, Melbourne, Australia. 

Rijal, R. (2013). Dynamic performance of timber and timber-concrete composite flooring 

systems. University of Technology, Sydney. 

SAP2000. (1997). User Manual : Integrated Finite Element Analysis and Design Structures: 

Computer and Structures, Inc. 

Seibold, E. (2004). Feasibility study for composite concrete-timber floor systems using 

laminated veneer lumber in New Zealand. University of Karlsruhe, Germany. 

Setareh, M. & Hanson, R. (1992). Tuned mass dampers for balcony vibration control. 

Journal of Structural Engineering – ASCE, 118( 3),  pp. 723-740. 

Skinner J. M. (2013). Thin topping timber-concrete composite floors. University of Bath. 

Skinner J., Harris R., Paine K., Walker P., and B. J. (2013). Ultra-thin topping upgrades for 

improved serviceability performance. Advanced Materials Research, (778), 673–681. 

Smith, I. and Chui, Y. H., (1988). Design of lightweight wooden floors to avoid human 

discomfort. Canadian Journal of Engineering, 15(2), 254-262. 

Soltis L.A. &  Hunt M.O,  (2002). Vibration testing of timber floor systems. Forest Products 

Journal, 52(10), 75–81. 



146 
 

Stojić, D., & Cvetković, R. (2001). Analysis of a composite tim-ber-concrete structures 

according to the limit states de-sign and innovative methods in coupling of a timber and 

concrete . Facta Universitatis Series: Architecture and Civil Engineering , v.2(No3 ), 

p.169–184. 

Thornton, C. H., Cuoco, D. A. & Velivasakis, E.E.( 1990), “Taming Structural Vibrations”, 

Civil Engineering – ASCE, Vol. 60, No. 11, pp. 57-59. 

Timoshenko, S. (1964). Theory of Plates and Shells. London:McGraw-Hill , 2nd ed. 

Tilden, C. J. (1913). Kinetic effects of crowds. Proceedings of the American Society of Civil 

Engineers, 34(3), 325-340.  

Tuan, C. Y., & Saul, W. E. (1985). Loads due to spectator movements. Journal of Structural 

Engineering, 111(2), 418–434. 

Ungar, E. E. (1978). Footfall-induced vibrations of floors supporting sensitive equipment. 

The Journal of the Acoustical Society of America, 64(S1), S26-S26 

Van der Linden, M. L. R. (1999). Timber-Concrete Composite Floor Systems . TU Delft, 

Delft University of Technology . 

Webster, A. & Vaicaitis, R. 1992, “Application of tuned mass dampers to control vibrations 

of composite floor systems”, Engineering Journal of the American Institute of Steel 

Construction, 29( )3, pp. 116-124. 

Wiss, J. F., & Parmelee, R. A. (1974). Human perception of transient vibrations. American 

Institute of Steel Construction, 100(4), 773–787. 

Wyatt, T. A. (1989). Design Guide on The Vibration of Floors (SCI Publication 076). Ascot, 

UK: SCI. 

Yeoh  Fragiacomo, M., Abd. Ghafar, N.H, Buchanan, A., Deam, B., D. (2008). Behaviour of 

timber-concrete composite floor systems. Australasian Structural Engineering 

Conference. Melbourne, Australia. 

Yeoh, D. (2010). Behaviour and design of timber-concrete composite floor system. 

University of Canterbury, New Zealand. 

Zivanovic, S., & Pavic, A. (2009). Probabilistic Modeling of Walking Excitation for Building 

Floors. Journal of Performance of Constructed Facilities, 23(3), 132–143. 

 

 

 

 



147 
 

APPENDIX A  MATERIAL PROPERTIES 

Material properties of concrete and LVL is shown in Table A1 and A2. The 

slip modulus of connection is adopted from Yeoh (2010) is illustrated in Table A3 and 

the characteristic load of joist hanger is shown in Table A4.  

