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Finite temperature quantum and anharmonic effects are studied in H2-Li+-benzene, a model

hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an in-

terpolated potential energy surface (PES) refined over the eight intermolecular degrees of

freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-

body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, pro-

ducing both quantum and classical probability density histograms describing the adsorbed

H2. Quantum effects broaden the histograms with respect to their classical analogues and

increase the expectation values of the radial and angular polar coordinates describing the

location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also

provide estimates of the change in internal energy, ∆Uads, and enthalpy, ∆Hads, for H2

adsorption onto Li+-benzene, as a function of temperature. These estimates indicate that

quantum effects are important even at room temperature and classical results should be

interpreted with caution. Our results also show that anharmonicity is more important in

the calculation of U and H than coupling—coupling between the intermolecular degrees of

freedom becomes less important as temperature increases whereas anharmonicity becomes

more important. The most anharmonic motions in H2-Li+-benzene are the “helicopter” and

“ferris wheel” H2 rotations. Treating these motions as one-dimensional free and hindered

rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor

thermochemical expressions for internal energy and enthalpy that encapsulate the majority

of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ∆Uads and ∆Hads

are −13.3± 0.1 and −14.5± 0.1 kJ.mol−1, respectively.
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I. INTRODUCTION

Physisorptive hydrogen storage materials such as metal-organic frameworks1 (MOF) and

carbon-based materials, such as graphene or carbon nanotubes,2 have been widely investi-

gated over the last decade in an effort to find a hydrogen storage material that meets the

United States Department of Energy (DOE) targets.3 MOF materials are amongst the most

promising candidates due to their high surface areas and tunable pore sizes. For example,

at cryogenic temperatures, MOF-177 can store in excess of 10 wt % H2,
4–6 meeting the DOE

gravimetric hydrogen storage target.3 For practical use, however, hydrogen must be stored at

temperatures close to room temperature, where MOF materials store approximately 0.5 wt %

H2.
4,7 The reduction in H2 storage capacity with temperature, for both MOF and carbon-

based materials, is a consequence of low H2 binding enthalpies (typically 3-7 kJ.mol−1).8,9

For room temperature H2 storage to meet DOE targets, the binding enthalpy of H2 to MOF

materials must be increased to 15-45 kJ.mol−1.10,11

One strategy to improve the enthalpy of binding is the incorporation of bare metal

sites.12,13 Lithium atoms, as dopants, are particularly attractive because Li is light. Im-

portantly, transfer of the Li valence electron into the lowest unoccupied molecular orbital of

the MOF or carbon-based material gives, effectively, a Li+ ion, which has a small ionic ra-

dius and a large charge density. In this case, H2 binding enthalpy is enhanced by favourable

charge-quadrupole and charge-induced dipole interactions to the Li+.11 Lithium is also ap-

pealing in terms of electronic structure calculations, since it has only three electrons.

The temperature at which H2 adsorption becomes thermodynamically favorable is sen-

sitive to ∆Hads. Chavan et al.14 performed variable temperature infrared spectroscopic

measurements on H2 adsorbed in MOF materials with bare metal sites and found that every

0.8 kJ.mol−1 increase in ∆Hads increases the H2 adsorption onset temperature by 10 K. We

therefore need at least kJ.mol−1 accuracy for calculated H2 adsorption enthalpies if we are

to identify materials suitable for room temperature hydrogen storage.

To accurately calculate ∆Hads, we require accurate electronic energies, zero point energy

and thermal energies. The most common way to correct electronic energies for tempera-

ture and zero point energy is to use harmonic thermochemical analysis. This assumes all

vibrational frequencies are uncoupled and harmonic. Such an analysis is typically applied

to covalently bound molecules where it can predict vibrational frequencies to within 5 %
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of experimental frequencies.15 However, for a weakly-bound system such as H2 adsorbed

to a porous material, harmonic thermochemical analysis may be much less accurate and a

more rigorous treatment is required. We therefore investigated zero Kelvin properties of H2

adsorbed to Li+-benzene—a model system for Li-doped MOF and carbon-based hydrogen

storage materials—using reduced-dimensional rigid-body diffusion Monte Carlo (RBDMC)

simulations on modified Shepard interpolated potential energy surfaces (PESs) constructed

at either the M05-2X/6-31+G(d,p) or M05-2X/6-311+G(2df,p) levels of theory.16 We had

previously benchmarked the density functional calculations to more accurate coupled clus-

ter calculations.16 Consistent with inelastic neutron scattering spectra of H2 adsorbed to a

graphite intercalation compound, KC24,
17 we found that, at 0 K, there was quantum delo-

calisation of the H2 molecule and, consistent with previous theory18 and experiment,19 the

zero point energy difference upon binding is a significant fraction of the electronic binding

energy, in this case 35 %.20 We also found that the “helicopter” and “ferris wheel” motions of

the adsorbed H2 molecule were significantly anharmonic and could be modelled as free and

hindered rotors, respectively. Our best estimate of the 0 K H2 adsorption enthalpy, ∆Hbind

(0 K), was −12.4 kJ.mol−1,20 within 2 kJ.mol−1 of the experimentally measured ∆Hads of

