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ABSTRACT

Power quality state estimation (PQSE) is a set of techniques with the objective to estimate
diverse power quality phenomena in electric power systems; transient state estimation (TSE)
being one such technique. Its objective is to estimate node voltage waveforms in a network
after it has been subject to an electromagnetic transient. This work focuses on TSE using the
numerical integrator substitution (NIS) method to model the system transients. The objective
of this work is to further extend T'SE with NIS, to include non-linear and distributed parameter

elements.

The intended application for TSE is to serve as an analysis tool for post-disturbance root cause
analysis. The technique can be considered under development but in the future must be capable,
considering certain requirements are met for measurements and system modelling, to help in
the identification of the cause(s) for failure or malfunction when electromagnetic transients are
recorded. The use of TSE removes the need of multiple simulation runs that are currently
required in order to find the cause of disturbance (each simulation with a different system

configuration trying to match measured waveforms).

The contributions of this work include: analysis of numerical oscillation in TSE with NIS using
single-phase circuits, the application of TSE with NIS to non-linear branches using the piecewise
linear method, the development of an extended observability analysis capable of identifying
unobservable islands, the application of virtual measurements to linear and lumped circuits, and

the application of TSE with NIS to transmission lines modelled with distributed parameters.
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Abbreviations

CT Current Transformer
CcvT Capacitor Voltage Transformer
dB Decibel
EMS Energy Management Systems
EMTP ElectroMagnetic Transients Program
GPS Global Positioning System
IED Intelligent Electronic Device
KCL Kirchhof’s Current Law
NIS Numerical Integrator Substitution
NRMSE Normalised Root Mean Square Error
PQSE Power Quality State Estimation
RMS Root Mean Square
SCADA Supervisory Control And Data Acquisition
SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition
TSE Transient State Estimation



viii GLOSSARY

Nomenclature
v/ Measurements vector
H Measurements matrix
X State variables vector
w Measurement’s Gaussian white noise
G Gain matrix
HT Transpose of matrix H

g

Inverse of matrix H

det (H) Determinant of matrix H

rank (H) Rank of matrix H
(H)

null Nullity of matrix H

Vg Voltage at node k
ik Current flow in branch jk, positive direction from j to k
R Resistance
L Inductance
C Capacitance
t Time
% Ordinary derivative
At Time interval magnitude or time-step

[ ft)dt Definite integral

Uk(1) Discrete voltage at node k at time ¢
% Partial derivative

R Resistance per unit length

Ze Characteristic impedance, transmission line
Wave phase velocity, transmission line
Wave travelling time, transmission line
Equivalent conductance matrix

v
T

Y

U Right eigenvectors matrix, SVD
AY Left eigenvectors matrix, SVD
S

Singular values diagonal matrix, SVD

H* Pseudo-inverse of matrix H
o Standard deviation
o? Variance
APEAK signal Signal amplitude, peak value

ARMSsignal Signal amplitude, RMS value
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Chapter 1

INTRODUCTION

1.1 GENERAL OVERVIEW

Electric power systems, along with other systems, are the backbone of modern society. Modern
life would be impossible without electric motors, major internet server facilities, public lighting,
traffic control centres, homes, etc, receiving energy from the network with the expected power
quality, in a reliable and cost effective way. Electric power systems are in continuous change and
new technologies are being implemented all the time. However, the main infrastructure (e.g.,
transmission lines, substations, power generation plants) is in most cases old and its replacement
or enhancement is slow and sometimes barely matches the growing demand. Alongside this,
modern society is increasing its use of devices that when connected to the network produces
“pollution” and increase the stress on the existing infrastructure. In this scenario the network
has to work as close to its limits as possible. To achieve this, the monitoring of the existing
conditions (the state of the system) is of paramount importance, as are estimation tools to
find the causes of malfunctions or failures in the system as soon as possible to avoid future
service interruptions. Power quality state estimation (PQSE) is a group of tools that aims at
these objectives through the use of field measurements; measurements which are becoming more

available as the grid changes.

Transient state estimation (TSE) is one of these tools, and could be used to find causes of mal-
functions or failures by estimating voltage waveforms based on recorded current and voltage
transient waveforms. The technique is based on well established theories like state estimation
and electromagnetic transient simulation for power systems. The technique is still under de-
velopment, with two main approaches used to model the transient behaviour: the state-space
formulation, and the numerical integrator substitution (NIS) method. Both approaches have
their merits and limitations, but the main limitation for the state-space formulation is a higher
complexity to model non-linear and distributed parameter elements. This, combined with the
fact that NIS is the standard method to simulate electromagnetic transients in power systems,

resulted in the current work in TSE using the NIS methodology.
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To have a TSE method that can be applied to any power system subjected to any kind of
electromagnetic transient, more improvements are required. The work presented in this thesis

puts TSE closer to this general objective.

1.2 OBJECTIVES

The two main objectives of this work are: the inclusion of non-linear elements in TSE with NIS,
and the application of the estimation method to transmission lines modelled with distributed

parameters.

To achieve these objectives the NIS formulation for both non-linear and distributed parameter
elements are reviewed and modified for its application in TSE. During the process that finally
ended in the objectives, areas of improvement for the existing TSE with NIS method were
identified and modifications were proposed. Some of the proposed modifications ended in further

contributions.

1.3 CONTRIBUTIONS

The contributions of this work are (in order of importance):

- Application of TSE with NIS to transmission lines modelled with distributed parame-
ters. This is the main contribution of this work and allows the use of TSE with NIS for

transmission systems.

- Development of an extended observability analysis capable of identifying unobservable
islands in circuits with linear and lumped elements. Due to lumped parameter formulation
in TSE with NIS, it is possible to have unobservable islands that contain measurements;

a problem which has not been previously identified.

- Application of virtual measurements to linear and lumped circuits. It is used, when pos-

sible, to make a previously unobservable island become observable.

- Application of TSE with NIS to non-linear branches. A first for TSE, and is based on the

well known piecewise method.

- Application of half-step interpolation to remove numerical oscillations created by measure-
ment’s white noise in inductive branches. Although the problem of numerical oscillations
has been previously dealt with for simulation, the use of interpolation for TSE with NIS

is new.
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- Analysis of initial conditions effect on single-phase circuits TSE. This has not been previ-
ously reported for TSE with NIS. Its importance becomes clear in circuits modelled with

distributed parameters (including three-phase circuits).

1.4 THESIS LAYOUT

The thesis is organised as follows:

Chapter 2
Starts with a brief review of PQSE techniques, this introduces ideas and concepts that
are used through the thesis. Followed by a short introduction to NIS methodology. This
chapter ends with a brief review of TSE with NIS existing formulation, for circuits with

linear and lumped parameter elements.

Chapter 3
First noise modelling is reviewed and its effects are analysed using a simple single-phase
circuit. Then the use of half-step interpolation is introduced as a solution to the problem
generated of numerical oscillation in TSE with NIS. Finally, the modelling of non-linear

elements with the piecewise linear method is presented and applied to TSE.

Chapter 4
Begins with the review of the existing observability analysis method based on singular
value decomposition (SVD) matrices, followed by a discussion of the reasons behind partial
observability in circuits with linear and lumped parameters. Then the observability method
is extended to detect unobservable island. Finally the introduction of virtual measurement

in TSE is presented.

Chapter 5
Opens with a revision of the Bergeron model with losses for transmission lines (with
distributed parameters); followed by its inclusion in TSE. Finally, the accuracy of the
proposed method is investigated; using as input measurements obtained from simulation
results using different models (better models that include frequency-dependent parame-

ters).

Chapter 6
This chapter presents the recommended future work for TSE with NIS, and final conclu-

sions are given.






Chapter 2

BACKGROUND

2.1 POWER QUALITY STATE ESTIMATION

Power quality state estimation is an extension of the concept of steady-state estimation that has
been to include power quality related indices and data. The classic steady-state estimation can
be seen as the part of power quality state estimation that deals with over and under steady-
state voltages. This method was developed in the 1960’s by Schweppe [Schweppe and Wildes,
1970, Schweppe and Rom, 1970, Schweppe, 1970]. Its goal is to provide the best possible data as
input to monitor and control an electric power system and was implemented in power systems
control rooms in the early 1970’s [Schweppe and Handschin, 1974]. The steady-state estimation
deals with the estimation of values based on the power-flow problem, i.e. it takes a “snapshot”
of the system and provides the best estimate of the busbar voltage and angle magnitudes based
on measurements obtained by the supervisory control and data acquisition (SCADA) system
at a certain time. In the 1980’s, Heydt was the first to apply the concept of state estimation
to harmonics [Heydt, 1989], with the primary objective of identifying harmonic sources at non-
monitored load buses, i.e. load buses without harmonic measurement equipment. This was
later extended as a complete (including all buses) state estimation. The technique has been
implemented for testing purposes in Japan using field synchronised measurements [Kanao et al.,
2005]. The transient state estimation has been proposed by Yu and Watson [Yu and Watson,
2007]. This technique estimates the voltage and current waveforms at non-monitored parts of the
systems when subject to a transient phenomena such as a fault or switching condition. The first
aim of this technique was to identify a fault location [Yu and Watson, 2005]. The last technique
that can be catalogued as power quality state estimation is voltage sag/dip state estimation,
where voltage dips frequency and parameters are estimated at non-monitored points [Wang
et al., 2005, Espinosa-Juarez and Hernandez, 2007].

Figure 2.1 presents the theoretical framework of PQSE. The relationship between estimation and
simulation for different phenomena is presented, as well as the use of control theory (and state
estimation) concepts that are applicable to all PQSE’s techniques. These concepts are defined

in the next subsection. At the figure centre the types of PQSE are presented; to their left (and
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Power Quality State Estimation

Model Best approximation?
Simulation State Estimation
lo
pO/Ogy
Load-flow |- » Steady-state parameters
\\/\easurements ()
Harmonics |- » Harmonic State Variableg 9
Control theory
Electromag-
netic - »| Transient
transients
Voltage Sag |- Voltage Sag

Figure 2.1 PQSE’s theoretical framework.

connected by small two-way arrows) are the related power system simulation analysis, these are
used in estimation to represent the system in each technique (and relate measurements with
state variables); and in the right side (connected by a big two-way arrow) the state estimation
theory concepts that define requirements for measurements and state variables in order to obtain

a estimation.

2.1.1 Power systems steady-state estimation

2.1.1.1 Least-squares estimation; from astronomy to electric power systems

The method of least squares was developed by Karl Friedrich Gauss in 1795 while working on
an astronomical problem [Sorenson, 1970] [Jazwinski, 1970, p.142]. The motion of planets and
comets can be characterised by six parameters and the problem was to determine the values
of the parameters from the measurement (or observation) data. Gauss argued that all our
measurements are approximations to the truth, i.e. they contain errors, so the same must be
true for the calculations which are based on them. Therefore, the goal of the calculations must
be to approximate, as best as possible, the truth. The objective of the least-squares method is
to minimise the sum of the squares of the difference between the estimated and measured values
(the difference is also know as residual). According to Gauss, this will provide the most probable

value for the wanted parameters.

Gauss’s work served as a base for future developments. The second world war brought ad-

vancements in the control theory area of estimation when the problem related to the aiming of
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weapons was dealt with [Bennett, 1993, pp.164-185]. After the war, the concept of state was
introduced in control theory to model a multiple inputs/outputs system [Smith, 2012] [Bennett,
1993, pp.200-205]. During the 1960’s, work was done on estimation related to navigation, in
particular dealing with space-craft and missile navigation [Handschin, 1971, Smith, 2012]*; Fred
S. Schweppe defined the power systems steady-state estimator as “a data processing algorithm
for converting redundant meter readings and other available information into an estimate of the
state of the static-state vector” [Schweppe and Wildes, 1970,Schweppe and Rom, 1970,Schweppe,
1970].

2.1.1.2 State estimation and the electric power systems monitoring and control

The state of a power system refers to its operating condition [Wu, 1990], which is relative to
the power flowing in, and voltages at, the different system components. If the bus voltage
magnitudes and phase angles are know, at a certain time, then the power flow and voltages
can be determined for the entire system, at that time. Hence, in steady-state, the complex bus
voltages (voltage phasors) are the state variables, because from its knowledge the state of the

system can be determined.

To monitor and control an electric power network, energy management systems (EMS) are
utilised at the energy control centres. The SCADA system is that part of the EMS that collects
the field measurements, mainly real and reactive power flows which are also used for revenue
metering and recording purposes. Other information collected includes currents, bus voltage
magnitudes or bus phase angles. The SCADA system also provides status information such as
transformer tap positions and power circuit breakers on/off status that determine the network
configuration. With this information as an input, the steady-state estimation algorithm provides
the most probable values of the bus voltage magnitudes and phase angles that will serve as
input for further EMS functions such as load frequency control and/or security assessment
that are performed on-line [Abur and Exposito, 2004, pp.2-7] [Grainger and Stevenson, 1994,
p.664] [Schweppe and Handschin, 1974]. Schweppe’s genius resided in his ability to understand
the need for a reliable real-time data to be fed to the control centres?, before steady-state
estimation the control centres would take the data directly from measurements and perform the
EMS functions calculations [Stagg et al., 1970]. Sometimes the received data was compared
against expected results from load-flow simulations or be “evaluated” by the operator based on

experience [Handschin, 1971, p.57].

In 1960 R.E. Kalman published a paper in the ASME Journal of Basic Engineering entitled “A new approach to
linear filtering and prediction problems” in which Kalman introduced the design equations for the discrete Kalman
filter, which can be regarded as an efficient computational solution of Gauss least-squares method [Sorenson, 1970].

2The term “real-time” used here means that the data been used in the control centre was taken from the field a
few seconds or minutes before. This delay is caused by the time required to measure, sent the data to the control
centre, pre-process the data and finally perform the state estimation.
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2.1.1.3 The steady state estimation problem

The state estimation relates the measurements vector z to the state variables vector x by
z=h(x)+w (2.1)

where w is the measurements error vector and h(x) is a vector of non-linear scalar functions of x
determined by the system relation between the measurements and the state variables. Because
the most commonly available data are power flows, the non-linear equations have a similar
formulation to the load-flow problem [Wu, 1990, Handschin, 1971, Schweppe and Rom, 1970].

The number of state variables is equal to n, and because the swing bus angle value is zero®

dim[x] =n=2N —1
where N is the number of buses. The number of measurements is m and hence
dim[z] = m
the vector w is also m-dimensional.

In steady-state estimation, the system is considered balanced, symmetric and operating at con-
stant frequency. Load-flow calculations consider that the input data does not contain observa-
tion errors and the number of given quantities equals the number of unknown bus voltages, i.e.
m = n. In order to obtain an improved solution in state estimation, the input data should con-
tain redundancy, i.e. the number of measurements m should be larger than the number of state
variables n (m > n). The output of the estimator X, which are the values of the state variables
that minimise the errors, gives complete information about the state of the system [Handschin,
1971].

The errors {wq,ws,...,w,,} are assumed to be independent Gaussian random variables with
zero mean. The variance 0’? of the measurement error w;, provides an indication of the certainty
or degree of confidence about that particular measurement [Wu, 1990]. The measurement error

covariance matrix R is

R = E{ww!} = (2.2)

In (2.1), x is a deterministic quantity. Because the errors w are random variables, the measure-

3The swing bus (or slack bus) is a reference bus for which voltage magnitude and angle are 1 p.u. and 0 rad
respectively, in a load-flow simulation.
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ments z are also random variables. It can be shown than z has a Gaussian distribution with
mean h(x) and covariance R. The probability density function of z can be written as [Handschin,

1971]
. ¢~ 3lz—h()] "R [z—h(x)] 23
p\z) = pos . .
(27)% (det R)2

For the state estimation problem, a set of measurements z has been observed based on the fact
that it is desired to estimate the state x. An x is selected which makes the observed z most
likely to have been observed, i.e. the x which maximises the probability density function (2.3).
An estimate %X thus obtained is called the maximum likelihood estimate [Wu, 1990].

To maximise p(z) in (2.3) it is necessary to minimise the quadratic term in the exponent, i.e.

xT

minJ(x) = %[z —hx)]"R[z — h(x)] (2.4)

N U 1 {ZZ' — hz(X)}2
i=1 i
Because the maximum likelihood estimate in this case minimises the error squared weighted by

the measurement accuracy, it is commonly called the weighted least squares (WLS) estimate [Wu,
1990]4.