Table A1 Properties of Concrete 

Concrete Properties 

Modulus of elasticity Ec 30, 000  MPa 

Modulus of rigidity Gc 1,875 MPa 

Density c 2400  kg/m3 

 

Table A2 Properties of LVL  

Concrete Properties 

Modulus of elasticity Et 12,700  MPa 

Modulus of rigidity Gt 660 MPa 

Density t 620 kg/m3 

 

Table A3 Comparison of mean strength and secant slip moduli for different connectors 

Type of connections 
Slip moduli (kN/mm) Shear strength (kN) 

Fmax ks,0.4 ks,0.6 

16 lag screw only 28.9 6.3 46.4 

150 mm notch only 105.0 59.3 48.3 

150 mm NLS 12 77.9 74.5 66.0 

150 mm NLS 16 80.2 75.4 73.0 

300 mm NLS 16 247.2 241.4 138.9 

Note: NLS = Notched connection reinforced with Lag Screw          (source: Yeoh,2010) 

Table A4 Characteristic load of joist hanger  

 Characteristic load- Nails Characteristic load- Screws 

Type of Joist 
Hanger  

No. Of Nails 
per Flange* 

Down 
(kN) 

Uplift 
(kN) 

No. Of Nails 
per Flange 

Down 
(kN) 

Uplift 
(kN) 

47 x 90 3 9.0 6.0 1 7.0 7.4 

47 x 120 5 15.0 10.0 2 14.0 12.0 

47 x 190 9 27.0 18.0 3 21.0 18.0 

95 x 165 8 24.0 16.0 3 21.0 18.0 

70 x 180 8 24.0 16.0 3 21.0 18.0 

(source: MITEK New Zealand Ltd) 
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APPENDIX B WORKED EXAMPLE 

 

%% Design for 8 m LCC floor according to Hu (2015), vibration-controlled 
%  span 

  
l= 8; % (floor span,m) 
%% Material Properties 

  
% concrete 
tc = 0.065; %(concrete topping thickness, m) 
bc = 0.6; % (concrete topping widht,m) 
Ec = 30e9; % (Modulus Young of concrete, N/m^2) 
dc = 2400; % ( Density of concrete, kg/m^3) 
Ic = (bc*tc^3)/12; %(Moment inertia of cocnrete, m^4) 
mc = dc*tc*bc; %(concrete mass, kg/m) 

  
%LVL joist 
tj = 0.4; %(LVL thickness, m) 
bj = 0.063; % (LVL widht,m) 
Ej = 12.7e9; % (Modulus Young of LVL, N/m^2) 
dj = 620; % ( Density of LVL, kg/m^3) 
Ij = (bj*tj^3)/12; %(Moment inertia of LVL, m^4) 
mj = dj*tj*bj; %(LVL mass, kg/m) 

  
%% Effective stiffness for composite, (EI)com 

  
k = 2.47e8; % (Connection slip modulus, N/m^2) 
H = tc/2 + tj/2 + 0.017; 
max = 1.394; % (maximum connection spacing) 
smin = 0.831; % (minimum connection spacing) 
seff = 0.75*smin + 0.25*smax; % (effective spacing of connection) 

  
gamma_c = 1/((1+(3.142^2*Ec*tc*bc*seff)/(k*l^2))); 
gamma_t = 1; 

  
ac = (gamma_t*Ej*tj*bj*H)/((gamma_c*Ec*tc*bc)+(gamma_t*Ej*tj*bj)); 
at = (gamma_c*Ec*tc*bc*H)/((gamma_c*Ec*tc*bc)+ (gamma_t*Ej*bj*tj)); 

  
EIcom = (Ec*Ic)+(Ej*Ij)+(gamma_c*Ec*tc*bc*ac1^2)+(Ej*tj*bj*at1^2); 

  
%% Fundamental natural frequency, fn (Hz) 

  
fn2 = (3.142/(2*l^2))*sqrt(EIcom/(mc+mj)); 

  
%% Calculate Fscl 
% Fscl = 0.0294 + 0.536K1^0.25 + 0.516K1^0.5 - 0.31K1^0.75 

  
kj = EIcom/l^3; 
kl = (0.585*l*Ec*Ic)/bc^3; 
k1 = kj/(kj+kl); 
Fscl = 0.0294 + (0.536*(k1^0.25)) + (0.516*(k1^0.5)) - (0.31*(k1^0.75)); 

  
 %% vibration-span control 
% l<= 1/8.22 x ((EIeff)^0.284)/Fscl^0.14 x mL^0.15 

  
Lcontrol = (1/8.22)* (EIcom^0.284/(Fscl^0.14*((mc+mj)^0.15))); 
%        = 8.75 m  
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% The required span, 8 m less than the vibration-controlled span, 8.75 m, 
% Thus, the design can be accepted. 

  

 

 


