
Combining Shortest Paths, Bottleneck Paths and

Matrix Multiplication

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Doctor of Philosophy

in the

University of Canterbury

by

Tong-Wook Shinn

University of Canterbury

2014

To my parents, my wife and my children.

Acknowledgments

I thank my parents for bringing me into this world and raising me.

I thank my wife, Angela, for her loving support and being the best mum

that our precious children could ask for.

I thank my primary supervisor, Prof. Takaoka, for his patience and guid-

ance, without whom this thesis would never have eventuated.

I thank my colleague, Sung Bae, for being a great “Sun Bae”1.

I thank the viva committee, especially Dr Guttmann, for the thorough

review and constructive feedback that helped to polish up this thesis before

submission.

I thank the examiners, especially Prof. Moffat, for spending the time to

provide an incredibly in-depth review of the thesis.

1 Korean for “senior colleague”.

iv

Abstract

We provide a formal mathematical definition of the Shortest Paths for All

Flows (SP-AF) problem and provide many efficient algorithms. The SP-AF

problem combines the well known Shortest Paths (SP) and Bottleneck Paths

(BP) problems, and can be solved by utilising matrix multiplication. Thus

in our research of the SP-AF problem, we also make a series of contributions

to the underlying topics of the SP problem, the BP problem, and matrix

multiplication.

For the topic of matrix multiplication we show that on an n-by-n two

dimensional (2D) square mesh array, two n-by-n matrices can be multiplied

in exactly 1.5n−1 communication steps. This halves the number of commu-

nication steps required by the well known Cannon’s algorithm [10] that runs

on the same sized mesh array.

We provide two contributions for the SP problem. Firstly, we enhance

the breakthrough algorithm by Alon, Galil and Margalit (AGM) [4], which

was the first algorithm to achieve a deeply sub-cubic time bound for solving

the All Pairs Shortest Paths (APSP) problem on dense directed graphs. Our

enhancement allows the algorithm by AGM to remain sub-cubic for larger

upper bounds on integer edge costs. Secondly, we show that for graphs with n

vertices, the APSP problem can be solved in exactly 3n− 2 communication

steps on an n-by-n 2D square mesh array. This improves on the previous

result of 3.5n communication steps achieved by Takaoka and Umehara [72].

For the BP problem, we show that we can compute the bottleneck of

the entire graph without solving the All Pairs Bottleneck Paths (APBP)

problem, resulting in a much more efficient time bound.

Finally we define an algebraic structure called the distance/flow semi-ring

to formally introduce the SP-AF problem, and we provide many algorithms

for solving the Single Source SP-AF (SSSP-AF) problem and the All Pairs

SP-AF (APSP-AF) problem. For the APSP-AF problem, algebraic algo-

rithms are given that utilise faster matrix multiplication over a ring.

Table of Contents

Chapter 1: Introduction 1

Chapter 2: Matrix Multiplication 5

2.1 Faster Matrix Multiplication Over a Ring 6

2.2 Matrix Multiplication on a 2D Square Mesh Array 9

2.2.1 Definition of the 2D Square Mesh Array 9

2.2.2 Review of Cannon’s Algorithm 9

2.2.3 Loading Data from Both Corners 13

2.2.4 Using Values from All Four Directions 18

Chapter 3: Shortest Paths (SP) 23

3.1 Distance Semi-ring . 25

3.2 Deeply Sub-cubic Time Complexity 27

3.3 Expansion and Contraction of Graphs 32

3.4 APSP Problem on the Mesh Array 35

3.4.1 Review of the Cascade Algorithm 36

3.4.2 Cascade Algorithm on the Mesh Array 43

Chapter 4: Bottleneck Paths (BP) 52

4.1 Bottleneck Semi-ring . 53

4.2 The Graph Bottleneck (GB) Problem 54

Chapter 5: Shortest Paths for All Flows (SP-AF) 56

5.1 Distance/flow Semi-ring . 58

5.2 Single Source SP-AF (SSSP-AF) 64

5.2.1 Unit Edge Costs . 65

5.2.2 Integer Edge Costs . 69

5.3 All Pairs SP-AF (APSP-AF) 76

5.3.1 Unit Edge Costs . 77

5.3.2 Integer Edge Costs . 80

Chapter 6: Conclusion 86

Appendix A: Publications 89

A.1 Conferences . 89

A.2 Journals . 91

References 92

ii

Chapter I

Introduction

The Shortest Paths (SP) problem is arguably one of the most widely studied

problems in graph theory. Given a set of vertices and a set of edges with

varying distances, the problem is to find the shortest paths between pairs of

vertices.

A less well known, but still a widely studied problem, is the Bottleneck

Paths (BP) problem. If edges have capacities, for any given path between

vertices, there will obviously be a bottleneck given by the edge with the

smallest capacity on the path. And hence the problem is to find the paths

that would give us the maximum bottleneck values between pairs of vertices.

Matrix multiplication is one of the most fundamental mathematical op-

erations, used as a tool to solve numerous problems in computer graphics,

applied mathematics, physics and engineering, etc.

To understand how these seemingly unrelated topics are combined under

a single graph path problem, let us consider a directed graph, G = (V,E),

such that V is the set of vertices and E is the set of edges. Let |V | = n

and |E| = m. We assume that vertices are numbered from 1 to n. Let

(i, j) ∈ E be the edge from vertex i to vertex j. Let cost(i, j) and cap(i, j)

denote the cost and the capacity of (i, j), respectively. We use the terms

‘cost’ and ‘distance’ interchangeably. Note that the notations that have just

been introduced will be used consistently throughout this thesis.

The SP problem is only concerned with the values of cost(i, j), whereas

the BP problem is only concerned with the values of cap(i, j). If we were

to solve the SP problem on the graph given in Figure 1.1 from vertex 1 to

vertex 6, the shortest path would be via vertex 3 and 5, giving us the total

path cost (or distance) of 4. On the other hand, if we were to solve the BP

problem on the same graph from vertex 1 to vertex 6, the bottleneck path

would be via vertex 3, 2, 4 and 5, giving us the bottleneck value of 7.

1

1

2

3

4

5

6

(2,9)

(1,3)

(1,7)
(3,6)

(3,8)

(2,7)

(1,9)

(1,2)

(2,5)

Figure 1.1: A example graph with with n = 6 and m = 9. The cost and
capacity are shown beside each edge, respectively.

Let us now consider the shortest path that can flow a specific amount.

In other words, the path has the bottleneck value of at least the required

flow amount. Then intuitively, there may exist a shorter path that can only

flow a smaller amount, and a longer path that can flow a larger amount.

For example, on the graph given by Figure 1.1, if we wanted to flow 5 units

from vertex 1 to vertex 6, the shortest path that can accommodate this flow

amount is the path via vertices 3 and 4, giving us the total path cost of 7.

If we only wanted to flow 3 units, however, then there exists a shorter path

via vertices 2 and 4, giving us a lower path cost of 6.

If the flow requirements between vertices vary, then it is clearly benefi-

cial to compute the shortest paths for all possible flow amounts, such that

the shortest path can be chosen for any given flow amount. Thus we have

the problem that is the main topic of this thesis, which we refer to as the

Shortest Paths for All Flows (SP-AF) problem, that is concerned with both

cost(i, j) and cap(i, j). The SP-AF problem can therefore be considered to

be a combination of the SP and the BP problem, and we show that we can

utilise matrix multiplication to solve this problem efficiently.

The main motivation for the SP-AF problem comes from its application in

computer networking. If we model a computer network as a graph such that

each router/host is represented as a vertex and each link is represented as

2

an edge, (i, j), then the bandwidth and latency of the link can be considered

to be the capacity, cap(i, j), and the cost of the edge, cost(i, j), respectively.

If the required data flow from a source host to a destination host can be

predetermined, then it is clearly beneficial to find the path with the lowest

total latency that has enough bandwidth for the required flow amount, such

that the data can be transferred as quickly as possible without causing any

network congestion. As we will discuss in later chapters, the SP-AF problem

can be applied to other practical problems that can be modelled on a graph

where each edge has the two properties, cap(i, j) and cost(i, j).

Even though the SP-AF problem is the main topic of this thesis, we were

able to make a series of contributions to each of the three underlying topics.

For the topic of matrix multiplication, in Chapter 2, we give a parallel dis-

tributed algorithm that halves the number of communication steps required

by the well known Cannon’s algorithm [10] on the same sized 2D mesh ar-

ray. In Chapter 3, we make two contributions to the SP problem, firstly

by enhancing the breakthrough algorithm by Alon et al. for solving the All

Pairs Shortest Paths (APSP) problem [4], and secondly providing a parallel

distributed algorithm on a mesh array to solve the APSP problem that is

faster than the existing algorithm by Takaoka and Umehara [72]. In Chapter

4 we show that the bottleneck of the entire graph can be computed without

solving the All Pairs Bottleneck Paths (APBP) problem, resulting in a very

efficient time bound, thus also making a small contribution to the topic of

BP problem.

Finally in Chapter 5, the SP-AF problem is presented as the main con-

tribution of this thesis. We give a formal mathematical definition of the

problem based on the theory of semi-rings and provide many algorithms that

are faster than the straightforward methods of solving the various SP-AF

problems.

There are many related problems to the aforementioned graph paths prob-

lems such as the minimum cost spanning tree problem on graphs with edge

costs [53, 40], the maximum flow problem on graphs with edge capacities

[23, 17, 45], and the minimum-cost flow problem on graphs with both edge

costs and capacities [39, 27, 20, 28]. In-depth discussions of these related

problems, however, are not part of this thesis.

3

Most graph paths problems discussed in this thesis can be based on the

theory of semi-rings and the various representations of graphs as matrices.

Condran and Minoux have discussed semi-rings in great depths alongside

other algebraic structures such as fields, rings, dioids, etc. [29]. In our the-

sis, however, we use a more concise discussion of semi-rings by Aho, Hopcroft

and Ullman [2]. The overall content of our thesis resembles the PhD thesis by

Vassilevska [78] who utilised the semi-rings theory to provide algebraic algo-

rithms for solving various graph paths problems, such as the shortest paths,

maximum bottleneck paths and minimum non-decreasing paths problems.

A more in-depth review of relevant literatures for each topic is provided

in the introduction of each chapter. A summary of all our contributions and

the corresponding publications can be found in Chapter 6.

4

Chapter II

Matrix Multiplication

Let us make a start by defining what we mean by matrix multiplication. Let

X = {xij} be an n-by-n matrix1 such that xij denotes the matrix element

at row i and columnn j. Similarly, let Y = {yij} and Z = {zij} be n-by-n

matrices. Then the matrix multiplication Z = XY is given by:

zij =
n∑

k=1

xikykj

From this definition of matrix multiplication, it is clear that the operation

can be performed in O(n3) time.

In 1969, Volker Strassen made an amazing breakthrough by showing that

the product of two n-by-n matrices over a ring can be computed in O(nω)

time bound, where ω < 2.808 [65]. It is clear from the title of the paper

“Gaussian elimination is not optimal” that Strassen was well aware of the

magnitude of this discovery. To compute the value of one element, we must

sum the products from n individual elements from a row of one matrix and

the column of the other matrix. So how is it possible to break the O(n3)

time barrier?

Before we provide an answer to this question in Section 2.1, let us dis-

cuss the parallelisation of matrix multiplication, as our contribution in this

chapter actually comes in the form of a parallel algorithm. Parallelising ma-

trix multiplication is quite straightforward as the matrices can be divided

into rectangular sub-matrices of arbitrary sizes and the computation can be

performed with the sub-matrices in parallel. For example, with n2 proces-

sors, we can divide the matrices into n rows and n columns, such that each

processor can compute the value of a single element in O(n) time, giving us

1 It is no co-incidence that we have defined the size of matrices to be n-by-n and the
number of vertices in G is also denoted by n.

5

the total computational cost of O(n3) for this simple example of a parallel

algorithm.

Lynn E. Cannon, also in 1969, gave a parallel distributed algorithm for

matrix multiplication on a two dimensional (2D) square mesh array [10].

Mesh arrays are also commonly known as systolic arrays due to their rhyth-

mical behaviour, and also as Very-Large-Scale-Integration (VLSI) circuits

due to their ease of implementability onto Application Specific Integrated

Circuits (ASIC) [41]. Cannon showed that with n2 processors laid out in an

n-by-n square 2D mesh array such that each processor can communicate with

at most four neighbours, matrix multiplication can be performed in exactly

3n− 2 communication steps between the processors.

Since then many different types of mesh arrays have been developed for

matrix multiplication [12, 37, 47, 52]. In terms of the required number of

communication steps, the most notable contributions were from Kak, who

achieved 2n − 1 communication steps [38], and Benaini and Robert, who

achieved 1.5n communication steps [7]. Both of these achievements came as

a result of a more complex 3D mesh array architecture, and in the case of

the algorithm by Benaini and Robert, a more complex matrix multiplication

method by Winograd was used [81].

In Section 2.2, we present our contribution to the topic of matrix multipli-

cation by showing that the product of two n-by-n matrices can be computed

in exactly 1.5n− 1 communication steps on a strictly 2D square mesh array,

effectively equalling the algorithm by Benaini and Robert in terms of the

number of communication steps, but with two key advantages. Firstly, our

mesh array definition is strictly 2D and simpler. Secondly, our algorithm

itself is also simpler as it is based on Cannon’s original algorithm rather than

the more complex Winograd’s algorithm.

2.1 Faster Matrix Multiplication Over a Ring

We abbreviate Faster Matrix Multiplication Over a Ring as FMMOR. Let

X, Y and Z be n-by-n square matrices over a ring. We review Strassen’s

algorithm by using it to compute Z = XY . We ensure n = 2k for some

integer k > 0 by adding rows and columns of zeroes if necessary. We divide

6

each matrix into four equal sized square matrices as follows:

X =

[
X1,1 X1,2

X2,1 X2,2

]
Y =

[
Y1,1 Y1,2

Y2,1 Y2,2

]
Z =

[
Z1,1 Z1,2

Z2,1 Z2,2

]
Then the product Z = XY can be computed as follows:

Z1,1 = X1,1Y1,1 + X1,2Y2,1

Z1,2 = X1,1Y1,2 + X1,2Y2,2

Z2,1 = X2,1Y1,1 + X2,2Y2,1

Z2,2 = X2,1Y1,2 + X2,2Y2,2

However, since there are eight multiplications with n
2
-by-n

2
matrices, the time

complexity is still O(n3). But here comes the magical part with intermediate

matrices M1,M2, ...,M7:

M1 = (X1,1 +X2,2)(Y1,1 + Y2,2)

M2 = (X2,1 +X2,2)Y1,1

M3 = X1,1(Y1,2 − Y2,2)
M4 = X2,2(Y2,1 − Y1,1)
M5 = (X1,1 +X1,2)Y2,2

M6 = (X2,1 −X1,1)(Y1,1 + Y1,2)

M7 = (X1,2 −X2,2)(Y2,1 + Y2,2)

then the matrix Z can be computed as follows:

Z1,1 = M1 +M4 −M5 +M7

Z1,2 = M3 +M5

Z2,1 = M2 +M4

Z2,2 = M1 −M2 +M3 +M6

Thus the number of multiplications with n
2
-by-n

2
matrices has been reduced

from eight to seven! By recursively using this method for the sub-matrices,

the asymptotic time complexity becomes O(nω) where ω = log2 7 < 2.808.

The most important thing to note, other than the amazing result itself,

is that subtraction between matrices is performed in this algorithm. In other

words, on a semi-ring where the inverse operation does not exist for the +

7

Year ω Author(s)

1969 2.808 Strassen [65]
1978 2.796 Pan [49]
1979 2.780 Bini, Capovani, Romani and Lotti [8]
1981 2.522 Schönhage [57]
1982 2.517 Romani [55]
1982 2.496 Coppersmith and Winograd [13]
1986 2.479 Strassen [66]
1990 2.376 Coppersmith and Winograd [14]
2010 2.374 Stothers [64]
2012 2.373 Williams [80]
2014 2.373 Le Gall [44]

Table 2.1: The exponent of the asymptotic time complexity of FMMOR.

operation, this algorithm will not work. This restriction is very important,

as we will discover in later chapters of this thesis.

After the cubic barrier has been broken by Strassen, there have been

many subsequent achievements in reducing the value of ω as shown in Table

2.1, at the expense of the algorithms getting more and more complex. Words

such as “galactic” and “astronomical” are commonly used to describe some

of the latter algorithms, which are widely known to be impractical to be

implemented on modern day computers. The values of ω in Table 2.1 are

rounded up to three decimal places. The last reduction to the value of ω

was achieved by Le Gall [44], who firstly corrected William’s result [80] from

ω < 2.3727 to ω < 2.37293, then presented the new result of ω < 2.37286

Throughout this thesis, we take the current best value of ω < 2.373 to

calculate the theoretical best worst-case time complexities of our algorithms

that utilise FMMOR. Note that for all algorithms that utilise FMMOR, we

can always revert back to the ordinary matrix multiplication method (or even

Strassen’s algorithm for larger matrices) to make the algorithm practical for

implementation.

8

2.2 Matrix Multiplication on a 2D Square Mesh Array

Our contribution to the topic of matrix multiplication is essentially an en-

hancement to Cannon’s parallel mesh array algorithm. We start by defining

the 2D mesh array and show that Cannon’s algorithm indeed takes exactly

3n−2 communication steps to perform matrix multiplication. We then show

how we can enhance this algorithm to achieve 1.5n−1 steps, which is exactly

half the number of steps required by Cannon’s algorithm.

2.2.1 Definition of the 2D Square Mesh Array

Let X = {xij} be an n-by-n matrix where xij denotes the element in row i

and column j such that 1 ≤ i, j ≤ n. Similarly let Y = {yij} be an n-by-n

matrix. Let Z = XY , that is, Z = {zij} is the product of X and Y . We

assume xpq = ypq = 0 for all p, q < 0 and p, q > n. We define 2D arrays

x[i][j] and y[i][j] to store the values xij and yij, respectively.

We define a simple 2D square mesh array with n2 cells (or processors),

where each cell only communicates with its four neighbors, Top, Bottom,

Left and Right. Let cell(i, j) denote the cell at row i and column j, where

1 ≤ i, j ≤ n.

Each cell has five registers, t, b, l, r and v, as shown in Figure 2.1. Let

t(i, j), b(i, j), l(i, j), r(i, j) and v(i, j) denote the five registers in cell(i, j).

Register t holds the data received from Top that is subsequently passed

down. Register b holds the data received from Bottom that is subsequently

passed up. Register l holds the data received from Left that is subsequently

passed to the right. Register r holds the data received from Right that is

subsequently passed to the left. Register v(i, j) holds the partial sum for zij.

We assume that all registers are initialized to 0.

2.2.2 Review of Cannon’s Algorithm

Let the rectangular 2D array L[p][q] where 1 ≤ p ≤ n and 1 ≤ q ≤ 2n hold

the values for matrix X = {xij} where the matrix is horizontally skewed

and reversed. Let the rectangular 2D array T [p][q] where 1 ≤ p ≤ 2n and

1 ≤ q ≤ n hold the values for matrix Y = {yij} where the matrix is ver-

9

l

r

tb v

Figure 2.1: The structure of a cell in the 2D mesh array.

tically skewed and reversed. We refer to L and T as loader arrays because

they hold the elements of the original matrices to be loaded onto the mesh

array. These loader arrays are not essential for actual implementation of the

parallel algorithms, but we use them to provide additional clarity. Algorithm

1 shows exactly how matrices X and Y are skewed and reversed in L and T ,

respectively. As mentioned in Section 2.2.1, x[p][q] = 0 and y[p][q] = 0 for

p, q < 0 and/or p, q > n.

Algorithm 1 X and Y are skewed and reversed in L and T , respectively.

