
1987 Honours Project

A BASIC Translator

Supervisor: P. J. Ashton

Department of Computer Science

University of Canterbury

Simon Dear

-- Contents --

1. Introduction 1
1.1. The Aim of The Project 1
1.2. A Brieflntroduction to the SDR2 1

2. Design of SDR-BASIC 3
2.1. SDR-BASIC Should Provide a Useful Subset of Common

BASIC Features 3
2.2. SDR-BASIC Should Reflect Its Compiled Nature 3
2.3. Control of Memory Usage Is Required 4
2.4. SDR-BASIC Should Take Into Acount The Limitations

Of The SDR2 Hardware 5
2.5. SDR-BASIC Should Meet The SDR2 Requirements 5

2.5.1 Access to the SDR2 Heap 5
2.5.2. NULL fields in the heap 6
2.5.3. Input Output Facilities 6

3. Design of the Intermediate Language 8
3.1. The Syle of Code Produced - ADL or Intermediate language? 8
3.2. The Choice of the Intermediate Language 10
3.3. The Intermediate Language Adopted 11

4. The SDR-BASIC Translator 12
4.1. Issues in Translator Design 12
4.2. Issues in Translator Implementation 13

4.2.1. The Symbol Table 14
4.2.2. The Scanner 15
4.2.3. The Parser 16

4.2.3.1. Recursive Descent Parsers 17
4.2.3.2. Error Handling 18
4.2.3.3. Type Checking 18
4.2.3.4. Automatic Type Checking 19

4.2.4. Code Generation 20
4.2.4.1. The Code Produced 21

4.3. Translator Output 22
4.4. Issues in Porting the Macintosh Version to an IBM PC 22

5. The Interpreter 24

6. Results'
6.1. What has been done
6.2. What more could be done

6.2.1. Enhancing SDR-BASIC
6.2.1.1. Adding More BASIC features
6.2.1.2. Providing better intetfacing with the SDR2

6.2.2. Improving the Translator
6.2.3. Improving the Interpreter
6.2.4. Improving the Development Environment

7. Conclusion

8. References

27
27
27
27
28
28
29
30
31

32

33
i:

A. The SDR2
A.l. The Hardware
A.2. The Software
A.3. Data Storage
A.4. External Programs
A.5. System Parameters

B. SDR-BASIC

-- Appendices --

B.1. A Brief Overview of SOR-BASIC
B.2. SOR-BASIC in BNF

C. The Intermediate Language
C.l. The Stack
C.2. An Overview of the Intermediate Language
C.3. Predefined Variables
C.4. Heap Record Types

D. The SOR-BASIC translator
D. l. Using the Translator
D.2. An example of an error listing
D.3. An example of the code listing
D.4. An example of the dump listing
D.5. The Translator Code

34
34
34
36
37
37

39
39
43

45
45
45
49
50

51
51
52
52
53
54

Project Report A BASIC translator

Sectio11 One.
Introductio11.

Datacom Software Research has developed software for a hand-held data recorder used by
surveyors, called the SDR2. They would like to enable users to write programs in a
BASIC-like language, that can be run on the SDR2.

This project involves writing a translator that will convert a program written in a
BASIC-like language into an intermediate code fonn. The translated programs are to be run
on an SDR2. Programs will be developed on a micro-computer (probably an IBM PC or a
compatible), and the intermediate code produced will be loaded into the SDR2 where it will
be interpreted.

The BASIC-like language (which will be called SDR-BASIC from here on) should provide
a useful subset of commonly implemented BASIC features. SDR-BASIC must also
provide access to the data stored in the SDR2 memory as well as access to input and output
facilities.

1.1. The Aim of The Project.

There are five sub-goals that must be reached in completing this project:

1. Getting. to know the SDR2.
Before any other part is undertaken, a survey of the features of the SDR2 needs to be
made. An overview of the SDR2 environment is given in Appendix A.

2. Specifying the BASIC-like language.
SDR-BASIC needs be designed so that commonly found BASIC features are present.
More importantly, there should be features to allow access to SDR2 internal data structures
and input/output facilities. An overview is given in Appendix B.

3. Specifying the intermediate language.
The intermediate language is what will be loaded into the SDR2 for a program to be
executed. It will have to be designed to reflect the hardware and software of the SDR2,
especially taking into acount the memory limitations. In-depth details are given in
Appendix C.

4. Writing the translator.
The translator will need to check the syntax and semantics of an SDR-BASIC program,
and produce an intermediate langauge fonn of the program along with appropriate listings.
Documentation is given in Appendix D.

5. Writing the inte1mediate language interpreter.
The interpreter will be developed on a PDP-11 in ADL, the language in which the software
for the SDR2 has been developed. If there is not enough time, a specification of the
intermediate language and an outline of the interpreter will be given.

1.2. A Brief Introduction to the SDR2.

The SDR2 collects, verifies and stores observations taken from surveying instruments. It
comes with a collection of data collection and calculation programs for surveying
applications.

Observations are taken automatically from electronic survey instruments, via a special

Page1

Project Report A BASIC translator

interface and cable. Once stored in memory, the data can be used for further calculations,
browsed through, or down loaded to a micro-computer using the communications
interface.

The SDR2 has 32k bytes of RAM. Observations are stored here as heap records, which
vary in length depending on their type. Also the RAM can be used to store external
programs, which can be loaded in through the communications interface. Programs that
run on the SDR2 are either written in assembler or ADL, a stack-based language rather like
Forth.

Unfo1tunately, the SDR2 is not programmable by the user. As there are competing systems
· on the market that provide user programming it was considered a worth while project to
implement a system which allows the user to run BASIC programs.

Page2

Project Report A BASIC translator

Sectio11 Two.
Design of SDR-BASIC.

In the original specification of the program there was some flexibility given to the nature of
the language. Datacom require that it is BASIC-like. This provides the opportunity to
design a language that is significantly more powerful that your everyday BASIC.

The reason why Datacom decided that a BASIC-like language should be implemented is
because the SDR2 is a tool for surveyors. It is more likely that surveyors are acquainted
with BASIC than any other language.

In specifying SDR-BASIC there were several design goals that had to be met.

2.1. SDR-BASIC Should Provide a Uselful Subset of Common BASIC features ..

Some research had to be done to find out what features of BASIC were desirable and
should be retained. BASIC is the most common language implemented on small personal
computers. BASICs normally vary in the features added to take advantage of the sound
and graphics hardware. Control structures, variable types, and built-in mathematical
functions are almost standard across BASICs.

It should be noted thet there are many dialects of BASIC. No one has true claim to be the
BASIC. There is an ANSI standard .for BASIC, but it is not widely implemented.
Microsoft BASIC[4], or close relatives, is probably the most widely used dialect. It is
almost identical to the BASIC distributed with IBM PCs. Because it is so widely available
SDR-BASIC has been based on Microsoft BASIC.

The features that are to be implemented should be ones that appear in most BASICs. They
should be common enough for the programmer not to have any difficulty when
programming. Also it is considered important that SDR-BASIC has the look and 'feel' of
other BASICs. It would have been possible to enhance BASIC to produce a version that
had procedures, local variables, user defined data types, and sophisticated file handling.
But this is probably a bit excessive, considering that the language is going to be used by
surveyors who have only been acquainted with BASIC.

An outline of SDR-BASIC is given in Appendix B.

2.2. SDR-BASIC Should Reflect Its Compiled Nature.

BASIC is traditionally used in an interactive environment. The program is entered line by
line, usually by typing the line in directly from the command line. Most systems provide
line editors or screen editors so programs can be modified. At any stage, the program can
be run. At run time interpreter checks for syntax and semantic errors. When an error
occurs, the offending line can be corrected and the program can be run again. Once the
program has finished running, the variables can still be interrogated from the command
line.

As an SDR-BASIC program is compiled into an intermediate code, many of the features
that come with interactive BASICs simply will not apply. There will be no need for
commands that are normally issued from the command line, like DELETE (a line), SAVE,
LOAD (a program), RUN, CONT or LIST. Also commands like STOP which are
normally issued from inside the program will not be needed.

Page3

Project Report A BASIC translator

It is desirable to do as much work at translation time as possible. All syntax checking is
done at translation time, rather than at run-time in many interactive systems. Also, type
checking and memory allocation should be done at translation time. Therefore, if any
enhancements to commonly used BASIC features further this aim they should be adopted.

One of the most noticeable features of BASICs is that every line has a line number or label
attached to it. In an interactive environment this is one way of being able to specify the
logic ordering of lines without resorting to a screen editor. In a compiled version of
BASIC beginning each line with a label is rather pointless. The logical ordering of the lines
is simply the physical ordering of the lines as they appear in the source. The other use for
line numbers is to specify the line where execution will continue after a branch. For this
reason, line numbers have been retained in SDR-BASIC. They only need to be at the start
of the line that is branched to. Even though line numbers are integers, in SDR-BASIC they
can appear in any order, as with Fortran.

In some BASICs the binding between FOR and NEXT in loops is done at run time rather
than at compile time. For example, the following will loop around 10 times.

10 GOTO 40
20 NEXT i%
30 END
40 FOR i% = 1 TO 10
50 GOTO 20

However, this dynamic binding only leads to spaghetti-like looping structures and makes
the program hard to follow. Therefore SDR-BASIC forces the programmer to have the
NEXT following the FOR. This means that the FOR is always bound to the same NEXT.
This has the advantage that less run-time management of for loops is needed.The very
same restriction applies to REPEAT ... UNTIL and WHILE. .. WEND loops as well.

2.3. Control of Memory Usage is Needed.

Memory allocation poses a major problem for most BASICs. The space requirements for
strings and arrays is no1mally determined at run time. This is not at all desirable in a
compiled BASIC, especially SDR-BASIC as memory on the SDR2 is a limited resource.

The dimensions of an array in BASIC are specified by using a DIM statement, which has
the following syntax:

DIM arrayname (dimensions)
The problem that arises here is the fact that the dimension is specified as an integer
expression. It is almost impossible for the translator do determine the value of the
expression at translation time as the expression might have operands that have yet to be
initialised. Therefore, in SDR-BASIC the dimensions must be specified as integer
constants, thus avoiding any problems. A possible enhancement to this scheme is to allow
constant expressions (that is, expressions involving only constants), but this was not
attempted.

BASIC strings have dynamic string lengths. Every string has a maximum possible length
(normally 256 characters), but the space needed to store the string depends only on its
current length. On the SDR2 this scheme could cause problems, as there is little or no
control on the string space that is required. Consider for example:

DIM A$(100)

There is a 3 byte (16 bit address of string and one byte string length) overhead for each of
the 101 array elements. This creates a minimum of 303 (=101 * 3) bytes storage
requirement. However, if all strings were their maximum length, then a maximum of
26159 (=(256 + 3) * 101) bytes is needed. As the SDR2 has only 32k of RAM, some
steps are needed to avoid memory-hungry programs.

Page4

Project Report A BASIC translator

For this reason, in SDR-BASIC strings have a default maximum length of just 32
characters. If larger strings are needed (or shorter ones are desired!), the programmer has
to specify the space needed. To do this, the length of the string should be enclosed
between brackets after the string identifier, at the first reference to the suing in the
program. For example,

fred$ [128] = ""

sets the upper limit of the length of string fred$ to be 128.

Using this method, the storage requirements for strings is known exactly at
translation-time, and the amount can be kept to a manageable level.

2.4. SDR-BASIC Should Take Into Account The Limitations Of The SDR2s Hardware.

As SDR-BASIC is to be run on a hand-held computer which has its own set of
idiosyncrasies, constriants have had to be imposed on some BASIC features.

The main one concerns the INPUT statement. In most BASICs the syntax is:

INPUT {optional prompt;} variable (.. variable)

However, remember that the SDR2 has only a 16 character display. If a large number of
variables needed to be inputed, the prompt could very well scroll off the screen to make
room for the typed data. This would be very off putting. Therefore the restriction that only
one input .vatiable can be included iJ?. the INPUT statement has been made. This is
probably desirable from the point of view that there could be difficulty in getting the
SDR2s input 1'outines to handle multiple input values anyway.

2.5. SDR-BASIC Should Meet The SDR2 Requirements.

An important requirement of SDR-BASIC was to provide access to the internal data
structures and input/output facilities of the SDR2.

2.5.1. Access to the SDR2 Heap.

The user needs to be able to add as well as rettieve records from the heap. There does not
need to be any provision for deletion and editing of records. This is because, under New
Zealand law, once a surveyor has made an observation he or she is required not to delete or
modify it.