The following condition has to be satisfied [Abur and Exposito, 2004, p.18]

o) = 2L = —HT(R)R[z — h(%)] = 0 (2.6)

where  H(x) = [811(")} .

ox

Expanding the non-linear function g(x) using Taylor’s series around x*
9(x) = g(x") + G(x")(x = x) + .- =0.
Using Newton’s method and ignoring the second derivative and higher terms:

S R [G(Xk)]_l g(xF)

where k is the iteration index,

x* is the solution vector at iteration k,

G(Xk) — 8ga(zzk) — HT(Xk)R—lﬂ(Xk)

4The methods of least squares and maximum likelihood only produce the same result under the conditions
presented in page 8 for the errors and measurements, see “Estimation by least-squares and by maximum likelihood”
by J. Berkson in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability
(1954/1955) Vol. I pp. 1-11.
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9(x) = —H"(x")R"'[z — h(x")]

G(x) is the gain matrix, which is sparse, positive definite, symmetric and non-singular if the

measurements are sufficient and well distributed, i.e. the system is fully observable.

The matrix G(x) is typically not inverted, instead it is decomposed into triangular factors and

the following set of equations are solved using forward/back substitutions at each iteration
[G(xk)} Ax"1 = HT (x")R [z — h(x")] (2.7)

k+1 k+1

where Ax — x*. Equation 2.7 is know as the Normal Equation [Abur and Exposito,

2004, p.18].

=X

Beside the actual estimation of the state variables vector the following functions are also per-
formed by the state estimator in the EMS [Abur and Exposito, 2004, p.4]:

- Topology processor. Receives the status information from the SCADA system and utilise
it to create a one-line diagram of the present network, i.e. transform the bus-section/
switching-device model into a bus/branch model [Monticelli, 1999, p.4]. The parameters

of the network (e.g., line impedances) are considered to be correct and known.

- Observability analysis. With the available measurements and one-line diagram, this de-
termines unobservable branches and islands in the system if they exist. The observability
analysis is run off-line mainly to determine the optimal location of measurements, but is
run on-line to indicate how current changes in the network affect the system observability.
A system is observable when “the set of available measurements, together with any equal-
ity constraints imposed on network flows, is sufficient to calculate the entire static-state
vector of the network uniquely” [Clements, 1990]. A unique solution exists when the rank
of G is n. A necessary but not sufficient condition is that m > n. It is not sufficient
because linear dependencies can exist in the rows of G. The necessary measurements to
make a network observable can be obtained by making use of manufactured data, such
as generator output or substation load demand, that are based on historical data or the
dispatcher’s objective guesses, called pseudo measurements, or information that does not
require metering such as zero injections at a switching station, called virtual measure-
ments [Wu, 1990]. Some methods developed for the observability analysis and optimal
meter placement can be found in [Clements, 1990, Monticelli and Wu, 1985].

- Bad data processing. Detects, identifies and eliminates bad measurements which are out-
liers with gross errors contained in the field measurements set. The presence of those
outliers invalidates the assumption of a Gaussian distribution. Under a linear approxima-
tion and considering no bad data is present, the residual has a Gaussian distribution with

zero mean and covariance R — HG ™Y H7T. This can be used to detect the existence of bad
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data. To identify the bad data it is sufficient to compare the normalised residuals when the
bad data is non-interacting. The largest corresponds to a bad measurement. After the bad
measurement has been identified, it can be eliminated but it is possible that its elimination
will affect the network observability. When there are several bad measurements and they

interact, other techniques are required [Wu, 1990].

- Parameter and structural error processing. Estimates network parameters and detects
structural errors caused by erroneous status information. Measurement redundancy and
an extended model are required. The extended model includes the status and network
parameters as state variables, i.e. h(x,s,y) where s is the flow through modelled switches

and y is the flow through network impedances of uncertain value [Alsag et al., 1998].

2.1.2 Harmonic state estimation

2.1.2.1 The use of power measurements

Gerald T. Heydt [Heydt, 1991, Introduction] changed his research interest from stochastic power-
flow to harmonic power-flow studies in 1981 following the needs of the North America electric
power industry (receiving funding from the Electric Power Research Institute) and introduced
him into the power quality area. As a result of his involvement in the area, Heydt published
[Heydt, 1989] which extended the application of state estimation from the fundamental frequency
to harmonic frequencies. His intention was to “identify the source of harmonic injection given
certain (and perhaps limited) bus and line measurements”. The estimation considers the network
as being linear and power is conserved at a specific frequency without distortion from other
harmonic frequencies. Furthermore, the lines are considered to have lumped parameters. Finally,
a least-squares estimation is applied only to a few pre-selected, non-monitored buses. Complex
volt-amperes at certain harmonic frequencies are estimated. The measurements correspond to
monitored buses and lines complex volt-amperes at the same frequencies. Measurement errors
are not considered. An active power injection at a certain frequency reveals a harmonic injection
with that frequency on that particular bus. The method is based on the harmonic power-flow

formulation.

In 1994 Beides and Heydt presented [Beides and Heydt, 1991], here (2.1) is used in conjunction
with an equation that describes the dynamic of the power system. The measurements are
voltages and powers at harmonic frequencies and the state variables are the buses’ harmonic
voltage magnitudes and phases. The system is solved using a Kalman filter and provides a

dynamic estimation, i.e. a continuously changing snapshot of the network harmonics.

The main motivation behind the estimation of harmonics is the identification of harmonic

sources. Such a task is usually required after the presence of harmonics is detected due, for



12 CHAPTER 2 BACKGROUND

example, to equipment failure or protection scheme activation. If simulations are run trying
to recreate the cause of the fault, a series of guesses would have to be done as to where to
place the harmonics source and its type, until the simulation output matches the suspected
cause of the problem (providing an exact knowledge of the system topology and parameters is
available). Another reason is the enforcement of harmonic limits in non-monitored parts of the
system [Najjar and Heydt, 1991] and, finally, its introduction into EMSs to monitor the entire

system harmonics and maybe replace the steady-state estimation.

2.1.2.2 Power system harmonic state estimation

Meliopoulos, Zhang and Zelingher published their work [Meliopoulos et al., 1994] with the idea
that if only the fundamental frequency was presented in the measurements, the resulting esti-
mation could replace the one obtained by an EMS using steady-state estimation. The algorithm

is based on (2.1) with the following modifications over the steady-state estimation:

- Multi-phase model. A three-phase model is required to include asymmetrical conditions

that are of importance and can no longer be rejected when harmonics are presented.

- Voltage and current waveform measurements. Because, there is not a globally accepted

definition for reactive power when harmonics are presented.

- Multi-frequency model. No longer is only one frequency considered. The values of the

network parameters are required at each harmonic frequency used.

- Synchronized measurements. Achieved by the use of a global positioning system (GPS),
this guarantees that the measurements will be taken at the same instant in time (within
some accuracy). This is required as the harmonic measurements demand the computation

of quantities which are perform in local equipment before been sent to a data concentrator.

The state vector is the bus voltages and because the measurements are voltage and currents

only, (2.1) becomes a linear equation
z=Hx+w (2.8)

where H is the measurement matrix. In [Meliopoulos et al., 1994] a least-squares solution is
obtained by separating the variables into real and imaginary parts. Another solution in the WLS
sense is obtained by replacing h(x) by H as shown in (2.8) into (2.6), which produces [Arrillaga
et al., 2000, p.232]

H'R'Hx =H'R 'z (2.9)
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Typically the number of measurements in the harmonic case is lower than the number of state
variables m < n and to obtain a solution virtual measurements are included. Pseudo mea-
surements are generally not available as historical harmonics data is not commonly available.
Another way to address this problem is to reduce the number of state variables to include only
buses that are know or suspected to have devices that produce harmonics [Arrillaga et al.,
2000, p.234] [Du et al., 1996], which is similar to the approach used by Heydt in [Heydt, 1989].

If the error vector in (2.8) is included in z, then:
z = Hx. (2.10)

Equation 2.10 is known as the measurement equation which can be solved for x using singular
value decomposition (SVD) when m < n. The technique will provide particular solutions for the
observable islands [Arrillaga et al., 2000, p.242]. In [Matair et al., 2000], a methodology based
on this approach is presented. The use of SVD also provides information about the system

observability.

The approach discussed is called Wide harmonic state estimation. Another kind of harmonic
state estimation is know as Point harmonic state estimation and deals with the estimation of
harmonics based on waveform measurement at one point of the system (e.g., one bus) [Watson
and Arrillaga, 2003a,Soliman et al., 1990]. One method used for Point harmonic state estimation

is the phasor estimation by least-squares, which is briefly presented in appendix C.

2.1.3 Voltage sag/dip state estimation

It is necessary to know the frequency of occurrence of voltage sags (or dips) in the network as well
as their parameters, depth magnitude and duration, because they can have a negative impact
on some equipment. This knowledge allows corrective or preventive actions to be taken, i.e. if
sensitive equipment is going to be connected to a bus that is known to have a high occurrence
of sags, it would have to be specified to withstand the sags frequency and severity expected, or
have a mitigation device in place [IEEE, 2007, pp.129-138].

There are measurement equipment available and capable of keeping track of the number of sags
and sags parameters at a network point, but it is impractical from an economic point of view to
have such devices installed at all points. Most sags are caused by short circuits and as such can
be simulated using short circuit analysis to calculate their magnitude. A method to estimate the
location of the fault needed to produce a given sag magnitude on a radial network is available.
Also available are methods to estimate the number of sags due to short circuit frequency [IEEE,
2007, pp.140-151]. The methods are based on work done by M. H. J. Bollen and L. Conrad.

Two techniques have been presented to deal with voltage sag inspired on power system steady-
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state estimation. In [Wang et al., 2005] the sag magnitude is estimated as it propagates on
a distribution feeder by the use of a least-squares method. The technique is based on the
estimation of the voltage profile along a feeder using a limited number of measurements on the
feeder. It only considers sags created by short circuits on a radial configuration. In [Espinosa-
Juarez and Hernandez, 2007] the number of sags at non-monitored buses is estimated from the
sags frequency at monitored buses. It uses (2.8) but ignores w (with m < n) and uses linear

integer programming to solve the undetermined system.

2.1.4 Transient state estimation

While short circuit analysis is used to estimate the magnitude of voltage sags, a better ap-
proach would be to simulate the transient which, beside the approximate duration, also provide
the waveform associated with a fault at a certain location. It is capable of doing so in any
configuration (radial or ring). Transient analysis is not only applicable to faults but also the
calculation of waveforms created by switching operations, lightning strikes and controllers action
(each phenomenon with a different time scale). Therefore estimation of the transient state of a
power system would be a valuable tool to obtain other power quality indices (from the estimated
waveforms). It can also be applied, in the similar way harmonic state estimation determines

harmonic sources, to determine the cause of failure (as indicated on section 2.1.2.1).

In recent years the Smart Grid concept has become popular. The concept captures the trend
behind the increase in the requisition and installation of intelligent electronic devices (IEDs) in
power systems, for monitoring and control. The presence of IEDs in the systems also means
an increase in the amount of data collected, and the possibility of accessing and using such
data remotely. Increasing the number of existing devices such as event recorders and digital
relays capable of capturing and storing event waveforms (the storage is trigger by event detec-
tion). Smart Grid also means the push towards a widespread use of GPS time stamping in the
recordings and the use of sensors that are more reliable and accurate (e.g., optical instrument
transformers). All of the above is needed for TSE application, because time stamped waveforms

obtained with high frequency sampling rates from remote locations are required.

2.1.4.1 The state-space approach

The concept of transient state estimation was introduced by Kent K. C. Yu and Neville R.
Watson [Yu and Watson, 2007, Watson and Yu, 2008, Yu, 2005, Yu and Watson, 2005]. To relate
the measurements to the state variables in the transient state, a dynamic model is required.
Such a model is not required in steady-state estimation or harmonic state estimation as the

system is considered quasi-static which allows the use of phasors to describe the variables. In
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state variable formulation, the following equations are used to represent the system:

2—? =% =Ax+ Bu (2.11a)

In (2.11), y is the output variables vector, u is the inputs vector and x is the state variables
vector [Watson and Arrillaga, 2003b, pp.11-12].

In [Yu and Watson, 2007], the selected state variables are bus voltages and branch currents which
are calculated in a iterative way. Virtual measurements are taken from the previous iteration
values. Inductance and capacitance remain constant in an iteration step, but can be modified
in the next step to represent time dependent parameters. H is formed at each iteration, (2.9) is

used to estimate the state variables also at each iteration.

In [Watson and Yu, 2008] a diakoptical segregation methodology is used to achieve an efficient
formulation of the network equations. The state variables are capacitive node voltages and induc-
tive branch currents. The derivative of voltage and current measurements are utilised as extra
information to achieve observability. After forming the measurement matrix, the measurement
equation is solved as

x = (H'H) 'H'z.

It is also possible to solve using x = Hz where HT is the pseudo-inverse of H [Watson, 2010).

2.1.4.2 Numerical integrator substitution approach

The numerical integration substitution method was introduced by Hermann W. Dommel in
1969 [Dommel, 1969]. The method is the basis for EMTP-type (ElectroMagnetic Transients
Program) programs which are the standard means of simulating electromagnetic transients in
the electric power industry. The method is based on Bergeron’s model for distributed parameters
and the trapezoidal integration rule for lumped parameters. It is possible to include time-varying

and non-linear elements.

In [Watson, 2010] the method is used to estimate the state of a single-phase circuit with lumped
parameters that is subject to a short circuit. Work was done by Ali Farzanehrafat, while working
towards his PhD under Neville R. Watson, to extend its application to distribution systems. It
has been extended to three-phase distribution systems using PI models for transformers and
lines [Watson et al., 2012, Farzanehrafat and Watson, 2013, Watson and Farzanehrafat, 2014,
Farzanehrafat, 2014].

The use of backward Euler method and root-matching to avoid numerical oscillation associated

with the trapezoidal rule in NIS was presented in [Watson and Farzanehrafat, 2013], for three-
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Table 2.1 PQSE’s main characteristics.

State State variables | Measurement Measurements | Remarks

estimation equation

Steady-state V|, oy Non-linear P, Q, |I], |V|, | Phasors at nomi-
(m>n) ov nal frequency?®

Harmonic Vi Linear I, Vi Phasors at
(m<n) harmonic fre-

quencies’

Voltage sag Sags o9, Linear Sags 4% Sag  characteris-
(m < n) tics or number

Transient v Linear i, v Waveforms over-
(m < n) time

*V = |V| £dv, is the voltage phasor defined by magnitude (RMS) and angle. P and Q are the real and reactive
power.
’k index indicates harmonic order.

phase distribution systems.

With NIS it is possible (and expected) to have less measurements than state variables, so to have
a general solution method the use of pseudo-inverse by SVD has become the preferred solution

technique.

Table 2.1 presents the main characteristics of all PQSE techniques, and in doing so highlights
their differences. Note that all other state variables can be computed (except perhaps by number
of sags) from the estimated waveforms using TSE. Examples where sag characteristics and

harmonics are obtained from TSE results will be presented in chapter 5.

2.2 NUMERICAL INTEGRATOR SUBSTITUTION METHOD

For lumped parameter elements the NIS method uses the trapezoidal rule to discretise or convert
the differential equations that describe the power system elements to difference equations. The
Bergeron method (or characteristics method) is applied to elements modelled with distributed

parameters.

2.2.1 Lumped parameters

For a lumped inductor, the voltage difference at its terminals (j and k) is proportional to the

inductance (L, given in Henries) times the derivative of the current against time:

(2.12)
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The current at time ¢t — At is

1 t—At
oo = [ (v - vt (213)

to
where t( is the initial time. From this point in time the current at time ¢ is

t t—At

t
. 1 1
Uik(t) = T /(vj — vg)dt = T / (vj — vg)dt + / (vj — vg)dt

to to t—At (2 14)

t
. 1
= Lik(t—At) T 7 / (vj — vg)dt.
“A

t t

Thus the current at time ¢ is the current in the previous time, i;;— ), plus the definite integral
of the voltage difference at the discretise interval divided by the inductance. The definite integral

for the interval [t — At,t] can be approximated using the trapezoidal rule as follows

t
. . 1
Uk(t) = Gk(e-an T T / (vj — vg)dt
t—At

)] [?}j(t—At) - Uk(t—At)] + [Uj(t) — Uk(t)] (215)

2

. 1
= ljk(t-at) T [t —(t—At

| At
= djk—an + 57 [vie-a0 = vea-an] + [vio) — el -

The differential equation has been converted to a difference equation and only information at
the extremes of the interval is available (the interval magnitude being At). The current and
voltages at the beginning of the interval are grouped together and called the current history
term. Furthermore, an equivalent resistance Reg is defined as equal to 2L /At [Dommel, 1969].
Thus

. 1
tk(t) = THistory(t) T R—cﬁ [Uj(t) - Uk(t)] (2.16a)

. 1
Tistory(t) = Tjk(t—ar) + g [Uj(t—At) - Uk(t—At)] . (2.16b)

€
Equations 2.16 can be represented as a equivalent resistance, Rqg, in shunt connection with a
current source of magnitude Ifjgiory(s) between circuit terminals j and k. This can be seen in

figure 2.2, which is know as the Norton equivalent or circuit companion for the element.