1: for i = 1 to n do
2: for j = 1 to 2n− 1 do
3: L[i][j]← x[i][j − i+ 1]

4: for i = 1 to 2n− 1 do
5: for j = 1 to n do
6: T [i][j]← y[i− j + 1][j]

We use L and T in Cannon’s algorithm, given by Algorithm 2. A close

up of the upper left corner of the 2D mesh array at the start of Cannon’s

algorithm is shown in Figure 2.2, where the skewed and reversed matrices X

and Y , stored in L and T , respectively, are illustrated.

10

Algorithm 2 Cannon’s algorithm for computing Z = XY in parallel.

1: for k = 1 to 3n− 2 do
2: for all 1 ≤ i, j ≤ n in parallel do
3: if j = 1 then
4: l(i, 1)← L[i][1]; /* load X from Left */
5: else
6: l(i, j)← l(i, j − 1) /* receive data from Left */

7: if i = 1 then
8: t(1, j)← T [1][j]; /* load Y from Top */
9: else

10: t(i, j)← t(i− 1, j) /* receive data from Top */

11: v(i, j)← v(i, j) + l(i, j) · t(i, j) /* accumulate value for zij */

12: Shift L horizontally by one (i.e. L[i][j]← L[i][j + 1])
13: Shift T vertically by one (i.e. T [i][j]← T [i+ 1][j])

y11

y21

y31

y12

y22 y13

x11

x21

x12

x31

x22

x13

Figure 2.2: An illustration of Cannon’s algorithm, showing a close up of the
upper left corner of the 2D mesh array.

11

Lemma 1. After k steps of Algorithm 2, we have the following boundary

conditions for j = 1 and i = 1, respectively:

l(i, 1) = x[i][k − i+ 1]

t(1, j) = y[k − j + 1][j]

Proof. Since the array L is originally L[i][j] = x[i][j− i+1] and the elements

are horizontally shifted by one in each step, at the k-th step, l(i, 1) = L[i][1]

is given by the initial value L[i][k] = x[i][k− i+ 1]. Similar argument can be

made for t(1, j).

Lemma 2. For all k ≥ 0 and for all 1 ≤ i, j ≤ n, we have the space/time

invariants P (i, j, k) where:

P (i, j, k) ⇔ l(i, j) = x[i][k − i− j + 2]

t(i, j) = y[k − i− j + 2][j]

v(i, j) = x[i][1]y[1][j] + x[i][2]y[2][j] + ...+

x[i][k − i− j + 2]y[k − i− j + 2][j]

Proof. Proof is based on induction on the three dimensional logical space

indexed by (i, j, k). The basis for k is P (i, j, 0). Since i, j ≥ 1, array indices

for x and y become out of range. Thus for P (i, j, 0), we have l(i, j) =

t(i, j) = v(i, j) = 0. As mentioned in Section 2.2.1, the values of all registers

are initialized to 0 i.e. when k = 0 all registers are 0 by definition.

For general P (i, j, k) for k ≥ 0, we start with the two cases j = 1 and

j > 1. In the first case, from Lemma 1, we have l(i, 1) = x[i][k − i + 1] =

x[i][k− i− j+ 2] at the end of the k-th iteration. In the second case, assume

P (i, j − 1, k − 1) for induction, that is:

l(i, j − 1) = x[i][(k − 1)− i− (j − 1) + 2] = x[i][k − i− j + 2]

When j > 1, the assignment statement l(i, j) = l(i, j − 1) is performed

(line 6). Thus at the end of the k-th iteration, from induction, we have

l(i, j) = x[i][k − i− j + 2] for k ≥ 0.

Similarly, from Lemma 1, we have t(1, j) = y[k−j+1][j] = y[k−i−j+2][j]

12

for i = 1, and from P (i− 1, j, k − 1) for i > 1, we have:

t(i− 1, j) = y[(k − 1)− (i− 1)− j + 2][j] = y[k − i− j + 2][j]

When i > 1, the assignment statement t(i, j) = t(i− 1, j) is performed (line

10). Thus we have t(i, j) = y[k − i− j + 2][j] for k ≥ 0.

Also from P (i, j, k − 1) we have:

v(i, j) = x[i][1]y[1][j] + x[i][2]y[2][j] + ...+ x[i][k− i− j + 1]y[k− i− j + 1][j]

Then the statement v(i, j) = v(i, j) + l(i, j) · t(i, j) is performed (line 11).

Thus at the end of the k-th iteration, P (i, j, k) holds.

Theorem 1. Cannon’s algorithm takes exactly 3n− 2 communication steps

to compute the product of two n-by-n matrices on a 2D square mesh array

with n2 cells.

Proof. Following on from Lemma 2, after iteration k = 3n− 2, that is, after

3n− 2 communication steps, we have v(i, j) = x[i][1]y[1][j] + x[i][2]y[2][j] +

... + x[i][3n − i − j]y[3n − i − j][j] for all 1 ≤ i, j ≤ n. Since the maximum

value for i and j is n, after 3n−2 steps v(i, j) = x[i][1]y[1][j]+x[i][2]y[2][j]+

...+ x[i][n]y[n][j] = zij for all v(i, j).

As noted earlier, the loader arrays L and T are not required for actual

implementation because the matrix element that needs to be loaded onto a

specific register at a specific time can be derived from the location of the

edge cells (cell(1, j) and cell(i, 1)), and the time, k. In fact the formulae

to compute exactly when and where loading of matrix elements must occur

have already been specified by Lemma 1. Thus we do not include the time

taken to initialize the loader arrays or any other operations performed on the

loader arrays in our time analysis.

2.2.3 Loading Data from Both Corners

One shortcoming of Cannon’s algorithm is that most cells on the bottom

right hand corner of the mesh array are not performing useful computation

in the beginning. In fact, cell(n, n) only starts to accumulate the partial

13

sum for znn after 2n− 2 steps have already passed. We can reduce the idling

time of cells on the bottom right corner of the mesh array by loading values

of X and Y from Right and Bottom at the same time as loading the values

from Left and Top, thereby reducing the total number of steps required to

perform matrix multiplication. We note that the idea of loading values from

all four directions has already been used previously to achieve a faster mesh

algorithm for solving the APSP problem [77].

We define two more loader arrays R and B, similarly to L and T as

defined in Section 2.2.2. Again, these arrays are not essential, but we define

them to clarify how the matrices are skewed and reversed before the elements

are loaded onto the mesh array. Algorithm 3 shows the exact contents of R

and B. We then present Algorithm 4 that can compute the product of two

n-by-n matrices in exactly 2n− 1 steps. An illustration of this algorithm is

given in Figure 2.3, which clarifies the indexing for R and B.

Algorithm 3 X and Y are skewed and reversed in R and B, respectively.

for i = 1 to n do
for j = 1 to 2n− 1 do

R[i][j]← x[i][2n− i− j + 1]

for i = 1 to 2n− 1 do
for j = 1 to n do

B[i][j]← y[2n− i− j + 1][j]

Lemma 3. After k steps of Algorithm 4, we have the following boundary

conditions for j = n and i = n, respectively:

r(i, n) = x[i][2n− i− k + 1]

b(n, j) = y[2n− j − k + 1][j]

Proof. Similarly to Lemma 1, since the arrayR is originallyR[i][j] = x[i][2n−
i − j + 1] and the elements are horizontally shifted by one in each step,

at the k-th step, r(i, n) = R[i][1] is given by the initial value R[i][k] =

x[i][2n− i− k + 1]. Similar argument can be made for b(n, j).

14

Algorithm 4 Computing Z = XY in parallel in 2n− 1 steps.

1: for k = 1 to 2n− 1 do
2: for all 1 ≤ i, j ≤ n in parallel do
3: if i+ j ≤ n then
4: /* Region I */
5: if j = 1 then
6: l(i, 1)← L[i][1]; /* load X from Left */
7: else
8: l(i, j)← l(i, j − 1) /* receive data from Left */

9: if i = 1 then
10: t(1, j)← T [1][j]; /* load Y from Top */
11: else
12: t(i, j)← t(i− 1, j) /* receive data from Top */

13: v(i, j)← v(i, j) + l(i, j) · t(i, j)
14: else
15: /* Region II */
16: if j = n then
17: r(i, n)← R[i][1]; /* load X from Right */
18: else
19: r(i, j)← r(i, j + 1) /* receive data from Right */

20: if i = n then
21: b(n, j)← B[1][j]; /* load Y from Bottom */
22: else
23: b(i, j)← b(i+ 1, j) /* receive data from Bottom */

24: v(i, j)← v(i, j) + r(i, j) · b(i, j)
25: Shift L and R horizontally by one in opposite directions
26: Shift T and B vertically by one in opposite directions

15

yn1

ynn

y1n

y1nyn1

y11

x1n

xn1xnn

x1n x11

xn1

I

II

Figure 2.3: Loading values from both corners of the mesh array.

16

Lemma 4. For all k ≥ 0 and for all 1 ≤ i, j ≤ n such that i + j ≤ n + 1

(Region I), we have the space/time invariants P (i, j, k) where:

P (i, j, k) ⇔ l(i, j) = x[i][k − i− j + 2]

t(i, j) = y[k − i− j + 2][j]

v(i, j) = x[i][1]y[1][j] + x[i][2]y[2][j] + ...+

x[i][k − i− j + 2]y[k − i− j + 2][j]

Proof. Same as the proof of Lemma 2.

Lemma 5. For all k ≥ 0 and for all 1 ≤ i, j ≤ n such that i + j > n + 1

(Region II), we have the space/time invariants P (i, j, k) where:

P (i, j, k) ⇔ r(i, j) = x[i][3n− i− j − k + 1]

b(i, j) = y[3n− i− j − k + 1][j]

v(i, j) = x[i][n]y[n][j] + x[i][n− 1]y[n− 1][j] + ...+

x[i][3n− i− j − k + 1]y[3n− i− j − k + 1][j]

Proof. Proof is based on induction on the three dimensional logical space

indexed by (i, j, k). The basis for k is P (i, j, 0), where r(i, j) = b(i, j) =

v(i, j) = 0. This is true by definition as all registers are initialized to zero as

specified in Section 2.2.1.

For general P (i, j, k) for 1 ≤ i, j ≤ n and k ≥ 0, we start with the

two cases j = n and j < n. In the first case, from Lemma 3, we have

r(i, n) = x[i][2n− i− k + 1] = x[i][3n− i− j − k + 1] at the end of the k-th

iteration. In the second case, assume P (i, j + 1, k− 1) for induction, that is:

r(i, j + 1) = x[i][3n− i− (j + 1)− (k − 1) + 1] = x[i][3n− i− j − k + 1]

When j < n, the assignment statement r(i, j) = r(i, j + 1) is performed.

Thus at the end of the k-th iteration, from induction, we have r(i, j) =

x[i][3n− i− j − k + 1] for k ≥ 0.

Similarly, from Lemma 3, we have b(n, j) = y[2n− j − k+ 1][j] = y[3n−
i− j − k+ 1][j] for i = n, and from P (i+ 1, j, k− 1) for i < n and k ≥ 0, we

17

have:

b(i+ 1, j) = y[3n− (i+ 1)− j − (k − 1) + 1][j] = y[3n− i− j − k + 1][j]

When i < n, the assignment statement b(i, j) = b(i+1, j) is performed. Thus

we have b(i, j) = y[3n− i− j − k + 1][j] for k ≥ 0.

Also from P (i, j, k − 1) we have:

v(i, j) = x[i][n]y[n][j] + x[i][n− 1]y[n− 1][j] + x[i][n− 2]y[n− 2][j] + ...

+x[i][3n− i− j − k + 2]y[3n− i− j − k + 2][j]

Then the statement v(i, j) = v(i, j) + r(i, j) · b(i, j) is performed. Thus at

the end of the k-th iteration, P (i, j, k) holds.

Theorem 2. Algorithm 4 correctly computes Z = X × Y in {v(i, j)} in

2n− 1 steps.

Proof. We divide the cells into two regions, Region I and Region II. All

cell(i, j) such that i + j ≤ n + 1 belongs to Region I, and all other cells

belong to Region II. For Region I, when k = 2n − 1, by Lemma 4, we have

v(i, j) = x[i][1]y[1][j]+x[i][2]y[2][j]+ ...+x[i][2n− i−j+1]y[2n− i−j+1][j].

Since the maximum value for i + j in Region I is n + 1, v(i, j) = zij for all

v(i, j) in Region I. For Region II, by Lemma 5 we have v(i, j) = x[i][n]y[n][j]+

x[i][n − 1]y[n − 1][j] + ... + x[i][n − i − j + 2]y[n − i − j + 2][j]. Since the

minimum value for i+ j is n+ 2 for Region II, we have v(i, j) = zij also for

all v(i, j) in Region II.

2.2.4 Using Values from All Four Directions

We can observe that in Algorithms 2 and 4, each cell(i, j) performs x[i][k] ·
y[k][j] for a single value of k in each step. Suppose at a given step, x[i][k1]

and y[k1][j] arrives on cell(i, j) from left and top, respectively, and x[i][k2]

and y[k2][j] arrives from right and bottom, respectively, such that k1 6= k2.

Then we can perform the calculation v(i, j) ← v(i, j) + x[i][k1]y[k1][j] +

x[i][k2]y[k2][j] in the given step, which we call the quintuple operation. This

allows us to accumulate the sum of two products instead of just one product

18

xnn
2

yn1

yn
2
n

y1n

y1nyn1

y1n
2

x1n

xn1

x1n x1n
2

xn1

I

II

III

Figure 2.4: Utilising data from all four directions.

in a single step, thereby reducing the total number of communication steps

even further.

We present Algorithm 5 to compute Z = XY in exactly 1.5n − 1 steps,

where n is assumed to be even for simplicity. An illustration of the start of

this algorithm is given in Figure 2.4. Note that there is no longer a need

to load all n2 values from both X and Y from the four different directions.

Since the algorithm finishes after 1.5n− 1 steps, as illustrated in Figure 2.4,

we only load 7
8
n2 matrix elements from each direction.

Lemma 6. For all k ≥ 0 and for all 1 ≤ i, j ≤ n such that i + j ≤ n
2

+ 1

19

Algorithm 5 Computing Z = XY in parallel in 1.5n− 1 steps.

1: for k = 1 to 1.5n− 1 do
2: for all 1 ≤ i, j ≤ n in parallel do
3: if i+ j ≤ n

2
+ 1 then

4: /* Region I */
5: Same as Region I in Algorithm 4
6: else if i+ j > 3n

2
then

7: /* Region II */
8: Same as Region II in Algorithm 4
9: else/* n

2
+ 1 < i+ j ≤ 3n

2
*/

10: /* Region III */
11: if j = 1 then
12: l(i, 1)← L[i][1]
13: else
14: l(i, j)← l(i, j − 1)

15: if i = 1 then
16: t(1, j)← T [1][j]
17: else
18: t(i, j)← t(i− 1, j)

19: if j = n then
20: r(i, n)← R[i][1]
21: else
22: r(i, j)← r(i, j + 1)

23: if i = n then
24: b(n, j)← B[1][j]
25: else
26: b(i, j)← b(i+ 1, j)

27: v(i, j)← v(i, j) + l(i, j) · t(i, j) + r(i, j) · b(i, j)
28: Shift L and R horizontally by one
29: Shift T and B vertically by one

20

(Region I), we have the space/time invariants P (i, j, k) where:

P (i, j, k) ⇔ l(i, j) = x[i][k − i− j + 2]

t(i, j) = y[k − i− j + 2][j]

v(i, j) = x[i][1]y[1][j] + x[i][2]y[2][j] + ...+

x[i][k − i− j + 2]y[k − i− j + 2][j]

Proof. Same as the proof of Lemma 2.

Lemma 7. For all k ≥ 0 and for all 1 ≤ i, j ≤ n such that i+j > 3n
2

(Region

II), we have the space/time invariants P (i, j, k) where:

P (i, j, k) ⇔ r(i, j) = x[i][3n− i− j − k + 1]

b(i, j) = y[3n− i− j − k + 1][j]

v(i, j) = x[i][n]y[n][j] + x[i][n− 1]y[n− 1][j] + ...+

x[i][3n− i− j − k + 1]y[3n− i− j − k + 1][j]

Proof. Same as the proof of Lemma 5

Lemma 8. For all k ≥ 0 and for all 1 ≤ i, j ≤ n such that n
2

+1 < i+j ≤ 3n
2

(Region III), we have the space/time invariants P (i, j, k) where:

P (i, j, k) ⇔ l(i, j) = x[i][k − i− j + 2]

t(i, j) = y[k − i− j + 2][j]

r(i, j) = x[i][3n− i− j − k + 1]

b(i, j) = y[3n− i− j − k + 1][j]

v(i, j) = x[i][1]y[1][j] + x[i][2]y[2][j] + ...

x[i][k − i− j + 2]y[k − i− j + 2][j] + ...

x[i][3n− i− j − k + 1]y[3n− i− j − k + 1][j] + ...

x[i][n− 1]y[n− 1][j] + x[i][n]y[n][j]

Proof. Proof is straightforward by combining the proofs of Lemma 6 and

Lemma 7.

Theorem 3. On a 2D square mesh array with n2 cells where each cell is

limited to four connections to its neighbours (Top, Bottom, Left and Right),

the product of two n-by-n matrices can be computed in exactly 1.5n−1 steps.

21

Proof. We divide the mesh array into three regions, Region I, II and III. All

cell(i, j) such that i + j ≤ n
2

+ 1 belong to Region I. All cell(i, j) such that

i+ j ≥ 3n
2

+ 1 belong to Region II. All other cells belong to Region III.

• Region I: At k = 1.5n − 1, by Lemma 6, v(i, j) = x[i][1]y[1][j] +

x[i][2]y[2][j] + ...+ x[i][1.5n− i− j + 1]y[1.5n− i− j + 1][j]. Since the

maximum value of i+ j is 0.5n+ 1, v(i, j) = zij for all (i, j) in Region

I.

• Region II: At k = 1.5n − 1, by Lemma 7, v(i, j) = x[i][n]y[n][j] +

x[i][n − 1]y[n − 1][j] + ... + x[i][1.5n − i − j + 2]y[1.5n − i − j + 2][j].

Since the minimum value of i + j is 1.5n + 1, v(i, j) = zij for all (i, j)

in Region II.

• Region III: At k = 1.5n − 1, by Lemma 8, v(i, j) = x[i][1]y[1][j] +

x[i][2]y[2][j] + ...+x[i][1.5n− i− j+ 1]y[1.5n− i− j+ 1][j] +x[i][1.5n−
i− j+ 2]y[1.5n− i− j+ 2][j] + ...+x[i][n− 1]y[n− 1][j] +x[i][n]y[n][j].

Thus v(i, j) = x[i][1]y[1][j] + x[i][2]y[2][j] + ...+ x[i][n]y[n][j] = zij.

We now conclude this chapter with our contribution to the topic of ma-

trix multiplication given by Theorem 3. We make a final note that there is

still room for improvements to Algorithm 5 in terms of the memory usage.

As noted earlier, the loader matrices are not required for actual implementa-

tion hence no additional memory is required for storing skewed and reversed

matrices. Also if the mesh array supports loading data from both Left and

Right (and both Top and Bottom) from the same location, then again we do

not need any additional memory for storing copies of matrices to load values

of matrices from both corners.

22

Chapter III

Shortest Paths (SP)

The SP problem is often studied as two separate sub-topics, namely, the

Single Source SP (SSSP) problem, and the All Pairs SP (APSP) problem. As

the names of the problems suggest, the SSSP problem is to find the shortest

paths from a single source vertex, s, to all other vertices in the graph, and

the APSP problem is to find the shortest paths between all pairs of vertices.

Arguably the most famous algorithms for solving the SSSP and the APSP

problems are Dijkstra’s algorithm1 [16] and Floyd’s algorithm [22], respec-

tively. Dijkstra’s algorithm runs in O(m + n log n) time if enhanced with a

priority queue such as the Fibonacci heap [25, 9]. Floyd’s algorithm runs in

O(n3) time. For dense graphs where m = O(n2), solving the APSP problem

with Floyd’s algorithm has the same time complexity as solving the problem

by running Dijkstra’s algorithm n times, once per each vertex as the source.