The heap consists of records of varying types. This in itself poses problems for adding and
reu·eiving. Also BASIC doesn't provide for any way of handling records. To get around
this problem the following methods were considered:

(a) For retreiving from the heap, successive char·acters (or possibly one stting) are read.
The programmer has to convert numetic strings to numbers, and interpret the data
him/herself. Writing is done in a similar· way.

(b) For retreiving, stting and numeric values can be read successivly. The programmer has
to make sure that he or she is reading the right type at the right time. Writing is done in a
similar way.

(c) Implement records structures in BASIC. Whole heap records could be retreived and
added at one time.

Page5

Project Report A BASIC translator

(d) Several variables could be predefined, each one representing a different heap field.
Retreiving would be done by one command that would retdeve the record type off the
heap, and then update appropriate variables. Adding records would be done by looking at
the type of record to be added and the using the appropriate variables.

All Options require some heap manipulation functions to be implemented. Options (c) and
(d) would be the easiest for the programmer to use. (a) and (b) involve a lot of fiddling
around, and the prossibility of errors atising due to unread or unwritten data is quite high.
Option (c) requires major enhancements to be made to BASIC, as record structures need to
be implemented. The last option does not require any further enhancements to BASIC
(other than the few extra heap functions), and the resulting apperance does not deviate
from BASIC at all.

Weighing all this up, option (d) was chosen, where predefined variables would be used.
This method also involves a memory saving as the predefined variables could reside in the
translator's memory space rather than in the code space.

SDR-BASIC allows for the following operations to be made on the heap. Functions that
support searching are already built into the SDR2.

Retreiving:
Retreive the last element added to the heap. (GETLAST)
Retreive the record that was added after the last one referenced.
(GETNEXT)
Retreive the record that was added before last one referenced.
(GETPREVIOUS)

Searching: .

Adding:

Search through the heap, and retrieve the last record of the given
type.(GETTYPE (type))
Search through the heap and retreive the last record which contains the given
point number (either as a source point or a target point).
(GETPT (point))

Add a record to the end of the heap. The records type is 111 stored in
the variable RECORDTYPE. (ADD).

2.5.2. NULL fields in the heap.

In heap records some REAL fields have a special value to indicate they are empty, as
opposed to containing the value zero. This special value is NULL. NULL is a special form
of real. It has the property of being able to be propagated through expressions. That is, if
one of the operands in a real expression is NULL then the result is also NULL.

SDR-BASIC has a 'pre-defined' constant called NULL. It can be used anywhere a real
value could normally be present. That is, in expressions or in comparisons.

2.5.3. Input Output Facilities.

SDR-BASIC should be able to let programmers to input and output data. Output to the
screen and input from the keyboard have been considered earlier.

Input can come from two places: readings taken automatically from electronic surveying
equipment, and data sent via the RS232 port. As the one interface has a dual role of being
the connector for to surveying equipment, these two are basically the same.

Page6

Project Report A BASIC translator

Output can be via the RS232 port, or via the acoustic coupler. The SDR2 has an internal
parameter called ACOUSTIC which determines where the output is to be directed to. To
avoid the programmer having to deal with this, two output commands are supported by
SDR-BASIC.

Output: Output via the RS232 port. (LPRINT)
Output via the acoustic coupler. (PRINT#)

Input: Input via the RS232 port. (LINPUT)
Input from surveying equipment. (INPUT#)

Page?

Project Report A BASIC translator

Section Three.
Desig11 of the Intermediate Language.

SDR-BASIC programs will be translated into some other langauge. It is this other
language that will be loaded into the SDR2 when a program is to be run. This section
addresses the choice and design aspects of this language.

3.1. The Style of Code Produced. ADL or Intermediate Language?

There are many possible choices for the langauge that the translator produces.
(a) The machine code native to the SDR2.
(b) An intermediate language, such as P-codes.
(c) A tokenised form of BASIC.
(d) ADL, the language in which many of the SDR2 program have been written.

It is desirable for the translator to do as much work (breaking high level commands into
more primitive ones, converting expressions into post-fix notation etcetera) as possible in
the translation process. Therefore the choice of simply tokenising is not a wise one. Also,
many high level features of the SDR2 need to be accessible. Producing machine code
would make this very difficult. Therefore options (b) and (d) are the only sensible options.

To determine the better of translating into ADL or into an intermediate language, the
following-issues should be.considered:·

(a) Ease of Implementation.
If the intermediate language approach was taken then both a translator and an interpreter
would have to be written. However intermediate language generation is relatively straight
forward, especially as the author has had much experience in this approach.

Producing ADL code has the advantage that only the translator need be written. However,
it will undoubtably be much more complicated than with the intermediate language
approach. One reason for this is that libraries would need to be used to avoid including
large pieces of unnecessary code. Linking would be done as a part of the translation
process. There would also be problems with the constraints placed upon external ADL
programs. In particular, an external \program can have only 128 variables. Also there is a
limit on how large the program can be. Therefore it is doubtful that large SDR-BASIC
programs could be written.

(b) Memory Requirements
Memory usage is an important issue with the SDR2. Therefore the end approach should
require as little of it as possible.

The intermediate language would be interpreted. This requires both the code of translated
program and the interpreter to be in memory at one time. However, the intermediate code
should be quite compact, as the code to execute high level instructions would appear in the
interpreter only once. Also, it is possibility for the variable storage space to be controlled
by the interpreter. This would mean that this space would only need to be allocated for the
one running program.

The alternative results in there only being the translated program in memory at one time.
However, the code for high level commands would be duplicated in all programs that were
currently in memory.

Page8

!

Project Report A BASIC translator

(c) Maintainability.
(i) Changes to the way AOL is implemented might occur in the future (see Appendix A). It
is possible for several versions of the SDR.2 EPROM to be in existence at one time.

The intermediate language approach gives some independence between the code generated
and the version of SDR.2 being run. If a new version of the SDR2 is released, only the
interpreter would need to be modified (or recompiled). The translator itself would not
require any modification.

The ADL approach gives no independence from the contents of the EPROM. Therefore, it
is possible that several versions of the translator might be in existance. When a new
EPROM is released, the code generation of the translator would need to be modified, as
well as the ADL libraries required for linking. Also, all translated programs would have to
be retranslated.

(ii) Enhancements to SDR-BASIC might be made in the future (see Section 6.2.1.). The
translator will need to be modified to reflect these changes.

With an intermediate language, the translator would have to be modified to make
allowances for the changes. If the intermediate code also had to be updated then the
interpreter twould have to be changed. As there could be several versions of the interpreter
in existance (one for each version of the SDR2 EPROM), each version would require
modification.

With ADL code, the translator would require modifiaction and possibly some new entries
to the libraries.

(d) Portability.
Translated programs could be given to SDR2 users who do not have access to the
translator. Also, high level functions could be developed by Datacom and then distributed
to SDR2 users.

As the intermediate language is independent from the SDR.2 EPROM version, intermediate
code would be portable. Users without access to a translator would require a copy of the
interpreter. Several versions of the intermediate language could be in existance at any one
time (see part (c)). Therefore file transfer could only be done between systems running the
same interpreter.

If ADL code was produced by the translator, code could only be ported between SDR2s
with the same version EPROM.

(e) Speed.
As ADL is itself interpreted (by a machine code program), using an interpreter would add
another level of complexity. It is likely that interpreted programs will run several times
slower than ADL programs doing the same thing.

(f) Run Time Errors.
As inexperienced users will be writing the programs it is possible that run time errors will
occur. Having an interpreter gives one more layer of protection from nastey side effects
than does the ADL code approach. Meaningful error message could be generated by the
interpreter when something untoward happens. This possibility does not arise with the
alternative approach.

When Datacom suggested this project they had envisaged the intermediate langauge
approach would be adopted. From the previous discussion, it is very hard to conclude if
this is indeed the best. To arrive at any conclusion one must assume probabilities of certain
factors occuring.

Page9

Project Report A BASIC translator

However, because the intermediate language approach is easier to implement and possibly
easier to maintain and port, it has been the one adopted.

3.2. The Choice of the Inte1mediate Language.

There are many types of intermediate langauges that could be used for this project. Much
time could be saved if a standard intermediate language were adopted.

The advantages of using a standard intermediate language are many. There are code
optimisers and improvers available that could be improve the compactness of the code.
Also there are many interpretters available, which would come in useful in the testing stage
at least. Using a standard intermediate language increases the portability of SDR-BASIC to
other machines.

However, SDR-BASIC calls for many hardware and SDR2 specific instructions. It is
possible that inte1facing to the SDR2 could be achieved using an standard intermediate
language. This would be at the sake of compactness, or would involve introducing new
instructions resulting in losing the standardness aspect. For example, the instruction for
adding a new heap element could simply be 'Add'. In a standard intermediate langauge the
code to do the same thing would be broken down into loading all relevant variables on the
stack, and then call an external procedure.

Designing a custom intermediate language for SDR-BASIC has the advantage that the
choice of instructions can be tailored to BASIC. It is not always desirable to break down
BASIC statements down into primitive instructions. Using a higher-level instructions
instead of many low level ones has the advantage of using less memory as well as
improving the execution speed. An example is the code generated for the FOR ... NEXT
loop. The syntax of the loop is:

FOR loop variable =initial value TO upper bound (STEP increment}
loop body
NEXT (loop variable}

The step increment can be an expression and because of this the value of the expression
might only be known at run time. Therefore the code generated under a standard coding
scheme must take into account the fact that the sign of the increment affects the test that has
to be done at the end of each loop iteration. If the increment is positive then the loop cycles
around until the loop variable is greater than the upper bound. Otherwise the loop cycles
around until the loop variable is less than the 'upper' bound. A much more elegant way is
to have an instruction called NEXT. The interpretation of NEXT takes into account the
sign of the increment.

Page 10

Project Report A BASIC translator

3.3. The Intennediate Language Adopted.

The intermediate langauge that has been used is outlined in Appendix C. The main features
of it are:

(a) The name of the instructions are meaningful!
The names of the instructions are given meaningful names, rather that cryptic four letter
mnemonics. For example, there are

Addinteger
Branch True
PrintString

(b) It is based on a stack machine rather than one with registers.
This method was chosen because it is far simpler to generate intermediate code. With a
register-based machine the translator must keep acount of which registers hold values to be
operated upon. Also, the instructions themselves are more complicated as information
about source and destination addresses must be stored. In addition, the interpreter will be
easier to write as AOL is itself stack based.

(c) The stack elements are 16 bit signed integers.
This size was chosen because ADL integers (and addresses) are also 16bits long.

REALs and STRINGs are represented on the stack by their address. REALs are in the
same f01mat as in the SDR2; 6 bytes. Strings are stored as a length byte followed by the
string. Note that this effectively limits strings to be less the 256 characters long.

(d) Instructions vary in length.
Instructions can consists from between one byte and 257 bytes. Most instructions are
either one or three bytes long. One byte is alway used for the operation part of the
instruction. Two bytes are used for the operand part. Exceptions to these rules are:

LoadConstReal real
LoadConstString length string
Branchlndexed numLabels labelList
Calllndexed numLabels labelList

(e) There are special purpose instructions for SDR2 access.
To interface with SDR2 features there are several simple instructions. It is left up to the
interpreter to carry out the more detailed aspects of these instructions, such as assigning
values to the appropriate variables. ·

Page 11

Project Report A BASIC translator

Section Four.
The SDR-BASIC Translator.

The SDR-BASIC translator should do the following.

(a) Check the syntax of an SDR-BASIC program and give appropriate error messages.
The translator should generate enor messages that are meaningful to the programmer, and
give some indication where they have occurred. To avoid errors cascading, some form of
resynchronisation is needed. ·

(b) Check that typing is consistent and give appropriate error messages.
The parser should trap errors in expressions that are in conflict with the type rules of
SDR-BASIC.

(c) Produce an intennediate code version of the SOR-BASIC program.
A valid intermediate code version (or none at all) should be produced. Space for variables
should be allocated. The code should be dumped to a file in the SDR2 extrenal program
format.

(d) Produce appropriate listings.
An listing showing where e1mrs occur in the program.

There are many ways of writing a translator. There are systematic methods such as
recursive descent parsers. Given an LL grammar for the language, there are well defined
methods for writing a compiler in a high level language. Such an approach can be fast and
is very flexible.

Translators can also be developed with automatic parser generators, or so-called compiler
compilers. An example is YACC that is supplied with the Unix operating system. The
advantage of using such software tools is that it is very easy to produce a prototype.
However from personal expe1ience they have been found to perform badly when error
detection and recovery is added to the parser.

If an automatic parser generator was to be used for developing this project, it would
probably be done with using YACC on the departmental version of Unix. However,
Datacom do not have Unix. Any future maintenance would be quite inconvenient for them.
The parser would require porting to an IBM PC every time modifications to the translator
were made.