Following a similar procedure the equations for a capacitor, are [Dommel, 1969]

. 1
ig(e) = Trisory(o) + o (Vi) — Vo] (2.17a)
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Ljk()

Vi)-Vk@) Reff * [Histmjy(z)

k O

Figure 2.2 Norton equivalent.

) 1
[History(t) = ~lik(t—At) — R—H [Uj(t—At) - Uk(t—At)] (2.17b)
At

Finally, the equation for the resistance of value R in ohms is [Dommel, 1969]

| 1
Bk = 5 (2500 = vk (2.18)

in this case Rqg is simply R and the history current is zero.

A known problem with NIS using the trapezoidal rule is the occurrence of numerical chatter, this
is caused by sudden changes in voltage (resulting in capacitor currents with chatter) or current
(inductor voltage with chatter). Many solutions have been proposed to solve this problem for
simulation. They can be classified in three groups: the ones requiring circuit modification (e.g.,
parallel damping [Dommel, 1987]), the ones requiring modification of the integration step and
method (e.g., critical damping adjustment [Marti and Lin, 1989]), and the ones requiring an
alternative formulation (e.g., root-matching [Watson and Arrillaga, 2003b]). To keep the same
accuracy obtained with original NIS, in the first case a judicious selection of added element
parameters has to be performed as to minimise the effect during small variations and maximise
it after a discontinuity (large variation). In the second case, the use of other integration formu-
lations affect the accuracy and the overall stability of the simulation (the trapezoidal rule is an
A-stable method, meaning no run off is possible). So different time-steps are required to obtain
the same accuracy and avoid instability. In the particular case of root-matching, its accuracy is
excellent (even with larger time-steps) it is also stable and can be added to a program using NIS
with trapezoidal rule. But it can only be applied to element combinations (e.g., RL or RLC

combinations), which makes it a supplement to NIS instead of a substitute.
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2.2.2 Distributed parameters

. . . . . / / !/ ! . . .
For a single-phase transmission line with L', R, C" and G (inductance, resistance, capacitance

an conductance per unit length), the differential equations that model its behaviour are [Branin,

1967b]°:
(% ’ (92 /.
(92 / (9'1] ’

where z is the distance from the origin point (line’s sending end) to any other point in the line.
In general the parameters are not constant but change with frequency (and for not uniform lines
change with distance as well), which further complicates its solution. A common assumption in
transmission lines is to consider C' as constant and G' = 0. The wave equations are obtained
from (2.19), after some manipulation. The Bergeron solution method is presented in the next

section.

2.2.2.1 Lossless line

For a lossless line (R/: G/:0) with constant parameters the wave equations for voltage and

current are:

ov i ov
T Oxdr Lo <8t8t> (220)

82" ! / 81‘
 Oxdr ¢l <8t8t> ’ (2.200)

the solution to equation 2.20 is®
v(x,t) = f1(x —vt)+ fo (x4 vt) (2.21a)
1

i(x,t) = 7 [f1 (x —vt) — fa(x + vt)] (2.21Db)

where f; and fy are arbitrary functions. Z. = /L'/C" is the characteristic impedance and
v = 1/VL'C" is the phase velocity. Physically fi (x — vt) is a wave travelling in the forward

direction and f5 (x 4+ vt) is a wave travelling in the opposite direction.

5(2.19a) and (2.19b) are known as Telegrapher’s equations to honour Oliver Heaviside (1850-1925), whom
formulated the equations while working on telephonic line disturbances for a telegraph company. Simplifications
in geometry (e.g., perfectly horizontal cable) and electrical parameters (e.g., uniform ground conductivity) are
required to formulate them.

6This solution is associated with the name D’Alembert, after the French mathematician Jean-le-Ront
D’Alembert (1717-1783).
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If (2.21a) is multiplied by (1/Z.) and added and subtracted to (2.21b), then

(Zi> v (@,t) +i (2,1) = <ZE> iz —vt) (2.224)

1 2

(Z) v(z,t) —i(x,t)=— (Z) fa(x +vt) (2.22b)

in equation 2.22a (1/Z.)v (x,t) +1i(x,t) is constant if (x — vt) is constant, and in equation 2.22b
(1/Zc)v (z,t) —i(x,t) is constant if (x + vt) is constant,

x—vt=c (2.23a)

r+uvt=c (2.23b)

where ¢ is any constant, are called the characteristics of the differential equations. The time to
travel the line full length (d) is:
T=d/v=dvVLC’, (2.24)

then an observer, travelling at the same speed and direction as the forward travelling wave, will
find that the expression (1/Z;)v (z,t) + i (z,t) at node j at the time ¢ — 7 will be the same at

node k at time t. So the equations are now only function of time, in discrete-time form this is”:

1 , 1 .
<7> Vjt—r) + Gjk(t—r) = <7> Vi) + [~ ki) (2.25)
rearranging
. 1 1 .
ity = | 7 | vk = { 77 ) Vite=m) — i) (2.26)
as before, a current history term can be defined as
1 .
Tit—r) = — <7> Vj(t—r) — Lik(t—1) (2.27)

finally, the two equations for the currents at both ends of the line are

. 1
Lik(t) = <Z> Vi) + Lit—r) (2.28a)
) 1
Yej(t) = (Z) Uk(t) T Ik(t_T) (2.28b)
where
1 .
Ij(t—T) == <Z> Vk(t—7) — kj(t—7) (2.29)

"Dommel took the idea from L. Bergeron, ?Du coup de bélier en hydraulique au coup de foudre en &lectricite:
methode graphique géneérale,” 1949. (Water hammer in hydraulics and wave surges in electricity) English version
by editorial Wiley, 1961.
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1 )
Tyt—ry = — (70) Vj(t—r) = Gjk(t—r)- (2.30)

These equations are the simplest representation for distributed parameter lines in the NIS
method.

The equations for the inductor (2.16) and capacitor (2.17) require information from the interval
start. This means that the currents and voltages in the previous step, the previously calculated
values or initial condition, have to be used to calculate the currents and voltages at the present
time. The value of the equivalent resistance depends on At so this value will be constant for a
linear and time-invariant branch as long as the integration step or time-step, At, does not change.
For distributed parameters information is needed from previous time-steps (see equations 2.28a
and 2.28b); the number of steps to keep is the result of dividing the travelling time (7) by the
integration time-step. This also means that the formulation is only needed when the travelling
time is larger than the simulation time-step (7 > At), otherwise a series RL combination or a

PI model is used to represent transmission lines.

The selection of At, also affects simulation accuracy. The larger the time-step the less accurate
the simulation result is. For transients classified as slow front surges (e.g., faults in overhead lines)
the time step is in the range of microseconds (a typical value is 50 us). This value can become
as small as a few nanosecond for fast front surges events (e.g., lightning) in order to capture the
transient waveform. Also the model used for the same element subject to different transients
changes, an obvious example is the need of distributed parameter model for a transmission line
(with fixed length) if At becomes smaller than 7.

In EMTP-like programs, the equivalent resistance values are used to generate an equivalent
conductance matrix, Y, which relates the node voltages to the currents that flow in the ele-

ments/branches connected to the corresponding nodes.
Yv=i+ IHistory—nodal (231)

where v is the vector of the node voltages, i is the vector of the nodal currents and Ifistory-nodal 1S
the vector of the nodal history terms, each element of which is the algebraic sum of the history
terms of all elements connected to the corresponding node. Note that (2.31) is the result of
applying Kirchhof’s current law (KCL) to each node and that each element of i will be zero
unless there is a voltage or current source (e.g., a generator) connected to the relevant node.
To simulate a transient using Dommel’s method, it is necessary to solve equation 2.31 for the
node voltages v. This is typically done using optimally ordered elimination in order to avoid
the calculation of the inverse [Dommel, 1969] [Dommel, 1987] [Watson and Arrillaga, 2003b].

Figure 2.3 presents a simple flowchart showing NIS implementation to simulate electromagnetic

transients.
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Figure 2.3 Flowchart for electromagnetic transient simulation with NIS.

2.3 TSE WITH NIS

2.3.1 Problem formulation

When applying the NIS method to TSE, it is necessary to create a measurement matrix, H,
instead of the equivalent conductance matrix to solve equation 2.10. Because the state variables
are the node voltages, then the following equations can be used to create H in the case of linear

elements modelled with lumped parameters [Watson, 2010]:

- When the measurement m is the voltage at node j

nj = 1. (2.32)



2.3 TSE WITH NIS 23
- When the measurement m is the voltage at branch jk

hipj =1 (2.33a)

hmi = —1. (2.33b)

- When measurement m is the branch current through a resistor, inductor or capacitor

between nodes j and k

1
hmj = Reff (234&)
1
Rk = — 2.34b
k Rom ( )

All other H terms are zero.

According to equations 2.16 and 2.17, the currents measured for inductive and capacitive
branches must include the respective history term, Ipjsiory(s)- Then, the basic equation for
TSE using the NIS method is [Watson, 2010]:

zZ — IHistory = Hx. (235)

When the NIS formulation changes the equations in this section are still valid, the modification
(due to a different formulation or integration method) only affects the formulas for history terms

and equivalent resistance.

In a three-phase system, the element/branch between buses j and k will have an equivalent
resistance matrix with self and, possibly, mutual elements [Dommel, 1987]. In this case (2.32) and
(2.34) will accommodate matrices [Watson and Farzanehrafat, 2013, Farzanehrafat and Watson,
2013, Watson and Farzanehrafat, 2014].

2.3.2 SVD solution

To solve 2.35 for x, singular value decomposition (SVD) can be applied to H to determine its
pseudo-inverse as typically the number of measurements is smaller than the number of state
variables. In the case of TSE with NIS, in general, neither pseudo nor virtual measurements
are available (later, a procedure to include virtual measurements will be presented). For linear
and time-invariant lumped parameters H, does not change over the entire estimation time, so
its pseudo-inverse has to be calculated only once and the estimation consists of multiplying
z — Inistory at each measurement time, or step, by H™ to obtain the node voltages. Before
multiplying, the history term for inductors and capacitors must be calculated using the initial

conditions in the case of the first measurement and using the estimated node voltages and the
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measured branch current in the previous step for the next measurement. It is also possible to use
the measured current and the previous step history current to calculate the new step Ipigiory()
for steps other than the first (in the first step the initial conditions are required), but this is
not preferred as branch node voltages will be observable if the branch current is available as

measurement and the error is smaller when using the estimated voltages®.

Note that if a fault is located inside a measured element (e.g., a fault inside a line with current
measurement), TSE does not provide an acceptable estimation because the model for such
element (and the corresponding H terms) is no longer correct while the fault is on. When a
transient includes breaker operation, matrix H has to change when an operation is detected if and
only if the breaker is in the path of a measured current. A new pseudo-inverse calculation would
be required each time a change is made in H (as well as the need to perform and observability
analysis). TSE with NIS is still under development and a solution for these problems is not

included in this thesis.

2.3.2.1 Singular value decomposition

The SVD factorization has the form:
H=USVT (2.36)

where U is a m x m orthogonal matrix whose columns are the eigenvectors of HH”, V is a
n x n orthogonal matrix whose columns are the eigenvectors of H'H, and S is a m x n diagonal
matrix. The non-zero diagonal elements of S are the singular values of H. The singular values

are the square roots of the eigenvalues of H' H.

The pseudo-inverse is:
H' =vstu? (2.37)

where ST always exists and is the transpose of the matrix with diagonal elements equal to the
reciprocals of the singular values and zero for the zero diagonal elements of S. It can be proved
that:

x=H"z (2.38)

is the least-squares solution of (2.10) that has the minimum norm [Anton and Busby, 2003].
This is true for any m x n matrix H. If H has full column rank (rank (H) = n), this case is
possible when the number of measurements (m) is higher than the number of state variables
(n), then the solution obtained by (2.38) is the least-squares solution (also % = (HTH) 'H”z).
In the case when H does not have full column rank, this is always the case when m < n, (HTH)

is not invertible. So there are infinitely many solutions, but the use of the pseudo-inverse does

8The knowledge of one of the branch’s node voltages (by estimation) is also required; more on observability in
chapter 4.
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Figure 2.4 Flowchart for TSE with NIS.

provide the least-squares solution with minimum norm (a unique solution in the row space of

When m = n and rank (H) = n, H is non-singular and H* = H~!. Here, H*z provides the

unique solution of (2.10).

Figure 2.4 presents a simple flowchart for TSE with NIS, the changes against simulation can be

seen by comparing with figure 2.3.
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2.4 CONCLUSION

An overview of PQSE has been presented, and of the all four techniques described only TSE
requires a transient model for the power system elements and the use of waveform discrete values
while all other techniques use phasors with RMS values (in voltage sag estimation the number of
sags can be the variable of interest). All techniques share the use of a measurement equation, for
steady-state estimation this equation is non-linear since power measurements are used. For the
application of TSE, the presence of devices capable of capturing and storing event waveforms at

high sampling rates is required.

A brief description of the NIS method is given; this includes its formulation for simple lumped
and distributed elements, and how to perform electromagnetic transient simulation. The element
formulas do not change for estimation, but the problem formulation and solution process are
different.

A revision of the state of the art for TSE with NIS is included; the method was demonstrated
for three-phase distribution systems with linear, lumped, and time-invariant elements. The
basic formulas for TSE with NIS are presented, including the measurement equation and how
the measurement matrix is generated. TSE’s preferred solution method has been explained as
well; using the pseudo-inverse by SVD it is possible to estimate systems when the number of
measurements is less than the number of state variables, and also provides information about

system observability.



Chapter 3

NUMERICAL OSCILLATIONS, AND NON-LINEAR ELEMENTS

In this chapter noise modelling is presented and its effects are analysed using single-phase circuits.
Then the use of interpolation is introduced as a solution to the problem generated by Gaussian
white noise. Finally modelling of non-linear elements using the piecewise linear method in TSE

is presented.

3.1 NOISE, NUMERICAL OSCILLATIONS, AND CHATTER IN TSE

The problem of numerical oscillations created by measurement’s noise and wrong initial condi-
tions is presented in this section. To start a brief description of noise and how it is simulated
is presented, followed by the analysis of noise application and initial conditions mismatch in a

single-phase circuit with linear and lumped parameter elements.

3.1.1 Noise definition and simulation

In this work Gaussian white noise is used to simulate measurement’s noise. Is Gaussian because
it has a normal or Gaussian probability distribution, and white refers to the ideal that the noise
has uniform power in the entire signal frequency range!. A measurement (signal) with white

noise is represented mathematically as [Ribeiro et al., 2014, p.80]:
Z] =y1+WwWp (3.1)

where z; is the observed discrete time measurement, y; is the measurement without noise and
w1 is the Gaussian white noise. The vectors’ length depends on the time interval (estimation
time) and the sampling rate (time-step). Therefore w; is a random variable defined by mean and

variance values (the variance is 02 where o is the standard deviation). The mean value is zero

'For the mathematical definition of white noise please refer to [Jazwinski, 1970] pp. 81-85.
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for Gaussian white noise. So, to completely define the noise a value for its standard deviation

(and therefore variance) is needed.

For a random variable the following is true (normal white noise complies with the required

conditions):

- Multiplying a random variable by a constant (c) increases the variance by the square of
the constant. o2, = VAR(cw) = c2VAR(w).

Using this property, the standard deviation can be defined as the constant by which the random
vector is multiplied as follows
z1 =y1+ (c-Wq) (3.2)

2

where wy is random with normal distribution, zero mean, and variance one“. Therefore noise

standard deviation is ¢ (its variance is ¢? x 1).

Finally, in this work noise standard deviation (the constant c¢) is defined as a percentage of the
maximum peak value obtained from the corresponding measurement (y;) steady-state (pre-fault)
waveform. For example a measurement pre-fault peak value is 20 (can be Volts or Amperes, see
figure 3.1), and it is decided a noise with standard deviation equal to 2 % pre-fault peak value

is required to test the estimation algorithm. Then the measurement to be used is:

zZy =y1+ [(APEAKpre—fault X Cp) : ‘Xfl] =y1+ [(20 X 002) : ‘X"l] . (33)

This is the approach used for noise in this work; note that other definitions could be used?®.
A problem with (3.2) is the assumption that measurement’s noise is the same over the entire
estimation time. The noise normally changes with the measured signal amplitude, for example
CT’s accuracy is defined for a certain current’s range and it is not the same for fault currents
compared to steady-state currents (this changes with CT type, e.g., protection versus revenue).
Instruments also can introduce gross errors, mainly due to saturation in CTs and CVTs. These
problem are not included in this thesis, the main reason is that they can be solved in the measured
signal conditioning process. There is also the existence of optical type instruments that do not
present saturation and their accuracy does not change significantly with signal range [Ribeiro
et al., 2014, ch.3].

