
A General-Purpose GPU

Reservoir Computer

A thesis submitted in partial fulfilment

of the requirements for the Degree of

Master of Electrical and Computer Engineering

in the University of Canterbury by

Tūreiti Keith

University of Canterbury

Christchurch, New Zealand

1st April 2013

Supervisor

Dr. Stephen J. Weddell

Associate Supervisor

Dr. Andrew Bainbridge-Smith

i

Abstract

The reservoir computer comprises a reservoir of possibly non-linear, possibly chaotic

dynamics. By perturbing and taking outputs from this reservoir, its dynamics may

be harnessed to compute complex problems at “the edge of chaos”. One of the first

forms of reservoir computer, the Echo State Network (ESN), is a form of artificial

neural network that builds its reservoir from a large and sparsely connected recurrent

neural network (RNN). The ESN was initially introduced as an innovative solution

to train RNNs which, up until that point, was a notoriously difficult task. The

innovation of the ESN is that, rather than train the RNN weights, only the output

is trained. If this output is assumed to be linear, then linear regression may be used.

This work presents an effort to implement the Echo State Network, and an offline

linear regression training method based on Tikhonov regularisation. This imple-

mentation targeted the general purpose graphics processing unit (GPU or GPGPU).

The behaviour of the implementation was examined by comparing it with a central

processing unit (CPU) implementation, and by assessing its performance against

several studied learning problems. These assessments were performed using all 4

cores of the Intel i7-980 CPU and an Nvidia GTX480. When compared with a CPU

implementation, the GPU ESN implementation demonstrated a speed-up starting

from a reservoir size of between 512 and 1,024. A maximum speed-up of approx-

imately 6 was observed at the largest reservoir size tested (2,048). The Tikhonov

iii

regularisation (TR) implementation was also compared with a CPU implementation.

Unlike the ESN execution, the GPU TR implementation was largely slower than the

CPU implementation. Speed-ups were observed at the largest reservoir and state

history sizes, the largest of which was 2.6813. The learning behaviour of the GPU

ESN was tested on three problems, a sinusoid, a Mackey-Glass time-series, and a

multiple superimposed oscillator (MSO). The normalised root-mean squared errors

of the predictors were compared. The best observed sinusoid predictor outperformed

the best MSO predictor by 4 orders of magnitude. In turn, the best observed MSO

predictor outperformed the best Mackey-Glass predictor by 2 orders of magnitude.

iv

Acknowledgements

Thanks to Dr. Stephen Weddell for his excellent supervision and guidance through-

out this process. Thanks also to Ms. Lisa Carter, Dr. Philippa Martin, Dr. Andrew

Bainbridge-Smith and the staff at the Dept. of Electrical and Computer Engin-

eering, University of Canterbury for supporting my application to write this thesis

from abroad. Thanks to Mr. David van Leeuwen for maintaining the test platform

and repositories used in this work. And of course, a special heartfelt thanks to my

mainstay, my wife, Yana, for her unconditional love and support.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Background 5

2.1 The Artificial Neural Network . 5

2.1.1 Learning in an Artificial Neural Network 6

2.2 Reservoir Computing . 8

2.2.1 The Echo State Network . 8

2.2.2 The Structure of the ESN . 8

2.2.3 Constructing an ESN . 11

2.2.4 Echo States . 13

2.2.5 Training an ESN . 15

2.3 The Graphics Processing Unit . 19

2.3.1 The Nvidia Cuda Programming Model 21

2.3.2 The Nvidia Cuda Development Toolchain 28

2.3.3 Nvidia Cuda Hardware . 30

i

2.4 Numerical Operations on the GPU 33

2.4.1 BLAS Operations . 33

2.4.2 LAPACK Operations . 33

2.4.3 Sparse Operations . 37

2.4.4 Bespoke Operations . 37

2.5 Assessing ESN Performance . 38

2.5.1 Mean & Standard Deviation 38

2.5.2 Speed-Up . 39

2.5.3 Normalised Root Mean Square Error 40

2.5.4 Quartiles . 41

3 Implementing the Echo State Network 43

3.1 High Level Design and Deployment 44

3.1.1 The libesnmath.so Library . 44

3.1.2 The libgpuesn.so Library . 46

3.2 Using the Libraries . 46

3.3 Numerical Operations . 49

3.3.1 ESN Building . 49

3.3.2 ESN Execution . 51

3.3.3 ESN Training . 52

3.4 Program Design . 53

3.4.1 ESN Memory Management . 54

3.4.2 ESN Execution . 54

3.4.3 Training the ESN via Tikhonov Regularisation 60

4 Performance and Behaviour of the GPU ESN 63

4.1 Test Machine Parameters . 64

ii

4.2 Echo State Network Speed Comparison 65

4.2.1 ESN Execution . 66

4.2.2 Tikhonov Regularisation . 66

4.2.3 Experimental Configuration 67

4.2.4 ESN Execution Speed . 70

4.2.5 Tikhonov Regularisation Speed 72

4.3 Predictive Performance . 76

4.3.1 Problem Statements . 76

4.3.2 Performance Assessment . 79

4.3.3 Experimental Parameters . 80

4.3.4 Results . 82

5 Conclusion 95

5.1 Future Work . 99

5.1.1 Profiling & Optimisation . 100

5.1.2 Sparse Matrix Format . 100

5.1.3 Memory Limitations . 100

5.1.4 Singular Value Decomposition 101

5.1.5 Eigenvalue Calculation . 102

5.1.6 The CPU Implementation . 103

5.1.7 ESN Input and Output Size 103

5.1.8 ESN Structure During Experiments 103

5.1.9 Variability of Speed-Up Calculations 104

5.1.10 The Sinusoidal Median Error Curve 104

5.1.11 Multiple Local Minima in Error Curves 105

5.1.12 Output Feedback and ESN Stability 105

5.1.13 The Effects of Precision . 106

iii

5.1.14 Alternative Building & Training Methods 106

5.1.15 General Case Performance Comparison 107

5.1.16 Cross-Platform Implementation 108

5.1.17 A Higher-Level Interface . 108

5.1.18 Multiple GPU Devices . 109

References 111

iv

1 Introduction

First described in a neuro-anatomical context as the temporal recurrent network

[1, 2], the first computational reservoir computer (RC) models were introduced as

the Echo State Network (ESN) [3], and the liquid state machine [4]. These reservoir

computers comprise a dynamical reservoir. Inputs may perturb this reservoir, which

maps to a higher dimensional space for computation. Outputs may be tapped

from the reservoir, thus mapping the reservoir state to a typically lower-dimensional

output. Thus, the possibly non-linear, possibly chaotic behaviour of the reservoir

may be harnessed [5] to compute complex problems “at the edge of chaos” [6].

The structure of the reservoir computer is supported by a proposed unification of

several classical recurrent neural network gradient descent methods, an RC prede-

cessor, referred to as Atiya–Parlos Recurrent Learning (APRL) [7, 2]. RC is further

validated by the Back-Propagation Decorrelation method; a simplification of the

APRL method that adopts a network structure, similar to, but less restrictive than

the ESN, the focus of this work [8, 2].

The Echo State Network is a form of artificial neural network (ANN) [9]. These

networks are inspired by the construction of the brain, and are typically constructed

through a learning or training process. ANNs are composed of computational nodes

called neurons which are connected via weights. The number of neurons and the

weights connecting the neurons determines the ANN’s behaviour. When training an

1

Chapter 1 Introduction

ANN, it is typically these weights that are adjusted.

The Echo State Network’s reservoir is built from a specific class of ANN called a

recurrent neural network (RNN). The ESN’s RNN is typically large and sparsely

connected, with hundreds [10] or thousands [5] of neurons. RNNs are notoriously

difficult to train, requiring methods such as backpropagation-through-time [11, 12].

The Echo State Network offers an alternative approach to this. Rather than training

the individual weights in the RNN, only the output weights are trained. Training

may be performed offline, before the network goes into service, or online, while the

network is in service. In offline training, assuming the ESN outputs are linear, the

training problem becomes a case of linear regression [3]. This is the innovation of

the Echo State Network.

In this work, a configurable Echo State Network and a training method were imple-

mented for the general purpose graphics processing unit (GPGPU or GPU). This

follows on from previous work done to implement reservoir computers on hard-

ware. The ESN implemented is that proposed in the original work, [3, 13]. The

training method implemented is a form of linear regression called Tikhonov regular-

isation [14, 15, 2].

Small, portable and high-speed RC applications can be implemented on dedicated

platforms such as the Application Specific Integrated Circuit (ASIC) [16] or the Field

Programmable Gate Array (FPGA) [17, 18]. These platforms provide platform-

mobility at the cost of complexity and solution portability. In contrast, large high-

speed networks benefit from a compute-intensive platform such as the Graphics

Processing Unit (GPU) [19, 20, 21, 22]. These provide common numerical opera-

tions [23, 24, 25] and solution portability, at the cost of platform-mobility.

The work presented in this thesis continues in this vein. The thesis describes the

implementation of a configurable Echo State Network and the offline Tikhonov reg-

2

Introduction

ularisation training method for the GPU. This work compares the behaviour of this

GPU implementation with a CPU implementation. The goals of this work are to

ascertain when a GPU ESN implementation can deliver better speed performance

than a CPU ESN implementation. More specifically, for what sizes of ESN and

for what amount of training data is the GPU better suited. Further to this, a

study of the GPU ESN’s behaviour in several multi-time-step prediction problems

is performed. Three prediction problems are presented to ESNs of various sizes and

configurations. The ESN must predict the value of an incoming time-series mul-

tiple samples into the future. The problems – a sinusoidal, a Mackey-Glass, and a

multiple superimposed oscillators (MSO) time-series – are of varying difficulty. The

goal of this work was to compare various configurations of ESN on these problems

and to observe the ESN’s predictive capability.

This work begins with Chapter 2, which presents the Echo State Network, the

Tikhonov regularisation training method, the GPU, and describes the numerical

operations required for this implementation. The final sections of Chapter 2 de-

tail the metrics used to perform the speed and predictive performance comparisons

presented later in the thesis. Chapter 3 describes the implementation of the ESN

and Tikhonov regularisation, the structure of the libraries, and a brief example of

how to use them. Chapter 4 gives the results of several experiments performed to

assess the behaviour of the GPU ESN implementation on the Intel i7-980 central

processing unit (CPU) and an Nvidia GTX480 GPU. Finally, a discussion of the

results is given in Chapter 5, alongside ideas for improving and extending this work.

3

2 Background

Presented in this chapter are the key ideas used in this implementation of a general

purpose GPU reservoir computer. The chapter begins with a description of the

artificial neural network, and follows with a background on the graphics processing

unit. Next, the numerical operations required to implement an ESN are given, and

lastly, the metrics used to assess the GPU ESN’s behaviour are defined.

2.1 The Artificial Neural Network

The artificial neural network (ANN) [9] is inspired by the construction of the brain.

The ANN is used to perform tasks such as function generation, prediction, and

classification. Like the brain, an ANN comprises computational nodes called neur-

ons, that have potentially many input and output connections to each other. In an

ANN, these connections are weighted, and the nodes themselves can be biased. The

behaviour of an ANN is determined by several factors including

1. the number of neurons;

2. the activation function of each neuron;

3. the bias applied at each neuron;

4. the topology of the network formed by the neurons; and

5

Chapter 2 Background

5. the weights connecting the neurons, inputs, outputs, feedback, and feed-

forward paths.

For a desired network behaviour, these factors are not typically found analytically;

rather, they are learned.

Artificial neural networks can be loosely broken into two major categories, feed-

forward and recurrent networks. In the feed-forward case, signals move in only one

direction through the network, from input to output. There may be one or more

layers of neurons connecting the input to the output. When there is only one layer,

all neurons are connected by some weight (which may be zero) to the inputs, and

also to the outputs. The state of a feed-forward network with a single layer at time

n has no dependence on its state at time n − 1. In a multiple layer feed-forward

network, the state of the ith layer at time n depends only on the state of the (i− 1)th

layer at time n− 1.

The recurrent network case differs from the feed-forward case, in that the recurrent

network includes feedback. This feedback forms a connection between the state of

the network at time n and its state at time n− 1. Further to this, depending on the

weights within this network, it is possible for the state of the network at time n to

depend on the networks initial state. [26, 27]

2.1.1 Learning in an Artificial Neural Network

In the field of artificial intelligence, learning problems are thought of as either induct-

ive, or deductive. In deductive (also called analytical) learning, the learning agent

uses the data it receives, and a set of general rules to form new rules. The new rules

must logically entail the more general rules. In inductive learning, the agent uses

example data to form a general rule. In this sense, artificial neural networks are

6

2.1 The Artificial Neural Network

inductive learners. [27]

A general learning agent may use unsupervised, reinforcement, supervised, or semi-

supervised learning. In the unsupervised case, the agent discovers patterns in the

input data. An example of unsupervised learning is clustering, where the agent

learns to cluster input data into groups. In reinforcement learning, the agent is

rewarded or punished based on its performance. Supervised learning requires a

set of input and output data pairs from which the agent can learn. Finally, semi-

supervised learning is used in problems where there is input data for training, but

only some of the input data has corresponding output data. The artificial neural

network studied in this thesis is a supervised learner. It is trained using example

input and output vectors. [27]

An artificial neural network is capable of either online or offline learning. In the

offline case, the ANN designer assumes that all the data processed by the ANN is

independent and identically distributed (IID). In other words, that training shall be

performed once, and that the data received after training will have some relationship

that is either fully or sufficiently captured in the training data. In the online case, the

ANN designer assumes that the data processed by the ANN is either not sufficiently

IID, or can only be described as IID for discrete periods of its history. Thus, the

ANN must continually learn to account for changes to the data over time. [27]

Learning or training artificial neural networks can be a complex task, recurrent

neural networks especially so. The echo state approach to learning recurrent neural

networks was an innovative approach that improved on well known methods such as

back-propagation through time [11, 12], and the more recent Atiya-Parlos method

[7]. The benefit of the echo state network is that it is relatively easy to train

offline. Rather than training the recurrent neural network itself, a set of linear

output neurons are trained instead. The following sections describe the Echo State

7

Chapter 2 Background

Network in more detail, and the off-line training method that was used in this work.

2.2 Reservoir Computing

Reservoir computing began in the early 2000’s with the work of Herbert Jaeger and

Wolfgang Maass [2]. Jaeger introduced the Echo State Network (ESN) in 2001 [3],

and Maass first described the Liquid State Machine (LSM) in 2002 [4]. A Reservoir

Computer (RC) is a randomly generated dynamic system – a dynamical reservoir

with outputs, optional inputs, and optional feedback. The outputs of an RC are

formed by tapping signals from the reservoir, and combining them linearly. An RC

may also have inputs and feedback that perturb the reservoir. [3, 4, 2]

2.2.1 The Echo State Network

The Echo State Network (ESN) [3] is a reservoir computer based on an artificial

neural network. The introduction of the Echo State Network brought about a new

paradigm in the learning or training of artificial networks. The “echo state approach”

decreased significantly the effort required to construct and train a subset of ANNs

called recurrent neural networks (RNN). The remainder of this section will describe

the Echo State Network and how it is trained.

2.2.2 The Structure of the ESN

Figure 2.1 describes the structure of an Echo State Network. It comprises three

parts. The first is a set of K linear input neurons, and the third is a set of L linear

output neurons. The second or central component contains N sigmoidal neurons,

8

2.2 Reservoir Computing

where N is typically large. These central neurons are typically sparsely and ran-

domly connected. The central part of this network is called the reservoir, as due to

its structure, it can be seen as a dynamical reservoir. The reservoir is dynamical,

as its state at time n + k is dependent on its state at time n, and the relationship

between these two states can be described using a set of relatively simple equa-

tions. [3]

Reservoir of N neuronsInput of K neurons Ouput of L neurons

Single weight connection

Multi-weight connection

Optional multi-weight connection

Key

Optional single weight connection

Figure 2.1: The basic architecture of an Echo State Network. Shown is a network
of K input neurons, N reservoir neurons, and L output neurons. The reser-
voir weights W, input weights Win, output weights Wout, and optional output
feedback weights Wofb are also shown. Additional unlabelled recurrent output
connections can be seen. [3, 22]

The Echo State Network can also be described using two equations. The first,

x (n) = f
(
Winu (n) + Wx (n− 1) + Wofby (n− 1)

)
, (2.1)

produces an N element vector, x, that describes the state of the reservoir neurons at

time n. In other words, the current outputs of each of the neurons in the reservoir [3].

9

Chapter 2 Background

Equation 2.1 is a function of a K element input vector, u, the state vector from the

previous time-step, n−1, and the L element output vector, y, from the previous time-

step. The input, previous reservoir state, and previous output vectors are connected

to the current reservoir state through several weight matrices. The weights in the

K × N matrix Win connect the input vector to the current reservoir state. The

weights in the N ×N matrix W connect the previous reservoir state to the current

reservoir state The weights in the L×N matrix Wofb connect the previous output

to the current reservoir state. The function f (�) describes the activation function

of the neurons in the reservoir. This function typically applies a sigmoidal function

to an input vector in an element-wise manner, thus producing an output vector of

the same size. The sigmoid could, for example, be the hyperbolic tangent function.

Thus, for a vector v with V elements, the activation function would be [3, 13]

f (v) =


tanh (v1)

...

tanh (vV)

 .

The second equation,

y (n) = fout

Wout

 u (n)

x (n)


 , (2.2)

describes the L element output, y, of the network at time n [3]. Equation 2.2 is

a function of the current input vector, u, and the current reservoir state, x. The

(K+N)×L matrix weight matrix Wout describes both the feed-forward connections

from the input to the output, and the connections between the current reservoir state

and the output. The activation function fout (·) is typically an identity function. [3]

10

2.2 Reservoir Computing

The Equations 2.1 and 2.2 can also be expressed on a per neuron basis. This

expression can perhaps better describe the connection between each neuron and each

weight value. Equation 2.1 captures the output of the jth of N reservoir neurons at

time n as per

xj (n) = f

(
N∑
i=1

(wi,jxi (n− 1)) +
K∑
i=1

(
win
i,jui (n)

)
+

L∑
i=1

(
wofb
i,j yi (n− 1)

))
.

Here, the ith reservoir neuron output from the previous time-step is weighted by wi,j.

The ith input is weighted by win
i,j, and the ith output from the previous time-step is

weighted by wofb
i,j . [3, 26]

Similarly, Equation 2.2 can be described as

yj (n) = fout

(
K+N∑
i=1

wout
i,j vi (n)

)
.

Which gives the jth of L outputs at time n. Here, the value vi is weighted by wout
i,j .

The value vi(n) is the ith value of the vector v at time n, where [3, 26]

v (n) =

 u (n)

x (n)

 .

2.2.3 Constructing an ESN

When constructing an Echo State Network, the weights in matrices Win, W, and

Wofb (Equation 2.1) must be generated; only the matrix Wout is learned. Previous

work looks into the structure of these matrices, especially the reservoir weight matrix

W. This is discussed in more detail in Section 2.2.4. For this work, ESNs were

constructed using the method presented by Jaeger in [13]. This involves several

heuristics or “rules-of-thumb” collated through his experience.

11

Chapter 2 Background

The weight matrix, W, represents the connections within the reservoir at the core

of the Echo State Network (Equation 2.1). This is a randomly generated, sparse

matrix. To achieve the “echo state” property described in Section 2.2.4, and to

maintain stability, the spectral radius of W,

ρ (W) = max (|λ (W)|) , (2.3)

should be less than 1 [13]. Here λ (·) returns a vector of eigenvalues of a given

matrix, |·| returns the element-wise absolute value of a vector, and max (·) returns

the maximum value of a vector. One method to produce such a matrix is

W = ρWrand

max (|λ (Wrand)|) . (2.4)

Here, a random matrix, Wrand, is divided by its spectral radius, then multiplied

by some desired spectral radius, ρ [13]. The non-zero values of the matrix Wrand

typically consist of values drawn from a uniform distribution. In [13], they are drawn

from a uniform distribution over the range [−1, 1].

