
Triangulation: A new algorithm for Inverse Kinematics
R. Müller-Cajar1, R. Mukundan1,

1University of Canterbury, Dept. Computer Science & Software Engineering.
Email: rdc32@student.canterbury.ac.nz

Abstract
Inverse Kinematics is used in computer graphics and robotics to control the posture of an articulated
body. We introduce a new method utilising the law of cosines, which quickly determines the joint
angles of a kinematic chain when given a target. Our method incurs computational and rotational cost
than Cyclic-Coordinate Descent (CCD), yet is also guaranteed to find a solution if one is available.
Additionally it moves the upper joints of any kinematic chain first, thus ensuring a closer simulation
of natural movement than CCD, which tends to overemphasise the movement of joints closer to the
end-effector of the kinematic chain.

Keywords: Inverse Kinematics, Cyclic-Coordinate Descent, Triangulation

1 Introduction

It is trivial to determine the final position of a
kinematic chain when given a set of joint angles.
The reverse, finding a set of joint angles given a
target, is non-trivial, as there are often multiple
and sometimes no solutions. Yet we need to solve
this inverse kinematics problem in animation and
robotics, where a character composed of several
kinematic chains needs to interact with a target of
which only the Cartesian coordinates are known.

Currently many algorithms that solve the inverse
kinematics problem use numerical and iterative
procedures [1, 2, 3, 4], as these avoid the problem
of finding a closed-form solution. Another common
method is to construct a Jacobian matrix and
then invert or transpose it [5]. This method tends
to be computationally expensive, especially for
large matrices.

We propose a new algorithm to find a solution to
the inverse kinematics problem. This algorithm,
termed triangulation, uses the cosine rule to cal-
culate each joint angle starting at the root of the
kinematic chain. It is guaranteed to find a solution
when used with unconstrained joints and the target
is in range. This method is comparable to Cyclic-
Coordinate Descent (CCD), as each joint attempts
to find its best orientation without considering the
orientation of any preceding joints.

After reviewing related work on inverse kinematics,
we will describe our algorithm in detail. Then we
will report on a experiment comparing triangula-
tion to CCD which commonly used in animation
today. Later we will go on to discuss further re-
search on this algorithm in future work.

2 Background

2.1 Inverse Kinematics

The study of inverse kinematics has risen with
robotics. Thus it is not surprising that some
of the first solutions for the inverse kinematics
problem were restricted to certain types of robot
geometries [4]. Pieper presented closed-form
inverse kinematics solutions for two different
classes of robot geometries [6], but did not do
so for a general kinematic chain. Gupta and
Kazerounian presented a numerical solution using
the Newton-Raphson method, which could be
used as a general purpose inverse kinematics
solution [1]. Although this method is guaranteed
to converge on a solution if one exists, it requires
several iterations to do so.

Methods requiring the Jacobian Inverse are often
computationally expensive and can be numerically
unstable [7], as they change all the joint variables
simultaneously on a path that will move the end-
effector towards the target. Also the Jacobian Ma-
trix can be singular, thus making it impossible to
find an inverse for the solution. Canutescu and
Dunbrack review the use of Jacobian Matrices and
consider them to have too many drawbacks to use
in protein structure prediction [8]. Critically they
find that “placing constraints on some degrees of
freedom may produce unpredictable results.”

The use of CCD to solve the inverse kinematics
problem was first proposed by Wang and Chen
[9]. They found it to be numerically stable as well
as efficient. Fedor in his comparison of different
algorithms found it to be a good compromise be-
tween speed and accuracy [5]. Although it can take

Figure 1: Using CCD: Each joint pc is rotated so
that θ = 0
many iterations to reach the target, each iteration
is computationally cheap, which makes it possible
to use this method in real time applications.

For the above reasons we have chosen to compare
our method to CCD, as both methods are guar-
anteed to reach or converge on the target, and
are computationally fast enough to be used in real
time.