H2 to bare metal sites.21

In this paper we extend our 0 K calculations to finite temperature; in the long term,

room temperature H2 storage is required if H2 is to become a viable alternative to fossil

fuels in vehicles. Moreover, the experimental characterisation of putative H2 storage ma-

terials typically takes place between 77 and 98 K.22 Although quantum effects become less

important as temperature increases, H2 is known to exhibit quantum behaviour at ambient

temperature,17,19 and thus a quantum rather than classical formalism is required. Anhar-

monicity will become more important as temperature increases, especially for a weakly

bound system such as H2-Li+-benzene and thus an accurate PES is also required. We have

used Feynman’s path integral formulation of quantum mechanics23,24 to compute thermody-

namic quantities of interest in this system. Specifically, we perform rigid-body path integral

Monte Carlo (RBPIMC) simulations on a M05-2X/6-311+G(2df,p) interpolated PES for

H2-Li+-benzene at temperatures between 77 and 150 K. The PES developed previously at

0 K,20 was extended, using the Grow algorithm,25 to model these higher temperatures. The

estimates of ∆Hads obtained from the RBPIMC simulations were compared to standard

harmonic and approximate anharmonic estimates to examine the importance of quantum

3



effects, anharmonicity and coupling as a function of temperature.

II. METHODS

A. Electronic Structure Methods

The electronic adsorption enthalpy of a H2 molecule to Li+-benzene is defined as:

∆Eads = E(H2-Li+-benzene)− E(Li+-benzene)− E(H2) (1)

where E(A) is the electronic energy of species A. The H2 adsorption enthalpy ∆Hads, at

temperature, T , is:

∆Hads(T ) = H(H2-Li+-benzene, T )−H(Li+-benzene, T )−H(H2, T ) (2)

where H(A,T ) is the sum of E(A), the zero point energy of A and its internal energy,

U(A,T ).

Following from our previous work,20 we have used the M05-2X26 density functional and

the 6-311+G(2df,p)27–29 basis set to describe the electronic energy of the H2-Li+-benzene

complex. All electronic structure calculations were performed using the Gaussian0330 and

Gaussian0931 program packages, with tight SCF convergence criteria, an ultrafine integration

grid and with symmetry turned off.

B. Potential Energy Surfaces

A potential energy surface (PES) was constructed for H2-Li+-benzene at the M05-2X/6-

311+G(2df,p) level of theory using the modified Shepard interpolation of Collins and co-

workers.32–34 In this method, the PES is expanded as a weighted second-order Taylor Series

expansion about a set of Ndata data points and then iteratively improved, by adding ad-

ditional data points, until calculated observables converge to within statistical error. The

form of the modified Shepard interpolation allows the six-fold rotational symmetry of ben-

zene and the two-fold symmetry of H2 to be included. The PES was “grown”, using the

Grow 2.2 program, and modifications thereof,25,32–35 sampling only intermolecular degrees

of freedom. Thus, while the interpolated PES nominally describes the full (39-dimensional)
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system, only the intermolecular modes are accurately described. The method is summarised

as follows:

1. The starting PES was the 100 symmetry-unique data point PES describing the ground

state of H2-Li+-benzene, which we developed for our previous 0 K quantum diffusion

Monte Carlo simulations.20 The 6-fold rotational symmetry of the Li+-benzene complex

was included by considering the reduced symmetry group to be comprised of the

rotations about the C6 axis and the interchange of the H2 nuclei, that is, |G| = 12.

The parameters used in the modified Shepard interpolation are identical to those used

in Reference 20: a 1-part weight function with exponent p = 22 and a weight cut-off

for the neighbor list of 1.0 × 10−5. These parameters and the 1-part weight function

are defined in Reference 32.

2. RBPIMC simulations, using a rigid-body formulation of the path integral technique,

as described below, were performed on the H2-Li+-benzene PES using the growing

parameters described in Section II C.

3. The sampled RBPIMC configurations were used to identify up to three new PES

points per iteration. These new data points were chosen using the method described

in Reference 36.

4. A DFT frequency calculation was performed at each chosen configuration and the

geometry, electronic energy, and first and second derivatives were added to the PES

data set.

5. The internal energy and the probability density histograms of the reduced dimensional

system were regularly monitored as a function of the number of symmetry-unique data

points, Ndata, using larger, more extensive, convergence simulations, as described in

Section II C.

Steps 2 to 5 were repeated until convergence of the internal energy and nuclear probability

densities—within the statistical errors of the simulations—was achieved.
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C. Rigid Body Path Integral (PIMC) Simulations

Although the path integral formulation of quantum mechanics has been previously de-

scribed in many texts,23,24,37–39 its derivation is typically presented in a single dimension.

We have rederived the primitive approximation path integral representation of the canonical

partition function in three dimensions, using an internally consistent notation and in the

form in which it has been implemented in this work. This derivation is given as Supplemen-

tary Material.40 We obtain the canonical partition function, QP (β), for N distinguishable

particles in three dimensions, where the mass of particle j is mj, as:

QP (β) =
N∏
j=1

(
mjP

2πβ~2

)3P/2 ∫
· · ·
∫

dR(1) . . . dR(P )×

exp

{
−β

[
P∑
t=1

N∑
j=1

mjP

2β2~2
∥∥∥r(t)j − r

(t+1)
j

∥∥∥2 +
1

P

P∑
t=1

V (R(t))

]} ∣∣∣∣∣
R(1)=R(P+1)

(3)

where β = 1/kBT , for kB the Boltzmann constant and T the temperature. The application

of Trotter’s theorem41 corresponds to splitting the imaginary time propagator, ρ̂, into P

short time propagators and R(t) contains the coordinates of the system at the tth imaginary

time slice. The potential energy is solely a function of position, V̂ = V (R̂). The restriction

R(1) = R(P+1) in Equation (3) means that only closed paths (paths that start and finish at

the same position) contribute to the partition function.