The size, N (see Section 2.2.2) of the reservoir is also an important consideration. In

the offline training case presented in [13], Jaeger states that the size of the reservoir

should be relative to, T , the amount training data available. He gives a rule of

thumb for the size of the reservoir as

T

10 ≤ N ≤ T

2 . (2.5)

The amount of training data (T) required is dependent on the problem. Sufficient

information must be captured in the training data for the ESN to behave correctly

when executing on new data (see Section 2.1.1).

12

2.2 Reservoir Computing

The remaining weight matrices, Win and Wofb are also typically drawn from a

uniform distribution. The range of these values will impact on the linearity of the

input and feedback into the system. Larger weight values will scale the input and

feedback closer to the saturation range of the reservoir neurons, smaller weight values

will scale input and feedback closer to the linear range of the input neurons. [13]

2.2.3.1 A Systems Theory Perspective

Recent work [28] has looked into ESN construction from a systems theory perspect-

ive. The authors propose a metric called the “average entropy of echo states” that

quantifies the “richness” of a reservoir’s dynamics. They studied the distribution

and movement of z-plane poles during ESN execution, by calculating and linearising

each state. This work shows that the richness of an ESN’s dynamics is improved

if the poles of the ESN are evenly distributed within the unit circle. The authors

propose an ESN design methodology based on the even distribution of poles in the

z-plane.

Also given in [28] is an example of the movement of poles in a dynamically rich

system given a sinusoidal input. Here, when the input was near zero, the poles were

evenly distributed about the unit-circle. As the input amplitude increased, and the

tanh neurons were driven into saturation, the poles shrunk towards the origin of the

z-plane, thus decreasing the effective spectral radius of the system.

2.2.4 Echo States

The name Echo State Network comes from the behaviour of the ESN’s reservoir.

Inputs into the reservoir at time n are “echoed” in the reservoir at time n + k. A

reservoir achieves echo states when the influence or “echo” of a reservoir state, x (n),

13

Chapter 2 Background

on later reservoir states, x (n+ k), tends to zero as k → ∞. A detailed definition

and proof of echo states is given in [3].

The quality of a reservoir’s echo state can be described using its spectral radius,

ρ (W) (Equation 2.3). The spectral radius is inversely proportional to the decay of

an echo. Increasing the spectral radius will increase the influence of the reservoir

state, x (n), on later states, x (n+ k). Thus, the echo from x (n) decays at a slower

rate. When decreasing the spectral radius, the echo from a reservoir state decays at

a faster rate. The spectral radius of a reservoir therefore indicates the quality of its

memory – a larger spectral radius means a longer memory. [3]

An Echo State Network designer does not, however, have free range over the size

of a reservoir’s spectral radius. Rather, this should be tuned to remain within the

bounds of stability, and to ensure that the echo states are achieved. To this end,

the next section presents a heuristic and three bounds that may be used to achieve

echo states.

2.2.4.1 Achieving Echo States

A reservoir is likely to achieve echo states when the spectral radius of its weight

matrix (Equation 2.3) is [3]

ρ (W) < 1. (2.6)

In other words, the matrix W is contractive. This is a good heuristic, but is neither

a necessary nor sufficient condition to guarantee echo states. Rather, it is shown

in [3] that if ρ (W) > 1; if u (n) = 0, ∀n; and if the reservoir activation function

f (v) = tanh (v); then the reservoir will not have echo states. [2, 3]

14

2.2 Reservoir Computing

A sufficient condition to achieve echo states is given in [3] as

σmax (W) < 1. (2.7)

This states that the largest single value of the matrix W must be less than 1.

This is true for any input u, but is proven only for reservoir activation function of

f (v) = tanh (v).

Subsequent work has shown that the condition given in Equation 2.7 is conservative.

Echo states can be achieved when

infD∈D σmax
(
DWD−1

)
< 1.

Where D is an arbitrary matrix from the set D ⊂ RN×N , that minimises the “D-

norm” of the reservoir weights, ‖W‖D = σmax
(
DWD−1

)
. The infD∈D function

describes the infimum of the subset D. This is the greatest element in RN×N that

is less-than or equal-to all elements of D. [2, 29]

2.2.5 Training an ESN

Since the introduction of the echo state approach to recurrent neural network train-

ing [3], both alternatives and extensions to this reservoir computing approach have

been proposed [2]. Alternatives include the online backpropagation-decorrelation

method [8], and the evolutionary evolino method [30]. Extensions include the Tik-

honov regularisation method [2, 15, 14] for offline training, and the recursive least

squares method for online training [5]. This thesis looks into the classical ESN

training method proposed in [3, 13], and the Tikhonov regularisation method to

learning output weights. This section summaries the classical training method and

15

Chapter 2 Background

the Tikhonov method.

2.2.5.1 Offline Training

Given a set of T + 1 known training inputs

Ut =
[

ut (0) . . . ut (T)
]
,

and known training outputs,

Yt =
[

yt (0) . . . yt (T)
]
, (2.8)

a history of T reservoir states can be captured using Equation 2.1. To do this, the

known inputs and outputs are substituted into Equation 2.1 as per

xt (n) = f (Winut (n) + Wxt (n− 1) + Wofbyt (n− 1)) . (2.9)

Then, the values of xt (n) are calculated for 1 ≤ n ≤ T , where xt (0) is some initial

reservoir state, for example the null vector, 0. Thus we have

Xt =

 ut (1) . . . ut (T)

xt (1) . . . xt (T)

 .

Note the use of the known output vector, yt, in Equation 2.9. This is referred to

as teacher forcing. This forces the state of the reservoir at time n to be calculated

as if the output equation (Equation 2.2) has produced the expected output at time

n− 1. [3, 13]

During the initial state calculation steps, transient noise is expected. To reduce the

effects of transients on the training process, some portion of the initial time steps,

16

2.2 Reservoir Computing

1 ≤ n ≤ T0, should be ignored. This gives

X =

 ut (T0) . . . ut (T)

xt (T0) . . . xt (T)

 . (2.10)

Once captured, X can be substituted into Equation 2.2 as per

[
yt (T0) . . . yt (T)

]
= fout (WoutX) . (2.11)

Assuming fout (·) is an identity function, this can be reformulated as

Ytarget = WoutX. (2.12)

Thus, to train the ESN offline, one must solve Equation 2.12. [3, 13]

Perhaps the first solution that comes to mind is Wout = YtargetX−1. Unfortunately,

X is not usually invertible. This is because the number of columns in X is generally

much greater than the number of rows (see Equation 2.5). As such, the pseudoinverse

can be applied [3, 13], yielding

Wout = YtargetX+.

2.2.5.2 Tikhonov Regularisation

Also known as Ridge Regression, Tikhonov Regularisation is given in [2] as a “highly

recommendable” choice for learning the matrix Wout. This method is presented as

one that reduces numerical instability and the magnitudes of elements in the matrix

Wout. Thus, this method reduces sensitivity to over-fitting and noise. [2]

With the state history matrix, X (Equation 2.10), in hand, Tikhonov Regularisation

17

Chapter 2 Background

can be used to solve Equation 2.12. The solution is given by

Wout = YtargetXT
(
XXT + λI

)−1
, (2.13)

where λ is the Tikhonov regularisation parameter. [2, 14, 15]

2.2.5.3 Selecting the Regularisation Parameter

For the problem A∗Ax = A∗b, where x is unknown and A is not invertible, a near

optimal method for selecting the regularisation factor is given in [31]. Finding the

first zero of

ĝ(λ) =
n∑
i=1

β2
i λ

(σ2
i + λ)3 −

n∑
i=k

β2
i

(σ2
i + λ)2 − s

2
k−1∑
i=1

1
(σ2

i + λ)2 ,

yields a near optimal value of λ. This is generated from the singular value decom-

position of the state history matrix, A = UΣV∗. Here, βi ≡ uTi b (where ui is the

ith column of U), σi is the ith diagonal element of the diagonal matrix Σ, and s2 is

the expectation of some ith noise value, E (ε2
i).

Unfortunately, this finding can not be applied directly to the problem of ESN train-

ing, as the form of the ESN training problem is instead AXXT = BXT, where A

is unknown, and X is not invertible. A similar analytical solution to this problem

was not found in the literature.

Another approach to find the Tikhonov regularisation parameter is presented in [15].

Here the authors investigated the relationship between the regularisation factor

and the error performance of an ESN. More specifically, they compared ESN mean

18

2.3 The Graphics Processing Unit

squared error performance with the effective number of parameters [32],

γ =
p∑
i=0

(
σi

σi + λ

)
. (2.14)

Here σi is the ith eigenvalue of the p × p matrix XXT . In their approach, an

“optimal” regularisation parameter was found by performing a sweep across a range

of values. For each regularisation parameter value, the ESN was trained (i.e. Wout

was calculated), and the ESN performance error was measured. To calculate the

ESN performance error, the trained ESN was not run over test data; rather, the error

was calculated as the mean squared difference between the elements of Ytarget and

the resulting WoutX. Thus, each performance error was calculated in a relatively

quick manner. Once the parameter sweep was completed, λ was chosen as the value

that yielded the minimum mean squared error.

2.3 The Graphics Processing Unit

The reservoir computer has been applied to non-linear signal processing problems,

and has been shown to perform well. Such applications include communications

channel equalisation [5], voice recognition [17, 18], and adaptive optics [10]. These

applications have motivated research into implementing the RC on either compute-

intensive platforms, or small dedicated platforms. Dedicated platforms such as

the Application Specific Integrated Circuit [16] or the Field Programmable Gate

Array [17, 18] have been used to implement small, portable and high-speed RCs.

Compute-intensive platforms such as the Graphics Processing Unit (GPU) have also

been used to implement larger ANNs [19, 20, 21, 22].

An early GPU implementation of the ANN [19] demonstrated significant speed-up

when matrix operations were migrated to a non-general-purpose GPU. This imple-

19

Chapter 2 Background

mentation took advantage of a knowledge of the GPU architecture, and the graphics

application programming interface, to implement matrix multiplication using the

rendering hardware on the GPU. A comparison was performed between the ATI

RADEON 9700 PRO GPU, and an unnamed CPU. The application was a feed for-

ward ANN image processing application. The GPU purportedly achieved a 20-fold

speed-up.

GPU ANN implementations have continued in the same vein. In recent work imple-

menting spiking neural networks on GPGPUs has been shown to achieve significant

speed-ups. In a colour image segmentation application, a GPU Spiking Neural Net-

work (SNN) implementation was shown to achieve a significant speed-up. This SNN,

when run on an NVIDIA Quadro FX 3800 GPU performed 31 times faster than the

Intel(R) Xeon(R) X5550 CPU [20]. Similarly, an exploration of competing GPGPU

architectures was performed using the SNN as a benchmarking tool. Two architec-

tures: the fermi, represented by Nvidia’s Tesla C2050; and the radeon, represented

by AMD’s Radeon 5870, were compared. The fermi was shown to perform better

[21]. This survey of the literature did not, however, reveal any previous work in the

area of GPU Echo State Network implementations.

Since the late-mid 2000’s, programmers have been provided with tools that allow

them to use the graphics processing unit (GPU) for general purpose computing. The

general purpose GPU (GPGPU) has become synonymous with parallel computing,

and graphics devices in general. So much so, that the term GPGPU is interchange-

able with GPU, the term for the formerly “non-general-purpose” graphics processing

hardware. The benefits of the GPU lie in its capability to process large amounts of

data in a highly parallel manner. For a scalable parallelisable problem, the benefits

of parallelisation increase with the size of the problem. [33]

Tools available to GPU programmer include OpenCL, an open and cross-platform

20

2.3 The Graphics Processing Unit

toolkit [34]; the heterogeneous computing platform from AMD [35]; and Nvidia’s

Cuda [36]. For this work, an Nvidia Cuda device was used. This is largely due to

the availability of existing Nvidia hardware.

The remainder of this section describes the Nvidia Cuda GPU – its hardware, de-

velopment toolchain, and programming model. The content of this section comes

largely from the CUDA C Programming Guide, [37].

2.3.1 The Nvidia Cuda Programming Model

Using Flynn’s taxonomy, an NVidia GPU could be described as a single instruc-

tion multiple data device (SIMD). The Nvidia GPU does not, however, behave in

entirely an SIMD manner. As such, Nvidia refers to the architecture as single in-

struction multiple thread (SIMT). Upon execution, an SIMD device executes the

same instruction in parallel on different data. An SIMT device provides both SIMD

behaviour and independent thread execution. [37, 38]

The exact capabilities of a Cuda device depend on its compute capability, as defined

by Nvidia. A device’s compute capability is a function of its architecture, and is

described by a revision number of the from “x.y”. Here x is the major revision

number determined by the architecture, e.g. either Tesla (x = 1), Fermi (x = 2) or

Kepler (x = 3). The minor revision number, y, corresponds to an incremental change

to the architecture, and possibly an incremental change to the feature set. [37]

To program an Nvidia Cuda GPU, a programmer writes a kernel of code. A kernel

can be expressed in a subset of the C++ programming language, with some language

extensions. These extensions are used to specify kernel execution parameters, and

to specify in which part of GPU memory a variable should be placed. Listing 2.1

gives a simple example of a kernel, and Listing 2.2 gives an example of calling a

21

Chapter 2 Background

kernel. The contents of these listings should become clear after reading the following

sections. [37]

Listing 2.1 A simple C Cuda kernel that sets all elements in a vector to zero.

__device__ /* Execute on a Cuda device */
void zeroiseVectorKernel (double *vector , int elementCount)
{

// Calculate the thread index
int x = (blockIdx .x * blockDim .x) + threadIdx .x;
// If within the bounds of the vector
if (x < elementCount)
{

// Set this memory address to zero
vector [x] = 0.0;

}
}

22

2.3 The Graphics Processing Unit

Listing 2.2 A C function that executes the kernel in Listing 2.1. Here, the size of
the thread block is set to the size of a warp (see Section 2.3.3.1). In this case, a warp
assumed to comprise 32 threads. This value can also be obtained programmatically.
The number of thread-blocks (see Section 2.3.1.1) must be calculated to ensure that
sufficient threads are called to address the entire vector. The kernel will be queued
to execute on the stream stream (see Section 2.3.1.2). The block size, grid size and
stream are communicated to the kernel via the Cuda-specific <<<...>>> syntax. The
third argument specifies the amount of shared memory to dynamically allocate per
thread-block, this is set to the default value of 0.

define WARP_SIZE 32

__host__ /* Execute on the host */
void zeroiseVector (

double *vector ,
int elementCount ,
cudaStream_t stream)

{
// Use WARP_SIZE threads per thread -block
dim3 blockDim (WARP_SIZE);
// The minimum number of thread - blocks required
dim3 gridDim (ceil (((float) elementCount) / ((float) WARP_SIZE)));
// Call the vector zeroing kernel .
zeroiseVectorKernel <<<gridDim ,blockDim ,0, stream >>>(

vector ,
elementCount);

}

2.3.1.1 The Thread Hierarchy

A single kernel is run across many SIMD threads, where each thread can access

global memory and private local memory. Each running thread is a member of a

thread block. There may be multiple thread blocks executing at any one time. Each

member of a given thread block has access to the same shared memory. A thread

block is, in-turn, a member of a grid. A single grid is associated with the execution

of a single kernel. Some Nvidia Cuda devices are capable of executing multiple

kernels, and therefore multiple grids in parallel. This memory hierarchy is described

23

Chapter 2 Background

in Figure 2.2. [37]

Global memory

Grid 0

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Grid 1

Block (1, 1)

Block (1, 0)

Block (1, 2)

Block (0, 1)

Block (0, 0)

Block (0, 2)

ThreadBlock
Per-block shared

memory

Thread

Per-thread local
memory

Figure 2.2: GPU memory hierarchy. [37]

An executing kernel runs in parallel across a single grid containing one or more

thread blocks. At kernel launch time, the programmer specifies the dimensions of

this grid and its thread blocks. Both grids and thread blocks are specified in either

one, two, or three dimensions; suiting either vector, plane, or volume problems

respectively. Listing 2.2 demonstrates launching a kernel with a one dimensional

grid of one dimensional thread blocks. [37]

24

2.3 The Graphics Processing Unit

At execution time, each parallel instance of a kernel has access to information on

the thread, block, and grid within which is running. This is called the thread index.

The programmer can use this information to determine from which data locations

to read, and to which to write. Listing 2.2 demonstrates using the thread index to

resolve a single value within a vector. [37]

2.3.1.2 Concurrency

The Nvidia Cuda GPU is designed to provide thread level parallelism in an SIMT

sense. Cuda devices can also parallelise kernel execution and memory transfer op-

erations. A programmer can take advantage of these capabilities by using streams.

A stream can be thought of as a queue of kernel executions and/or memory transfer

instructions. A programmer can create a stream and assign kernel executions and

memory transfer operations arbitrarily. The operations are executed in the order

that they are added. A programmer can achieve kernel-level parallelism by creating

multiple streams, and assigning operations to them. Each stream executes its op-

erations sequentially, and attempts to execute operations in parallel with the other

streams. Parallelism is not guaranteed, as this depends on both the resources avail-

able, and on the capabilities of the GPU. A kernel execution may be parallelised

with a transfer from pinned memory to device memory on some devices of compute

capability of 1.1 or higher. Two or more kernels may be executed in parallel on some

devices of compute capability 2.0 or higher. Listing 2.2 demonstrates launching a

kernel with a given stream. [37]

An important aspect of parallel processing is communication between parallel tasks.

Suppose the inputs into, for example, kernel a on stream x depend on the outputs

of kernel b on stream y. A programmer can specify synchronisation barriers forcing

kernel b to wait until kernel a has completed. [37]

25

Chapter 2 Background

2.3.1.3 Memory Considerations

During the execution of an Nvidia Cuda based application, it is usual to transfer

data between host memory and GPU device memory. These transfers are typically

slower than the accompanying calculations, and can impact heavily on the overall

execution time of an application. To reduce this impact, pinned or mapped memory

transfers may be employed, further expert level optimisation is also possible.

Page-Locked & Write-Combining Memory. On systems with a front-side-bus,

the programmer can increase the efficiency of host-GPU memory transfers by using

host-side page-locked (pinned) and write-combining memory. Pinned memory de-

livers performance increases when both transferring to and fetching from the GPU

memory. Write-combining memory delivers further increases (up to 40% more), but

only where the host writes to this memory. Reads from write-combining memory are

relatively slow. Pinned and write-combining memory are generally scarce resources,

the programmer should take care not to use them to the detriment of other processes

running on the host. [37]

Mapped Memory. In addition to page-locked and write-combining memory, the

programmer also has access to mapped memory. A mapped memory allocation

operation allocates both page-locked host memory, and GPU device memory. When

mapped memory is accessed by a kernel, memory transfers from host to device

are performed implicitly and in parallel. A programmer can allocate this memory

specifically, or register existing page-locked memory as mapped. [37]

Expert Level Optimisation. A programmer can achieve expert level optimisation

by considering specialised memory, and on-device memory configuration.

26

2.3 The Graphics Processing Unit

When executing a kernel on Cuda devices of compute capability 2.0 or higher, the

size of the L1 cache and shared memory can be configured. In this case, a multi-

processor uses a single block of physical memory that is partitioned into either L1

cache or shared memory. The programmer can adjust the ratio of shared memory

to L1 cache. Listing 2.2 demonstrates specifying the shared memory size with the

default value of 0. [37]

A programmer may also consider the impacts of memory coalescing at warp exe-

cution time. This concerns specifically the transfer of data from global to shared

memory. When a warp requests data from discontiguous addresses scattered around

the global memory space, data throughput is slowed. The NVIDIA CUDA C Pro-

gramming Guide [37] contains more information on these topics.

