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Abstract

The purpose of this study was to investigate seedling recruitment beneath kanuka

forest at Tiromoana Bush, North Canterbury. The regeneration of broadleaved tree species

is evident throughout Tiromoana Bush. This research aimed to quantify the biotic and

abiotic factors influencing the distribution of small and large seedlings of canopy tree

species, their relative growth rates, their survival, abundance and composition throughout

the forest understorey of Tiromoana Bush. Tiromoana Bush is a forest restoration area of

410 hectares adjacent to the Kate Valley landfill.

To determine the future tree species composition at Tiromoana Bush, seedling

recruitment, growth and survival was quantified through remeasuring tagged seedlings in

26 permanent vegetation monitoring plots located in the major forest patches at

Tiromoana Bush. In addition, seedling data from 78 temporary vegetation survey plots

established in three major forest patches were used to assess the influence of different

factors on seedling abundance.

At Tiromoana Bush, the most common canopy tree species as seedlings in the

permanent vegetation monitoring plots was mahoe followed by fivefinger. Mahoe

seedling density was significantly affected by canopy openness, distance to seed sources,

light index, shrub cover and slope, but not by aspect, basal area and time. For fivefinger,

seedlings increased in abundance with time, but the difference was not statistically

significant. The relative growth rate of mahoe in the 20-49cm height class (in which most

seedlings occurred) was significantly affected by shrub cover, light index and canopy
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openness. Mahoe seedling recruits were significantly affected by light index and canopy

openness. Survivability of mahoe was affected by aspect. For fivefinger, individual

relative growth rates were significantly affected by canopy openness and light index.

Similar results were found for tree species seedlings present in the temporary survey

plots provided with mahoe and fivefinger again the most common species, followed by

kohuhu. Light index significantly affected golden akeake small seedlings as well as

canopy openness. Light index significantly affected ngaio large seedling distribution.

Aspect was the only significant factor for kohuhu large seedling distribution. Distance

from seed sources significantly affected fivefinger small seedling distribution as seedlings

are dependent upon dispersal away from the parent trees. Slope significantly affected the

distribution of red matipou small seedlings.

The most important environmental attribute influencing seedling abundance is light.

This is evident in both the permanent seedling monitoring plots and the temporary

vegetation survey plots. Based on data from the temporary vegetation survey plots,

mahoe, fivefinger and kohuhu are most abundant suggesting that these three canopy tree

species will dominate the forest canopy at Tiromoana Bush once the kanuka starts to

senesce.

Keywords: Seedling Recruitment; Seedling Abundance; Light; Small Seedlings; Large

Seedlings; Tiromoana Bush
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Chapter One: Introduction

1.1. Overview

The main thrust of this research is to gain an understanding of the dynamics of a

regenerating forest. Future forest canopies are influenced by both biotic and abiotic

factors that influence species enabling to establish beneath the existing forest canopy,

whether this be an old-growth canopy or a young regenerating (seral) canopy.

Seedling establishment, growth and survival are the key stages influencing future

canopy composition and are influenced by a host of abiotic and biotic factors

including light (Raich and Gong, 1990; Nicotra et al. 1999), soil moisture and

nutrients (Itoh, 1995; Brearley et al. 2003), litter fall and cover (Aide, 1987; Molofsky

and Augspurger, 1992; Hammond, 1995), seed dispersal (Howe and Schupp, 1985;

Webb and Peart, 2001), seed and seedling predation, herbivory and pathogen attack

(Molofsky and Fisher, 1993; Hulme, 1996; Notman and Gorchov, 2001) and

competition from established vegetation (Denslow et al. 1991; Wang and Augspurger,

2004).

Development of ecologically sound strategies for conservation management of

forests requires a good knowledge of forest dynamics, succession and regeneration

(Dupuy and Chazdon, 2008). This is particularly important when considering the

future development of a regenerating forest that has established as part of a restoration

project. Environmental factors that differentially affect the recruitment and mortality

of seedlings of forest tree species contribute to the diversity of regeneration niches

thus ultimately affecting community composition and hence plant diversity in the
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future forest (Grubb, 1977; Harper, 1977). The number of seedlings that are present in

the forest understorey and their growth and survival rates determine the number of

saplings that will potentially be available to replace trees lost through natural mortality

(James, 1998) and through disturbance events, such as landslides or wind-throw. The

large spatial and temporal scales at which these replacement processes function

requires long-term studies at the landscape scale (Dupuy and Chazdon, 2008).

The great losses of indigenous forest cover as a result of expanding agricultural

lands leads to significant reductions and possibly extinctions of native plants and

animals. In many temperate areas worldwide, natural lowland forests have been

fragmented during extensive agricultural development (Burns et al. 2011). An

example of this is happening here in New Zealand. In New Zealand, agriculture has

been one of the greatest causes of land use change and habitat destruction (Morad and

Jay, 2000). Before European settlement in New Zealand, areas associated with the

highest biodiversity were the coastal lowlands (Morad and Jay, 2000) where

agriculture is now most intense. Recognition of land-use history, particularly the type

of agriculture used, is important regarding land-use changes. This phenomenon is

likely to affect future forest composition, in particular in areas when agriculture later

ceases (Foster et al. 2003).  At stand to landscape scales, differences in land-use

history influence modern vegetation patterns (Zimmerman et al. 1995; Motzkin et al.

1999a, 1999b). Currently, most of the land below 300 m is privately owned, and

contains only fragments of the original vegetation (Morad and Jay, 2000; Burns et al.

2011).

Loss of natural forest in New Zealand has been greatest on the lowlands. In these

areas, almost all of the forest that remains is on private land in small fragments or
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remnants. The loss of natural forest in New Zealand occurred during both Polynesian

and European settlement, as a result of fire and forest harvesting or felling. Recent

evidence suggests that the pre-human vegetation in lowland environments included

podocarp forests and other woody species (Clark et al. 1996). With the current

conflicting issues around agriculture and sustaining native biodiversity, the need for

environmental planners to encourage landowners and farmers to retain all areas of

native vegetation, or in part, is crucial to allow for survival of some of the native flora

present in the lowlands (Morad and Jay, 2000). In New Zealand, management actions

such as fencing and control of invasive pests and weeds are likely to reduce threats to

indigenous biodiversity through preventing grazing and trampling damage by

livestock (Burns et al. 2000; Smale et al. 2005). Studies encompassing the exclusion

of livestock form fragments in New Zealand reported that change in understorey

composition is evident, there is a decreased number of adventive species and there are

increases in richness of indigenous species and in tree seedling and sapling numbers

(Timmins, 2002; Smale et al. 2005; Dodd and Power, 2007).

1.2. Review of Forest Dynamics in Relation to Forest
Canopy Development

Understanding how forest species are able to colonise disturbed areas, either

naturally or via human intervention, is important for restoration ecology. The review

below addresses the components of natural forest regeneration and how limitations of

these components may arrest future canopy development. In particular, the review

provides insight to forest regeneration in areas initially used for farming practices but

are now regenerating back into native forest. In New Zealand, agriculture over the past

1150 years has been prominent on the lowlands, resulting in large losses of indigenous
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flora and fauna (McGlone, 1989; Wilmshurst et al. 2004). Ex-pasture sites, known as

old-field sites, are known to provide habitat for regenerating native species otherwise

restricted to small remnants in fragmented agricultural landscapes (Standish et al.

2009). Since European settlement, abandonment of farmland occurred during times of

depression and abolition of subsidies during the late 1980s (Standish et al. 2009). The

removal of agricultural subsidies in the late 1980s meant that substantial areas of

farmland had become less attractive for farming and some areas since have been

allowed to revert back into native woody vegetation allowing a succession of native

forest to start developing.

1.2.1. Seed Dispersal

The life history of seed plants is comprised of two ecologically distinct phases.

These are known as sessile and dispersal phases (Eriksson and Ehrlen, 1992). The

term dispersal is characterised by the movement of individuals away from their parents

(Nathan et al. 2003) to sites where seeds can germinate and survive to produce the

next generation (Chanthorn and Brockelman, 2008). Dispersal has been noted as a key

factor affecting species distributions (Primack and Miao, 1992) and dispersal

limitation can impede seedling recruitment of plant species. A wide array of seed and

dispersal features exists among plants (Eriksson and Ehrlen, 1992) and it is inevitable

that considerable between-species variation in patterns of recruitment occurs. Seed

dispersal is a topic of much interest to ecologists, however until the last few decades

the ecology of dispersal has not received rigorous attention scientifically (Willson and

Traveset, 2000).

Dispersed offspring survive and reproduce more readily than those that are not

dispersed away from the parent; this is due mainly to detrimental conditions they may
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encounter close to parents. When dispersed farther away, however seedlings encounter

similar conditions, but from a different perspective (Willson and Traveset, 2000), for

example herbivory and microsite availability. Darwin (1859) pointed out that

adaptations of seed dispersal and means of long-distance transportation are particularly

important to plants. Long-distance dispersal is favoured in order for offspring to

colonise unvegetated habitat and limits competition with extant vegetation (Koch et al.

2010). Dispersal over modest distances ensures seeds are distributed within proximity

to the source that supported the parent(s) (Koch et al. 2010).

The dispersal potential of different dispersal modes varies immensely (Willson

and Traveset, 2000). Seeds can be dispersed via wind or water (abiotic), or through

vertebrate movement (biotic) means (e.g. birds), while for some species dispersal

simply occurs via gravity: the seed has no special dispersal mechanism. Dispersal by

wind or animals enable seeds to travel greater distances away from the parent tree.

Dispersal of offspring away from the natal site is one way that genes move

through a population or into new populations (Willson and Traveset, 2000). This

prevents in-breeding among individuals of the same species. Seed dispersal has major

influences on plant fitness and whether seedlings subsequently live or die (Wenny,

2001). In theory, plants may increase their fitness level if higher numbers of seeds are

dispersed to areas where offspring gain a higher potential of survival relative to other

sites; this is termed directed dispersal (Wenny, 2001).

The lack of information regarding long-distance seed dispersal (Nathan et al.

2003) is unfortunate since long-distance dispersal events influence many key aspects

of plant biology, including population dynamics, the evolutionary ecology of plant

populations, biological invasions and the overall health (diversity) of ecological
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communities (Harper, 1977; Sauer, 1988; Hengeveld, 1989; Hanski and Gilpin, 1997;

Hovestadt et al. 1999). Concerning recruitment dynamics, two models describe the

effect of proximity of seedlings to parent trees and distance away from parents, how

these situations affect seedling recruitment. The Janzen-Connell model (Figure 1a)

developed by Janzen (1970), and Connell (1971), hypothesises that seedling mortality

is virtually 100% close to parent trees, thus recruitment is limited conversely, most

seedlings appear at some distance away from the parent (sensu escape hypothesis;

Howe and Smallwood, 1982; Bustamante and Simonetti, 2000), but because the

number of seeds present declines with increasing distance, actual seedling numbers

peak and then drop off again. In the Hubbell model (Figure 1b; Hubbell, 1980),

seedling mortality, although high, is less than 100% near the parent, because seed

density is highest nearer the parent, suggesting that recruitment will also be higher

there (Houle, 1995).