For these reasons it was considered that a recursive descent translator should be developed
in a micro-computer environment. The prefered language to use was Pascal, and as
Datacom have many IBM PCs using Turbo Pascal, this product was used. Due to the
unavailability of IBM PCs or clones, the development was done on an Apple Macintosh
usingTurbo Pascal, and the final product will be ported to an IBM PC.

4.1. Issues in Translator Design.

Conceptually a translator consists of four main program units
(a) scal1ller (lexical analyser),
(b) parser (syntax analyser),
(c) semantic analyser,
(d) code generator.

' Page 12

i

f·····

! '

Project Report A BASIC translator

The scanner processes the input characters and recognises the symbols of the language.
The parser takes these symbols and recognises the constituent parts of the program. With
knowledge of these constituent parts the semantic analyser can gather information about
what the program means. With this information the code generator can then generate
equivalent code.

In recursive descent parsers, the actual structure of a translator. differs slightly this
conceptual view. Central to it are compiling procedures that do the syntax analysis, which
call the scanner, semantic analyser, and code generator. Often the semantic analysis is done
along with the syntax analysis in the compiling procedures.

Symbolic information about symbols and variables are stored in a symbol table. All four
program units of the translator need to access the table. The scanner inteirngates it to check
if the string of characters read in correspond to a reserved word, or a user variable. The
parser has to update information about variables as the are declared. The semantic analyser
updates and uses inf01mation about variable types. The code generator stores and retrieves
infommtion about memory addresses of variables.

The interaction between programs units and the symbol table is shown in figure 1.

code
ge-:Mr:ator

synilio1 ta:ble-

ifite-rm.e-di:ate-
1----+

1:aftgti:Sge-

Figure 1.

4.2. Issues in Translator Implementation.

The translator that has been implemented is based very loosely on the P4 public domain
Pascal compiler [2,3]. The translator is a one pass compiler. It stores the code that it builds
up in memory until all parsing has finished. Because of this, the size of an SDR-BASIC
program is limited. However, as memory is critical on the SDR2 anyway this does not
pose much of a problem. At present, up to 8k of code can be generated successfully.

Page 13

Project Report A BASIC translator

4.2.1. The Symbol Table.

In the SDR-BASIC translator, the symbol table consists of an array of table elements. Each
element consists of an identifier, a class identifier, and various other fields whose
relevance depends on the class.

The classes of symbol table records and their relevant fields are:

Class Fields

Reserved words. The corresponding symbol.

Built-in functions. The corresponding symbol.

The type the function returns.

Labels. A flag to indicate that the label has been referenced.

Variables.

Array variables.

A flag to indicate that the label exists.

The address of where the code for the line starts. t
The address of where the users data starts after this line.

The address in the code space of last used RESTORE

statement to this line. t
The type.

For string variables, the maximum size.

The address of the variable. t
The type.

For string variables, the maximum size.

Number of dimensions.

Linked list of array dimensions.

The address of the variable. t

Note: The exact location of these might not be known at the time they are first referenced.

In such cases, all references to them are chained together until the actual address is known.

When it is, the chain is used to determine the addresses in the code space that need to be

patched up. The last element in the chain has a value of -1.

In the SDR-BASIC translator, there are 503 elements in the hash table. Of these about 130

are taken up with reserved words and built-in functions. When the number of elements

used is 450, no more elements can be elements. This is to avoid degrading of performance

when the table gets full. It is unlikely that this will happen anyway, as there is room for

320 vraiables, arrays, user defined functions, and labels. If more space is needed, a

constant in the program is all that need be changed.

Page 14

Project Report A BASIC translator

A hash function is used to find particular elements in the symbol table. The key for the

function is the identifier. The hash function used is:

index (ordinal value of first character* 17 +
ordinal value of last character* 103 +
length of identifier* 55) modulo 503

If the element at index is not the desked one, 37 is added to the index (modulo 503). The

resolving continues until either the correct or an unused element is found. This hash

function was chosen because it gives good results. Arriving at it was a bit of a hit and miss

affak. The SDR-BASIC translator keeps a record of the number of retries that had to be

made. By monitoring this, and changing the values of the factors, the hash function was

able to be fine tuned.

4.2.2.The Scanner

The scanner converts input characters to symbols. The following diagrams shows how the

input symbol is determined from the first non-blank character.

t
rocess ideri.tifier.
Si'L :be - reserved word

- :bu:i.1 t -ifl. fuMtiofl.
- vsris:b1e
- user -defiMd fuMtiofl. -------to Shifl$j, 1i ters1 .

1eHer

. , dig.it
Hum.eric 1i ters1.

specis1 o
--------- +, -, :IIE, /, =, <, >,<=,etc

---------11 Return E OL:t-rsy e±\d of HM o
Figure 2.

Page 15

Project Report A BASIC translator

Several unusual features of the scanner need explaining.

In SDR-BASIC a variable is identified by its identifier and type. This means that all the

following variables are all different.

banana% (integer)

banana$ (string)

banana! (real)

banana% () (integer array)

banana$ () (string array)

banana! () (real array)

To complicate matters, the following can appear:

banana (default type for identifiers starting with 'b')

banana () (array of default type for identifiers starting with 'b')

At some stage, the type of the identifier read in must be dete1mined. To simplify the parser,

this is done in the scanner. As variables have unique entries in the symbol table, a unique

identifier is created from the one read in. For example, if 'banana ' was read in, and the
'

default type for vaiiable begining with 'b' was string, then the unique identifier used is

'banana$'. Similarly, if the array 'banana' was read, 'banana$(' would be used.

Labels a.re handled in the scanner rather than in the parser. A label always appears at the

start of the line. When the scanner finds a integer constant at the start of the line, it adds the

label to the symbol table. Also, if there is are any previous references to this line eai·lier in

the program, the scanner patches up the code space so that the branches are directed to the

current value of the code pointer.

4.2.3. The Parser.

The pai·ser is modelled on a recursive descent approach. Error detection and resolution,

and type checking have been added. These aspects are very well documented in the

literature on the subject [5]. Therefore the coverage here is rather superficial.

Page 16

Project Report A BASIC translator

4.2.3.1. Recursive Descent Parsers.

Recursive descent compilers are designed for LL grammars. An LL grammar for

SDR-BASIC is given in Appendix B.

The parser (for an LLl grammar) is constructed as follows. For each terminal symbol in

the grammar, a procedure is written that checks to see if the last scanned symbol is correct,

and then reads in the next symbol by calling the scanner. For each production, a procedure

is written which calls the procedures corresponding to the symbols in the right hand side of

the production in order. The parser is started by calling the scanner, and then calling the

top-level parsing procedure.

This is a very basic recipe. It will normally be modified to avoid recursive calls. Also,

terminal symbols that appear only in one production might be handled in the procedure for

that production. For example, in the SDR-BASIC grammar, we have

<program> : := <lines>

<lines> : := <line> I <line> eoln <lines>

For these productions the following Pascal procedures could be constructed.

procedure pPROGRAM;

begin

pLINES;

end;

procedure pLINES;

begin

pLINE;

while (insy = eolnsy) do begin

insymbol; {skip past end of line}

pLINE;

end;

end;

The parsing procedures are normally padded out with enor detection code. Also, in some

places type checking code needs to be added.

Page 17

Project Report A BASIC translator

4.2.3.2. Error Handling.

To detect errors a check is made to see if the symbol last read in from the scanner is the

same as the one that is expected. If they are different, an error message should be

displayed, and the symbol stream from the scanner should be resynchronised.

Resynchronisation requires knowing all the symbols that can follow the one that is being

checked in the given context. To do this, a follow set is passed as a parameter to each of

the parsers procedures. The follow set passed on consists of the follow set passed to the

calling procedure plus the symbols that can follow in the given context. To resynchronise,

input symbols are skipped until one if found to be in the follow set.

4.2.3,3. Type Checking.

Most of the type checking is concerned with expression parsing. The parser has to make

sure that the types of operands being operated upon are the same. If they are not, either

type coercion must be done or a type mismatch error must be given.

The way type checking for expressions is done is the same as if a parse tree were built up

for the expression. At the leaves of this tree there are operands. At the nodes there are

operators. When the scanner reads in an operand (variable, user defined function, literal,

or built-in function) it can detennine its type. Starting at the nodes of the tree, the types can

be propagated up until the type of the root node has known. The expected type of the

expression can then be checked with the expected type of the top node for compatibility.

The propagation of types up the tree is done as follows. Each operator can only operate on

a subset of types.

operator

unary -

+

*
I
div
/\

<,:S:,>,~,:;t:

and, or, not

valid types

integer, real

integer, real, string

integer, real

integer, real

real

integer

real

integer, real, string

integer

Page 18

Project Report A BASIC translator

Therefore, a check has to be made to see if an operator and its two operands are

compatible. If they are not, an error has occured. If they are, then the two operands are

corerced to the same type if need be, and the type is passed up the tree.

4.2.3.4. Automatic Type Conversion.

Coercion (automatic type conversion) occurs when the given and expected types in an

expression are different, and it is possible to convert the given type to the expected one. In

SOR-BASIC, this can happen between integers and reals. There are occasions when reals

are coerced into integer as well as when integers are coerced into reals. If an operand is

valid for both integers and reals, and coercion is needed, then the integer will be widened

to form a real. An exception to the widening rule is with assignment, where coercion is

always to the type of the left hand side variable.

Consider the following example.

a%= b% * 2 + c%

Figure 3.

Here, the * operator is operating on two integer operands. Therefore it produces a result of

type integer. The + operator is operating on an integer and a real. To make the operands the

same type, the integer is widened to a real. The assignment has a left hand of type integer

and a right hand side of type real. On assignment, the right hand side is always coerced to

the type of the left hand side.

Page 19

Project Report A BASIC translator

4.2.4. Code Generation.

Code is generated as the program is being parsed. Calls to the code generating procedures

are made by the parser. There are procedures to do the following.

Add a instmction to the code space (procedure Genl)

Add an integer (2 bytes) to the code space (procedure Gen2)

Add a byte to the code space (procedure Gen3)

Add a real (6 bytes) to the code space (procedure Gen4)

Add a string (1-256 bytes) to the code space (procedure Gen5)

Create space for integer variables (procedure CreatelntegerSpace)

Create space for string variabels (procedure CreateStringSpace)

Create space for real variabels (procedure CreateRealSpace)

These routines maintain the code space and various pointers that reference it.

Each part of the parser handles the code generation for the part of the language that it

parses. As an example, consider the SDR-BASIC GOTO statement. The syntax of the

statement is:

GOTO label

The simplified code for this looks like:

(**)Genl (Branch);

pLABEL (...);

{Generate Branch instruction}

{Let pLABEL handle the rest!}

Using this methed, code generation can be approached in a modular way.

Page20

Project Report A BASIC translator

4.2.4.1. The Code Generated.

The code space generated by the translator looks like:

0
1:rdtistiot\

Code

Data Ares

11\teger Variables

Real Variables

~ 32?67
Stri:t\g Variables

Figure 4.

The 1nitiation part of the code space con~ists of instructions to initialise the data pointer and

variables to their default values.

The length of the code varies in length. It has all the code c01Tesponding to the

SDR-BASIC program. The code area always ends in an Exit instruction.

The data area is variable length and always ends in two bytes of 255.

All va1iables of the same type are strored contiguously. This has been done for two

reasons.

(a) To simplify the initialisation of variables.

(b) For future enhancements to the interpreter. At some later stage, variable space storage

could be allocated in the interpreter. This would make the object code file much smaller. If

variable storage space was deallocated when a program terminates, memory would be

saved in the SDR2. This is becaues only one program's vadables are active at on time.

Page21

1 •. -

Project Report A BASIC translator

4.3. Translator Output.

The translator must produce an object code file in the form of an SDR2 external program.

The format consists of lines of the following ASCII characters.

2·0
I I o·o I

• Address Address
Byte O • HSB LSB

Byte 31 Check-

I I

sum
I I I I I I I

Figure 5.

Bytes appear as the ASCII representation of their hexadecimal notation. For example, 32 is

represented as the two characters '20'. The check sum is the negative of the sum of all the

bytes on the line.

4.4. Issues in Porting the Macintosh Version to an IBM PC.

As the Macintosh version of the translator has been written in Turbo Pascal, it should be

relatively stright forward to port it to an IBM PC environment.

Macintosh Turbo Pascal and IBM PC Turbo Pascal have the following differences:

(a). In both versions large programs must be broken up into segments. There are separate

segments for code, data and heap space. The size of the segment depends on the computer

system being used.