2Using MATLAB (http://www.mathworks.com/products/matlab/) or Octave
(http://www.gnu.org/software/octave/) function randn(N), where N is the size of the random vector to
be generated, a vector with elements that follow a normal distribution with zero mean and variance equal to one
is obtained.

3E.g., in [Farzanehrafat, 2014] a different approach is used, the random vector is multiplied by the signal value
at each discrete point instead of pre-fault peak value [z1(;) = Y1) (1 + cp X wl(t))]. Resulting in a larger noise
variance for the same percentage value (variance value increases with signal peak value) and the problem that if
the signal is zero the noise is also zero.
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Figure 3.1 A simple waveform similar to voltage sag.

3.1.1.1 Signal-to-noise ratio

The signal-to-noise ratio (SNR) is defined as the ratio between signal and noise average powers.
Typical values for SNR in power system measurements are >27 dB (40 dB being the one most
used) [Ribeiro et al., 2014, p.80].

In particular if noise standard deviation is 1 % of pre-fault peak value, the measurements SNR
is approximately 37 dB. This value can be easily obtained using SNR, definition for a sinusoidal

waveform and noise with standard deviation as in (3.3)

ApBAKsignat | 2

2 PREAKsignal

SNR — Psignal _ <Asignal>2 _ ARMSsignal ~ ( V2 > _ 1 x 104 — 5000
Proise Anoise O-Ezoise A%DEAKsignal x 0.012 2

the value in decibels is SNRgp = 10 x log;((SNR) ~ 37 dB. The use of approximation in the
above calculation is due to the fact that the transient deviations from steady-state value in the
signal are being ignored to approximate the RMS value. In most cases the deviation from this
value is small, for example the measurement point is away from the fault or disturbance location.
When the measurement is a voltage and its waveform presents sags/dips then the SNR value
will be smaller than 37 dB (depending on sag’s duration and magnitude). When a measured
current is carrying most of the fault current for a long time, the result is a larger SNR value
because the signal power will become even larger than the noise power during the fault. See
figures 3.1 and 3.2 as examples, the dotted line indicates the steady-state. Individual values for

measurement’s SNR ratios are not presented in this thesis.

After the information presented in this section, the range for noise standard deviation percentage
(of steady-state peak value) to be used is between 0 and 3 %. Larger values for o will result in
SNR smaller than 27 dB. Typically the value of 1 % is used to approximate a SNR of 40 dB.
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Figure 3.2 A simple waveform similar to short-circuit current.
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Figure 3.3 Single-phase circuit with linear and lumped parameter elements.

3.1.2 Numerical oscillations

As indicated in section 2.2, numerical chatter is a common problem in electromagnetic transient
simulation using NIS. In this section the reason for numerical oscillation in TSE with NIS are

investigated for simple elements in the context of a single-phase circuit.

Figure 3.3 presents a circuit used in [Watson, 2010] to introduce the concept of TSE with NIS.
The values for the elements are indicated in the figure, the voltage source magnitude V1 is 220 V
RMS and the current source magnitude 11 is 50 A RMS at 50Hz. Their waveforms are sinusoidal
with zero and 90 degree start angles respectively. The fault is initiated at 20 ms and cleared

5 ms later. The simulation step time is 50 us. All initial conditions are zero.

Using as measurements the currents in L2, C1, and R2, and the voltage at node 2; gives of a
fully observable system. H is a matrix of m x n where m = n (number of measurements equals
the number of state variables) and its inverse exists (rank of H is n). The measurements are
taken from results of two simulation programs, one created for the purpose of this work (based
on Dommel’s method) and the commercial software EMTDC/PSCAD. The figure 3.4 presents

the result for node one voltage when only the “measured” C1’s current is polluted with Gaussian
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Figure 3.4 Voltage at node one for test circuit of figure 3.3, using measurements calculated with Dommel’s
method; C1’s current contains white noise.

white noise, standard deviation equal to 1 % of current steady-state peak value calculated using
the created simulation software or Dommel’s method. The result is acceptable and the maximum
error between the actual and estimated values is less than 0.07 % of the maximum pre-fault value

in this case. Similar results are observed for the voltages at the other nodes.

When the results from EMTDC/PSCAD are used as measurements; using the same measure-
ments as before but calculated using EMTDC/PSCAD and without introducing noise, the es-
timated voltage at node one (and all node voltages, except node two) presents oscillations that
appear to be numerical chatter, see figure 3.5. Numerical chatter are oscillations around the
true value [Watson and Arrillaga, 2003b, p.220] but, looking at the time interval when the fault
is on, the average value of the estimated voltage has an offset, its average value is higher than

the true value.

The oscillations, in the form of numerical chatter, are a common occurrence in EMPT-like
simulations because they are inherent to the trapezoidal rule (see section 2.2). In particular
voltage oscillations are triggered by sudden changes in currents flowing in inductive branches.
The current in L2 can be replaced as measurement by the current in R4 and the estimated

voltages do not present oscillations.

In this case, the reason for the chatter is that the simulated values calculated by EMTDC/PSCAD
are different to the expected values or the values calculated using only the NIS method (no noise
introduced in measurements). The difference is introduced by EMTDC/PSCAD interpolation
sub-routines that are called when voltage and current steps are detected. In figure 3.5 there are

three examples, when the simulation starts, the start of the fault and its removal (in figure 3.5
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Figure 3.5 Voltage at node one for test circuit of figure 3.3, using measurements calculated with
EMTDC/PSCAD; no noise introduced.

the three points are marked by the start of oscillations of different magnitude). The oscillations
are created by the difference in the current measured for the inductor against its expected value

(calculated using NIS).

To determine the offset, in figure 3.5, the initial conditions can be changed. For example, if the
initial voltage of C1 is changed to a different value, the estimated voltages present an offset.
Figure 3.6 is obtained using results from the created NIS simulation software; but the capacitor
initial voltage has change from zero, the correct value, to 100 volts. If the capacitor initial
current is changed the offset is small and the magnitude is equal to the difference from the
real value times the capacitor equivalent resistance. From figure 3.3 the capacitor C1 is located
between nodes three and four, but the offset is carried from node four to node one through R2.
As there are no other measurements that would affect the estimation of the voltage, this can be

inferred from the creation of the measurement matrix.

Figure 3.7 presents the result if the initial current value of L2 is changed by one ampere. The
oscillations magnitude, in the form of numerical chatter, is the result of multiplying the differ-
ence in the initial current condition by the inductance equivalent resistance. In this case the
oscillations are created for the estimated voltage in node two and spread to nodes four and one
through C1 and R2.

If the initial voltage is changed instead of the initial current of L2, numerical chatter of magnitude

equal to the difference between the used voltage and the true voltage occurs.

Incorrect values in the capacitor initial voltage produce an offset equal to the initial voltage error.

If the error is in the initial current the offset is the result of the error multiplied by the capacitor
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Figure 3.6 Voltage at node one for test circuit of figure 3.3, using measurements calculated with Dommel’s
method; no noise introduced but C1’s initial voltage is 100 volts.
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Figure 3.7 Voltage at node one for test circuit of figure 3.3, using measurements calculated with Dommel’s
method; no noise introduced but L2’s initial current is one ampere.

Reg. The error in initial conditions of inductances produces numerical chatter in a similar way.
With reference to figure 3.5, the different magnitude of the oscillation after discontinuities is due
to different initial conditions values than expected by NIS, at time zero; and different previous

step voltage and current than expected by NIS at fault inception and removal.

In [Farzanehrafat and Watson, 2013] the authors recognise the importance of initial conditions
and propose the use of a load-flow algorithm to calculate them to initialise the estimation. In the
case of three-phase systems with lumped parameters, all initial conditions can be set to zero, the

error decays rapidly in time due to the existence of mutual terms in the equivalent admittance
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Figure 3.8 Voltage at node one for test circuit of figure 3.3, using measurements calculated with Dommel’s
method; noise introduced in L2’s current.

matrices [Watson and Farzanehrafat, 2014, Farzanehrafat, 2014].

When applying noise to the measured current in an inductive branch, the noise is magnified
due to the differentiator action of the inductor NIS formulation [Marti and Lin, 1989] [Dommel,
1987]. The oscillations are uneven and of greater magnitude. The results in figure 3.8 were
estimated when white noise with o equal to 0.1 % of the steady-state peak value is added to

L2’s current (calculated using Dommel’s method).

Finally, figure 3.9 presents the estimated voltage at node one using as measurements the results
from the created software, all measurements containing white noise with o equal to 1 % of the
steady-state peak value, but replacing L2’s current by the current in R4. The white noise is
visible and the maximum error is lower than five percent of the steady-state voltage. In the
case of the resistor, the noise is just transferred to the voltage (the capacitor reduces it and the

inductor magnifies it).

Table 3.1 summarises the results obtained in this section, indicating what kind of result is
obtained from a given input using NIS with trapezoidal rule for simple R, L, and C elements.
The presence of noise in a node voltage measurement, will affect the estimation result only for

such node unless it is related (by current measurements) to other nodes.
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Figure 3.9 Voltage at node one for test circuit of figure 3.3, using measurements calculated with Dommel’s
method; noise introduced in all measurements, L.2’s current replaced by R4’s current as measurement.

Table 3.1 Summary, error produced in estimated voltage versus input error for simple elements.

Error type R L C

Wrong initial | No effect Numerical chatter | Constant offset
voltage

Wrong initial cur- | No effect Numerical chatter | Constant offset
rent

White noise in | Noise (similar) Numerical oscilla- | Noise (reduced)
current measure- tions (noise am-

ment plified)

3.2 LINEAR INTERPOLATION

There are several approaches to deal with numerical oscillations in EMTP-like software [Marti
and Lin, 1989] [Kuffel et al., 1995] [Watson and Irwin, 1998] [Gao et al., 2003] [Watson and
Arrillaga, 2003b]. The simplest for simulation is to use a half-step linear interpolation because it
does not require changes in At while keeping the trapezoidal rule [Kuffel et al., 1995, Watson and
Arrillaga, 2003b]. For estimation, backward Euler integration (to replace trapezoidal rule) and
root-matching were applied to three-phase distribution systems [Farzanehrafat, 2014, Watson
and Farzanehrafat, 2013]. In this section the application of half-step interpolation to TSE with
NIS is explained.

It involves a simple calculation of all variables involved in the estimation at half-step (At/2).

As an example, the formula and procedure for a node voltage is as follows:

- For a time T, the estimation is normally performed but the voltage value is not saved.
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- Instead, the voltage for time T — % is calculated using (the saved value for the previous

iteration is needed)
1
Vr- ey = V-an + 5[0) — va-ap) (3.4)

- The value obtained above is used as input for a full iteration to estimate the voltage at
timeT—%—l—AtzT—l—%.

- Using the values at the previous steps, Vip_aty and Vipy Aty the true value at time 7' is
2 2

calculated again using (3.4).

- The interpolated voltage is saved for output printing at time 7' and used in the next

iteration.

An important difference, with respect to simulation, is the need to apply interpolation during
the entire estimation instead of only steps when discontinuities are detected. Figure 3.10 shows
a flowchart for TSE with NIS including interpolation. As can be seen half-step interpolation
adds two extra iterations per sampling point to the estimation solution. First (with n = 0), all
values are interpolated to the previous half-step (¢ =t — (At/2)). Then, a complete estimation
iteration is performed (¢ = ¢ + (At/2) and n = 1). Finally all values are interpolated half-step

back to the original time (¢ = t), only after which the state variables are saved.

3.2.1 Application example

Figure 3.11 shows the estimated voltage at node one (circuit in figure 3.3) after half-step in-
terpolation is implemented to remove numerical chatter (compare with figure 3.5). Here the
offset, a constant difference, between the estimated and calculated values can be seen without
enlargement. However, when a step change happens, the interpolation is not able to follow the

rapid change.

Figure 3.12 presents the result of using half-step interpolation when estimation uses results from
EMTDC/PSCAD as measurements and white noise with o equal to 0.1 % of the steady-state
peak value is added to L2’s current. This is a vast improvement over the result shown in figure
3.8.

Half-step interpolation is a solution for numerical oscillations in TSE. Table 3.2 present the
resulting normalised root mean square error (NRMSE, see appendix A) for the entire estimation
time, for measurements noise with three standard deviation values when TSE employs interpola-

274 order to eliminate numerical oscillations (all measurements

tion, backward Euler, and Gear
with added noise; L2, C1, and R2 currents and node 2 voltage obtained from EMTDC/PSCAD).
Note that exactly the same measurements (numerical values) were used for each noise level, to

allow the direct comparison between estimation methods. The second column presents the error
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Figure 3.10 Flowchart for TSE with NIS using interpolation.

if TSE with NIS using trapezoidal rule is used without interpolation, noise o 0.05 % of pre-fault

peak value.

From table 3.2 it is possible to observe the following: the use of interpolation affects the waveform
of all node voltages (not only the ones with numerical oscillations), see error for node 2; it is
possible to say that interpolation provides similar results to Euler method; the difference between
Euler and interpolation decreases when noise o increases; and finally Gear 2°4 order is the worst

solution of the three presented.

The reason behind results in table 3.2 can be explained by the difference in the formulations.
For example, for an inductor, backward Euler history term only depends on the previous step

inductor current, while Gear’s history term depends not only in the previous step but in the
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Figure 3.11 Voltage at node one for test circuit of figure 3.3, using measurements calculated by
EMTDC/PSCAD; no noise introduced, half-step interpolation applied.
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Figure 3.12 Voltage at node one for test circuit of figure 3.3, using measurements calculated by
EMTDC/PSCAD; noise introduced in L2’s current, half-step interpolation applied.
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Table 3.2 Estimated node voltage NRMSE (%), for different noise o and noise mitigation method.

0.05 % 0.1 % 0.5 %

Node TSE | Interp. | Euler | Gear | Interp. | Euler | Gear | Interp. | Euler | Gear
1 186.79 12.80 | 11.58 | 15.37 15.36 | 14.29 | 21.38 54.55 | 53.99 | 96.72

2 0.04 1.33 | 0.04 | 0.04 1.33 | 0.08 | 0.08 1.38 | 042 | 0.42

3 186.54 7.67 | 5.86 | 11.71 11.44 | 10.22 | 18.91 53.54 | 53.06 | 96.21

4 186.79 12.65 | 11.58 | 15.37 15.24 | 14.29 | 21.38 54.49 | 53.99 | 96.73

inductor current two steps before as well. Trapezoidal rule uses both current and voltage in the
previous step see equation 2.16 (for formulas of all three methods please refer to [Watson and
Arrillaga, 2003b, table 4.1, p.72])*. Another possible use for interpolation is the estimation of
breakers, controllers, protections, and switches exact operation time (if it happened in-between

estimation steps), this could be explored in the future.

3.3 NON-LINEAR ELEMENTS

There are three main techniques to implement non-linear elements in EMTP-like programs [Wat-
son and Arrillaga, 2003b, p.89] [Dommel, 1987, p. 12-1]; current source representation, com-
pensation method, and piecewise linear. EMTP and EMTDC/PSCAD use the piecewise linear
method to represent non-linear resistors like surge arresters. The compensation method is used
to represent transformers saturation (non-linear inductor). And the current source representa-
tion method is no longer used. The above does not mean that the methods are exclusive for a
certain type of element, but indicates the current practice to associate a particular method to an
element type. In this section the application of the piecewise linear and compensation methods
to TSE with NIS is investigated.

3.3.1 Non-linear resistors (piecewise method)

In this method the non-linear characteristic, a curve, is approximated by line segments (see figure
3.13). The voltage versus current relationship of a linear resistor is a straight line in which the
resistance value is given by the slope of the line. To approximate a curve by linear segments,
at least two points other than the origin on the curve are taken. As many points as desired
can be taken; for example EMTDC/PSCAD can take up to 11 points. By using the point-slope
equation

v—=Vi=R(i— 1) (3.5)

4An interesting discussion on transient simulation numerical oscillations causes and accuracy analysis for the
integration methods used here is presented in [Marti and Lin, 1989].
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Figure 3.13 Piecewise linear resistance.

where the resistance value for each line piece is derived by using the end points. For example

for the second line segment in figure 3.13

BN

BT hon

(3.6)
Figure 3.13 only indicates point (I, V}), that defines the end of the first line approximation and
the beginning of the second one. A voltage in series (or a shunt current source, equal to the

voltage divided by the resistance) is necessary to keep the continuity of the pieces.