Figure 1. a) Janzen’s graphical model of the effects of seed predation on tree
spacing. The population recruitment curve (PRC) is expected to rise above zero
only beyond some minimal distance from a parent tree, and is maximal where the
product of seed density and probability of survival to maturity is highest. b)
Hubbell’s revised model depicts that seed density values span a greater range
than the probability of the survival curve. This revised model assumes a non-zero
percentage of seeds escapes predators near the parent tree. The two curves
results in the PRC reaching its maximum near the parent. Reproduced from
Augspurger, 1983
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1.2.2. Seedling Recruitment: What does seedling recruitment in forests
encompass?

The term recruitment is defined in several ways. With respect to this study,

seedling recruitment refers to the entry of new individuals into a population (Ribbens

et al. 1996). Seedling recruitment represents an interface between the sessile and

dispersal phases discussed above (Eriksson and Ehrlen, 1992). In many populations,

seedling recruitment represents a demographic bottleneck, particularly for species

without the ability to grow clonally (Gurevitch et al. 2002; McEuen and Curran,

2006). Ribbens et al. (1996) define a seedling recruit as a propagule that has

germinated and is later able to survive without maternal resources. Successful

regeneration and species migration by plants generally depend on seeds or other

propagules being dispersed to sites where they can germinate, become seedlings and

then survive to form part of the existing vegetation (Dungan et al. 2001). Seedling

recruitment is a critical stage in the plant life cycle, because most seeds fail to reach

sites where establishment can occur and even for those seeds that do reach suitable

sites, most fail to establish as seedlings (Clark et al. 1998; Clark et al. 1999).

Predictions of where new seedling recruits will occur poses challenges (Sagnard

et al. 2007), especially with regard to seed dispersal, and ecological tradeoffs, for

example the seed size/number ratio (Leishman, 2001). The abundance of and spatial

pattern of seedling recruitment are influenced by seed distributions established during

the time of seed dispersal (Augspurger, 1983, 1984). Newly recruited seedlings

ultimately form the next forest cohort; such recruits form the basis of forest turnover

over time, and hence forest composition. Growth and survival of established seedlings

in a heterogeneous forest understorey are important components that determine

subsequent canopy replacement (Grubb, 1977; Clark et al. 1999; Nakashizuka, 2001).
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Recruitment is therefore important as it drives the overall long-term health of the

forest.

Indigenous woody plant recruitment may be constrained at different life stages

(Wang et al. 2010), where ecologists have long recognised that tree seedling

recruitment is limited by both the supply of seeds and the availability of sites suitable

for seedling establishment (Caspersen and Saprunoff, 2005). Clark et al. (1999) pose

two views concerning the role of recruitment in forest dynamics. Firstly, trees that

provide low or uncertain levels of seed supply negatively affect plant populations

which inevitably results in limited recruitment and establishment of seedlings (Clark

et al. 1999). This is among the causes leading to species rarity or absence. Second,

recruitment ascribes a more limited role to seed supply and thus the establishment of

seedlings (Clark et al. 1999). Limited recruitment can exert striking effects on the

composition of plant communities (Leak and Graber, 1976), and recruitment

limitations may operate through differing spatial and temporal scales (Ribbens et al.

1996). Recruitment limitation potentially involves numerous stages, where the relative

importance is likely to differ over space and time, climatic fluctuations and

appearances of canopy gaps, nurse logs and litter (Clark et al. 1999).

In many forested regions, understorey vegetation, namely herbaceous and shrub

plants often form thick patches that ultimately shift patterns and rates of tree species

recruitment during critical juvenile stages (Mallik, 2003; Royo and Carson, 2006) as

they can outcompete the establishing seedlings (e.g. for light). Forests consistent of

large, long-lived trees creating dense canopies influencing environmental conditions in

the understorey (Boettcher and Kalisz, 1990), and later determine patterns of seedling

regeneration (recruitment) beneath them (Forcier, 1975; Pacala et al. 1996).
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Knowledge of species-specific requirements for seedling recruitment and

interactions between environmental factors and different species within the same

community type is poor and thus is an area where more research is needed (Silvertown

and Tremlett, 1989; Edwards and Crawley, 1999). Integrated approaches combining

information concerning seed dispersal are needed in order for better understanding of

seedling recruitment processes (Schupp, 1995; LePage et al. 2000).

1.2.3. Biotic and abiotic factors controlling seedling recruitment in
forests

Numerous abiotic and biotic factors are known to control seedling establishment.

In forests, factors such as competition (neighbouring plants), desiccation, seed

predation and herbivory (Fenner, 1985) all play roles in how seedlings are impacted

once they have germinated. Below-ground (root) competition together with above-

ground competition (space and light) both affect seedling survival (Brockie, 1992).

Natural disturbance regimes that create canopy openings (treefall gaps; Stewart

et al. 1991) are important for forest dynamics, composition, structure and

heterogeneity (Brokaw 1985a,b; Uhl et al. 1988; Runkel, 1982). The formation of

small canopy openings by natural disturbances, for example windstorms, is typical of

temperate forests including those of New Zealand (Wardle, 1984; Stewart 1986;

Stewart and Rose, 1989, 1990). Gaps provide regeneration opportunities from seed in

the seed bank, or established seedlings, or through invasion of new seedlings from

outside the site (Pakeman and Small, 2005) as they increase light resources in the

forest understorey.

In forest ecosystems, light is a major abiotic factor needed for the establishment

of seedlings. Reduced light together with seed availability are two limitations for
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seedling establishment. Light availability is found to be an important determinant of

seedling regeneration dynamics in temperate forests (Pacala et al. 1996; Finzi and

Canham, 2000). Species show varying responses to light availability (particularly for

seedling and sapling growth and survival; Brokaw, 1987; Van der Meer et al. 1998)

where differences are likely to drive the spatial and temporal course of succession

(Pacala et al. 1994; Kobe et al. 1995; Bazzaz, 1996). The degree of light penetration

as well as root competition determines seedling abundance beneath the forest canopy

(Gilman and Ogden, 2005); this also includes seedlings established underneath fern

fronds. Greater light intensities in some forest communities could promote seedling

survival through fungal pathogen suppression (Vaartaja, 1952; Augspurger, 1983).

Soil compaction influences seedling recruitment and plant development through

increased soil strength, decreased oxygen availability and altered water storage and

availability (Bassett et al. 2005). Compaction potential differs according to soil type,

and plants are known to be affected differently (McQueen et al. 1994). Compacted

soils reduce root growth hence plant anchorage is limited. This increases susceptibility

to disturbance namely windthrow events (Kodrik and Kodrik, 2002). The reduction

and size of soil macropores impedes root elongation (growth; Kozlowski et al. 1999)

reducing root length hence limited soil exploitation (Materechera et al. 1991;

Panayiotopoulos et al. 1994). Reduction of soil pores (and their volume) limits oxygen

levels, potentially leading to toxic gas build up within the soil profile (Hillel, 1971).

With respect to natural regeneration in New Zealand, effects of soil compaction on

seedling establishment are important as many forest remnants have been grazed by

domestic livestock (Bassett et al. 2005).



11

Physical damage by litterfall is another factor known to affect seedling

recruitment (Gilman and Ogden, 2005; Alvarez – Clare and Kitajima, 2009). Litterfall

is an important cause of seedling damage and mortality in many forest ecosystems

(Gilman, and Ogden, 2005). For example, in a New Zealand temperate forest (Huapai)

Gilman and Ogden (2005) found that litterfall contributed to 18% of seedling

mortality. On the other hand, litter significantly decreases evaporative losses from the

soil via temperature reduction that controls the transfer of water vapour (Williams et

al. 1990; McAlpine, and Drake, 2002).  Taxa likely to create elevated levels of litter

accumulation include plants that shed large, heavy leaves and trees that drop limbs

(Gilman and Ogden, 2005).

Seedlings are also at great risk of damage and death from herbivorous animals.

Seedlings are tender and highly nutritious; herbivores tend to prey upon plants within

reach more frequently and at the same time benefit their (herbivore) persistence.

Reductions in woody seedling density have been noted in New Zealand forests post

mammalian herbivore introductions in the 19th and 20th centuries (Husheer et al.

2006), whilst fencing to exclude domestic grazing animals results in significant

increases in seedling densities.

Seedling establishment is affected both by seed dispersal and by environmental

attributes of the site(s). In highly fragmented systems that have been heavily modified

by past farming (agricultural) activities, the long-term development of future forest

canopies could be compromised by a range of biotic and abiotic factors which will

affect what tree species are able to regenerate hence grow beneath the initial “nurse”

woody canopy.
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1.3. Thesis Goals and Objectives

This study will add to our understanding of how regenerating forests in New

Zealand function in particular the factors that might influence future canopy

cover/composition. The main focus here is on the recruitment of seedlings of

angiosperm tree species underneath a seral kanuka (Kunzea ericoides; Myrtaceae)

forest.  Kanuka trees are known to act as nurse species for seedlings, for example

through providing shade and reduced exposure to weather phenomena, including

desiccation (sensu Stevenson and Smale, 2005). Plant regeneration long-term beneath

kanuka canopies has been noted and commented in the past (Cockayne 1919; Wilson,

1994; Reay and Norton, 1999a; Williams and Karl, 2002; Sullivan et al. 2007),

suggesting that regeneration is made possible via the presence of these nurse plants.

Seedling recruitment (establishment, growth and survival) determines the next

cohort of the forest. In order to gain a better understanding of this process, an

understanding of ecological factors that determine seedling recruitment underneath

existing seral kanuka canopies is required. More specifically, this research addresses

the following questions:

1. What species are likely to dominate the future forest canopy at Tiromoana

Bush?

2. What factors influence the abundance of potential canopy species in the

understorey and, hence determine future canopy composition?

These questions will be addressed using the following approaches:
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1. Data from existing permanent vegetation monitoring plots will be used to

quantify recruitment, growth and mortality of seedlings under intact kanuka

canopies as a basis for better understanding seedling dynamics.

2. Using stratified random plots, the influence of a range of biotic (dispersal

distances, competition) and abiotic (light, slope, and aspect) factors on seedling

abundance will be determined.
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Chapter Two: Study Site

2.1. Study Site

This research took place at Tiromoana Bush in North Canterbury. Tiromoana

Bush is a restoration project area covering 423 ha within the Motunau Ecological

District (MED) (Lowry Ecological Region; North Canterbury); grid reference 43°

06’S, 172° 51’E (Figure 2).