In this work, eight-dimensional rigid-body (RBPIMC) simulations were performed on

H2-Li+-benzene potential surfaces described in Section II B, where H2 was treated as a rigid

rotor, with the H2 bond length fixed at its equilibrium value in H2-Li+-benzene, and benzene

fixed in space. Whilst the PES is 39-dimensional and we can, in principle, perform nine-

dimensional PIMC simulations that include the H2 bond length coordinate, including the

H2 vibration requires a significantly larger value for the Trotter number, P , because the

characteristic timescales of vibrations differ significantly from rotations. We have explicitly

frozen the H2 bond length because our primary focus is the intermolecular degrees of freedom

associated with H2 adsorption. We further expect this to be a good approximation because

we have previously shown, at 0 K, that coupling between modes is less important than

anharmonicity.20

The path integral representation of the canonical partition function, Equation (3), has

been adapted for rigid bodies by separating the rotational and translational contributions
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to the rigid-body Hamiltonian, Ĥrigid, that is,

Ĥrigid = K̂trans + K̂rot + V̂ (4)

where K̂trans and K̂rot are the translational and rotational kinetic energy operators, re-

spectively. Here, for N rigid rotors, the potential energy, V(R,Ω), is a function of R =

{r1, r2, . . . , rN} and Ω = {ω1, ω2, . . . , ωN} , the center-of-mass coordinates and the orienta-

tions of the N rigid rotors. As derived in the Supplementary Material,40 estimators for the

RBPIMC kinetic and potential energy are:

Ktrans =
3NP

2β
−

〈
N∑
j=1

P∑
t=1

mjP

2β2~2
‖Rj,t −Rj,t+1‖2

〉
fP

(5)

Krot =

〈
N∑
i=1

P∑
t=1

B

4πρ
(t,t+1)
rot,i

∞∑
J=0

(2J + 1)J(J + 1)PJ

(
ω
(t+1)
i · ω(t)

i

)
exp (−βJ(J + 1)Bi/P )

〉
fP

(6)

V =

〈
1

P

P∑
t=1

V (Rt)

〉
fP

(7)

where ρ
(t,t+1)
rot,i (β/P ) is the rotational density matrix for rigid rotor i, ω

(t)
i and ω

(t+1)
i are the

angular coordinate eigenfunctions and fP is the appropriate distribution function, Equation

(S31). In this case we consider only the H2 molecule, so N = 1 and B = ~2/2I, for I

the moment of inertia, was calculated using the H2 bond length at the minimum energy

structure of H2-Li+-benzene, that is, 0.7458 Å.

Evaluating ρrot andKrot is computationally demanding and therefore, following Müser,42,43

Noya44 and McBride,45 we pre-computed these on a one dimensional grid for each product

of the number of beads and temperature, PT . During a simulation, required values of ρrot

and Krot were obtained from a spline interpolation of the grid. Additionally, evaluating ρrot

and Krot formally involves summing to infinite angular momentum, J . We truncated the

sum over J when it had converged to within 10−14.

The RBPIMC estimators were evaluated using Monte Carlo moves in the bead coordi-

nates, R =
{
R(1), . . . ,R(P ),Ω(1), . . . ,Ω(P )

}
. Each Monte Carlo step consisted of:

(i) Whole ring polymer displacements. Here moves corresponded to atom displacements,

for the Li+ ion, and center-of-mass displacements for the H2 molecule. On average two

such moves were performed each Monte Carlo step.
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(ii) Staging moves.39,46 These moves were applied to the Li+ ion and the center-of-mass of

the H2. On average 2P/M such moves were performed each Monte Carlo step, where

M is the staging length, as described in the Supplementary Material.40

(iii) Rigid body ring polymer rotation. In this case we consider only the rigid H2 molecule

and consider random rotations of ω for all time slices. On average one such move was

performed each Monte Carlo step.

(iv) Rigid body bead rotations. Here we consider random rotations, ω, of the H2 molecule

for one timeslice. On average P such moves were performed each Monte Carlo step.

The probability of accepting a move from Rold to Rnew was determined to ensure ge-

ometries were sampled from the distribution fP , Equation (S31). Moves (i), (iii) and (iv)

were accepted with a probability of min
(

1, fP (Rnew)
fP (Rold)

)
. The staging moves, moves (ii), were

accepted with a probability of min(1, exp[−β∆V ]). The Monte Carlo move parameters were

chosen to ensure an acceptance ratio between 40 and 60 %. The H2-Li+-benzene RBPIMC

simulations used to iteratively grow the PES employed 2048 equilibration Monte Carlo steps

and 16384 sampling steps. The purpose of these growing simulations was not to converge

the internal energy but to sample the relevant configuration space in order to grow an ap-

propriate PES. The final quantum RBPIMC results reported below were obtained on a PES

defined using 300 symmetry unique data points. The convergence simulations employed

65536 equilibration steps and 524288 sampling steps. Details of convergence, as a function

of simulation length, are provided in the Supplementary Material.40 Similar calculations

were performed for Li+-benzene, using a potential energy surface constructed as a three-

dimensional spline interpolation of data from the 200 symmetry unique data point PES of

reference 20. The isolated H2 molecule was treated as a free quantum rigid rotor with the

bond length fixed at that of the M05-2X/6-311+G(2df,p) minimum energy geometry of H2-

Li+-benzene, that is, 0.7458 Å. We have not considered relaxation of the H2 bondlength on

binding to Li+-benzene.