Many algorithms exist that exploit certain properties of the input graphs

to achieve faster time bounds. For example, for graphs with integer edge costs

bounded by c, Thorup gave an O(m + n log log c) algorithm [75] for solving

the SSSP problem and Takaoka gave an O(mn+ n2 log (c/n)) algorithm [71]

for solving the APSP problem. For nearly acyclic graphs, Takaoka gave an

O(m + n log k) algorithm [69] for solving the SSSP problem where k is the

maximum cardinality of the strongly connected components, Abuaiadh and

Kingston gave an O(m+n log t) algorithm [1] where t is the number of delete-

min operations performed in the priority queue manipulation, and Saunders

and Takaoka gave an O(m + r log r) algorithm [56] where the graph can be

decomposed into r trees (or more generally, r 1-dominator sets, including

trees).

There has also been active research in breaking the O(n3) barrier for

1 Dijkstra’s algorithm only works on graphs with non-negative edge costs. We do not
discuss graphs with negative edge costs in this thesis.

23

Year Time Complexity Author(s)

1976 O(n3(log log n/ log n)1/3) Fredman [24]
1990 O(n3/

√
log n) Dobosiewicz [18]

1992 O(n3
√

log log n/ log n) Takaoka [67]
2004 O(n3(log log n/ log n)5/7) Han [31]
2005 O(n3 log log n/ log n) Takaoka [70]
2006 O(n3

√
log log n/ log n) Zwick [84]

2008 O(n3/ log n) Chan [11]
2008 O(n3(log log n/ log n)5/4) Han [32]
2012 O(n3 log log n/ log2 n) Han and Takaoka [33]

Table 3.1: Breaking the cubic barrier of the APSP problem.

solving the APSP problem on dense graphs with real edge costs. Table 3.1

shows the progress in reducing the asymptotic worst-case time complexity.

The main idea used in most of the listed algorithms is to pre-compute a

lookup table that can be used to speed up the main computation of finding

the shortest paths. All time complexities given in Table 3.1 are only slightly

sub-cubic, achieving speed-ups of only polylog2 factor.

In 1991, the three authors Alon, Galil and Margalit made a breakthrough

by providing a deeply sub-cubic algorithm [4], albeit only for small integer

edge costs. We refer to this algorithm as the AGM algorithm. In Section

3.2, we provide a review of the AGM algorithm, which was the first algo-

rithm to successfully utilise FMMOR to solve the APSP problem. Our first

contribution to the SP problem is to enhance the AGM algorithm such that

the running time of the algorithm remains sub-cubic for larger integer edge

costs.

In terms of parallel algorithms, in 1967, Hu gave a parallel distributed

algorithm for solving the APSP problem on an n-by-n mesh array [36] based

on a serial algorithm called the cascade algorithm, which was invented by

Farby, Land and Murchland earlier in the same year [21]. Later in 1987,

Lakhani and Dorairaj gave a different parallel algorithm for the n-by-n mesh

array [42], based on Floyd’s algorithm [22] for solving the APSP problem.

On a related note, in 1979, Guibas, Kung and Thompson gave a parallel

2 A polylog factor is a logarithmic factor that has been raised to a power greater than 1.

24

algorithm for solving the transitive closure on the n-by-n mesh array [30],

and Ullman showed that this algorithm for computing the transitive closure

can be easily adapted to solve the APSP problem [76].

More recently, in 1992, Takaoka and Umehara enhanced the algorithm

by Lakhani and Dorairaj such that the APSP problem can be solved in

just 3.5n communication steps [72], which was a big improvement from the

5n communication steps required by both Hu’s algorithm and the original

algorithm by Lakhani and Dorairaj. Our second contribution to the SP

problem, given in Section 3.4, is to achieve exactly 3n − 2 communication

steps for solving the APSP problem on the n-by-n mesh array.

Before we present our two contributions to the SP problem in Sections

3.3 and 3.4, we describe the algebraic structure called the distance semi-ring

in Section 3.1 to show how the theory of semi-rings and matrices can relate

to the SP problem.

3.1 Distance Semi-ring

We define a matrix called the distance matrix, D = {dij}, where dij is the

edge cost from vertex i to vertex j. That is, dij = cost(i, j). If (i, j) 6∈ E,

then dij = ∞. Naturally for graphs with n vertices, D is an n-by-n matrix.

dii = 0 for all 1 ≤ i ≤ n, that is, the distance from a vertex to itself is zero.

We now introduce the (min,+)-product of matrices denoted as ?, such

that the (min,+)-product Z = X ? Y is given by:

zij =
n

min
k=1
{xik + ykj}

The meaning of the (min,+)-product becomes clear when we consider com-

puting D2 = D ? D. We can think of k as the “via” vertex on a path from

vertex i to vertex j, as shown in Figure 3.1. The distance from vertex i to

vertex j via vertex k is given by dik + dkj. After computing the distances

for all 1 ≤ k ≤ n via vertices, we take the minimum among them. Hence

d2ij is the shortest distance possible from vertex i to vertex j with paths of

lengths up to 2, where the path length is the number of edges on the path.

(It is important to clearly distinguish the path length from the path dis-

25

i j

1

k

n

2

Figure 3.1: Which via vertex, k, gives us the best path from i to j?

tance/cost.) Clearly, Dn−1 is the solution to the APSP problem. If T (n) is

the time taken to perform the (min,+)-product, by repeated squaring, we

can solve the APSP problem in O(T (n) log n) time.

In fact, we can solve the APSP problem in just O(T (n)) time based on

the theory of semi-rings. (R,min ,+,∞, 0) is a closed semi-ring [2], which we

refer to as the distance semi-ring. Then it follows that (M,+, ·, O, I) is also

a semi-ring, where M is the set of all possible n-by-n distance matrices, O is

the zero distance matrix and I is the identity distance matrix. We refer to

(M,+, ·, O, I) as the distance matrix semi-ring. In the distance matrix semi-

ring, + is a component-wise min operation and · is the (min,+)-product

defined above. The zero distance matrix, O, has ∞ for all elements and

the identity distance matrix, I, has 0 for the diagonals and ∞ for all other

elements.

The closure of the distance matrix D in the distance matrix semi-ring,

denoted by D∗, is given by the following equation:

D∗ =
∑
k∈N

Dk

Since the maximum number of edges of any shortest path is n − 1, we can

26

stop at Dn−1 to compute the closure in the distance matrix semi-ring [82]:

D∗ =
n−1∑
k=0

Dk

Clearly, D∗ is the solution to the APSP problem. A general algorithm for

computing the closure of a semi-ring matrix was given by McNaughton and

Yamada [46]. In fact, Floyd’s algorithm can be thought of as a specific

instance of the more generic algorithm by McNaughton and Yamada, and

using Floyd’s algorithm, D∗ can be computed in O(n3) time.

It is also known that the closure of a semi-ring matrix can be computed

in the same asymptotic time complexity as computing the product in the

semi-ring if the equation T (2n) ≥ 4(T (n)) is satisfied [2]. This is clearly true

in the distance matrix semi-ring, hence the APSP problem can be solved

in O(T (n)). Using the straightforward method to compute the (min,+)-

product yields T (n) = O(n3), which equals the time bound given by Floyd’s

algorithm.

Can we claim T (n) = O(nω) where ω < 2.373? Unfortunately FMMOR

introduced in Section 2.1 only works over a ring. More specifically, FMMOR

requires the inverse of the + operation. In the distance matrix semi-ring the

+ operation is a component-wise min operation, and no inverse operation

exists for the min operation.

Thus even though the APSP problem translates nicely onto a matrix,

FMMOR cannot be used directly to compute the closure of the distance

matrix semi-ring. However, it is possible to utilise FMMOR to achieve a

sub-cubic time bound for the APSP problem, as we will discuss in Section

3.2.

3.2 Deeply Sub-cubic Time Complexity

In this section we provide a review of the AGM algorithm. We start by

defining the reachability matrix R = {rij}, where rij = 1 if an edge exists

from vertex i to vertex j, and 0 otherwise. A vertex is reachable from itself,

hence rii = 1 for all 1 ≤ i ≤ n. Clearly R is an n-by-n Boolean matrix.

We define the Boolean-product, denoted as •, such that the Boolean product

27

Z = X • Y is given by:

zij =
n∨

k=1

{xik ∧ ykj}

Similarly to the (min,+)-product that was introduced in Section 3.1, the

meaning of the Boolean-product becomes clear when we consider computing

R2 = R •R. Again k can be thought of as the via vertex. r2ij = 1 if vertex j

is reachable from vertex i with paths of lengths up to 2. If rn−1ij = 1 for all

i and j, then the graph must be strongly connected. In fact Rn−1 is called

the reflexive-transitive closure.

Since Boolean algebra does not form a ring, FMMOR cannot be used di-

rectly to compute the Boolean-product. It is quite straightforward, however,

to utilise FMMOR to perform the Boolean-product as follows: we simply

treat all 0s and 1s in the Boolean matrices as integers and use FMMOR to

compute the matrix product over the ring of integer matrices, then we scan

the resulting matrix and convert all elements that are greater than 1 to 1.

Let us now simplify the APSP problem and consider only directed graphs

with unit edge costs. Then we can use the reachability matrix to determine

the shortest distances. For example, if r`ij = 1 but r`−1ij = 0 for some path

length `, then this means vertex j is only reachable from vertex i with paths

of lengths ` or greater. Since on graphs with unit edge costs path lengths

and path distances are equivalent, the shortest distance from i to j in this

example must be `. Algorithm 6 shows how the distances can be retrieved

from the reachability matrix.

Algorithm 6 Determine the shortest distances from the reachability matrix.

1: for ` = 2 to r do
2: R` ← R`−1 •R
3: D` ← D`−1

4: for i← 1 to n; j ← 1 to n do
5: if r`ij = 1 and r`−1ij = 0 then

6: d`ij ← `

In Algorithm 6, r is an integer constant such that 1 < r < n. If r = n−1,

at the end of the algorithm we have Dn−1 and hence the APSP problem

has been solved. This method of solving the APSP problem is inefficient,

28

i j

`

Figure 3.2: To get to vertex j from i, must we check O(n) via vertices?

however, as the total time complexity of this method is O(nω+1), which is

slower than the O(n3) running time of Floyd’s algorithm [22].

This is where Alon et al.’s main theorem comes in. Let us suppose that

R`, and thus D` has been computed for some ` < n. Suppose we wish to

compute D2` by squaring D` using the (min,+)-product. Then do we really

need to consider all 1 ≤ k ≤ n via vertices to compute each d2`ij ?

Let us consider vertex i as the source vertex, and let j be a vertex such

that the shortest distance from i to j is between ` and 2`. See Figure 3.2.

To get to vertex j from i, we need to pass at least one vertex at path length

1, and another vertex at path length 2, and another vertex at path length 3,

and so on until we finally have to pass a vertex at path length of `. In the

worst case there may already be O(n) vertices that are reachable from i with

path lengths up to `. Then by the pigeon hole principle, we can pick a path

length p between 1 and `, such that the number of vertices at path length of

p is at most O(n/`). Since at least one vertex whose path length is p must

be passed from vertex i to get to vertex j, this means we only need to check

O(n/`) as our via vertices rather than all n vertices! We refer to this key

theorem as the bridging set theorem, which gives rise to Algorithm 7.

We use the same car analogy as the review of the same algorithm given by

Takaoka [68]. We refer to the first part of the algorithm as the acceleration

29

Algorithm 7 The AGM algorithm for solving the APSP problem.

/* Acceleration phase*/
1: Same as Algorithm 6

/* Cruising phase*/
2: ` = r
3: while ` < n do
4: `′ ← d3`

2
e

5: for i← 1 to n do
6: scan ith row of D` with j and find the smallest set of equal d`ij
7: such that d`/2e ≤ d`ij ≤ ` and let the set of j be Si

8: /* Si is the bridging set for row i */

9: for i← 1 to n; j ← 1 to n do
10: mij ← mink∈Si

{d`ik + d`kj} /* squaring D` with the help of Si */

11: if mij < d`ij and mij < `′ then

12: d`
′
ij ← mij

13: else
14: d`

′
ij ← d`ij

15: `← `′

phase, where we slowly build up the path length one by one up to some

integer constant 1 < r < n. Once we have reached a certain speed (path

length), we change gear and move onto the cruising phase, where we perform

repeated squaring of the distance matrix with the help of the bridging set,

Si for row i, which is the set of via vertices to check from the source vertex i

to the destination vertex j, for 1 ≤ j ≤ n. Alon et al. chose to increase the

path length by a factor of 1.5 in each iteration of the cruising phase. This is

somewhat arbitrary, as any factor greater than 1 and less than 2 will work.

The time complexity of the acceleration phase is O(rnω). The time com-

plexity of the cruising phase is not so straightforward. As explained above

we only need to consider O(n/r) via vertices to compute each of the n2 dis-

tances (|Si| = O(n/r)) thus we start with O(n2 · n/r). No logarithmic factor

is required for repeated squaring because the path length increases by a con-

stant factor in each iteration, thereby decreasing the size of the bridging set

accordingly. This means we end up with a geometric series if we add up the

size of the bridging set in each iteration and the first term dominates the

30

time complexity. Therefore the time complexity of the cruising phase is just

O(n2 ·n/r). We choose the best value for r by balancing the time complexities

of the two phases. rnω = n3/r gives us r = n(3−ω)/2, and hence the asymp-

totic worst case time complexity of Algorithm 7 is O(n(3+ω)/2) < O(n2.687).

But have we actually solved the APSP problem? We have computed

the shortest distances between vertices, but how can we retrieve the explicit

paths? After all, the name of the problem is “Shortest Paths”, not “Shortest

Distances”. Storing all explicit paths would requireO(n3) time, which defeats

the purpose of sub-cubic algorithms. We get around this problem with the

help of witness vertices and successor vertices.

Suppose in an iteration dik + dkj gives us the minimum distance from i

to j for some via vertex k. Then k is the witness vertex. In other words,

the vertex k proves to us that there exists a path from i to j with the given

distance. In the cruising phase, retrieving the witness vertex is trivial. In

the acceleration phase, however, retrieving the witness vertex is not a simple

matter as FMMOR is used to perform the Boolean-product. Fortunately,

it is known that a witnessed Boolean-product can be performed with an

additional polylog factor [26], such that in each iteration of the acceleration

phase, we are given the witness matrix W = {wij} for all pairs of vertices as

a by-product.

From the witness vertices, we can derive the successor vertices. A succes-

sor vertex on a path from i to j is the vertex that comes immediately after i

on the path. Thus simply by following the successor vertices one by one, we

can derive explicit paths in time linear to the path length. The algorithm

for deriving the successor vertices from the witness vertices in O(n2) time

bound has been given by Zwick [83].

And thus, the APSP problem on directed graphs with unit edge costs

can be solved in Õ(n2.687) time, where Õ is a common notation used to omit

all polylog factors in the time complexity. The result of this algorithm is

the matrix Dn−1 that contains the shortest distances for all pairs of vertices,

and another n-by-n matrix of successor vertices that we can use to retrieve

explicit paths.

31

G G′

4

3

2

i

j

k

i

j

k

Figure 3.3: Expanding G to G′ with c = 4.

3.3 Expansion and Contraction of Graphs

Alon et al. then applied their deeply sub-cubic algorithm to graphs with inte-

ger edge costs. In order to do this, they provided a mechanism to transform

the graph G that has integer edge costs bounded by c, to another graph,

G′, with unit edge costs with a total of cn vertices, such that solving the

APSP problem on G′ solves the problem on G. We refer to this transfor-

mation process as graph expansion. Expansion of G to G′ involves creating

c− 1 artificial vertices for each real vertex, and linking the artificial vertices

and real vertices to ensure that the distances between the real vertices stays

consistent with G. An example of the graph expansion process is shown in

Figure 3.3.

As the example shows, after creating a chain of artificial vertices, we can

link the vertices together with edges of unit costs such that the distances

between real vertices in G′ is consistent with the distances in G. Therefore

the APSP problem on directed graphs with integer edge costs bounded by c

can be solved with Algorithm 7 in Õ((cn)(3+ω)/2) time, which remains sub-

cubic for c < n(3−ω)/(3+ω) < n0.117.

Note that we can optimize G′ from the observation that not all real ver-

tices require the chain of c− 1 artificial vertices created for them. If we let k

32

G′

G

`

`/c

Figure 3.4: Path length of ` in G′ is equivalent to path length of `/c in G.

be the maximum edge cost out of all out-going edges from the real vertex v

such that 1 ≤ k ≤ c, then it is sufficient to create just k− 1 artificial vertices

for v rather than c − 1 artificial vertices. This optimization during graph

expansion can be significant if the variance in edge costs in G is large.

Our first contribution to the SP problem is to enhance the AGM algorithm

such that the algorithm remains sub-cubic for larger values of c. We achieve

this with the key observation that only the acceleration phase of Algorithm

7 is restricted to graphs with unit edge costs, and the cruising phase has no

such limitations. In summary, we use G′ for the acceleration phase, gather

the information, then switch back to G for the cruising phase. We refer to

the process of going from G′ back to G as graph contraction.

Note that the distinction between path lengths and path distances has

now become very important. The path length of G′ is actually equivalent

to the path distance in G, as illustrated in Figure 3.4. The bridging set

theorem used in the cruising phase is based on the path length. Therefore in

the acceleration phase, while we are building up the path length in G′ one

by one, we need to keep track of what the equivalent path length is in G,

such that we can use this information in the cruising phase to determine the

bridging sets, Si. We define the path length matrix H = {hij} to store this

information in the acceleration phase. Algorithm 8 is the enhanced AGM

algorithm.

33

Algorithm 8 Enhanced AGM algorithm.

/* Graph expansion and initialisation */
1: Expand G to G′, initialize D and R based on G′

2: for i← 1 to cn; j ← 1 to cn do
3: hij = 0

/* Acceleration phase */
4: for ` = 2 to r do
5: R` ← R`−1 •R /* witnesses given as W = {wij} */
6: for i← 1 to cn; j ← 1 to cn do
7: if r`ij = 1 and r`−1ij = 0 then

8: d`ij ← `
9: k = wij

10: if j ∈ G /* j is a real vertex */ then
11: hij = hik + 1 /* path length in G is incremented */
12: else
13: hij = hik

14: if d`−1ij < ` then

15: d`ij ← d`−1ij

/* Graph contraction */
16: Remove all rows/columns for artificial vertices from D and H

/* Cruising phase*/
17: ` = r
18: while ` < n do
19: `′ ← d3`

2
e

20: for i← 1 to n do
21: scan ith row of H with j and find the smallest set of equal hij such
22: that d`/2e ≤ hij ≤ ` and let the set of corresponding j be Si

23: for i← 1 to n; j ← 1 to n do
24: mij ← mink∈Si

{d`ik + d`kj} /* squaring D` with Si */
25: k ← the witness vertex
26: if mij < d`ij then

27: d`
′
ij ← mij

28: hij ← hik + hkj /* path length is updated accordingly */
29: else
30: d`

′
ij ← d`ij

31: `← `′

34

Theorem 4. Algorithm 8 solves the APSP problem on directed graphs with

integer edge costs bounded by c in Õ(c(1+ω)/2n(3+ω)/2) time.

Proof. For proof of correctness it is sufficient to show that the correct path

length in G is kept in H since the correctness of Algorithm 7 has already been

proven [4]. In the acceleration phase, when j first becomes reachable from i

(i.e. when the shortest distance is found from i to j), hij is incremented only

when j is a real vertex. This ensures that we are not counting the artificial

vertices in the path length, hence hij is correct after the acceleration phase.