The series voltage required is indicated as Vixypg in figure 3.13, and is calculated using (3.5)
for the particular linear segment when the current is zero. For example, for the second line in
the figure

VkNEE, = V1 — Raly. (3.7)

Taking the Norton companion used for linear elements (see figure 2.2) for a non-linear resistor,
the history term is
VKNEEN . vy

IHistory = _TN =11 — R—N (38)

where (i1, v1) is the point at which the line of slope Ry begins.

3.3.1.1 Implementation in TSE with NIS

To estimate the voltage of a non-linear resistance, given the branch current as a measurement,
it is necessary to use equation 2.34 to form the measurement matrix. However, the values of
Reg and Iyistory must change accordingly to the branch current magnitude. Therefore H must
change and its pseudo-inverse calculated every time a change between the line pieces is detected.
Note that if the curve is used the matrix and its pseudo-inverse has to be computed at every

step.
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Figure 3.14 Equivalent circuit for an impulse generator, including a surge arrester (non-linear resistor).

3.3.1.2 Application example

In this example a simple equivalent circuit for an impulse generator is used [Thomason, 1934], and
a surge arrester is included and modelled as a non-linear resistor (again, a simple representation);
with the objective to test the implementation of the piecewise method in TSE. The circuit is
presented in figure 3.14; the DC source charges the capacitor at node four to 1000 V then BRK1
is open and a few nanoseconds later BRK2 is closed, triggering an impulse waveform in node
one (if the arrester is removed the impulse would be a 1.51x18.7 us wave with a peak value
of 1150 V). The arrester is defined by the following three points: (0.1, 700); (0.2, 800) and (2,
1800) [(Amperes, Volts)]. No air-gap is considered so the arrester is conducting all the time.

Figure 3.15 presents the estimated voltage at the arrester using its current calculated from
EMTDC/PSCAD with a time step of 50 ns, white noise with standard deviation of 1 % of the
maximum peak value (entire waveform, as for this case steady-state value is zero) is added to
the measured current. Half-step interpolation is applied, although it is not required (the arrester

formulation does not creates numerical oscillations).

Figure 3.15 is obtained by determining the arrester branch resistance based on current, which
is the measurement (including noise). Another possibility is to define the resistance by looking
at branch voltage, in this case there would be a one step delay in applying the change into H.
Changing resistance based on voltage produces a larger difference between actual and estimated

waveforms (larger residual).

Figure 3.16 presents a flowchart to implement the piecewise method in TSE with NIS. The same
flowchart can be used for time-varying elements (e.g., circuit breakers), for this kind of elements
the change detection is an option as well as it is the use of records indicating operation time (at
which the breaker changed status). Non-linear resistors do not affect observability (in principle),
at least there is always a non-zero value for the corresponding H elements (the column could
become linearly dependent). But breakers or switches operation will affect observability as the
open position would correspond to zero values in H. Note, it is possible to use the approach of

a big resistance value for and open breaker but it could produce incorrect observability results.
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Figure 3.15 Voltage at node one for test circuit of figure 3.14, using measurements calculated by
EMTDC/PSCAD.

It should be possible to represent the breaker operation (e.g., arc extinction or closing resistors).

The modelling of time-varying elements in TSE needs to be investigated.

3.3.2 Non-linear inductors

For inductors the non-linear characteristic is defined in terms of flux linkage (\) versus current,

where the flux is related to the voltage as

dX

- (3.9)

Vjk =
Because the simulation (estimation) is done in terms of voltage, (3.9) needs to be converted to
a difference equation and its solution updated at each step (the conversion can be done using
the procedure in section 2.2). The piecewise method explained before can thus be applied to a

non-linear inductor.

3.3.2.1 Compensation method

The compensation method removes the non-linear element from the network and represents
it as a current source, to calculate the value for such source the superposition principle is
used [Watson and Arrillaga, 2003b, pp.89-91]. The element removal and the need to calculate a
Thevenin resistance from the entire network (as seen from the removed element nodes), makes

the application of the compensation method in TSE with NIS impossible. First there is not
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Figure 3.16 Flowchart for TSE with NIS for non-linear and time-varying elements.

direct equivalent resistance value to be used in H. And second (and perhaps more important),
in TSE with NIS the equivalent resistance of all elements in the network is not know. For
electromagnetic transients there is no general model for loads and the modelling complexity for
generators increases if its controllers take action during a transient (transients of long duration).

This makes the calculation of a Thevenin resistance impossible for practical cases.
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3.4 CONCLUSION

In this chapter the use of interpolation to remove numerical oscillations in the estimated volt-
ages is presented. Although interpolation is not the only solution to the problem, it is preferred
because it is general and no major change is required in the solution process or problem formu-

lation. Its application has been shown on a simple circuit.

In the next two chapters, half-step interpolation will be applied to three-phase systems estima-

tion. Its algorithm does not change for multi-phase systems.

The inclusion of non-linear elements in TSE was presented and exemplified on an arrester con-
nected to an impulse generator, the method used is the piecewise linear approximation. The
compensation method is not suitable for TSE with NIS because it requires full system informa-
tion to calculate Thevenin equivalents. More research is needed in this area, the focus should
be on series elements (as transformers) because they provide more information (greater observ-
ability) for the estimation. The use of non-linear models for breakers should be investigated as

well.



Chapter 4

OBSERVABILITY AND VIRTUAL MEASUREMENTS

In this chapter the problem of observability for TSE with NIS is revisited for circuits with linear
and lumped parameters. First a review of the observability concept is given. Then the particular
cases that result in partial system observability (i.e., the system being not fully observable),
encountered in TSE with NIS with lumped parameters are presented. Later on the method for
observability analysis using SVD matrices is reviewed. This is followed by the introduction of
an extended observability analysis method capable to identify unobservable islands. Finally, the

introduction of virtual measurement to improve the system observability is explained.

4.1 OBSERVABILITY ANALYSIS

In this section the observability analysis using SVD matrices is improved, first the existing

method is explained and then an extension capable to identify unobservable islands is introduced.

4.1.1 Partial observability

A system is said to be observable if (2.10) has a unique solution for x. It is possible to have
a partially observable system with unobservable island(s). In general, for PQSE, the observ-
ability depends on the number type and location of measurements as well as network topol-
ogy [Clements, 1990, Arrillaga et al., 2000]. For TSE in particular, a system is observable (or
fully observable) if the measurement matrix (H) has full column rank and is partially observable
if rank (H) < n. The number of singular values is equal to rank (H). In TSE with NIS, in which

the state variables are the node voltages, there are two main causes of partial observability:

- There is no measurement related to a given node. In this case, the column hg, related to
the kth state variable, is a zero vector. Therefore, it is linearly dependent to any other

column vector of H. This case is only possible when m < n.
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- One or more measurements produce linearly dependent column vectors in H. For exam-

ple, there may be one current measurement relating nodes j and k, without any other

measurement (current or voltage) related to those nodes. This situation can be deduced

from (2.34), because what is estimated is the voltage drop in the branch and it does not

produce a good result for the node voltages unless at least one is known, i.e., a reference

is needed.

In the first case, after (2.35) is solved using SVD, the result for zj is zero over the entire

estimation time [Watson, 2010]. In the second case, the use of SVD may not produce a zero-value

solution. Here, the number of unobservable nodes is greater than the difference between the rank
of H and the number of state variables (also called the nullity of H, null (H) = n — rank (H)).

In this case, an unobservable island containing a measurement exists.

4.1.2 Observability analysis using SVD

The non-zero entries in the column vectors of V that correspond to the zero entries in the

diagonal of S (the null space) indicate which state variables are not observable [Watson and

Farzanehrafat, 2014]. For example, if S has the form

and V is
V1,1

V2,1
Vj—1,1
Vj+1,1
Vk—1,1

Vg1

Vk+1,1

Un,1

51

V1,2

V2,2

U.]72
Vj41,2
V—1,2

Vg2

Vk+1,2

Un,1

Sm

U1,m

V2,m

Vj—1,m
U-]7m
Uj+1,m
Vk—1,m
Vk,m

Vk+1,m

Un,m

0
Vj,m+1
0

0

Vk,m+1
0

U-]7n

(4.1)

where v,,1+1 and v,, are the vectors that correspond to the null space and all of its terms are
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Figure 4.1 Killinchy distribution system.

zero except in positions j and k, then the state variables x; and xj are unobservable. Because
the number of unobservable state variables is equal to H nullity, then the state variable is
unobservable due to lack of measurement in both cases. Note that the columns of V that form

the null space of H are not unique [Anton and Busby, 2003].

4.1.2.1 Application example

Figure 4.1 presents the one-line diagram of the Killinchy distribution system in South Can-
terbury, New Zealand [Watson and Farzanehrafat, 2014, Farzanehrafat and Watson, 2013]. Its
parameters are presented in appendix B. The topology is known and is as illustrated in figure
4.1. The parameters of all distribution lines and transformers are known, the loads are simulated
as static, and a Thevenin equivalent is used to represent the connection to the rest of the power

system (its parameters are indicated in figure 4.1).
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Using this information, a single-phase-to-ground fault will be simulated at bus 5 using the
simulation software EMTDC/PSCAD. Several results of this simulation were then used as mea-
surements inputs to the estimation (all available measurements are indicated in figure 4.1). Noise
was introduced into the selected measurements as explained in section 3.1.1, noise had a stan-
dard deviation equal to 1 percent of each measurement’s pre-fault peak value. Note that the
noise for each available measurement was generated only once; therefore, for all the following
cases the available measurements numerical values are the same. This guarantees than only the

number of measurements used differs between cases.

For comparison, the average normalised root mean square error (NRMSE) for each bus is pre-
sented for each case (refer to appendix A for more details regarding the calculation of average
NRMSE). The average NRMSE (over one cycle) was calculated for the pre-fault, fault, and

post-fault estimated waveforms.

For the estimation, only transformers and lines are available as input. The transformers are
modelled as ideal, and lines are represented by PI equivalents. In all cases, NIS with trapezoidal
rule is applied. Because of the numerical oscillation created by the series inductance of the lines
and inductances in transformer model, half-step interpolation is applied throughout the entire
estimation time. The interpolation is applied to the (estimated) voltages as presented in section
3.2.

Case I (base scenario) Based on all measurements noted in figure 4.1!, observability analysis
indicates that buses 4, 13, and 14 are unobservable and that no measurement is associated with
any of these buses. Figure 4.3 present the sparsity pattern for matrices H, S, and V for this
case. It is easy to confirm that the analysis results are correct. By examining figure 4.3(b) it
can be noticed that the system nullity is 9 (9 zero columns in S), and figure 4.3(c) indicates 9
unobservable buses (V null space); therefore, no unobservable bus has a related measurement.
To identify the unobservable buses, it is necessary to consider the node numbers in figure 4.1 for
each bus phase, which are indicated in parentheses below the bus number, and cross reference
them with the row numbers of the non-zero entries in the null space of V. In this case, rows 10,
11, 12, 31, 32, 33, 34, 35, and 36 of V contain non-zero values, corresponding to buses 4 (10, 11,
and 12), 13 (31, 32, and 33), and 14 (34, 35, and 36). Figure 4.2 presents the difference between

the actual and estimated voltages at bus 5.

To further confirm the observability results, the average NRMSE per bus for this case is presented
in the second (pre-fault) and third (fault) columns of table 4.1 on page 59. The post-fault values
are not presented for any case because they are nearly identical to the pre-fault values. In

table 4.1 the coloured-grey cells indicate an unobservable bus, note they also correspond to a

!The problem of measurement unit’s optimal placement is not considered in this thesis. The measurements in
figure 4.1 are placed per author’s discretion and in such a way that permits the testing of the extended observability
analysis.
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Figure 4.2 Difference between the actual and estimated voltages at bus 5 obtained using the measurements
considered in Case I.

larger error. Buses 4, 13, and 14 clearly display large differences between the estimated and
actual waveforms (the actual voltage waveforms are taken directly from the EMTDC/PSCAD
simulation). The estimated voltages associated with buses 4, 13, and 14 are zero over all the

estimation time.
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Figure 4.3 Matrix visualizations obtained using the measurements considered in Case I.

4.1.3 Identification of unobservable islands

When the number of unobservable nodes is greater than the nullity of H, more information is
required to determine the underlying reason for the existence of unobservable state variables (i.e.,
the first or second of the cases presented above). In addition to SVD, it is therefore necessary
to obtain the reduced row-echelon form of H, namely, E?. By inspecting E, it is then possible

to identify unobservable islands.

Now, consider a case in which the measurement locations and type have changed. S still has a

2The reduced row-echelon form is calculated by applying Gaussian reduction to the rows of H.
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form similar to that of (4.1), but V is
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(4.3)

all terms of v,, 1 and v,, are now zero except in positions j, j + 1, and k. In this case, rank (H)

is still m, and 3 unobservable state variables, with null (H) = n — m = 2. Therefore, two of the

three column vectors (h;, hjq, and hy) are linearly dependent among themselves. The reduced

row-echelon form of H in this particular case is

10
0
0 0

=)

0¢j,5)

0 0
—1lgky O
0 0
Oy 1
0 0

Lo |

It is evident that e; is a zero vector. All elements of the vector ej; are zeros except at for

position j. The vectors e;,1 and ey, are linearly dependent because of a non-zero entry outside the

diagonal (a -1 in position j of e, in this case). Therefore, x; is unobservable because there is no

measurement is related to it, and ;41 and z;, each have a related measurement but are linearly

dependent; therefore, these nodes form an unobservable island. This information is important,

because it will serve as an input to the location selection for the virtual measurements.
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It is also possible to have an ill-conditioned measurement matrix. In this case, SVD will reveal a
small singular value in S (small when numerically compared to the other singular values, i.e, the
ratio with the previous singular value is greater than 1 x 102, where the singular values appear
in decreasing order in S). Here, the use of E does not provide any additional information and is
not required because the non-zero entries of the corresponding column vector of V will indicate

the unobservable voltages.

4.1.4 Improved observability analysis procedure

The proposed procedure for observability analysis of TSE in distribution system is as follows:

1. Load H, S and V, all of which are available after SVD factorization is applied to H.
2. Inspect S for zero columns to identify the null space.

3. Inspect the null space of V for non-zero entries; the number of unobservable state-variables

is a.
4. Inspect H for zero column vectors; the number of zero column vectors is b.

5. If a = b, then all unobservable nodes are attributable to a lack of measurements. The

observability analysis is complete.
6. If a # b, then it is necessary to obtain H reduced row-echelon form, namely, E.
7. Inspect E for non-zero terms outside its diagonal.

8. Non-zero terms in the same rows of E indicate unobservable nodes that are linearly de-

pendent among themselves, and thus form an unobservable island.
9. Inspect S for “small” singular values (i.e., s;_1/s; > 1 x 10%).

10. Inspect the V column vectors that correspond to “small” singular values for non-zero

entries.

11. All unobservable nodes and islands have been identified.

4.1.4.1 Application Examples

The following two cases use the same system and measurements as in section 4.1.2.
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Figure 4.4 Matrix visualizations obtained based on the measurements considered in Case II.

Case II (an unobservable island) Here, the same measurements are used as in Case I,
except that the voltage measurement at bus 7 is ignored. The observability analysis indicates
that buses 4, 7, 8, 9, 10, 13, and 14 are not observable and that an unobservable island is created

by buses 7, 8, 9, and 10.

This is an example of the second cause of partial observability (see section 4.1.1). When the
voltage measurement at bus 7 is eliminated, an unobservable island is created, as indicated by
the buses and elements enclosed by dashed lines in figure 4.1. In other words, all column vectors

of H related to the buses in this island form a set that is linearly dependent.

Figure 4.4 presents the sparsity patterns for matrices H, S, V and E in this case. There are 12
zero columns in S [figure 4.4(b)] and 21 rows with non-zero terms in the null-space columns of V
[figure 4.4(d)]. Therefore, matrix E contains non-zeros outside the diagonal, which correspond
to nodes in the unobservable island, as shown in figure 4.4(c). Three columns with non-zero
values outside the diagonal can be identified: numbers 27, 44, and 45. These non-zero values
are located in rows that correspond to diagonal elements in the following columns: 19, 20, 21,
22, 23, 24, 25, 26, and 43. Therefore, the unobservable island consist of buses 7 (19, 20, and 21),
8 (22, 23, and 24), 9 (25, 26, and 27), and 10 (43, 44, and 45) (see figure 4.1).