Adsorption enthalpies, ∆Hads, are defined as the sum of the internal energy and a pV

term:

H = U + pV (8)

where p is the pressure and V is the volume. Since we simulate one molecule only, we use
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the ideal gas approximation to estimate the pV term, yielding:

H = U + kBT. (9)

The H2 adsorption enthalpy becomes:

∆Hads = ∆Uads − kBT. (10)

Temperature dependent adsorption energies and enthalpies, ∆Uads and ∆Hads, were calcu-

lated and compared to a zero Kelvin result, ∆Hads (0 K), obtained from RBDMC simulations

as described in Reference 20. Probability densities and expectation values were determined

for the r and θ internal coordinates shown in Figure 1. The polar coordinate r is the dis-

tance from the Li+ ion to the H2 center-of-mass and θ is the angle subtended by r and the

vector from the benzene center-of-mass to the Li+ ion. We define an additional coordinate

to describe the orientation of the H2 molecule: the ferris wheel angle between the H-H bond

and r, which describes the orientation of the H2 molecule in a plane defined by the Li+ ion

and the two H atoms. The RBPIMC data was binned into histograms in r, θ and the ferris

wheel angle. Note that the minimum energy H2-Li+-benzene geometry has the Li+ ion on

the benzene symmetry axis, as shown in Figure 1.

As described in the Supplementary Material,40 the internal energy, U , was converged, to

within statistical error, with respect to the number of beads, P , at 77 K and 140 K. This

gave a ratio β/P of approximately 0.0002 K−1 which was used to define P at the other

temperatures considered.

Classical simulations were also performed using P = 1 beads. These P = 1 results yield

an internal energy where the rotational kinetic energy contribution is that of quantum free

rotor, rather than a classical rotor. The classical results reported below correct for this.

To ensure a similar number of configurations were sampled as the quantum simulations,

the “classical” RBPIMC simulations employed 32 times the number of equilibration and

sampling steps. Because the classical simulations were more sensitive to small variations in

the PES, a larger, 350 symmetry unique data point PES was used for these calcualtions.

During the simulations, H2 may “desorb” from the Li+-benzene complex. We defined H2

as unbound if it were more than 7.5 Å from the Li+ ion. Errors in the RBPIMC internal

energy were estimated using the blocking algorithm.47
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D. Rigid Body Harmonic Analysis

A rigid-body harmonic vibrational analysis of H2-Li+-benzene was performed as described

previously.20 The rigid-body harmonic normal modes are described here with reference to

the coordinate system shown in Figure 1.

Harmonic frequency calculations were performed at the H2-Li+-benzene global minimum

energy configuration within Gaussian03 with artificially high atomic masses (1.0×1018 amu)

for the benzene atoms. This results in nine non-zero harmonic normal modes:

• Two orthogonal H2-center-of-mass rocking motions, for example, in the xz− and yz−

planes,

• Symmetric and antisymmetric stretches involving the Li+-H2-center-of-mass and Li+-

benzene-center-of-mass coordinates,

• Two orthogonal Li+ “bends” parallel to the benzene plane,

• H2 “helicopter” rotation: H2 rotation about its center-of-mass in a plane perpendicular

to r,

• H2 “ferris wheel” rotation: H2 rotating around its center-of-mass in the plane defined

bu the Li+ ion and the two H2 hydrogen atoms,

• The H2 stretching vibration.

Thermochemical properties were calculated from the first 8 of these rigid-body normal

modes, that is, excluding the H2 stretching vibration, using standard harmonic oscillator

and rigid rotor expressions.48

E. 1D DVR Anharmonic Energy Levels

One-dimensional discrete variable representation (1D DVR) calculations were performed

for the eight rigid-body normal modes. As described in Reference 20, normal mode dis-

placement vectors were used to describe all but the helicopter and ferris wheel H2 rotations,

which were approximated as rotational local modes, and the H2 rocking modes, which were

modified to ensure the H2 bond length was maintained at its equilibrium value.
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The 1D DVR algorithm of Colbert and Miller49 was used to determine the one-dimensional

energy levels in each of the rigid-body normal modes (or approximations thereof). The 0

to 2π interval was used for the helicopter and ferris wheel H2 rotations and the −∞ to ∞

interval was used for the remaining modes. The reduced masses for each normal mode were

obtained from the rigid-body harmonic normal mode analysis performed in Gaussian03,

with the reduced mass of H2 used to describe the helicopter and ferris wheel H2 rotations.

Potential energies required for the 1D DVR calculations were obtained from 1D spline

interpolation of M05-2X/6-311+G(2df,p) electronic energies, evaluated as described in the

Supplementary Material of Reference 20. 2000 DVR grid points were used for “stretching”

vibrations and 1000 DVR grid points were used to describe bending and “rotational” motion.

This ensured convergence to within 0.1 cm−1.

