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The credibility of estimated confidence intervals for mean values produced by quantitative stochastic simula­
tion is considered. Basic rules of proper experimental studies of quality of such interval estimators is formulated 
and applied in evaluation of two methods of confidence-interval construction: Batch Means and Spectral Anal­
ysis, in the case of simulations run on single and multiple processors. 
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The credibility of estimated confidence intervals for mean values produced by quantitative 
stochastic simulation is considered. Basic rules of proper experimental studies of quality of 
such interval estimators is formulated and applied in evaluation of two methods of confi­
dence-interval construction: Batch Means and Spectral Analysis, in the case of simulations 
run on single and multiple processors. 

1. INTRODUCTION 

There are many aspects that have to be taken into account in stochastic discrete-event simu­
lation to produce credible final results. They include the necessity for verification of the simu­
lation model (does a given simulation model perform as intended ?) and its validation (is a 
given simulation model an acceptable model of the real-world system under study ?), selec­
tion of statistically correct generator(s) of pseudo-random numbers and, finally, statistically 
correct analysis of output data collected during simulation. In this paper we address the last 
of these problems, in the context of mean value analysis in sequential steady-state stochastic 
simulation, ie. simulation conducted for studying systems' behaviour over a long period of 
time. Sequential analysis of simulation output is generally accepted as the only efficient way 
for securing representativeness of samples of collected observations (see for example [1]), by 
stopping the simulation experiment when the relative precision of estimates (defined as the 
relative width of confidence intervals at an assumed confidence level) reaches the required 
level. The main analytical problems of sequential estimation of the width of steady-state con­
fidence intervals are discussed eg. in [2]. They are caused by strong correlations between 
events in typical simulated processes, as well as by initial non-stationary periods. 

At least a dozen methods have been proposed for analysing confidence intervals of corre­
lated time-series of observations collected during simulation experiments. A survey of such 
methods until 1990 can be found in [2]. Newer proposals can be found eg. in [3, 4]. So far 
only a few implementations of these methods in an automated sequential simulation frame­
work have been reported (see for example [3, 5, 6]) and incorporated in some simulation 
packages. The problem is that no satisfactorily exhaustive comparative studies of these meth­
ods have been reported yet, and it is difficult to find a good method for a specific range of 
applications. All methods involve different approximations and their quality should be as­
sessed by analysing properties of the final confidence intervals they generate. A good method 
should produce narrow and stable confidence intervals, which should of course be valid, ie. 
they should contain the true value of the estimated performance measure. Theoretical studies 
of various estimators of confidence intervals, reported before 1990, are surveyed in [2]. 
Newer results can be found for example in [7]. Most of them relate to simulation experiments 
run on single processors, and very little is known about quality of the methods that could be 
used in fast concurrent sequential simulation based on Multiple Replications in Parallel 
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(MRIP), where multiple processors cooperate in production of data for the global output 
samples [5]. 

The theoretical studies of confidence intervals reveal general conditions which have to be 
satisfied to secure validity of the final confidence intervals, but correctness of any practical 
implementation of a specific method has to be additionally tested experimentally. In this pa­
per we formulate a new methodology of such experimental studies of the methods used in se­
quential stochastic simulation for determining the final precision of results, and present the re­
sults of our comparative studies of two selected methods: the classical method of (non-over­
lapping) Batch Means, and SA/HW (the method of Spectral Analysis in its version proposed 
by Heidelberger and Welch [8]), both in sequential simulations on single processors [2] and 
in sequential simulations on multiple processors in MRIP scenario. Further directions of re­
search in this area are indicated in the Conclusions. 

2. EXPERIMENTAL ANALYSIS OF COVERAGE 

In any performance evaluation studies of dynamic systems by means of stochastic discrete­
event simulation the final estimates should be determined together with their statistical errors, 
which are usually measured by the half-width of the final confidence intervals. Restricting our 

attention to estimators of means, let us assume that we estimate theoretical mean µ= EX by 

n 
- 1 
X(n) = 11 )Xi 

f=t 
(1) 

where x1, x2, ... , xn are observations collected during simulation. Then, one should also de­
termine 

P ( X(n) -~ s µ s X(n) +~) = 1-a (2) 

ie. the confidence interval (c.i.) ofµ, at a given confidence level I-a, O<a<l. ~ is the half­

width of the c.i., defined as ~=tK,l-a./2 ~X(n)], where ~2[X(n)] is an estimator of the variance 

of X(n), with K degrees of freedom and tK,l-a/2 is the (l-a/2) quantile of Student t-distribu­
tion. 

Problems associated with estimating a2[X(n)] in steady-state simulations are discussed 
eg. in [2]. Various estimators of this variance have been proposed. This in sequel created the 
need for an assessment of quality of these estimators and associated with them specific meth­
ods of running simulation and pre-processing simulation output data. 