Figure 2. Tiromoana Bush study location.
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2.2. Geology of North Canterbury and Tiromoana Bush

All basement rocks beneath the Canterbury Region belong to the Torlesse

Composite (Rakaia and Pahau) Terrane. The Pahau Terrane rocks, of late Jurassic to

early Cretaceous age (160 million and 100 million years ago), occur to the north, and

are probably derived from the Rakaia Terrane (Bradshaw, 1989). Most of North

Canterbury comprises Late Cretaceous strata that rest with angular unconformity on

the Torlesse Supergroup basement rocks (Nicol, 1993). These strata comprise the

Broken River and Conway formations, which are thin (less than 200 m) and are locally

completely absent (Nicol, 1993). The Kowai formation (formed during the Pliocene;

5.3 to 1.8 million years ago) comprises the stone types sandstone, siltstone, mudstone

and carbonaceous layers, also occurs widely throughout North Canterbury (Forsyth et

al. 2008).

The geology of the Tiromoana Bush area primarily comprises tertiary

sedimentary rocks, as well as Quaternary outwash gravels, coastal gravels and sands

(Norton, 2005). The coastal hills surrounding Tiromoana Bush are dominated by soft

rocks and soils from the Tertiary and early Quaternary periods (that is, between 65

million and 1.8 million years ago), on former seabed strata on the coastal side of Mt

Cass, and is consequently underlain by generally fine-grained compacted sedimentary

deposits. Tiromoana Bush in geological terms is bounded in an area known as the

Teviotdale syncline and the Kate anticline folds. The basement rock formation beneath

Tiromoana Bush, known as the Kowai formation, formed during the Pliocene, between

5.3 and 1.8 million years ago, consists of brown, weathered greywacke-clast

conglomerate with sandstone, siltstone and mudstone which are more common

towards the base, where shellbeds and carbonaceous layers among this formation were
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scattered (Forsyth et al. 2008). The valley has moderately steep sides where surface

erosion is evident.

The topography of Tiromoana Bush ranges from sea level to 346 m above sea

level comprising hills and valleys, draining to the east by small rivers. Soils in the area

are known as Stoneyhurst Hill soils where sandy loams predominate (Norton, 2005;

Figure 3). The coastal environment consists of narrow sand and shingle beaches

covered at high tide (Russell and Brown, 1990). The beaches are backed by coastal

cliffs up to 60 m high. Slumping has occurred at the cliffs of the lower reaches of Kate

Valley and nearby streams (Russell and Brown 1990; Norton, 2005).

2.3. Climate

The climate of North Canterbury is greatly dependent upon the lie of the

Southern Alps to the west. Summer temperatures are generally warm, but during foehn

northwesterly conditions (air blowing over the Alps and plains), temperatures can

become hot. Mean annual rainfall is low and long, dry spells can occur, especially

through summer. Typical summer daytime maximum air temperatures range from 18

°C to 26 °C1, but may rise to more than 30 °C. Coastal North Canterbury experiences

cool northeasterly breezes, cooling down temperatures in summer. Winters are cold,

and frosts occur frequently. Typical winter daytime maximum air temperatures range

from 7 °C to 14 °C.  The North Canterbury coast for much of the year experiences

northeasterly airflow, whilst southwesterlies become frequent during winter.

Tiromoana Bush experiences a temperate climate; a mild annual temperature of

10-12.5 °C, while the minimum temperature ranges from 0-3 °C (Leathwick, 2001),

1 Sourced from NIWA 2011
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where in the summer of 2010, the average temperature was circa. 16 °C (max. 31 °C;

min. 5 °C), and during winter, the average temperature is rather cold with an average

of circa. 7 °C (max. 19 °C; min. 0.1 °C). The 2010 data collected at Kate Valley (near

Tiromoana Bush) is for rainfall and temperature. The rainfall of 2010 at Kate Valley

was 919 mm, where most rain was experienced in the winter months (circa. 380 mm)

and least during the spring (circa. 160 mm).  The humidity levels (relative humidity)

at Tiromoana Bush are moderate where during 2010, the summer was 68% and in

winter the humidity was higher at circa. 80%.

2.4. Vegetation History of North Canterbury

The commencement of the Holocene (about 10,000 years ago) was marked by

rapid climatic ameliorations in which Late Glacial shrubland-grasslands of the South

Island were replaced by tall forests (Worthy, 1990). By 9,500 BP, the eastern lowlands

of the South Island had tall matai-totara-kahikatea forests (Worthy, 1990). The modern

distribution of forest was largely reached by 2,500 BP, where fertile lowlands on the

eastern South Island were in tall to low podocarp-broadleaved forest (Worthy, 1990;

McWethy et al. 2010), and also Nothofagus spp. (beech) in wetter, and higher

locations (McWethy et al. 2010).

Information gained form pollen analyses and from mapping of the potential

vegetation cover of New Zealand suggests that the Motunau Ecological District would

have been covered by an almost continuous cover of forest before human settlement

(Norton, 2005). Information regarding pre-human vegetation specifically came from a

pollen diagram (Figure 4) at Amberley (Moar, 1971), where this diagram showed the

dominance of Podocarpaceae and Nothofagus pollen in the regional pollen rain and

based on this, it was suggested that the pre-human vegetation was likely to have
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consisted of mainly totara (Podocarpus totara), matai (Prymnopitys taxifolia) and

black beech (N. solandri var solandri) (Norton, 2005). Moar (1970) described the

vegetation around the Pyramid Valley area, further inland, as covered by a mosaic of

forest and shrubland. However, a more general construction of the potential vegetation

cover shows that the Motunau Ecological District supported a mixture of lowland

conifer forest and conifer/N. solandri forest (Leathwick et al. 2003).

It is likely the podocarp-broadleaved forests would have been the most

widespread vegetation type. This forest would have comprised emergent podocarps

(totara, matai and maybe kahikatea (Dacrycarpus dacrydioides)) above a mixed

broadleaved angiosperm canopy including lemonwood (Pittosporum eugenioides),

lowland ribbonwood (Plagianthus regius), kowhai (Sophora microphylla), narrow-

leaved lacebark (Hoheria angustifolia) broadleaf (Griselinia littoralis), ngaio

(Myoporium laetum), five-finger (Pseudopanax arboreus) and mahoe (Melicytus

ramiflorus). Black beech would have been localised, confined to isolated “difficult”

sites – sites where podocarp-broadleaved species were less competitive such as steep

slopes and sites with soil moisture and nutrient limitations. Along the coastal fringe of

the area, mixed broadleaved forest including ngaio and coastal akeake (Dodonea

viscosa) would have been common (David Norton pers. comm. 2005).
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Figure 3. Soil groups of Canterbury. Tiromoana Bush (star) consists mainly of
Yellow Grey Earth and Rendzina. Source: Environment Canterbury

Tiromoana Bush
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Figure 4. Pollen diagram, Swinton Park Farm, Amberley, North Canterbury.
Reproduced from Moar, 1971

2.5. Vegetation loss in the Eastern South Island – Human
Impacts

Similar to most land cover destruction in New Zealand, Tiromoana Bush suffered

great losses of vegetation through burning, grazing and agricultural development. Fossil

record evidence suggests that deforestation of the Motunau Ecological District was solely

by fire (Norton, 2005), and that fires most likely occurred around 600-800 years ago.

Other sites (other than Amberley) where pollen data was available (for example Travis

Swamp in Christchurch) indicated that the severity of deforestation during the initial

burning period (IBP; initial Maori arrival) occurred in moderate to low rainfall regions,
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where these large fire events caused shifts in vegetation types, such as beech and

podocarps to bracken (Pteridium esculentum), grasses (Poa spp.), and small trees and

shrubs (for example Coprosma spp., Coriaria spp. and kanuka (McWethy et al. 2010).

2.6. Current Vegetation Pattern of Tiromoana Bush

Present vegetation at Tiromoana Bush includes a range of exotic grasses, small to

large areas of regenerating kanuka forest, shrublands, where these are dominated mainly

of gorse, broom and Coprosma propinqua, mixed angiosperm forest (regenerating

vegetation mainly mahoe, fivefinger, lancewood (Pseudopanax crassifolius), Pittosporum

spp. and lesser species), wetland vegetation surrounding ponds and waterways, and a

small remnant of black beech forest.

Pastures at Tiromoana Bush are dominated by a range of grasses, clover and

herbaceous vegetation, and vary in composition with differing moisture levels and

exposure.

The kanuka shrublands and forests range from kanuka monocultures, through to

mixed stands with cabbage tree (Cordyline australis), small leaved Coprosma species,

native broom (Carmichaelia spp.), and matagouri (Discaria toumatou), whilst the taller

stands contain a mixture of five finger, mahoe, lancewood, and marbleleaf (Carpodetus

serratus). Ngaio and golden akeake (Olearia paniculata) are more common nearer the

coast. These shrublands and forests have recolonised sites where former forests had

previously existed. The stands of lowland forest dominated by kanuka appear to post-date

European settlement, and have most likely replaced grassland communities.

The shrublands are generally scattered through the valley, and are interspersed with

areas of pasture. In these areas, silver tussock (Poa cita) is occasionally present. There
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are conifer plantations, to the northeast (radiata pine) and other hilly areas are planted

with macrocarpa trees.

The black beech remnant is dominated by this species as well as other woody tree

species, namely, kanuka, mahoe, lemonwood, lancewood and lesser species. Beneath the

canopy is sparse, though there are small areas or thickets of mingimingi (Coprosma

propinqua) and other species around. This remnant is located amongst stands of kanuka

and broadleaved species.

2.7. Fauna of Tiromoana Bush

A range of animals inhabit Tiromoana Bush. A total of 20 indigenous and 15

introduced birds have been recorded at Tiromoana Bush during field surveys in October

from 2005 to 2009 inclusive (Buckingham and Holster, 2010). These include bush and

open pasture bird species, namely bellbird (Anthornis melanura), silvereye (Zosterops

lateralis), grey warbler (Gerygone igata), fantail (Rhipidura fuliginosa), occasional

sightings of tomtit (Petroica macrocephala) and brown creeper (Mohoua

novaeseelandiae). Other birds that may visit Tiromoana Bush from time to time, or

seasonally, possibly include New Zealand falcon (Falco novaeseelandiae), morepork

(Ninox novaeseelandiae), long-tailed cuckoo (Urodynamis taitensis) and kakariki

(Cyanoramphus spp.) (Buckingham and Holster, 2010). The only threatened species of

birds recorded at Tiromoana Bush was black shag (Phalocrocorax carbo

novaehollandiae) (At risk: Naturally Uncommon; Townsend et al. 2008). Kereru is no

longer regarded as threatened (Buckingham and Holster, 2010).

Indigenous birds observed on the wetlands include paradise shelduck (Tadorna

variegata), Australasian shoveler (Anas rhynchotis; first-time record), New Zealand
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scaup (Aythya novaeseelandiae), grey teal (Anas gracilis) and pied stilt (Himantopus

himantopus). Welcome swallows (Hirundo tahitica neoxena) are common flying around

the wetland areas and other parts of Tiromoana Bush (Buckingham and Holster, 2010).