2.2 Cyclic Coordinate Descent (CCD)

CCD is an iterative method that moves joints in
opposite order to their importance. Outer joints
are turned first, which makes the movement seem
unnatural, especially when this method is used for
the animation of humanoid models.

As shown in figure 1, the algorithm measures the
difference between a joint’s position pc and the
end-effectors position pe, and a joints position pc

and the targets position pt. It then calculates ei-
ther a rotation or quaternion to reduce this differ-
ence to zero. It does this for each joint, iterating
from the end-effector to the immobile joint at the
root of the kinematic chain. As the joints close to
the end-effector rotate more than the joints close
to the immobile joint, the kinematic chain will
appear to roll in on itself. The use of weights
and springs can mitigate this effect, but especially
chains with many joints will tend to have some
unnatural arrangement of angles upon reaching the
target (shown in figure 2).

If we use rotation to implement the CCD, we solve
the following equations for each joint:

cos(θ) =
pe − pc

||pe − pc||
• pt − pc

||pt − pc||
(1)

−→r =
pe − pc

||pe − pc||
× pt − pc

||pt − pc||
(2)

Where pt is the target point, pe is the end-effector,
and pc is the current joint that we are rotating (see
figure 1). The vector −→r is the axis of rotation.
Thus each joint pc is rotated by θ about −→r .

Figure 2: Unnatural joint angles exhibited by CCD
after the first (top) and last (bottom) iteration.

To reach the target we iterate through the chain
repeatedly, solving equations 1 and 2 for each joint.
This will move the end of the kinematic chain to-
wards the target.

It is worth noting that CCD does not attempt to
find the optimal solution. We can define the cost C
of rotating the kinematic chain using the sum of all
the required rotations. This produces equation 3:

C =
n∑

i=1

θi (3)

As CCD rotates each joint, often producing a zig-
zag pattern as can be seen in figure 2, this cost will
be far from the optimum.

2.3 Law of Cosines

This is a statement about any general triangle
which relates the lengths of its sides to the cosines
of its angles. The mathematical formula is:

b2 = a2 + c2 − 2ac cosδb (4)

Where a,b and c are the three sides of a triangle
and δb is the angle opposite side b. By using the
dot product of two normalised vectors to find the
angle between them we can adapt this formula to
find the angles required to complete a triangle in
3-D space.

3 Triangulation

3.1 Mathematical Background

Our method uses the properties of triangles to ac-
curately calculate the angles required to move the
kinematic chain towards the target. For this al-
gorithm we rearrange the law of cosines to the
formula:

δb = cos−1(
−(b2 − a2 − c2)

2ac
) (5)

Where a is the length of the joint we are currently
moving, b is the length of the remaining chain and c
is the distance from the target to the current joint.

Figure 3: Triangular Method: For each joint a we
find the angle so that we can form 4abc

This will give us the angle that the vector −→a needs
in respect to the vector −→c . To then calculate the
angle θ as shown in figure 3, we need to only solve
the equation:

θ = cos−1(−→a • −→c)− δb (6)

We rotate each joint by θ calculated in equation 6,
about the axis of rotation −→r defined by:

−→r = (−→a ×−→c) (7)

In the ideal case this method will rotate only the
first two joints, leaving the remainder straight.
This is an attempt to keep the cost function shown
in equation 3 at a minimum. There are several
special cases that need to be dealt with separately,
where the above equations cannot hold.

3.1.1 Undefined Axis of Rotation

Whenever the target vector (−→c) is parallel to the
current joint direction (−→a), then the axis of rota-
tion (−→r) will be undefined. In this case an arbi-
trary −→r needs to be chosen. This can either be the
same axis as used by the last joint, or a constant
axis such as the vertical y-axis.

3.1.2 Full triangle has been formed

This occurs as soon as as equations 6 and 7 were
solved successfully. The method has just formed a
triangle with the sides of length a, b and c. Thus
we simply rotate the remaining joints so that their
direction, −→a , is equal to the target vector −→c .