The 1D DVR partition functions were calculated via direct summation of the energy

levels from 0 K to 300 K at 1 K intervals and were then used to calculate enthalpies for H2

adsorption to Li+-benzene using standard thermodynamic expressions.48 Analytic energy

levels were obtained for the isolated H2 molecule which was treated as a free diatomic rigid

rotor with the H2 bond length fixed at that of the M05-2X/6-311+G(2df,p) minimum energy

geometry.

These calculations allow us to determine the relative importance of anharmonicity in

individual normal modes and of coupling between modes in the thermodynamic quantities

reported.

III. RESULTS AND DISCUSSION

A. Probability Densities and Expectation Values

Selected classical (dashed lines) and quantum mechanical (solid lines) probability density

histograms in r and θ, obtained from the RBPIMC simulations are shown in Figure 2. The r

and θ coordinate definitions are as shown in Figure 1. For reference, 0 K probability density

histograms obtained from a RBDMC simulation are also shown in Figure 2 as solid black

lines. Errors in the RBDMC results, representing twice the standard error of the mean

obtained from 10 independent RBDMC simulations, are indicated as grey shading around

the solid, black lines in Figure 2. The standard error of the mean was also calculated
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from 16 independent RBPIMC simulations. These errors were within the thickness of the

lines shown in Figure 2. All probability density histograms implicitly contain the r2 dr

or sin θdθ volume elements. At the higher temperatures considered some of the RBPIMC

simulations indicated desorption of the H2 molecule, defined as a H2 center-of-mass to Li+

distance exceeding 7.5 Å. Of the 16 independent quantum (P →∞) RBPIMC simulations

performed at each temperature, 10 simulations at 150 K reached a “desorbed” geometry, 6

at 140 K and 3 at 130 K and none at lower temperatures. Where “desorption” occurred, the

results shown below were obtained from the remaining RBPIMC simulations. None of the

classical (P = 1) simulations desorbed.

It can be seen from Figure 2(a) that the quantum r probability density histograms (solid

lines) are shifted to larger r and are significantly broader than the classical r probability

densities (dashed lines). To quantify the difference between the classical and quantum

results we computed expectation values, 〈r〉, and full-width-at-half-maximum (FWHM) of

r as a function of temperature. These results are shown in Table I. The RBPIMC errors

in the expectation values shown in the table are in the last significant figure. Errors in the

FWHM are also in the last significant figure and these have been calculated as the standard

deviation in the FWHM from up to 16 independent RBPIMC simulations. At temperatures

between 77 K and 150 K, the quantum 〈r〉 values increase by approximately 0.04 Å and the

histograms broaden by 0.03 Å. The classical histograms show similar changes, 〈r〉 increases

by approximately 0.05 Å between 77 K and 150 K and the classical FWHM increases by 0.1

Å. These changes are small, that is, there is little change in either the classical or quantum

r probability density histograms with temperature: the histograms shift very slightly to

longer r and become slightly broader as temperature increases from 77 to 150 K.

The θ probability density histograms, shown in Figure 2(b), also exhibit temperature

dependence, quantified in Table I. Between 77 K and 150 K, the quantum 〈θ〉 increases from

approximately 26◦ to approximately 30◦, with the tails of the histograms extending to greater

angles as the temperature increased. The quantum distributions also broaden with increasing

temperature, the FWHMs increase from 32◦ to 37◦ over the range 77 K to 150 K. The classical

θ probability density histograms are peaked at lower θ than the corresponding quantum

histograms, and are slightly narrower, as shown in Table I. The quantum and classical

probability density histograms become increasingly similar as temperature increases.

We have previously considered the azimuthal, φ, coordinate, shown in Figure 1. At 0 K
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the RBDMC φ probability density histogram was constant, within error, indicating delocal-

isation of the H2 molecule in φ. Although not shown, it is not surprising that RBPIMC φ

probability density histograms also indicate that the H2 can be found, with equal probabil-

ity, at any azimuthal angle. This is true for both classical and quantum simulations at all

temperatures considered.

Probability density histograms were also generated for the “ferris wheel” coordinate,

defined as the angle between the Li+ ion, the center-of-mass of H2, and one of hydrogen

atoms of H2 (see Figure 1). These are shown in Figure 3, with FWHMs for the probability

density histograms given in Table II. At equilibrium, the H2 adopts a “T-shaped” orientation

relative to the Li+ ion, corresponding to a ferris wheel angle of 90◦. Ferris wheel angles of 0◦

and 180◦ correspond to collinear alignment of the H2 and Li+ with an energy approximately

26 kJ.mol−1 above the global minimum. By symmetry, the expectation value of the ferris

wheel coordinate is 90◦ and all the ferris wheel probability density histograms are indeed

symmetric about 90◦. Figure 3 shows that, classically, H2 is found at ferris wheel angles

between 60◦ and 120◦ at temperatures from 77 K to 150 K, whereas the quantum probability

density histograms show H2 is found at larger displacements from equilibrium, at ferris

wheel angles between approximately 30◦ and 150◦. Increasing the temperature broadens the

classical probability density histograms but has almost no effect on the quantum probability

density histograms. This is consistent with the description of ferris wheel motion as a one-

dimensional hindered rotor. The energy barrier, approximately 26 kJ.mol−1, is considerably

larger than kBT and, even at 150 K, only the lowest energy quantum state is significantly

populated. Notably, this barrier is also considerably larger than the H2 desorption energy.