Case III (two unobservable islands) In this case, the measurements are the same as those
used in Case II, except that the voltage measurement at bus 3 is ignored. An additional unob-

servable island is created that contains buses 3 and 5. The observability analysis indicates that
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Figure 4.5 Matrix visualizations obtained based on measurements considered in Case III.

only buses 1, 2, 6, 11, 12, 15, and 16 are observable. Figure 4.5(c) shows the non-zero elements

of matrix E for this case, indicating two unobservable islands.

4.2 VIRTUAL MEASUREMENTS

In [Schweppe and Wildes, 1970], the concept and types of pseudo-measurements for power
systems steady-state estimation were introduced. A further classification was subsequentely de-
veloped. Currently, virtual measurements a considered perfect pseudo-measurements, specially
for zero power injection at buses without load or generation [Clements, 1990]. For harmonic
state estimation, the harmonic nodal currents were initially used as measurements [Du et al.,
1996]; subsequently, virtual measurements were defined as zero nodal harmonic current at nodes
without harmonic sources connected [Matair et al., 2000]. In [Watson and Farzanehrafat, 2014],
the authors suggest that virtual measurements are not appropriate for TSE. The virtual mea-
surement proposed in this thesis is similar to that used in harmonic state estimation and is based

on the application of Kirchhoff’s current law (KCL) to a single node.

The results from the proposed observability analysis are used to identify candidate nodes at
which virtual measurements can be applied to improve the system observability. Both the
observability analysis and the virtual measurement fail if they are applied to faulted branches
(e.g., a fault occurring in the middle of a distribution line), this remains an unsolved problem

in TSE. The proposed observability analysis correctly identifies unobservable islands, including
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faulted buses, although the proposed virtual measurement is limited to fault-free buses.

As in the case of harmonic state estimation [Du et al., 1996] [Matair et al., 2000], it is possible to
include virtual measurements in TSE with NIS. When the branches are modelled with lumped
parameters, Kirchoff’s current law can be applied to certain nodes. The result is a zero added
in the measurements vector z and a new row to H that is equal to the row corresponding to the
same node voltage in the equivalent conductance matrix (Y in equation 2.31). Suppose that the
virtual measurement is the nth measurement and is applied to node j which connects to nodes
kL, -, q

q
1
hnj = (44&)
—Fk Reff,jp
1
Do = — 4.4
= R (4.4D)
1
hp = — 4.4c
O (4.4c)
1
Png = — . (4.4d)
Reff,jq

The current history term for each branch connected to node j must be computed, and all of

these terms added to find the term Igjsiory for equation 2.35.

In order to select where to apply this kind of virtual measurement, the following must be

observed:

No voltage or current sources are connected to the node (no power injections).

- The models and parameters of all elements/branches connected to the node are known.

- The selected node can be an unobservable node if and only if it is connected to a currently

observable node.

- The selected node is connected to one or more unobservable nodes and at least one ob-

servable node.

- A new observability analysis must be applied to the new measurement matrix to ensure

successful application.

Note that if a virtual measurement is performed at a faulted node and there is no other mea-
surement related to the faulted node, the results will be a poor estimation, even though the
node is observable (during the fault, the fault current is unknown). Using the results of the
observability analysis and the knowledge of the system topology, it is possible to judiciously

apply virtual measurements.
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In Case II, the observability can be improved by applying a virtual measurement at bus 7 or
9; these buses are selected as candidates because they belong to the unobservable island but
are also connected to currently observable nodes. The selection of candidate buses could be

automated by using the branch-node incidence matrix (A in [Branin, 1967a]).

4.2.1 Application examples

The following five cases use the same Killinchy system and measurements as in section 4.1.2.

42.1.1 Case IV (virtual measurement at a faulted bus)

In this case, the same measurements are used as in Case I, with the additional application of
KCL (a virtual measurement) at bus 5. The observability analysis result does not changed,
despite the addition of three new rows to H, because they do not add any new information (bus
5 was already observable). This can be observed in figure 4.6(a), where the virtual measurement
is responsible for the addition of the last three rows in H. Note that the columns with non-zero
values for these three rows already have other non-zero values [see also figure 4.3(a)]. The null

space of V is identical to that in Case I.

The error results are presented in table 4.1. Interestingly, the accuracy for bus 5 is negatively
affected (average NRMSE from 4.0% to 6.2% during the fault), because bus 5 does not satisfy
the conditions required for the application of a virtual measurement because of the lack of
information regarding the branches connected to the bus (namely, load 2 and the fault). However,

the increase in the error is limited by the existence of the current measurement in line 4.

42.1.2 Case V (virtual measurement at a previously observable bus)

Same measurements as in Case | are again considered, now with the addition of a virtual mea-
surement at bus 6. The added measurement does not improve the observability. Figure 4.6(b)
presents matrix H for this case, to which the virtual measurement has again added the last
three rows. Based on this figure, a conclusion identical to that reached in Case IV can be drawn

regarding observability.

The effect of the virtual measurement (correctly applied, although it does not improve observ-
ability) is to reduce the error from 2.5% to 0.9% at bus 6 during the fault (see table 4.1). The
use of virtual measurements to improve accuracy is not recommended. Instead, virtual mea-
surements should be applied to improve the observability. Particularly, must be used to obtain

a solution for unobservable islands that contain measurements.
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Figure 4.6 Matrix H visualizations obtained using the measurements considered in Cases IV, V, and VI.
4.2.1.3 Case VI (virtual measurement eliminating a previously unobservable island)

This case is identical to Case II except for the inclusion of a virtual measurement at bus 7. The
observability analysis indicates that buses 4, 13, and 14 are unobservable. Thus, the previously
unobservable island (buses 7, 8, 9, and 10) has now become observable. Figure 4.6(c) presents
matrix H for this case, in which the virtual measurement has again added the last three rows.
The non-zeros locations in the null space of matrix V are identical to those shown in figure
4.3(c). The errors are indicated in table 4.1, a larger error (during the fault) is obtained for the

buses forming the previously unobservable island when comparing against results for Case 1.

42.1.4 Case VII (virtual measurement resulting in an ill-conditioned matrix)

Here, the measurements are the same as in Case II, with the addition of a virtual measurement
at bus 9. The observability analysis indicates that buses 4, 7, 8, 9, 13, and 14 are not observable
and that buses 7, 8, and 9 form an unobservable island. In this case, the last singular value is
very small: 2.19 x 1075, The corresponding column in V [column 39 in figure 4.7(d)] contains

non-zero entries for buses 7, 8, and 9.

The errors for buses 7, 8, and 9 are very large (see table 4.1). These large errors can be attributed
to the small singular value noted above, which results in an enormous value in the calculation

of the pseudo-inverse of S. This is an example of an ill-conditioned measurement matrix.
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Figure 4.7 Matrix visualizations obtained based on the measurements considered in Case VII.

The cause of the unobservable island is the connection of transformer TXR2 (Dynll, delta
connecting to bus 9) because the measurement is applied to the delta side of the transformer. The
application of a virtual measurement to bus 9 is equivalent to adding real current measurements
between buses 9 and 11, and between buses 9 and 7. Therefore, the voltage difference between
buses 11 and 9 is a function of a current measurement on the delta side of the transformer.
The same problem has been reported in harmonic state estimation [Yu and Watson, 2004].
Additionally, it should be noted that bus 10 is observable and that its related measurement was

performed on the star side (see figure 4.1).

42.1.5 Case VIII (unobservable islands that cannot be eliminated through virtual measurements)

The measurements are the same as those in Case III, with the addition of virtual measurements

at buses 3 and 7. The observability analysis shows that buses 3, 4, 5, 13, and 14 are unobservable.

The virtual measurement at bus 3 fails to make the unobservable island previously containing
buses 3 and 5 observable and instead adds bus 4 to it, as seen in figure 4.8(c). By looking
at figure 4.8(a), it is possible to see that the application of KCL to bus 3 introduces non-
zero values into the columns corresponding to bus 4. Bus 3 is a good candidate for a virtual
measurement, but this measurements does not achieve its goal because the island is associated
with two measurements (including the virtual one) and three buses. Therefore, it is impossible

to eliminate the linear dependence among buses 3, 4, and 5 in this case.



Table 4.1 Average NRMSE values (%), Cases I to VIIL.

Case 1 Case 11 Case 111 Case IV Case V Case VI Case VII Case VIII
Bus | Pre- | Fault | Pre- | Fault | Pre- | Fault | Pre- | Fault | Pre- | Fault | Pre- | Fault Pre- Fault | Pre- | Fault
1 096 | 095 | 096 | 095 | 096 | 095 | 096 | 095 | 096 | 095| 0.96 | 0.95 0.96 095 | 0.96 | 0.95
2 .20 599 | 120 599 | 120 | 599 | 1.20| 599 | 1.20| 599 | 1.20 | 5.99 1.20 599 | 1.20 | 5.99
3 096 | 095 | 096 | 095 | 69.58 | 63.73 | 0.96 | 095 | 096 | 0.95| 0.96 | 0.95 0.96 0.95 | 55.24 | 56.43
4 | 69.60 | 63.85 | 69.60 | 63.85 | 69.60 | 63.85 | 69.60 | 63.85 | 69.60 | 63.85 | 69.60 | 63.85 | 69.60 63.85 | 91.60 | 84.60
5 091 | 4.00| 091 | 4.00 | 69.54 | 63.57 | 0.87| 6.25| 091 | 4.03| 0.91 | 4.00 0.91 4.00 | 55.19 | 59.85
6 088 | 246 | 088 | 246 | 088 | 246 | 0.79| 224 | 091 | 090 | 0.88 | 2.46 0.88 246 | 0.88 | 2.46
7 099 | 098 | 68.74 | 64.19 | 68.74 | 64.19 | 0.99 | 098 | 0.99 | 098 | 0.85 | 2.29 | 927.41 | 6194.69 | 0.85 | 2.29
8 1.02 1.01 | 68.51 | 64.01 | 68.51 | 64.01 1.02 1.01 1.02 1.01 0.94 2.30 | 927.41 | 6194.69 0.94 2.30
9 094 | 095 | 68.72 | 64.18 | 68.72 | 64.18 | 094 | 095 | 094 | 095 | 0.82 | 2.33 | 92741 | 6194.69 | 0.82 | 2.33
10 0.93 | 0.85 | 68.51 | 60.81 | 68.51 | 60.81 | 0.93 | 085 | 093 | 0.85| 0.85| 0.75 0.91 0.90 | 0.85| 0.75
11 093] 092 093 | 092 093] 092 093 | 092 | 093 | 092 | 093 | 0.92 0.93 092 | 093] 0.92
12 096 | 098 | 096 | 098 | 096 | 098 | 096 | 098 | 096 | 0.98 | 0.96 | 0.98 0.96 098 | 0.96 | 0.98
13 | 69.14 | 65.66 | 69.14 | 65.66 | 69.14 | 65.66 | 69.14 | 65.66 | 69.14 | 65.66 | 69.14 | 65.66 | 69.14 65.66 | 69.14 | 65.66
14 | 69.06 | 65.58 | 69.06 | 65.58 | 69.06 | 65.58 | 69.06 | 65.58 | 69.06 | 65.58 | 69.06 | 65.58 | 69.06 65.58 | 69.06 | 65.58
15 096 | 099 | 096 | 099 | 096 | 1.01| 096 | 099 | 096 | 099 | 0.96 | 0.99 0.96 099 | 0.96 | 1.01
16 096 | 099 | 096 | 099 096 | 099 | 096 | 099 | 096 | 0.99 | 0.96 | 0.99 0.96 099 | 0.96 | 0.99
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Figure 4.8 Matrix visualizations obtained using the measurements considered in Case VIII.

4.3 CONCLUSION

In solving the TSE problem using SVD it is possible to have a partially observable system. This
is the case when the rank of H is less than the number of state variables. If the unobservable
voltages are due to lack of measurements, then the obtained estimation for these voltages is
zero over the entire estimation time; but a non-zero can be obtained if a measurement produces
linearly dependent columns in H or the matrix is ill-conditioned. Therefore, it is imperative to
know which state variables can be relied on and which cannot (that are unobservable), hence the
importance of the observability analysis that has been developed and presented. The proposed
observability analysis is capable of identifying not only unobservable buses but unobservable

islands as well.

The use of virtual measurements to improve observability was discussed and demonstrated using
an actual distribution system. Additionally, its limitations were highlighted. When correctly
applied, virtual measurements can improve the observability of a distribution system, eliminating

previously unobservable islands containing measurements.



Chapter 5

DISTRIBUTED PARAMETERS

In this chapter, a model used to represent distributed parameters (electrically long and medium
transmission lines) in TSE with NIS is presented. As introduction, the model used in transients
simulation is presented and then the changes required in the algorithm to apply it in estimation

are discussed. The proposed method accuracy is investigated in different scenarios.

5.1 TRANSMISSION LINE MODELLING WITH NIS

For electromagnetic transient analysis and transient state estimation, short transmission lines
can be represented by PI models (with lumped parameters) where the total inductance and
resistance of the line are in series and the line total capacitance is split in two and located
at each end of the line. Up to now, TSE has been applied to lines using lumped parameter
models [Yu and Watson, 2007, Farzanehrafat and Watson, 2013]. These models do not take into
account the distributed nature (or frequency dependence) of the line’s parameters, and are valid
for electrically short transmission lines (the waves travelling time is smaller than the estimation
time step or measurement sampling time). For a sampling time of 50 us, a line is short if its
length is smaller than 15 km [Watson and Arrillaga, 2003b]!.

For long lines, the simplest model is based on the method of characteristics (or Bergeron’s
method) for the lossless line (see section 2.2.2.1). This provides an exact closed-form solution
for the lossless uniform line. Further modification allows the inclusion of losses in the form of
lumped resistances [Dommel, 1987, Watson and Arrillaga, 2003b].

'In general a line is short if its length is smaller than a quarter of the electromagnetic wave wavelength. Or
d << d¢, where d. = ¢/4f (c is the wave velocity -close to the speed of light for overhead lines- and f its frequency
-the maximum frequency of interest in the analysis-).
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5.1.1 Bergeron model with losses

The Bergeron model with losses is an approximation based on Bergeron’s solution to the lossless
transmission line plus lumped resistances at both ends and the middle of the line (1/4 and 1/2
of the total line resistance respectively). The formulation uses the distributed parameters of the
line at the nominal system frequency (50 or 60 Hz). The equations are [Dommel, 1969, Dommel,
1987, Watson and Arrillaga, 2003b]:

k() = <%> Vi) + Lie-n) (5.1a)

. 1

ki) = <E> Vi) + Te@—r) (5.1b)
where :

Z:ZC+§: %—F% (5.2)

is the equivalent impedance (Z, is the characteristic impedance) and L' and C" are the per unit
length line’s inductance and capacitance, R is the total line resistance, and the history terms

are

(1+a) 1 . (1—a) 1 ,
Lit—ry = [ 5 — 7 Vk(-r) T 0 ki) | T | T3 =7 "Vjtt-r) ~ @ Gjk-r)| (5-3a)

1+a 1 . 1—a 1 .
[( 5 )} [_E “Vjt—7) — @ ij(t—'r):| + [( B )] [_E *Vk(t—7) — Q- ij(t—'r):| (5.3b)

where a = [Z. — (R/4)] / [Z. + (R/4)], and 7 = dV L'C" is the travelling time (see equation 2.24
in page 20). The previous model is valid if R/4 << Z,.

Tyt

Equations 5.1a and 5.1b are valid for a single conductor line. When dealing with multiconductor
lines, modal analysis is required to decouple the equations and obtain the travelling times and
impedance for each mode. One way (used in this work) to obtain the modal transformation
matrices is as follows: first the voltage transformation matrix (T,) is calculated. To accomplish

this, a T is found (using eigenvalue analysis) such that?
T~ (2, Y,0) T = A,

where Z;)h and Y;h are the line’s per unit length phase impedance and admittance, and A is

a diagonal matrix. Then, the imaginary part is discarded, T, = Re(T). Finally, the current

2 Another way to obtain the modal transformation matrices, without the need of eigenvalue analysis, is the use of
the perturbation approach as show in ”Modal analysis of untransposed bilateral three-phase lines, a perturbation
approach” by Brand&o Faria J. A. and Bricefio Mendez J. H. in IEEE Transactions on Power Delivery, Vol 12, No.
1, January 1997, pp. 497-504. Its use produces a T numerically close to the one obtained by eigenvalue analysis;
the other steps in the process remain the same.
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-1

“1T. The use of these transformation matrices allows the

transformation matrix is T; = (T
application of (5.2) and (5.3) to each mode. After solving for each mode, the solution vector is
transformed back to the phase domain. The modal transformation matrices are complex, but
only the real part is used in transient simulation because all variables are real (for a transposed

line Clarke’s matrix is used) [Dommel, 1987].