2.3.1.4 Pipelining

A technique referred to as pipelining may also be employed to reduce the impact

of memory transfers on execution time. The use of pipelining in computing ori-

ginates from instruction-pipelining used to increase the instruction throughput of a

processor with a single arithmetic logic unit. It works in the same way as a manufac-

turing production line. There are four stages within the pipeline (or “production-

line”) fetching an instruction, decoding an instruction, executing the instruction,

and writing back the result. Each stage takes the same time to execute and is per-

formed in parallel. When every stage is occupied, an instruction is always ready to

be executed. Thus the impact of the fetch, decode, and write-back stages on overall

execution time is largely hidden – seen only as the pipeline fills or empties. [39]

This idea can be extended to GPU program design. The impact of data transfers

between host and GPU memory can be hidden or reduced by parallelising them

with calculations on the GPU. A program may, for example, have three stages –

27

Chapter 2 Background

fetch data from the host, execute operations on this data, return the result to the

host. Where fetching data from and returning results to the host are each equivalent

or faster than the GPU calculations, a three stage pipeline will hide their impact

on overall execution. Where each fetch and return operation is slower than the

GPU calculations, their impact will be reduced, but not completely hidden. When

designing a Cuda program, streams (see 2.3.1.2) may be used to parallelise data

transfers and kernel executions.

2.3.1.5 Double Buffering

Similar to pipelining, double buffering, also referred to as ping-pong buffering, is

a technique employed to parallelise memory transfer operations, and calculation

operations. The idea used in ping-pong buffering is to maintain two memory buffers,

while one buffer is loaded, calculations are performed on data read from the other

buffer. The buffers exchange roles at the next calculation step. [39]

As with pipelining, the idea of double buffering can be extended to the GPU. Buffers

can be defined in GPU-Memory (Section 2.3.1.3), and Cuda streams (Section 2.3.1.2)

can be used to coordinate the parallel writing to one buffer, and reading from the

other.

2.3.2 The Nvidia Cuda Development Toolchain

The Nvidia Cuda toolchain comprises components for compiling and optimising

bespoke kernels. It also provides components with existing kernels. While program-

mers can write, compile, and profile C/C++ kernels with the Nvidia Cuda Compiler

(nvcc), they can also use the existing kernels provided in shared libraries. In version

5.0 of the Cuda toolchain the included libraries are Cuda runtime, CuBLAS, Cur-

28

2.3 The Graphics Processing Unit

and, Cufft, Cusparse, Npp, Thrust, and Cuda math. The details of these libraries

are summarised in Table 2.1.

Table 2.1: The Nvidia Cuda toolchain libraries. All floating point operations are
available in both single and double precision.

Library Description
Cuda runtime Perform device, memory, stream, and event management; er-

ror handling, and execution control.
CuBLAS Perform BLAS level 1, 2, and 3 operations.
Curand Generate uniform, normal and lognormal pseudorandom se-

quences.
Cufft Perform 1, 2, and 3 dimensional Fourier transforms.
Cusparse Perform Sparse level 1, 2, and 3 operations.
Npp Signal processing primitives (e.g. filters, colour transforms,

and statistical functions).
Thrust A Cuda implementation of the C++ Standard Template Lib-

rary.
Cuda-math Perform mathematical operations (e.g. log, sin, tanh, and

acos).

2.3.2.1 The Nvidia Cuda Compiler

The Nvidia Cuda compiler (nvcc) compiles C/C++ code destined to run on either

the host, or the GPU device. It is capable of both GPU-device specific compilation,

and just-in-time compilation.

When writing code, programmers can indicate to the compiler that the code is to

execute on either the host or the GPU-device. They can do this using either the

__host__ or the __device__ qualifiers for host and device code respectively (see the

examples in Listings 2.1 and 2.2). When compiling host code, nvcc first parses

and replaces any Cuda-specific syntax with Cuda runtime functions. This modified

code can then be compiled by the host compiler (e.g. g++). Device code can be

compiled directly to device-specific binaries or to intermediate assembly code. This

assembly code, called parallel thread execution (or PTX) code, can be later compiled

29

Chapter 2 Background

just-in-time upon execution on the target. Compiler arguments are used to specify

full or just-in-time compilation behaviour, specifically the -arch and -code, or the

-gencode flags. When compiling, the developer can specify the compute capability

of the target hardware. In the case of just-in-time compilation, the specified compute

capability acts as a minimum bound. Hardware of the specified compute capability

or higher will be capable of compiling and executing this code just-in-time. If the

target is correctly configured, just-in-time compilation will occur only once, and the

resulting binaries will be cached for later use. The cache is invalidated with updates

to the Nvidia toolchain.

2.3.3 Nvidia Cuda Hardware

Compared to the CPU, the GPU uses less real-estate for control and caching, and

more for parallel processing. This idea is illustrated in Figure 2.3. The Nvidia

Cuda GPU comprises a set of multiprocessor devices. At the time of writing, a

multiprocessor consists of either 8, 32, 48, or 192 Cuda cores, and a multiprocessor

can manage up to 2,048 concurrent threads [37]. These threads are managed at the

hardware level, in groups of 32 threads called a warp. Within a warp, threads follow

a single instruction multiple thread or SIMT behaviour. [37]

Cache

ALUControl

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Figure 2.3: A high-level comparison of CPU and GPU architectures. [37]

30

2.3 The Graphics Processing Unit

2.3.3.1 Warp & Weft

The terms warp and weft come from weaving. The warp is a group of parallel

threads, the weft is a thread that repeatedly crosses these. Nvidia has borrowed from

this terminology. A group of execution threads executing in parallel on the same

Cuda core are called a warp. Section 2.3.1.1 describes a thread hierarchy in terms

of threads, thread blocks, and grids. The actual execution of these threads on the

hardware is performed in sets of 32 threads called a warp. At kernel execution time,

a multiprocessor is provided with one or more thread-blocks. The multiprocessor

breaks these blocks into sets of 32 threads, and spawns each set as a warp. Decisions

pertaining to SIMT behaviour are made at the warp level. [37]

2.3.3.2 SIMT Behaviour

As mentioned in Section 2.3.1, Nvidia describes the Cuda GPU as a single instruction

multiple thread device. This is a device that can behave both as an SIMD device,

and can operate threads independently. The device is most efficient when operating

in an SIMD manner. [37]

A kernel strays from SIMD behaviour when it includes a data-dependent conditional

branch point. In C/C++ this would be an if or if-else statement, or the conditional

tests in a for or while loop. Kernel branching is assessed at the warp level. [37]

An example of a branch point is given in Listing 2.1, here it is used to ensure that the

kernel does not write to addresses beyond the memory allocated to the target vector.

Where all threads in a warp agree with the evaluation of this if-statement, SIMD

execution shall continue as normal. However, where threads within a warp disagree

31

Chapter 2 Background

with its evaluation, the SIMD execution shall be partitioned. In this example, there

are only two possible paths. Each path shall be executed serially, with the agreeing

threads executing in parallel, and the other threads temporarily disabled. Full warp-

level parallelism resumes once all paths have been evaluated. [37]

In this particular instance, the branching can be avoided at the cost of memory.

Suppose that a programmer uses the kernel in Listing 2.1 to set all n elements in a

double precision vector v to zero. The programmer allocates d× b× dn/be bytes of

memory to v, where b is the number of threads per thread block and d is the number

of bytes allocated to a double precision value. Then the programmer launches the

kernel with a block-size of b, and gives the number of elements in the vector as

b×dn/be. In this case, the thread index will never be more than b×dn/be, and the

if-statement will only ever return true. This would, however, leave d (b− 1) bytes

of allocated but unused memory in the worst case.

2.3.3.3 Hardware Multithreading

Associated with each warp are independent program counters and registers. These

are maintained on the hardware during the warp’s lifetime. This information is

maintained in sets of 32-bit registers that reside on the multiprocessor. They are

partitioned among the warps. Shared memory, also on the multiprocessor, is parti-

tioned among the thread blocks. The number of available registers and the amount

of shared memory is a function of compute capability, and places limits on the

number of warps that can reside on a multiprocessor. [37]

32

2.4 Numerical Operations on the GPU

2.4 Numerical Operations on the GPU

To implement the Echo State Network on the GPU, several well studied numerical

operations, and several bespoke kernels were required. This section outlines these

operations.

2.4.1 BLAS Operations

Basic linear algebra subroutines, or BLAS libraries provide vector (level-1), matrix-

vector (level-2), and matrix-matrix (level-3) arithmetic operations. [40, 23] Imple-

mentations from the Nvidia CuBLAS [23] and the reference BLAS [40] libraries were

used extensively in this work. Table 2.2 lists the operations used and the names of

the subroutines within which they are implemented.

Table 2.2: Selected BLAS operations.

Description Operation Routine Name
The maximum element in a vector, v. max (v) amax

Scale a vector, v by some scalar value, α. αv scal
Add some vector x to some vector y x + y axpy

Multiply some matrix, M, by some vector, v. Mv gemv
Multiply some matrix, M1, by some matrix M2. M1M2 gemm

2.4.2 LAPACK Operations

Linear algebra package, or LAPACK libraries provide more advanced linear algebra

subroutines than those found in the BLAS libraries. [41, 42] Implementations from

the reference LAPACK [41] and Magma [42] libraries were used in this work. Magma

is a hybrid CPU / GPU LAPACK implementation. It implements a selection of

33

Chapter 2 Background

LAPACK routines on the GPU, and interfaces with both the reference LAPACK,

and Nvidia CuBLAS libraries to perform LAPACK routines. This work used two

operations: singular value decomposition, and eigenvalue calculation. The Magma

implementations are discussed here.

2.4.2.1 Singular Value Decomposition

This work uses singular value decomposition (SVD) during Tikhonov regularisation

for ESN training. SVD describes techniques for handling matrices that are either

singular (non-invertible), or very near singular. SVD can be used where other tech-

niques such as Cholesky, LU, or QR decomposition yield unsatisfactory results. In

such cases, SVD can allow one to diagnose the problem, and sometimes to solve it.

SVD describes an M ×N matrix A as:

A = UΣVT (2.15)

Where U is an M ×N column-orthogonal matrix, Σ is an N ×N diagonal matrix

with positive or zero elements, and V is an N ×N matrix that is both column and

row-orthonormal. The presence of singular values is indicated in matrices Σ and U.

A singular value appears as a zero along the diagonal of Σ, and has a corresponding

zero column in matrix U.

Using SVD, the pseudo-inverse, A+, of a matrix, A, is given by

A+ = VΣ+UT . (2.16)

To obtain the pseudo-inverse of Σ, each positive diagonal element, σj, is replaced

by 1/σj, or by 0 when σj = 0. [43, 44].

34

2.4 Numerical Operations on the GPU

There exist several approaches to obtaining the singular value decomposition of a

matrix. These include:

1. a bidiagonalisation (via Householder reductions) and diagonalisation (by QR

reductions) method [43],

2. a divide and conquer method [43, 45], and

3. a multiple relatively robust representations (MRRR) method [43, 46, 47].

It is purported that method 2 is faster than method 1, and method 3 is faster than

method 2. This speed-up can be attributed to improvements in parallelisation. [43]

The implementation used for this problem uses method 1.

Method 1 is also referred to as the Golub-Reinsch method. In [48, 49], Lahabar

and Narayanan describe a hybrid CPU/GPU implementation of the Golub-Reinsch

method. Their implementation achieves a speed-up of up to 8.2 over an optimised

Intel SVD implementation for the CPU.

This work also uses uses a hybrid CPU/GPUGolub-Reinsch implementation of SVD.

Specifically, that provided by the Magma package. For this particular decomposition

problem, where the matrix to be inverted, A, is square (M = N), the Magma SVD

routine first performs bidiagonalisation, then diagonalisation [42, 43].

The bidiagonalisation step uses first the Magma routine magma_*gebrd and then the

CPU LAPACK routine lapackf77_*orgbr. The magma_*gebrd routine makes extensive

use of both the GPU based magma_*gemv and the CPU based blasf77_*gemv.

On the magma_*gebrd routine [42]:

“SGEBRD reduces a general real M-by-N matrix A to upper or

lower bidiagonal form B by an orthogonal transformation:

Q**T * A * P = B.

35

Chapter 2 Background

If m >= n, B is upper bidiagonal; if m < n, B is lower

bidiagonal.”

On the lapackf77_*orgbr routine [41]:

“SORGBR generates one of the real orthogonal matrices Q

or P**T determined by SGEBRD when reducing a real matrix

A to bidiagonal form: A = Q * B * P**T. Q and P**T are

defined as products of elementary reflectors H(i) or G(i)

respectively.”

The diagonalisation step uses the CPU LAPACK routine lapackf77_sbdsqr [41]:

“SBDSQR computes the singular values and, optionally, the

right and/or left singular vectors from the singular value

decomposition (SVD) of a real N-by-N (upper or lower)

bidiagonal matrix B using the implicit zero-shift QR algorithm.”

Thus, the Magma SVD implementation used here is a hybrid CPU/GPU imple-

mentation.

2.4.2.2 Eigenvalue Calculation

The N ×N matrix, A, has an eigenvalue, λ, and a eigenvector, x, where

Ax = λx

is satisfied. A detailed discussion of the implementation methods for eigenvalue and

eigenvector calculations is out of the scope of this work. Press et al. [43], provides

a comprehensive introduction to eigenvalue solving algorithms.

36

2.4 Numerical Operations on the GPU

2.4.3 Sparse Operations

To calculate the term Wx (n− 1) in Equation 2.1, a sparse matrix-matrix multi-

plication operation was required. This is because the matrix W is typically sparse

(see Section 2.2.2).

To store W, the compressed sparse row (CSR) format was used. This format stores

the information about a matrix in three vectors. For an M × N matrix with NZ

non-zero values, these vectors store

1. NZ non-zero values;

2. NZ column indices corresponding to each value; and

3. M + 1 values comprising

a) M pointers indicating the first value value that appears in each row, and

b) the last value contains the number of non-zeros, NZ. [23]

Previous work has shown that CSR is not the most efficient format in terms of

memory coalescing (Section 2.3.1.3), and is best when NZ > M + 1. A Hybrid

format that combines Ellpack-Itpack with Coordinate format was shown to perform

better than CSR, except where the matrix is dense, or near dense, and except where

the number of non-zeros per row varies highly. [50]

2.4.4 Bespoke Operations

Three bespoke numerical operations were implemented in this work. These are

described in Table 2.3, where a description of the operation is given, along with the

equation that requires it.

37

Chapter 2 Background

Table 2.3: The bespoke kernels implemented for this work.

Description Detail Required By
Perform a vector sum and hyper-
bolic tangent.

x = tanh (v1 + v2 + v3) Equation 2.1

Generate an M ×M , scaled iden-
tity matrix.

λI = f (λ,M) Equation 2.13

Perform a pseudo inverse on a di-
agonal matrix.

Σ+ = pinv (Σ) Equation 2.16

2.5 Assessing ESN Performance

For this work, the performance of various unique Echo State Network configurations

were assessed and compared. The performance measures of interest were execution

time and error.

In the case of execution time, mean and standard deviation values were calculated.

These were in-turn used to calculate a speed-up measure. In the case of error per-

formance, a normalised root mean-squared error was used. Median, upper-, and

lower-quartile values were calculated.

2.5.1 Mean & Standard Deviation

Given a set of N measurements {t1, t2, . . . , tN}, The mean of these measurements is

calculated as

t̄ = 1
N

N∑
i=1

ti. (2.17)

38

2.5 Assessing ESN Performance

The standard deviation of the timing measurements are calculated as

σt =

√√√√ 1
N

N∑
i=1

(
ti − t̄

)2
. (2.18)

2.5.2 Speed-Up

With the timing measurements for both a GPU and a CPU Echo State Network

implementation in hand, it was possible to calculate a relative GPU and CPU speed

measure. This measure, called speed-up, is unitless, and describes a ratio of timing

measurements. For the purposes of these experiments, the speed-up was calculated

from the perspective of the GPU, i.e. how much faster is the GPU than the CPU

when performing a given operation.

Using the mean and standard deviation execution times of a GPU and a CPU ESN

configuration, the mean speed-up was calculated as

s̄ = t̄GPU
t̄CPU

. (2.19)

The standard deviation speed-up was calculated as

σs =

√√√√(σtGPU
t̄GPU

)2

+
(
σtCPU
t̄CPU

)2

. (2.20)

Here, t̄GPU and t̄CPU are the mean GPU and CPU execution times for a given ESN

configuration respectively. The σtGPU and σtCPU values are the standard deviation

GPU and CPU execution times. Thus, the GPU can be described as s̄ ± σs faster

than a CPU, where s̄ > 0. When s̄ < 1, then the GPU is slower than the CPU.

39

Chapter 2 Background

2.5.3 Normalised Root Mean Square Error

The performance of a trained Echo State Network can be measured using a normal-

ised root mean squared error (NRMSE). For this work, the NRMSE was calculated

as

e(Y,Ytarget) =
∑N
i=1

∥∥∥ytarget
i − yi

∥∥∥2

∑N
i=1

∥∥∥ytarget
i − ȳtarget

i

∥∥∥2 . (2.21)

This is the “sum-of-squares” error measurement described by Bishop in [51]. Here,

the matrices Y = [. . . ,yi, . . .] and Ytarget =
[
. . . ,ytarget

i , . . .
]
have N columns, and

represent the actual ESN output, and the target output respectively. The function,

‖·‖, defines the 2-norm. This is calculated for each of the N time-steps iterated

by the ESN. In [52], the error measurement is said to be “normalised” by the tar-

get vector’s distance from the mean target, ȳtarget
i . As such, the error is measure

independent of the range of the target.

Interestingly, Bishop refers to this error a “root mean squared” error, rather than

a “normalised root mean squared error”. The use of word “root” has been criti-

cised [52], as there is no root given directly in the equation. Although, if one looks

at the definition of a 2-norm functioning on an N -size vector, v,

‖v‖ =
√
v2

1 + ...+ v2
N ,

there is indeed a root present. However, this root is inverted by the enclosing power-

of-2. Lukoševičius uses Equation 2.21 enclosed by a square root, and refers to it as

a “normalised root mean squared error”. This work uses the original definition,

given in [51] and Equation 2.21, and refers to it as a “normalised root mean squared

error”. This acknowledges both the original name used in [51], and the presence of

40

2.5 Assessing ESN Performance

a normalising denominator as described in [52].

In the special case where the size of the ESN output is 1, then the matrices Y and

Ytarget are 1 × N matrices, Y = [. . . , yi, . . .] and Ytarget =
[
. . . , ytarget

i , . . .
]
. Thus,

the normalised root mean squared error becomes

e(Y,Ytarget) =
∑N
i=1

∥∥∥ytarget
i − yi

∥∥∥2

∑N
i=1

∥∥∥ytarget
i − ȳtarget

i

∥∥∥2

=
∑N
i=1

(
ytarget
i − yi

)2

∑N
i=1

(
ytarget
i − ȳtarget

i

)2 . (2.22)

2.5.4 Quartiles

Given a set of N values E = {e1, e2, . . . , eN}, the values are sorted in ascending

order, giving E sorted =
{
esorted

1 , esorted
2 , . . . , esorted

i , . . . , esorted
N

}
. The quartiles are the

values found at the three positions in E sorted that divide E sorted into four parts.

The median is the central quartile, this is calculated as

m =


esorted
dN/2e , N odd

1
2

(
esorted
N/2 + esorted

N/2+1

)
, N even

.

The lower and upper quartiles are “type number 5” quartiles, as described in [53, 54],

where the lower-quartile is Q̂5 (0.25), and the upper-quartile is Q̂5 (0.75).

41

3 Implementing the Echo State

Network

An implementation of the Echo State Network should address three concerns.

Firstly, the behaviour of the ESN; secondly, building the ESN; and thirdly training

it. The behaviour of the ESN was implemented as described in the original work [3],

and as presented in Equations 2.1 and 2.2. To build an ESN, the spectral radius

scaling method was implemented. This is described in [13] and summarised in Equa-

tion 2.4. The implemented training method is based on Tikhonov regularisation as

described in [15, 2] and Equation 2.13.