B. Thermodynamics

1. Internal Energies, ∆Uads

Figure 4 shows various estimates of the change in internal energy, ∆Uads, of the H2-Li+-

benzene system upon adsorption of H2, as a function of temperature. Our best estimates

of ∆Uads, the quantum RBDMC and RBPIMC results, are indicated by the black circles in

Figure 4. The RBDMC results shown in Figure 4 are slightly different to those reported

in Reference 20. In our previous work the benzene molecule was treated as a rigid rotor
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whereas here it is held rigid. Classical RBPIMC estimates of ∆Uads are indicated as black

squares in Figure 4.

The blue solid line in Figure 4 above the RBDMC and RBPIMC estimates represents

the “standard” harmonic oscillator, rigid rotor thermochemical estimate of ∆Uads,
48 calcu-

lated from the harmonic ZPE and vibrational frequencies of the minimum energy configu-

ration. This estimate gives smaller magnitudes for ∆Uads, with respect to the RBDMC and

RBPIMC results, at all temperatures considered. The difference in magnitude is between

1.5 and 1.8 kJ.mol−1 between 77 and 150 K with the discrepancy increasing with increas-

ing temperature. This suggests that the importance of anharmonic contributions to ∆Uads

increases with temperature. As a consequence, one-dimensional anharmonic corrections to

∆Uads are also shown in Figure 4. If all eight intermolecular degrees of freedom in the

H2-Li+-benzene system are considered to be one-dimensional anharmonic oscillators, then

anharmonic estimates for ∆Uads can be calculated explicitly from energy levels determined

from the one-dimensional discrete variable representation (1D DVR) calculations described

in Section II E. The 1D DVR estimate of ∆Uads is shown as the dashed, dark green line

in Figure 4. This result is in better agreement with the RBDMC and RBPIMC results

than the standard harmonic oscillator, rigid rotor estimate but it also underestimates the

magnitude of ∆Uads. The difference between the 1D DVR estimates and the RBDMC and

RBPIMC results indicates the importance of coupling in the H2-Li+-benzene system, viz.

approximately 1.1 kJ.mol−1 at 0 K, which decreases to approximately 0.7 kJ.mol−1 at 150 K.

Coupling between the intermolecular degrees of freedom becomes less important in ∆Uads

as the temperature increases, whilst anharmonicity becomes more important.

Classical approximations are only valid at high temperature, or more generally, where

quantum effects are negligible. For the purposes of this work, they provides a way of quan-

tifying the importance of quantum effects at finite temperatures. The discrepancy between

quantum RBDMC/RBPIMC and classical RBPIMC results is, as expected, largest at 0 K.

This reduces to an approximately 3.3 kJ.mol−1 difference at 150 K, or 17 % of the H2-Li+-

benzene electronic binding energy. At room temperature there is still more than a 2 kJ.mol−1

difference between quantum and classical estimates of ∆Uads. These differences highlight the

importance of including quantum effects when simulating H2 adsorption to Li+-benzene, and

suggest that, even at room temperature, classical simulations will significantly overestimate

the strength of the H2 binding interaction.
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The simplest classical estimate for ∆Uads is obtained from the equipartition principle of

statistical mechanics and is shown as the light green alternating long- and short-dashed line.

Here we have assumed that the only contribution to ∆Uads is the loss of three translational

and one rotational (the ferris wheel rotation) degree of freedom of the H2 molecule as it

binds to Li+-benzene. Thus the equipartition theorem estimate of ∆Uads is a straight line

of slope 2kBT . This simple estimate is in excellent agreement with the classical RBPIMC

results over the temperature range considered.

2. Simple Methods to Compute ∆Uads

Given it is necessary to include quantum effects to accurately determine ∆Uads, simple,

fast and accurate corrections to standard harmonic estimates are both useful and desirable.

The standard harmonic oscillator, rigid rotor estimate (solid blue line in Figure 4) yields

smaller magnitudes for ∆Uads than the coupled, anharmonic RBPIMC values, with the

difference increasing with temperature. Despite this qualitative disagreement, it should be

noted that, at all temperatures shown in Figure 4, the discrepancy is less than 1 kcal.mol−1

(4.2 kJ.mol−1) chemical accuracy. This suggests that the quantitative description of H2

adsorption requires significantly better than chemical accuracy.

One of the most common methods used in the literature to improve harmonic estimates

of internal energy, enthalpy and entropy is the scaling of harmonic vibrational frequencies.15

Scaling factors correct for anharmonicity, coupling, incomplete incorporation of electron

correlation and the use of finite, one-electron basis sets. They have been derived from

comparison of calculated frequencies with accurate experimental results for a range of gas-

phase species. Applying the appropriate literature M05-2X/6-311+G(2df,p) scaling factors15

will only very slightly lower the harmonic estimates for ∆Uads (and ∆Hads); the strength of

the binding interaction is still significantly underestimated. The application of such scaling

factors assumes transferability from the test set to a weakly bound complex, such as H2-

Li+-benzene, and further assumes that the relevant degrees of freedom can be described as

vibrations. Neither of these assumptions are likely to be true for H2-Li+-benzene. Rather

than present scaled results we have chosen to explicitly model the effects of anharmonicity

and coupling, only two of the contributions to literature scaling factors.