Open pasture species include chaffinch (Fringilla coelebs), greenfinch (Carduelis

chloris), redpoll (Carduelis flammea), yellowhammer (Emberiza citronella), magpie

(Gymnorhina tibicen) and spur-winged plover (Vanellus miles novaehollandiae). Canada

geese (Branta canadensis) were the most abundant and conspicuous introduced bird in

wetlands.

Animal pests at Tiromoana Bush include the brushtail possum (Trichosurus

vulpecula), mustelid species (stoats, ferrets and weasels; Mustela spp.), rodents (mice;

Genus: Apodemus and rats; Genus: Rattus), and occasional deer (Cervus spp.). These

animals pose threats to existing common and rare native plant and animal populations

throughout Tiromoana Bush. Tiromoana Bush however is no longer grazed by domestic

livestock.

2.8. Tiromoana Bush Restoration Project

2.8.1. General

Tiromoana Bush is now being managed as a restoration project based on a vision

and series of management goals.

The restoration project at Tiromoana Bush was developed as a biodiversity offset,

which the landfill company, Transwaste Canterbury Limited, proposed in 2002 (Norton,

2008) as part of their application for a resource consent under the Resource Management

Act 1991 for establishing the landfill. Biodiversity offsets are a form of compensation for
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losses of biodiversity values elsewhere (Norton, 2008). Tiromoana Bush lies adjacent to

the Canterbury Regional landfill of Kate Valley, where about 70% of waste is industrial.

The vision for this project sees, in 300 years time, Tiromoana Bush as a fully

functional restored forest ecosystem where natural dynamic processes occur with

minimal human intervention. The vision is broken down into short (5 year) and long term

(35 years; 300 years) goals and outcomes which outline the approach to restoration and

enable the assessment of restoration success (Norton, 2005).

2.8.2. Thirty-five year goals and outcomes

At the end of the 35-year resource consent period of the Kate Valley landfill, the

leading outcomes will have been achieved within the Kate Valley Conservation

Management Area as a direct result of the Tiromoana Bush restoration plan (Norton,

2005):

1. Vigorous regeneration will be occurring within the existing areas of shrubland and

forest to ensure that natural successional processes are leading towards the

development of mature lowland forest;

2. The existing bellbird population has expanded and kereru are now residing in the

area and expanding the forest area sufficiently to improve forest connectivity;

3. The continued monitoring of biodiversity recovery; and

4. Promoting the public use of Tiromoana Bush (recreationally and scientifically).

2.8.3. Five year management goals

In order to meet the 35-year outcomes of the management plan for Tiromoana

Bush, 8 outcomes for the first 5 years have been implemented. Five years as an
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appropriate time frame for these outcomes, as employed, is regarded as a short time

frame to meet realistic, achievable goals (Norton, 2005), but long enough to see existent

change(s) at Tiromoana Bush.

After the first 5-year term of the management plan, the outcomes need careful

assessment. Concerning the development of subsequent 5-year term(s), reasoning for

outcomes as to why they were not achieved need evaluation and thus measures need to be

established to address the outcomes (Norton, 2005). Below, is a list of the outcomes that

have been developed in the 5-year term(s), in order to meet the 35-year outcomes:

1. Appropriate restoration planning has been implemented. The size of the

conservation area managed (circa. 410 ha), public interest of the area, and

management actions ordering to meet the 35-year goals, requires management

planning and annual reviews.

2. Ecological integrity for both existing remnants of native woody vegetation and

restoration plantings has become protected. Presently, the area is heavily grazed

by sheep and cattle, and this is placing adverse impacts upon the native vegetation

and hence ecosystem condition. Removal of stock is thus a high management

priority.

3. The Kate Valley Management Area is free of animal pests of high significance.

The single threat from pest animals is their roles in the destruction of vegetation –

natural and restored, as well as predacious animals impacting upon the fauna.

4. Plant pests are controlled to standards to limit threats to restoration (or other

values). Plant pests, like animals, also threaten both natural regeneration and

restoration plantings, especially through competition (light and nutrients),

although this plan is realistic and recognises that not all exotic plants are
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necessarily pests. Gorse, Ulex europaeus, for example is an exotic that can assist

with regeneration (Wilson, 1994).

5. Restoration plantings covering an area of 5 ha minimum are growing vigorously

and purposefully located plantings have been established as plants become

available. The primary objective of restoring landscapes is to enhance

connectivity between, in this case, existing native shrubland and forest remnants,

and to enhance the black beech remnant also. Additionally, the establishment of

enrichment plantings of key native species such as totara, matai, and kowhai to

facilitate long-term succession and to provide food resources for native avifauna.

6. A biodiversity monitoring programme has been launched that enables the success

of the restoration programme to be assessed in a quantitative manner. For

restoration management, the monitoring process is an integral component as this

allows success of the methods undertaken to be assessed. Nevertheless,

monitoring needs careful intentions to ensure that it can supply information that

updates management without negative cost to restoration.

7. Interests from communities, including the local community, together with the

broader Canterbury community are informed about the restoration project. As an

activity, restoration is deemed exciting, especially with the outcomes are almost

always encouraging, and results can be observed in only a few years.

8. The Conservation Management Area of Kate Valley is used for recreation

(walking) and opportunities exist for the public to view the coastline, on foot,

together with appreciating the native forest ecosystems nearby. Additionally, the

area offers extensive educational and research opportunities.
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Chapter Three: Methods

3.1. Field Methods

3.1.1. Data Collection

For this study, data collected came from two sources: Permanent vegetation

monitoring plots and temporary vegetation survey plots.

3.1.2. Permanent Vegetation Monitoring Plots

Monitoring of vegetation at Tiromoana Bush is based on a series of transects

initially established in November 2005. The vegetation plots are located along 13

transects spread through the major areas of native woody vegetation within Tiromoana

Bush (Figure 5). Each transect comprises three sample points, which were initially

established as bird monitoring sites, but only two of these (which were randomly

selected) are used for vegetation monitoring. The permanent vegetation monitoring

sites comprise a 10 x 10 m plot (n = 26) with metal standards in each corner. A yellow

cattle ear tag is nailed to a prominent tree to label each site.

Two 1.5 x 1.5 m seedling plots (n = 52) are located on a diagonal line across the

plot (Figure 6). All four corners of the seedling plots are marked with a wooden stake.

The first measurements undertaken for seedling height took place in 2007, where all

seedlings of woody species greater than 20 cm in height were measured and individual

plants were tagged using aluminium tags wired onto the stem.
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Figure 5. Thirteen transects in the major forest patches with associated permanent
vegetation monitoring plots. The red outlines depict the conservation areas within
Tiromoana Bush

Figure 6. Permanent vegetation monitoring plot layout showing the location of the
seedling plots

1.5 m
Seedling plot

1.5 m

Seedling plot
10m

10m Main plot tag
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3.1.3. Permanent Vegetation Monitoring Plots – 2010 data collection

All plots were revisited in 2010/11 (summer and autumn), when all seedlings

were remeasured. For each of the 52 seedling plots, all seedlings of woody species were

measured (Figure 7). Newly recruited seedlings within these plots were also recorded

and tagged, provided they were greater than 20 cm in height. Newly recruited seedlings

less than 20 cm were counted by species, in order to determine species abundance, but

were not tagged. Throughout this procedure in all plots, notes on mortality (death), and

browsing were also made, especially when seedling tips were notably browsed,

especially for mahoe.

A spherical densiometer (Jennings et al. 1999) was used to quantify canopy cover

for each plot, and readings were taken from each corner of the plots, as suggested by

Strickler, (1959). The spherical densiometer contained twenty-four 1 cm diameter

squares (Figure 8a). To measure canopy cover, each 1 cm square was visually divided

into 4 smaller squares (Figure 8b), and the presence or absence of canopy vegetation

recorded. This gives a total of 96 squares.  All densiometer readings were then averaged

(all plot corner readings; Jennings 1999) to give overall canopy cover for each plot.
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Figure 7. The author measuring a mahoe seedling

a                            b

Figure 8. (a) Spherical densiometer instrument used to measure light interception
in the kanuka understorey; (b) concave (model C) mirror with twenty-four 1 cm
squares
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3.1.4. Temporary Vegetation Survey Plots

In this second part of the study, a more wide-ranging survey of seedling

abundance was undertaken across three substantial areas of kanuka forest (Figure 9)

and involved recording seedlings of all woody plant species beneath the kanuka

canopy in stratified random plots. The 4 x 4 m plots were located at 50 m distances

along systematically placed transect lines crossing the three areas (Figure 10). The

location of the first plot along each transect line was randomly determined. Transect

lengths varied as the forest sites chosen had different areas of forest cover. Transects

in all sites followed a compass bearing from the forest edge. Plots near forest edges

were established provided that canopy cover was sufficient. Any unusual plot (site)

characteristics such as soil erosion or other typographic means were noted.

In each of these plots, all woody seedlings were recorded. Seedlings below 5 cm

in height were ignored as these were considered ephemeral. Small seedlings were

defined as 5-30 cm in height and large seedlings were defined as > 30 cm in height

and < 2 cm dbh. Non-shrub/tree species such as the vines Muehlenbeckia and

Parsonsia were not recorded, although notes on their abundance were made.
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Figure 9. The three study sites at Tiromoana Bush with their associated vegetation
survey plots. The red outlines are walking tracks and 4 x 4 tracks

Figure 10. The 4 x 4 m temporary vegetation survey plot layout (design)
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For each plot, the following attributes were also recorded:

 GPS co-ordinates;

 Aspect;

 Slope;

 Physiography (terrace, ridge, gully and face);

 Surface cover (% coverage of litter, rock, bare ground, vascular

and non-vascular vegetation);

 Height of canopy trees; and

 Canopy cover

Slope and aspect were measured using a Sunto clinometer and compass. Plots

with more than one physiographic type had their slopes averaged: For example, plots

with gully and terrace formations as part of their land form. The slopes were measured

for both these forms and then were averaged to give the overall slope of the plot. GPS

co-ordinates were taken at the centre point of each transect.

Canopy cover was estimated as a percentage, and the dominant species present

noted (usually kanuka). Height of the canopy for all plots was also estimated. As for

the permanent vegetation monitoring plots a spherical densiometer was used to

quantify canopy cover and hence light entering through the canopy to the ground.

Overall, a total of 78 plots were measured, across 20 transects from 3 forest patches.
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3.1.5. Seed Source Mapping and Data Collection

For each of the forest patches where the temporary vegetation survey plots were

established, the location of potential seed sources for seedlings was recorded. As the

majority of the canopy was kanuka, a survey using binoculars and ground truthing was

undertaken which enabled the location of the main areas of seed sources for the

species recorded as seedlings to be mapped onto high resolution aerial photos of the

site. Most seed source trees were located in or near gully areas.

Then from the aerial photo mapping, distances were determined from each

survey plot to the nearest potential seed source for each species recorded in the plot.