On the Macintosh, the segments are 32k long. There is a very simple compiler directive for

doing this. One simply inc~udes a Pascal comment before a function or procedure in the

form of

{S+ segment name}

All code generated after this point will be placed in the named segment.

On the IBM PC, the segments are 64k long. If more than one segment is needed, a

complicated method of overlays is required.

The amount of 68000 code that is generated on the Macintosh is about 52k. This means

that on the Macintosh segmentation has had to be done. However, assuming that about the

same amount of 8086 code is generated on an IBM PC, there will be no need for

segmentation.

Page22

i-

Project Report A BASIC translator

(b) The Macintosh Version of Turbo Pascal has many enhancements over the PC version.

For example, there are more powerful string to number conversions. Such functions have

been avoided if they make for harder porting.

Page23

!

I
1-

Project Report A BASIC translator

Section Five.
The Int'erpreter.

Translated programs will be loaded into the SDR2 where they will be run by an interpreter.
The interpreter will be written in ADL and loaded as an external program.

Because of lack of time, this part of the project has not been completed. This section gives
an outline to what the interpreter should do. Possible difficulties with implementation are
high lighted.

(a) Determining which program to interpret.
The interpreter needs to know which program to interpret. As there can be many in the
SDR2's memory at any one time, some sort of menu selection is needed. Once the
program has been selected interpretation can start.

(b) Machine variables.
Effectively, the interpreter emulates a virtual machine, whose machine language is the same
as the intermediate language used for this project. The interpreter will therefore need to
have some variables and data structures in order to manage the code and data.

i. Program Counter.
The program counter holds the address of the next instruction to be interpreted. Before a
program is interpreted, the program counter is initialised to zero.

ii. Program Stack.
The intermediate language that is used is a stack oriented one. Therefore a stack must be
implemented. It is possible that the ADL stack can be used for this purpose. The stack will
be empty when the program starts and when it finishes.

The stack elements are 16 bit signed integers.

iii. Stack Pointer.
If a stack is implemented, a ~tack pointer is needed to point to the first empty element in
the stack.

iv. Frame Pointer.
A frame pointer is needed to reference parameters to user defined functions and built-in
functions in the stack.

1

v. Data Pointer.
The data pointer is needed to reference the data area, where the values in the SDR-BASIC
DATA statement are stored. The data pointer is reset by the Restore address
instruction.

vi. Real and String Operand Space.
As stack elements are 16 bit values, real and string operands cannot be stored there. Some
area is needed internally in the interpreter for this purpose. A problem arises here because
there is no limit to the number of real or stting operands that need to be stored. For
example,

a! = bl! A b2! A b3! A b4! A ••• bnl
requires space for n reals.

The values placed in the stack need only be what is convenient for the interpreter, as the
type of operands is known from the context of the program. Addresses would suffice, as
would indexes into the array where the real and suing values are stored.

Page24

Project Report A BASIC translator

(c) Interpreting Instructions.
The interpreter proceeds by starting at the first instruction in the code. It must then interpret
it. This requires reading relevant operands from the code, and stack, and updating the
stack, program variables and 'machine' variables. After the instruction has been
interpreted, the interpreter should procede to the next.

As the intermediate code will reside in the SDR2 memory at an address not known at
translation time, all addresses in the code are in effect an offset from the start address of
the code. Therefore, address c01iversion will need to be made at run-time.

Interpretation stops when an error or an Exit instmction is reached.

(d) Problem Instructions.
Most of the intermediate language instructions are straight forward. However, some are
quite complicated.

i. Nextlnteger, NextReal.
These are high level instmctions for controlling the FOR looping construct in BASIC. The
format of these is:

Nextlnteger start of loop address
NextReal start of loop address

On the stack both expect the following:
Address of loop variable (Next to top)
Address of control block (Top of Stack)

The control block consists of the following:
Upper bound .of loop·
Loop increment value

The type of these and the loop variable are the same.

The processing that has to be done is:
1) Load the value of the loop variable onto the stack.
2) Load the loop increment value.
3) Add these values together to give the next value of the loop variable.
4) Store the new value of the loop variable.
4) If the sign of the increment value is positive then:
4a) if the upper bound is greater than the new loop variable value, branch to start of loop,
else terminate loop, else:
4b) if the upper bound is less than the new loop variable value, branch to start of loop, else
terminate loop.

ii.Readinteger, ReadReal, ReadString
Only strings are stored in the data area. Therefore, to read an integer or a real, the string
will need to be converted.

Also, a check must be made to see it all the data has been used. Two bytes of 255 indicate
the end of the data area. When these are reached, an error should be issued and the
interpretation should cease.

Page25

Project Report A BASIC translator

iii. CallFunc, ReturnFunc
When a user-defined function is called a stack frame must be built up. In this frame, the
previous value of the frame pointer and the return address must be stored. After a function
with n parameters has been called, the stack looks like:

stack pointer-.

return address

frame pointer-. Previous FP
(FP) ,_p_a_r-am_e_te_r_n--1

parameter 1

The user-defined function will cause the resulting value to be left on the stack. On return
from a function, this stack frame must be broken down. The program counter will need to
be set to the return address, the frame pointer reset. The parameters on the stack should be
removed. The resulting stack will have the result of the function at the top.

iv. Heap Access.
The approach for heap access was designed to be easy for the programmer to use and for
the writer of the translator to write. Unfortunately, the interpretation will be very difficult.

1. Fields
SDR-BASIC has a set of predefined variables that correspond to the names of the fields in
heap records. The variables are stored in the interpreters address space rather than in the
translated program's variable storage area. The reason for this is that there are many of
them, and having to include them in all programs would require a lot of memory.

2. Adding records to the heap.
When a record is added to the heap, the interpreter has to detem1ine the type of the record.
This is done by looking in the appropriate record. It must then transfer the variables
corresponding to fields in the records of this type to the heap. To do this efficiently, a
look-up table is required.

3. Retreiving records from the heap.
When the record in the heap is located, its type is checked. Variables corresponding to
fields in records of this type must then be updated from the fields in this record.

Page26

Project Report A BASIC translator

Section Six.
Results.

6.1. What has been done.

Up until mid term 1987, much time was spend researching relevant topics. A survey of the
SDR2 was undertaken. What was found is given in Appendix A.

Many versions of BASIC were examined for suitable features. Of these Microsoft BASIC
was chosen as the one to base SDR-BASIC (see Appendix B) upon.

From personal experience and from relevant literature, the intermediate language was
designed. An overview is given in Appendix C.

Programming was started in mid tem11987. It was originally intended for the development
work be done on an IBM PC, lent by Datacom. Because of high demand for IBM PCs at
Datacom, this was not possible.

The translator was wdtten using Turbo Pascal on an Apple Macintosh. Over 3500 lines of
code have been produced. The translator has been completed to the stage where it correctly
parses, type checks and generates code. If there al'e no errors, the code generated is output
in the SDR2 external file format. An error listing is produced. Also, a dump of the code in
intermediate language format is produced. Some documentation for the translator is given
in Appendix. D.

There are still one or two loose ends to tidy up with the translator. The author did not have
time to determine the format of real numbers as they are stored internally in the SDR2.
Where reals must be put in the code (in the LoadConstinteger instruction) an appropriate
sized space is allocated.

The translator has not yet been ported to an IBM PC. However, there should be little
difficulty in doing this.

Because of lack of time, the implementation of the interpreter was not attempted. Much
back ground work would need to be done before any programming could start. ADL has to
be mastered, along with understanding the many details of the internal structures of the
SDR2.

6.2. What More Could Be Done.

There is still a lot of work that could be done in this project. It there was time the following
would have been attempted.

6.2.1. Enhancing SDR-BASIC.

As it stands, SDR-BASIC provides some powerful features, including many
enhancements to allow the programmer to use SDR2 features. However, there are still
many areas which could be improved.

Page27

Project Report A BASIC translator

6.2.1.1. Adding more BASIC features.

SDR-BASIC is based on Microsoft BASIC. There are many features that have not been
implemented so fa1· because they were considered to be not important. Many of these are
string functions, like STRING$(string, n) which returns a string constisting of the given
string duplicated n times. There are also numerical functions like a random number
generator. These would not be useful for most surveying applications. However, they
would be if the programmer would like to develop recreational programs.

An important omission is that there is no way of reading one input character at a time from
the keyboard. SDR-BASIC INPUT reads in a whole line of characters that end in a
new-line. Often there are times when it would be convenient to scan the keyboard to see
whick keys are being depressed or to wait until one key is pressed. Many BASICs provide
an INKEY$ or GET function to do precisely this. These could be adopted by
SDR-BASIC.

Experienced SDR-BASIC programmers might like there to be structured programming
constructs. BASIC programs tend to turn quickly into a rats nest of branches. Structured
programming constructs like procedures, functions, and local variables could make
SDR-BASIC programms much more readable.

6.2.1.2. Providing better interfacing with the SDR2.

With SDR-BASIC a programmer can access heap records and write their own input/output
drivers. There are many other features of the SDR2 that would be useful.

(a) Access to the configuaration variables.
Configuration variables specify the working environment of the SDR2. They can be
viewed using the Parameters menu option. The variables include:
Unit used for input and output. (Values stored in the heap are in standard units).

- Angle (degrees)
- Distance (meters)
- Pressure (mm Hg)
- Temperature (degrees Celsius)

Optional correction flags
- sea level correction
- Atmosphere correction

Tolerances
- Vertical observation tolerance
- Horizontal observation tolerance j

Input/Output parameters
- Tranfer speed
- Parity option flag
- Word length
- Checksum option flag
-Acoustic
- Timeout period

These parameters are stored in the heap, and so they can be retreived with the heap
manipulation commands. However, it would be much nicer if there were a set of
pre-defined variables for these. These variables would need to have values assigned to
them just before a program is run.

Configuration parameters should only be able to be referenced. If they could be modified,
it is possibility that they might not be reset after the program. This would leave the SDR2
in a undesirable state, which is not desirable.

(b) Unit conversion functions.
Values are stored in the heap in standard units. It is these that the programmer must deal

Page28

Project Report A BASIC translator

with. With the present version of SDR-BASIC, the programmer must write user defined
functions to convert between units. For example, to convert between degress Celcius and
Fahrenheit,

DEF FNCtoF (degC) = degC*9/5 + 32

Functions to convert between these units and other commonly used ones will make
customising input and output much easier.

(c) Angle input.
On the SDR2 angles can be entered in as decimal values or in a special degrees/minutes and
seconds format (ddd.mmss). However, SDR-BASIC only has routines to input integers,
reals and string. It is not a trivial task to provide angle input using the present features of
SDR-BASIC. Therefore, introducing an angle input command would be extremely useful.

(d) Input/Output modifications.
In SDR-BASIC there is no way of telling if output or input was successfully completed.
Knowing the status of i/o operations makes for more robust programs. A pre-defined
variable could be introduced called STATUS. It could be updated after every input and
output to reflect how successful the operation was.

In SDR-BASIC the input routines read in information until a new-line is reached. Often,
the delimiter might be something different, such as a space or comma. Some way of
specifying the delimiter would make input more flexible.

6.2.2. Improving the Translator.

The translator reads in a SOR-BASIC program and produces equivalent inte1mediate code.
There are many ways in which this code can be improved.

(a) Adding range checking information.
The intermediate language has instructions designed for range checking. (see Appendix C).
To keep the amout of code to a minimum, the translator does not make use of them.
However, as inexpe1ienced programmers will be using the translator, it might be desirable
to add range checking.

(b) Compiler directives
Once a program has been written, tested and found to be without errors, the code size
could be reduced by turning range checking off. To do this compiler directives could be
introduced. These could f01m a part of an SDR-BASIC comment. For example

REM *norange
would tum range checking off, and

REM *range
would tum range checking on again.

Many other compiler directives could be included. Ones to control listings, code generation
and case sensitivity are obvious candidates.

(c) Adding debugging information.
Inexperience users are likely to be faced with run-time errors from time to time. It is up to
the implementor of the interpreter to provide meaningful error messages. When an error
occurs, it will be very difficult to determine where it occured. For this reason, including
du bugging infonnation with the intennediate code is a good idea.

This can be achieved by adding information to the end of the data area (see section 4.2.4.).
This information could consist of a table of pairs of address and line numbers. The
addresses are where the code for the corresponding line number starts in the object code.
When an error occurs, the interpreter can determine which line the error occurred.

Page29

Project Report A BASIC translator

(d) Warnings against bad programming practices.
BASICs tend to be very liberal when it comes to branching. It is possible to branch into a
loop. Such practices often lead to stange errors occuring. To deter the programmer from
doing this, warnings could be given at translation time.