5.2 INCLUSION OF DISTRIBUTED PARAMETER LINES IN TSE

In chapter 2, the formulas used to form H are presented for lumped parameters; in particular,
if measurement m is the voltage at node k, then the measurement matrix element h,, ;. is equal
to one. If measurement m is the current from node j to node k through a lumped parameter
branch, then hy, , = —hy, ; where hy, ; is equal to the branch equivalent conductance (according
to the NIS formulation).

For a line with distributed parameters, if the measurement m is the current at terminal k (iy;),
then
1

By = = 4
k=7 (5.4)

and Ay, j = 0 [Z is defined in (5.2)]. The reason for this is the topological disconnection between
line terminals in the Bergeron model. The connection between the terminals is modeled by
the history terms (5.3) (i.e., the current sources in Fig. 5.1). This means that at least one
measurement is required on each side of the line. The need for measurements at each line end

has implications for system observability (see section 5.4).

With multiconductor lines, (5.4) becomes a matrix equation. This matrix is obtained after trans-
formation, to the phase domain, of the diagonal matrix containing the equivalent impedances
for each mode. This is

Hig = TiY o T, (5.5)

where Y, is diagonal, and its elements are y,,, ;; = 1/Z;, where [ is the particular mode (there
are the same number of modes as phases). As an example, if the voltages at the ends of a
transmission line are to be estimated on the basis of on current (at one end) and voltage (at the

other end) measurements, equation 2.35 takes the form

[ VAN ] _ [ IHistoryl ] _ [ H11 0 ] [Xl ] (56)
Z2 0 0 Hyy X2

where z; is the vector with current measurements (from bus 1 to 2 for all phases); zy is the
vector of voltage measurements at bus 2; Inisiory 1 is the vector of history terms corresponding to
measurement z1; 0 indicates a null vector or matrix; x; and x, are the voltages (to be estimated)

at bus 1 and 2 respectively; Hy; is obtained from (5.5); and Hyy is an identity matrix.
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Figure 5.1 Bergeron transmission line equivalent circuit.

5.3 ESTIMATION SOLUTION

In general, the number of measurements m is expected to be lower than the number of state
variables n (H is a m x n matrix). To solve the measurement equation (2.35) for x in such a
case, SVD can be used on H to find its pseudo-inverse HT (refer to section 2.3.2.1). A flowchart
for TSE with NIS including elements modelled with distributed parameters is presented in figure
5.2. Note that if a fault occurs inside a transmission line with a current measurement, TSE does
not provide an acceptable estimation because the model for such a line is no longer correct while

the fault is active (same as with lumped parameter models).

5.3.1 Initial condition

The initial condition is important for TSE with NIS; in single-phase circuits, an incorrect value
creates an error that depends on the branch element type (see table 3.1). In the case of three-
phase systems with lumped parameters, the error decays rapidly in time owing to the existence of
mutual terms in the equivalent admittance matrices [Farzanehrafat and Watson, 2013]. This is
not true for the distributed parameter line; an error in the initial condition (the initial condition
being a vector instead of the single value for lumped parameters) creates numerical oscillations

that can grow in time during the estimation.

The initial condition for distributed parameter lines is calculated using the long transmission
line steady-state equation (two-port equation, the equivalent PI model), after estimating the
phasors of available measurements [three possible combinations, (ijx,vk), (vj,ik;), and (i, ik;)]

for each line modelled as distributed?.

3As an example, when the available measurements are (vj,1ik;) the two-port equation takes the form

{ Vi, ]_ { ( 1/ cosh(vd) Z. tanh(yd) ] { Vi, ]

Lk, 1/Z.) tanh(yd) —1/cosh(vd)

ijz

Note that it is a phasor equation in the modal domain, v and Z. are calculated from the line series impedance
and shunt admittance at the nominal frequency for the particular mode I.
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Figure 5.2 Simple flowchart for TSE with NIS with distributed parameters elements.

In this work the phasors are estimated using least squares for the fundamental frequency [Ribeiro
et al., 2014, pp.215-216], which is presented in appendix C. Therefore, measurements must
include at least one cycle previous to the event start. Then the initial condition is calculated
up to N steps before the initial estimation time, where N is the number of time-steps (the time-
step is estimated from the measurements’ time stamp, and is equal to the sampling rate) that

corresponds to the largest time delay (travelling time) obtained from modal analysis.
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5.3.2 Travelling time interpolation

The travelling time will not be (in general) an exact multiple of the estimation step. Interpolation
to the correct travelling time has to be applied*. The interpolation is applied in the modal
domain. The use of interpolation during estimation with long lines adds damping that helps
prevent excessive error build-up that otherwise would be present, which would increase in error
magnitude as the estimation time increases (the error adds up when history terms are calculated).
When interpolation is not used, the noise adds over time, making the estimated waveforms useless
if the estimation time is too long (more than a few cycles). The half-step interpolation formula
(3.4) is modified as follows

V- (1-5)At) = V1—at) + 0[v(r) — v(r_ap)] (5.7)

where T'— (1 — 0) At is the actual modal travelling time (0.0 < § < 1.0), T is an integer number
of time-steps and 0 < [T'— (7/At)] < 1. Equation 5.7 is used on all voltages and currents before

they are included in (5.3) to calculate the history terms.

5.4 OBSERVABILITY

For a review of the existing observability analysis method for TSE with NIS, please refer to
section 4.1.2. In the case of distributed parameter lines, at least two measurements are required
(one at each line end). The use of V is not enough with long lines, because it will indicate a node
with one current measurement related to a distributed parameter line as observable, ignoring
the fact that another measurement is required on the other end as well [which is necessary to
calculate the history terms (5.3)]. A developed subroutine reviews if measurements are included
on both sides of transmission lines, before the first estimation step (see Fig. 5.2), and serves as
observability information. This subroutine identifies the line ends (buses) that are unobservable
owing to lack of measurement at the other end. Therefore, the subroutine finds unobservable
islands that contain measurements. These measurements, without a pair at the other line end,

have to be discarded before the estimation can proceed.

5.5 APPLICATION EXAMPLES

Figure 5.3 presents a one-line diagram of test system 1, known as the 9 bus Anderson-Farmer

test system [Anderson and Farmer, 1996]. This system has seven long transmission lines; the

4This is another difference with simulation, the EMTDC/PSCAD manual recommends to use travelling time
interpolation only when 7/At is small (e.g., if the approximated travelling time is 3 steps when the real value is
2.667 steps). Because, its use adds additional damping at high frequencies (if not used line length is artificially
modified).
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Figure 5.3 Test system 1, the 9 bus Anderson-Farmer.
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Figure 5.4 Test system 2, the reduced lower South Island New Zealand.

length of lines A and C is 600 km, and the rest are 500 km long. All lines are 500 kV (60
Hz) with the same geometry and characteristics (conductor numbers and type as well as ground
resistivity). All system information is presented in [Anderson and Farmer, 1996]. The only
assumptions made here are the transformer connections (indicated in Fig. 4.1, all Ynd11) and

the generator voltages (23 kV).

Test system 2 is the reduced lower South Island New Zealand system, presented in figure 5.4
[Watson and Arrillaga, 2003b]. This system has eight transmission lines (220 kV, 50 Hz, the
last three numbers after the bus name indicate bus voltage in kilovolts). The lengths of lines
Rox-Inv-1 and Rox-Inv-2 are 132.20 km and 129.8 km respectively. The system has a non-linear

load (24 pulse converter) and passive harmonic filters at the Tiwai-033 busbar.
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55.1 Test system 1

To obtain measurements, test system 1 was modelled in EMTDC/PSCAD and DIgSILENT’s
PowerFactory software. The lines were modelled as distributed parameter with frequency depen-
dence (untransposed and transposed), and their parameters were calculated from their geometry.
Each software has its own routine to calculate line parameters, and their results are not identi-
cal; furthermore, PowerFactory uses J. Marti’s model for frequency dependence, while the phase
model (universal line model) is available in EMTDC/PSCAD (for EMTDC/PSCAD simulations,
the phase model was used). A fault lasting 20 ms was simulated at line C, located 1 km from
bus 6. The simulation results were saved (a simulation time-step of 50 ps used), and then noise

was added before its use in estimation (noise is added as explained in section 3.1.1).

For estimation, only line and transformer data is introduced (the location of the fault and its
parameters are unknown). Transformers are modelled as ideal (using NIS with trapezoidal
rule); lines are represented using the Bergeron model with losses. Due to numerical oscillation
created by ideal transformer model inductances, half-step interpolation is applied during the
entire estimation time. The reason behind numerical oscillation in estimation are explained in

chapter 3. The interpolation is applied as presented in section 3.2.

To measure the estimation accuracy, the normalised root mean square error (NRMSE) for each
phase of each bus is calculated (see appendix A). The estimation starts at 0.975 s (the fault
starts at 1 s) and ends at 1.06 s.

5.5.1.1 Noise

On the basis of results from EMTDC/PSCAD, lines were modeled as frequency-dependent and
untransposed. The measurements are as indicated in figure 4.1. The fault is a-g (phase A-to-
ground) at line C. A Monte Carlo simulation (5000 cases) was used to obtain figures 5.5, 5.6, and
5.7. Each Monte Carlo case used a new random vector for each measurement noise. In figure 5.5,
the mean NRMSE is presented for each phase (observable buses only) for different noise standard
deviations. Because lines are untransposed, its geometry is used as input to calculate travelling
times and impedances for estimation. Complex depth approximation of Carson’s ground return
equation and complex penetration depth for conductors’ internal impedance formulas are used
(at 60 Hz) [Martinez-Velasco et al., 2010].

In figure 5.5, the error increases as the noise standard deviation increases. The error due to
the model used is observable when no noise is added; this is the case when the noise standard

deviation is zero. In this particular scenario, Monte Carlo simulation is not required.

The largest error is obtained at buses that are estimated through current measurements (i.e.,



5.5 APPLICATION EXAMPLES

69

10

T
[___IPhase A (0)
[___JPhase A (0.5)
or [ JPhase A (1) M
[ Phase A (2)
[T Phase B (0)
8- n I Phase B (0.5)
[ Phase B (1)
[ Phase B (2) |

7 I Phase C (0) -

I Phase C (0.5)
M I Phase C (1)
6 I Phase C (2)

Mean NRMSE (%)

6
Bus(No.)

Figure 5.5 Mean NRMSE for observable buses after 5000 estimations (untransposed lines); fault is a-g. Number
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Figure 5.6 Probability curves for NRMSE at bus 6 after 5000 estimations; fault is a-g. Noise standard deviation

is 0.5 % of pre-fault peak value.

no direct voltage measurement is available), see buses 2, 3, 6, 7, and 9. The error increases as a
bus gets closer to fault location (and no direct voltage measurement is available); see the results

for buses 6, 7, and 9. This is explained by a larger fault current magnitude at the associated

current measurements, and has been observed previously in TSE with lumped parameters (e.g.

see results in table 4.1).

Figures 5.6 and 5.7 show the change in probability curves for bus 6 between two different noise

standard deviations. Bus 6 was chosen because it presents the largest error for the estimated
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Figure 5.7 Probability curves for NRMSE at bus 6 after 5000 estimations; fault is a-g. Noise standard deviation
is 2 % of pre-fault peak value.

voltage obtained from a transmission line measurement (see Fig. 4.1). The estimated voltages

at buses 2 and 3 are obtained from transformer measurements.

In figure 5.8, the difference between the actual (from simulation) and estimated (no noise added)
voltages is presented in p.u., and the base voltage is 500><\/§/ V3 kV. The difference is small
before the fault. This is due to the initial condition estimation. Then at the fault start (1.0 s),
a spike appears and repeats itself but its magnitude decreases over time (the effect of travelling
time interpolation). Finally at the fault’s end (1.02 s), a new spike appears and again repeats
itself by decreasing in magnitude over time. This explains the smaller change in the mean
NRMSE for bus 6 in figure 5.5, compared to buses 7 and 9 (also estimated from line current

measurements).

5.5.1.2 Fault type

On the basis of the results from EMTDC/PSCAD, lines are modelled as frequency-dependent and
untransposed. The measurements are as indicated in figure 4.1. The noise standard deviation

is 1 % of the pre-fault peak value.

Figure 5.9 was obtained after a Monte Carlo simulation (5000 cases), and the mean NRMSE is
presented for each observable bus phase for three different fault types (all at the same location

and duration, previously indicated for test system 1).

From figure 5.9, it is clear that the phases with largest error are the ones located closer to the

fault and estimated from current measurements (see bus 6). They are the phases carrying the
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Figure 5.8 Voltage difference at bus 6, between actual (EMTDC/PSCAD result) and estimated (without noise)
voltages. Fault is a-g.
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Figure 5.9 Mean NRMSE per bus after 5000 estimations (untransposed lines); noise standard deviation 1 % of
pre-fault peak value. Fault type is indicated.

largest fault currents, such as line B’s phase A in the a-g fault.

5.5.1.3 Fault type (transposed lines)

Using results obtained from PowerFactory, lines were modelled as frequency-dependent and
transposed. The measurements are as indicated in figure 4.1. The noise standard deviation for

each measurement is 1 % of the pre-fault peak value. Monte Carlo simulation (1000 cases) was
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Figure 5.10 Mean NRMSE per bus after 1000 estimations (transposed lines); noise standard deviation 1 % of
pre-fault peak value. Fault type is indicated.

used to obtain figure 5.10. In figure 5.10, the mean NRMSE is presented for each observable
bus phase of three different fault scenarios. Because the lines are transposed, zero and the
positive sequence impedance and admittance (obtained from PowerFactory) are used to calculate

travelling times and impedances for estimation.

The same conclusions as from figure 5.9 can be obtained from figure 5.10. Again, buses closer
to the fault and estimated by current measurements present the largest error, and again faulted

phases present the largest error, per fault type.

5.5.1.4 Voltage sag

On the basis of the measurements obtained from PowerFactory, the voltage sags on a per-phase
basis had been calculated. Table 5.1 shows the difference in residual voltage and sag duration for
voltage sags detected during an a-g fault. The differences are calculated after the RMS voltage
is obtained from actual (results from simulation) and estimated (estimated after measurements
with 1 % of pre-fault peak value standard deviation noise) waveforms®. The base voltage is the
nominal RMS line-to-ground voltage. A sag is defined as a reduction in RMS voltage of more

than 0.1 p.u. that lasts at leasts half cycle (the nominal frequency). NA in the table means no

®The true RMS value is calculated over one cycle (fundamental frequency) as |V| = \/ (ZN [v(n)]2) /N,

n=1
the value is calculated from the first available cycle in estimation and updated with every new step. The values
in table 5.1 are calculated from the difference in the minimum values obtained from the entire waveforms, i.e.,
the sag residual voltage difference is |V|min — |V|mm where |V|mm is the minimum RMS value obtained from
the estimated waveform. The sag duration difference is t; — t2 where t2 is the sag duration obtained form the
estimated RMS waveform.
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Figure 5.11 RMS voltage at bus 6.

Table 5.1 Difference in residual voltage and sag duration for voltage sags present during the a-g fault.

Residual voltage (p.u.) Duration (ms)
Bus A B C A B C

2 0.0189 NA -0.0111 | 0.45 | NA | 0.80
6 -0.1253 | -0.0226 | 0.01582 | 0.80 | 7.15 | -9.91
-0.0063 NA NA 1.05 | NA | NA

sag is detected. Further, bus 6 phase C of the actual waveform does not present a sag (voltage

is less than 0.9 p.u. for 5 ms), see phase C in figure 5.11.

The results in table 5.1 show how good the estimated voltage waveforms are. These results again

highlight the largest estimation error in the bus closest to the fault (bus 6).

5.5.2 Test system 2

Test system 2 (figure 5.4) was modelled in PowerFactory. A single-phase-to-ground fault at bus
Roxburgh-011 was simulated (a-g lasting 30 ms, and clear after disconnection of bus Roxburgh-
011). Lines are untransposed and simulated with frequency dependence (simulation time-step
50 us).

For the following estimations, the same measurements are used, all with 1 % of the pre-fault peak

value standard deviation noise (noise was generated only once). Only lines and transformers were
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Figure 5.12 Difference in NRMSE at bus Roxburgh-220 with parameters variation.

included as input. The fault location and its parameters are unknown. The lines impedance
and admittance matrices (obtained from PowerFactory) are used to calculate travelling times
and equivalent impedances in estimation. The estimation starts at 0.475 s (fault starts at 0.5 s)
and ends at 0.6 s.

5.5.2.1 Line parameters

Estimation was conducted using voltage measurement at Invercargill-220 and current at line
Rox-Inv-1 (see figure 5.4). Only buses Roxburgh-220 and Invercargill-220 are observable. Figure
5.12 was obtained by changing the resistance, reactance, and susceptance magnitudes in the line

impedance and admittance matrices.

