Slice and match - how to modify 2-dimensional geometries
 NZMS Colloquium 2015

Günter Steinke

School of Mathematics and Statistics
University of Canterbury
New Zealand
1-3 December 2015

The Euclidean real affine plane

The group of collineations of the Euclidean real affine plane is a Lie group of dimension 6 consisting of the transformations $(x, y) \mapsto(x, y) A+(s, t)$ where $A \in \mathrm{GL}_{2}(\mathbb{R})$, $s, t \in \mathbb{R}$.

Generalised Moulton planes

Generalised Moulton planes

Generalised Moulton planes

The group of collineations of a generalised Moulton plane is a Lie group of dimension at least 2 containing the transformations $(x, y) \mapsto(x, y) \cdot r+(0, t)$ where $r, t \in \mathbb{R}, r>0$. (Pierce 1961, S. 1985)

The classical real Minkowski plane

The miquelian or classical real Minkowski plane is obtained as the geometry of non-trivial plane sections of a ruled quadric \mathcal{Q} in 3-dimensional real projective space.

The classical real Minkowski plane

The miquelian or classical real Minkowski plane is obtained as the geometry of non-trivial plane sections of a ruled quadric \mathcal{Q} in 3-dimensional real projective space.

The classical real Minkowski plane

The miquelian or classical real Minkowski plane is obtained as the geometry of non-trivial plane sections of a ruled quadric \mathcal{Q} in 3-dimensional real projective space.

The hyperbola model of the classical real Minkowski plane

The hyperbola model of the classical real Minkowski plane

The group of automorphisms of the classical real Minkowski plane is a Lie group of dimension 6 containing the transformations $(x, y) \mapsto(\alpha(x), \beta(y))$ where $\alpha, \beta \in \mathrm{PGL}_{2}(\mathbb{R})$, the group of fractional linear maps on $\mathbb{R} \cup\{\infty\}$.

Geometric and topological properties

The residual incidence structure \mathcal{M}_{p} at a point p of a Minkowski plane \mathcal{M} is an affine plane, the derived affine plane at p. Its points are the points of \mathcal{M} not on a generator through p and lines come from the generators $\neq[p]_{1},[p]_{2}$ and circles through p. A circle not passing through p induces a hyperbolic curve \mathcal{M}_{p}.

Geometric and topological properties

The residual incidence structure \mathcal{M}_{p} at a point p of a Minkowski plane \mathcal{M} is an affine plane, the derived affine plane at p. Its points are the points of \mathcal{M} not on a generator through p and lines come from the generators $\neq[p]_{1},[p]_{2}$ and circles through p. A circle not passing through p induces a hyperbolic curve \mathcal{M}_{p}.

Circles in the classical real Minkowski plane are graphs of fractional linear maps on $\mathbb{S}^{1} \simeq \mathbb{R} \cup\{\infty\}$. The circle space of the classical real Minkowski plane is homeomorphic to $\mathrm{PGL}_{2}(\mathbb{R})$.

The circle space \mathcal{C} of a 2-dimensional Minkowski plane $\left(\mathbb{S}^{1} \times \mathbb{S}^{1}, \mathcal{C}\right)$ has two connected components \mathcal{C}^{+}and \mathcal{C}^{-}, the former consisting of graphs of orientation-preserving homeomorphisms of \mathbb{S}^{1} and the latter consisting of graphs of orientation-reversing homeomorphisms of \mathbb{S}^{1}.

Modified classical real Minkowski planes w.r.t. a point

Modified classical real Minkowski planes w.r.t. a point

The group of automorphisms of a modified classical real Minkowski plane w.r.t. the point (∞, ∞) is a Lie group of dimension at least 3 containing the transformations $(x, y) \mapsto\left(r x+s, \frac{y}{r}+t\right)$ where $r, s, t \in \mathbb{R}, r>0$. (S. 1985)

Modified classical real Minkowski planes w.r.t. a circle

Modified classical real Minkowski planes w.r.t. a circle

Modified classical real Minkowski planes w.r.t. a circle

Modified classical real Minkowski planes w.r.t. a circle

Modified classical real Minkowski planes w.r.t. a circle

Modified classical real Minkowski planes w.r.t. a circle

The group of automorphisms of a modified classical real Minkowski plane w.r.t. the circle $y=x$ is a Lie group of dimension at least 3 containing the transformations $(x, y) \mapsto(\alpha(x), \alpha(y))$ where $\alpha \in \operatorname{PSL}_{2}(\mathbb{R})$. (S. 2015)

Other types of modified classical real Minkowski planes

Theorem (Swapping halves)
If $\left(\mathbb{S}^{1} \times \mathbb{S}^{1}, \mathcal{C}_{i}\right), i=1,2$, are two 2 -dimensional Minkowski planes, then the geometry $\left(\mathbb{S}^{1} \times \mathbb{S}^{1}, \mathcal{C}_{1}^{+} \cup \mathcal{C}_{2}^{-}\right)$is a 2-dimensional Minkowski plane.

The above process of 'swapping halves' can be applied to any two of the modified classical real Minkowski planes in order to produce a 2-dimensional Minkowski plane whose circles are pieces of up to two circles of the classical real Minkowski plane.

Other types of modified classical real Minkowski planes

Theorem (Swapping halves)
If $\left(\mathbb{S}^{1} \times \mathbb{S}^{1}, \mathcal{C}_{i}\right), i=1,2$, are two 2 -dimensional Minkowski planes, then the geometry $\left(\mathbb{S}^{1} \times \mathbb{S}^{1}, \mathcal{C}_{1}^{+} \cup \mathcal{C}_{2}^{-}\right)$is a 2-dimensional Minkowski plane.

The above process of 'swapping halves' can be applied to any two of the modified classical real Minkowski planes in order to produce a 2-dimensional Minkowski plane whose circles are pieces of up to two circles of the classical real Minkowski plane.

Piecewise projective 2-dimensional Minkowski planes are planes whose circles are made up of finitely many pieces of circles of the classical real Minkowski plane. There are models of piecewise projective 2-dimensional Minkowski planes whose automorphism groups are trivial.