(e) Optimisation.
As memory and speed requirements of the intermediate code are very important for this
project, an attempt at optimisation would be worth while.

(f) The intermediate language could be improved.
Some attention to compactness was made when the intermediate language was designed.
The end result was quite adaquate. However, more time could be spent fine-tuning. The
result would be far more compact code.

All operands are 16 bit signed integers. Often only 8 bit integers are needed. Therefore,
variable length operands could be used. For example, the instruction LoadConstinteger has
one operand which is always in the range -32768::;; operand::;; 32767. If the operand was
in the range O ::;; operand ::;; 255 only 8 bits are needed.

6.2.3. Improving the Interpreter.

The specifications for the interpreter in section 5 are for the translated code as it now
stands. If changes were made elsewhere they would have to reflected in the interpreter
also. There are also a few ways to improve the interactivity of the interpreter.

(a) Allocation of Variable Storage Space.
At present variable storage space is included as a part of every translated program.
However, the variables only remain active during program execution. Before and after a
program is run they are not used. To save on space, the code and interpreter could be
modified so that the variables were allocated when a program starts running, and are
deallocated when the program ends. In this way, at most one set of program variables
occupy memory at one time.

(b) Debuging Facilities.
The suggestion of adding debugging information to the code was mentioned in 6.2.2. part
c. The interpreter would be able to make use of this information, especially when run-time
errors occur. Also, a trace facility could be introduced. The interpreter could process one
line, display the line number and then wait for a key press. This would allow non-fatal
errors to be pin-pointed more accurately. '

(c) Loading in SDR-BASIC Programs.
At present, programs are loaded into memory as external programs. It would be nice if the
interpreter could handle this input. It would help the interpreter keep track of which
programs have been loaded into the SDR2. Also, a more flexible code file could be
employed, which has a header to give useful infommtion about the code.

Page30

Project Report A BASIC translator

6.2.4. Improving the Development Environment.
At the moment, programs will be written and translated on an IBM PC, and the
intermediate code will then be loaded into the SDR2. Testing of the program will be done
on the SDR2. If any modification is needed, the source on the IBM PC must be updated,
retranslated, down loaded to the SDR2, and retested. Ideally, the turn around time between
testing and modification should be kept to a minimum. The following will make for a better
development environment.

(a) IBM PC testing phase.
An IBM PC-based interpreter could be implemented so that the whole testing phase could
be done in the same environment. To do this, ADL and the SDR2 software would need to
be ported to an IBM PC. This is a major task in itself.

An alternative is to write an interpreter in Pascal which would test the standard features of
SDR-BASIC. Though not totally useful, it would give some assurance to how error-free a
program is.

(b) Include a debugger in the SDR2-based interpreter.
This will help in the diagnosis of run-time errors.

Page31

Project Report A BASIC translator

Section Seven.
Conclusion.

Implementing a BASIC translator for the SDR2 is a worthwhile endeavor both from a
practical and theoretical point of view. There is a need for this software product in the
surveying world. At present, users of the SDR2 electronic field book have to use a
powetful yet inflexible computer. There are many opportunities that will open up when the
surveyor can develop and use his or her own software.

Much has been learnt about the practical aspects of translator design. From designing the
BASIC language, through to designing the intermediate code and the translator, many
compromises have had to be made to take into account the environment that the final
product will be used.

The end result of this project is that a translator for SDR-BASIC has been written. As the
intermediate code interpreter has not yet been implemented, the code produced could not be
tested. However, the author is confident that the code produced is satisfactory, because
the code that is produced look sensible on close analysis.

There is still much work to be done before the translator will be ready to be distributed
among the surveying community. Much of the ground work has now been done. The
main thing left is to implement the interpreter that runs in the SDR2. This is surely a major
project in itself.

Page32

Project Report A BASIC Translator

Sectio11 Eight.
References.

[l] SDR2 Electronic Field Book, Application Guide

[2] S. Pemberton and M.C. Daniels, Pascal Implementation, Compiler and
Assembler/Interpreter, Ellis Horwood 1982

[3] S. Pemberton and M.C. Daniels, Pascal Implementation, The P4 Compiler, Ellis
Horwood 1982

[4] MBASIC-86 Reference Manual, Microsoft Corporation, 1982

[5] Aho, A.V. and Ullman, J.D., The Principles of Compiler Design, Addison Wesley
1977

Page 33

Project Report A BASIC translator

Appendix A.
The SDR2

Datacom Software Research has developed software for a hand-held data recorder used by
surveyors, called the SDR2 Electronic Field Book. The SDR2 collects and stores
observations from survey instruments. A complete range of field data collection programs
and calculation programs are provided so that observations can be checked and ve1ified in
the field. Observations are taken automatically from electronic survey instruments and can
be entered via the keyboard for optical instruments. The stored data in the SDR2 can be
transmitted to a variety of different types of data processors in a variety of ways.

A.1. The Hardware

The SDR2 hardware is based on the MSI/85 portable tenninal. The MSI/85 is 9cm x 15cm
x 4cm and weighs about 0.5kg. It can be held in one hand, as therefore is truely portable.
Enhancements to the basic MSI model have been made. These include a keypad especially
designed for the SDR2, and onboard EPROM containing the SDR2 software.

The SDR2 is based on an 8-bit microprocessor. The address bus is 16 bits wide, giving
64k of addressable memory. This is divided into 32k of ROM, and 32k of RAM. More
recent versions of the SDR2 have up to 128k of RAM, which is achieved through page
switching. The contents of memory is retained permenantly, even when the SDR2 is not in
use.

The SDR2 has a 16 character liquid crystal display.

The keypad consists of 33 rubber keys. Included in these are numbers O through 9,
decimal point, minus, arrow keys (for moving around through menu options and data
records), on and off keys, shift, clear, enter, and 10 keys for accessing the various menus
and programs. Alphabetic characters can be entered from the same keypad by using a shift
key to toggle between numeric and alphabetic modes.

To be able to connect directly to electronic survey equipment the SDR2 has an in-built (15
pin, non-standard) interface, and comes with the appropriate cable. The cable has a special
6 pin connector to interface with survey equipment. The same connector can can be
connected to a printer adaptor. This allows hard copies of the collected data to be made.
With an optional communications adaptor (RS232) the SDR2 can be connected to a
computer port using the same cable.

On top of these there is a built-in modulator or acoustic coupler. This can be used do
download collected data via a telephone line to a remote computer. The acoustic coupler is
also used to provide audio feedback on key depression.

A.2. The Software.

The software that comes with the SDR2 consists of data collection programs, calculation
programs, searching programs that retrieve particular records from the data collected so
far, and input/output programs.

Data collection programs automatically take an observation from electornic surveying
equipment.

Page34

Project Report A BASIC translator

The calculation programs perform typical surveying calculations. They are:

Traverse: Provides the field data collection procedures necessary for a transverse

including side shots, coordinates and closure calculations.

Inverse: Computes distances and angles between two known points.

Topography: Automatic recording of observations, reduced data or coordinates for

topographical surveys.

Resection: Determines the coordinates of the instrument station from sets of

observations to known points.

Remote elevation: Calculation of the relative height of an object directly above or below a

sighted target.

Collimation: Determination of the instrument's collimation error for automatic

correction of observations.

Slope reduction: Calculation of the vertical and horizontal components of an observation.

Coordinates: Calculation of the coordinates of a point.

Setting out: Location of points in the field using known coordinates.

Keyboard input: Input of known coordinates or directions.

The software in the SDR2 resides in the 32k of EPROM. It has been wdtten in a

combination of ADL and assembler.

ADL is very similar to Forth. ADL is stack based and the language syntax is in postfix

notation. It is a 'threaded' language. There are a few primitives that are written in

assembler. Higher level commands are defined in terms of these and other ADL

commands. Input and output routines have been written in assembler to achieve a high

level of performance.

ADL is implemented using tables. Every ADL instruction is represented by a one byte or

two byte number. When an ADL program is interpreted, the bytes are used as indexes into

these tables. The table contains the address of where the code for each instruction starts.

This table driven approach causes ADL to be ve1y compact, even more so than assembler.

As memory is a very important resource in the SDR2, any steps that can be taken to

minimise its usage will be taken. Often, by cunning reshuffling of the numbers

representing instrunctions many bytes can be saved. For example, if an instruction

represented by two bytes was found to be used more frequently than an instruction

represented by one byte, their representations might be interchanged. Because of this, the

SDR2 has undergone many revisions over the years, and will undoubtably continue to do

so in the future.

Page35

Project Report A BASIC translator

A.3. Data Strorage.

Data that has been collected is stored as records in a heap. The heap is partitioned sections.

Each section consists of a collection of records pertaining to on particular surveying job or

site. Each job is logically independent from all others. If more data is collect, or previous

data is reviewed it id done so within the current job.

The records in the heap are variable length. Every record has many fields. The first two are

always the same. They are:

Type Code

Derivation Code

The type code defines the type of the record. The derivation code specifies where the

particular record was created.

The elements in the fields have varying types. For example, an observation record has:

Type code 09 (integer)

Derivation Code (2 characters)

Source point number · (integer)

Target point number (integer)

Slope distance (real)

Vertical angle (real)

Horizontal angle (real)

Description (16 characters)

A complete listing of the fields in each record types is given in the SDR2 Application

Guide [l] on page 121.

All measurement values in the heap are stored in standard units. They are:

Measurement Unit

Length

Angle

Metres

Degrees

Pressure mm of mercury

Temperature Degress Celcius.

It should be noted that other units can be used for input and output. These units just

specify how the data is stored internally.

Page36

Project Report A BASIC translator

A.4. External Programs.

The SDR2's RAM is also used to store programs that have been loaded in. These

programs are normally written in ADL. There are size restriction on external programs.

Also, due to the table-chiven nature of ADL there is a limitation on the total number of

variables and functions used in the external program.

A.5. System Parameters.

The SDR2 has a set of parameters and configuration variables that give much flexibility to

the system. They are explained in detail in the SDR2 Application Guide. [l].

(a) Instrument Parameters.

These parameters are needed to define the electronic surveying equipment being used.

Included here are:

INSTRUMENT type

SERIAL NO of instrument

VERTICAL ANGLE, where the vertical angle is measured from.

(b) Measurement Units.

The unit types for measurements can be chosen from a set of options. For example

DISTANCE UNIT: metres or feet

(c) Corrections.

PRESSURE UNIT: MmHg, Inch Hg or mbar

TEMPERATURE UNIT: Celcius or fahrenheit

Allowances can be made for several corrections if desired. These correction include

SEA LEVEL CORRECTION

PRESSURE & TEMPERATURE CORRECTION

(d) Tolerances.

The tolerances for several readings can be specified.

VERTICAL ANGLE TOLERANCE

HORIZONTAL ANGLE TOLERANCE

Page37

Project Report

(e) Input and Output Parameters.

The linespeed, format and mode of data transmission can be selected.

TRANSMISSION SPEED

PARITY SETTING

WORD LENGTH

CHECKSUM generation option

A BASIC translator

ACOUSTIC, use RS232 cable or integrate modulator

Page38

Project Report A BASIC translator

Appendix B.
SDR-BASIC.

SDR-BASIC is based on Microsoft BASIC [4]. Because of this, this section will only high
light the areas where SDR-BASIC deviates radically from the Microsoft version.

B.1. A Brief Overview of SDR-BASIC.

(a) Line Format.
Program lines in SDR-BASIC have the following format (curly brackets idicate optionals):

{label} statement {: statement ... } <carriage return>

The programmer has the option of placing more than one statement on a line, but each
statement must be separated from the last by a colon.

Labels are optional in SDR-BASIC. When they are used, they can appear only once, in
any order. Labels must be an integer value in the range of O to 327 67.

(b) Standard Features That Have Been Implemented.
Briefly, the following are supported:

Variable identifiers: a letter followed by up to 15 p.lphanumeric characters.

Types:

Default types:

Assignment:

integers, reals, and strings, plus multidimensional arrays in each of

these types.

All variables are assumed to be reals, unless:

a) Followed by a"!" (real),"%" (integer) or"$" (string),

b) Default type changed with DEFINT (integer), DEFSTR (string), or

DEFSNG (single precision real). There are no allowances for

double precision reals.

LET is optional. CLEAR sets all numeric values to 0, and strings to

null("").

Built-in Functions: truncate (INT),

absolute value (ABS),

sine (SIN),

cosine (COS),

arctangent (ATN),

square root (SQR),

sign (SON),

loge (LOG),

ex (EXP),

substring (MID$, LEFT$, RIGHT$),

character to integer conversion (ASC),

Page39

Project Report

integer to character conversion (CHR$),

string length (LEN),

string to numeric conversion (VAL),

numeric to string conversion (STR$).