The average of these measurements was then used as an index of distance to seed

sources. In addition, each plot was subjectively assigned to three approximate

dispersal distance zones to reflect their overall location from seed sources:

 zone 1 (seed sources within 100 m of the plot);

 zone 2 (seed sources 100-500 m from plot); and

 zone 3 (seed sources >500 m from plot)

This same approach was also undertaken for the permanent vegetation

monitoring plots, to understand new seedling recruits entering these plots and this

relationship between distances to seed source trees.

3.2. Analytical Methods

3.2.1. Permanent Vegetation Monitoring Plots

Linear regression analyses were undertaken to determine the effect of

environmental attributes influencing seedling abundance, growth, and survival.
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Abiotic data such as shrub cover and light are percentage data and were thus

transformed in order to meet the assumptions of normality (Dupoy and Chazdon,

2008), using the arc-sine/square-root transformation:

(1)

where p’ denotes the transformation result and p denotes proportion of data. Once

transforming the light data, the attribute “canopy openness” is what this defines,

suggests that the more open the canopy, light is more likely to penetrate to the ground

without interception through the forest canopy.

A number of variables were used in the regression models to predict both the

abundance of seedlings, their relative growth rates over the survey period, new recruits

entering the plots and survivorship. These variables included:

 Basal area (BA). This was measured by summing all tree and shrub species

individual BAs in the permanent vegetation monitoring plots then totalling

together for a number representing the BA for the whole plot. The BA of the

plot is then divided by 100 to give the measurement in m2. Basal area is used

as a variable to represent the effect of tree biomass on seedling growth in these

plots.

 Canopy openness. This was calculated by transforming the light readings (as

these were per cent data) from the densiometer. For calculation, see equation

1.

 Slope.
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 Aspect. For analyses, aspect was converted so that all plots (permanent

vegetation monitoring and temporary survey plots) were expressed relative to

north; thus an east and west facing plot both had an aspect of 90°.

 Light index. Light index is a relationship of the height of the forest canopy and

light interception through the canopy. Typically, areas in forest patches where

trees are small tend to be darker than ones where trees are taller. Light index

(LI) was calculated via this equation:

LI = Log (height) x canopy openness (2)

where height denotes forest canopy height at plot centre and canopy openness

is derived from the readings of the densiometer.

 Distance from seed source. This was measured in zones (1,2,3) 1 denoting

potential seed source trees that are closest to the plots; and 3 denotes seed

source trees located at furthest distance away from the plots.

 Shrub cover. This was calculated by transformed mean percentage shrub cover

for each plot. Shrub cover was included as an environmental attribute to look

for relationships among this together with the other environmental attributes,

for seedling growth and survival of tree species, as shrub cover can both reduce

forest floor light levels and physically restrict the ability of seedlings to grow.

 Time. Time as a variable was used to assess differences in the abundance of

seedlings over time and which environmental attribute(s), over time, affect

seedling abundance. Time refers to the two seedling measurement sampling

times of 2007 and 2010.
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For seedlings of all canopy tree species in the permanent vegetation monitoring

plots, relative growth rates (RGRs) were calculated to see how much each seedling

had grown over time. The RGR indicates how much each individual plant had grown

from the initial measurements (2007) until measurements undertaken in 2010 (growth

in terms of rate of increase in size per unit of initial size; Hunt, 1990). Mathematically,

the RGR was calculated using the log values from previous measures (2007) and

measures made in 2010 (Husheer et al. 2006):

(3)

where,

RGR = relative growth rate for all tree species per plot;

T1 = seedling measurements at 2007;

T2 = seedling measurements at 2010

Relative growth rates were calculated for all seedlings; that is, all seedling

heights measured in 2007, but for analysis these were divided into groups (height

classes):

 20 – 49

 50 – 99

 100+ cm

where mean RGRs were calculated for each plot.
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3.2.2. Temporary Vegetation Survey Plot Analysis

Regression and ordination analyses were used to explore the relationships

between environmental attributes and small seedling and large seedling abundance

and composition in the temporary vegetation survey plots. More specifically,

environmental attributes affect small seedling composition, and hence the number of

larger seedlings, so the Detrended Correspondence Analysis (DCA) was conducted,

to assess the relationship between seedling composition and environmental attributes

(undertaken in CANOCO for Windows, Version 4.5; ter Braak and Smilauer, 2002).

The unconstrained version was applied to find the axes with maximum variation in

floristic composition at Tiromoana Bush, and to find patterns among species

distribution along the gradients (Leps and Smilauer, 2003). The DCA diagram was

later passively projected with all environmental variables to show variations across

the species data (Kamrani et al. 2010). The eigenvalues in the DCA ordination

designate the variation accounted for by each gradient, and the gradient lengths

depict the amount of species turnover occurring along a gradient (Reay and Norton,

1999a). The Pearson correlation coefficient was used to examine relationships

between ordination scores, environmental attributes and species combined (small

seedlings and large seedlings) (sensu Kamrani et al. 2010).

To quantify measures of diversity or biodiversity (known as alpha diversity; α

diversity) in all plot sites, Simpson’s index (heterogeneity index; Simpson, 1949) was

used to describe the numbers of species present, as well as the abundance of each

species (species richness). Simpson’s index (D) is calculated as:
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(4)

where, D is the probability of 2 individuals belonging to the same species (the sum of

all species in the sample); ni depicts number of individuals of a particular species in

plot sites; and N is the total number of organisms of all species. Simpson indices range

from 0 (all of the same species) to 1 (myriads of species that are equal in number)

where 1 represents infinite diversity and 0 depicts no diversity.

Diversity of the Simpson value can be expressed as the complement:

(5)

where this calculates the evenness of species at the sites. The higher value of D, the

greater the evenness of species.

To overcome the counter-intuitive nature of the Simpson’s index is to take the

reciprocal of the index:

(6)

where the higher reciprocal value indicates higher sample diversity. The reciprocal of

the Simpson index was used to assist interpreting the DCA ordination.

For analyses, linear regression was undertaken to assess the effects of

environmental attributes on small seedling and large seedling abundance of individual

tree species. The environmental attributes listed below were used as predictors in order

to test which predictor enabled effects to the response variable, small seedling or large
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seedling distribution. Similarly to the analyses for the permanent vegetation

monitoring plots, variables (predictors) used in the regression included:

 Slope;

 Aspect;

 Canopy openness;

 Light index;

 Distance; and

 Shrub cover

Calculating the above environmental attributes was done as for analyses for

permanent vegetation monitoring plot data. Again, shrub cover and canopy openness

were transformed for analyses. Regression analyses for both permanent vegetation

monitoring plot and temporary vegetation survey plot data were conducted in R

2.11.1. core development team, 2011.
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Chapter Four: Results

4.1. Permanent Vegetation Monitoring Plots

4.1.1. General

This section presents the results from the analysis of the permanent vegetation

monitoring plots and includes an assessment of both the overall abundance of species

based on their current densities, and changes in seedling height over the three years

these seedlings have been monitored. Only data on mahoe and fivefinger were

analysed. The remaining species, kohuhu (P. tenuifolium) and kaikomako (P.

corymbosa), were not analysed because of too few data. Data are presented and

analysed for all seedlings together and for the three height classes seperately.

4.1.2. Commonness of Canopy Tree Species

At Tiromoana Bush, the most common canopy tree species as a seedling is

mahoe followed by fivefinger (Figure 11). A total of 265 mahoe seedlings and 88

fivefinger seedlings were counted in all permanent vegetation monitoring plots (Figure

11a). For mahoe, the number of seedlings was similar across the height classes (Table

1). Forty-eight individuals are in the 20-49cm height class (25%), 75 individuals in the

50-99 cm height class (39%) and 69 individuals in the 100 cm or greater height class

(36%) (Table 1). In contrast, fivefinger, numbers of individuals decreased throughout

the height classes (Figure 11). Twenty-eight per cent of mahoe seedlings are new

recruits and 65% of fivefinger seedlings are new recruits (Table 1).
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Table 1. Number of seedlings in their characterised height classes, and new seedling
recruits (< 20 cm) 2010

Tree species recruits 20-49cm 50-99cm 100+ cm Total

Melicytus ramiflorus 73 48 75 69 265

Pseudopanax arboreus 57 15 8 8 88

Pennantia corymbosa 8 4 3 0 15

Pittosporum tenuifolium 4 1 4 2 11

a b

c d

Figure 11. Canopy tree abundance at Tiromoana Bush 2010: (a) all seedlings; (b) 20-
49 cm height class; (c) 50-99 cm height class; (d) seedlings 100 cm+ height class
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4.1.3. Relative Growth Rates of Canopy Tree Species

i. Mahoe

Figure 12 shows the relationship between seedling relative growth rate and basal

area, with plots ranked in order of increasing basal area. Most mahoe seedlings had

relative growth rates between 0.3 and 0.4 (Figure 12a). In plot 4B, mahoe had relative

growth rates of over 0.8. Most plots with mahoe seedlings had higher relative growth rates

where the basal area of canopy trees were 30 m2/ha or less (Figure 12a). The remaining

plots with canopy tree basal area greater than 30 m2/ha were associated with slower

relative growth rates among mahoe seedlings (Figure 12a).

Regression models exploring the influence of environmental variables influencing

mahoe seedling relative growth rates showed some associations between canopy cover and

relative growth rate. For example, in the regression (response: 20-49 cm; Table 2), the

height class in which most of the mahoe seedlings occurred, light index (a = 1.962, P <

0.01) shrub cover (a = 7.706, P < 0.01) and canopy openness (a = -2.700, P < 0.05)

significantly affected relative growth rates, although basal area was not a significant

attribute (a = -0.004, P > 0.05), for relative growth rates. Whilst no significant attributes

occurred in the models for the taller seedlings, the sample sizes in these size classes were

small. Light index was not an important attribute in the regression model developed for

seedling survival (a = -20.301, P > 0.05) although aspect was a significant factor (a =

0.205, P < 0.05).
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ii. Fivefinger

Plots 4A and 5B consisted of fivefinger individuals that grew faster than those in

other plots (Figure 13). The regression models developed (response: all seedlings;

response: 20-49 cm; Table 3) show that light index and canopy openness respectively

show some associations with canopy cover and relative growth rates (a = 2.914 and a =

5.264, P < 0.05 for both). Aspect, however, was not a significant factor for the relative

growth rates (a = -0.002, P > 0.05 for both). Both models are identical because the

fivefinger seedling population (all seedlings) is governed only by the 20-49 cm height

class (Table 3). Models developed for recruitment and survival of fivefinger show no

association between the environmental attributes, as none of the attributes significantly

affected both recruitment and survival (Table 3).
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a

b

c

d

Figure 12. Relative growth rates of mahoe at Tiromoana Bush. (a) all seedlings; (b)
20-49 cm in 2007; (c) 50-99 cm; and (d) > 100 cm



46

a

b

Figure 13. Fivefinger relative growth rates at Tiromoana Bush. (a) RGRs all
seedlings; (b) RGRs of individuals 20-49 cm in 2007.
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a

b

Figure 14. Seedling recruits at Tiromoana Bush. a) Mahoe; b) Fivefinger

4.1.4. New Seedling Recruits

In total, there were 73 new seedling recruits for mahoe and 57 recruits for fivefinger

over the 2007-2011 monitored period (Table 1). Figure 14 shows the number of seedling

recruits in all permanent vegetation monitoring plots. Plots 5A and 5B had the most
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recruitment of new mahoe seedlings (Figure 14a). For fivefinger, new seedling recruits

were greatest in plot 6B (Figure 14b), while most other plots had fewer than 5 individual

recruits (Figure 13b). The number of new mahoe seedling recruits was significantly

affected by light index (a = -62.245, P < 0.01) and canopy openness (a = 123.111, P <

0.01) respectively in the regression model (Table 2), again highlighting the relationship

between light and mahoe seedlings. Fivefinger seedling recruits showed no association

with any of the environmental attributes (Table 3).