Our previous RBDMC simulations identified the most anharmonic intramolecular modes
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in H2-Li+-benzene as the helicopter and ferris wheel H2 rotations.20 We found that treat-

ing these modes as one-dimensional free and hindered rotors, respectively, rather than as

harmonic oscillators, significantly improved the calculated ZPE of this species.20

The red, dashed line in Figure 4 represents ∆Uads calculated with all vibrational modes

treated as harmonic oscillators, except for the helicopter and ferris wheel H2 rotations, which

were treated as free and hindered rotors, respectively. These simple corrections dramatically

improve the harmonic oscillator, rigid rotor result, yielding ∆Uads within 0.4 kJ.mol−1 of the

1D DVR result over the temperature range 0 K to 300 K. This simple approximation corrects

for the majority of the anharmonicity in ∆Uads. Treating the H2 helicopter and ferris wheel

rotations as free and hindered rotors, however, over-corrects the ∆Uads at 0 K, with respect

to the 1D DVR value, but under-corrects ∆Uads for temperatures greater than approximately

77 K. Assuming the H2 helicopter rotation at 0 K behaves as a free rotor underestimates the

one-dimensional ZPE in this mode; there is no ZPE for a free rotor whereas the “real” one-

dimensional mode has very small energetic barriers to rotation. As temperature increases,

this becomes less important as the rotational energy in the helicopter mode becomes larger.

It is also worth noting that the H2 ferris wheel hindered rotation has relatively widely spaced

energy levels such that excited states of this mode are largely unpopulated even at 300 K.

As temperature increases the red, long-dashed line in Figure 4 increasingly deviates from

the 1D DVR estimate of ∆Uads, suggesting that there are other vibrational modes in the

system that are anharmonic. In this case the only other vibrational modes exhibiting any

significant degree of anharmonicity are the two orthogonal H2 rocking modes in θ. These

are low frequency modes and their vibrational excited states are populated at relatively low

temperatures; thermal energy is dominated by the lowest frequency modes. As temperature

increases, a two-dimensional anharmonic treatment of these modes will improve the predicted

∆Uads. These four modes: the H2 helicopter and ferris wheel free and hindered rotations

and the two orthogonal H2 rocking modes are characteristic of physisorbed H2. The simple

corrections we suggest are therefore likely to be of value in any study of H2 adsorption.

3. Adsorption Enthalpy, ∆Hads

The adsorption enthalpy, ∆Hads = ∆Uads + pV , for H2 adsorption onto Li+-benzene, is

plotted in Figure 5 as a function of temperature. Within the ideal gas approximation, ∆Hads
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= ∆Uads −kBT . Various estimates of ∆Hads are shown in Figure 5, with the same key as

shown in Figure 4.

Our best quantum estimates of ∆Hads range from approximately −13.1 kJ.mol−1 at 0 K,

to approximately −14.5 kJ.mol−1 at 150 K. Similarly to the calculation of ∆Uads, the 1D

DVR estimate yields slightly smaller magnitudes for ∆Hads than the RBDMC and RBPIMC

estimates, with coupling accounting for between 1.1 and 0.7 kJ.mol−1 between 0 K and

150 K. Again, anharmonicity is dominated by the H2 helicopter and ferris wheel rotations.

The estimates obtained treating these modes as a free rotor and one-dimensional hindered

rotor (red, dashed line in Figure 5) are within 0.4 kJ.mol−1 of the 1D DVR result over the

temperature range shown in Figure 5. Importantly, the largest magnitudes of ∆Hads were

calculated from the RBPIMC simulations at the highest temperature, 150 K, and the 1D

DVR results gives the largest magnitude of ∆Hads at approximately 250 K.

Although the classical ∆Hads is more exothermic than the quantum estimates, in contrast

to the quantum results, the classical ∆Hads increases monotonically with increasing temper-

ature. This can be seen clearly in the equipartion theorem classical estimate (light green

alternating long- and short-dashed line in Figure 5) which has a slope of kBT . Similarly to

Figure 4, the equipartition result provides an excellent approximation to the fully coupled,

anharmonic classical RBPIMC simulations.

The results shown in Figure 5 suggest that H2 adsorption enthalpies calculated from

classical simulations should be treated with caution. They are likely to both overestimate

the H2 binding interaction and show an incorrect temperature dependence.

Experimental enthalpies of adsorption of H2 to MOF materials with bare metal sites are

typically in the range of −8 to −12 kJ.mol−1,22 placing the adsorption enthalpy calculated

here at least 2 kJ.mol−1 larger in magnitude than experiment. This can be attributed, at

least in part, to the differences between our model system and a real bare-metal site in a

MOF material. The effective positive charge on a bare metal site in a MOF material can

be significantly reduced by the bonding interactions of the metal center with the organic

linkers. The effective charge on the Li+ ion in Li+-benzene, however, is very large, only 30 %

of the +1 positive charge is “lost” to benzene.16 Although other computational simulations

of Li-doped MOF materials also show large localised positive charge on the lithium, in some

cases larger than the +0.7 e found for H2-Li+-benzene,50 we suggest that our ∆Hads = −14.5

kJ.mol−1 be considered a lower bound to the enthalpy of adsorption of H2 to a Li-doped
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MOF or carbon-based material.