Figure 4: Triangular Method: If the target is too
close to form 4abc, we shorten b to reflect the
length of the collapsed chain

3.1.3 A triangle cannot be formed

If the target is too far away from the current joint
then we cannot reach it. Thus we have c > a + b.
In this case the current joint simply rotates so that
−→a = −→c . This ensures that the end-effector comes
as close to the target as is possible.

If the target is too close to the current joint, then
we cannot form a triangle with the sides a, b and
c. Clearly this will happen whenever c < |a − b|.
We solve this problem using a naive approach:

Assuming that b > a and each joint can rotate
freely about 360o we rotate the current joint so
that −→a = −−→c . Mathematically this is the easiest
solution, as:

lim
c→b−a

δb = 180o (8)

Therefore we simply fix δb at 180o, when we cannot
form a triangle. This makes it possible for the
next joint to attempt the same calculation from
a different position, with new values for a, b and c.
In effect, for joint i + 1, ci+1 = ci + ai.

If a > b then the target cannot be reached and
there is no solution to the problem.

For constrained joints the above method will occa-
sionally fail to find a solution. Thus we change b
to no longer be the length of the remaining chain
when straight, but instead the length of the chain
when fully collapsed. This can be seen in figure 4,
were b is now much shorter than in figure 3. If the
target is still to close to form a triangle, then there
is no solution to the inverse kinematics problem.
The end-effector again cannot reach the target.

If the target is too far from the current joint, so
that c > a + b, then it cannot be reached. In this

case we also rotate the joint so that its direction,
−→a , is equal to the target vector −→c .

3.2 Algorithm

The algorithm for our method iterates through ev-
ery joint to the end-effector. At each joint we solve
the same set of equations, thus by the last joint
a solution will have been found if possible. Thus
we require only one iteration to reach the target.
We rotate the most significant joints (the furthest
away from the end-effector) first, which is similar
to the way humans move their arms. This is useful
in character animation.

foreach Joint i do
Calculate −→ci , c;
if c ≥ a + b then

−→ai = −→ci ;
end
else if c < |a− b| then

−→ai = −−→ci ;
end
else

θ = cos−1(−→a • −→c)− cos−1(−(b2−a2−c2)
2ac);

if −→ai = −−→ci or −→ai = −→ci then
−→r = (0, 1, 0);

end
else

−→r = (−→a ×−→c);
end
rotate(−→ai by θ about −→r);

end
end

Algorithm 1: The triangulation algorithm for a
kinematic chain with no constraints

This algorithm assumes that each joint i stores its
orientation relative to the last joint, and then cal-
culates its orientation in global space as ai. If this
is not the case, then after calculating the new ai

we would need to iterate through each joint below i
and rotate the joint by θ. This would almost square
the number of calculations required, thus making
the algorithm significantly less efficient. Each joint
also needs to store the maximum length of the
chain in front of it (b). This can be calculated
once, as it does not change.

Constraints that restrict the maximum angle rel-
ative to the preceding joint can be implemented
by checking θ before rotating and reducing it as
required. This makes the algorithm slower as we
can no longer simply assign the orientation as can
be seen in the first two if statements in algorithm 1,
but instead have to always calculate θ.

Figure 5: The starting positions of both kinematic
chains

4 Comparing CCD and Triangulation

In this section we run a small experiment to com-
pare two inverse kinematics algorithms with each
other. The compared algorithms are CCD and our
new method called triangulation.

4.1 Application

We created a simple OpenGL application in C++,
which animates a simple kinematic chain with one
end-effector. The chain has a length of 40 units,
split into four joints of length nine, and one joint
of length four, or into two joints of length eighteen
and one joint of length four. The latter chain has
the joints restricted so that joint two (the elbow)
cannot rotate by more than 126o relative to joint
one, and joint three (the wrist) cannot rotate by
more than 90o relative to joint two. This is a simple
approximation of a human arm. Both chains as
shown by the application can be seen in figure 5.