Figure 15 shows the number of seedling recruits of both mahoe and fivefinger

plotted against canopy openness for all plots. Most seedling recruits of both species were

at plots with moderate levels of canopy openness, while plots with low openness or

complete openness had fewer or no seedling recruits at all (Figure 15).

Figure 15. Light levels (canopy openness) and seedling recruits of mahoe and
fivefinger at Tiromoana Bush. 0 on the horizontal axis defines complete closure; 1
depicts complete openness
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Table 2. Regression coefficients for the different environmental variables used to predict mahoe seedling relative growth
rate for all seedlings, survival and number of recruits

All 20-49 50-99              100+ survival recruits

r2 0.29                  0.73 -0.24                0.00 0.27 0.48

Variable

Shrub cover              8.999* 7.706** -0.945 -1.111               406.932 -138.304

Light index               1.284 1.962** -0.366 -0.159 -20.301 -62.245**

Slope                     < 0.001 0.006 -0.008             0.001 -1.516 -0.012

Canopy openness -1.773 -2.700*                 1.301             0.213                 27.201              123.111**

BA                          < 0.001 -0.004                  0.002 -0.002                   0.232 -0.111

Aspect                    < 0.001 0.074                   0.000 -0.000                   0.205*                0.011

Level of significance: * P < 0.05; ** P < 0.01; *** P < 0.001
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Table 3. Regression coefficients for the different environmental variables used to
predict fivefinger seedling relative growth rate for all seedlings, survival and number
of recruits

All 20-49 survival recruits

r2 0.48            0.48                 0.03 -0.45

Variable

Shrub cover                3.025          3.025 -389.366 -141.943

Light index -2.914* -2.914* -182.561 -21.340

Slope -0.001 -0.001 -1.226              0.113

Canopy openness       5.264*        5.264*           225.504 -2.801

BA                              0.007          0.007 -2.176 -0.122

Aspect -0.002 -0.002 -0.193             0.022

Level of significance: * P < 0.05; ** P < 0.01; *** P < 0.001

Table 4. Regression coefficients for the different environmental variables used to
predict mahoe seedling abundance. Differences are between 2007 to 2010

All                  20-49 50-99              100+

r2 0.40                  0.21                  0.15               0.35

Variable

Canopy openness         1.850*             71.291*             5.745              0.792

Light index -7.413* -34.875* -3.509 -4.248

Shrub cover -2.878* -130.774* -1.822 -1.269*

Distance -6.908*

Slope -6.325* -0.234 -0.146             0.174

Aspect                           0.016                0.009 -0.005 -0.029

BA -0.092 -0.046 -0.014 -0.113

Time                              1.490 -1.214                 1.455*           1.615**

Level of significance: * P < 0.05; ** P < 0.01; *** P < 0.001
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Table 5. Regression coefficients for the different environmental variables used to
predict fivefinger seedling abundance. Differences are between 2007 to 2010.
Distance coefficient for 20-49 cm height class excluded.

All                   20-49

r2 0.02                  0.72

Variable

Canopy openness         0.952 -16.253

Light index -1.615 -12.834

Shrub cover -3.582 1.019

Distance                       0.124

Slope 0.035 0.112

Aspect -0.002 -0.027

BA -0.126 -0.072

Time 1.718 -0.083

Level of significance: * P < 0.05; ** P < 0.01; *** P < 0.001

Figure 16. Mahoe abundance at Tiromoana Bush by height classes with ± standard
deviation bars
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4.1.5. Abundance of Seedlings of Canopy Tree Species at Tiromoana
Bush

Concerning abundance, for mahoe, all seedlings increased from 188 in 2007 to 265

in 2010 (Figure 11, Table 1, 2010 data only). The differences in abundance of mahoe

seedlings of all classes from 2007 to 2010 were associated with canopy openness (a =

1.850, P < 0.05), distance (a = -6.908, P < 0.05), light index (a = -7.413, P < 0.05), shrub

cover (a = -2.878, P < 0.05) and slope (a = -6.325, P < 0.05). Aspect, basal area and time

were not significant factors governing all seedling abundance changes (Table 4).

Mahoe is the most abundant seedling of any tree species at Tiromoana Bush. In

2007, mahoe individuals in height class 20-49 cm outnumbered all other height classes in

the same year (Figure 16). Counts of individuals in this height class outnumbered counts

in 2010 for the same height class (Figure 16). The number of individual mahoe seedlings

in this height class was significantly affected (Table 4) by light index (a = -34.875, P <

0.05), canopy openness (a = 71.291, P < 0.05) and shrub cover (a = -130.774, P < 0.05),

but there was no time effect (a = -1.214, P > 0.05). Time was however a significant factor

affecting individual numbers of mahoe seedlings in height class 50-99 cm (a = 1.455, P <

0.05), and 100 + (a = 1.615, P < 0.01; Table 4) which highlights the differences in

individual numbers between the two time periods. Shrub cover was also a significant

factor (a = -1.269, P < 0.05) for 100 +. For fivefinger, there was no association between

any of the environmental attributes, nor time, with abundance differences in 2007 to 2010

(Table 5).
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4.2. Temporary Vegetation Survey Plots

4.2.1. General

This section presents the results from the analysis of the temporary vegetation

survey plots and includes an assessment of both the overall diversity of broadleaved tree

species seedlings surveyed and the floristic composition of canopy tree species seedlings

at Tiromoana Bush. Data are presented and analysed for small seedling and large seedling

composition of all broadleaved tree species identified.

4.2.2. Species Composition at Tiromoana Bush

The temporary vegetation survey plots were undertaken in three major forest

patches at Tiromoana Bush (Figure 9). The three forest patches were dominated mostly by

kanuka but in some areas, parts of the canopy were mixed with other broadleaved tree

species. Eighty-seven percent of plots had a pure kanuka canopy and 13% of plots had a

mixed canopy of kanuka and other broadleaved tree species.

Overall, ten tree species were recorded as small seedlings or large seedlings. Mahoe

dominated the tree species seedlings found at Tiromoana Bush (Figure 17), in both small

seedling and large seedling counts combined. Fivefinger and kohuhu are second and third

respective tree species in commonness at Tiromoana Bush (Figure 17; Table 6).
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Table 6. Small and large seedling counts for all tree species at Tiromoana Bush and
their associated small seedling/large seedling ratios. Species are ordered by the
number of small seedlings

Species
Total number

of small
seedlings

Total number
of large

seedlings

Small seedling /
large seedling

ratio
Melicytus ramiflorus 609 635 1.04

Pseudopanax arboreus 259 118 0.45

Pittosporum tenuifolium 85 58 0.68

Pseudopanax crassifolius 65 1 0.02

Pennantia corymbosa 35 31 0.88

Myrsine australis 13 4 0.30

Olearia paniculata 13 19 1.40

Carpodetus serratus 10 6 0.60

Myoporum laetum 10 7 0.70

Pittosporum eugenioides 9 1 0.11

Comparing canopy tree seedling counts in both permanent vegetation monitoring

plots and the temporary vegetation survey plots, mahoe, and fivefinger are most common

canopy trees as seedlings. Kaikomako seedlings in the permanent vegetation monitoring

plots slightly outnumber kohuhu seedlings (Table 1). In the temporary vegetation survey

plots, however, kohuhu (total count = 143) is twice the number of kaikomako seedlings

counted (Table 6).
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Figure 17. Counts of individual canopy tree species at Tiromoana Bush 2010
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4.2.3. Small Seedling and Large Seedling Composition for all Species

For small seedlings and large seedlings of all ten tree species identified at

Tiromoana Bush, there were a total of 1244 combined individuals for mahoe, 377

individuals for fivefinger, 143 for kohuhu, 66 individuals for lancewood and kaikomako,

32 individuals for golden akeake, 17 individuals for red matipou (Myrsine australis) and

ngaio, 16 individuals for marbleleaf and 10 individuals for lemonwood (Figure 17), where

these numbers were divided into small seedling and large seedling categories (Table 6).

These numbers in comparison, particularly for mahoe and fivefinger relate to their

abundance also in the permanent vegetation monitoring plots (see Table 1).

For both mahoe and golden akeake there were more larger seedling individuals than

small seedlings (Figures 18, 23 and 24; Table 6). However, for fivefinger and lancewood

there were fewer large seedlings than small (Figures 19, 21 and 24) as was also the case

for lemonwood (Figure 24; Table 6). Kaikomako and kohuhu small seedling and large

seedling counts were similar (Figures 20, 22 and 24). Ngaio and marbleleaf both consisted

of similar counts of small and large seedlings (Table 6). Mahoe is the most dominant

broadleaved tree species found at Tiromoana Bush, followed by fivefinger, based on both

the permanent vegetation monitoring plots and the temporary survey plot data. Kohuhu

was the least dominant canopy tree species in the permanent vegetation monitoring plots

in the monitoring period of 2010-2011 (Table 1), but was the third dominant canopy tree

species in the temporary vegetation survey plots (Table 6).

The regression models developed for all ten tree species show limited associations

with the environmental attributes (Tables 9 and 10). For example, fivefinger small
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seedling densities are significantly affected by distance (a = 2.368, P < 0.05), golden

akeake small seedling distribution is affected by canopy openness (a = 0.017, P < 0.05)

and light index (a = 2.165, P < 0.001) and red matipou small seedling distribution is

significantly affected with slope (a = 0.018, P < 0.05).  For large seedling densities (Table

10), kohuhu distribution is significantly affected by aspect (a = 0.009, P < 0.05) and ngaio

large seedling density is associated with light index (a = 1.804, P < 0.05).