In the cruising phase it is straightforward to keep hij up to date, simply by

updating hij whenever a shorter path is found between i and j.

The time complexity of the acceleration phase is Õ(r(cn)ω). For the time

complexity of the cruising phase we must consider the lower bound of hij

at the start of the cruising phase, for any i and j, because this determines

the upper bound on the size of the bridging set. In the worst case, all edge

costs are c, which gives us the lower bound of r/c for any path length hij.

Therefore the upper bound on the size of the bridging set at the start of

the cruising phase is |Si| = O(cn/r), and hence the time complexity of the

cruising phase becomes O(cn3/r). Balancing the two time complexities gives

us r = c(1−ω)/2n(3−ω)/2, which results in the total worst case time complexity

of Õ(c(1+ω)/2n(3+ω)/2).

We can observe that Õ(c(1+ω)/2n(3+ω)/2) ≤ Õ((cn)(3+ω)/2). In fact, Algo-

rithm 8 remains sub-cubic for c < n0.186. Although there exists more efficient

algorithms for the APSP problem that remain sub-cubic for a larger upper

bound on integer edge costs, up to c < n0.624 [68, 83], our contribution given

by Theorem 4 remains significant. Firstly, it enhances a breakthrough al-

gorithm that was widely celebrated, and secondly, as we will discuss later

in the thesis, we can use the enhancement to derive efficient algorithms for

solving other graph path problems, such as the SP-AF problem.

3.4 APSP Problem on the Mesh Array

Our second contribution to the SP problem comes in the form of a paral-

lel distributed algorithm on an n-by-n 2D square mesh array to solve the

35

APSP problem. The definition of the mesh array used for this section is

almost exactly the same as the mesh array defined in Section 2.2 for matrix

multiplication. The only differences are that all registers are initialized to

∞ (instead of 0), and the set of operations performed by each cell in each

communication step is different.

Our parallel algorithm is derived from the serial cascade algorithm in-

vented by Farby, Land and Murchland [21]. Thus we start with an in-depth

review of the cascade algorithm in Section 3.4.1 based on Umehara’s masters

thesis [77] and its translation by Takaoka [73]. We then present our new

parallel algorithm in Section 3.4.2.

3.4.1 Review of the Cascade Algorithm

The name “cascade” comes from the fact that previously computed distances

(dij) are used in later computations. The algorithm consists of two distinct

phases, which we refer to as the Forward Process (FWP) and the Backward

Process (BWP). Note that all vertices in V are numbered from 1 to n. In the

FWP, the vertices are inspected in increasing order, whereas in the BWP, the

vertices are inspected in decreasing order. The pseudo code for the original

cascade algorithm is given by Algorithm 9.

Algorithm 9 The original cascade algorithm.

/* Forward Process (FWP) */
1: for i = 1 to n do
2: for j = 1 to n do
3: for k = 1 to n do
4: dij = min {dij, dik + dkj}

/* Backward Process (BWP) */
5: for i = n down to 1 do
6: for j = n down to 1 do
7: for k = n down to 1 do
8: dij = min {dij, dik + dkj}

Let us now compare the cascade algorithm to Floyd’s algorithm given by

Algorithm 10. We refer to the operation of performing “min {dij, dik + dkj}”
as the triple operation. We can observe that the cascade algorithm in its

36

original form performs twice as many triple operations as Floyd’s algorithm.

Perhaps this is the reason why the cascade algorithm has been slowly forgot-

ten while Floyd’s algorithm remains one of the most well known algorithms

in graph theory.

Algorithm 10 Floyd’s algorithm.

1: for k = 1 to n do
2: for i = 1 to n do
3: for j = 1 to n do
4: dij = min {dij, dik + dkj}

We can revive the cascade algorithm, however, by limiting the number

of vertices that are inspected in the inner-most loop, as shown in Algorithm

11. We refer to the modified FWP as the Short Forward Process (SFWP)

and the modified BWP as the Long Backward Process (LBWP). Similarly

we can define the Long Forward Process (LFWP) where k sweeps from 1 to

max {i, j}, and the Short Backward Process (SBWP) where k sweeps from

n down to max {i, j}.

Algorithm 11 Improved cascade algorithm.

/* Short Forward Process (SFWP) */
1: for i = 1 to n do
2: for j = 1 to n do
3: for k = 1 to min {i, j} do
4: dij = min {dij, dik + dkj}

/* Long Backward Process (LBWP) */
5: for i = n down to 1 do
6: for j = n down to 1 do
7: for k = n down to min {i, j} do
8: dij = min {dij, dik + dkj}

In fact it is possible to optimize both Floyd’s algorithm and the improved

cascade algorithm (Algorithm 11) by skipping the triple operation if i = j or

i = k or j = k. Then the total number of triple operations performed in both

of the optimized algorithms can be shown to be exactly n(n− 1)(n− 2). In

other words, the cascade algorithm can be modified from its original version

37

i

j

k1

k2

k3

k4

km

Figure 3.5: The shortest path from i to j.

to be on a par with the better known Floyd’s algorithm. But of course,

we need to show that the modified cascade algorithm does indeed solve the

APSP problem correctly.

Vertex numbers play an important role in proving the correctness of Al-

gorithm 11. Let the shortest path from vertex i to vertex j be denoted by

vertices (i, k1, k2, k3, ..., km, j). An illustration of such a path is shown in

Figure 3.5, where the relative vertical positioning of the vertices is used to

visualize the relative vertex numbers. That is, in the path from i to j shown

in Figure 3.5, k3 > j > k2 > i > k1 > km > k4. With this visualization in

mind, we define some terminologies for various possible paths.

Definition 1. The path (i, k1, k2, ..., km, j) is:

• an up sequence, if i < k1 < k2 < ... < km < j

• a down sequence, if i > k1 > k2 > ... > km > j

• a valley sequence, if i > k` and j > k` for all `

• a hill sequence, if i < k` and j < k` for all `

• a short valley sequence, if m = 1 and i, j > k1

38

• a short hill sequence, if m = 1 and i, j < k1

Lemma 9. If the shortest path from i to j, (i, k1, k2, ..., km, j), is a valley

sequence, the shortest distance from i to j is given by dij at the end of the

SFWP.

Proof. Proof is by induction on the path length, where the path length is

defined to be the number of edges on the path. For our basis we assume

m = 1, that is, the shortest path from i to j is a short valley sequence. Then

the edges (i, k1) and (k1, j) are the shortest paths from i to k1 and k1 to j,

respectively. Since the triple operation min {dij, dik1 + dk1j} is performed in

the SFWP when k = k1, the basis is correct.

Assume that the lemma holds for some m. Let the shortest path from i

to j be (i, k1, k2, ..., km, km+1, j). Let k` = max {k1, k2, ..., km, km+1}. Then

the first sub-path (i, k1, ..., k`) is a valley sequence if ` > 2, a short valley

sequence if ` = 2, and a single edge if ` = 1. Similarly, the second sub-

path of (k`, k`+1, ...km, km+1, j) is either a valley sequence, or a short valley

sequence, or an edge. Since the path lengths of both sub-paths are less than

or equal to m, by the induction hypothesis, dik` and dk`j give the shortest

distances from i to k` and k` to j, respectively. Thus dik` + dk`j gives the

shortest distance from i to j by the argument in the basis above (see Figure

3.6).

Lemma 10. If the shortest path from i to j, (i, k1, k2, ..., km, j), is a hill

sequence, the shortest distance from i to j is given by dij at the end of the

SBWP.

Proof. Similar to the proof of Lemma 9.

Whenever dij is updated by the triple operation, we assume a hypothetical

edge (i, j) that has the cost dij. We describe this process as reducing the

shortest path from i to j to the hypothetical edge (i, j). Note that if (i, j) ∈ E
then this simply means that cost(i, j) is not the shortest possible distance

from i to j and the new hypothetical edge represents a path of a shorter

distance.

We now define two additional sequences. The visualization of these se-

quences are shown in Figure 3.7.

39

i

j

k`

Figure 3.6: The path from i to j is a valley sequence that consists of sub-paths
that are also valley sequences.

Definition 2. The path (i, k1, k2, ..., k`, ..., km, j) is:

• an extended valley sequence, if (i, ..., k`) is a valley sequence and (k`, ..., j)

is an up sequence such that i < k`, or if (i, ..., k`) is a down sequence

and (k`, ..., j) is a valley sequence such that k` > j.

• an extended hill sequence, if (i, ..., k`) is a hill sequence and (k`, ..., j)

is down sequence such that i > k`, or if (i, ..., k`) is an up sequence and

(k`, ..., j) is a hill sequence such that k` < j.

Lemma 11. If the shortest path from i to j, (i, k1, k2, ..., km, j), is one of the

following three sequences, the value of dij gives the shortest distance from i

to j at the end of the LFWP.

(1) an up sequence

(2) a down sequence

(3) an extended valley sequence

Proof. We prove (1) by induction. To prove the basis we assume that the

up sequence is simply the edge (i, j). For the induction hypothesis, assume

40

i

j

k`

i

j

k`

Figure 3.7: An extended valley sequence and an extended hill sequence.

that dikm gives the shortest distance from i to km after the FWP. Then dij

is given by dikm + dkmj, which is obviously true since dkmj is the edge cost of

(km, j) and the edge from km to j is on the shortest path. The proof for (2) is

similar. Note that for (1), the shortest distances are calculated in the order

of dik1 , dik2 , ..., dikm , dij, and for (2), the shortest distances are calculated in

the order of dkmj, dkm−1j, ..., dk1j, dij.

To prove (3) we first prove the case of i < j. Let k be the minimum

vertex on the final up sequence such that i < k. Then the path from i to k

is a valley sequence, which is reduced to the hypothetical edge (i, k) during

the FWP by Lemma 9. Then the path (i, k, ..., j) is an up sequence. Since

higher vertices are processed later in the FWP, the computation process is

the same as the up sequence. Clearly, the case of i > j is symmetric.

Lemma 12. If the shortest path from i to j, (i, k1, k2, ..., km, j), is one of the

following three sequences, the value of dij gives the shortest distance from i

to j at the end of the LBWP.

(1) a down sequence

(2) an up sequence

(3) an extended hill sequence

41

i

j
a1

ar

Figure 3.8: Valley sequences and extended valley sequences are reduced to
hypothetical edges by the SFWP.

Proof. Similar to the proof of Lemma 11.

Lemma 13. The execution of the SFWP followed by the LBWP, symbolized

by (SFWP, LBWP), computes the shortest distance from i to j in dij.

Proof. By Lemma 9, all valley sequences within the shortest path from i to

j are reduced to hypothetical edges after the SFWP. In other words, the

shortest path is reduced to (i, a1, a2, ..., ar, j) where a1, a2, ..., ar are the end

points of the valley sequences (see Figure 3.8). Clearly, the reduced path of

(i, a1, a2, ..., ar, j) is an extended hill sequence, an up sequence or a down se-

quence. Thus by Lemma 12, performing LBWP on the path (i, a1, a2, ..., ar, j)

computes the shortest distance from i to j.

Lemma 14. The execution of the SBWP followed by the LFWP, denoted by

(SBWP, LFWP), computes the shortest distance from i to j in dij.

Proof. Similar to the proof of Lemma 13.

With Lemma 13, we have shown that the modified cascade algorithm

given by Algorithm 11 correctly solves the APSP problem, and our review

of the serial cascade algorithm is now complete. In the next section we show

that the serial cascade algorithm can be mapped onto the square mesh array

to give an efficient parallel algorithm.

42

3.4.2 Cascade Algorithm on the Mesh Array

In order to perform the FWP on the mesh array, we skew the distance matrix,

D, both vertically and horizontally, then load from the top and the left,

respectively. The distance matrix is skewed and reversed in the exact same

manner as described in Section 2.2, as shown in Figure 3.9. Clearly dik and

dkj will meet at cell(i, j) for all 1 ≤ k ≤ n. Thus we can perform the

triple operation by performing min {v(i, j), l(i, j) + t(i, j)}. Additionally, to

achieve the cascade effect, when dij arrives on cell(i, j) either from the left on

l(i, j) or the top on t(i, j), we release the value stored on v(i, j) onto l(i, j)

and t(i, j), respectively, such that the reduction of the shortest path from

i to j that has previously occurred is used for subsequent computation on

cells in higher columns and/or rows. This idea of releasing v(i, j) to achieve

the cascade effect originates from the algorithm given by Guibas, Kung and

Thompson for computing the transitive closure [30]. The pseudo code for

the FWP on the mesh array is given by Algorithm 12.

Algorithm 12 The FWP on the mesh array.

1: for s = 1 to 3n− 1 do
2: for all 1 ≤ i, j ≤ n in parallel do
3: if j = 1 then
4: l(i, 1)← di,s−i+1 /* load data from the left */
5: else
6: l(i, j)← l(i, j − 1) /* data is transferred to the right */

7: if i = 1 then
8: t(1, j)← ds−j+1,j /* load data from the top */
9: else

10: t(i, j)← t(i− 1, j) /* data is transferred to the bottom */

11: v(i, j)← min{v(i, j), l(i, j) + t(i, j)} /* the triple operation */
12: if s = i+ 2j − 2 then /* dij arrived from the left */
13: l(i, j)← v(i, j) /* release v(i, j) as the new dij */

14: if s = 2i+ j − 2 then /* dij arrived from the top */
15: t(i, j)← v(i, j) /* release v(i, j) as the new dij */

Lemma 15. dij arrives on cell(i, j) from the left at step s = i+ 2j − 2.

Proof. D is horizontally skewed and reversed such that dij arrives on the

43

d11

d21

d31

d12

d22 d13

d11

d21

d12

d31

d22

d13

Figure 3.9: Performing the FWP on the mesh array.

44

left edge of the mesh array (i.e. cell(i, 1)) at step s = i + j − 1. To reach

cell cell(i, j), it takes another j − 1 communication steps. (Refer to Section

2.2.)

Lemma 16. dij arrives on cell(i, j) from the top at step s = 2i+ j − 2.

Proof. Similar to the proof of Lemma 15.

Lemma 17. The FWP can be computed in 3n− 1 communication steps on

the mesh array.

Proof. dnn from the top and dnn from the left takes 3n − 1 steps to reach

cell(n, n).

Note that for all cells in Algorithm 12, k actually iterates from 1 to

n. In terms of the cascade effect, however, we release the value of v(i, j)

twice, once onto l(i, j) at the end of the step when the triple operation

min{dij, dij + djj} is performed, and once onto t(i, j) at the end of the step

when min{dij, dii + dij} is performed. Thus the cascade effect only holds for

k such that k ≤ max{i, j}. If i < j, releasing v(i, j) onto l(i, j) corresponds

to the SFWP and releasing v(i, j) onto t(i, j) corresponds to the LFWP. If

i > j then clearly the SFWP and the LFWP are swapped.

Lemma 18. The BWP can be computed in 3n− 1 communication steps on

the mesh array.

Proof. The BWP is clearly symmetrical to the FWP. Skewed and reversed

D is loaded from the left and from the bottom. d11 from the bottom and d11

from the left takes 3n− 1 steps to reach cell(1, 1).

Theorem 5. The APSP problem can be solved in 6n − 2 communication

steps on an n-by-n mesh array.

Proof. The FWP takes 3n− 1 steps as given in Lemma 17. After the FWP

is complete, using the values in v(i, j) as dij, we perform the BWP on a

re-initialized mesh array in another 3n− 1 steps. By Lemma 13, all shortest

distances are stored in v(i, j) after 6n− 2 communication steps.

45

The parallel algorithm described in the proof of Theorem 5 is as close

to the original serial cascade algorithm (Algorithm 9) as we can get on the

square mesh array. This parallel algorithm is far from optimal, as many

cells near the bottom right corner of the mesh array are not performing

useful computation at the start of the FWP, and also many cells on the top

left corner of the mesh array are not performing useful computation at the

start of the BWP. Can we start the computation from both corners of the

mesh array at the same time to reduce the number of communication steps,

similarly to the parallel matrix multiplication algorithm given in Section 2.2?

The answer is “yes”, but the difficulty is in proving the correctness of such

an algorithm.

In Algorithm 13, the FWP and the BWP are started at the same time

from both corners of the mesh array. In each step, instead of the triple oper-

ation, we perform the operation min {v(i, j), l(i, j) + t(i, j), r(i, j) + b(i, j)}.
This is very similar to the idea used in Section 2.2.4 to reduce the number of

communication steps required for matrix multiplication. For Algorithm 13

we also make a small enhancement to the mesh array by adding wraparounds.

That is, we add direct connections from the cells on the top of the mesh ar-

ray to the bottom of the mesh array and vice versa, such that t(i, n) can

be transferred directly to t(i, 1) and b(i, 1) can be transferred directly to

b(i, n). Similarly, we add wraparounds from/to the left edge of the mesh

array to/from the right edge of the mesh array. Note that each cell is still

limited to just four neighbours, although it can be argued that the mesh

array is no longer strictly 2D. Lines 12 and 14 in Algorithm 12 were due to

Lemma 15 and 16, respectively. In Algorithm 13, lines 32, 34, 36 and 38 are

based on the same set of principles, but with additional modulo operations

required because of the wraparounds.

In order to prove the correctness of Algorithm 13, we start with the

following definitions:

Definition 3. cell(i, j) is on the:

• FWP frontier, if (i+ j) mod n = (s+ 1) mod n

• BWP frontier, if (i+ j) mod n = (2n− s+ 1) mod n

46

Algorithm 13 Solve the APSP problem in 3n− 1 steps.

1: for s = 1 to 3n− 1 do
2: for all 1 ≤ i, j ≤ n in parallel do
3: if j = 1 then
4: if s < n+ i then
5: l(i, 1)← di,s−i+1

6: else
7: l(i, 1)← l(i, n) /* wraparound from the right edge */

8: else
9: l(i, j)← l(i, j − 1)

10: if i = 1 then
11: if s < n+ j then
12: t(1, j)← ds−j+1,j

13: else
14: t(1, j)← t(n, j) /* wraparound from the bottom edge */

15: else
16: t(i, j)← t(i− 1, j)

17: if j = n then
18: if s < 2n− i+ 1 then
19: r(i, n)← di,2n−i−s+1

20: else
21: r(i, n)← r(i, 1) /* wraparound from the left edge */

22: else
23: r(i, j)← r(i, j − 1)

24: if i = n then
25: if s < 2n− j + 1 then
26: b(n, j)← d2n−j−s+1,j

27: else
28: b(n, j)← b(1, j) /* wraparound from the top edge */

29: else
30: b(i, j)← b(i− 1, j)

31: v(i, j)← min{v(i, j), l(i, j) + t(i, j), r(i, j) + b(i, j)}
32: if s ≡ (i+ 2j − 2) mod n then
33: l(i, j)← v(i, j)

34: if s ≡ (2i+ j − 2) mod n then
35: t(i, j)← v(i, j)

36: if s ≡ (3n− i− 2j + 1) mod n then
37: r(i, j)← v(i, j)

38: if s ≡ (3n− 2i− j + 1) mod n then
39: b(i, j)← v(i, j)

47

Figure 3.10: The FWP frontier and the BWP frontier on the mesh array.

All cells on the FWP frontier have just started the FWP, and all cells

on the BWP frontier have just started the BWP. Figure 3.10 shows both

frontiers at s = n/2. At s = n the two frontiers will meet at the diagonal

given by i+j = n+1, and a second set of frontiers will begin at cell(1, 1) and

cell(n, n) due to the wraparounds on the mesh array. We can observe that

the modulo operations in Definition 3 are required due to the wraparounds.

We now consider cells that complete the SFWP in each step. Obviously

cells closer to the top left corner of the mesh array finish the SFWP earlier.

However, the completion rate of SFWP on the cells do not follow the FWP

frontier exactly. Since k sweeps from 1 to min{i, j} in the SFWP, cells near

the diagonal connecting cell(1, 1) to cell(n, n) take longer to complete the

SFWP than cells near the top edge or the right edge. This is illustrated in

Figure 3.11, which shows the FWP frontier at s = n, and the shaded region

contains the cells that have completed the SFWP.