A BASIC translator

User-Defined Functions: The user can specify his or her own function, being any type and

having any number of parameters of any type.

e.g. DEF FNarcsin (x) = ATN (x I SQR(-x *x+l))

Control Suuctures: branch to a label (GOTO),

Input/Output:

Other:

conditional statements (IF .. THEN .. ELSE),

for-loops (FOR.NEXT),

subroutine calls (GOSUB .. RETURN),

while loops (WHILE .. WEND),

repeat loops (REPEAT .. UNTIL),

computed goto and gosub (ON .. GOTO . ./ON .. GOSUB ..),

program termination (END).

write to display (PRINT),

input from keyboard (INPUT),

user data (DATA),

read user data (READ),

reset data pointer (RESTORE).

Comments (REM). The rest of the line is ignored.

(c) Deviations from Standard BASICs.

1. The DIM statement.

The size of a dimension must be expressed as an integer constant.

2. The INPUT Statement.

Only one variable can be input at one time,

3. The FOR.NEXT loop.

In most BASICs, ajoining NEXT statements can be elided. Consider,

FOR i% 1 TO 10

FOR j% = 1 TO 10

NEXT j%

NEXT i%

Instead of the two nexts we could have

NEXT j%,i%

This is not supported by SDR-BASIC.

Page40

Project Report A BASIC translator

4. Strings.

In SDR-BASIC strings are any sequence of up to 31 characters, by default. For longer

strings, the maximum length must be included in square brackets after the variable name.

For example,

banana$ [128] = ""

defines the string banana$ to be up to 128 charactes in length, and assigns it to have the

value null.

(d) Enhancements To Standard BASICs

Several new features have been added to provide access to SDR-2 features.

Retreiving:

Searching: ·

Adding:

Output:

Input:

Retreive the last element added to the heap. (GE1LAST)

Retreive the record that was added after the last one referenced.

(GETNEXT)

Retreive the record that was added before last one referenced.

(GETPREVIOUS)

Search through the heap, and retrieve the last record of the given

type.(GETTYPE (type))

Search through the heap and reu·eive the last record which contains

the given point number (either as a ,source point or a target point).

(GETPT (point))

Add a record to the end of the heap. The records type is in stored in

the variable RECORDTYPE. (ADD).

Output via the RS232 port. (LPRINT)

Output via the acoustic coupler. (PRINT#)

Input via the RS232 port. (LINPUT)

Input from surveying equipment. (INPUT#)

Page41

Project Report A BASIC translator

B.2. SDR-BASIC in BNF

A vertical bar (I) separates production options.

Braces ({ }) are used to show optional symbols.

Non-terminal symbol appear inbetween <and>.

Quotes ("") are used to show terminal symbols which could be confused with other

symbols.

<program>

<lines>

<line>

<statements>

<statement>

<assignment>

<expression>

<operator>

<operand>

<literal>

<variable>

<function>

<funct-name>

<built-in>

<expr-list>

<unary-op>

<control>

<if>

<then>

· ·= <lines>

::= <line> I <line> eoln <lines>

: := {<label>} <statements>

··= <statement> I <statement> : <statements>

: := <assignment> I <control> I <io> I <declaration>

<rem> I <enhancement> I <null>

::= clear I {let} <identifier>

: := (<expression>)

<expression>

<operand> <operator> <expression> I

<operand> · 1

<unary-op> <operand>

: := + I - I * I I " I = I > I >= I "<" I "<=" I

"<>" and or

: : = <literal> <variable> I <function>

::= <string-literal> I <real-literal> I

<integer-literal>

: : = <identifier>

<identifier>

::= <funct-name>

: : = <identifier>

<expr-list>)

(<expr-list>) }

<built-in>

::= sgn I sqr I abs I int I sin cos

mid$ I left$ right$ I chr$ asc

tan

len

: : = <expression> <expression>, <expr-list>

: := + I - I not

: := <if>

<on>

<for>

<end>

<goto> I <gosub> I <return> I

<while> I <repeat>

: := if <expression> <then> <statements>

{ else <statements>

: := then I

Page42

atn I

Project Report

<for>

<body>

<separator>

<next>

<on>

<label-list>

<goto>

<go sub>

<return>

<end>

<while>

<repeat>

<io>

<read>

<var-list>

<print>

<print-list>

<print-item>

<io-sep>

<input>

<data>

<data-list>

<data-item>

<restore>

<declaration>

<dim>

<dim-list>

<dim-item>

<typedef>

<def type>

<range-list>

<range>

<funcdef>

A BASIC translator

: := for <identifier>= <expression> to <expression>

{ step <expression>

<separator> <body> <next>

: := <statement> <separator>

<statement> <separator> <body>

· ·= eoln

: := next <identifier>

::= on <expression> goto <label-list>

on <expression> gosub <label-list>

::= <label> I <label>, <label-list>

: : = goto <label>

::= gosub <label>

: := return

: := end

: := while <expression> <separator> <body> wend

··=repeat <separator> <body> until <expression>

: := <read> I <print> I <input> I <data> I <restore>

: : = read <var-.list>

: := <variable> I <var-list>, <variable>

::= print <print-list>

: := <print-item> <print-list> I <null>

: := <expression> I <io-sep>

.. = ; I ,

input { <string-literal> <io-sep>) <variable>

: := data <data-list>

··=<data-item>, <data-list> I <data-item>

: := <literal> <null>

··=restore {<label>)

: := <typedef> I <funcdef> I <dim>

: := dim <dim-list>

: := <dim-item> I <dim-item>, <dim-list>

··= <identifier> (<integer-literal>

: := <deftype> <range-list>

::= defint I defstr I defsng

<range> I <range>, <range-list>

<char> I <char> - <char>

::= def <identifier> { (<ident-list>

<expression>

Page43

(

Project Report

<rem>

<stuff>

<enhancement>

A BASIC translator

: := rem <stuff>

eoln I <char> <stuff>

··= add I getlast I getnext I getprevious

gettype I getpt <expression>) I

input# <variable>

linput <variable>

print# <print-list>

lprint <print-list>

Page44

Project Report A BASIC translator

Appendix C.
The Intennediate Language.

The inte1mediate language is stack based. By this it is meant that operations are done on
stack elements rather then between registers.

C.1. The Stack.

The stack consists of 16 bit elements, which can be considered to consist of any of five
types.

(a) 16 bit signed integers integers.
(b) Addresses.
(c) Booleans. A false value is represented by a zero value. Anything else is true.
(d) Reals. A pointer on the stack points to where the real is stored.
(e) Strings. A pointer on the stack points to where the length of string plus string itself are
stored.

A stack pointer points to the first empty element on the stack.

A frame pointer points to the last frame on the stack. A frame consists of a copy of a
previous pointer, plus a return address. A frame pointers is needed to reference parameters
that have been put on the stack.

C.2. An Overview of the Intermediate Language.

The intermediate language consists of the following instructions.
Instruction Operands Stack State Stack State
Name Following Before After

(a) Dereferencing
0. Loadlnteger
1. LoadReal
2. LoadString

(b) Literals
3. LoadConstinteger literal integer
4. LoadConstReal literal real
5. LoadConstString literal string
NOTE: reals are stored in a 6 byte f01mat.

addr
addr
addr

integer stored at addr
real stored at addr
string strored at addr

integer
real
string

NOTE: strings a re stored as a length byte followed a sequence of characters.

(c) Address of variable
6. V ariableAddr addr addr
NOTE: this is the same as the instruction LoadConstinteger

(d) Indexing into arrays
7. Array Index factor offset, addr (offset* factor)+ addr

(e) Range checking
8. CheckRange intl int2 integer, boolean (int2:s;intl)
9. CheckForFatal intl int2 integer
NOTE: if int2::;; intl in CheckForFatal, a range error has occured and the interpretation

Page45

Project Report

should terminate.
NOTE: These are not used by the translator at present.

(f) Storing values in variable storage
10. Storelnteger addr, integer
11. StoreReal addr, real
12. StoreString length addr, string

A BASIC translator

NOTE: the length is the maximum length string can be. If string is longer than this, an
error results.

(g) Clear variable storage area
13. Clear

(h) Arithmetic operators
14. Addlnteger
15. AddReal
16. Neglnteger
17. NegReal
18. Sublnteger
19. SubReal
20. Mullnteger
21. MulReal
22. Divlnteger
23. DivReal
24. Power
25. Catenate

(i) Relational operators
26. LTinteger
27. LTReal
28. LTString
29. LEinteger
30. LEReal
31. LEString
32. EQinteger
33. EQReal
34. EQString
35. GTinteger
36. GTReal
37. GTString
38. GEinteger
39. GEReal
40. GEString
41. NEinteger
42. NEReal
43. NEString

U) Logical operators.

intl, int2
reall, real2
integer
real
intl, int2
reall, rea12
intl, int2
reall , real2
intl, int2
real 1, real2
reall, real2
strl, su·2

intl, int2
real 1, real2
su·l, su·2
intl, int2
reall, real2
strl, str2
intl, int2
reall, real2
su·l, str2
intl, int2
reall, real2
strl, su·2
intl, int2
reall, rea12
strl, str2
intl, int2
real 1, real2
strl, str2

intl + int2
real 1 + rea12
-integer
-real
intl - int.2
reall - real2
intl * int2
real 1 * real2
intl div int2
reall I real2
reall " rea12
su·l + su-2

intl < int2
reall < real2
strl < str2
intl s int2
reall s rea12
strl s str2
intl = int.2
real 1 = rea12
strl = su·2
intl > int2
real 1 > real2
strl > str2
intl;;::: int2
reall ;;::: rea12
strl ;;::: str2
intl "# int2
reall "# real2
su·l "# su·2

44. LogicalAnd intl, int.2 intl and int.2
45. LogicalOr intl, int2 intl or int2
46. LogicalNot integer not integer
NOTE: in SDR-BASIC true values are represented by non-zero integers. False is tos
represented by zero

(k) Mathematical functions
47. SgnReal
48. Sgnlnteger
49. AbsReal
50. Abslnteger
51. Sine

real
integer
real
integer
real

Page46

sign ofreal
sign of integer
absolute value ofreal
absolute value of integer
sin real

Project Report A BASIC translator

52. Cosine real cos real
53. Arc Tangent real arctan real
54. Logarithm real loge real
55. Exponent real ere al
56. SquareRoot real sqaure root of real

(1) String functions
57. MidString string, a, b b chars starting at index a
58. LeftString string, a leftmost a chars of string
59. RightString string, a rightmost a chars of string
60. ChrStting integer char with ascii of integer
61. AscStt·ing stt·~ng ascii value of integer
62. LenString strmg length of string
NOTE: These pe1form the same functions as their BASIC equivalents.

(m) Conversion functions
63. CvtIR integer real
64. CvtRI real· integer
65. CvtSR string real
66. CvtSI stting integer
67. CvtIS integer sttfog
68. CvtRS real string
69. CvtNtosIR integer,? real,?
70. CvtNtosRI real, ? integer, ?
NOTE: 69 and 70 convert the value at the next to top of stack.
NOTE: 65-68 are not used by the tt·anslator.

(n) Function calls
71. Call addr return address
72. Return addr
73. CallFunc addr fp, return address
74. ReturnFunc n pl, .. pn, fp,ra, result result
75. LoadParamlnteger offset integer
76. LoadParamReal offset real
77. LoadParamString offset sttfog
NOTE: On CallFunc the value frame pointer is loaded onto the stack, and the frame pointer
is set to point to this cell. The return address is then placed onto the stack.
NOTE: On ReturnFunc, the stack frame must be removed, allong with the n para\neters to
the function. '
NOTE: The offset in 75-77 is relative from the frame pointer. le, actual address of operand
= fp - off set.

(o) Branching instructions
78. BranchFalse addr
79. BranchTrne addr
80. Branch addr

integer
integer

81. Branchlndexed n, al..an index
82. Calllndexed n, al .. an index return address
NOTE: The operands for 81 and 82 consists of a number followed by a block of n
addresses. The value on the stack is used as an index into this table to determine the jump
address. If index < 0 or index > n then the instruction does nothing.

(p) Looping constrncts
83. Nextinteger
84. NextReal
85. Exit

addr
addr

addr 1, addr2
addrl, addr2

NOTE: addrl is the address of the loop variable. Addr2 is the address of a block of data
consisting of upper bound for loop and step value. Addr is the address of the start of the
loop. The type of all values is the same as that of the instruction.