Figure 18. Mahoe small and large seedling distribution at Tiromoana Bush
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Figure 19. Fivefinger small and large seedling distribution at Tiromoana Bush

Figure 20. Kohuhu small and large seedling distribution at Tiromoana Bush
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Figure 21. Lancewood small and large seedling distribution at Tiromoana Bush

Figure 22. Kaikomako small and large seedling distribution at Tiromoana Bush
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Figure 23. Golden akeake small and large seedling distribution at Tiromoana Bush

Figure 24. Canopy tree species at Tiromoana Bush. Small seedlings with large
seedlings log scaled
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4.2.4. Species Composition at Tiromoana Bush – Ordinations
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Figure 25. DCA ordination of plots (64) and environmental attributes at Tiromoana
Bush where plots with nil tree species omitted (14)

The temporary vegetation survey data were ordinated by Detrended

Correspondence Analysis (DCA; Figure 25). The first two axes of the DCA ordination

of the temporary vegetation survey data (Figure 25) explained 19.6% and 13.5% of the
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total variation in the floristic data (Table 7). Gradient lengths of 2.573 and 3.525 (Table

7) respectively for axes one and two suggests that there is reasonable species turnover

along both axes. The ordination had highlighted one group of plots (26/64 plots) that are

tightly clustered on the left-hand side of the first DCA axis, which has a similar floristic

composition. In these plots, mahoe dominated the small seedling and large seedling

vegetation (46% of species composition), followed by fivefinger at 16% and kohuhu at

14%. These plots also had high kanuka canopy cover. The first axis of the plot DCA is

correlated with canopy openness, which denotes variation in light entering the canopy.

The vertical axis (axis two of the ordination) is correlated with slope and distance

(distance from seed sources). Distance refers to how far away potential seed source trees

are from the temporary vegetation survey plots. To the left of the ordination, are plots

that are clustered together (Figure 25).

Plots with good light index levels, canopy openness, and shrub cover occur

toward the right of the DCA (axis one; Figure 25), whilst plots with poor light index

levels, limited openness of the canopy and little slope occurred to the left. The

remaining plots are spread out along axis one and are also well separated on the second

DCA axis (plots governing more heterogeneous floristic composition).
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Figure 26. Sites DCA ordination with Simpson’s diversity index. Plots on the DCA
ordination with a higher Simpson Index value depict higher floristic diversity
(plots to the right)

Figure 26 assists in the interpretation concerning temporary vegetation survey

plots and their diversity regarding the number of canopy tree species that are present in

each plot. Most of the temporary vegetation survey plots consisted of mahoe and

fivefinger seedlings, although others consisted of seedlings of three or more canopy tree
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species. Plot 40 (Figure 26) was the most diverse plot regarding the number of tree

species seedlings present there during the survey period of 2010-2011.
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Figure 27. Species composition at Tiromoana Bush DCA ordination. The
ordination represents small seedlings (SS) and large seedlings (LS) combined. First
three letters define the Genus; second three letters define the species. Tree species
names in full are provided in Table 6

The species DCA ordination (Figure 27) highlights the small and large seedling

species that are typical of plots with different locations in the plot DCA ordination. For

example, large seedlings of ngaio, small and large seedlings of kohuhu, and golden
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akeake small and large seedlings are more likely to be associated with plots with high

values on axis one of the ordination (Figures 25 and 27). However, small and large

seedlings of red matipou are more likely to be associated with slope, and small

seedlings of lemonwood, fivefinger and ngaio are likely to be associated with high

values on axis two of the ordination (Figures 25 and 27). Species predominantly in plots

with lower light index levels are to the left of the species DCA (Figure 27). Widely

dispersed species such as mahoe and kaikomako occur in the centre of the species DCA

ordination (Figure 27).

Comparison of plot scores from the unconstrained DCA ordination with those

obtained from a Detrended Canonical Correspondence Analysis (DCCA) ordination

assists interpretation of the influence of environmental attributes in explaining the

observed floristic gradients. The order of plots is also constrained by the environmental

attributes which shows a good agreement between both the order of axes one and axes

two scores in the two ordinations (Table 7). This suggests that the environmental

variables used in the DCA ordination are likely to be important drivers of the observed

floristic variation.
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Table 7. Gradient lengths, cumulative variances and correlations of both axes of DCA
and DCCA ordinations for canopy tree species combined – small seedlings and large
seedlings with environmental attribute

Item Ordination method Axis 1 Axis 2

Gradient length DCA 2.573 3.525

Cumulative percent variance 19.6 13.5
(Variance explained)

Gradient length DCCA 1.918 1.422

Cumulative percent variance 7.6 4.9
(Variance explained)

Correlations of DCA and DCCA 0.777 0.740
axes relationships

Table 8. Weighted correlation matrices (3 dp) derived from the DCA ordination of
canopy tree small seedlings and large seedlings combined

Environmental drivers for species
turnover (DCA ordination)

Weighted correlation matrix
axis one

Weighted correlation matrix
axis two

Slope 0.043 -0.228

Aspect 0.243 0.100

Light index 0.342 0.195

Distance 0.119 0.388

Shrub cover 0.341 0.032

Canopy openness 0.368 0.176
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Table 9. Regression coefficients for the different environmental variables used to predict canopy tree small seedling distribution
at Tiromoana Bush

Mahoe Fivefinger     Kohuhu    Lancewood     Lemonwood Kaikomako Ngaio     Golden akeake    Red matipou Marbleleaf
r2 0.02            0.08              0.04 0.002                0.02 0.04 0.04 0.32 0.03 0.01

Variable

Canopy openness         10.227 -2.026         0.074 -25.707 -2.056 -3.946            0.960 0.017* 0.403 -2.041

Light index -5.947       12.208         1.317 9.801 1.196 1.489 -0.649 2.165*** -0.141 1.225

Shrub cover -39.388 -53.301 -2.822 19.726 -0.360 -2.116           3.718 0.374 0.506 -1.181

Distance -1.545 2.368* -0.209 -0.297 0.088 -0.242           0.022 -0.004 0.056 -0.089

Slope                             0.065 -0.014 -0.001 0.078 -0.000 0.004 0.004 0.007 0.018* 0.004

Aspect 0.021         0.034           0.005 0.003 0.001 0.000 0.000 0.001 0.000 -0.000

Level of significance: * P < 0.05; ** P < 0.01; *** P < 0.001
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Table 10. Regression coefficients for the different environmental variables used to predict canopy tree large seedling distribution

at Tiromoana Bush

Mahoe Fivefinger     Kohuhu     Lancewood     Lemonwood Kaikomako     Ngaio Golden akeake     Red matipou Marbleleaf
r2 0.005          0.03 0.02 0.03 0.02                 0.02             0.19 0.07 0.002                 0.02

Variable

Canopy openness -3.712 8.028           3.909 -0.434 0.424 -6.303 -2.098 -0.693 -0.464 -1.588

Light index                 1.728 -1.861 -2.428 0.192 0.148 2.993 1.804* 0.782                  0.197 0.623

Shrub cover -8.895 -24.945           8.873 -0.323 0.789 -7.705            3.380 -0.476 1.926 -0.735

Slope                          0.135         0.102 -0.012 0.000 0.001 0.016 0.004 0.008 0.008 -0.004

Aspect 0.044 0.009            0.009* 0.000 0.000 -0.001 0.002 0.001 -0.000 -0.000

Level of significance: * P < 0.05; ** P < 0.01; *** P < 0.001
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Chapter Five: Discussion

5.1. General

This study clearly demonstrates that there is a wide range of spatial and temporal

compositional variation in the small and large seedling vegetation in the secondary

vegetation of Tiromoana Bush. The research provides insight into what broadleaved tree

species are regenerating beneath the seral kanuka canopy and the implications this has for

restoration at Tiromoana Bush.

5.2. Current Canopy Tree Seedling Composition

The most common canopy tree species in the regenerating layer at Tiromoana Bush

are, in descending order of abundance, mahoe, fivefinger and kohuhu. This is supported

by both the permanent vegetation monitoring plots (Figure 11) and the temporary

vegetation survey plots (Figures 17 and 24).

The dominance of mahoe in the seedling stratum (where 2/3 of all seedlings are

mahoe), and also that (based on the permanent vegetation monitoring plots) mahoe are

rapidly moving up into larger height classes, highlighting the likely importance of mahoe

in the future forest. In contrast, other tree species present are much more scarce and do not

appear to be putting on height growth as rapidly. Implications of this are that mahoe is

likely to form the next canopy cohort once the kanuka canopy begins to open-out and

subsequently dies out. Estler and Astridge (1974) stated that mature kanuka stands (over
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15 years) go through episodes of natural thinning hence increasing gaps in the canopy,

initiating mahoe and other broadleaved vegetation to regenerate.

The occurrence of mahoe and its dominance over other broadleaved canopy tree

species could be due to its superior colonisation potential post disturbances (Reay and

Norton, 1999a). Another possible reason could be that phosphorus concentrations in the

ground post aerial fertiliser application in the past, and also from wastes of grazing

animals may be initiating a shift in tree species composition from less fertile-demanding

species to more fertile-demanding species such as mahoe (Wardle, 1991), and this reflects

upon the results that mahoe is the most common tree species at Tiromoana Bush (sensu

Burns et al. 2011), even though agricultural activities have now ceased. But perhaps most

importantly, mahoe produces abundant seed surrounded by flesh (in small fruits) where

these contain up to six small seeds per fruit (Partridge and Wilson, 1990; Burrows 1994,

1997), and adult mahoe trees at Tiromoana Bush are  rather common in the gullies. Open

(post grazing) site conditions were favourable for mahoe, and also elevated levels of

phosphorus may have also helped. Mahoe occurs frequently in dry forests, but seedlings

are more vulnerable to drought than those of the xeric species associated with mahoe,

such as kanuka (Partridge and Wilson, 1990; Innes and Kelly, 1992).

The effect of domestic grazing removal at Tiromoana Bush led to increases in

canopy tree seedling abundance. The abundant regeneration of mahoe at Tiromoana Bush

is most likely due to the removal of grazing animals as much as anything else.
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5.3. Factors Affecting Broadleaved Tree Seedling
Regeneration

Concerning seedling regeneration and establishment in any forest ecosystems

worldwide, light has been hypothesised as the most important abiotic factor in order for

plant growth and hence forest recovery. In this study, the main abiotic factor influencing

canopy tree seedling regeneration was found to be light index. Many studies have shown

that light is an important determinant for seedling regeneration, growth and survival, and

hence forest turnover (Pacala et al. 1996; Finzi and Canham, 2000; Gilman and Ogden,

2005) in temperate forests. At low or high light levels however, there were fewer mahoe

and fivefinger seedlings (Figure 15). This occurred even though mahoe, is known to be

shade tolerant (Williams and Buxton, 1989). The relationship observed is that most

individual seedling recruits (mahoe and fivefinger) were found in plots where light levels

are moderate, as plots with low or high light levels limited seedling recruits.