Lemma 19. At s = 6n/5, cell(2n/5, 2n/5) has completed the SFWP and is

on the first BWP frontier.

Proof. For simplicity we assume that n is divisible by 5. At step s, for

cell(i, i) to have completed the SFWP, i must be less than the shortest dis-

48

Figure 3.11: The FWP frontier and cells that have completed the SFWP.

tance between cell(i, i) and any point on the FWP frontier since the SFWP

would sweep from k = 1 to i. At step s, cell(i, s− i) is on the FWP frontier.

Thus the maximum i such that cell(i, i) has completed the SFWP at step s

is i = s/3. Also at step s, cell(n− s/2, n− s/2) is on the first BWP frontier.

We can simply solve the simultaneous equation s/3 = n− s/2 to retrieve the

value for s and the cell location given in the Lemma.

Lemma 20. At s = 9n/5, cell(3n/5, 3n/5) has completed the SFWP and is

on the second BWP frontier.

Proof. Similarly to the proof of Lemma 19, we can show that at step s,

cell(3n/2−s/2, 3n/2−s/2) is on the second BWP frontier, and cell(s/3, s/3)

has completed the SFWP. Solving the equation s/3 = 3n/2 − s/2 yields

s = 9n/5.

Finally, to prove the correctness of Algorithm 13, we divide the mesh

array into four regions, as illustrated in Figure 3.12:

• Region I: all cell(i, j) such that i+ j ≤ 4n/5

• Region II: all cell(i, j) such that 4n/5 < i+ j ≤ n

49

I

II

III

IV

4n/5 6n/5

Figure 3.12: The mesh array divided into four regions.

• Region III: all cell(i, j) such that n < i+ j ≤ 6n/5

• Region IV: all cell(i, j) such that 6n/5 < i+ j ≤ 2n

Theorem 6. The APSP problem can be solved in 3n − 1 communication

steps on an n-by-n mesh array with wraparounds.

Proof. At s = 6n/5, by Lemma 19, all cells in Region I have completed the

SFWP, and the first BWP frontier is on the border of Region I and II. At

s = 3n − 1, when cell(1, 1) finally finishes the LBWP, all v(i, j) in Region

I have finished (SFWP, LBWP). Thus by Lemma 13, all v(i, j) in Region I

holds the shortest distances from i to j at s = 3n− 1.

At s = 9n/5, by Lemma 20, all cells in Region III have completed the

SFWP, and the second BWP frontier is on the border of Region III and IV.

Thus after another n/5 + n− 1 steps, all cells in Region III have completed

(SFWP, LBWP). Since 9n/5 +n/5 +n−1 = 3n−1, at s = 3n−1, all v(i, j)

in Region III holds the shortest distances from i to j.

Clearly, Region II and Region IV are symmetrical, with (SBWP, LFWP)

being performed in these two regions within 3n−1 communication steps.

50

Our second contribution to the SP problem is given by Theorem 6. It

is actually possible to save one communication step by stopping at 3n − 2,

since v(i, i) = 0 for all 1 ≤ i ≤ n. Now let us consider an example graph

such that the shortest path from vertex 1 to vertex 2 is via vertex n and then

vertex n−1 i.e. a hill sequence of {1, n, n−1, 2}. At s = n+ 1, cell(1, 2) has

completed the FWP (k sweeps from 1 to n) but this does not reduce the path

in any way because the shortest path from vertex 1 to n− 1 and the shortest

path from vertex n to 2 is still unknown. After another n steps, cell(1, 2) has

completed another FWP but still no reduction in path has occurred because

the shortest paths from 1 to n − 1 and from n to 2 are now known, but

the information have not yet cascaded to cell(1, 2). Only when d1n and dn2

arrives as part of the BWP after another n − 3 steps, the shortest distance

from vertex 1 to vertex 2 can be computed. Thus our analysis of 3n − 2

communication steps for Algorithm 13 is sharp.

51

Chapter IV

Bottleneck Paths (BP)

For the SP problem in Chapter 3, we were only concerned with the cost (or

distance) of edges. In this chapter we concern ourselves with the capacity of

edges. We can think of each edge as a water pipe. The length of the pipe

represents the edge cost, and the thickness of the pipe represents the edge

capacity. Consider flowing as much water as possible down a single path from

vertex i to vertex j. Clearly, the amount of water that we can flow down a

single path from i to j will be restricted by the thinnest pipe on the path.

In other words, the thinnest pipe on the path is the bottleneck for the path.

The problem of finding the path that gives us the biggest possible bottle-

neck value is commonly known as the Bottleneck Paths (BP) problem, which

was first introduced by Pollack [51] as the “maximum capacity” problem. Hu

proved that on undirected graphs, the All Pairs BP (APBP) problem can be

solved in O(n2) time bound [35]. It has also been shown that FMMOR can

be utilised to solve the APBP problem on graphs with real edge capacities

in deeply sub-cubic time complexities [59, 79]. Duan and Pettie provided

the current best time bound of Õ(n2.687) for solving the APBP problem [19].

The Single Source BP (SSBP) problem can be solved with a simple modifica-

tion to the Dijkstra’s algorithm, whereby in each iteration the vertex that is

reachable with the highest capacity is chosen, rather than the vertex that is

reachable with the shortest distance. Thus the SSBP problem can be solved

in O(m + n log n) time, and subsequently the APBP problem can also be

solved in O(mn+ n2 log n) time.

Our contribution to the BP problem comes in the form of a new problem,

which we call the Graph Bottleneck (GB) problem. As evident from the

name of the problem, the GB problem is to find the bottleneck of the entire

graph. We define the graph bottleneck as the smallest bottleneck out of

all bottleneck paths. Clearly, it is straightforward to solve the GB problem

52

by first solving the APBP problem, then simply identifying the smallest

bottleneck path. We show that we can solve the GB problem much faster

than solving the APBP problem with a simple binary search.

Although the new algorithm that we provide for the GB problem is simple,

the improvement in time complexity is significant and the practical meaning

for system maintenance is important. The bottleneck of the entire graph

highlights the link that may experience the greatest amount of pressure when

the network is under heavy load, and also edges with smaller capacities can

be considered to be useless.

Before we present our contribution to the topic of BP problem in Section

4.2, we review the bottleneck semi-ring in Section 4.1, which is similar to the

distance semi-ring that we discussed earlier in Section 3.1. The bottleneck

semi-ring is to the BP problem as the distance semi-ring is to the SP problem.

4.1 Bottleneck Semi-ring

Let B = {bij} be the bottleneck matrix, where bij = cap(i, j) if (i, j) ∈ E,

and 0 otherwise. There is no limit on the amount of flow from a vertex to

itself, hence bii =∞ for all 1 ≤ i ≤ n.

We then define the (max,min)-product, denoted by ∗, such that the

(max,min)-product of Z = X ∗ Y is given by:

zij =
n

max
k=1
{min {xik, ykj}}

If we were to compute B2 = B ∗ B, clearly, b2ij is the maximum possible

bottleneck value from vertex i to vertex j with paths of lengths up to 2, and

it follows that Bn−1 will give us the solution to the APBP problem.

Similarly to the distance semi-ring in Section 3.1, (R,max,min, 0,∞) is

a semi-ring, which we refer to as the bottleneck semi-ring. If M is the set

of all possible n-by-n bottleneck matrices, O is the zero bottleneck matrix

that has 0 for all elements, and I is the identity bottleneck matrix that has

∞ for all diagonal elements and 0 for all other elements, then (M,+, ·, O, I)

is a semi-ring, which we refer to as the bottleneck matrix semi-ring. In the

bottleneck matrix semi-ring, + is the component-wise max operation and ·

53

is the (max,min)-product. The closure of the bottleneck matrix B in the

bottleneck matrix semi-ring, denoted by B∗, is given by:

B∗ =
n−1∑
k=0

Bk

B∗ is obviously the solution to the APBP problem, and can be computed in

the same time bound as computing the (max,min)-product, as explained in

Section 3.1. The current best time bound of Õ(n2.687) for solving the APBP

problem given by Duan and Pettie is actually the time taken to perform the

witnessed (max,min)-product [19].

4.2 The Graph Bottleneck (GB) Problem

For a network designer it is useful to know which edge(s) in the network is the

cause of the smallest bottleneck value out of all bottleneck paths. Note that

this is not just a simple matter of taking the edge with the smallest capacity,

as edges of small capacities may never be used for any of the bottleneck paths.

In fact, finding the solution to the GB problem can highlight the redundant

edges, that is, once we know the graph bottleneck, we know that all edges

with capacities less than the graph bottleneck are simply not part of any of

the bottleneck paths.

As discussed before, the APBP problem, and hence the GB problem,

can be solved in Õ(n2.687) or O(mn+ n2 log n) time bounds. Intuitively, it is

wasteful to compute the bottleneck paths for all pairs of vertices when we are

only interested in the bottleneck path(s) with the smallest bottleneck value.

If we define the graph bottleneck to be 0 for graphs that are not strongly

connected, then we show that the GB problem can be solved with a simple

binary search.

Let t be the number of distinct edge capacities. We sort the distinct edge

capacities and map them to integers from 1 to t. We can do this without any

loss of generality as the only operations performed with the edge capacities

are comparisons. Then with Algorithm 14 we perform binary search between

1 and t to find the graph bottleneck.

Lemma 21. Algorithm 14 correctly solves the GB problem on directed graphs

54

Algorithm 14 Solve the GB problem without solving the APBP problem.
1: α← 0
2: β ← t+ 1
3: while β − α > 0 do
4: h← b(α + β)/2c
5: if α = h then
6: break
7: G′ ← remove all edges from the graph with capacities less than h
8: if G′ is strongly connected then
9: α← h

10: else
11: β ← h

12: α is the graph bottleneck

with real edge capacities.

Proof. If G′ is not strongly connected, this means the graph bottleneck must

be less than h. If G′ is strongly connected, this means the graph bottleneck

must be greater than or equal to h. Correctness follows immediately. If the

original graph is not strongly connected, the value of α will never change and

α = 0 will be returned.

Theorem 7. The GB problem on directed graphs with real edge capacities

can be solved in O(m log n) time.

Proof. In each iteration of Algorithm 14 we use Tarjan’s algorithm to deter-

mine strongly connected components in O(m) time [74]. Binary search takes

log t steps, resulting in O(m log t). In the worst case t = O(n2) hence the

worst case time complexity of Algorithm 14 is O(m log n).

We conclude this chapter with our small contribution to the topic of BP

problem given by Theorem 7. Note that the time complexity of O(m log n)

is significantly less than both Õ(n2.687) and O(mn+ n2 log n).

55

Chapter V

Shortest Paths for All Flows (SP-AF)

In Chapter 1, we provided an example of a practical application for the

SP-AF problem by modelling a computer network as a graph. In fact, the

SP-AF problem can be easily applied to any optimization problems that

involve some form of networks, where both the flow amount and the cost of

the flow need to be considered. For example, let us consider transporting

raw wood trunks from a forest to the timber mill on trucks of various sizes.

The cost of transportation corresponds to the distance travelled. Then for

all truck sizes, finding the shortest path that can legally accommodate each

truck size will assist in reducing the overall transportation cost of wood

trunks. Clearly computer networks and transportation/logistics are just two

examples of many potential real life situations where there may exist varying

flow requirements from one location to another, and the problem of finding

the shortest path for a given flow value may arise.

The SP-AF problem is related to the Bi-objective Shortest Paths (BSP)

problem. Instead of considering just the distance in the SP problem, or just

the capacity in the BP problem, we are considering both objectives in the

SP-AF problem. In the most commonly studied BSP problems the aim is

to minimize both objectives [5, 54, 48]. A practical application for such a

BSP problem would be road travel. Taking the motorway could get us to

a destination faster, but we may have to travel a longer distance and end

up using more fuel. We could save on fuel by taking a short-cut via some

narrower roads, but the overall time taken for the trip could be longer. Thus

we wish to minimize both time taken and fuel spent, but in order to minimize

one we must sacrifice the other. BSP problems where the aim is to minimize

one objective while maximizing the second objective have also been studied

in the past [34, 50]. The key difference between such BSP problems and

the SP-AF problem is that in the SP-AF problem we wish to compute and

56

explicitly list the shortest paths for all possible flow values, whereas in BSP

problems the focus is on finding just one or some pre-defined number of

solutions as per the problem definition.

For the SP-AF problem, we represent each path by the (d, f) pair, where

d is the total distance of the path and f is the bottleneck of the path. We

refer to such a pair as the df -pair. Then to solve the SP-AF problem, we

must find all maximal1 df -pairs between pairs of vertices. That is, if (d, f)

and (d′, f ′) are two df -pairs for two distinct paths between the same two

vertices such that d < d′, we keep (d′, f ′) iff f < f ′. In other words, a longer

path is only kept if it can accommodate a greater flow.

Let t be the number of distinct edge capacities in our input graph, G.

Assume that the edge capacities are sorted in increasing order. Let b1 and b2

be two consecutive edge capacities such that b1 < b2. If the flow requirement,

f , is such that b1 < f < b2, then b2 is the minimum edge capacity that can

flow f . Hence to solve the SP-AF problem, it suffices to solve the SP problem

just for all t capacities. In other words, for any pair of vertices, there will

be O(t) maximal df -pairs. We refer to these t distinct capacities as maximal

flows. As explained in Section 4.2 we can treat the maximal flows as integers

ranging from 1 to t without any loss of generality.

Algorithm 15 A straightforward method of solving the SP-AF problem.

1: for all maximal flow values as f do
2: Remove all edges (i, j) from E such that cap(i, j) < f
3: Solve the SP problem on the remaining sub-graph

4: Retrieve maximal df -pairs from all results

A very straightforward method of solving the SP-AF problem is given by

Algorithm 15. Clearly we can take any algorithm for solving the SP problem

and execute it t times, once for each maximal flow value, to solve the SP-AF

problem.

Before introducing the algorithms for solving a variety of SP-AF problems

more efficiently than the straightforward method given by Algorithm 15, we

first give a formal mathematical definition of the SP-AF problem in Section

1 Also known as Pareto optimal.

57

5.1. In this section we define a new semi-ring called the distance/flow semi-

ring and show that this new semi-ring not only helps us in defining the

problem but also can be used to solve the SP-AF problem. Then we divide

the SP-AF problem into the Single Source SP-AF (SSSP-AF) problem and

the All Pairs SP-AF (APSP-AF) problem, as is commonly done in graph

path problems, and we provide a range of efficient algorithms.

5.1 Distance/flow Semi-ring

In Sections 3.1 and 4.1 we described the distance semi-ring and the bottleneck

semi-ring, respectively. In this section, we combine them to make a composite

semi-ring which we call the distance/flow semi-ring. Let us start by defining

the ordering between df -pairs.

Definition 4. Let (d, f) and (d′, f ′) be two df -pairs. Then the merit order

is defined as:

(d, f) ≤m (d′, f ′)⇔ d ≥ d′ ∧ f ≤ f ′

Note that (d, f) <m (d′, f ′)⇔ ((d, f) ≤m (d′, f ′)) ∧ ((d, f) 6= (d′, f ′)). Hence

from Definition 4 we can derive the meanings of =m, 6=m and ‖m as follows:

(d, f) =m (d′, f ′) ⇔ ((d, f) ≥m (d′, f ′)) ∧ ((d, f) ≤m (d′, f ′))

⇔ d = d′ ∧ f = f ′

(d, f) 6=m (d′, f ′) ⇔ d 6= d′ ∨ f 6= f ′

(d, f) ‖m (d′, f ′) ⇔ ((d, f) �m (d′, f ′)) ∧ ((d, f) �m (d′, f ′))

⇔ (d < d′ ∨ f > f ′) ∧ (d > d′ ∨ f < f ′)

⇔ (d < d′ ∧ f < f ′) ∨ (d > d′ ∧ f > f ′)

Intuitively, (d, f) >m (d′, f ′) means that the path represented by (d, f) is

strictly better since the path can support flow amounts of at least f ′ while

being shorter, or can support a greater flow with path distance at most d′.

Clearly all maximal df -pairs are incomparable under the merit order, denoted

by ‖m.

Definition 5. Let (d, f) and (d′, f ′) be two df -pairs. Then the natural order

is defined as:

(d, f) ≤n (d′, f ′)⇔ d ≤ d′ ∧ f ≤ f ′

58

(d, f)

(d′, f ′)

(d, f) (d′, f ′)

Figure 5.1: An illustration of addition and multiplication of df -pairs.

Note that if (d, f) ‖m (d′, f ′), then ((d, f) <n (d′, f ′)) ∨ ((d, f) >n (d′, f ′)).

The natural order provides ordering of maximal df -pairs by their distances.

This ordering is useful in solving the SP-AF problem as we will see later on

when we introduce various algorithms that rely on this ordering for correct-

ness. Let us now define the addition and multiplication of df -pairs.

Definition 6. The addition of two df -pairs is defined as:

(d, f) + (d′, f ′) =


{(d, f)} if (d, f) ≥m (d′, f ′)

{(d′, f ′)} if (d, f) <m (d′, f ′)

{(d, f), (d′, f ′)} if (d, f) ‖m (d′, f ′)

The multiplication of two df -pairs is defined as:

(d, f) · (d′, f ′) = (d+ d′,min {f, f ′})

As shown in Figure 5.1, the addition of two df -pairs is equivalent to compar-

ing two parallel paths. We either take the path that is better (i.e. higher in

the merit order), or we take both paths. The multiplication of two df -pairs is

equivalent to combining two serial paths into one. Note that by adding two

df -pairs, we end up with a set of df -pairs, that either contains one df -pair

that is higher in the merit order, or two df -pairs that are incomparable un-

der the merit order. A set of df -pairs simply represents one or more parallel

paths from a source vertex to a destination vertex. We can now give a formal

definition for the SP-AF problem based on sets of df -pairs.

59

Definition 7. The SP-AF problem is to find the sets of all maximal df -pairs

(paths) between pairs of vertices.

We now define the addition of two sets of df -pairs, denoted by +. Let x

and y be two sets of df -pairs. Let z = x+y. Then z is the set of all maximal

df -pairs from x ∪ y. We can compute z = x + y in O(|x| + |y|) as shown in

Algorithm 16. In this algorithm, and in all subsequent algorithms, a set of

df -pairs is represented by a list of df -pairs sorted by the natural order. The

operation a⇐ x in the algorithm means the first df -pair in x is removed and

assigned to a. If x is an empty set, a⇐ x results in a = null.

Algorithm 16 Add two sets of df -pairs.

1: z ← {}
2: a⇐ x, b⇐ y
3: while (a 6= null) and (b 6= null) do
4: if a ‖m b then
5: if a <n b then
6: append a to z, a⇐ x
7: else
8: append b to z, b⇐ x

9: else if a >m b then
10: b⇐ y
11: else if b >m a then
12: a⇐ x
13: else /* a =m b */
14: append a to z, a⇐ x, b⇐ y

15: if a 6= null then
16: append a to z, append x to z (if x 6= {})
17: if b 6= null then
18: append b to z, append y to z (if y 6= {})

Theorem 8. Algorithm 16 computes x+ y in O(|x|+ |y|) time, where x and

y are both sets of df -pairs.

Proof. We prove that the set of df -pairs, z, accumulates incomparable df -

pairs in natural order. Observe that df -pairs that are lower in the merit

order are discarded at lines 10 and 12. We discard df -pairs until a ‖m b or

60

a =m b, at which point we append one df -pair to z (at lines 6 or 8 or 14).

This ensures that all resulting df -pairs in z are incomparable under the merit

order. When appending a df -pair to z we ensure that the smaller df -pair in

natural order is appended (line 5). This ensures that all df -pairs in z are

sorted in natural order. O(|x| + |y|) is obvious since at least one of x or y

becomes smaller in each iteration and the while loop finishes when either one

becomes empty.