Let us note that in an ideal case the final c.i. would containµ with the probability 1-a, or 

equivalently, if an experiment is repeated many times, one would expect to have µ contained 

in about (1-a) 100% of final confidence intervals. Coverage of confidence intervals is defined 

as the frequency with which the final confidence intervals (X(n)-~ s µ s X(n) +~) contain 

the true value µ. While some interesting results have been achieved in theoretical studies of 
coverage (see eg. [7, 9-11]), experimental analysis of coverage is still required for assessing 
the quality of practical implementations of methods used for determining confidence intervals 
is steady-state simulation. Of course, such analysis is limited to analytically tractable systems, 
since the value ofµ has to be known. 

As for any other point estimate, the coverage can be determined together with its c.i. : 

( 
~

-c ~-c)) c- Zl-a/2 -- , c + Zl-a/2 --
Ile Ile 

(3) 



where c is the coverage, Zl-a/2 is the (l-a/2) quantile of the standard normal distribution 
and nc is the (suitably large) number of replicated experiments in the coverage analysis. 

An estimator of&2[:X(n)] used for determining the c.i. ofµ is considered as valid, ie. pro­

ducing valid 100(1-a)% confidence intervals ofµ, if the upper bound of the confidence inter­

val of the coverage c in Eq.(3) equals at least (1-a); see [12]. Results of experimental cover­
age analysis were reported in many publications, although majority of these results was re­
lated to simulations on single processors, and very little is known about coverage of estima­
tors that could be used in parallel simulation executed in MRIP scenario [5]. It is strange, but 
while sequential simulation is generally recognised as the only way of producing results with 
the required precision since " ... no procedure in which the run length is fixed before the simu­
lation begins can be relied upon to produce a c.i. that covers the true steady-state mean with 
the desired probability level" [l, 13], even the original advocates of sequential simulation 
have applied non-sequential (fixed-sample size) approach in their simulation studies of cov­
erage. In addition, most of reported results on coverage were based on 50-200 replications 
(see for example [10, 12-18]), which obviously put in question the statistical representative­
ness of such experimental data. In all these cases, the estimates of coverage were based only a 
few(!) confidence intervals# which did not coverµ ! 

It is also generally known that sequential steady-state simulation can produce wrong esti­
mates if the stopping criterion is only temporary satisfied, resulting in too short simulation 
length. Thus, this cause of bad confidence intervals , ie. confidence intervals which do not 

cover µ, should be also eliminated in coverage analysis, to avoid obscuring the statistical 
properties of interval estimators by directly unrelated effects. Recognising this fact, we have 
decided that the following rules should be applied in coverage analysis of sequential interval 
estimators to produce credible results: 

Rl. Coverage should be analysed sequentially, following the ordinary rules of sequential 
simulation, ie analysis of coverage should be stopped when the relative precision (the 
relative half-width of c.i.) of estimated coverage falls below an assumed level. 

R2. An estimate of coverage has to be calculated from a representative sample of data, ie. the 
analysis can start only after a minimum number of bad confidence intervals has been 
recorded. 

R3. Results from too short simulation runs should be not taken into account. 

These rules have been applied in our comparative studies of various methods proposed for 
controlling the length of sequential steady-state simulation, initial results of which are re­
ported in the next section. 

3. NUMERICALRESULTS 

As mentioned, all previously reported studies of experimental coverage analysis conducted 
for assessing the quality of sequential steady-state interval estimators in stochastic simulation 
used a fixed-sample size approach [l, 19]. In this section we show initial results of our analy­
sis of coverage conducted in sequential way, following the three rules formulated in Section 
2, and compare them with the results one would obtained applying a non-sequential approach. 

The results presented here are limited to simulations of M/M/1/oo queuing system only, and 
two sequential methods of steady-state analysis of the mean values and their confidence inter­
vals: the method of non-overlapping Batch Means (BM), and SAIHW (the method of Spectral 
Analysis in its version proposed by Heidelberger and Welch [8]). Our implementations of 
these methods on single processors followed exactly procedures specified in [2], including the 
procedure described there for detecting the length of initial transient period. In case of parallel 

# An exemption is [7] where the reported results were averaged over 1000 replications. 



simulations in MRIP scenario, BM was used independently by each simulation engine. Thus, 
the global analyser dealt with a composition of subsequences of (almost independent) batch 
means, but means submitted by different simulation engines could be calculated over 
different batch sizes. The parallel version of SA/HW is described in [5]. 

All reported results were obtained stopping simulations when the final steady-state results 
gave a relative precision of at least O .05, at the O .95 confidence level. All series of replicated 
simulations were executed using strictly non-overlapping sequences of pseudo-random num-
bers generated by a multiplicative congruential generator with multiplier 75=16807 and mod­
ulus 231-1, which is used for example in such simulation languages as SIMSCRIPT 11.5 and 
GPSS/H [l]. Simulations run for obtaining data for comparative studies of different methods 
or strategies were initiated using identical pseudo-random number. 