The resulting implementation extends upon previous work performed in MAT-

LAB [22]. In this work, we described a MATLAB and AccelerEyes Jacket imple-

mentation of the ESN on a low-end graphics card. Given the results, we recommen-

ded a lower level language implementation. To this end, two shared C++ libraries

libesnmath.so and libgpuesn.so were constructed. The remainder of this section will

discuss the design of these libraries and the tools used to build them. First the

responsibilities and dependencies of the libraries are defined, this is followed by a

basic example of using the libraries. The details of the libraries then follow, includ-

ing the numerical operations required by each library, and the co-ordination of these

operations.

43

Chapter 3 Implementing the Echo State Network

3.1 High Level Design and Deployment

The implementation comprises two libraries, each of which interfaces with libraries

distributed alongside the Nvidia drivers, and the Magma libraries. One library,

libgpuesn.so, is compiled using g++ only; the other, libesnmath.so, is compiled using

both nvcc and g++. The relationship between these libraries is described in Figure 3.1.

3.1.1 The libesnmath.so Library

The libesnmath.so library is a shared library that contains several bespoke Cuda

kernels, and interfaces with the Nvidia Cuda and Magma libraries. These kernels

are used alongside standard BLAS and LAPACK operations to implement the Echo

State Network, and the Tikhonov regularisation algorithms. Descriptions of the

three kernels are given in Table 2.3.

The libesnmath.so library is compiled using Nvidia’s nvcc-4.2 and g++-4.7.2. At

compilation time, a flag specifying compute capability is passed to nvcc (see Sec-

tion 2.3.2.1). This flag, “-gencode arch=compute_20,code=compute_20”, ensures

that device-non-specific Parallel Thread Execution (PTX) code is generated at com-

pilation time. In this case, the generated PTX code requires a device of compute

capability 2.0 or higher. Upon first execution of this PTX code on a given machine,

it is compiled “just in time”, producing binaries specific to that machine. A com-

pute capability of 2.0 is specified, as the library is designed to use parallel kernel

execution. This feature is available only on some devices of compute capability of

2.0 or higher (see Section 2.3.1.2).

44

3.1 High Level Design and Deployment

«
co
m
p
o
n
e
n
t»

lib
g
p
u
e
sn

«
co
m
p
o
n
e
n
t»

lib
e
sn
m
a
th

«
co
m
p
o
n
e
n
t»

lib
cu
d
a
rt

«
co
m
p
o
n
e
n
t»

lib
cu
b
la
s

«
co
m
p
o
n
e
n
t»

lib
cu
sp
a
rs
e

«
co
m
p
o
n
e
n
t»

lib
cu
ra
n
d

«
co
m
p
o
n
e
n
t»

lib
m
a
g
m
a

«
co
m
p
o
n
e
n
t»

lib
m
a
g
m
a
b
la
s

«
co
m
p
o
n
e
n
t»

lib
la
p
a
ck

«
co
m
p
o
n
e
n
t»

lib
b
la
s

«
co
m
p
o
n
e
n
t»

lib
a
tl
a
s

F
ig
ur
e
3.
1:

A
U
M
L
co
m
po

ne
nt

di
ag
ra
m

th
at

de
sc
rib

es
th
e
Ec

ho
St
at
e
N
et
wo

rk
co
m
po

ne
nt
s,

an
d
th
ei
r
re
la
tio

ns
hi
p
to

th
e

N
vi
di
a,

M
ag
m
a,

an
d
re
fe
re
nc
e
BL

A
S
an

d
LA

PA
C
K

lib
ra
rie

s.

45

Chapter 3 Implementing the Echo State Network

3.1.2 The libgpuesn.so Library

The libgpuesn.so library is a shared library that contains the Echo State Network

and Tikhonov regularisation implementations. It makes use of the aforementioned

libesnmath.so, Magma, and Nvidia’s linear algebra libraries. This library was com-

piled from pure C++ code (i.e. C++ code without Nvidia language extensions) using

the latest version of g++ on the development computers (currently g++-4.7.2). This

library interfaces with the aforementioned libesnmath.so, and Nvidia’s libcudart.so,

libcusparse.so, libcurand.so, Magma, and libcublas.so libraries.

This library implements the Echo State Network and Tikhonov regularisation al-

gorithms. To access these, users can create C++ objects from classes

• EsnBuilder<T>,

• EchoStateNetworkCublas<T>, and

• EsnTrainerCublas<T>.

Where T is the template-type double or float.

3.2 Using the Libraries

Listings 3.1 – 3.4 demonstrate interfacing with libgpuesn.so to build and train and

Echo State Network using C++. Listing 3.1 describes the inclusions and namespaces

required to build and train an ESN. Listing 3.2 describes the configuration variables

required to build an ESN. Listing 3.3 lists the training data required to train an

ESN. Finally, Listing 3.4 gives the code required to declare, build and train and

ESN.

46

3.2 Using the Libraries

Listing 3.1 Building and training an Echo State Network – the required inclusions.

include <EsnBuilder .h>
include <EchoStateNetworkCublas .h>
include <EsnTrainerCublas .h>
// ...
using namespace Esn;
// ...

Listing 3.2 Building and training an Echo State Network – the required configur-
ation variables.

// Initialise Curand , Cusparse , and Cublas handles
curandGenerator_t curandGenerator ;
cusparseHandle_t cusparseHandle ;
cublasHandle_t cublasHandle ;
// ...
// Initialise desired ESN properties
// - the dimensions of the ESN
uint inputSize , outputSize , reservoirSize ;
// - the spectral radius , rho(W), of the reservoir
T spectralRadius ;
// - the proportion of non -zero values in the reservoir
// [0 ,1]
float connectivity ;
// - whether the ESN has output feedback
bool hasOutputFeedback ;
// ...

47

Chapter 3 Implementing the Echo State Network

Listing 3.3 Building and training an Echo State Network – the variables required
to train the ESN.

// Prepare training data
// - the input training data
// this must be in COLUMN -major format
T * trainDataIn ;
uint trainDataInCount
// - the target training data
// this must be in COLUMN -major format
T * trainDataOut ;
uint trainDataOutCount ;
// - the Tikhonov regularisation factor
T * regFact
// - the proportion of timesteps to discard before
// performing Tikhonov regularisation [0 ,1].
double discardProportion ;
// ...

Listing 3.4 Building and training an Echo State Network.

// Build and train an ESN
EsnBuiler <T> * builder = new EchoStateNetwork <T>(

curandGenerator ,
cusparseHandle ,
cublasHandle);

EchoStateNetwork <T> *esn = builder -> GenerateRandomEchoStateNetwork (
inputSize ,
outputSize ,
reservoirSize ,
spectralRadius ,
connectivity ,
hasOutputFeedback);

EsnTrainer <T> * trainer = new EsnTraininerCublas <T>(
cublasHandle ,
cusparseHandle);

trainer ->Train(
esn ,
trainDataIn , trainDataInCount ,
trainDataOut , trainDataOutCount ,
regFact ,
discardProportion);

48

3.3 Numerical Operations

3.3 Numerical Operations

This section contains a summary of the numerical operations used to implement the

Echo State Network, and training via Tikhonov regularisation. More specifically,

the operations required to build, run, and train and ESN. For each algorithm, the

mathematical expression is reproduced, alongside a description, and a table of op-

erations required. The operations used are provided by either an Nvidia library, the

Magma library, or the bespoke kernels.

3.3.1 ESN Building

The implementation uses the reservoir scaling method described in Section 2.2.3 and

Equation 2.4,

W = ρWrand

max (|λ (Wrand)|) .

This describes scaling a random matrix, Wrand, to obtain a matrix with a desired

spectral radius, ρ. To implement this, LAPACK and BLAS operations, and a

pseudo-random number generator were used. These are listed in Table 3.1.

3.3.1.1 Generating Wrand

The matrix Wrand is generated using a uniform pseudo-random number generator.

The generator is capable of drawing values from the uniform distribution over the

range (0, 1]. The resulting values are scaled to achieve a range of (−1, 1]. The

number of non-zeros (NNZ) generated depends on the size of the reservoir (N),

49

Chapter 3 Implementing the Echo State Network

and the density (σ, where 0 < σ ≤ 1), of the matrix:

NNZ =


dσNe ,

round (σN) ,

σN < 1

σN ≥ 1
.

3.3.1.2 Scaling Wrand

The implementation of Equation 2.4 first calculates the equation’s denominator.

Given that Wrand is random and sparse, there is a chance that the denominator will

be zero. In this case, the matrix is discarded and a new random matrix generated.

The denominator is calculated using a single eigenvector calculation and a maximum

magnitude operation. Once a non-zero denominator is found, Wrand is scaled using

a vector scaling operation. A summary of the operations used, and their providing

libraries, is given in Table 3.1.

Table 3.1: The operations required for reservoir scaling operation. This assumes
that the denominator in Equation 2.4 is non-zero on the first attempt.

Operation Count Implementation Library
Generate uniform
random numbers

1 curandGenerateUniform(Double) Curand

Determine eigenvector 1 geev Magma
Determine maximum
magnitude

1 amax CuBLAS

Scale vector 1 scal CuBLAS

50

3.3 Numerical Operations

3.3.2 ESN Execution

The behaviour of the Echo State Network can be summarised in Equations 2.1

and 2.2. These are reproduced here for convenience. Equation 2.1,

x (n) = f
(
Winu (n) + Wx (n− 1) + Wofby (n− 1)

)
,

describes the calculation of the reservoir state at time n. Equation 2.2,

y (n) = fout

Wout

 u (n)

x (n)


 ,

describes the calculation of the ESN output at time n. It is important to note that

the second term in Equation 2.1 involves the sparse matrix W. The matrices in the

first and third terms may also be sparse, but typically, they are dense.

Available to the Nvidia Cuda GPU programmer are level 1, 2, and 3 BLAS routines,

Sparse routines, trigonometric operations, memory management operations, and an

ability to create bespoke kernels. All four tools were used in the implementation of

these equations.

3.3.2.1 State Calculation

The input, u, in Equation 2.1 requires a copy from host to GPU device memory.

Once this is on the GPU memory, all other operations are performed there.

Equation 2.1 has two dense matrix-vector multiplications, one sparse matrix-vector

multiplication. These are performed in parallel, into three temporary vectors. The

remaining sum and hyperbolic tangent operations are performed in a single bespoke

kernel. Where each element of the output vector is calculated in its own thread. A

summary of the operations used, and their providing libraries, is given in Table 3.2.

51

Chapter 3 Implementing the Echo State Network

Table 3.2: The operations required for ESN reservoir state calculation.

Operation Count Implementation Library
Host to GPU memory 1 cudaMemcpy Cuda
Dense matrix-vector multiplication 2 gemv CuBLAS
Sparse matrix-vector multiplication 1 spmv Cusparse
Vector sum and element-wise tanh 1 bespoke kernel –

3.3.2.2 Output Calculation

The input, u, and reservoir state, x, vectors are stacked in a temporary vector using

two parallel GPU-side memory copy operations. Following this, a dense matrix-

vector multiplication is performed on the output weight matrix, Wout, and the

temporary vector. In this implementation fout (v) = v, thus no further processing

is required (i.e. fout (·) is an identity function). A summary of the operations used,

and their providing libraries, is given in Table 3.3.

Table 3.3: The operations required for ESN output calculation.

Operation Count Implementation Library
GPU-side memory copy 2 cudaMemcpy Cuda
Dense matrix-vector multiplication 1 gemv CuBLAS

3.3.3 ESN Training

This implementation of ESN training uses the offline Tikhonov regularisation

method. This is described in Equation 2.13,

Wout = YtargetXT
(
XXT + λI

)−1
.

52

3.4 Program Design

Note that this equation includes the inversion of the square matrix,
(
XXT + λI

)
.

To do this, this implementation uses singular value decomposition (SVD). A brief

description of SVD is given, then the details of the implementation follow.

3.3.3.1 Numerical Operations

To implement Equation 2.13, first the inversion term,
(
XXT + λI

)
, is calculated.

This requires generating a scaled identity matrix, a matrix-matrix multiplication,

and vector addition. The inversion is performed using the singular value decom-

position method described in Section 2.4.2.1. The inversion thus requires an SVD

operation, a diagonal-matrix pseudo-inversion operation, and two matrix-matrix op-

erations. The resulting inverse is then used in two final matrix-matrix multiplication

operations to obtain Wout. Table 3.4 summarises these operations, and the libraries

that were used.

Table 3.4: The operations required for the Tikhonov regularisation operation.

Operation Count Implementation Library
Generate scaled identity matrix 1 bespoke kernel –
Vector addition 1 axpy CuBLAS
Singular value decomposition 1 gesvd Magma
Diagonal matrix pseudo-inverse 1 bespoke kernel –
Matrix-matrix multiplication 5 gemm CuBLAS

3.4 Program Design

To create a GPU Echo State Network, the operations described in Section 3.3 were

coordinated to take advantage of the concurrent execution model of the GPU. This

section details the techniques used.

53

Chapter 3 Implementing the Echo State Network

3.4.1 ESN Memory Management

Efforts were made to reduce the time spent loading and fetching memory during

Echo State Network execution. To do this, at Echo State Network execution time,

weights are transferred to and held on the GPU device memory for the duration

of the ESN’s existence. In addition to this, memory transfers at ESN runtime

are performed via page-locked memory, ESN inputs via write-combined page-locked

memory, and outputs via default page-locked memory.

3.4.2 ESN Execution

A double buffering approach was taken to the Echo State Network implementation.

At ESN execution time, while one ESN output is calculated, a simultaneous GPU

device memory load and fetch are taking place. More specifically, the outputs from

the last ESN calculation are fetched from device memory, and the inputs for the next

ESN calculation are loaded. These parallel calculate, load, and fetch operations are

facilitated by the use of Cuda streams (see Section 2.3.1.2) and double buffers (see

Section 2.3.1.4).

3.4.2.1 Input/Output Double Buffers

A pair of double buffers, or ping-pong buffers are used for Echo State Network input

and output. These reside in GPU device memory. For example, while the ESN

works on the ping input buffer to produce the outputs written to the ping output

buffer, the pong input buffer is loaded ready for the next execution, and data from

the last pong output buffer is fetched from GPU device memory. This detailed in

Section 3.4.2.4.

54

3.4 Program Design

3.4.2.2 Cuda Streams

The pipelining effect is achieved using Cuda streams created during the construction

of the ESN. Modern Nvidia Cuda GPU architectures are able to run these streams

in parallel. Several streams are created and used during the lifetime of an ESN.

These are streams for

1. loading inputs (one each for ping and pong executions);

2. fetching outputs (one each for ping and pong executions);

3. calculating the first matrix-vector operation, Winu(n), the vector-sum and

hyperbolic-tangent operation tanh(Winu(n) + Wx(n − 1) + Wofby(n − 1)),

and the output matrix-vector operation, Wout[u(n)|x(n)];

4. calculating the second matrix-vector operation, Wx(n− 1); and

5. if using output feed-back, calculating the third matrix-vector operation,

Wofby(n− 1).

Here, 1 and 2 can be thought of as memory transfer streams; 3, 4, and 5 as kernel

execution streams. For this implementation, best performance is achieved with a

Cuda device that can execute memory transfers and kernel executions in parallel

streams, and can also execute different kernels in parallel streams. Sections 3.4.2.3

and 3.4.2.4 describe this use of streams in more detail: Section 3.4.2.3 details stream

usage when executing a single time-step of the Echo State Network, this is shown

without the input and output memory transfers. Section 3.4.2.4 describes how

memory transfers, both input and output, and Echo State Network execution are

performed in parallel.

55

Chapter 3 Implementing the Echo State Network

3.4.2.3 An ESN Time Step

In Figure 3.2, the behaviour of the EchoStateNetworkCublas<T> class’s

DoEsnCalculationStep(...) function is shown.1 Here, four Cuda streams and a

single host thread are illustrated. The host thread, labelled libgpuesn, controls the

calculation. The streams labelled calculation 1, calculation 2, and calculation 3

perform linear algebra operations, and the stream labelled memory set performs a

GPU device memory transfer. The libgpuesn thread begins with asynchronous calls

to initiate

• the “First matrix multiplication”, Winu(n), on the calculation 1 stream;

• the “Second matrix multiplication”, Wx(n− 1), on the calculation 2 stream;

• and the “Third matrix multiplication”, Wofby(n − 1), on the calculation 3

stream.

The libgpuesn thread then waits for these multiplications to complete concurrently.

Once completed, the libgpuesn thread initiates a synchronous call to “Sum and

tanh”, tanh(Winu(n) + Wx(n − 1) + Wofby(n − 1)), on the calculation 1 stream;

and following this, a synchronous call to the “Output matrix multiplication”,

Wout

 u (n)

x (n)

 .

Finally, the libgpuesn thread initiates a GPU device memory copy to store the

output vector for use in the next time step (“Store output for next execution”).

The DoEsnCalculationStep(...) function exits before the memory copy is complete,

this allows the caller to perform other activities in parallel with the copy. For the

caller to synchronise with this memory copy, DoEsnCalculationStep(...) returns an
1The execution times are not given to scale, rather they illustrate an approximate timing of the
interactions between the host thread, and the GPU device streams.

56

3.4 Program Design

ITask*, the caller can then use the ITask::WaitOnComplete() function to synchronise.

Figure 3.2: A UML sequence diagram describing the calculation of a single Echo
State Network step (see Footnote 1 on the preceding page).

57

Chapter 3 Implementing the Echo State Network

3.4.2.4 An ESN Time Step with Double Buffered Memory Transfers

Figure 3.3 describes the double buffering of memory transfers and Echo State Net-

work calculations during ESN execution (see Footnote 1 on page 56). Here, only

a snapshot of a ping execution is shown while pong buffers are prepared for the

next execution. Four Cuda streams and a single host thread are illustrated. The

host thread, labelled libgpuesn, controls the memory transfers and calculation. The

streams labelled set input pong, fetch output pong, set input ping, and memory set

perform memory transfers.

This snapshot begins when libgpuesn is waiting for the previous pong execution to

complete on the memory set stream (“Wait for pong store last output to complete”).

This is the final task performed by the call to DoEsnCalculationStep(...) (as described

in Section 3.4.2.3) initiated in the previous pong step. Once this has completed,

libgpuesn can then asynchronously

1. fetch the output generated in the previous pong step (“Fetch pong output”)

on the fetch output pong stream, and

2. prepare the pong input buffer for the next pong execution (“Set pong input”)

on the set input pong stream.

After initiating these memory transfers, libgpuesn then

1. ensures that its current ping input is ready (“Wait for ping input to load” on

the set input ping stream); and then

2. begins the ESN time step calculation, calling DoEsnCalculationStep(...) as de-

scribed in Section 3.4.2.3 (“Ping DoEsnCalculationStep”).

58

3.4 Program Design

Figure 3.3: A UML sequence diagram describing parallel load, fetch, and execute
operations during Echo State Network execution (see Footnote 1 on page 56).

59

Chapter 3 Implementing the Echo State Network

The last task performed during the execution of DoEsnCalculationStep(...) is to

asynchronously store the last ESN output for use in the next ESN calculation step

(“Ping store last output” on the memory set stream). In parallel with this, libgpuesn

waits for the previously initiated pong output fetch to complete (“Wait for fetch

pong output” on the fetch output pong stream), then the sequence begins again. Of

course, in the next sequence, pong buffers and streams are replaced by ping buffers

and streams, and vice versa.

3.4.3 Training the ESN via Tikhonov Regularisation

In Figure 3.4, the behaviour of the EsnTrainerCublas<T> class’s DoLinearRegression(...)

function is shown (see Footnote 1 on page 56). Here, three Cuda streams and a

single host thread are illustrated. The host thread, labelled libgpuesn, controls the

calculation. The streams labelled calculation 1, calculation 2, and calculation 3

perform linear algebra operations. The libgpuesn thread begins with asynchronous

calls to initiate

• the XXT matrix-matrix multiplication (“First gemm”), on the calculation 1

stream;

• the λI identity generation operation (“Generate ident.”) on the calculation 2

stream; and

• the YtargetX matrix-matrix operation (“Second gemm”) on the calculation 3

stream.