Figure 28 is a conceptual view regarding the relationship between mahoe seedling

densities with shrub cover in response to light levels. A number of suggested reasons for

the non-linear relationships among light index levels and mahoe seedlings exist. At higher

light levels, shrub cover abundance increases taking up more available space which

suppresses mahoe and other broadleaved tree seedling regeneration whilst lower light

levels are less conducive to regeneration. Based on what is shown by this bimodal

relationship is that seedling densities, albeit mahoe or other broadleaved tree species, tend

to be higher in places where enough light penetrates through the canopy to the extent that

shrub cover expansion is less than for areas where light is more intense.
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low                                                                                                    high

Figure 28. Bimodal relationship of mahoe seedlings and shrub cover with light. The
solid line denotes seedling density; broken line represents shrub cover

The three forest patches surveyed for seedling abundance and seedling composition

indicated that distance from local seed source trees, a biotic influence, was not an

important factor in the regression models developed for canopy tree seedling distribution

(both small seedlings and large seedlings). The three forest patches comprised major

gullies which harboured adult canopy trees that were generally near the temporary

vegetation survey plots (< 500 m), which suggests that in all three forest patches, the plots

sampled were within bird dispersal distances. If distance to seed source trees were to be

important for seedling regeneration, the consideration of perch preferences may be a

factor in which birds defecate the seeds beneath the perches (Dungan et al. 2001), at

greater (> 1 km) distances away from the natal site (a major remnant consistent of parent

trees).

Shrub
cover

Peak density

Seedling density

Light index
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5.4. Seedling Community Patterns at Tiromoana Bush

The DCA ordination plot (Figure 25) presents floristic similarities and

dissimilarities at Tiromoana Bush. With respect to light index levels, increasing tree

species heterogeneity is inevitable. The data collected for this indicated that light index is

the most important driver as has been observed in other studies (Pacala et al. 1996; Finzi

and Canham, 2000; Gilman and Ogden, 2005). This is especially evident in the plot DCA

ordination (Figure 26) with the Simpson’s diversity index included. The plot DCA with

environmental attributes (Figure 25) indicates that the plots with higher diversity also

have higher light index levels. Beneath the existing canopy of young- or old-growth

forests, light intensity and availability often lead to increasing tree species richness and

diversity (Brockerhoff et al. 2003).

5.5. Future Canopy Composition at Tiromoana Bush

Based on the results gathered from the permanent vegetation monitoring plots and

the temporary vegetation survey plots, mahoe, fivefinger and kohuhu respectively are

likely to dominate the future canopy composition of Tiromoana Bush. More specifically,

the small seedling/large seedling ratio of these tree species, 6 : 1 : 0.5, suggests that for

mahoe, there is approximately six times the number of large seedlings than for fivefinger,

and there is approximately half more of the number of large seedling individuals of

fivefinger than for kohuhu. This could indicate that mahoe will be the dominating

broadleaved tree species at Tiromoana Bush once the kanuka canopy opens out and dies.

Large seedling counts over small seedlings for golden akeake suggest that this tree species

may also be part of the future canopy although counts of this tree species were small
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compared to the other three tree species. The continued nursing effects of kanuka for

other broadleaved species regeneration in the future will allow for these tree species to

grow through and also form part of the next forest canopy.

Previous studies found that not only does kanuka provide a nursing environment for

broadleaved tree species other species can also act as nurses as well. Gorse, an invasive

prickly shrub is known to support young, vulnerable canopy tree seedlings beneath its

canopy and also, gorse provides nitrogen for plant growth (Wilson, 1994; Williams and

Karl, 2002). However, gorse is an invasive species and may not be desirable in some

areas, as gorse can displace other native vegetation. A more attractive alternative to gorse

could be flax (Phormium tenax; Reay and Norton 1999b), particularly in grass pastures.

Flax readily reduces grassland and provides food (nectar) for bellbirds, which also play an

important role in seed dispersal of broadleaved tree species. The addition of flaxes for

nectar among fleshy fruits of indigenous canopy trees as alternative food sources will

attract bellbirds aiding in dispersal of broadleaved tree species within Tiromoana Bush in

the future.

5.6. Implications for Restoration

The removal of domestic grazing livestock has allowed regeneration of woody

canopy tree species to occur (Figure 29), which reinforces the importance of removing

sheep and cattle away from forest remnants. The study conducted by Burns et al. (2011)

points out that fencing off forest patches from grazing livestock has allowed seedling

regeneration to occur as opposed to patches without any form of protection from grazing.
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Figure 29. Mahoe regeneration beneath a kanuka canopy (permanent vegetation
monitoring plot VP7a) five years after grazing removal. The removal of grazing
stock from this site has allowed rapid regeneration to occur

Given that light index is the most important abiotic factor initiating tree

regeneration, natural (or mechanical) openings of the seral kanuka canopy has been

suggested to benefit other broadleaved canopy tree species regeneration (sensu Grubb,

1977; McAlpine and Drake, 2003). This has important implications concerning restoration

management particularly in order to promote the establishment of target species

(McAlpine and Drake, 2003). For example, exposure to open sky promotes germination

of alien weeds, such as broom (Cytisus scoparius; McAlpine and Drake, 2003). Therefore

any canopy openings should be done over many years rather than clear-felling a large
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number of trees (McAlpine and Drake, 2003), but could be a useful strategy at Tiromoana

Bush to facilitate regeneration.

Other restoration implications include the absence of the podocarps in the

regenerating forest at Tiromoana Bush. Currently at Tiromoana Bush, the indigenous

conifers (podocarps) are absent, but prior to human disturbance, podocarp tree species

would have been dominant, especially totara and matai occurring as emergent trees

(Norton, 2005). The primary reason for the absence of the podocarps is that there are no

podocarp seed source trees at Tiromoana Bush. While the kanuka canopy will most likely

be replaced by mahoe forest in future, planting of podocarp tree species is likely to be

necessary to speed up their return to the forest. Growing canopy tree seedlings from local

seeds is paramount for restoration as local seedlings are physiologically acclimated to

where their natal parents come from. This will certainly aid in forest recovery as most

seedlings will survive in their habitats provided their acclimation potential. A possible

seed source area for podocarps close to Tiromoana Bush could be the southeast facing

slopes beneath the Mount Cass-Totara Ridge, approximately 2 km northwest of

Tiromoana Bush (Norton 2005). This area today (and pre-disturbance times) consists of

extant totara and matai forest. The substrate of the Mount Cass-Totara Ridge is dominated

with limestone and loess, meaning that totara and matai sourced from the Mount Cass-

Totara Ridge are likely to be acclimated to the environmental conditions at Tiromoana

Bush.
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5.7. Study Limitations

These are two-fold.

5.7.1. Restriction of study sites:

This study was focused at Tiromoana Bush. A possible limitation could be the

restriction of study sites. This being the case of significance especially when needing to

understand fully the processes and dynamics of seedling recruitment and determining

future canopy composition. Other areas, especially the Port Hills (Reay and Norton,

1999a) and Hinewai Reserve (Wilson, 1994) go through similar processes regarding

future forest composition and canopy tree seedling recruitment. Including data from these

sites together with Tiromoana Bush would have potentially, aided in developing a more

sound and complete coverage of forest regeneration overall.

5.7.2. Environmental Attributes:

Soil moisture: At any one site and at different times, soil moisture levels always

change. Soil moisture, an abiotic influence affecting plant growth and survival may well

be a limiting factor in the study area. During the summer, most areas in the three sampled

forest patches were rather dry and this could have limited seedling distribution in places.

However, soil moisture as a variable was not assessed.

Browsing: A biotic factor especially in the permanent vegetation monitoring plots.

This was a limiting factor because numerous seedling individuals in the permanent

vegetation monitoring plots (particularly mahoe) experienced browsing as their tops were
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removed. Measuring height thus was impacted negatively for these seedling individuals.

Seedling mortalities following mammal clipping behaviour also limited this study as the

loss of individuals through mortality affected data collection, in particular height data and

counts of individuals within these heights. Browsing is most likely due to deer and

possibly hares.

5.8. Areas for further research

Further research aimed for restoration of indigenous forests should primarily focus

on seed dispersal, seedling recruitment and an assessment of restoration success.

5.8.1. Seed dispersal:

Seed dispersal is a fundamental process in order for new seedlings to establish in

new areas away from their natal parent trees. Seed dispersal in this manner avoids

potential in-breeding (Wenny, 2001). Seed dispersal dynamics in forests including the

processes of avian and mammalian dispersers initiating dispersal is a large area of

research ultimately relating to forest development over time and promoting restoration in

the long-term.

5.8.2. Seedling recruitment:

Seedling recruitment determines the overall health of the forest. Whilst seedling

recruitment takes place at any seasonal times, seedling recruitment is a prerequisite in

order for evident forest restoration taking place. Further study on this should focus on
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recruitment potential of particular tree species and what this means for forest restoration,

and also for overall forest health both florally and faunally.

5.8.3. Restoration success:

This particularly refers to forest development over time through the processes of

seed dispersal and seedling recruitment. Restoration success also encompasses non-human

mediated processes partaking in natural dynamical processes. Further research on this

broad topic is likely to focus on tree species composition and abundance, together with

native bird population dynamics (as birds are primary seed dispersers in forests), as the

regenerating forests at Tiromoana Bush continue to develop.
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Chapter Six: Conclusion

This study aimed to predict and thus understand the likely environmental factors

affecting future forest composition at Tiromoana Bush. The future composition of

Tiromoana Bush is related to what canopy tree species are currently most numerous in the

seedling stratum. Based on the results presented here, both the absolute numbers and the

ratios of canopy tree small seedlings and larger seedlings, mahoe, fivefinger and kohuhu

are likely to dominate the broadleaved canopy of Tiromoana Bush in the future (50-100

years time), but with mahoe the most dominant broadleaved canopy tree species.

The abundance of mahoe as a seedling is most likely due to adults of this species

dominating the gullies running through the regenerating kanuka stands; adult mahoe

produce numerous fruits each consisting of up to six seeds, as well as being persistent (as

seedlings) in areas that are shady as well as with moderate light index levels. The rapid

relative growth rates and number of mahoe seedling individuals over the other canopy tree

species suggest that mahoe will persist as seedlings more so than the other canopy tree

seedlings.

It is likely that the kanuka canopy will soon die out and thus be replaced by a

mahoe forest with fivefinger and kohuhu, the main associated broadleaved canopy tree

species. While kanuka will be naturally replaced by mahoe, fivefinger and kohuhu, the

replanting of podocarp species is likely to be required to ensure their return as part of the

forest composition in the near future because seed sources are not locally available.
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This study and other research shows that kanuka provides environmental

conditions suitable for broadleaved tree seedling development in the understorey. The

removal of domestic livestock has led to the first signs of restoration success, through

seed dispersal and seedling recruitment, thus individual canopy tree seedlings are able to

colonise new areas without the pressures of grazing by domestic stock. However, the

presence of animal pests (e.g. deer) and their negative consequences upon the broadleaved

seedlings needs further study in order to develop long-term management strategies for this

and other restoration projects.
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