Page4 7

Project Report

(q) Input and Output
86. Printlnteger
87. PrintReal
88. PdntString
89. PrintControl
90. ClearScreen
91. Inputlnteger
92. InputReal
93. InputString
94. Readlnteger
9 5. ReadReal

length

96. ReadString length
97. Restore addr

integer
real
string

addr
addr
addr
addr
addr
addr

A BASIC translator

NOTE: PrintContol informs the interpreter that the next item to be printed will be on the
same line as the last one.
NOTE: ClearScreen isn't used by the translator.
NOTE: length is the maximum sU'ing length that can be read in.
NOTE: addr is the address of where the result read in should be stored.

(r) Access to SDR2 features
98. AddToHeap
99. GetLast
100. GetPrevious
101. GetType
102. GetPt integer
103. InputHashinteger addr
104. InputHashReal addr
105. Inpu(HashString length addr
106. PdntHashlnteger integer
107. PrintHashReal real
108. PdntHashString string
109. LPrintlnteger integer
110. LPrintReal real
111. LPrintString string
112. Linputlnteger addr
113. LinputReal addr
114. LinputString length addr
NOTE: 98-102 perfo1m the same function that their SOR-BASIC counterparts do.

(s) Predefined values and variables
115. Null
116. LoadPredeflnteger number
117. LoadPredefReal number
118. LoadPredefSufog number
119. StorePredeflnteger number integer
120. StorePredefReal number real
121. StorePredefString number sufog
NOTE: number is explained in section C.2.

Page48

null
integer
real
string

I,

!

Project Report A BASIC translator

C.3. Predefined Variables.

Instructions LoadPredeflnteger, LoadPredefReal, LoadPredefString, StorePredeflnteger,
StorePredefReal and StorePredefString all have a single operand. This operand along with
the type of the instrnction identify the fields in heap records.

(a) Integers.

Identifying
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

(c) Reals

Identifying
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

(c) Strings

Field
Description

type code
serial number
angle unit
distance unit
pressme unit
temperature unit
coord prompt option
angles left right
edm type
edm serial number
theodolite serial no
mounting type
vertical angle option
point number
source point number
target point number
count of observations

Field
Description

edm offset
reflector offset
prism constant
northing
easting
elevation
theodolite height
target height
vertical collimation
horizontal collimation
pressure
temperature
scale factor
azimuth
horizontal observation
slope distance
vertical angle
horizontal distance
ve1tical distance

Page49

Participates in
Record Types (See C.4.)

All
Header
Header
Header
Header
Header
Header
Header
INSTR
INSTR
INSTR
INSTR
INSTR
STN, POS
BKB, OBS, RED, SET
BKB, OBS, RED
SET

Participates in
Record Types (See C.4.)

INSTR
INSTR
INSTR
STN,POS
STN, POS
STN, POS
STN
TR GET
COL
COL
ATMOS
ATMOS
SCALE
BKB,RED
BKB, OBS
OBS
OBS
RED
RED

Project Report

Identifying
Number

1
2
3
4
5
6
7
8
9

Field
Description

derivation code
version number
time and date
edm description
theodolite description
station description
description
job identifier
alphanumeric note

C.4. Heap Record Types

A BASIC translator

Participates in
Record Types (See C.4.)

All
Header
Header
INSTR
INSTR
STN
POS, OBS, RED
JOB
NOTE

The following heap record types exist at present on the SDR2.

Heap Record Brief Description
Type

Header
INSTR
STN.
TR GET
COL
ATMOS
SCALE
BKB
POS
OBS
JOB
RED
SET
NOTE
EXT

Instrument details
Station details
Target detail
Instruments
Envh'onment details
Scaling factor
Back bearing details
Coordinates
Observation
Job identifier
Reduced Measurements
Setting out details
Alphanumeric note
Reserved for Future Extensions

Page SO

i

!

Project Report A BASIC translator

Appendix D.
The SDR-BASIC translator.

D.1. Using the Translator.

(a) The program prompts the user for the name of the file that needs to be translated. If the
the file does not exist, the program gives an error message and the program halts.

(b) As the translator is converting the SDR-BASIC program into intermediate code, the line
being processed is displayed. Most errors are given near where the error occured. An
exception is when a label that does not exist in the program is used by a GOTO, GOSUB
or RESTORE.

After translation, the total number of errors is given.

(c) Several files are created by the translator during translation. If the program being
translated is from a file called test, then the following result.

test.err
An error listing which contains all program lines with all errors.

test.code
The intermediate code generated is written to an ascii file in the SDR2 external program
format.

test.dump
This is a textual fmm of the intermediate code version of the program. It is useful for
testing the translator is working correctly.

Page51

Project Report A BASIC translator

D.2. An example of an error listing.

Error Listing For Program seive

rem Prime Number Generator 1
2
3
4
5
6
7
8
9

rem Generates Primes from 1 to 100 using Seive method

10
11
12
13
14
15
16
17
18
19
20
21

dim a% (100)

a%(1) = 1

for i% = 1 to 50
if not a%(i%) goto 10

for j% = 2*i% to 50 step i%
a%(i%) = 1
next

10 next

print 2,
for i% = 1 to 50

end

if a%(i%) then print 2*i% + 1
next

O errors. encountered

D.3. An example of the code listing.

The sample program shown in section D.2. generates the following code listing.

:200000006100B20300010600B40700020300010A06017E0300010A0601800300320A060198
:20002000820300010A06017E000600B4070002002E4E003750006906018403000206017E67
:2000400000140A0601860300320A06018806017EOOOA06017E000600B40700020300010A42
:2000600006018406018653005206017E060180530025030002565906017E0300010A0601Fl
:20008000800300320A0601820300010A06017E000600B4070002004EOOA703000206017E43
:2000A00000140300010E5606017E06018053008C5555FFFF0000000000000000000000003l
:2ooocooo20
:2000EOOO
:200lOODF
:20012000BF
:200140009F
:200160007F
:2001aooosF

Page52

Project Report

D.4. An example of the dump listing.

The Intermediate Code Generated For seive

0
3
6
9

12
15
16
19
22
23
26
29
30
33
36
37
40
41
44
47
48
49
52
55
58
61
64
65
66
67
70
73
74
77
80
81
82
85
86
89
92
95
96
99

.102
105
108
111
114
117
118
119
122
125
126

Restore
LoadConstinteger
VariableAddr
Array Index
LoadConstinteger
Store Integer
VariableAddr
LoadConstinteger
Store Integer
VariableAddr
LoadConstinteger
Store Integer
VariableAddr
LoadConstinteger
Store Integer
VariableAddr
Loadlnteger
VariableAddr
Array Index
Loadlnteger
LogicalNot
BranchFalse
Branch
VariableAddr
LoadConstinteger
VariableAddr
Loadlnteger
Mullnteger
Store Integer
VariableAddr
LoadConstinteger
Store Integer
VariableAddr
VariableAddr
Loadlnteger
Store Integer
VariableAddr
Loadlnteger
VariableAddr
Array Index
LoadConstinteger
Store Integer
VariableAddr
VariableAddr
Next Integer
VariableAddr
VariableAddr
Next Integer
LoadConstinteger
Print Integer
PrintControl
VariableAddr
LoadConstinteger
Store Integer
VariableAddr

178
1
180
2
1

382
1

384
50

386
1

382

180
2

55
1.05
388
2
382

390
50

392
382

382

180
2
1

388
390
82
382
384
37
2

382
1

384

Page53

A BASIC translator

Project Report

129
132
133
136
139
140
143
144
147
150
151
154
157
160
161
162
165
166
167
170
173
176
177

LoadConstinteger
Store Integer
VariableAddr
LoadConstinteger
Store Integer
VariableAddr
Loadlnteger
VariableAddr
Array Index
Loadinteger
BranchFalse
LoadConstinteger
VariableAddr
Loadlnteger
Mulinteger
LoadConstinteger
Addinteger
Print Integer
VariableAddr
VariableAddr
Next Integer
Exit
Exit

50

386
1

382

180
2

167
2
382

1

382
384
140

178 * Start of Data Storage

180 * Start of Integer Storage

394 * Start of Real Storage

394 * Start of String Storage

394 * END OF CODE

D.5. The Translator Code.

A BASIC translator

The translator is written in Turbo pascal. It is based around a recursive descent parser.
Error, scanning and code generation routines have been added. The program is structured
as follows.

Declarations
Effor handling routines
Symbol table manipulation
Code generation routines
The Scanner
The Parser
Initialisation of symbol table
Tidying up routines

TOTAL

350 lines
70
70

400
400

1900
350
280

3820 lines

Page54

I -

I -
!

 HistoryItem_V1
 TrimAndShift

 Range: From page 2 to page 75
 Trim: none
 Shift: move down by 28.35 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1737
 174
 Fixed
 Down
 28.3465
 0.0000

 Both
 2
 SubDoc
 75

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 57
 56
 56

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 368.45, 802.09 Width 53.41 Height 25.35 points
 Mask co-ordinates: Horizontal, vertical offset 1.81, 662.67 Width 47.98 Height 85.10 points
 Mask co-ordinates: Horizontal, vertical offset 480.71, -0.00 Width 47.98 Height 26.25 points
 Mask co-ordinates: Horizontal, vertical offset 551.32, 0.90 Width 92.34 Height 841.02 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 368.4544 802.0872 53.4123 25.3482 1.8106 662.672 47.9805 85.0976 480.7108 -0.0029 47.9806 26.2535 551.3237 0.9024 92.3399 841.0176

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 57
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 551.32, -0.00 Width 55.22 Height 836.49 points
 Mask co-ordinates: Horizontal, vertical offset 7.24, 95.05 Width 595.68 Height 519.64 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 551.3237 -0.0029 55.2229 836.4911 7.2424 95.0529 595.6831 519.6385

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 57
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 8.15, 678.06 Width 47.08 Height 107.73 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 8.1476 678.0619 47.0753 107.73

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 57
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 569.43, -0.00 Width 41.64 Height 840.11 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 AllDoc
 17

 CurrentAVDoc

 569.4296 -0.0029 41.6435 840.1123

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 7
 57
 56
 57

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 513.30, -0.00 Width 77.86 Height 803.90 points
 Mask co-ordinates: Horizontal, vertical offset 286.07, 617.41 Width 34.40 Height 11.77 points
 Mask co-ordinates: Horizontal, vertical offset 384.75, 627.37 Width 42.55 Height 10.86 points
 Mask co-ordinates: Horizontal, vertical offset 21.73, 693.45 Width 31.69 Height 71.52 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 513.3014 -0.0029 77.8552 803.9006 286.0727 617.4072 34.4012 11.7689 384.7497 627.3655 42.5488 10.8635 21.7271 693.4519 31.6853 71.5182

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 7
 57
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -8.15, 640.04 Width 62.47 Height 136.70 points
 Mask co-ordinates: Horizontal, vertical offset 113.16, 372.07 Width 69.71 Height 11.77 points
 Mask co-ordinates: Horizontal, vertical offset -26.25, -0.00 Width 56.13 Height 202.79 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -8.1476 640.0396 62.4653 136.6993 113.1617 372.0727 69.7076 11.7688 -26.2535 -0.0029 56.1282 202.7857

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 57
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 413.72, 721.52 Width 25.35 Height 19.01 points
 Mask co-ordinates: Horizontal, vertical offset 529.60, 718.80 Width 57.03 Height 73.33 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 413.7191 721.516 25.3482 19.0112 529.5966 718.8001 57.0336 73.3288

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 57
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 6.34, 654.52 Width 49.79 Height 111.35 points
 Mask co-ordinates: Horizontal, vertical offset -17.20, 57.94 Width 626.46 Height 541.37 points
 Mask co-ordinates: Horizontal, vertical offset 288.79, -0.00 Width 30.78 Height 10.86 points
 Mask co-ordinates: Horizontal, vertical offset 357.59, 535.03 Width 200.98 Height 198.26 points
 Mask co-ordinates: Horizontal, vertical offset 547.70, 538.65 Width 70.61 Height 127.65 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 6.3371 654.5243 49.7912 111.3511 -17.2006 57.9359 626.4631 541.3655 288.7886 -0.0029 30.78 10.8635 357.5909 535.0255 200.9751 198.2593 547.7026 538.6467 70.6129 127.6464

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 9
 57
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 9.05, 671.72 Width 50.70 Height 116.78 points
 Mask co-ordinates: Horizontal, vertical offset 51.60, 23.53 Width 43.45 Height 54.32 points
 Mask co-ordinates: Horizontal, vertical offset 304.18, 644.57 Width 36.21 Height 4.53 points
 Mask co-ordinates: Horizontal, vertical offset 402.86, 617.41 Width 29.87 Height 27.16 points
 Mask co-ordinates: Horizontal, vertical offset 441.78, 597.49 Width 15.39 Height 26.25 points
 Mask co-ordinates: Horizontal, vertical offset 259.82, -0.00 Width 66.09 Height 11.77 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 9.0529 671.7249 50.6964 116.7829 51.6017 23.5347 43.4541 54.3176 304.1786 644.566 36.2118 4.5265 402.8556 617.4072 29.8747 27.1588 441.7832 597.4908 15.39 26.2535 259.8192 -0.0029 66.0864 11.7688