60

3.4 Program Design

sd: Tikhonov Regularisation

libgpuesn calculation 1 calculation 2 calculation 3

First gemm

Second gemm

Vector add

SVD

Pseudo inverse

Wait on Second gemm

Third gemm

Wait on Pseudo inverse

Generate ident.

Fourth gemm

Wait on Third gemm

Fifth gemm

Wait on Generate ident.

Wait on First gemm

Wait on Fourth gemm

Figure 3.4: A UML sequence diagram describing parallel numerical operations dur-
ing Tikhonov regularisation (see Footnote 1 on page 56).

61

Chapter 3 Implementing the Echo State Network

The libgpuesn thread then waits for streams calculation 1 and calculation 2 to

finish. Once these streams are idle, the libgpuesn thread initiates the XXT + λI

vector-addition (“Vector add”). Upon completion of this addition, the inver-

sion process begins. This process uses singular value decomposition to perform

the inversion, as described in Section 2.4.2.1. The libgpuesn thread initiates the

UΣVT = svd
(
XXT + λI

)
operation (“SVD”) on the calculation 1 stream. Once

this is complete, the libgpuesn thread then executes the pseudo-inverse operation,

Σ+ = pinv (Σ) (“Pseudo inverse”), on the calculation 1 stream. The libgpuesn

thread then waits on the completion of the YtargetX matrix-matrix operation on

the calculation 3 stream. When this is complete, the libgpuesn thread then ex-

ecutes the first of the final matrix-matrix operations, (YtargetX) V (“Third gemm”)

on the calculation 2 stream. The libgpuesn thread then waits on the completion

of the pseudo-inversion operation on the calculation 1 stream. Once complete, the

matrix-matrix multiplication operation, Σ+UT (“Fourth gemm”) is initiated on the

calculation 1 stream, then the libgpuesn waits on both the calculation 1 and calcu-

lation 2 streams. Once these operations are completed, the libgpuesn thread can

then initiate the final matrix-matrix multiplication, Wout = (YtargetXV)
(
Σ+UT

)
(“Fifth gemm”). Where the result is written directly to the portion of GPU-device

memory that stores the ESNs output weights.

62

4 Performance and Behaviour of the

GPU ESN

The size of an Echo State Network’s reservoir, and the amount of data to use to train

it are important considerations when designing an ESN. The size of the reservoir

determines the complexity of the ESN, and the complexity of the problems it can

learn [3, 13]. The amount of training data required is dependent on the complexity of

the problem (see Section 2.2.3). As such, the experiments presented in this chapter

were devised to examine the behaviour of the GPU Echo State Network, when the

ESN’s reservoir size and the amount of training data is varied. The first set of

experiments looked at GPU execution time relative to CPU execution time. The

second set of experiments tested the GPU ESN on several prediction problems, and

used time-series previously examined in the ESN literature.

The first set of experiments aimed to explore the relationship between an Echo State

Network’s execution time and its reservoir size. These experiments extended upon

previous work [22]. In this earlier work, we described a MATLAB and AccelerEyes

Jacket implementation of the ESN (Equations 2.1 and 2.2) on a low-end graphics

card. This MATLAB implementation was run on both a CPU (2.4 GHz Core 2 Duo)

and a GPU (the NVIDIA GeForce 9400M). The GPU gave a speed-up of 2 for a

reservoir size of 1800. Given these results, there was evidence that larger speed-ups

63

Chapter 4 Performance and Behaviour of the GPU ESN

could be achieved with a lower level language (e.g. C/C++) implementation on a

higher-end graphics card.

The experiments presented here performed a similar comparison. Here, the GPU

ESN implementation described in Chapter 3 was compared with a CPU implement-

ation. The operations used when executing an ESN (Equations 2.1 and 2.2) were

examined. The operations required to execute the Tikhonov regularisation (TR)

algorithm used in offline training (Equation 2.13) were also examined. The exper-

iments investigated the relationship between execution time and reservoir size. In

the TR case, the relationship between execution time and the amount of training

samples was also examined.

The second set of experiments aimed to show that the GPU implementation can

behave as a multi-time-step predictor. Here, the Echo State Network was trained to

accept a time-series, and to predict the value of this time-series multiple samples into

the future. The ESN’s behaviour was tested against three time-series. The first, a

simple sinusoid [3, 13]; the second, the well known Mackey-Glass problem [3, 13, 5];

and the third, the multiple superimposed oscillator (MSO) problem [55].

The following three sections describe these two experiments, and begin with a de-

scription of the hardware used in both cases.

4.1 Test Machine Parameters

The test platform chosen comprised an Intel i7-980 CPU and an Nvidia GTX480.

Both representative of high-end commodity processors of their class. The imple-

mentations used all 4 cores of the CPU, and all 480 cores of the GPU. A single

core CPU implementation was considered, however, this was seen as an unfair com-

parison. Multi-core CPUs are the norm today, and it is rare to find a scientific

64

4.2 Echo State Network Speed Comparison

computing user that uses a single-core CPU. A summary of the relevant test plat-

form specifications are given in Table 4.1.1,2

Table 4.1: Selected CPU and GPU parameters.

Intel Core i7-920 Nvidia GTX480
Core count. 4 480
Thread count. 8 23,040
Core clock speed. 2.67GHz 1.401GHz
Warp size. – 32
Concurrent kernels. – true
Memory. 6GiB 1.5GiB
Memory clock speed. 1.066GHz 1.848GHz
Shared memory per block. – 48KiB
PCI bus speed. – 2.5GiT/s

4.2 Echo State Network Speed Comparison

The speed performance of the GPU Echo State Network implementation was com-

pared with a CPU implementation. Two components of the Echo State network

execution were examined. The first, the execution of the Echo State Network as

described in Equations 2.1 and 2.2. The second, training the network using Tik-

honov regularisation, as described in Equation 2.13. This section begins by defining

the two problems that were examined, the experimental method follows, and finally

the results are presented. A conference article based on these results has been since

accepted into the 12th International Conference on Artificial Intelligence and Soft-

Computing, and will be published by Springer in their Lecture Notes in Artificial

Intelligence series [56].
1GiT/s (gibitransfers per second) is equivalent to gibibytes per second and includes PCI protocol
overheads.

2Host-side random access memory compared with GPU-side global memory.

65

Chapter 4 Performance and Behaviour of the GPU ESN

4.2.1 ESN Execution

Echo State Network execution refers to the operations required to calculate the

state of an ESN’s reservoir (Equation 2.1), and the ESN’s outputs (Equation 2.2).

These operations are used when executing a trained ESN over data. In the case

of offline training, Equation 2.1 is used to capture a reservoir state history (see

Section 2.2.5.1).

For this experiment, the problem can be stated as follows: Given a GPU and a CPU

implementation of Equation 2.1,

x (n) = f
(
Winu (n) + Wx (n− 1) + Wofby (n− 1)

)
,

and Equation 2.2,

y (n) = fout

Wout

 u (n)

x (n)


 ,

execute these equations over E time-steps. When performing this over a range of

reservoir sizes, N , at which points is the GPU faster than the CPU?

4.2.2 Tikhonov Regularisation

Tikhonov regularisation (Equation 2.13) is an operation that can be used when

performing offline training. It is used in the last step of training, after a history

of reservoir states (Equation 2.10) has been captured using Equation 2.1. The

operation uses the captured state history and training data to calculated the output

weights, Wout, of the Echo State Network (see Section 2.2.5.1).

For this experiment, the problem can be stated as follows: Given a GPU and a CPU

66

4.2 Echo State Network Speed Comparison

implementation of Equation 2.13,

Wout = YtargetXT
(
XXT + λI

)−1
,

execute this equation over a range of state history matrix sizes, Equation 2.10,

X =

 ut (T0) . . . ut (T)

xt (T0) . . . xt (T)

 .

Here, X is an (N +K) × (T − T0) matrix, where N is the reservoir size, K is the

input size, and T − T0 is the number of samples used in training. When training

Echo State Networks over a range of reservoir sizes, and for differing training data-set

sizes, at which points is the GPU faster than the CPU?

4.2.3 Experimental Configuration

In the Echo State Network execution case, the experiment was configured to examine

the relationship between execution time and reservoir size. In the Tikhonov regu-

larisation (TR) problem, the experiment was configured to examine the relationship

between the size of the state-history matrix, X (Equation 2.10), and execution time.

To facilitate a GPU/CPU comparison, the ESN and TR algorithms were implemen-

ted for the multi-core CPU. The experiment was configured to reduce the impacts

of just-in-time compiler optimisations, and unexpected load-imbalances on the test

machine.

4.2.3.1 Multiple Timing Measurements

Multiple timing measurements were used for each ESN configuration. This was

done to reduce the impact of sudden and unexpected test-computer loads on a

67

Chapter 4 Performance and Behaviour of the GPU ESN

measurement. These loads can occur due to processing tasks performed by the

operating system, and are out of the control of the test computer user.

4.2.3.2 Warm-up Time

To reduce the impact of just-in-time-compiled components (see Section 2.3.2.1) and

other run-time optimisations on the timing measurements, a “warm-up” period was

used. This warm-up was done for each Echo State Network configuration, before

the timing measurements began. During this warm-up period, the operations under

observation were performed and timed, and the timings were discarded.

4.2.3.3 CPU Implementation

To examine the problems presented in Section 4.2, required a CPU implementation

of the ESN and Tikhonov training equations. This implementation was performed

using GNU-Octave [54], a high-level interpreted linear algebra language. This in-

terfaced with the Atlas library [57], also known as the automatically tuned lin-

ear algebra software library. This in-turn interfaced with the reference Fortran77

BLAS [40] and LAPACK [41] linear algebra routines.

One could argue that using an interpreted language for the CPU implementation

gives an unfair speed advantage to the compiled GPU implementation. This should

be taken into consideration when viewing the results that follow. A CPU implement-

ation using a compiled or just-in-time compiled language is considered for future

work (see Section 5.1.6).

68

4.2 Echo State Network Speed Comparison

4.2.3.4 Numerical Input & Operations

For this experiment, speed was the major consideration. As such, pseudo-random

data was used as inputs during these experiments. The input values for the CPU

and GPU implementations were generated using different pseudo-random number

generators. Therefore, different inputs are used in both cases.

Similarly, the Echo State Networks were generated pseudo-randomly, using different

pseudo-random number generators in the CPU and GPU cases. Thus, the numerical

operations performed in each case will not be identical, which could perhaps hinder

the comparability of the two cases. This could be addressed in future work (see

Section 5.1.8).

4.2.3.5 Experimental Parameters

The variables of interest in these problems are execution time, floating-point preci-

sion, reservoir size, and training sample count. To ensure comparability across all

measurements taken, the remaining parameters were fixed to arbitrary values. A

summary of the values used is given in Table 4.2.

It should be noted that the value assigned to both the ESN input size, K, and the

ESN output size, L, is 16. One could argue that configuring the ESN to accept and

output vectors, rather than a scalar, favours the GPU, because the GPU is optimised

for vector and matrix operations. As such, this should be taken into consideration

when viewing the results. An experiment that also considers ESN input and output

sizes is considered for future work (see Section 5.1.7).

69

Chapter 4 Performance and Behaviour of the GPU ESN

Table 4.2: Echo State Network and Tikhonov regularisation speed tests. The ex-
perimental parameters.

Variable ESN Values TR Values
Hardware. {Intel i7-980, Nvidia GTX-480}
Calculation precision. {double, single}
Number of warm-ups per ESN/TR configur-
ation.

20

Number of timing measurements per ES-
N/TR configuration.

20

ESN reservoir size, N (size of x, Eq. 2.1). {24, 25, . . . , 211}
ESN execution time-steps, E. {24, 25, . . . , 216}
ESN input size, K. 24

ESN output size, L. 24

Training samples (number of columns, T−T0,
in X. See Eq. 2.10)

– {24, 25, . . . , 216}

ESN output feedback (presence of Wofb term
in Eq. 2.1).

present –

ESN reservoir connectivity (proportion of
non-zero values in W, Eq. 2.1).

0.1 –

ESN reservoir spectral radius, ρ (W)
(Eq. 2.3).

0.9 –

Tikhonov regularisation factor, λ (Eq. 2.13). – 0.1

4.2.4 ESN Execution Speed

The results of the Echo State Network execution timing measurements are given

in Figure 4.1 and Table 4.3. Figure 4.1 plots the raw timing measurements taken,

Table 4.3 gives the mean and standard deviation GPU speed-up as defined in Sec-

tion 2.5.23.

3When viewing the results, note the comments on CPU implementation (see Section 4.2.3.3), and
the size of ESN inputs and outputs (see Section 4.2.3.5).

70

4.2 Echo State Network Speed Comparison

10
1

10
2

10
3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Reservoir Size

E
xe

cu
tio

n
T

im
e

(m
ill

is
ec

on
ds

)

CPU Double Precision
CPU Single Precision
GPU Double Precision
GPU Single Precision

Figure 4.1: The Echo State Network, mean (Equation 2.17) and standard deviation
(Equation 2.18) CPU and GPU execution timings. For each ESN configuration,
20 timing measurements were taken. Plotted here are the mean and standard
deviation of the times measured. See Footnote 3 on the preceding page.

Table 4.3: The Echo State Network, CPU and GPU timings – GPU speedup. This
was calculated using the mean and standard deviation timings shown in Figure 4.1
as per Section 2.5.2. See Footnote 3 on the preceding page.

Reservoir Size ESN Execution: ESN Speed-up
Double Precision Single Precision

16 0.2130± 0.1314 0.2107± 0.1048
32 0.2368± 0.1483 0.2486± 0.1076
64 0.2602± 0.0600 0.2227± 0.1153
128 0.2944± 0.0416 0.2944± 0.0392
256 0.3499± 0.1034 0.3590± 0.0891
512 0.6151± 0.1308 0.5498± 0.1500
1024 2.0243± 0.0314 1.4407± 0.1164
2048 5.9923± 0.0563 4.9652± 0.0893

71

Chapter 4 Performance and Behaviour of the GPU ESN

In both the CPU and GPU cases, the Echo State Network execution time increases

with reservoir size. This is not surprising, as the reservoir size determines both the

number of rows and columns in the matrix W (Equation 2.1). The GPU imple-

mentation gives a speed-up at reservoir sizes of 1,024 and 2,048 (Table 4.3). The

largest speed-up, 5.9923, is observed for a reservoir size of 2,048 in double precision.

The largest slow-down is 0.2107 at a reservoir size of 16 in single precision.

For small ESNs, it is likely that host-GPU memory transfers dominate ESN calcula-

tion time. Also, it is probable that the GPU is not fully occupied, and therefore not

performing at full capacity or efficiency. The slower clock speed of the GPU will also

contribute to a slower than CPU execution time. As the ESN reservoir sizes become

larger, it is likely that the occupancy of the GPU improves, and the dominance of

host-GPU memory transfers decreases. The CPU, running 4 cores and 8 threads,

reaches its computational capacity earlier than the GPU, which has 480 cores and

23,040 threads (see Table 4.1). GPU thread occupancy and the impact of memory

transfers is yet to be measured.

4.2.5 Tikhonov Regularisation Speed

The results of the Tikhonov regularisation (TR) execution timing measurements are

given in Figures 4.2 and 4.3 and in Table 4.4. Figure 4.2 gives the timing results in

the single precision case. Figure 4.3 plots the double precision timings. Table 4.4

presents the mean GPU speedup. Due to space restrictions, only a selection of the

speed-ups are presented in Table 4.4. The speed-ups selected are for reservoir sizes

N = 16 and N = 2, 048. These represent the two extremes of GPU performance in

this experiment. (See Footnote 3 on page 70.)

72

4.2 Echo State Network Speed Comparison

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Training Sample Count

E
xe

cu
tio

n
T

im
e

(m
ill

is
ec

on
ds

)
 N=16

N=16

 N=32

N=32

 N=64

N=64

 N=128

N=128

 N=256

N=256

 N=512
N=512

 N=1024
N=1024

 N=2048N=2048

CPU
GPU

Figure 4.2: The Tikhonov regularisation, mean (Equation 2.17) and standard de-
viation (Equation 2.18) CPU and GPU single precision execution timings. Each
curve plots the results for a single reservoir size on either the CPU or the GPU.
For each TR configuration, 20 timing measurements were taken. Plotted here
are the mean and standard deviation of the times measured. See Footnote 3 on
page 70.

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

Training Sample Count

E
xe

cu
tio

n
T

im
e

(m
ill

is
ec

on
ds

)

 N=16
N=16

 N=32

N=32

 N=64

N=64

 N=128

N=128

 N=256

N=256

 N=512

N=512

 N=1024

N=1024

 N=2048

N=2048

CPU
GPU

Figure 4.3: The Tikhonov regularisation, mean (Equation 2.17) and standard de-
viation (Equation 2.18) CPU and GPU double precision execution timings. Each
curve plots the results for a single reservoir size on either the CPU or the GPU.
For each TR configuration, 20 timing measurements were taken. Plotted here
are the mean and standard deviation of the times measured. See Footnote 3 on
page 70.

73

Chapter 4 Performance and Behaviour of the GPU ESN

As with the Echo State Network execution times, the Tikhonov regularisation ex-

ecution times increase with reservoir size, N . Additionally, TR execution time

increases as the number of training samples (T − T0) increases. This is expected,

as the reservoir size effects the number of rows in X, and the number of training

samples determines the number of columns in X (see Equations 2.13 and 2.10).

In the case where the reservoir size was N = 16 one speed-up of 1.2571 occurred

where the number of training samples was T − T0 = 65, 536 in single precision, all

other measures gave a slow-down. The largest slow-down, 0.0197, was observed at

T − T0 = 16 in double precision. It should be noted that several of the calculated

speed-ups in this set have accumulated standard deviations that are larger than

the mean, which implies that the variability of measurements at these points is too

high to give an accurate measure. Future experiments should address this issue (See

Section 5.1.9).

In the N = 2, 048 case, speed-ups were observed at more than half of the meas-

urement points, excluding the double precision, T − T0 = {64, . . . , 2048} case. The

greatest speed-up, 2.6813, was observed at T−T0 = 32, 768 in double precision. The

largest single precision speed-up, 1.6864, was observed at T − T0 = 65, 536. The

greatest slow-down, 0.7910, was observed at T − T0 = 1, 024 in double precision. It

should be noted that in the N = 2, 048, double precision case, the measurement at

T − T0 = 65, 536 could not be taken, as the GPU had reached its global memory

limits.

The marginal speed-ups observed may be partly attributed to host-GPU memory

transfers that take place. The current implementation uses Magma’s SVD imple-

74

4.2 Echo State Network Speed Comparison

T
ab

le
4.
4:

T
he

T
ik
ho

no
v
re
gu

la
ris

at
io
n,

C
PU

an
d
G
PU

tim
in
gs

–
G
PU

sp
ee
du

p.
T
hi
s
wa

s
ca
lc
ul
at
ed

us
in
g
th
e
m
ea
n
an

d
st
an

da
rd

de
vi
at
io
n
tim

in
gs

sh
ow

n
in

Fi
gu

re
s
4.
2
&

4.
2
as

de
sc
rib

ed
in

Se
ct
io
n
2.
5.
2.

Se
e
Fo

ot
no

te
3
on

pa
ge

70
.

Tr
ai
ni
ng

sa
m
pl
es

(T
−

T
0)

T
R

Ex
ec
ut
io
n:

G
PU

Sp
ee
d-
up

N
=

20
48

N
=

16
D
ou

bl
e

Si
ng

le
D
ou

bl
e

Si
ng

le
Pr

ec
isi
on

Pr
ec
isi
on

Pr
ec
isi
on

Pr
ec
isi
on

16
1.

69
61
±

0.
01

56
1.

03
57
±

0.
01

07
0.

01
97
±

0.
33

67
0.

02
66
±

0.
10

29
32

1.
00

22
±

0.
01

87
1.

06
75
±

0.
00

62
0.

02
73
±

0.
01

58
0.

03
06
±

0.
02

70
64

0.
94

99
±

0.
00

67
1.

13
72
±

0.
00

79
0.

03
05
±

0.
03

64
0.