The target which each chain will attempt to reach
is represented by a wireframe sphere. Its position is
created randomly, to be within a box of sidelength
60. This makes it possible that the target is outside
the range of the kinematic chain, which is centred
at the origin.

4.2 Experimental Setup

To experimentally compare CCD with our new
method, we move the target to 10000 different
positions. At each position we use both the
CCD algorithm and triangulation to move the
end-effector as close to the target as possible.
The target is considered reached as soon as the
end-effector moves within 0.5 units of it. If it takes
CCD more than 99 iterations to reach the target
the algorithm aborts. This experiment is repeated
for both kinematic chains. For the constrained

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Distance

Ite
ra

tio
ns

Figure 6: Graph showing the number of iterations
required by CCD to reach the target, compared to
the original distance of the hand to the target.

chain, it is possible that some targets even within
the radius of the chain are unreachable.

We record the number of iterations required by the
CCD method to either reach the target or to reach
a stable position. For both methods we record how
closely the target is reached and the sum of the
joint angles as cost C.

5 Results

8.27% of targets were outside the radius of the
chain. A further 2.23% were unreachable by the
constrained chain.

CCD reached 92.97% of all reachable targets when
constrained within 20 iterations, with a mean num-
ber of 8.727 iterations. When unconstrained it
reached 92.12% of the targets within 20 iterations
with a mean of 8.351. Note that the mean also does
not include those targets that were unreachable.
As can be seen in figure 6, the number of iterations
increases exponentially with the original distance
of the end-effector to the target. The original angle
of the target vector to the chain is also significant.
As it increases so does the number of iterations.
Triangulation reached each target on the first iter-
ation as expected.

The average cost of CCD using the unconstrained
chain was 315.5o, compared to 173.9o when us-
ing the constrained chain. The triangular method
when unconstrained had a mean cost of 159.9o;
When constrained this value was 141.5o.

6 Discussion

Every target that could theoretically be reached
was reached by both algorithms, as expected. It
is interesting to note that the constrained version
of CCD performed slightly faster than the uncon-
strained version. There are several reasons for this:

Figure 7: 5-Jointed kinematic chain reaching for a
close target.

• The constraints prevented the chain from
’rolling in’ on itself as shown in figure 2. Thus
the chain did not have to unroll itself before
reaching the target.

• The constrained chain had fewer but longer
joints than the unconstrained chain. Thus the
rotation of each joint had more of an effect on
the remaining chain, especially in later itera-
tions.

As can be seen in figure 7, triangulation achieved
more natural poses when reaching for the same
target as CCD in figure 2. This is caused by the
major joints rotating before the joints close to the
end-effector. It is also worth noticing that most
joints simply remain straight, instead of twisting
in several different directions. This had an effect
on the cost function, which was lower for the trian-
gular method than for CCD using both kinematic
chains.

We can compare the complexity of the two algo-
rithms using the number of calculations required
for each joint. The dot product of two vectors
in three-dimensional space requires three multi-
plications to compute. The cross product needs
six multiplications. Solving the cosine equation as
shown in equation 5 needs 5 multiplications and
one division. This is approximately as complicated
as a cross product. We define the number of calcu-
lations required for the rotation or transormation
as r. If we label the number of calculations re-
quired for a dot product n, then both the cross
product and the cosine equation both require 2n
calculations.

We can represent these values by the following
equations:

NCCD = numIter ∗ numJoints ∗ (n + 2n + r) (9)

NTriangulation = numJoints∗(n+2n+2n+r) (10)

Clearly NCCD > NTriangulation, when CCD re-
quires more than one iteration.