Let us now define the product of sets of df -pairs, denoted by ·. Let

z = x ·y where x and y are sets of df -pairs. The · operation can be performed

as follows. We multiply each df -pair in x with each df -pair in y then discard

all non-maximal df -pairs. Then z is the resulting set of maximal df -pairs. A

straightforward method to compute x · y would take O(|x||y|), but we show

that this can be performed in O(|x|+ |y|) time by using Algorithm 17.

Algorithm 17 Multiply two sets of df -pairs.

1: z ← {}
2: a⇐ x, b⇐ y
3: while (a 6= null) and (b 6= null) do
4: append a · b to z
5: let a = (da, fa)
6: let b = (db, fb)
7: if fa < fb then
8: a⇐ x
9: else if fb < fa then

10: b⇐ y
11: else/* fa = fb */
12: a⇐ x, b⇐ y

Theorem 9. Algorithm 17 computes x · y in O(|x|+ |y|) time, where x and

y are sets of df -pairs.

Proof. Suppose we have some accumulation of incomparable df -pairs in nat-

ural order. If fa < fb, a can no longer multiply with remaining df -pairs in

y to generate an incomparable df -pair, hence a is discarded (line 8). Similar

reasoning applies to the case of fa > fb, and it follows that if fa = fb, both

61

can be discarded. Time complexity is obvious. Note that we can base the

comparisons on the d values of df -pairs instead of the f values.

Note that both Algorithms 16 and 17 work even if x and y contain non-

maximal df -pairs as long as both are sorted in natural order. In the SP-AF

problem, however, we can assume that all df -pairs in x and y are maximal.

Having defined the addition and multiplication of sets of df -pairs, we can

finally move onto defining the distance/flow semi-ring, and show that the

distance/flow semi-ring is in fact a closed semi-ring.

Theorem 10. Let S be the set of all possible sets of df -pairs. Let o =

{(∞, 0)} and i = {(0,∞)}. Then (S,+, ·, o, i) is a closed semi-ring.

Proof. To prove that (S,+, ·, o, i) is a closed semi-ring, we start by defining

the operator × and the function p. Let x ∈ S and y ∈ S. Then x × y

is the Cartesian product of the sets x and y, that is, the set of df -pairs

resulting from all products of all df -pairs from x and y. Note that x × y

may contain non-maximal df -pairs. p is a function of the set of df -pairs that

retrieves all maximal df -pairs from the given set. Thus p(x× y) = x · y and

p(x ∪ y) = x + y. The commutative, distributive and associative natures of

the Cartesian product, ×, and the union, ∪, of sets are widely known. Also

note that p(p(x)+y) = p(x+y) and p(p(x)·y) = p(x·y), since a non-maximal

df -pair in a set simply cannot combine with another df -pair to result in a

maximal df -pair during the + or · operations between sets of df -pairs. We

now prove that (S,+, ·, o, i) is a closed semi-ring by showing that each of the

individual properties of a closed semi-ring is satisfied:

• (S, ·, i) is a monoid: The product of two sets of df -pairs result in a

set of df -pairs. Since by definition S is the set of all possible df -pairs,

x · y ∈ S. Hence (S, ·, i) is closed. The · operation is associative as

shown by the equation (x · y) · z = p((x · y) × z) = p(p(x × y) × z) =

p(x× y × z) = p(x× p(y × z)) = p(x× (y · z)) = x · (y · z). From the

equation (d, f) · (0,∞) = (d+ 0,min {f,∞}) = (d, f), it is clear that i

serves as the identity for the · operation. Thus all three conditions for

(S, ·, i) to be a monoid have been satisfied.

62

• (S,+, o) is a monoid: By similar reasoning to the above, (S,+, o) is

closed, the + operation is associative, and o serves as the identity for

the + operation.

• The + operation is commutative: This can be shown by the equation

x+ y = p(x ∪ y) = p(y ∪ x) = y + x.

• The + operation is idempotent: This can be shown by the equation

x+ x = p(x ∪ x) = p(x) = x.

• o is the annihilator for the · operation: From the equation (d, f) ·
(∞, 0) = (d +∞,min {f, 0}) = (∞, 0), o is clearly the annihilator for

the · operation.

• The · operation distributes over the + operation: This can be shown

by the equation x · (y + z) = p(x × p(y ∪ z)) = p(x × (y ∪ z)) =

p((x× y) ∪ (x× z)) = p(p(x× y) ∪ p(x× z)) = (x · y) + (x · z).

• The closure of x, x∗ = i + x + x2 + ... exists in S: From the equation

(0,∞) + (d, f) = {(0,∞)}, it is clear that x∗ = i and hence exists in S.

We refer to the semi-ring defined in Theorem 10 as the distance/flow

semi-ring. Similarly to the distance matrix semi-ring and the bottleneck

matrix semi-ring in Sections 3.1 and 4.1, respectively, we can also define the

distance/flow matrix semi-ring. Let P = {pij} be a distance/flow matrix

where each element is a set of df -pairs. Let M be the set of all possible n-

by-n distance/flow matrices. The zero distance/flow matrix, O, has {(∞, 0)}
for all elements. The identity distance/flow matrix, I, has {(0,∞)} for the

diagonals and {(∞, 0)} for all other elements. Let + be the component-wise

addition of sets of df -pairs, and · be the distance/flow matrix multiplication

based on Definition 6. Then (M,+, ·, O, I) is a semi-ring, which we refer to

as the distance/flow matrix semi-ring.

63

Clearly the closure of P in the distance/flow matrix semi-ring, denoted

by P ∗, is the solution to the APSP-AF problem. Distance/flow matrix mul-

tiplication on an n-by-n distance/flow matrix takes O(tn3) time, since there

are O(t) maximal df -pairs in any set of df -pairs. Thus the APSP-AF prob-

lem can be solved in O(tn3) time as explained in Section 3.1. Note that this

time bound is equivalent to executing Floyd’s algorithm t times to solve the

APSP problem for each maximal flow value, as given by Algorithm 15, or

simply executing Floyd’s algorithm once on P to compute the closure in the

distance/flow semi-ring, spending O(t) time in each iteration for the + and

· operations.

For the parallelisation of the APSP-AF problem, we can utilise our second

contribution to the SP problem as given in Section 3.4.2, which was to solve

the APSP problem in 3n− 2 communication steps on an n-by-n mesh array.

In each communication step, each cell transmits O(t) data (sets of df -pairs)

to its neighbours, and performs the + and · operations in O(t) time. Thus we

can also solve the APSP-AF problem on a square 2D mesh array in exactly

3n − 2 communication steps, resulting in the total computational cost of

O(tn3) for this parallel algorithm.

The main theme of subsequent sections is to improve the general time

complexity of O(tn3) for the APSP-AF problem and also to provide more

efficient algorithms for the SSSP-AF problem than Algorithm 15. We start

with the SSSP-AF problem in Section 5.2, then move onto the APSP-AF

problem in Section 5.3.

5.2 Single Source SP-AF (SSSP-AF)

For the SSSP-AF problem, as per Definition 7, we wish to find the set of all

maximal df -pairs from a single source vertex, s, to all other vertices in V .

In other words, we wish to fully populate an entire row of the distance/flow

matrix, P = {pij}, where i = s and 1 ≤ j ≤ n. In this section we provide

algorithms for solving the SSSP-AF problem, firstly on graphs with unit edge

costs then on graphs with integer edge costs bounded by c.

64

1

4

3 6

2

7

5

8

2

2

4

4

56

9

1211

88

12 13

15 9

Figure 5.2: A directed graph with unit edge costs. n = 8, m = 15 and t = 10.
Capacities are shown beside each edge.

5.2.1 Unit Edge Costs

Solving the SSSP problem on directed graphs with unit edge costs is very

straightforward, achieved with a simple breadth-first-search taking O(m)

time. Thus the SSSP-AF problem can be solved in O(tm) time using Al-

gorithm 15. In the worst case t = m = O(n2), which results in the worst

case time complexity of O(n4) for this straightforward method.

Example 1. Solving the SSSP-AF problem on the example graph given in

Figure 5.2 with s = 4 will result in the following set of df -pairs to vertex 7:

p4,7 = {(1, 2), (2, 4), (3, 8), (5, 9)}.

Algorithm 18 solves the SSSP-AF problem on graphs with unit edge costs

in O(mn) worst case time complexity. This is achieved by exploiting the fact

that on graphs with unit edge costs there are O(n) possible distances from s

to any other vertices in V . Therefore we design an algorithm around this by

visiting each possible distance once, spending O(m) time for edge inspection

in each distance, resulting in the O(mn) time bound.

Let us introduce the notation used in Algorithm 18. Let B be an array

such that B[v] is the currently known largest bottleneck value from s to v.

65

Similarly, let L be an array that keeps track of the shortest possible distance

such that L[v] is the currently possible shortest distance from s to v. Let

T be the Shortest Paths Spanning Tree (SPT) that is an incremental data

structure, such that incremental changes are applied to T as we progress

through the algorithm. Let Q be an array of sets of vertices such that Q[i]

is the set of vertices that may be added to T at distance i from s, where

1 ≤ i ≤ n.

In summary, Algorithm 18 starts with s as the root of T . We iterate

through all maximal flows as f in increasing order. In each iteration, we

remove v from T that can no longer accommodate f and re-add it to T at

the next shortest possible distance that can accommodate f .

Lemma 22. If v exists in T on line 22 of Algorithm 18, (L[v], B[v]) is a

maximal df -pair for psv.

Proof. Proof is by contradiction. Suppose (L[v], B[v]) is a non-maximal df -

pair. Then there must be a df -pair (d,B[v]) such that d < L[v], or (L[v], f)

such that f > B[v]. The first case is not possible because we inspect each

possible distance from s one by one by incrementing L[v] in each iteration.

The second case is not possible because in the inner for loop starting from

line 17, we inspect all incoming edges such that v is added as the child of

the parent that can provide the maximum flow. Thus (L[v], B[v]) must be a

maximal df -pair.

Theorem 11. Algorithm 18 correctly solves the SSSP-AF problem in O(mn)

worst case time complexity.

Proof. Correctness follows from Lemma 22. We perform lifetime analysis

for determining the time complexity. We start with the key observation

that there are O(n) possible distances from s, and each destination vertex

can be observed at each possible distance from s exactly once since L[v] is

monotonically increasing.

Cutting the vertex v from T or adding it to T both take O(1) time,

achieved simply by setting the parent of v to null or u, respectively. Since

each O(n) vertices can be removed then re-added in each iteration, we have

66

Algorithm 18 Solve the SSSP-AF problem on graphs with unit edge costs.

1: for i← 1 to n do
2: B[i]← 0
3: L[i]← 0
4: Q[i]← φ
5: psi ← φ

6: T ← s
7: B[s]←∞
8: for all maximal flow f in increasing order do
9: for all v ∈ V such that B[v] < f do

10: if v exists in T then
11: cut v from T
12: L[v]← L[v] + 1
13: push v to Q[L[v]]

14: for `← 1 to n− 1 do
15: while Q[`] is not empty do
16: pop v from Q[`]
17: for all (u, v) ∈ E do
18: if L[u] = L[v]− 1 then
19: if min(cap(u, v), B[u]) > B[v] then
20: B[v]← min(cap(u, v), B[u])
21: add v to T with u as the parent

22: if v exists in T then
23: append (L[v], B[v]) as a df -pair to psv
24: else
25: L[v]← L[v] + 1
26: push v to Q[L[v]]

67

0

1

2

3

6

5

4

7

2 4 5 6 8 11 139 12 15

1

2 3 4

5 67

8 7

f

`

Figure 5.3: Changes to T at iteration f = 4.

O(n2) for all operations involving T . Q can be implemented with a sim-

ple linked list data structure, resulting in the total time complexity of all

operation involving Q of O(n2).

Finally for edge inspections starting from line 17, we have a total of O(m)

edge inspections for each possible distance from s, and thus O(mn) total edge

inspections for the whole algorithm, which subsequently becomes the worst

case time complexity of Algorithm 18.

Example 2. Figure 5.3 is a visualisation of Algorithm 18 with the example

graph shown in Figure 5.2 as the input with s = 1. At iteration f = 4, the

edge (4, 7) is cut from T because the path to vertex 7 cannot push flow of

f = 4. The next shortest possible distance from vertex 1 to vertex 7 is 3,

with the new bottleneck value of 8. L[7] is increased from 2 to 3 and B[7] is

68

increased from 2 to 8. At the end of the iteration p1,7 = {(2, 2), (3, 8)}.

5.2.2 Integer Edge Costs

Let us now consider solving the SSSP-AF problem on graphs with integer

edge costs bounded by c. As mentioned in Chapter 3, the SSSP problem

on directed graphs with integer edge costs bounded by c can be solved in

O(m + n log log c) time [75]. Hence the SSSP-AF problem can be solved in

O(tm+ tn log log c) time. We can also use Algorithm 18 to solve the problem

in O(mnc) time, since there are now O(nc) possible distances from s. Our

contribution to the SSSP-AF problem is an algorithm with the worst case

time complexities of either O(tm + nc) or O(tm + tn log (c/t)) depending

on the underlying data structure used to implement the priority queue. We

briefly visit Dijkstra’s algorithm for solving the SSSP problem since our new

algorithm for solving the SSSP-AF problem can be thought of as an extension

to the well known Dijkstra’s algorithm.

Algorithm 19 Dijkstra’s algorithm.

1: Q,P ← φ
2: insert (s, 0) into Q
3: while Q 6= φ do
4: delete (v, d) from Q such that d is the minimum /* delete-min */
5: for all w ∈ OUT (v) such that w 6= s do
6: d′ ← d+ cost(v, w)
7: if (w, d∗) in Q for w and some d∗ then
8: if d′ < d∗ then
9: update (w, d∗) to (w, d′) in Q /* decrease-key */

10: else
11: insert (w, d′) into Q /* insert */

12: append (v, d) to P

Q and P in Algorithm 19 are commonly known as the frontier set and the

solution set, respectively. In each iteration we find and remove the vertex

v from Q with the minimum distance d from the source vertex s. This

operation is known as the delete-min operation. We then inspect all out-

going edges from v and for each edge either update the distances of vertices

69

that are already in Q, or insert new vertices into Q. The former operation

is known as the decrease-key operation and the latter is known as the insert

operation.

The time complexity of Dijkstra’s algorithm depends on the time taken to

perform these three key operations. The total number of insert and delete-

min operations performed in the algorithm is n, since all n vertices are added

then removed from the frontier set, Q. The total number of decrease-key

operations performed is O(m) in the worst case. If a simple linear array is

used to implement Q, then each insert and decrease-key operations will take

O(1) time, whereas the delete-min operation takes O(n) time, resulting in

the total worst case time complexity of O(m + n + n2) = O(n2). If Q is

implemented with a priority queue such as the Fibonacci heap [25, 9], such

that the insert and decrease-key operations take O(1) time and the delete-

min operation takes O(log n) time, then O(m+ n log n) can be achieved.

We now present Algorithm 20 for solving the SSSP-AF problem. For

this algorithm we define the (v, d, f) triplet where v is the destination vertex

and d and f corresponds to the df -pair of the path from s to v. Let Q be

the priority queue for the (v, d, f) triplets with d as the key such that the

operations performed on Q are limited to insert, decrease-key and delete-min

operations. OUT (v) denotes all vertices that are directly reachable from v

via a single edge. In summary, we start by initializing Q with (s, 0,∞). In

each iteration we take the (v, d, f) triplet with the smallest d from Q and

inspect all out going edges from v. We update Q as necessary, and add (d, f)

to the solution set psv if it is a maximal df -pair.

Lemma 23. Algorithm 20 correctly solves the SSSP-AF problem on directed

graphs with integer edge costs and real edge capacities.

Proof. Proof is by induction. Our induction hypothesis is that in the begin-

ning of each iteration:

1. psv for all v ∈ V such that v 6= s contains maximal df -pairs

2. For any (v, d, f) triplet in Q, d is the distance of the shortest path

possible from s to v that can push f , using only the paths whose

vertices are already in psv for all v ∈ V , except for the end point v.

70

Algorithm 20 Solve the SSSP-AF problem for integer edge costs.

1: Q← φ
2: insert (s, 0,∞) into Q
3: while Q 6= φ do
4: delete (v, d, f) from Q such that d is the minimum /* delete-min */
5: for all w ∈ OUT (v) such that w 6= s do
6: f ′ ← min(f, cap(v, w))
7: d′ ← d+ cost(v, w)
8: if (w, d∗, f ′) in Q for w, f ′ and some d∗ then
9: if d′ < d∗ then

10: update (w, d∗, f ′) to (w, d′, f ′) in Q /* decrease-key */

11: else
12: insert (w, d′, f ′) into Q /* insert */

13: if psv = φ then
14: append (d, f) to psv
15: else
16: let (d0, f0) be the last pair in psv
17: if f0 < f then
18: if d0 = d then
19: delete (d0, f0) from psv

20: append (d, f) to psv

71

For the induction basis we observe that both are correct before the main while

loop begins. Suppose both are correct at the beginning of some iteration.

Then:

1. Let (d0, f0) be the last pair in psv. Note that df -pairs are sorted in

increasing order of d. Since we remove the triplet with the minimum

value of d in each iteration, d0 ≤ d. We append (d, f) to psv only when

f0 < f . Hence the new df -pair is also maximal.

2. After (v, d, f) is removed from Q, we inspect all w ∈ OUT (v). Thus

when Q is updated with (w, d′, f ′), the df -pair of (d′, f ′) represents a

path from s to w via v. Since (d, f) is added as a maximal df -pair into

psv at the end of the iteration, d′ is the shortest possible path from s

to w that can push f ′, using only the paths whose vertices are already

in psv for all v ∈ V except for the end point w.

Thus both of our induction hypotheses are preserved after the iteration.

Theorem 12. The SSSP-AF problem can be solved in O(tm+nc) worst case

asymptotic time complexity.

Proof. We use a simple one dimensional bucket structure to implement Q

in Algorithm 20, such that the insert and decrease-key operations can both

be performed in O(1) time, and the delete-min operation involves scanning

the buckets one by one in increasing order of d until a non-empty bucket is

found. There are O(tn) (v, d, f) triplets, resulting in O(tn) time bound for

the insert operation for the whole algorithm. For the delete-min operation

we have the total time complexity of O(cn) for the whole algorithm since the

maximum distance from s to any destination vertex is O(cn). The decrease-

key operation can occur once for each edge inspection in line 5. We can

observe that for each v, OUT (v) can be inspected for each maximal flow

value, resulting in the total of O(tm) edge inspections, thus giving us the

total time complexity of O(tm) for the decrease-key operation. Checking

whether a (v, d, f) triplet exists in Q or not in line 8 can be performed in

O(1) time simply by maintaining a two dimensional array of size O(tn), for

example I[v][f], for each destination vertex v and for each maximal flow f ,

72

such that I[v][f] is set to True when the triplet (v, d, f) is inserted into Q for

some d, and set to False when the triplet is deleted from Q. Note that the

delete operation performed in line 19 does not propagate further inside psv

due to the strictly increasing property of psv. Hence for the entire algorithm

we have O(tm+ tn+ nc) = O(tm+ nc).

It is clear that the time complexity of Algorithm 20 depends largely on

the data structure used to implement Q. As mentioned earlier, Algorithm 20

can also run in O(tm+ tn log (c/t)) time bound by using the data structure

called the k-level Cascading Bucket System (CBS) [3, 15] to implement Q.

The one dimensional bucket system used in Theorem 12 can be thought of as

a 1-level CBS. We now give a brief review of the k-level CBS data structure.

An extensive review of this data structure has been given by Takaoka [71].