03
29
±

0.
04

23
12
8

0.
94

98
±

0.
00

45
1.

11
99
±

0.
00

48
0.

03
40
±

0.
04

56
0.

03
97
±

0.
05

66
25
6

0.
88

14
±

0.
00

66
1.

07
37
±

0.
00

54
0.

04
35
±

0.
03

42
0.

04
67
±

0.
04

58
51
2

0.
80

12
±

0.
00

76
1.

07
35
±

0.
00

77
0.

04
95
±

0.
03

03
0.

04
98
±

0.
12

20
10
24

0.
79

10
±

0.
00

76
1.

12
91
±

0.
00

67
0.

06
08
±

0.
01

96
0.

06
93
±

0.
04

06
20
48

0.
98

24
±

0.
00

91
1.

14
99
±

0.
00

59
0.

08
79
±

0.
00

95
0.

10
59
±

0.
02

01
40
96

1.
06

05
±

0.
00

75
1.

13
10
±

0.
00

61
0.

13
98
±

0.
01

49
0.

16
90
±

0.
02

77
81
92

1.
32

58
±

0.
26

17
1.

16
21
±

0.
01

58
0.

23
66
±

0.
00

24
0.

29
50
±

0.
00

40
16
38
4

2.
35

69
±

0.
09

29
1.

39
97
±

0.
25

84
0.

40
67
±

0.
00

31
0.

50
10
±

0.
03

25
32
76
8

2.
68

13
±

0.
01

18
1.

42
87
±

0.
11

47
0.

65
57
±

0.
03

07
0.

81
96
±

0.
03

61
65
53
6

–
1.

68
64
±

0.
23

62
0.

85
61
±

0.
24

24
1.

25
71
±

0.
02

89

75

Chapter 4 Performance and Behaviour of the GPU ESN

mentation. The Magma SVD requires inputs from, and returns outputs to host

memory; whereas the TR implementation generates SVD inputs and processes SVD

outputs on the GPU. This necessitates additional host-GPU memory transfers.

While it is likely that these transfers impact the GPU TR execution time, the

actual impact of these transfers is yet to be assessed.

4.3 Predictive Performance

The behaviour of the Echo State Network as a multi-time-step predictor was as-

sessed in several experiments that are presented here. The experiments aimed to

show how reservoir size and output feedback (the Wofb term in Equation 2.1) affect

the learning capabilities of the Echo State Network. In each experiment, the ESN

was trained to accept a time-series, and to predict the value of this time-series mul-

tiple samples ahead. For each time-series, the reservoir size and presence of output

feedback were varied, and the accuracy of the ESN was measured. Three time-

series were tested. The first, a sinusoid; the second, a Mackey-Glass time-series;

and the third, a multiple superimposed oscillator (MSO). The accuracy of each ESN

configuration is measured using the normalised root mean squared error (NRMSE)

defined in Equation 2.21. Following are the problem statements, the experimental

configuration, and finally the results.

4.3.1 Problem Statements

This section describes the three prediction problems attempted in these experiments.

Each problem describes a discrete input time-series that drives the Echo State Net-

work, and a discrete output time-series that the ESN must generate. The output

time-series is the input time-series advanced by some number of samples. The ESN

76

4.3 Predictive Performance

is assessed on its ability to generate the output time-series when presented with the

input time-series.

To clarify, for each problem, the Echo State Network was presented with the discrete

input time-series u [t], and was trained to produce the expected discrete output time-

series x [t], where

x [t] = u [t+ n] .

Here, n is the lead sample count and is n > 0, thus defining the amount that the

output advances the input. The ESN is trained over the sample set T0 ≤ t ≤ T .

The accuracy of the trained ESN was tested by presenting it with the input time-

series u [t], and observing its output, x̂ [t] (the ESN’s estimate of x [t]). This was

done for some testing sample set T + 1 < t < S. The accuracy of the the ESN was

thus calculated as the NRMSE error (Equation 2.21) between the estimated output

x̂ [t] and the expected output x [t] for T < t < S.

The following sections describe the three problems in terms of input equation u [t],

and expected output equation x [t], where4T is the sample period. The values used

for 4T and the lead sample count, n, are given with the experimental parameters

in Section 4.3.3.

4.3.1.1 The Sinusoid Problem

A simple demonstration of an Echo State Network’s behaviour is sinusoid generation,

as described in [13]. Here the sinusoid is used to drive the ESN, and the ESN must

predict the value of the sinusoid n samples ahead. For the given input

u [t] = sin (t4T) ,

77

Chapter 4 Performance and Behaviour of the GPU ESN

the Echo State Network shall generate the output

x [t] = sin ((t+ n)4T) .

4.3.1.2 The Mackey-Glass Problem

In [13] and [5], the Echo State Network was shown to perform well when generating

a Mackey-Glass time-series [58]. The solution to this time-delay differential equation

can produce complex dynamics and chaos, and is therefore a difficult problem.

In this problem, a discretised version of the Mackey-Glass time-series was used as

follows. For the given input, a solution to the discrete differential equation

u′ [t] = β
u [t− d]

(1 + u [t− d]m) − γu [t] , (4.1)

the Echo State Network shall generate the solution to the discrete differential equa-

tion

x′ [t] = β
x [t− d+ n]

(1 + x [t− d+ n]) − γx [t+ n] .

Where β = 2, m = 9.65, γ = 1, and d =
⌊

2
4T

⌋
.

Here, d is the discrete-time delay, usually expressed as τ in the continuous-time case.

Also note that the variable given here as m = 9.65, is usually labelled as n. The

label m has been used to avoid confusion with the lead sample count, n, already

defined in this section.

The time-series used in these experiments was generated numerically. First, the

discrete differential equation, Equation 4.1, was generated. Then, a numerical solu-

tion for u [t] was found using the fourth-order Runge-Kutta method [59] with initial

78

4.3 Predictive Performance

conditions of u [t] = 0.5 for −d ≤ t ≤ 0.

4.3.1.3 The Multiple Superimposed Oscillators (MSO) Problem

The multiple superimposed oscillators (MSO) problem is described in [60] as a dif-

ficult problem to solve using the “classical” Echo State Network approach, first

described in [3]. Despite this, solutions have been found [60, 55].

In [60], Wierstra et al. cite a 2004 lecture4 in which Jaeger states that the MSO

problem can be difficult to solve. The reason given is that, when the wavelength of

the MSO is long, a large number of samples are required to capture an entire period

of the waveform. Also, as the dynamics of the ESN’s reservoir are coupled, it is

difficult for the reservoir to represent the two independent oscillators described in

the equations. Despite this, Wierstra [60] and Steil [55] have found solutions to the

problem. Steil goes so far as to say that the problem is “too simple”, to be used as

a bench-marking problem [55].

For this work the MSO problem is defined as follows. For the given input

u [t] = sin (0.2t4T) + sin (0.311t4T) ,

the Echo State Network shall generate the output

x (t) = sin (0.2 (t+ n) 4T) + sin (0.311 (t+ n) 4T) .

4.3.2 Performance Assessment

For each experiment, random Echo State Networks were generated over a range of

reservoir sizes. Each ESN was trained, then its performance was assessed based
4The slides referenced in [60] are no longer available.

79

Chapter 4 Performance and Behaviour of the GPU ESN

on its ability to reproduce a test data set that the network had not yet seen. The

training and test data sets were taken from contiguous sections of the time-series in

question. The training data first, then the test data.

4.3.2.1 Initial Conditions & Execution

When assessing the performance of a trained Echo State Network, the ESN was

configured with a null initial state,

x (0) = 0.

The ESN was then run, over the entire training and test sequence, in a contiguous

manner.

4.3.2.2 Numerical Input & Operations

For this experiment, the same input and training values were used in both CPU and

GPU cases. However, the exact structures of the Echo State Networks used differ

between both implementations. This is because the ESNs were generated pseudo-

randomly using different pseudo-random number generators. Thus, the numerical

operations performed in the CPU and GPU cases will not be identical, and could

perhaps hinder their comparability. This could be addressed in future work (see

Section 5.1.8).

4.3.3 Experimental Parameters

In [3, 13], it is stated that the parameters chosen for an Echo State Network are

relative, if not unique to a problem. Although the correctness of this statement is not

80

4.3 Predictive Performance

in doubt, all three prediction experiments have a set of largely common parameters.

This was done to increase the comparability of the results across the three problems.

A complete list of the experimental parameters is given in Table 4.5.

Of the experimental parameters, the maximum reservoir size and the reservoir con-

nectivity were chosen based on [5]. Unlike the previous experimental parameters

(Section 4.2.3.5), the Tikhonov regularisation factor in this experiment was set to

λ = 0. This was done to remove the effect of choosing a “non-optimal” TR factor (see

Section 2.2.5.3). The spectral radius of the reservoir, ρ (W), was chosen arbitrarily,

but within the bounds described in Section 2.2.5. Unlike the previous experiment,

the Echo State Networks were tested both with and without output feedback (the

Wofb term in Equation 2.1). The sample period, 4T was chosen within the bounds

[0.05, 0.5], which is given in [55] as an appropriate range for solving the MSO prob-

lem. Note that the sample period and ESN time-step are identical, as recommended

in [55]. Finally, the lead time was chosen arbitrarily as δ = π. Thus, the lead sample

count was calculated as n =
⌊
π
4T

⌋
= 31.

81

Chapter 4 Performance and Behaviour of the GPU ESN

Table 4.5: Time-series prediction – the Echo State Network, and ESN training
configuration parameters. Note that the non-zero values in the weight matrices
are all drawn from the uniform distribution.

Parameter Value
Sample period, 4T . The amount of time
between each time-step.

0.1

Lead time, δ. π

Lead sample count, n =
⌊

δ
4T

⌋
. 31

Reservoir sizes, N (i.e. the sizes of x, Eq. 2.1). {25, 50, . . . , 975, 1000}
ESNs measured per reservoir size. 40
Reservoir connectivity (proportion of non-zero
values in W, Eq. 2.1).

0.01

Spectral radius (ρ (W), Eq. 2.3). 0.9
Presence of output feedback (the Wofb term,
Eq. 2.1)

{present, absent}

Win weight range (Eq. 2.1). (−1, 1]
W weight range (Eq. 2.1). (−1, 1]
Wofb weight range (Eq. 2.1). (−1, 1]
Tikhonov regularisation parameter (λ,
Eq. 2.13).

0

Number of test and training vectors available,
S.

10,000

Number of samples discarded during training,
T0, to reduce the impact of initial transients (see
Sect. Section 2.2.5.1).

2,000

Number of samples used in Tikhonov regular-
isation, T − T0 (Eqs. 2.10 & 2.13).

4,969

Number of samples used to test ESN perform-
ance.

2,969

4.3.4 Results

For each of the prediction experiments, the collected results are presented in three

parts. First, the median error performance is analysed. Here, the errors from the

three problems are compared. Second, cases when feedback is applied and withheld

are compared for each of the three problems. Finally, the outputs from the best

82

4.3 Predictive Performance

performing Echo State Networks are given. Used throughout this section is the

normalised root mean squared error (or NRMSE) as defined in Equation 2.21. The

errors presented in this section are either NRMS errors, or quartiles thereof. During

the following discussion, the problems in Section 4.3.1 are referred to as the sinusoid

problem (Section 4.3.1.1), the Mackey-Glass problem (Section 4.3.1.2), and the MSO

problem (Section 4.3.1.3).

4.3.4.1 Median Error Performance

The median error performance of the Echo State Network is given in Figures 4.4

and 4.5, and in Table 4.6. The figures plot median NRMS error against reservoir

size, and the table lists the minimum median errors observed. Figure 4.4 plots

specifically the median error curves of ESNs with output feedback (the Wofb term

in Equation 2.1). One median NRMS error curve is plotted for each of the three

problems given in Section 4.3.1. Similarly, Figure 4.5 plots error curves of ESNs

without output feedback. The following paragraphs describe and discuss the results

presented in Figures 4.4 and 4.5, and in Table 4.6.

With Output Feedback. Figure 4.4 gives the median NRMS error curves for all

three problems, when solved by an ESN with output feedback. All three error curves

display a clear descent to some local minimum, then a gradual ascent. The sinusoid

problem reaches an observed minimum median error at a reservoir size of 850, the

Mackey-Glass and MSO curves reach their both reach minima at a reservoir size of

775. Unlike the other curves, the sinusoid displays a sudden drop at a reservoir size

of approximately 700, thus yielding a significantly lower minimum median error.

The initial descent of each curve indicates an improvement in ESN suitability as the

reservoir size increases. This improvement appears to reach a best case, where a

83

Chapter 4 Performance and Behaviour of the GPU ESN

minimum error is observed. Following this minimum, the error gradually increases,

which is likely due to overfitting. The sudden drop to a minimum error displayed

by the sinusoidal curve indicates a dramatic change of ESN suitability, as though

the ESN has crossed some bound. This is undoubtedly related to the dynamics

of the reservoir, and would be is an interesting topic of study for future work (see

Section 5.1.10).

Without Output Feedback. Figure 4.5 plots the median NRMS error curves for

the three problems, when solved by an ESN without output feedback. The Mackey-

Glass error curve displays a clear descent to a minimum median error at a reservoir

size of 475. This is followed be a clear ascent in median error. The sinusoid and MSO

curves behave differently. They first ascent to some local maximum, then descend

to a local minimum. This indicates the presence of two local error minima. For

the sinusoid curve, the observed minimum median error occurs at the second local

minimum, at a reservoir size of 950. The MSO curve has its observed minimum at

the first local minimum, at a reservoir size of 25. As in the with feedback case, the

sinusoid error curve displays a sudden drop, although not as large as in the with

feedback case. This behaviour warrants further investigation (see Section 5.1.10).

The Lowest Median NRMS Error. Table 4.6 presents the lowest median NRMS

errors observed for each of the problems. In both the with- and without-feedback

cases, the sinusoid problem yields a lower error than the Mackey-Glass problem, and

the Mackey-Glass problem a lower error than the MSO problem. When feedback is

present, the minimum sinusoid error is significantly lower than the minimum errors

of the other problems.

When comparing the with- and without-feedback cases, the sinusoid problem has a

significantly lower median error in the presence of feedback. The Mackey-Glass and

84

4.3 Predictive Performance

MSO problems, on the other hand, display a lower error when feedback is absent.

These results indicate that the sinusoid problem can be solved to a significantly

higher degree of accuracy than the other problems when feedback is used. The

results also imply that, for the Mackey-Glass and MSO problems, it is better to

use an ESN without feedback. This may be because the output feedback introduces

instabilities problems that are difficult to compensate for. Further work on the

impact of output feedback on stability is warranted (see Section 5.1.12).

10-10

10-5

100

105

1010

0 200 400 600 800 1000

N
R

M
S

E

Reservoir Size

Sinusoid Median Error
Mackey-Glass Median Error

MSO Median Error

Figure 4.4: Double precision prediction problems with output feedback – median
measured NRMS errors per reservoir size (see Section 2.5.4).

85

Chapter 4 Performance and Behaviour of the GPU ESN

10-3

10-2

10-1

100

101

102

0 200 400 600 800 1000

N
R

M
S

E

Reservoir Size

Sinusoid Median Error
Mackey-Glass Median Error

MSO Median Error

Figure 4.5: Double precision prediction problems without output feedback – me-
dian measured NRMS errors per reservoir size (see Section 2.5.4).

Table 4.6: The lowest median NRMS errors observed in each of the three problems.

Feedback present Feedback absent
Problem Min. median

NRMSE
Reservoir size Min. median

NRMSE
Reservoir size

Sinusoid 2.9825× 10−6 775 0.0099926 950
Mackey-Glass 0.74300 775 0.026425 475
MSO 2.1333 850 0.034581 25

4.3.4.2 With- & Without-Feedback Performance

The performance measures presented in this section are similar to those given in

Section 4.3.4.1. However, attention is given rather to the difference between the

with- and without-feedback cases. The spreads of the errors are also given.

86

4.3 Predictive Performance

The performance of the sinusoid, Mackey-Glass, and multiple superimposed oscil-

lator problems are plotted in Figures 4.6, 4.7, and 4.8 respectively. Each plot presents

the results of one problem in four parts. The plots each present two error curves

that describe the performance of the with- and without-feedback ESNs. Each plot

also presents two points which indicate the lowest observed errors of ESNs both

with and without feedback. The curves plot the reservoir size against the median,

lower-quartile, and upper-quartile normalised root mean squared error (as defined

in Section 2.5.4).

The following paragraphs describe the results given in Figures 4.6, 4.7, and 4.8. This

is followed by a discussion of the results. The points of lowest error are expanded

in Section 4.3.4.3.

The Sinusoid Problem. Figure 4.6 plots NRMS error data for the sinusoid prob-

lem. Here, the without-feedback curve is lower for smaller reservoir sizes, and higher

for larger reservoir sizes. The without-feedback curve also shows a smaller range.

The absolute minimum is significantly lower in the with-feedback case, the reservoir

size, however, is much larger.

The Mackey-Glass Problem. Figure 4.7 presents the NRMS error data for the

Mackey-Glass problem. Here, the without-feedback curve is consistently lower than

the with-feedback curve, and also has a smaller range. The without-feedback curve

is also much lower for smaller reservoir sizes. The absolute minimum is, however,

significantly lower in the with-feedback case. It is also significantly further from the

median, and with a notably larger reservoir size.

The MSO Problem. Figure 4.8 plots the NRMS error data for the MSO problem.

Here, the without-feedback curve is consistently lower than the with-feedback curve,

87

Chapter 4 Performance and Behaviour of the GPU ESN

and has a smaller range. The absolute minimum is significantly lower in the without-

feedback case, and at a much lower reservoir size.

Discussion. The NRMS error curves described above demonstrate clear differences

when using ESNs with, and ESNs without output feedback. In all cases, the range of

the error curves in the without-feedback case were smaller than in the with-feedback

case. In the sinusoid and Mackey-Glass problems, the curves and minimum points

suggest that using output feedback has potential to yield lower absolute errors, but

with higher average errors. In the MSO problem, output feedback appears to be

more of a hindrance than a help.

The above without-feedback NRMS error curves all display a smaller range than in

the with-feedback case. Furthermore, at smaller reservoir sizes, the ESN’s without

feedback produced lower errors. This could be attributed to the relative instability

of ESN’s with-feedback [2]. It is possible that, in some cases, output feedback

introduces an instability that the trained output weights can not compensate for

at lower reservoir sizes. In other words, a larger reservoir size may be required to

compensate for instabilities introduced by the output feedback. Thus, the with-

feedback ESN’s may have produced a wider range of errors per reservoir size, and

therefore a higher average error in the above curves.

Although the ESN’s without feedback produced error curves with a smaller range,

in two problems, the lowest absolute errors were produced by ESN’s with feedback.

The sinusoid and Mackey-Glass problems both gave lowest absolute errors when

solved by ESN’s with feedback. This is in contrast with the MSO problem. Here, an

ESN without feedback produced the lowest absolute error. A study of the literature

on the the effects of output feedback, and when best to use it, is proposed for future

work (see Section 5.1.12).

88

4.3 Predictive Performance

10-8

10-6

10-4

10-2

100

102

104

106

0 200 400 600 800 1000

N
R

M
S

E

Reservoir Size

With OFB
Without OFB

Minimum with OFB
Minimum without OFB

Figure 4.6: Double precision sinusoid prediction – measured NRMS error per reser-
voir size. Plotted are the median, lower, and upper quartile errors (see Sec-
tion 2.5.4).

10-6

10-4

10-2

100

102

104

106

108

1010

0 200 400 600 800 1000

N
R

M
S

E

Reservoir Size

With OFB
Without OFB

Minimum with OFB
Minimum without OFB

Figure 4.7: Double precision Mackey-Glass time series prediction – measured
NRMS error per reservoir size. Plotted are the median, lower, and upper quartile
errors (see Section 2.5.4).

89

Chapter 4 Performance and Behaviour of the GPU ESN

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

0 200 400 600 800 1000

N
R

M
S

E

Reservoir Size

With OFB
Without OFB

Minimum with OFB
Minimum without OFB

Figure 4.8: Double precision MSO prediction – measured NRMS error per reservoir
size. Plotted are the median, lower, and upper quartile errors (see Section 2.5.4).