If we compare this with our data, then for the
unconstrained chain we have a mean number of
8.351 ∗ 5 ∗ (3n + r) = 125.265n + 41.755r calcu-
lations using CCD, compared to 5 ∗ (5n + r) =
25n + 5r calculations using triangulation. Obvi-
ously our method requires significantly fewer calcu-
lations, and is thus faster to implement than CCD.

7 Future Work

Our implementation of the triangular method
has only been for kinematic chains with one
end-effector. If this algorithm were to be modified
into a form that could find solutions for several
end effectors, it could be used for more complex
character models.

The algorithm as it stands cannot accept constric-
tions on the axis of rotation. Both in character
animation and robotics these restrictions often ex-
ist. Thus our method needs to be adapted to also
accept these restrictions.

Modifying the algorithm, by changing δb to 90o

instead of 180o when a triangle cannot be formed,
should also be investigated. This alternative might
reduce the cost further, especially for constrained
joints.

8 Conclusion

In this paper we have presented a novel method
of solving the inverse kinematics problem. This
new method, which is guaranteed to find a solution
when it is available, is not iterative, therefore mak-
ing it possible to predict the number of calculations
required to reach a target. Like methods using the
Jacobian Matrix the algorithm will find a solution
immediately, instead of converging on a solution
after several iterations. Yet unlike these methods
it can deal with singularities as it does not require
the Jacobian Matrix for its calculations.

Our experiment shows that the triangular method
requires on average many fewer calculations than
CCD, both with constrained and unconstrained
kinematic chains. At the same time it is just as
accurate, finding a solution every time CCD does.

Thus the triangulation method combines the best
of both worlds. It is computationally cheaper than

CCD, yet just as accurate as algorithms calculat-
ing the Jacobian inverse or transpose of an in-
verse kinematics problem. Using a cost function
we could show that it consistently requires less
rotations than CCD, yet it is worth noting that
our method does not guarantee optimal rotations
(where each joint moves by a minimal amount);
Like CCD it calculates angles one joint at a time,
thus it is not possible for it to find such a minimal
solution for the entire kinematic chain.

References

[1] K. C. Gupta and K. Kazerounian, “Improved
numerical solutions of inverse kinematics of
robots,” in Proceedings of the 1985 IEEE Inter-
national Conference on Robotics and Automa-
tion, vol. 2, pp. 743–748, March 1985.

[2] A. Goldenberg, B. Benhabib, and R. Fenton,
“A complete generalized solution to the in-
verse kinematics of robots,” IEEE Journal of
Robotics and Automation, vol. 1, pp. 14–20,
March 1985.

[3] V. J. Lumelsky, “Iterative coordinate trans-
formation procedure for one class of robots,”
IEEE Transactions on Systems Man and Cy-
bernetics, vol. 14, pp. 500–505, June 1984.

[4] V. D. Tourassis and J. Ang, M.H., “A modu-
lar architecture for inverse robot kinematics,”
IEEE Transactions on Robotics and Automa-
tion, vol. 5, pp. 555–568, October 1989.

[5] M. Fedor, “Application of inverse kinematics
for skeleton manipulation in real-time,” in
SCCG ’03: Proceedings of the 19th spring
conference on Computer graphics, (New York,
NY, USA), pp. 203–212, ACM Press, 2003.

[6] D. L. Pieper, The kinematics of manipulators
under computer control. PhD thesis, Stanford
University Department of Computer Science,
October 1968.

[7] J. Lander, “Making kine more flexible,” Game
Developer, vol. 1, pp. 15–22, November 1998.

[8] A. Canutescu and R. Dunbrack, Jr., “Cyclic
coordinate descent: A robotics algorithm for
protein loop closure,” Protein Science, vol. 12,
pp. 963–972, May 2003.

[9] L.-C. T. Wang and C. C. Chen, “A combined
optimization method for solving the inverse
kinematics problems of mechanical manipu-
lators,” IEEE Transactions on Robotics and
Automation, vol. 7, pp. 489–499, August 1991.