The k-level CBS is a data structure that supports the required insert,

decrease-key and delete-min operations for integer key values. There are k

levels, where each level has p buckets, except the highest level which has

M/pk−1 buckets, such that M is the highest integer key value that the CBS

supports. For the SP-AF problem we can set M = cn since we know that

the furthest distance between any pair of vertices will be less than cn.

Before any delete-min operations are performed on the CBS, we can find

the bucket to insert an item with the key value of d with the following

equation:

d = xk−1p
k−1 + xk−2p

k−2 + ...+ x1p+ x0 (5.1)

which we use to find the largest i such that xi is non-zero. Then the item

can be inserted into the xi-th bucket at level i.

To perform the delete-min operation, an active pointer ai is maintained

for each level, for 0 ≤ i < k, such that ai points to the minimum non-empty

bucket at level i. ai = p means level i is empty. We scan from a0 to find the

lowest level with a non-empty bucket. If 0 ≤ a0 < p, this means level 0 is

non-empty and the delete-min operation simply involves removing an item

in the bucket pointed to by a0. The delete-min operation gets more complex

when the lowest level with a non-empty bucket is higher than level 0. Let j

be the lowest non-empty level. Then we must re-distribute the elements in

73

a2

a1

a0

119 130 166

512 586

843

1158

1301 1399

31 34 37

70

92 95 9

0 0 0

1 1 1

2 2 2

3 3 3

44 4

5 5 5

6 6 6

7 77

8 88

9 99

10

11

12

13

b2 = 0 b1 = 0 b0 = 30

Figure 5.4: Visualization of the k-level CBS with k = 3, p = 10 and M =
1399.

74

the aj-th bucket into level j−1, then re-distribute the elements in the aj−1-th

bucket into level j − 2 and so on until level 0 is non-empty. This process of

repeated redistribution is referred to as cascading. We can observe that once

a cascade operation is performed on the CBS we can no longer use equation

5.1 to insert new elements. Therefore we must maintain the base, bi, for each

level i. Before any cascade operations are performed bi = 0 for all 0 ≤ i < k.

When a cascade operation is performed, bi is updated for 0 ≤ i ≤ j, where

j is the lowest non-empty level found at the start of the cascade operation.

The bases are updated with the following recurrence formula:

bi−1 = bi + aip
i (5.2)

The base values can then be used for the insert operation since all key values

in level i must be greater than or equal to bi.

Finally, the decrease-key operation can be performed by removing the

element from the CBS in O(1) time, updating the key value, then performing

the insert operation with the new key value.

Example 3. Figure 5.4 shows an illustration of the cascade operation. Once

the item with the key value of 9 is removed, the next delete-min operation

will trigger the cascade operation, resulting in the three items stored in the

bucket pointed to by a1 to be redistributed to level 0. a1 and a0 will be updated

to point to buckets 7 and 1, respectively. The base value b0 will be updated to

30. Note that Figure 5.4 shows the old values of ai and the new values for bi.

Let us now move onto the time complexities of the three operations. For

the insert operation we have O(k) to find the location based on equation

5.1, or to scan the base values bi from the highest level down to the lowest

level. The decrease-key operation can be performed in O(l) time, where l

is the difference between the initial level and the new level. Observing the

scanning effort over the levels to find a non-empty level and then to find a

non-empty bucket in the found level, the delete-min operation takes O(k+p)

if j < k− 1 such that j is the lowest non-empty level, and O(k+M/pk−1) if

j = k − 1.

Theorem 13. The SSSP-AF problem can be solved in O(tm + tn log (c/t))

worst case asymptotic time complexity.

75

Proof. We use the k-level CBS to implement Q in Algorithm 20. There are

O(tn) (v, d, f) triplets to be inserted into Q hence we have O(ktn) for the

insert operations. There can be up to O(tm) decrease-key operations but

each triplet can move a maximum of k levels, resulting in O(ktn) also for

the decrease-key operations. For the delete-min operation we have O(ktn +

ptn+ cn/pk−1) since the data structure only needs to support key values up

to O(cn). We choose p = (c/t)1/k and k = log (c/t) to implement the CBS,

resulting in O(tn log (c/t)) as the time bound for all operations involving Q.

Thus we have O(tm+ tn log (c/t)) as the time bound.

For explicit path retrieval, we store the predecessor vertex whenever a

triplet gets inserted or updated in Q. A predecessor vertex on the path from

s to w is the vertex that comes immediately before w. We store v alongside

(w, d′, f ′) in Algorithm 20 since we know that v is the vertex that comes

immediately before vertex w. Then we can retrieve the explicit path by

simply following the predecessor vertices.

There is no clear winner between O(tm + tn log log c), O(tm + nc) and

O(tm + tn log (c/t)). For c = O(t), O(tm + nc) is the most efficient. For

c = O(t log t), O(tm+ tn log (c/t)) gives the best time complexity. For larger

values of c, O(tm + tn log log c) given by the straightforward method based

on Thorup’s SSSP algorithm gives the best time complexity. The data struc-

ture used in Thorup’s algorithm, however, is known to be very complex and

impractical for implementation [75]. On the other hand, the CBS (of any

number of levels) is practical for implementation. Therefore we conclude

this section with a final claim that for practical purposes, we can use the

O(tm+nc) algorithm for c = O(t), and for larger values of c, we can use the

O(tm + tn log (c/t)) algorithm and still enjoy the logarithmic function over

the value of c.

5.3 All Pairs SP-AF (APSP-AF)

We now present a series of efficient algorithms for solving the APSP-AF

problem. To solve the APSP-AF problem, we must find the set of maximal

df -pairs for all elements in the distance/flow matrix P = {pij} such that

76

B ? B

B2 ? B

B3 ? B

B`−1 ? B

P

D1,`

D2,`

D3,`

Df,`

D1,n

D2,n

D3,n

Df,n

P

D3,` D4,n

Figure 5.5: An illustration of Algorithm 21.

1 ≤ i, j ≤ n. Similarly to the SSSP-AF problem in Section 5.2, we will

consider both unit edge costs and integer edge costs bounded by c.

5.3.1 Unit Edge Costs

We can solve the APSP-AF problem on graphs with unit edge costs in

O(tmn) orO(mn2) time bounds, by executing theO(tm) or theO(mn) SSSP-

AF algorithm n times, respectively. For dense graphs where m = O(n2), the

time complexities become O(tn3) and O(n4). Here we present an algebraic

algorithm that is more efficient than both O(tn3) and O(n4).

Our algorithm is derived from two key observations. Firstly, on graphs

with unit edge costs, by multiplying the bottleneck matrix, B, one by one, we

can retrieve df -pairs in each iteration. Suppose we have B` and we compute

B`+1 by performing the (max,min)-product with B. If b`ij < b`+1
ij , then

we can retrieve (` + 1, b`+1
ij) as a df -pair because we know that ` + 1 is the

minimum path distance (length) that can accommodate the flow value of b`+1
ij .

Secondly, we can utilise the bridging set theorem, as explained in Section

3.2, by using the framework provided by the AGM algorithm. We present

Algorithm 21 that utilises these two key ideas to achieve Õ(
√
tn(ω+9)/4) =

Õ(
√
tn2.843) time bound.

77

Algorithm 21 Solve the APSP-AF problem on graphs with unit edge costs.

/* Initialization for the acceleration phase */
1: for i← 1 to n; j ← 1 to n do
2: pij ← φ

/* Acceleration phase */
3: for `← 1 to r do
4: B` ← B`−1 ? B
5: for i← 1 to n; j ← 1 to n such that i 6= j do
6: f ← b`ij
7: if f > b`−1ij then
8: append (`, f) to pij

/* Initialization for the cruising phase */
9: for i← 1 to n; j ← 1 to n such that i 6= j do

10: for all x in pij do
11: if x 6= φ then
12: let x = (d, f)
13: df,`ij ← d
14: else
15: df,`ij ←∞

/* Cruising phase */
16: for all maximal flow values as f do
17: perform the cruising phase of Algorithm 7 on Df,`

/* Finalization */
18: let Df be Df,n from the result of the cruising phase
19: for i← 1 to n; j ← 1 to n such that i 6= j do
20: for all maximal flow f in increasing order do
21: d← dfij
22: let the last pair of pij be x = (d′, f ′)
23: if x = φ or (f > f ′ and d <∞) then
24: if d = d′ then
25: replace x with (d, f)
26: else
27: append (d, f) to pij

78

An illustration of Algorithm 21 is shown in Figure 5.5. In each itera-

tion of the acceleration phase, we perform the (max,min)-product with the

bottleneck matrix, B, to retrieve all maximal df -pairs up to the path length

of ` = r, for some integer constant 1 < r < n. The maximal df -pairs are

stored in the distance/flow matrix, P . Then from all df -pairs gathered thus

far in P , we can initialise t distance matrices, Df,`, for each maximal flow

value f . (Note that both the path length, `, and the maximal flow value,

f , can now appear on the superscript.) Then we enter the cruising phase,

where we perform repeated squaring of all t distance matrices based on the

(min,+)-product to effectively solve the APSP problem for all maximal flow

values, from which we can retrieve the remaining maximal df -pairs.

Lemma 24. At the end of the acceleration phase of Algorithm 21 we can

initialize Df for each maximal flow value such that the matrix contains the

shortest distances possible for all pairs of vertices with path lengths up to r

that can push flow of f .

Proof. In each iteration of the acceleration phase the (max,min)-product

computes the maximum bottleneck value possible with the path length up to

`. After computing the product, if the bottleneck value for a pair of vertices

was increased from the previous iteration, then ` and the new bottleneck

value b`ij must be a maximal df -pair since it is not possible for a shorter path

to accommodate a flow value that is greater than or equal to b`ij. Hence at

the end of the acceleration phase, for all pairs of vertices, all maximal df -

pairs have been computed that can be derived with paths of lengths up to r.

From the df -pairs, it is straightforward to initialise the distance matrices as

Df for each maximal flow value, f , such that each Df contains the shortest

distances possible with paths of lengths up to r that can push flow of f for

all pairs of vertices.

Theorem 14. Algorithm 21 correctly solves the APSP-AF problem on graphs

with unit edge costs in Õ(
√
tn(ω+9)/4) = Õ(

√
tn2.843) time bound.

Proof. Following on from Lemma 24, we can observe that at the end of the

cruising phase, we have solved the APSP problem in Df for each maximal

flow value f . Thus the end result is the same as the straightforward method of

79

solving the SP-AF problem given by Algorithm 15. Retrieving all remaining

df -pairs from all Df is simply a reverse process of the initialization for the

cruising phase.

Using the current fastest algorithm known for the (max,min)-product by

Duan and Pettie [19], the time bound for the acceleration phase isO(rn(ω+3)/2).

For the cruising phase we have O(tn3/r) where O(n/r) is the size of the bridg-

ing set. We balance the two time complexities by setting r =
√
tn(3−ω)/4 to

achieve O(
√
tn(ω+9)/4) for the whole algorithm.

Since there are O(min {n, t}) df -pairs in each pij, explicitly storing all

paths takes O(min {tn3, n4}), which is clearly too expensive. As explained in

Section 3.2, we get around this issue with the help of successor vertices. We

can extend the df -pair to the (d, f, s) triplet to store the successor vertex,

s, for each df -pair. In the acceleration phase we can perform witnessed

(max,min)-product with an additional polylog factor [19], from which we

can derive the successor vertices in O(n2) time in each iteration [83]. In the

cruising phase retrieving the successor vertex can be performed without any

additional costs since ordinary matrix multiplication is performed. Then the

explicit path can be retrieved by simply following the successor vertices. The

additional polylog factor required in the acceleration phase is omitted in the

total worst case time complexity of the algorithm to give Õ(
√
tn(ω+9)/4).

Note that the value we choose for r to balance the two time complexities

in the proof of Theorem 14 must be less than n, otherwise ` iterates all the

way up to n in the acceleration phase and the APSP-AF problem is solved

before the start of the cruising phase. The time complexity for staying in the

acceleration phase until ` = n is O(n(ω+5)/2). r =
√
tn(3−ω)/4 ≥ n when t ≥

n(ω+1)/2. Therefore a more accurate worst case time complexity for Algorithm

21 is actually Õ(min {n(ω+5)/2,
√
tn(ω+9)/4}) = Õ(min {n3.687,

√
tn2.843}).

5.3.2 Integer Edge Costs

On graphs with integer edge costs, the APSP-AF problem can be solved

in O(tmn + n2c) or O(tmn + n2 log (c/t)) time bounds simply by running

Algorithm 20 n times. We show that by sharing the same priority queue

for all df -pairs for all pairs of vertices, we can actually solve the APSP-AF

80

problem more efficiently in O(tmn + nc) or O(tmn + n2 log (c/(tn))) time

bounds.

In Section 5.2.2 we basically extended Dijkstra’s algorithm to solve the

SSSP-AF problem by inserting O(tn) (v, d, f) triplets into the frontier set

(priority queue), Q. To solve the APSP-AF problem, we extend the algorithm

one step further by inserting O(tn2) (u, v, d, f) quadruples into Q, where u is

the source vertex, v is the destination vertex, and (d, f) is the df -pair for the

path from u to v. Then by using d as the key in the priority queue, we can

solve the APSP-AF problem using just one priority queue. Q is initialised

with (v, v, 0,∞) for all v ∈ V , and the algorithm for solving the APSP-AF

problem on directed graphs with integer edge costs bounded by c is given by

Algorithm 22.

One can think of this approach as sharing a common resource to solve n

instances of the SSSP-AF problem at the same time. We note that this idea

of sharing resources was already used by Takaoka to solve the APSP problem

in O(mn + n2 log (c/n)) time [71]. Our contribution is to extend this idea

further to the more complex APSP-AF problem.

Lemma 25. Algorithm 22 correctly solves the APSP-AF problem on directed

graphs with integer edge costs and real edge capacities.

Proof. Similar to the proof of Lemma 23.

Theorem 15. The APSP-AF problem can be solved in the worst case asymp-

totic time complexity of O(tmn+ nc).

Proof. We use the one dimensional bucket system to implement Q in Al-

gorithm 22. There are O(tn2) quadruples, resulting in O(tn2) time for the

insert operation. O(tmn) edge inspections can occur, which is also the time

complexity for the decrease-key operation. The delete-min operation is still

bounded by O(nc), since we only have to scan through the one dimensional

bucket system once. Thus we have O(tmn+ tn2 + nc) = O(tmn+ nc)

Theorem 16. The APSP-AF problem can be solved in the worst case asymp-

totic time complexity of O(tmn+ tn2 log (c/(tn))).

81

Algorithm 22 Solve the APSP-AF problem for integer edge costs.

1: Q← φ
2: for all v ∈ V do
3: insert (v, v, 0,∞) into Q

4: while Q 6= φ do
5: delete (u, v, d, f) from Q such that d is the minimum
6: for all w ∈ OUT (v) such that w 6= u do
7: f ′ ← min(f, cap(v, w))
8: d′ ← d+ cost(v, w)
9: if (u,w, d∗, f ′) in Q for u,w, f ′ and some d∗ then

10: if d′ < d∗ then
11: update (u,w, d∗, f ′) to (u,w, d′, f ′) in Q

12: else
13: insert (u,w, d′, f ′) into Q

14: if puv = φ then
15: append (d, f) to puv
16: else
17: let (d0, f0) be the last pair in puv
18: if f0 < f then
19: if d0 = d then
20: delete (d0, f0) from puv

21: append (d, f) to puv

82

Proof. We use the k-level CBS to implement Q in Algorithm 22 such that

the delete-min operation takes O(kmn2 + pmn2 + cn/pk−1) time. We choose

p = (c/(tn))1/k and k = log (c/(tn)) such that all operations involving Q is

bounded by O(tn2 log (c/(tn))). Adding O(tmn) for the total number of edge

inspections gives us O(tmn+ tn2 log (c/(tn))).

We now present the final, and the most complex algorithm of this thesis,

which is an algebraic algorithm for solving the APSP-AF problem on directed

graphs with integer edge costs.

In Algorithm 23, the original graph of integer edge costs, G, is expanded

to a graph with unit edge costs, G′, and B′ is the corresponding cn-by-cn

bottleneck matrix based on G′. Note that the edge capacities are retained in

G′. The df -pair is extended to (h, d, f) triplet, where h is the path length in

G, and d and f continues to correspond to the df -pair. We let P ′ = {p′ij} be

a cn-by-cn matrix such that p′ij holds the set of (h, d, f) triplets. Simply put,

P ′ is the matrix of df -pairs for G′, with the path length information added to

each df -pair. Similarly, we extend the definition of P to hold (h, d, f) triplets

for G. Finally we let Df = {dfij} be the distance matrix for the maximal

flow value of f , and let Hf = {hfij} be the matrix of path lengths such that

hfij is the length of the path that has the distance of dfij. As noted in Section

5.3.1, both the path length, `, and the maximal flow, f , can now appear on

the superscripts.

Theorem 17. Algorithm 23 correctly solves the APSP-AF problem with the

worst case time complexity of Õ(
√
tc(5+ω)/4n(9+ω)/4) = Õ(

√
tc1.843n2.843).

Proof. Correctness follows from Theorems 4 and 14. The time complexity

of the acceleration phase is Õ(r(cn)(3+ω)/2). As mentioned in the proof of

Theorem 4, |Si| = O(cn/r) in the worst case. Therefore for the cruising

phase we have the time complexity of O(tcn3/r). For both the initialization

for the cruising phase and finalization, we have O(tn2), which is absorbed in

the time complexity of the cruising phase since we can assume that r < cn.

We choose r =
√
tc(−1−ω)/4n(3−ω)/4, which gives us the total worst case time

complexity of Õ(
√
tc(ω+5)/4n(ω+9)/4).

Depending on the value of t and c, the value for r may turn out to be

greater than cn, which means the APSP-AF problem is solved entirely in the

83

Algorithm 23 Solve the APSP-AF problem for integer edge costs.

/* Initialization for the acceleration phase */
1: expand G to G′, initialize B′ based on G′

2: for i← 1 to cn; j ← 1 to cn do
3: p′ij ← φ

/* Acceleration phase */
4: for `← 2 to r do
5: B′(`) ← B′(`−1) ∗B′ /* witnesses given as W = {wij} */
6: for i← 1 to cn; j ← 1 to cn; i 6= j do
7: if b

′(`)
ij > b

′(`−1)
ij then

8: k = wij

9: (h, d, f)← last triplet in p′ik /* if empty, h = 0 */

10: if j ∈ G then append (h+ 1, `, b
′(`)
ij) to p′ij

11: else append (h, `, b
′(`)
ij) to p′ij

/* Initialization for the cruising phase, ` = r */
12: P ← rows/columns in P ′ for real vertices /* G′ is contracted to G */
13: Df , Hf ← I for all maximal flows f /* I is the identity matrix */
14: for i← 1 to n; j ← 1 to n; i 6= j do
15: let pij = {(h1, d1, f1), ..., (hs, ds, fs)} for some s /* skip empty pij */
16: k ← 1 /* k iterates from 1 to s */
17: for all maximal flows f in increasing order do
18: if f > fk then k ← k + 1 /* the next dk value is needed */
19: if k > s then break /* we proceed to the next pij */

20: df,`ij ← dk; hf,`ij ← hk

/* Cruising phase */
21: for all maximal flow values f do
22: perform the cruising phase of Algorithm 7 on Df,`

/* Finalization */
23: let Df be Df,n from the result of the cruising phase
24: for i← 1 to n; j ← 1 to n; i 6= j do
25: for all maximal flows f in increasing order do
26: d← dfij
27: let the last pair of pij be x = (d′, f ′) /* if pij is empty, x = φ */
28: if x = φ or (f > f ′ and d <∞) then
29: if d = d′ then replace x with (d, f)
30: else append (d, f) to pij

84

acceleration phase. Thus a more accurate time complexity for Algorithm 23

is actually Õ(min {(cn)(5+ω)/2,
√
tc(ω+5)/4n(ω+9)/4}).