4.3.4.3 Lowest NRMS Error ESN’s

The outputs of the Echo State Networks that gave the lowest error are presented

in this section. The outputs are presented in Table 4.7, and in Figures 4.9, 4.10,

4.11, 4.12, 4.13, and 4.14. For each of the three problems, two plots are given.

One presents the outputs of the lowest error ESN with feedback, and the other the

outputs of the lowest error ESN without feedback.

The best Echo State Network performance for each of the three problems is given in

Table 4.7. Here, we observe that an ESN with feedback solved the sinusoid problem

to a significantly higher degree of accuracy than the Mackey-Glass problem. The

Mackey-Glass problem was, in-turn, solved to a higher degree of accuracy than the

MSO problem. This is in contrast to the without-feedback case. An ESN without

feedback solved the MSO problem to a significantly higher degree of accuracy than

90

4.3 Predictive Performance

the sinusoid problem. The sinusoid problem was, in-turn, solved to a higher degree

of accuracy than the Mackey-Glass problem.

One can also compare the with- and without-feedback cases of each problem. Here,

the sinusoid problem is significantly better solved with feedback, but with a signific-

antly larger reservoir size. The Mackey-Glass problem, on the other hand, is solved

to a similar accuracy by ESN’s both with and without feedback. The without-

feedback reservoir size, however, is significantly larger. The MSO problem is also

in contrast, as the best performing ESN was without feedback, and with a smal-

ler reservoir size. Interestingly, in all problems, the absolute minimum achieved by

ESNs without-feedback is at a significantly lower reservoir size than in the with-

feedback case. Which, when using the results from Section 2.5.2, should result in a

faster calculation time. Thus, for these problems, the ESN designer is faced with a

trade-off between accuracy and speed.

Table 4.7: Lowest observed ESN NRMS errors.

Feedback present Feedback absent
Problem Min. NRMSE Reservoir size Min NRMSE Reservoir size
Sinusoid 1.7233× 10−8 675 0.0020683 100
Mackey-Glass 0.018256 625 0.014925 325
MSO 0.17102 475 4.6421× 10−4 100

91

Chapter 4 Performance and Behaviour of the GPU ESN

-1

-0.5

0

0.5

1

1.5

800 820 840 860 880 900

x(
t)

t

Reservoir Size 675, NRMSE 0.000000

Target Waveform
Test Waveform

Figure 4.9: Double precision sinusoid prediction – a portion of the lowest error
test waveform. This occurred at a reservoir size of 675, with an NRMS error of
1.7233× 10−8.

-1

-0.5

0

0.5

1

1.5

800 820 840 860 880 900

x(
t)

t

Reservoir Size 100, NRMSE 0.002068

Target Waveform
Test Waveform

Figure 4.10: Double precision sinusoid prediction – a portion of the lowest error
test waveform. This occurred at a reservoir size of 100, with an NRMS error of
0.0020683.

92

4.3 Predictive Performance

-1

-0.5

0

0.5

1

1.5

800 820 840 860 880 900

x(
t)

t

Reservoir Size 625, NRMSE 0.018256

Target Waveform
Test Waveform

Figure 4.11: Double precision Mackey-Glass time series prediction – a portion of
the lowest error test waveform. This occurred at a reservoir size of 575, with an
NRMS error of 8.4726× 10−6.

-1

-0.5

0

0.5

1

1.5

800 820 840 860 880 900

x(
t)

t

Reservoir Size 325, NRMSE 0.014925

Target Waveform
Test Waveform

Figure 4.12: Double precision Mackey-Glass time series prediction – a portion of
the lowest error test waveform. This occurred at a reservoir size of 225, with an
NRMS error of 0.0086278.

93

Chapter 4 Performance and Behaviour of the GPU ESN

-1

-0.5

0

0.5

1

1.5

800 820 840 860 880 900

x(
t)

t

Reservoir Size 475, NRMSE 0.171019

Target Waveform
Test Waveform

Figure 4.13: Double precision MSO prediction – a portion of the lowest error test
waveform. This occurred at a reservoir size of 850, with an NRMS error of
0.037355.

-1

-0.5

0

0.5

1

1.5

800 820 840 860 880 900

x(
t)

t

Reservoir Size 100, NRMSE 0.000464

Target Waveform
Test Waveform

Figure 4.14: Double precision MSO prediction – a portion of the lowest error test
waveform. This occurred at a reservoir size of 175, with an NRMS error of
0.012298.

94

5 Conclusion

The Echo State Network, a form of recurrent artificial neural network, was imple-

mented for the GPU. The form of ESN built was that described in the original

work, [3]. An offline training method based on Tikhonov regularisation [15, 2] was

also implemented. The implementation targeted the Nvidia Cuda platform, and

used a combination of bespoke kernels, and existing Cuda BLAS [37], Sparse [24],

random number [25], and LAPACK [42] libraries. To ensure fast memory transfers

between the host and the GPU, pinned and write-combining memory [37] were used.

Cuda streams were used to implement concurrent execution patterns, including a

double-buffering system [39] for the calculation of reservoir state and ESN output

equations. UML sequence diagrams illustrating the concurrent behaviour of the

ESN are given in Figures 3.2, 3.3 and 3.4.

The behaviour of this GPU Echo State Network implementation was examined.

First to assess its speed against a CPU implementation, and second to assess its

behaviour with several prediction problems. These experiments were conducted

on a single test computer with a Intel i7-980 CPU and an Nvidia GTX480. Both

representative of high-end commodity hardware in their respective classes.

To assess the speed of the GPU ESN, two experiments were devised. These targeted

the two key components of ESN execution, the calculation of ESN output, and calcu-

lating the ESN’s output weights via Tikhonov regularisation. These were compared

95

Chapter 5 Conclusion

with a CPU implementation. This CPU implementation used GNU-Octave [54]

which interfaced with the reference BLAS [40] and LAPACK [41] implementations

via the automatically tuned linear algebra system [57].

The first speed experiment captured the execution time of the GPU and CPU ESN

output calculations over a range of reservoir sizes in both double and single precision

floating point. The remaining variables were fixed. The timing results are presented

in Figure 4.1 and their corresponding speed up calculations are compiled in Table 4.3.

The speed-up ranged from 0.2107 to 5.9923, the former was obtained with a reservoir

size of 16 in single precision, the latter with a reservoir size of 2048. In both single

and double precision cases, a GPU speed-up was observed for reservoir sizes over

512.

The second speed experiment captured the execution time of the Tikhonov regular-

isation algorithm over a range of reservoir sizes and state-history sizes. This was

performed in both double and single precision. The timing results are presented in

Figures 4.2 and 4.3. The calculated speed-ups are listed in Table 4.4. These ranged

from 0.0197 to 2.6813. In the single precision case, with a reservoir size of 2048, the

GPU gives a slight speed-up for every configuration. In all other cases, speed-ups

are observed only for the largest state-history sizes. Memory limitations on the GPU

meant that a measurement could not be made in the double precision case, for a

reservoir size of 2048, and a training sample size of 65,536.

To further assess the behaviour of this GPU Echo State Network implementation,

several learning experiments were devised. These tested the behaviour of the ESN

when predicting three studied time-series [3, 55]. A sinusoidal time-series, a Mackey-

Glass time-series [58], and a multiple superimposed oscillator (MSO) [60, 55]. In

each experiment, ESN’s were driven by the time-series, and trained to predict the

value of the time-series multiple-samples ahead. The trained ESN’s were evaluated

96

Conclusion

by driving them with a previously unseen portion of the time-series, capturing their

outputted predictions, and comparing their estimates with the expected output.

The comparison was made using a normalised root mean squared error measure.

These tests were performed in double precision over a range of reservoir sizes, and

used ESN’s both with and without output feedback. The remaining ESN parameters

were fixed. Thus, six cases were studied – three time-series, each solved by ESN’s

with and without output feedback. Multiple ESN’s were measured for each reservoir

size.

The results of these experiments are given in Tables 4.6, and 4.7, and Figures 4.6, 4.7

and 4.8. All cases demonstrated a relationship between reservoir size and median

error performance. A descending median error implies increasing ESN suitability.

An ascending median error may imply overfitting, although in two of the six cases,

two local error minima and one local maximum were observed. For each time-series,

the ESN’s without feedback produced median error curves with smaller ranges than

ESN’s with feedback. ESN’s with feedback produced higher median errors at smaller

reservoir sizes than the ESN’s without feedback. However, the ESN’s with feedback

produced the lowest absolute errors in the sinusoid and Mackey-Glass cases. In

contrast, for the MSO case, output feedback produced no observable benefits. In all

three problems, the absolute minimum error in the with-feedback case, was produced

at a significantly higher reservoir size than in the without-feedback case.

The results of the speed experiments demonstrate the benefits that GPUs can

provide to Echo State Network designers. However, the GPU does not provide

benefits in all cases. In other words, it is not a “golden hammer”1. When compar-

ing the Intel i7-980 CPU and an Nvidia GTX480, the GPU ESN was shown to run

1This is the idea that one tool can solve all of one’s problems. If all of one’s problems are viewed
as a “nail”, then the solution to of all of one’s problems can be provided by a single “golden
hammer”.

97

Chapter 5 Conclusion

faster than the CPU ESN for reservoir sizes over 512. Smaller reservoir sizes gave

a slow-down. The largest observed speed-up was 6. Extending the experiment to

larger reservoir sizes would likely yield speed-ups greater than this. Although, these

would be eventually limited by GPU memory size, as observed in the Tikhonov

regularisation problem. Given the architectures of the GPU and the CPU, these

are not surprising results, however, the point at which the GPU gives a speed-up is

of interest. For different hardware, this cross-over point will be different, and the

size of both CPU and GPU memory will form an upper bound on the size of the

problems that can be solved. Therefore users must take care to run similar tests on

their own hardware before concluding that the GPU or CPU is the best choice for

their specific problem.

The speed-ups observed when running the GPU ESN were not translated to the

Tikhonov regularisation problem. Largely, slow-downs were observed; most speed-

ups occurred at the very largest state-history sizes, and approaching the limits of

GPU memory in the double precision case. Extending the experiment to larger

reservoir and / or training sample sizes in the single precision case would likely

yield larger speed-ups. There is potential to improve upon this implementation (see

Section 5.1), and larger speed-ups may be achieved if deficiencies are found in the

current implementation. Based on these results, this implementation of GPU based

Tikhonov regularisation can only be recommend when the reservoir size and training

sample size are large. Users should, however, consider their hardware. These results

will not translate exactly to a different hardware configuration.

The second set of experiments demonstrated a relationship between reservoir size,

output feedback, and ESN suitability. In each problem, the ESN’s without feed-

back produced median error curves with a smaller range. This may be attributed to

instabilities introduced by output feedback. ESN’s with feedback produced higher

98

5.1 Future Work

median errors at smaller reservoir sizes than the ESN’s without feedback. However,

the lowest absolute minimum errors were produced, in two problems, by ESN’s with

feedback at higher reservoir sizes. These results suggest that feedback instabilities

can be compensated for by larger reservoirs. Also, using feedback with a larger reser-

voir may produce a highly accurate ESN, however, this can not be guaranteed. The

absolute minimum errors produced by the ESN’s with feedback were at significantly

higher reservoir sizes than the absolute minimum errors produced by ESN’s without

feedback. Given the results from the speed experiments, in Section 2.5.2, it is likely

that the best performing ESN without feedback would execute faster than the best

performing ESN with feedback. Thus, for these problems, the ESN designer faces a

trade-off between speed and accuracy.

While these results have provided some insight into the behaviour of a GPU-based

Echo State Network, there are many possible improvements and extensions to this

work. The final sections discuss these.

5.1 Future Work

This GPU Echo State Network implementation has been demonstrated to behave as

expected, and to offer some speed advantages over a CPU implementation. There

remains, however, much work that can be done to improve performance, provide

more general-case speed comparison results, broaden hardware compatibility, and

improve user accessibility and usability. These topics are addressed in the remaining

sections.

99

Chapter 5 Conclusion

5.1.1 Profiling & Optimisation

The Nvidia tool-chain provides tools for profiling Cuda applications (see Sec-

tion 2.3.2). The GPU Echo State Network implementation presented here has

not yet undergone profiling assessment. Profiling the implementation may reveal

deficiencies in the utilisation of the GPU and memory transfers. The double buf-

fering approach described in Section 2.3.1.5 may not completely “hide” the memory

transfers, thus alternative approaches to concurrency may yield performance im-

provements. Any work that improves GPU utilisation will impact on the results

observed in Section 4.2.4.

5.1.2 Sparse Matrix Format

The calculation of the Wx (n− 1) term in Equation 2.1 uses a sparse matrix-vector

multiplication, and the compressed sparse row (CSR) storage format. The literat-

ure shows that a hybrid Ellpack-Itpack and coordinate list implementation (HYB)

performs better, except where W is dense or near dense, and where the number of

non-zeros in each row varies greatly (see Section 2.4.3 and [50]). Converting the im-

plementation to use the HYB format is likely to yield improvements over the results

given in Section 4.2.4.

5.1.3 Memory Limitations

During the Tikhonov regularisation double precision speed test, the memory limits

of the GPU were hit. This occurred for one measurement at a reservoir size of 2048

and a state-history size of 65,536. A GPU with a larger memory would facilitate this

measurement. However, it would also be useful for the GPU Echo State Network

user to be alerted when a problem is beyond the memory limitations of the GPU.

100

5.1 Future Work

Further to this, a mechanism to predict a memory problem and to circumvent it

would be useful. A prediction mechanism would require knowledge of the available

GPU memory, and the amount of memory required for the given calculation. A

possible circumvention method would be to store part of the data required for the

calculation on the host memory. This would require careful engineering to ensure

that the effects of host-GPU memory transfers were minimised. This circumvention

method would in-turn be limited by the available host memory; thus, care must be

taken not to overburden the host to the point of system failure.

5.1.4 Singular Value Decomposition

The bidiagonalisation step in the Magma SVD routine magma_*gebrd makes heavy

use of the CPU based blasf77_*gemv routine. A higher computation improvement

speed may be obtained if this work were migrated to the GPU. Also, modifying the

Magma routine to be called with device-side memory may also yield larger speed-

ups. Lastly, the Magma libraries used in this implementation may not use the fastest

host-side LAPACK and BLAS libraries.

The Magma SVD must be called with the arguments stored in host-side memory, the

data is then transferred to the GPU device during the execution of the SVD. For this

implementation however, the data required for the SVD operation is already in GPU-

memory. Thus, unnecessary transfers between host and device memory are present

in this implementation. Modifying the Magma SVD routine to accept arguments

stored in GPU memory will likely improve the performance of this implementation.

Similarly, the diagonalisation step is performed entirely on the CPU using the iter-

ative QR routine, lapackf77_sbdsqr. If instead this were migrated to the GPU (as

per [48, 49]), we may see a reduced computation time. Alternatively, computation

101

Chapter 5 Conclusion

speed may be increased by migrating the LAPACK implementation of Cuppen’s

divide and conquer algorithm, *bdsdc, to the Magma project:

“SBDSDC computes the singular value decomposition (SVD) of

a real N-by-N (upper or lower) bidiagonal matrix B: B = U

* S * VT, using a divide and conquer method, where S is a

diagonal matrix with non-negative diagonal elements (the

singular values of B), and U and VT are orthogonal matrices

of left and right singular vectors, respectively.” [41]

Previous work implementing the Cuppen’s divide and conquer algorithm in Magma,

has demonstrated a 10 fold improvement over its LAPACK CPU-based counterpart,

*stedc. Unfortunately, this implementation targets symmetric tridiagonal matrices,

and is therefore not suited to this problem. Another approach may be to look into the

multiple relatively robust representations (MRRR) method discussed briefly in [43].

As an accompaniment to this work, alternative CPU-based LAPACK and BLAS

libraries may be considered for Magma. Magma could be instead compiled against,

for example, the Intel math kernel library [61].

5.1.5 Eigenvalue Calculation

This implementation uses a maximum eigenvalue calculation when building a reser-

voir using the method presented in Section 2.2.3. When performing eigenvalue

calculations, it is recommended in [43] to use “canned” eigenvalue packages due to

the complexity of this problem. Based on this advice, a canned implementation was

employed. However, research into the efficiency of the Magma eigenvalue calculation

algorithms used by Magma may yield some improvements. Further to this, Magma

can be compiled against alternative CPU-based numerical libraries, for example, the

102

5.1 Future Work

Intel math kernel library [61], may yield improvements over the reference BLAS and

LAPACK libraries used in this implementation.

5.1.6 The CPU Implementation

While the results presented in Section 4.2 do show speed-ups in some cases, it should

be noted that the CPU implementation was performed using GNU-Octave, an inter-

preted language. A compiled or just-in-time compiled CPU-based implementation

using, for-example, Intel’s math kernel library [61] would make for a fairer compar-

ison. This would then compare an optimised Intel math library on Intel hardware

with an optimised Nvidia library on Nvidia hardware.

5.1.7 ESN Input and Output Size

In Section 4.2, the speed experiments did not account for input and output size.

This is an important consideration in Echo State Network design. The input and

output size used in the experiments was fixed at 16. It could be argued that this

gave an advantage to the GPU ESN implementation. As the GPU is optimised for

vector and matrix calculations. A future speed performance study should take input

and output size into consideration.

5.1.8 ESN Structure During Experiments

In the comparative experiments described in Sections 4.2 and 4.3, exact Echo State

Network structures used differ between the CPU and GPU implementations. This

is because different pseudo-random number generators were used in the implement-

ations. Similarly, the experiment described in Section 4.2 used pseudo-randomly

103

Chapter 5 Conclusion

generated ESN inputs. These were also generated using different pseudo-random

number generators. This may hinder the comparability of the results.

In the GPU implementation, the Curand pseudo-random number generator was

used, whereas the CPU implementation uses the Octave pseudo-random number

generator. A future implementation could use the same pseudo-random number

generator to generate the same ESN structures. The same inputs could also be used

in the speed experiments described in Section 4.2.

5.1.9 Variability of Speed-Up Calculations

In Section 4.2, some speed-up calculations had standard deviation values that were

larger than the calculated mean. This is due to the propagation of standard devi-

ations from the CPU Echo State Network and the GPU ESN timing measurements.

This brings the accuracy of these particular measurements into question. The ac-

curacy of the measurements may be improved by taking more measurements at each

reservoir size. For these experiments, 20 measurements were made to obtain each

mean and standard deviation speed. Increasing the number of measurements to,

say, 40 is likely to reduce the large spread observed for some speed-up calculations.

5.1.10 The Sinusoidal Median Error Curve

In Section 4.3, the sinusoid prediction problem yielded interesting results. Here, the

median error produced by Echo State Networks solving this problem displayed a

sudden drop. This was observed for ESN’s both with and without output feedback.

The sudden drop indicates that the ESN’s crossed some bound. A more thorough

survey of the literature may explain this behaviour.

104

5.1 Future Work

5.1.11 Multiple Local Minima in Error Curves

In Section 4.3, the sinusoid and multiple superimposed oscillator (MSO) problems

yielded interesting results. Specifically when learned by ESN’s without feedback.

Here, the median errors produced by the ESN’s was plotted against reservoir size.

Observed in both median error error curves were two distinct minima. The other

curves displayed only one. A more thorough survey of the literature may help

describe this behaviour.

5.1.12 Output Feedback and ESN Stability

In Section 4.3, the differences observed between Echo State Networks with, and those

without output feedback, are of interest. Here, the median errors produced by the

ESN’s were plotted against the ESN’s reservoir size. The ESN’s with feedback ap-

peared to produce significantly higher errors at lower reservoir sizes. Which could be

attributed to instabilities introduced by the feedback. However, the lowest absolute

minimum error was, in two problems, produced by an ESN with output feedback,

and at a significantly higher reservoir size than the absolute minimum produced by

the ESN without feedback. This suggests that a larger reservoir size can compensate

for possible feedback instabilities, and possibly lead to higher accuracy. Some of the

already surveyed literature may yield an explanation for this behaviour, and thus

indicate potential experimental changes. The possible instabilities observed may be

influenced by the spread of the feedback weights, or stability (in the systems-theory

sense) of the network, or the absence of output and reservoir regularisation.