IV. SUMMARY AND CONCLUDING REMARKS

We have investigated the nature of adsorption of H2 to Li+-benzene at finite temper-

atures using RBPIMC simulations on an eight-dimensional interpolated PES constructed

from M05-2X/6-311+G(2df,p) density functional theory calculations. Classical results were

obtained from P = 1 RBPIMC simulations and quantum results were obtained from P →∞

simulations.

We investigated the temperature dependence of quantum effects by examining the temper-

ature dependence of both quantum and classical probability density histograms describing

the adsorbed H2. Quantum effects broaden the probability densities of the H2 center-of-

mass to Li+ distance, the θ polar coordinate and the “ferris” wheel rotation coordinate.

The quantum probability density histograms show less temperature dependence than their

classical analogues.

Our reported harmonic oscillator, rigid rotor, 1D DVR, and 8-dimensional quantum

RBPIMC calculations provide successively more accurate estimates for the change in in-

ternal energy, ∆Uads, for H2 adsorption onto Li+-benzene, as a function of temperature.

Applying an ideal gas correction enables us to obtain a similar hierarchy of estimates for the

enthalpy of adsorption, ∆Hads. These estimates indicate that quantum effects are important

in this system, even at room temperature, and must be included in any accurate study of

H2 adsorption. They also show that anharmonicity is more important in the calculation

of U and H than coupling; the 1D DVR results agree well with the higher dimensionality

RBPIMC results. As the effort to undertake these calculations increases with dimension-

ality, however, we have described simple corrections to the standard harmonic oscillator,

rigid rotor thermochemical expressions for U and H which encapsulate the majority of the

anharmonicity in the H2-Li+-benzene system. Approximating the H2 helicopter and ferris

wheel rotations as free and hindered rotors, respectively, allow a significantly more accu-

rate calculation of internal energy. Moreover, these simple corrections are applicable to any

simulation of hydrogen adsorption.

Overall our calculations suggest that classical simulations of H2 adsorption should be

treated with caution. Our classical results give significantly more favourable H2 binding
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interactions than the quantum simulations, and classical thermochemical properties exhibit

an incorrect temperature dependence, with respect to the quantum equivalents.
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TABLES

TABLE I. Expectation values, 〈A〉, and full-width-half-maxima, AFWHM, of the probability density

histograms for the r (Å) and θ (◦) coordinates (Figure 2), as a function of Temperature (K), from

classical (“c”; P = 1) and quantum (“q”; P →∞) RBPIMC simulations.

Temp. 〈r〉c 〈r〉q rFWHM,c rFWHM,q 〈θ〉c 〈θ〉q θFWHM,c θFWHM,q

0 2.154 18.4

77 2.069 2.168 0.203 0.413 23.6 25.5 29.1 32.4

90 2.077 2.172 0.222 0.416 24.8 26.5 30.8 33.5

100 2.083 2.175 0.236 0.420 25.6 27.2 31.9 34.0

110 2.090 2.179 0.250 0.423 26.3 27.8 33.0 34.8

120 2.096 2.184 0.265 0.427 27.0 28.4 33.9 35.4

130 2.103 2.189 0.278 0.432 27.7 29.0 34.6 35.8

140 2.111 2.199 0.291 0.438 28.3 29.6 35.3 36.4

150 2.119 2.205 0.303 0.444 28.9 30.2 36.0 36.9

TABLE II. Full-width-half-maxima (◦) of the “ferris wheel” probability density histograms (Figure

3) as a function of Temperature (K) from the classical and quantum RBPIMC simulations.

Temp. Classical (P = 1) Quantum (P →∞)

77 17.3 43.9

90 18.7 44.1

100 19.8 44.2

110 20.7 44.2

120 21.8 44.3

130 22.7 44.2

140 23.6 44.5

150 24.5 44.4
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FIGURE CAPTIONS

FIG. 1. The polar coordinate system, {r, θ, φ}, used to describe H2-Li+-benzene. Hydrogen atoms

are coloured white, carbon gray and lithium pink.

FIG. 2. Selected nuclear probability density histograms in the (a) r and (b) the θ coordinate from

RBDMC and RBPIMC simulations. 0 K, black (RBDMC); 77 K (red), 100 K (green), 120 K (blue)

and 150 K (orange) from RBPIMC simulations. Quantum results are shown as solid lines and

classical results as dashed lines. Errors, representing twice the standard error of the mean of 10

independent RBDMC simulations are shown as grey shading around the RBDMC line. RBPIMC

errors are within the thickness of the lines.

FIG. 3. Selected nuclear probability density histograms in the H2 “ferris wheel” angle from

RBPIMC or RBDMC simulations. 0 K, black (RBDMC); 77 K (red), 100 K (green), 120 K (blue)

and 150 K (orange) from RBPIMC simulations. Quantum results are shown as solid lines and

classical results as dashed lines. Errors, representing twice the standard error of the mean of 10

independent RBDMC simulations are shown as grey shading around the RBDMC line. RBPIMC

errors are within the thickness of the lines.

FIG. 4. Estimates, as indicated, of the change in internal energy upon adsorption, ∆Uads, for H2

adsorption onto Li+-benzene, as a function of temperature. Errors in the classical RBPIMC results

are within the size of the symbols used.

FIG. 5. Estimates, as indicated, of the enthalpy of adsorption, ∆Hads, for H2 adsorption onto

Li+-benzene, as a function of temperature.
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