We conclude the final chapter of our thesis with Theorem 17 giving us the

highlight of our contribution to the field of graph theory. We make a final

note regarding the practicality of Algorithms 21 and 23. By reverting to the

ordinary matrix multiplication method to compute the (max,min)-product

in the acceleration phases of the algorithms, both algorithms become imple-

mentable with time complexities of O(
√
tn3) and O(

√
tc2n3), respectively.

On graphs with relatively larger values of t and smaller values of c, these

asymptotic time bounds are still more efficient compared to the straightfor-

ward methods.

85

Chapter VI

Conclusion

We have performed an in-depth study of the problem called the SP-AF

problem that has many practical applications where the given problems can

be modelled on graphs with edges with both costs and capacities. In our

research for finding efficient algorithms to solve the SP-AF problem, we were

also able to contribute to the individual topics of matrix multiplication, the

SP problem and the BP problem, all of which can be considered to be sub-

topics of the SP-AF problem. The following list is a summary and the citation

for each of our contributions:

• A faster parallel algorithm for matrix multiplication on a 2D mesh

array (Algorithm 5): We have halved the number of communication

steps from the well known Cannon’s algorithm, from 3n to 1.5n com-

munication steps, achieved by a better overall utilisation of the mesh

array. Our mesh array definition remains strictly 2D and the algorithm

remains simple [6].

• An enhancement to the breakthrough algorithm by AGM for solving

the APSP problem on graphs with integer edge costs (Algorithm 8):

From an in-depth analysis of the breakthrough algorithm by AGM that

has the worst case time complexity remaining sub-cubic for integer edge

costs bounded by c < n0.117, we have improved the algorithm such that

the worst case time complexity of the algorithm remains sub-cubic for

integer edge costs bounded by c < n0.186 [61].

• A faster parallel algorithm for solving the APSP problem (Algorithm

13): By translating the serial cascade algorithm onto the 2D mesh array

and optimizing the resulting parallel algorithm, we have achieved 3n

communication steps to solve the APSP problem, which improves upon

86

the 3.5n communication steps that was achieved more than two decades

ago. (This contribution has been submitted to the journal of Parallel

and Distributed Computing and is currently under review.)

• An efficient algorithm for solving the GB problem (Algorithm 14): By

combining Tarjan’s algorithm for determining strongly connected com-

ponents with a simple binary search, we have significantly reduced the

worst case time complexity of solving the GB problem from Õ(n2.687)

or O(mn+ n2 log n) down to O(m log n) [63].

• A formal mathematical definition of the SP-AF problem (Theorem 10):

We have defined a new instance of the semi-ring algebraic structure

called the distance/flow semi-ring, which not only serves as a formal

definition for the new SP-AF problem, but also shows that existing

algorithms that are generally applicable to semi-rings can be applied

to the new SP-AF problem [60].

• Efficient non-algebraic algorithms for both the SSSP-AF and APSP-AF

problems (Algorithms 18, 20 and 22): We have shown that Dijkstra’s

algorithm can be extended to solve both the SSSP-AF and the APSP-

AF problems with efficient time bounds by utilising an advanced data

structure called the CBS, as well as utilising the key concept of resource

sharing [62].

• Efficient algebraic algorithms for the APSP-AF problem that utilise

FMMOR (Algorithms 21 and 23): Using our enhancement to the AGM

algorithm as the basis, we have derived an algorithm to solve the APSP-

AF problem on graphs with integer edge costs in Õ(
√
tc1.844n2.844) worst

case time bound that utilises both the (max,min)-product of the bot-

tleneck matrix semi-ring and (min,+)-product of the distance matrix

semi-ring [63, 61].

We conclude our thesis with some open questions that would make good

candidates for future research:

87

• Are there more efficient algorithms for solving the SP-AF problems on

undirected graphs? For example, the APSP problem on undirected un-

weighted graphs can be solved in Õ(n2.373) time bound [58], whereas for

directed unweighted graphs, the best time bound remains at Õ(n2.530)

[43, 83]. Likewise, for the SP-AF problems, are there faster algorithms

for undirected graphs?

• Are there efficient algorithms for solving the SP-AF problems on graphs

with real edge costs? In this thesis we have provided algorithms that are

faster than the straightforward methods of solving the SP-AF problems

on graphs with unit edge costs and integer edge costs. The problem

seems to be much harder for real edge costs, as evidenced by the fact

that the best known algorithm for solving the APSP problem on dense

graphs with real edge costs is only able to achieve a speed up of a

polylog factor [33].

• What is the lower bound for the SP-AF problems? The thesis has

focused on reducing the worse case upper bounds for the problems. Can

we provide sharper lower bounds than the trivial lower bounds of O(tn)

and O(tn2) for the SSSP-AF and APSP-AF problems, respectively?

88

Appendix A

Publications

A.1 Conferences

• The 1st International Conference on Resource Efficiency in Interorga-

nizational Networks [60]

– Title: Efficient Graph Algorithms for Network Analysis

– Authors: Tong-Wook Shinn and Tadao Takaoka

– Date: 13th – 14th of November, 2013

– Location: Georg-August-Universitaet, Goettingen, Germany

– Editors: Jutta Geldermann and Matthias Schumann

– ISBN: 978-3-86395-142-9

– Pages: 236 – 247

• The 37th Australasian Computer Science Conference [62]

– Title: Combining the Shortest Paths and the Bottleneck Paths

Problems

– Authors: Tong-Wook Shinn and Tadao Takaoka

– Date: 20th – 23rd of January, 2014

– Location: Auckland University of Technology, Auckland, New

Zealand

– Editors: Bruce Thomas and Dave Parry

– ISBN: 978-1-921770-30-2

– Pages: 13 – 18

89

• The 8th International Workshop on Algorithms and Computation [63]

– Title: Some Extensions of the Bottleneck Paths Problem

– Authors: Tong-Wook Shinn and Tadao Takaoka

– Date: 13th – 15th of February, 2014

– Location: Indian Institute of Technology, Chennai, India

– Editors: Sudebkumar Prasant Pal and Kunihiko Sadakane

– ISBN: 978-3-319-04656-3

– Pages: 176 – 187

• The 12th Latin American Theoretical INformatics Symposium [61]

– Title: Combining All Pairs Shortest Paths and All Pairs Bottle-

neck Paths Problems

– Authors: Tong-Wook Shinn and Tadao Takaoka

– Date: 31st of March – 4th of April, 2014

– Location: Montevideo, Uruguay

– Editors: Alberto Pardo and Alfredo Viola

– ISBN: 978-3-642-54423-1

– Pages: 226 – 237

• The 14th International Conference on Computational Science [6]

– Title: A Faster Parallel Algorithm for Matrix Multiplication on a

Mesh Array

– Authors: Sung Eun Bae, Tong-Wook Shinn and Tadao Takaoka

– Date: 10th – 12th of June, 2014

– Location: Cairns, Australia

– Editors: David Abramson, Michael Lees, Valeria Krzhizhanovskaya,

Jack Dongarra and Peter M.A. Sloot

– ISSN: 1877-0509

– Pages: 2230 – 2240

90

A.2 Journals

• Journal of Theoretical Computer Science

– Title: Variations on the Bottleneck Paths Problem

– Authors: Tong-Wook Shinn and Tadao Takaoka

– Status: accepted, waiting to be published

• Journal of Parallel and Distributed Computing

– Title: A Faster Parallel Algorithm for Solving the APSP Problem

on a Mesh Array

– Authors: Sung Eun Bae, Tong-Wook Shinn, and Tadao Takaoka

– Status: under review

• SIAM Journal on Computing

– Title: Shortest Paths for All Flows on Graphs with Integer Edge

Costs

– Authors: Tong-Wook Shinn and Tadao Takaoka

– Status: under review

91

References

[1] D. Abuaiadh and J. H. Kingston. Are Fibonacci heaps optimal? In

ISAAC, volume 834, pages 442–450. Springer, 1994.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis

of Computer Algorithms. Addison-Wesley, 1974.

[3] R. K. Ahuja, K. Mehlhorn, J. Orlin, and R. E. Tarjan. Faster algorithms

for the shortest path problem. Journal of ACM, 37(2):213–223, 1990.

[4] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs

shortest path problem. In FOCS, pages 569–575. IEEE Computer Soci-

ety, 1991.

[5] Y. P. Aneja, V. Aggarwal, and K. P. K. Nair. On a class of quadratic

programs. European Journal of Operational Research, 18(1):62–70, 1984.

[6] S. E. Bae, T. Shinn, and T. Takaoka. A faster parallel algorithm for

matrix multiplication on a mesh array. In ICCS, pages 2230–2240, 2014.

[7] A. Benaini and Y. Robert. An even faster systolic array for matrix

multiplication. Parallel computing, 12(2):249–254, 1989.

[8] D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n2.7799) complexity

for n ∗ n approximate matrix multiplication. Information Processing

Letters, 8(5):234–235, 1979.

[9] G. S. Brodal, G. Lagogiannis, and R. E. Tarjan. Strict fibonacci heaps.

In STOC, pages 1177–1184. ACM, 2012.

[10] L. E. Cannon. A cellular computer to implement the Kalman filter al-

gorithm. PhD thesis, Montana State University, Bozeman, MT, USA,

1969.

92

[11] T. M. Chan. All-pairs shortest paths with real weights in O(n3/ log n)

time. Algorithmica, 50(2):236–243, 2008.

[12] K. H. Cheng and S. Sahni. VLSI systems for band matrix multiplication.

Parallel computing, 4(3):239–258, 1987.

[13] D. Coppersmith and S. Winograd. On the asymptotic complexity of ma-

trix multiplication. SIAM Journal on Computing, 11(3):472–492, 1982.

[14] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic

progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

[15] E. V. Denardo and B. L. Fox. Shortest-route methods: 1. reaching,

pruning, and buckets. Operations Research, 27(1):161–186, 1979.

[16] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1(1):269–271, 1959.

[17] Y. A. Dinitz. Algorithm for solution of a problem of maximum flow

in a network with power estimation. Doklady Akademii Nauk SSSR,

194(4):754, 1970.

[18] W. Dobosiewicz. A more efficient algorithm for the min-plus multipli-

cation. International Journal of Computer Mathematics, 32(1-2):49–60,

1990.

[19] R. Duan and S. Pettie. Fast algorithms for (max, min)-matrix multipli-

cation and bottleneck shortest paths. In SODA, pages 384–391. SIAM,

2009.

[20] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic

efficiency for network flow problems. Journal of the ACM, 19(2):248–

264, 1972.

[21] B. A. Farby, A. H. Land, and J. D. Murchland. The cascade algorithm for

finding all shortest distances in a directed graph. Management Science,

14(1):19–28, 1967.

93

[22] R. W. Floyd. Algorithm 97: Shortest path. Communications of the

ACM, 5(6):345, 1962.

[23] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.

Canadian journal of Mathematics, 8(3):399–404, 1956.

[24] M. L. Fredman. New bounds on the complexity of the shortest path

problem. SIAM Journal on Computing, 5(1):83–89, 1976.

[25] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in

improved network optimization algorithms. In FOCS, pages 338–346.

IEEE Computer Society, 1984.

[26] Z. Galil and O. Margalit. Witnesses for Boolean matrix multiplication

and for transitive closure. Journal of Complexity, 9(2):201–221, 1993.

[27] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations

by canceling negative cycles. Journal of the ACM, 36(4):873–886, 1989.

[28] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circula-

tions by successive approximation. Mathematics of Operations Research,

15(3):430–466, 1990.

[29] M. Gondran and M. Minoux. Graphs, dioids and semirings: new models

and algorithms, volume 41. Springer, 2008.

[30] L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct VLSI implemen-

tation of combinatorial algorithms. Caltech Conference on VLSI, pages

509–525, 1979.

[31] Y. Han. Improved algorithm for all pairs shortest paths. Information

Processing Letters, 91(5):245–250, 2004.

[32] Y. Han. An O(n3(log log n/ log n)5/4) time algorithm for all pairs short-

est path. Algorithmica, 51(4):428–434, 2008.

94

[33] Y. Han and T. Takaoka. An O(n3 log log n/ log2 n) time algorithm for all

pairs shortest paths. In SWAT, volume 7357, pages 131–141. Springer

Berlin Heidelberg, 2012.

[34] P. Hansen. Bicriterion path problems. In Multiple criteria decision

making theory and application, pages 109–127. Springer, 1980.

[35] T. C. Hu. Letter to the editor-the maximum capacity route problem.

Operations Research, 9(6):898–900, 1961.

[36] T. C. Hu. Revised matrix algorithms for shortest paths. SIAM Journal

on Applied Mathematics, 15(1):207–218, 1967.

[37] H. V. Jagadish and T. Kailath. A family of new efficient arrays for matrix

multiplication. IEEE Transactions on Computers, 38(1):149–155, 1989.

[38] S. C. Kak. A two-layered mesh array for matrix multiplication. Parallel

Computing, 6(3):383–385, 1988.

[39] M. Klein. A primal method for minimal cost flows with applications

to the assignment and transportation problems. Management Science,

14(3):205–220, 1967.

[40] J. B. Kruskal. On the shortest spanning subtree of a graph and the

travelling salesman problem. Proceedings of the American Mathematical

society, 7(1):48–50, 1956.

[41] H. T. Kung and C. E. Leiserson. Systolic arrays (for VLSI). Society for

Industrial & Applied, page 256, 1979.

[42] G. Lakhani and R. Dorairaj. A VLSI implementation of all-pair shortest

path problem. In ICPP, pages 207–209, 1987.

[43] F. Le Gall. Faster algorithms for rectangular matrix multiplication. In

FOCS, pages 514–523. IEEE, 2012.

95

[44] F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC,

pages 296–303, 2014.

[45] V. M. Malhotra, M. P. Kumar, and S. N. Maheshwari. An O(|V |3) algo-

rithm for finding maximum flows in networks. Information Processing

Letters, 7(6):277–278, 1978.

[46] R. McNaughton and H. Yamada. Regular expressions and state graphs

for automata. IRE Transactions on Electronic Computers, EC-9(1):39–

47, 1960.

[47] L. Melkemi and M. Tchuente. Complexity of matrix product on a class

of orthogonally connected systolic arrays. IEEE Transactions on Com-

puters, 100(5):615–619, 1987.

[48] J. C. Namorado Climaco and E. Queiros Vieira Martins. A bicriterion

shortest path algorithm. European Journal of Operational Research,

11(4):399–404, 1982.

[49] V. Y. Pan. Strassen’s algorithm is not optimal trilinear technique of

aggregating, uniting and canceling for constructing fast algorithms for

matrix operations. In FOCS, pages 166–176. IEEE Computer Society,

1978.

[50] B. Pelegrın and P. Fernández. On the sum-max bicriterion path problem.

Computers & operations research, 25(12):1043–1054, 1998.

[51] M. Pollack. Letter to the editor-the maximum capacity through a net-

work. Operations Research, 8(5):733–736, 1960.

[52] F. P. Preparata and J. E. Vuillemin. Area-time optimal VLSI networks

for multiplying matrices. Information Processing Letters, 11(2):77–80,

1980.

[53] R. C. Prim. Shortest connection networks and some generalizations.

Bell system technical journal, 36(6):1389–1401, 1957.

96

[54] E. Queiros Vieira Martins. On a multicriteria shortest path problem.

European Journal of Operational Research, 16(2):236–245, 1984.

[55] F. Romani. Some properties of disjoint sums of tensors related to matrix

multiplication. SIAM Journal on Computing, 11(2):263–267, 1982.

[56] S. Saunders and T. Takaoka. Improved shortest path algorithms for

nearly acyclic graphs. Electronic Notes in Theoretical Computer Science,

42:232–248, 2001.

[57] A. Schönhage. Partial and total matrix multiplication. SIAM Journal

on Computing, 10(3):434–455, 1981.

[58] R. Seidel. On the all-pairs-shortest-path problem in unweighted undi-

rected graphs. Journal of computer and system sciences, 51(3):400–403,

1995.

[59] A. Shapira, R. Yuster, and U. Zwick. All-pairs bottleneck paths in vertex

weighted graphs. In SODA, pages 978–985. Society for Industrial and

Applied Mathematics, 2007.

[60] T. Shinn and T. Takaoka. Efficient graph algorithms for network anal-

ysis. In ResEff, pages 236–247, 2013.

[61] T. Shinn and T. Takaoka. Combining all pairs shortest paths and all

pairs bottleneck paths problems. In LATIN, pages 226–237, 2014.

[62] T. Shinn and T. Takaoka. Combining the shortest paths and the bot-

tleneck paths problems. In ACSC, pages 13–18, 2014.

[63] T. Shinn and T. Takaoka. Some extensions of the bottleneck paths

problem. In WALCOM, pages 176–187, 2014.

[64] A. J. Stothers. On the complexity of matrix multiplication. PhD thesis,

The University of Edinburgh, 2010.

97

[65] V. Strassen. Gaussian elimination is not optimal. Numerische Mathe-

matik, 13(4):354–356, 1969.

[66] V. Strassen. The asymptotic spectrum of tensors and the exponent of

matrix multiplication. In FOCS, pages 49–54, 1986.

[67] T. Takaoka. A new upper bound on the complexity of the all pairs

shortest path problem. Information Processing Letters, 43(4):195–199,

1992.

[68] T. Takaoka. Sub-cubic cost algorithms for the all pairs shortest path

problem. In WG, volume 1017, pages 323–343. Springer, 1995.

[69] T. Takaoka. Shortest path algorithms for nearly acyclic directed graphs.

Theoretical Computer Science, 203(1):143–150, 1998.

[70] T. Takaoka. An O(n3 log log n/ log n) time algorithm for the all-pairs

shortest path problem. Information Processing Letters, 96(5):155–161,

2005.

[71] T. Takaoka. Efficient algorithms for the all pairs shortest path problem

with limited edge costs. In CATS, volume 128, pages 21–26, 2012.

[72] T. Takaoka and K. Umehara. An efficient VLSI algorithm for the all

pairs shortest path problem. Journal of Parallel and Distributed Com-

puting, 16(3):265–270, 1992.

[73] T. Takaoka and K. Umehara. Cascade algorithm revisited. Technical

Report TR-COSC 01/14, University of Canterbury, 2014.

[74] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM

Journal on Computing, 1(2):146–160, 1972.

[75] M. Thorup. Integer priority queues with decrease key in constant time

and the single source shortest paths problem. In STOC, pages 149–158.

ACM, 2003.

98

[76] J. D. Ullman. Computational aspects of VLSI, volume 11. Computer

Science Press Rockville, MD, 1984.

[77] K. Umehara. The Design and Analysis of Sequential and Parallel Al-

gorithms for Shortest Path Problem. Master’s thesis, Department of

Computer and Information Science, Ibaraki University, Ibaraki, Japan,

1990.

[78] V. Vassilevska. Efficient Algorithms for Path Problems in Weighted

Graphs. PhD thesis, School of Computer Science, Carneige Mellon Uni-

versity, Pittsburgh, PA 15213, 2008.

[79] V. Vassilevska, R. Williams, and R. Yuster. All pairs bottleneck paths

and max-min matrix products in truly subcubic time. Theory Of Com-

puting, 5(1):173–189, 2009.

[80] V. V. Williams. Multiplying matrices faster than coppersmith-winograd.

In STOC, pages 887–898. ACM, 2012.

[81] S. Winograd. A new algorithm for inner product. IEEE Transactions

on Computers, 100(7):693–694, 1968.

[82] M. Yoeli. A note on a generalization of Boolean matrix theory. American

Mathematical Monthly, pages 552–557, 1961.

[83] U. Zwick. All pairs shortest paths using bridging sets and rectangular

matrix multiplication. Journal of the ACM, 49(3):289–317, 2002.

[84] U. Zwick. A slightly improved sub-cubic algorithm for the all pairs

shortest paths problem with real edge lengths. Algorithmica, 46(2):181–

192, 2006.

99