The ranges of the output feedback weights were drawn from the uniform distribu-

tion with the range (−1, 1], and thus may have been driving some of the reservoir

neurons into saturation. Reducing the range to, for example, (−0.5, 0.5] is likely to

105

Chapter 5 Conclusion

eliminate this as a possible cause for network saturation and stability [2]. Further-

more, when building the Echo State Networks in this experiment, the structure of

the randomly generated weights was not considered from a systems-theory perspect-

ive (see Section 2.2.3). The networks with larger errors are likely to have suffered

from a lack of dynamical “richness”. The design approach offered in [28] is likely

to reduce the spread of errors for a given ESN configuration. Another approach to

consider is the reservoir regularisation approach defined in [62]. Here, it is shown

that a combination of Tikhonov, and reservoir regularisation can be used to improve

the stability of ESN’s with feedback.

As such, changing the range of the output feedback weights should be considered

in future work. Also, an implementation of the design approach offered in [28] may

lower the errors observed in this work.

5.1.13 The Effects of Precision

The Echo State Network implementation presented here is capable of both double

and single precision. While the results presented in Section 4.2 compare the speed

performance of the two implementations, the effects of precision on accuracy and

learning were not investigated. This would necessitate a review of the existing

literature on this topic, and may provide a basis for original work in the specific

case of the Echo State Network.

5.1.14 Alternative Building & Training Methods

This GPU Echo State Network implements the ESN building method as proposed

in [13], and the offline Tikhonov regularisation training method described in [15, 2].

As seen from the prediction results in Section 4.3.4, the median ESN error can

106

5.1 Future Work

have a large range when output feedback is used. This influences the number of

trials that an ESN designer must perform before a “best” network is found. Further

to this, the designer can only use this implementation for offline training problems.

More specifically, for problems that are independent and identically distributed, and

with sufficient historical information to describe the input-output relationship (see

Section 2.1.1). The literature describes several approaches that may offer improve-

ments.

When building an ESN, the implementation could take into account the “richness”

measure described in Section 2.2.3.1. This systems-theory approach to ESN design

proposes that an ESN has the “richest” set of dynamics when the poles of this ESN

are evenly distributed throughout the unit circle. While this would not entirely

eliminate the “trial and error” approach to ESN building described above, it would

likely reduce the number of trials required to find an ESN well suited to the given

problem.

As well as an alternative to building Echo State Networks, the literature presents

online alternatives to the Tikhonov regularisation method implemented here. These

methods include recursive least squares, and backpropagation-decorrelation (see Sec-

tion 2.2.5). The latter case is more correctly considered as an alternative reservoir

computing approach, rather than an ESN training method. However, both methods

offer an online reservoir computer training approach that would benefit the users of

this GPU implementation.

5.1.15 General Case Performance Comparison

The performance figures presented in Section 4.2.4 give speed results for an Intel i7-

980 CPU and an Nvidia GTX480 (see Section 4.1). While this information is useful

for this hardware configuration, it is not sufficient to make a general case statement.

107

Chapter 5 Conclusion

For the ESN designer with a higher specification CPU, and a lower specification

GPU, it is not clear whether this GPU implementation will offer them an advantage

over a CPU implementation for the problem they may have in mind.

A general statement about GPU and CPU implementations may be obtained em-

pirically. An empirical analysis would require that these tests are run on multiple

CPU and GPU platforms. A potentially costly exercise for any single researcher,

but one they may be achieved by releasing the libraries with the speed tests, and by

asking users to run these tests and submit their results. Those users who run the

tests should obtain the results they require for their purposes. If these users in-turn

report their results, those users with similar hardware may use the reported results

to make a decision.

5.1.16 Cross-Platform Implementation

This implementation was designed for and built using the Nvidia Cuda toolchain.

Alternative GPU computing environments are available. Extending this implement-

ation to use, for example, OpenCL (see Section 2.3) would allow users of AMD and

other hardware to also use this tool. [34]

5.1.17 A Higher-Level Interface

The libraries that implement this GPU Echo State Network are designed for use by

C++ programmers. While the users interested in a GPU ESN implementation are

likely to have programming skills, providing an alternative interface to these libraries

should allow a wider range of users to use them. Potential solutions to this problem

would be, for example, Python or Octave programming wrappers. Alternatively, a

desktop graphical user interface could be provided. For those wishing to centralise

108

5.1 Future Work

the tool for use on a GPU server, a web-interface may also be suitable. Obtaining

feedback from ESN users and researchers would be useful in guiding such an effort.

5.1.18 Multiple GPU Devices

The implementation presented here was designed to operate on a single GPU. Given

a very large Echo State Network, it may be possible to reduce the execution time

and share the problem across multiple GPU devices. This would necessitate research

into the viability of large (say 1,000,000 reservoir neurons) ESNs as problem solvers,

and methods for dividing matrix operations across multiple GPUs. This work may

also provide cost savings to users of smaller ESNs that would prefer to purchase

multiple lower-end GPUs over one top-end GPU.

109

References

[1] P. F. Dominey, “Complex sensory-motor sequence learning based on recur-

rent state representation and reinforcement learning,” Biological Cybernetics,

vol. 73, pp. 265–274, 1995.

[2] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent

neural network training,” Computer Science Review, vol. 3, no. 3, pp. 127–149,

Aug. 2009.

[3] H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent neural

networks,” GMD - German National Research Institute for Computer Science,

GMD Report 148, December 2001.

[4] W. Maass, T. Natschlager, and H. Markram, “Real-time computing without

stable states: a new framework for neural computation based on perturbations,”

Neural Computation, vol. 14, no. 11, pp. 2531–60, 2002.

[5] H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting Chaotic Systems

and Saving Energy in Wireless Communication,” Science, vol. 304, pp. 78–80,

2004.

[6] F. Schürmann, K. Meier, and J. Schemmel, “Edge of chaos computation in

mixed-mode vlsi - "a hard liquid",” in NIPS, 2004.

[7] A. Atiya and A. Parlos, “New results on recurrent network training: unifying

111

References

the algorithms and accelerating convergence,” Neural Networks, IEEE Trans-

actions on, vol. 11, no. 3, pp. 697 –709, May 2000.

[8] J. Steil, “Backpropagation-decorrelation: online recurrent learning with O(N)

complexity,” in Neural Networks, 2004. Proceedings. 2004 IEEE International

Joint Conference on, vol. 2, 2004, pp. 843 – 848 vol.2.

[9] W. S. Mcculloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bulletin of Mathematical Biophysic, vol. 5, pp. 115–133, 1943.

[10] S. J. Weddell and R. Y. Webb, “Reservoir computing for prediction of the

spatially-variant point spread function,” Selected Topics in Signal Processing,

IEEE Journal of, vol. 2, no. 5, pp. 624–634, Oct. 2008.

[11] P. J. Werbos, “Beyond regression: New tools for prediction and analysis in the

behavioral sciences,” Ph.D. dissertation, Harvard University, 1974.

[12] P. Werbos, “Backpropagation through time: what it does and how to do it,”

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550 –1560, oct 1990.

[13] H. Jaeger, “Tutorial on training recurrent neural networks, covering BPTT,

RTRL, EKF and the "echo state network" approach,” German National Re-

search Center for Information Technology, Technical Report 159, October 2002.

[14] A. N. Tikhonov, “Solution of incorrectly formulated problems and the regular-

ization method,” Soviet Math. Dokl., vol. 4, pp. 1035–1038, 1963.

[15] F. Wyffels, B. Schrauwen, and D. Stroobandt, “Stable output feedback in reser-

voir computing using ridge regression,” in International Conference on Artificial

Neural Networks, 2008.

[16] F. Schürmann, K. Meier, and J. Schemmel, “Edge of chaos computation in

mixed-mode vlsi - “a hard liquid”,” in In Proc. of NIPS. MIT Press, 2005.

112

References

[17] B. Schrauwen, M. D’Haene, D. Verstraeten, and J. Van Campenhout, “Compact

hardware for real-time speech recognition using a liquid state machine,” in

Neural Networks, 2007. IJCNN 2007. International Joint Conference on, 12-17

2007, pp. 1097 –1102.

[18] B. Schrauwen, M. D‘Haene, D. Verstraeten, and D. Stroobandt, “Compact

hardware liquid state machines on fpga for real-time speech recognition,” Neural

Networks, no. 21, pp. 511–523, 1 2008.

[19] K.-S. Oh and K. Jung, “Gpu implementation of neural networks,” Pattern

Recognition, vol. 37, no. 6, pp. 1311–1314, 2004.

[20] E. Xie, M. McGinnity, Q. Wu, J. Cai, and R. Cai, “Gpu implementation of

spiking neural networks for color image segmentation,” in Image and Signal

Processing (CISP), 2011 4th International Congress on, vol. 3, oct. 2011, pp.

1246 –1250.

[21] V. Pallipuram, M. Bhuiyan, and M. Smith, “Evaluation of gpu architectures us-

ing spiking neural networks,” in Application Accelerators in High-Performance

Computing (SAAHPC), 2011 Symposium on, july 2011, pp. 93 –102.

[22] T. Keith, S. Weddell, and T. Van Cutsem, “Gpu implementation of an echo

state network for optical wavefront prediction,” in Proceedings of the Work

in Progress Session, 20th Euromicro Intl. Conf. on Parallel, Distributed &

Network-based Processing, Garching, Germany, E. Grosspietsch and K. Klöck-

ner, Eds. SEA-Publications, Johannes Kepler University, Austria, February

2012.

[23] NVIDIA Corporation, CUDA Toolkit 4.2 CUBLAS Library. Santa Clara, CA,

USA: NVIDIA Corporation, February 2012, version 4.2.

113

References

[24] ——, CUDA Toolkit 4.2 CUSPARSE Library. Santa Clara, CA, USA: NVIDIA

Corporation, February 2012, version 4.2.

[25] ——, CUDA Toolkit 4.2 CURAND Library. Santa Clara, CA, USA: NVIDIA

Corporation, March 2012, version 4.2.

[26] M. T. Hagan, H. B. Demuth, and M. Beale, Neural network design. Boston,

MA, USA: PWS Publishing Co., 1996.

[27] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach (3rd Edi-

tion), 3rd ed. Prentice Hall, December 2010.

[28] M. C. Ozturk, D. Xu, and J. C. Príncipe, “Analysis and design of echo state

networks,” Neural Comput., vol. 19, no. 1, pp. 111–138, Jan. 2007.

[29] M. Buehner and P. Young, “A tighter bound for the echo state property,” IEEE

Transactions on Neural Networks, vol. 17, no. 3, pp. 820 – 824, May 2006.

[30] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez, “Training recurrent

networks by evolino,” NEURAL COMPUTATION, vol. 19, p. 2007, 2007.

[31] D. P. O’Leary, “Near-optimal parameters for tikhonov and other regularization

methods,” SIAM J. Sci. Comput., vol. 23, no. 4, pp. 1161–1171, Apr. 2001.

[32] J. E. Moody, “The effective number of parameters: An analysis of generalization

and regularization in nonlinear learning systems,” in NIPS, 1991, pp. 847–854.

[33] J. L. Gustafson, “Reevaluating amdahl’s law,” Communications of the ACM,

vol. 31, pp. 532–533, 1988.

[34] Khronos Group. (2012, October) OpenCL - The open standard for

parallel programming of heterogeneous systems. [Online]. Available: http:

//www.khronos.org/opencl/

[35] Advanced Micro Devices. (2012, October) Heterogenous computing. Advanced

114

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

References

Micro Devices. [Online]. Available: http://developer.amd.com/TOOLS/HC/

Pages/default.aspx

[36] Nvidia Corporation. (2012, October) Nvidia cuda. Nvidia Corporation.

[Online]. Available: http://www.nvidia.com/object/cuda_home_new.html

[37] NVIDIA Corporation, NVIDIA CUDA C Programming Guide. Santa Clara,

CA, USA: NVIDIA Corporation, April 2012, version 4.2.

[38] M. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE

Trans. Comput., vol. C-21, pp. 948+, 1972.

[39] P. R. Schaumont, A Practical Introduction to Hardware/Software Codesign.

Springer US, 2010.

[40] (2012, August) Blas. The Netlib Repository at Univ. of Tennesse Knoxville &

Oak Ridge National Lab. [Online]. Available: http://www.netlib.org/blas/

[41] (2012, August) Lapack. The Netlib Repository at Univ. of Tennesse Knoxville

& Oak Ridge National Lab. [Online]. Available: http://www.netlib.org/lapack/

[42] (2012, June) Magma-1.2.1. The Innovative Computing Lab., Univ. of

Tennesse Knoxville. [Online]. Available: http://icl.cs.utk.edu/projectsfiles/

magma/magma-1.2.1.tar.gz

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. New York, NY,

USA: Cambridge University Press, 2007.

[44] G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse

of a matrix,” Journal of the Society for Industrial and Applied Mathematics:

Series B, Numerical Analysis, vol. 2, no. 2, pp. pp. 205–224, 1965.

[45] C. Vömel, S. Tomov, and J. Dongarra, “Divide and conquer on hybrid GPU-

115

http://developer.amd.com/TOOLS/HC/Pages/default.aspx
http://developer.amd.com/TOOLS/HC/Pages/default.aspx
http://www.nvidia.com/object/cuda_home_new.html
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://icl.cs.utk.edu/projectsfiles/magma/magma-1.2.1.tar.gz
http://icl.cs.utk.edu/projectsfiles/magma/magma-1.2.1.tar.gz

References

accelerated multicore systems,” SIAM Journal on Scientific Computing, vol.

34(2), pp. C70–C82, April 2012.

[46] P. R. Willems, B. Lang, and C. Vömel, “Lapack working note 166: Comput-

ing the bidiagonal svd using multiple relatively robust representations,” EECS

Department, University of California, Berkeley, Tech. Rep. UCB/CSD-05-1376,

2005.

[47] C. Lessig and P. Bientinesi, “On parallelizing the mrrr algorithm for data-

parallel coprocessors,” in Proceedings of the 8th international conference on

Parallel processing and applied mathematics: Part I, ser. PPAM’09. Berlin,

Heidelberg: Springer-Verlag, 2010, pp. 396–402.

[48] S. Lahabar and P. J. Narayanan, “Singular value decomposition on GPU using

CUDA,” in Proceedings of the 2009 IEEE International Symposium on Paral-

lel & Distributed Processing, ser. IPDPS ’09. Washington, DC, USA: IEEE

Computer Society, 2009, pp. 1–10.

[49] S. Lahabar, “Exploiting the graphics hardware to solve two compute intensive

problems: Singular value decomposition and ray tracing parametric patches,”

Master’s thesis, Center for Visual Information Technology International Insti-

tute of Information Technology, Hyderabad - 500032, India, August 2010.

[50] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on

CUDA,” NVIDIA Corporation, NVIDIA Technical Report NVR-2008-004, Dec.

2008.

[51] C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY, USA:

Oxford University Press, Inc., 1995.

[52] M. Lukoševičius, “Echo state networks with trained feedbacks,” Jacobs Univer-

sity Bremen, Technical Report 4, February 2007.

116

References

[53] R. J. Hyndman and Y. Fan, “Sample quantiles in statistical packages,” The

American Statistician, vol. 50, pp. 361–365, 1996.

[54] J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave: A high-level inter-

active language for numerical computations, 3rd ed. Boston, MA, USA: Free

Software Foundation, Inc., February 2011, version 3.6.1.

[55] J. J. Steil, “Several ways to solve the mso problem.” in ESANN, 2007, pp.

489–494.

[56] T. Keith and S. J. Weddell, “The Echo State Network on the Graphics Pro-

cessing Unit,” in Proceedings of the 12th International Conference on Aritificial

Intelligence & Soft Computing. Springer-Verlag, (in press) 2013.

[57] (2012, August) Automatically tuned linear algebra software (atlas). [Online].

Available: http://math-atlas.sourceforge.net/

[58] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control

systems,” Science, vol. 197, no. 4300, pp. pp. 287–289, 1977.

[59] K. Atkinson, W. Han, and D. Stewart, Numerical Solution of Ordinary Differ-

ential Equations, ser. Pure and Applied Math. Wiley, 2011.

[60] D. Wierstra, F. J. Gomez, and J. Schmidhuber, “Modeling systems with internal

state using Evolino,” in Proc. of the 2005 conference on genetic and evolutionary

computation (GECCO), Washington, D. C. ACM Press, New York, NY, USA,

2005, pp. 1795–1802.

[61] (2012, August) Intel math kernel library. Intel Corporation. [Online]. Available:

http://software.intel.com/en-us/intel-mkl

[62] R. F. Reinhart and J. J. Steil, “Reservoir regularization stabilizes learning of

echo state networks with output feedback,” in In Proc. ESANN, 2011.

117

http://math-atlas.sourceforge.net/
http://software.intel.com/en-us/intel-mkl

	Abstract
	Acknowledgements
	Contents

	1 Introduction
	2 Background
	2.1 The Artificial Neural Network
	2.1.1 Learning in an Artificial Neural Network

	2.2 Reservoir Computing
	2.2.1 The Echo State Network
	2.2.2 The Structure of the ESN
	2.2.3 Constructing an ESN
	2.2.4 Echo States
	2.2.5 Training an ESN

	2.3 The Graphics Processing Unit
	2.3.1 The Nvidia Cuda Programming Model
	2.3.2 The Nvidia Cuda Development Toolchain
	2.3.3 Nvidia Cuda Hardware

	2.4 Numerical Operations on the GPU
	2.4.1 BLAS Operations
	2.4.2 LAPACK Operations
	2.4.3 Sparse Operations
	2.4.4 Bespoke Operations

	2.5 Assessing ESN Performance
	2.5.1 Mean & Standard Deviation
	2.5.2 Speed-Up
	2.5.3 Normalised Root Mean Square Error
	2.5.4 Quartiles

	3 Implementing the Echo State Network
	3.1 High Level Design and Deployment
	3.1.1 The !libesnmath.so! Library
	3.1.2 The !libgpuesn.so! Library

	3.2 Using the Libraries
	3.3 Numerical Operations
	3.3.1 ESN Building
	3.3.2 ESN Execution
	3.3.3 ESN Training

	3.4 Program Design
	3.4.1 ESN Memory Management
	3.4.2 ESN Execution
	3.4.3 Training the ESN via Tikhonov Regularisation

	4 Performance and Behaviour of the GPU ESN
	4.1 Test Machine Parameters
	4.2 Echo State Network Speed Comparison
	4.2.1 ESN Execution
	4.2.2 Tikhonov Regularisation
	4.2.3 Experimental Configuration
	4.2.4 ESN Execution Speed
	4.2.5 Tikhonov Regularisation Speed

	4.3 Predictive Performance
	4.3.1 Problem Statements
	4.3.2 Performance Assessment
	4.3.3 Experimental Parameters
	4.3.4 Results

	5 Conclusion
	5.1 Future Work
	5.1.1 Profiling & Optimisation
	5.1.2 Sparse Matrix Format
	5.1.3 Memory Limitations
	5.1.4 Singular Value Decomposition
	5.1.5 Eigenvalue Calculation
	5.1.6 The CPU Implementation
	5.1.7 ESN Input and Output Size
	5.1.8 ESN Structure During Experiments
	5.1.9 Variability of Speed-Up Calculations
	5.1.10 The Sinusoidal Median Error Curve
	5.1.11 Multiple Local Minima in Error Curves
	5.1.12 Output Feedback and ESN Stability
	5.1.13 The Effects of Precision
	5.1.14 Alternative Building & Training Methods
	5.1.15 General Case Performance Comparison
	5.1.16 Cross-Platform Implementation
	5.1.17 A Higher-Level Interface
	5.1.18 Multiple GPU Devices

	References