Following our three rules of sequential analysis of coverage, the analysis started when 
Nmin=30 bad confidence intervals were recorded (rule R2). At this point, the mean and stan­
dard deviation of simulation run lengths ·were calculated, and data obtained from simulations 
shorter than one standard deviation from the mean run length were discarded (rule R3). Next, 
if the number of bad confidence intervals was not smaller than Nmin, the coverage was esti­
mated sequentially, with calculations being repeated after each suffiently long replication. 

t 0.9~~ 
~ 0.9 
U 0.85 

0 
Load 

(a) 200 replications 

-C"q~s:::i;V)-ql';OC?~-
000000000 

( c) 200 replications ( d) Rules Rl & R2 
Good Good 

0 
Load 

(b) Rules Rl & R2 & R3 

-~~s:::i;V)-ql';OC?~-
000000000 

(e) Rules Rl & R2 & R3 
Good 

Load c.i. Bad c.i. Load c.i. Bad c.i. Load c.i. Bad c.i. Reiected 
0.1 197 3 0.1 1590 30 0.1 1590 30 0 
0.2 196 4 0.2 1146 30 0.2 1146 30 0 
0.3 196 4 0.3 1385 30 0.3 1385 30 0 
0.4 192 8 0.4 1005 30 0.4 1005 30 0 
0.5 192 8 0.5 616 30 0.5 772 30 152 
0.6 185 15 0.6 515 30 0.6 865 30 143 
0.7 186 14 0.7 473 30 0.7 793 30 146 
0.8 190 10 0.8 523 30 0.8 895 30 164 
0.9 183 17 0.9 444 42 0.9 470 30 98 

Figure 1. Coverage analysis of BM, one processor 

The results obtained for simulations on single processors are shown in Fig.I and 2, with 
case (a) showing results of traditional fixed-sample size coverage analysis (over 200 replica­
tions), case (b) showing results obtained following our methodology of sequential analysis of 
coverage, ie. applying rule Rl&R2&R3. The three tables in each figure show the number of 
good and bad confidence intervals used to estimate coverage in: the non-sequential approach; 
the sequential approach with adopted rule Rl&R2 only (case (c) and(d), respectively); as well 
as the number of good and bad confidence intervals, and the number of too short simulation 
runs recorded in sequential coverage analysis based on rule Rl&R2&R3. 



It appears that the traditional approach cannot produce reliable estimates of coverage, al­
though in these specific examples it underestimated the quality of results produced by BM 
and SP/HW. Comparing case (d) and (e) one can see that rule R3 becomes more important in 
more heavier loaded systems, when correlations between observations increase. In the range 

of traffic load considered, O.ls p s 0.9, both methods remain valid. 

(a) 200 replications 

t 0.9~1 t 0.9 
U 0.85 

(b) Rules Rl & R2 & R3 
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Load ~ ~ ~ ~ "1 '-q t--; oq O; -
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( c) 200 replications ( d) Rules Rl & R2 (e) Rules Rl & R2 & R3 

Good Good Good 
Load c.i. Bad c.i. Load c.i. Bad c.i. Load c.i. Bad c.i. R~iected 

0.1 195 5 0.1 885 30 0.1 2133 30 163 
0.2 192 8 0.2 593 30 0.2 1376 30 104 
0.3 184 16 0.3 395 32 0.3 1199 30 71 
0.4 191 9 0.4 536 30 0.4 1352 30 83 
0.5 189 11 0.5 427 30 0.5 1394 30 78 
0.6 185 15 0.6 416 36 0.6 573 30 55 
0.7 181 19 0.7 416 36 0.7 538 30 66 
0.8 183 17 0.8 453 44 0.8 432 30 66 
0.9 183 17 0.9 435 40 0.9 449 30 69 

Figure 2. Coverage analysis of SA/HW, one processor 

Fig.3 depicts the results obtained from sequential coverage analysis of BM and SP/HW on 
P=2 and 4 processors. As these results show, the quality of BM decreases with the level of 
parallelization and the method becomes even invalid for heavier loaded systems. On the other 
hand, the quality of SP/HW remains practically unchanged. A word of caution: our prelimi­
nary results should not be used for drawing general conclusions about the quality of BM and 

SP/HW when p>0.9 or P>4, as well as about their behaviour in simulations of arbitrary sys­
tems, until more exhaustive studies are conducted. 

(a) Batch Means (b) Spectral Analysis 

J 0.9:~~10.9:t.~-··1 
0.9+~.0.9 111111111 
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000000000 000000000 
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Figure 3. Coverage of BM and SA/HW in MRIP, P = 2 and 4, rules Rl & R2 & R3 



4. CONCLUSIONS 

We have formulated basic rules that should be followed in proper experimental analysis of 
coverage of different steady-state interval estimators. Our main argument is that such analysis 
should be done sequentially, The numerical results of our preliminary coverage analysis of 
the method of Batch Means and Spectral Analysis have been also presented and compared 
with those obtained by traditional, non-sequential approach. As advocated in [19], to draw 
more general conclusions about performance of interval estimators used in various methods 
of sequential steady-state simulation one needs to consider a number of different simulation 
models, since the results obtained for one system (in this paper: M/M/loo) are not sufficient. 
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