The estimation of line voltages using the Bergeron model is not severely affected by small
changes in line resistance; see figure 5.12 (a). It is, however, affected by deviations in reactance
and susceptance values; see figures 5.12 (b) and (c). This is to be expected as the resistance
value is smaller than the characteristic impedance, and this impedance and the travelling times

are calculated from the inductance and capacitance (reactance and susceptance).
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Figure 5.13 Observable buses NRMSE; noise standard deviation 1 % of the pre-fault peak value. (i) Cur-
rent measurements at line Rox-Inv-2. (ii) Current measurement at line Rox-Inv-1 plus voltage measurement at
Invercargill-220. (iii) Current measurements at line Rox-Inv-2 plus voltage measurement at Invercargill-220. (iv)
All four measurements.

5.5.2.2 Measurements

Accuracy is investigated, using different combinations of measurements, for Roxburgh-220 and
Invercargill-220 voltage estimation. The available measurements are the voltage at Invercargill-

220, and the currents at lines Rox-Inv-1 and Rox-Inv-2 (see figure 5.4).

From the three possible measurement combinations to estimate distributed parameter line volt-
ages (see section 5.3), it is possible to further subsume them into two cases: currents only and
current plus voltage. Figure 5.13 presents these two cases (i and ii) and two more cases where
now the number of measurements is greater than the number of observable buses (iii and iv).
The worst possible scenario to estimate, long transmission line voltages using Bergeron’s model,
is when the only available measurements are the currents at both ends of the line. The best esti-
mation is obtained when the number of measurements is greater than the number of observable

buses.

5.5.2.3 Harmonics

Estimation was performed using voltage measurement at Invercargill-220 and current measure-
ment at line Rox-Inv-1 (see figure 5.4). Only buses Roxbourgh-220 and Invercargill-220 are
observable. The results are used to investigate if it is possible to estimate harmonic content
from the estimated voltage waveforms. Figures 5.14 and 5.15 are presented. Both were ob-

tained after FFT (Fast Fourier Transform) was separately applied to 1 cycle of the actual and
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Figure 5.14 Frequency spectrum magnitude difference, between actual and estimated voltages at bus
Invercargill-220 (pre-fault).
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Figure 5.15 Frequency spectrum magnitude difference, between actual and estimated voltages at bus Roxburgh-
220 (pre-fault).

estimated waveforms (pre-fault period), and then the resulting magnitudes subtracted. The

magnitude difference is in p.u., the base is the maximum magnitude in the actual case.

Figure 5.14 presents the frequency domain magnitude difference of each phase voltage at bus
Invercargill-220, while figure 5.15 presents the same difference for Roxburgh-220. It is possible to
conclude that the first few harmonics magnitudes (including the fundamental) can be extracted
from both buses. However the difference increases with the frequency, in particular for Roxburgh-

220 (no direct voltage measurement). Similar results can be obtained for the fault and post-fault
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Table 5.2 Harmonic magnitude error and angle difference at Invercargill-220 (pre-fault).

Magnitude (%) Angle (Jrad|)
Harmonic | A B C A B C
1st 0.37 | 0.09 | 0.36 | 0.0010 | 0.0021 | 0.0025
21st 1.81 | 2.52 | 3.49 | 0.0253 | 0.0301 | 0.0348
23rd 1.42 | 7.06 | 4.42 | 0.0173 | 0.1015 | 0.0018

Table 5.3 Harmonic magnitude error and angle difference at Roxburgh-220 (pre-fault).

Magnitude (%) Angle (|rad|)
Harmonic | A B C A B C
1st 6.74 | 0.17 | 3.48 | 0.0326 | 0.0124 | 0.0210
21st 0.50 | 8.96 | 10.66 | 0.1053 | 0.0607 | 0.0053
23rd 2971 19.68 | 6.44 | 0.0712 | 0.0881 | 0.0852

Table 5.4 Harmonic magnitude error and angle difference at Invercargill-220 (post-fault).

Magnitude (%) Angle (|rad])
Harmonic | A B C A B C
1st 0.37 | 0.05 | 0.41 | 0.0016 | 0.0004 | 0.0021
21st 4.37 | 0.01 | 0.91 | 0.0551 | 0.0228 | 0.0037
23rd 4.28 | 9.54 | 5.78 | 0.0535 | 0.0340 | 0.0105

periods.

Tables 5.2, 5.3, 5.4, and 5.5 show the magnitude error and angular difference between harmonic
magnitudes and phase angles for harmonics present at observable buses (the harmonics were
estimated using least squares up to the 30th harmonic order [Ribeiro et al., 2014, pp.215-216],
see appendix C). The fundamental can be extracted from both buses. However, the differ-
ences increase with higher harmonic frequencies, especially for Roxburgh-220 (no direct voltage
measurement). Therefore, the extracted harmonic magnitudes cannot be trusted for higher har-
monics. Similar results can be obtained for the fault period. The reason for this is the lack of

frequency dependence in the model used in this work for transmission line voltages estimation.

“The magnitude error per harmonic is |(|Vi| — [Vie])/|Vi|| X 100, while the phase angle difference is |65 — 0/;
where |V;| and dj are the harmonic magnitudes and angles obtained from estimated waveforms.
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Table 5.5 Harmonic magnitude error and angle difference at Roxburgh-220 (post-fault).

Magnitude (%) Angle (Jrad|)
Harmonic | A B C A B C
1st 0.61 | 0.95 | 4.42 | 0.0032 | 0.0199 | 0.0145
21st 9.1 | 5.8 | 0.39 | 0.2732 | 0.1499 | 0.0515
23rd 12.8 1 29.8 | 42.1 | 0.2008 | 0.2482 | 0.1101

5.6 CONCLUSION

To estimate transient voltage waveforms in long transmission lines, the line parameters’ dis-
tributed nature has to be taken into account. This chapter has presented the first TSE to
incorporate a transmission line model with distributed parameters. It is based on the classical
Bergeron model with losses that is used for electromagnetic transient simulation. The equations
required to extend the TSE algorithm were presented and discussed, as well as the way in which

the addition affects the TSE initial condition requirements and observability analysis.

The TSE algorithm was tested on two transmission systems; both systems include transmission
lines modelled with distributed parameters and frequency dependence. The presented results
indicate that TSE performs well, despite the lack of frequency dependence modelling in the
estimation. The obtained estimated voltages are a good approximation to the actual voltages,
as indicated by the calculated error and the application of estimated waveforms in voltage sag and
harmonic content calculations. In particular it has been shown that the fundamental harmonic
voltage magnitude difference between the actual and estimated values is small. The magnitude
error increases with harmonic order. The phase angle error is negligible for the fundamental and
harmonics. A future enhancement for TSE is the inclusion of a frequency-dependent transmission

line model.



Chapter 6

CONCLUSION

In this chapter conclusions are presented and future work on TSE with NIS is recommended.

6.1 CONCLUSION

The inclusion of distributed parameters models was demonstrated, for TSE with NIS, using
the Bergeron model with losses. This improvement in TSE with NIS allows its application to
transmission systems. The error in the estimation results was presented for two transmission

test systems, being acceptable in presence of noise, unbalance and harmonics.

The application of TSE with NIS to non-linear elements was tested on a simple circuit with a
surge arrester. The piecewise linear method is best suited, that the compensation method, for
its implementation in TSE with NIS.

The possibility to have an unobservable island containing measurements, in TSE with NIS
for distribution systems (lumped parameters), was demonstrated. An improved observability
analysis capable to identify the nodes forming the unobservable island was proposed and tested.
And, a virtual measurement was introduced in TSE as a possible solution for unobservable
islands, its application was investigated and under given conditions the unobservable island

becomes observable.

Interpolation has been applied in TSE with NIS to eliminate numerical oscillations (half-step
interpolation), in estimation for single-phase and three-phase (with lumped and distributed
parameters) circuits. And, linear interpolation was used to better approximate waves travelling
times in transmission lines resulting in damping added to the model against numerical oscillation

created by noise build-up.

In TSE with NIS the most important elements to be measured (and modelled in the estimation)
are series elements rather than shunt elements. The reason for this is in the estimation model

itself. The series elements (transmission lines, transformers, circuit breakers) have a large impact
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since thorough its modelling, for current measurements, information spreads between nodes.

Shunt elements main effect is on the node (singular) they are connected to.

Transient state estimation is still under development; this work advanced its state of the art but
more work is required before its implementation to identify failure causes using field measure-

ments.

6.2 FUTURE WORK

Future work required to achieve the goal of a transient state estimation that works in any system
with any failure, can be classified in three categories: transient model, estimation model and

implementation.

The transient model category refers to the need to accurately represent the elements during a

transient. Based on the previous work the following is recommended:

- Include a frequency-dependent model for transmission lines. The results obtained in chap-
ter 5 are acceptable but it is clear that part of the error is created by the model, especially
in buses estimated by current closer to a fault. For simulation, it is accepted that it is

better to include the frequency dependence in transmission lines.

- Improve transformer model. So far, transformers had been represented considering only
leakage reactance. Copper loses (series resistance) and saturation (non-linear reactance)
need to be included and tested. It is also recommended to try other models (e.g. UTC

model) to represent transformers.

- Include time-varying elements. The need to model circuit breaker operations is extremely

important for TSE, a brief discussion on the topic was presented in section 3.3.

Keep in mind that with more advanced models there is also the need for more information,
which comes with a higher chance of error in the model parameter and the difficulty to obtain

such parameters.

The estimation model refers to problems in the estimation solution. It can be improved in the

following ways:

- To implement a procedure to recognise faulted elements. The estimation fails if a current
measured element contains a fault (e.g. fault located at the middle of a transmission line).
A procedure is needed to recognise such condition during the estimation and perhaps also
locate the fault (if at all possible).
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- To improve the observability analysis. There is the need to detect changes in the system
and its effect on observability, contrary to other PQSE techniques TSE is not applied to a
instant in time picture of the system. The system topology changes during the transient

and this can affect observability, subject to measurements location and type.

- To explore the application of virtual measurement with distributed parameter elements.
The work done on virtual measurement in this thesis is applicable to a node with lumped

parameters elements connected to it.

The utilization of tools common to PQSE techniques, to be applied in the items above, need to be
investigated for TSE with NIS. Tools like: topology processor, bad data detection, measurement
equipment optimal placement, and parameter and structural error processing. Most of these
tools are limited to situations where the number of measurements is higher than the number of

state variables.

The implementation refer to problems that can happen when the estimation is used with field

measurements. Some examples are:

- Unsynchronized measurements. It is possible to have field instruments recording at differ-

ent sampling rates. TSE with NIS needs to be modified to accommodate such condition.

- Incorrect time stamp. The effect of error in the time stamp (or lack of it) needs to be

investigated and solutions need to be proposed.

- Incorrect measurement assignment. If a measurement is incorrectly assigned (to an el-
ement) the parameters used on the measurement matrix will not correspond to it. The
result is an erroneous estimation. A solution to review the correct measurement assignment

is needed. Keep in mind that direction is as important as location for currents.

So far, the utilization of field measurements has not been reported for TSE. This is an important

area of opportunity.






Appendix A

NORMALISED ROOT MEAN SQUARE ERROR

The normalised root mean square error (NRMSE) for the voltage of phase A of bus k is

N N B an )2
NRMSE,, 4 = \/Zzzl(vk,A(ll\)I %A(z)) /VLNp (A1)

where v and ¢ are the true (obtained from the simulation and before noise addition) and esti-
mated voltages, respectively; N is the number of time steps used to calculate the error (could be
one cycle or the entire estimation time); and Vi, is the nominal bus voltage (peak value line

to neutral).

Thus, the average NRMSE value for bus k is

NRMSE; s + NRMSEj, 5 + NRMSE;, ¢
: .

NRMSE), = (A.2)

Equation A.1 is an approximation of the estimation error standard deviation, divided by a base

value.
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KILLINCHY DISTRIBUTION SYSTEM DATA

The Killinchy distribution system in South Canterbury, New Zealand. Its one-line diagram is

presented in figure 4.1, the element parameters are in tables B.1, B.2, and B.3.

Table B.1 lLoad data.
Load | Bus P, kW Q, kVAr

1 4 38.801138 9.724482
2 5 23.280683 5.834689
3 10 | 460.763516 | 115.478222
4 11 | 567.466646 | 142.220548
5

6

7

13 | 58.201707 | 14.586723
14 | 77.602276 | 19.448964
15 11.640341 2.917345

Table B.2 Transformer data.

Transformer Ratio Configuration X. p.u.
HV/LV (V) (Base 100 MVA)

TXR1 11000/400 Dynl1 0.05

TXR2 11000/400 Dynl1 0.05
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Table B.3 Line data.

Line | Length, km | RT, Q/km | X1T, Q/km XcT, Oxkm R?, Q/km | X1V, Q/km Xc?, Qxkm

1 1.606 0.4803 0.4452 1.5113999 x10° 0.628 1.787 3.7828285x 10°
2 1.274 0.986 1.1366 7.5569995 x 10% 2.4632 6.2799 1.8914142x10°
3 0.529 2.464 0.81 1.5113999x 10° 2.76 3.478 3.78285x 10°

4 0.87 0.2733 0.3532 3.0227998 x 10° 0.421 1.695 7.5656570% 10°
5 1.471 0.5466 0.7064 1.5113999x10° 0.842 3.39 3.7828285x 10°
6 0.107 2.734 0.824 3.0227998 x 10° 3.03 3.492 7.5656570x10°
7 0.123 3.42 0.652 6.7336959% 103 4.436 2.39 7.7016667x10°
8 0.319 4.2566 1.0321 3.0227998 x 10° 5.5432 5.1537 7.565657 x 10°
9 1.07 0.5466 0.7064 1.5113999x 10° 0.842 3.39 3.7828285x 10°
10 0.406 0.446 0.378 3.0227998 x 10° 0.594 1.711 7.5656570% 10°
11 0.954 1.9006 1.0914 1.034355939 % 10° 2.344 5.109 2.5368189x10°
12 0.079 0.5466 0.7064 1.5114386x10° 0.842 3.39 3.7828285x 10°
13 0.083 0.5466 0.7064 1.5114386x10° 0.842 3.39 3.7828285x 10°
14 5.149 0.986 0.1366 5.2911353x 103 2.4632 6.2799 2.5218857x10°




Appendix C

PHASOR ESTIMATION BY LEAST-SQUARES

Consider any signal v(t) defined as

K
v(t) = AgeH ™) 4 Z Ay, cos(kwt + Of) (C.1)
k=1

expanding the cosine after transformation to the discrete-time (¢, used in this thesis, is replaced

by n)

K K
Viny = Ao — A1n + Z By, sin(kQn) + Z C cos(kQn) (C.2)
k=1 k=1

where 0 = wAt and w is the system nominal frequency (50 or 60 Hz)!.

To completely define the phasors for all K harmonics and the DC decaying component, it is
necessary to find the values for all the constants in (C.2). To do so the number of samples (or
measurements is N, and the window time is NAt) taken from the waveform over one cycle must

be greater than 2K + 2. The estimation problem to be solved is
z=Hx+w (C.3)
where the state variables are

X:[A() Al Bl Cl BK CK]T

!The assumption that the fundamental frequency is equal to the system nominal frequency is one limitation
of phasor estimation by least-squares. The reality is that the fundamental will be close to, but not equal to, the
nominal frequency.
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APPENDIX C

the measurement matrix is

1 0 0 1
1 1 sin(2) cos(2)

i N —2 sin((N —2)Q) cos((N —2)Q2)
| 1 N -1 sin((IN-1)Q2) cos((N —1)Q)

Because N > 2K + 2, (HTH)_1 exists.

PHASOR ESTIMATION BY LEAST-SQUARES

sin(K Q)

cos(KQ)

sin(K (N — 2)Q)
sin(K (N —1)Q)

cos(K (N —2)Q)
cos(K(N —1

In the particular case when only the fundamental phasor is of interest, H must only contain

the third and fourth columns of those shown above (and at least two samples per period are

required). Finally, to compensate for the phase angle rotation, the estimated phasor (known

from the real and imaginary part B and C, respectively) is multiplied by the phasor

o—i90-1)

where [ is the number of time steps difference between the estimation window first step and an

arbitrary reference (usually the zero time for all waveforms).



Appendix D

LIST OF PUBLICATIONS

Journal papers The following is a list of papers published /under review in journals during

the work course of this thesis
1 A. Castellanos-Escamilla and N.R. Watson, Observability and virtual measurements for
transient state estimation of distribution networks, under review.

2 A. Castellanos-Escamilla and N.R. Watson, Transient state estimator for smart transmis-

ston grids, under review.
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