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 10
 57
 10
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -1.81, 649.09 Width 56.13 Height 128.55 points
 Mask co-ordinates: Horizontal, vertical offset 172.91, 439.97 Width 114.07 Height 21.73 points
 Mask co-ordinates: Horizontal, vertical offset 265.25, 7.24 Width 100.49 Height 9.96 points
 Mask co-ordinates: Horizontal, vertical offset 504.25, 522.35 Width 24.44 Height 55.22 points
 Mask co-ordinates: Horizontal, vertical offset 350.35, 446.31 Width 60.65 Height 18.11 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -1.8106 649.0925 56.1282 128.5517 172.9111 439.9697 114.067 21.727 265.251 7.2394 100.4876 9.9583 504.2485 522.3514 24.443 55.2229 350.3486 446.3068 60.6547 18.1059

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 11
 57
 11
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 377.51, 723.33 Width 168.38 Height 30.78 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 377.5074 723.3266 168.3846 30.78

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 12
 57
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -1.81, 44.36 Width 626.46 Height 252.58 points
 Mask co-ordinates: Horizontal, vertical offset 10.86, 370.26 Width 72.42 Height 38.02 points
 Mask co-ordinates: Horizontal, vertical offset -15.39, 416.43 Width 48.89 Height 71.52 points
 Mask co-ordinates: Horizontal, vertical offset 531.41, 406.47 Width 41.64 Height 63.37 points
 Mask co-ordinates: Horizontal, vertical offset 393.80, 457.17 Width 23.54 Height 17.20 points
 Mask co-ordinates: Horizontal, vertical offset 244.43, 516.01 Width 124.03 Height 9.96 points
 Mask co-ordinates: Horizontal, vertical offset 449.03, 537.74 Width 33.50 Height 22.63 points
 Mask co-ordinates: Horizontal, vertical offset 380.22, 623.74 Width 34.40 Height 38.93 points
 Mask co-ordinates: Horizontal, vertical offset 234.47, 648.19 Width 110.45 Height 21.73 points
 Mask co-ordinates: Horizontal, vertical offset 7.24, 674.44 Width 45.26 Height 117.69 points
 Mask co-ordinates: Horizontal, vertical offset 247.15, 398.33 Width 136.70 Height 16.30 points
 Mask co-ordinates: Horizontal, vertical offset 517.83, 538.65 Width 39.83 Height 38.02 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -1.8106 44.3565 626.4631 252.5768 10.8635 370.2621 72.4235 38.0223 -15.39 416.4321 48.8858 71.5181 531.4073 406.4739 41.6435 63.3705 393.8026 457.1703 23.5377 17.2006 244.4292 516.0144 124.0252 9.9582 449.0256 537.7414 33.4958 22.6323 380.2233 623.7443 34.4012 38.9276 234.471 648.1872 110.4458 21.7271 7.2424 674.4407 45.2647 117.6882 247.1451 398.3262 136.6993 16.2953 517.8279 538.6467 39.8329 38.0223

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 13
 57
 13
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 508.77, 657.24 Width 25.35 Height 72.42 points
 Mask co-ordinates: Horizontal, vertical offset 557.66, 438.16 Width 28.97 Height 72.42 points
 Mask co-ordinates: Horizontal, vertical offset 362.12, 272.49 Width 130.36 Height 72.42 points
 Mask co-ordinates: Horizontal, vertical offset -2.72, 391.08 Width 203.69 Height 74.23 points
 Mask co-ordinates: Horizontal, vertical offset 243.52, 443.59 Width 13.58 Height 10.86 points
 Mask co-ordinates: Horizontal, vertical offset 175.63, 535.93 Width 136.70 Height 10.86 points
 Mask co-ordinates: Horizontal, vertical offset 267.97, 302.37 Width 7.24 Height 5.43 points
 Mask co-ordinates: Horizontal, vertical offset 219.08, 324.09 Width 64.28 Height 8.15 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 508.7749 657.2402 25.3483 72.4235 557.6608 438.1591 28.9694 72.4235 362.1174 272.4905 130.3623 72.4235 -2.7159 391.0839 203.691 74.2341 243.524 443.5909 13.5794 10.8635 175.627 535.9308 136.6993 10.8635 267.9669 302.3651 7.2424 5.4318 219.081 324.0921 64.2758 8.1477

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 15
 57
 15
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 8.15, 672.63 Width 45.26 Height 107.73 points
 Mask co-ordinates: Horizontal, vertical offset 264.35, 646.38 Width 23.54 Height 34.40 points
 Mask co-ordinates: Horizontal, vertical offset 384.75, 621.03 Width 28.06 Height 40.74 points
 Mask co-ordinates: Horizontal, vertical offset 530.50, 655.43 Width 66.09 Height 59.75 points
 Mask co-ordinates: Horizontal, vertical offset 88.72, 322.28 Width 28.06 Height 39.83 points
 Mask co-ordinates: Horizontal, vertical offset 105.01, -0.00 Width 144.85 Height 116.78 points
 Mask co-ordinates: Horizontal, vertical offset 340.39, -0.00 Width 260.72 Height 137.60 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 8.1476 672.6302 45.2647 107.7299 264.3457 646.3767 23.5376 34.4012 384.7497 621.0285 28.0641 40.7382 530.502 655.4296 66.0864 59.7494 88.7188 322.2816 28.0641 39.8329 105.014 -0.0029 144.847 116.7828 340.3904 -0.0029 260.7245 137.6046

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 16
 57
 16
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 14.48, 678.97 Width 38.02 Height 71.52 points
 Mask co-ordinates: Horizontal, vertical offset 0.91, 200.07 Width 135.79 Height 159.33 points
 Mask co-ordinates: Horizontal, vertical offset 396.52, 178.34 Width 55.22 Height 39.83 points
 Mask co-ordinates: Horizontal, vertical offset 447.21, 277.92 Width 57.03 Height 56.13 points
 Mask co-ordinates: Horizontal, vertical offset 506.96, 427.30 Width 17.20 Height 23.54 points
 Mask co-ordinates: Horizontal, vertical offset 205.50, 536.84 Width 100.49 Height 22.63 points
 Mask co-ordinates: Horizontal, vertical offset 350.35, 729.66 Width 128.55 Height 24.44 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 14.4847 678.9672 38.0223 71.5182 0.9053 200.0669 135.794 159.3317 396.5185 178.3399 55.2229 39.8329 447.215 277.9222 57.0335 56.1282 506.9644 427.2956 17.2006 23.5376 205.5016 536.8361 100.4876 22.6323 350.3486 729.6636 128.5517 24.4429

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 17
 57
 17
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 27.16, 672.63 Width 28.06 Height 98.68 points
 Mask co-ordinates: Horizontal, vertical offset 43.45, 66.08 Width 463.51 Height 59.75 points
 Mask co-ordinates: Horizontal, vertical offset 441.78, 509.68 Width 37.12 Height 55.22 points
 Mask co-ordinates: Horizontal, vertical offset 474.37, 501.53 Width 2.72 Height 1.81 points
 Mask co-ordinates: Horizontal, vertical offset 471.66, 490.67 Width 13.58 Height 18.11 points
 Mask co-ordinates: Horizontal, vertical offset 266.16, 625.55 Width 281.55 Height 43.45 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 27.1588 672.6302 28.0641 98.6769 43.4541 66.0835 463.5103 59.7493 441.7832 509.6773 37.117 55.2229 474.3738 501.5297 2.7159 1.8105 471.6579 490.6662 13.5794 18.1058 266.1563 625.5549 281.5463 43.4541

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 18
 57
 18
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 298.75, 740.53 Width 86.91 Height 25.35 points
 Mask co-ordinates: Horizontal, vertical offset 10.86, 675.35 Width 37.12 Height 80.57 points
 Mask co-ordinates: Horizontal, vertical offset 4.53, 520.54 Width 31.69 Height 73.33 points
 Mask co-ordinates: Horizontal, vertical offset 357.59, 283.35 Width 191.02 Height 86.91 points
 Mask co-ordinates: Horizontal, vertical offset 392.90, 25.35 Width 41.64 Height 65.18 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 298.7469 740.5272 86.9082 25.3483 10.8635 675.346 37.117 80.5712 4.5265 520.5408 31.6853 73.3288 357.5909 283.354 191.0169 86.9081 392.8974 25.3453 41.6435 65.1812

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 19
 57
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 23.54, 693.45 Width 25.35 Height 57.03 points
 Mask co-ordinates: Horizontal, vertical offset 528.69, 617.41 Width 31.69 Height 68.80 points
 Mask co-ordinates: Horizontal, vertical offset 96.87, 439.97 Width 213.65 Height 9.96 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 23.5376 693.4519 25.3482 57.0335 528.6914 617.4073 31.6852 68.8022 96.8664 439.9698 213.6492 9.9582

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 20
 57
 20
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 239.90, 492.48 Width 34.40 Height 14.48 points
 Mask co-ordinates: Horizontal, vertical offset 75.14, 401.95 Width 120.40 Height 64.28 points
 Mask co-ordinates: Horizontal, vertical offset 58.84, 83.28 Width 139.42 Height 48.89 points
 Mask co-ordinates: Horizontal, vertical offset 7.24, 676.25 Width 40.74 Height 79.67 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 239.9028 492.4767 34.4012 14.4847 75.1394 401.9474 120.404 64.2758 58.8441 83.2841 139.4152 48.8859 7.2424 676.2513 40.7382 79.6658

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 21
 57
 21
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 27.16, 698.88 Width 25.35 Height 38.02 points
 Mask co-ordinates: Horizontal, vertical offset 66.99, 665.39 Width 33.50 Height 28.06 points
 Mask co-ordinates: Horizontal, vertical offset 188.30, 435.44 Width 90.53 Height 23.54 points
 Mask co-ordinates: Horizontal, vertical offset 0.91, 99.58 Width 292.41 Height 159.33 points
 Mask co-ordinates: Horizontal, vertical offset 163.86, 24.44 Width 56.13 Height 92.34 points
 Mask co-ordinates: Horizontal, vertical offset 246.24, -0.00 Width 126.74 Height 21.73 points
 Mask co-ordinates: Horizontal, vertical offset 445.40, 294.22 Width 30.78 Height 31.69 points
 Mask co-ordinates: Horizontal, vertical offset 439.97, 614.69 Width 24.44 Height 34.40 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 27.1588 698.8837 25.3482 38.0223 66.9917 665.3878 33.4959 28.0641 188.3011 435.4433 90.5293 23.5376 0.9053 99.5794 292.4098 159.3317 163.8581 24.4401 56.1282 92.3399 246.2398 -0.0029 126.7411 21.7271 445.4044 294.2175 30.78 31.6853 439.9726 614.6914 24.4429 34.4011

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 22
 57
 22
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 20.82, 690.74 Width 33.50 Height 45.26 points
 Mask co-ordinates: Horizontal, vertical offset 49.79, 463.51 Width 84.19 Height 255.29 points
 Mask co-ordinates: Horizontal, vertical offset 325.91, 317.76 Width 30.78 Height 11.77 points
 Mask co-ordinates: Horizontal, vertical offset 27.16, 33.49 Width 178.34 Height 115.88 points
 Mask co-ordinates: Horizontal, vertical offset 404.67, 573.95 Width 53.41 Height 178.34 points
 Mask co-ordinates: Horizontal, vertical offset 477.09, 493.38 Width 111.35 Height 76.04 points
 Mask co-ordinates: Horizontal, vertical offset 442.69, 317.76 Width 18.11 Height 24.44 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 20.8217 690.736 33.4959 45.2647 49.7911 463.5074 84.1923 255.2927 325.9057 317.7551 30.78 11.7688 27.1588 33.493 178.3428 115.8776 404.6662 573.9532 53.4123 178.3428 477.0897 493.3821 111.3511 76.0446 442.6885 317.7551 18.1059 24.4429

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 23
 57
 23
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -1.81, 693.45 Width 52.51 Height 79.67 points
 Mask co-ordinates: Horizontal, vertical offset 36.21, 27.16 Width 78.76 Height 57.94 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -1.8106 693.4519 52.507 79.6658 36.2117 27.1559 78.7605 57.9388

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 24
 57
 24
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -19.01, 673.54 Width 64.28 Height 145.75 points
 Mask co-ordinates: Horizontal, vertical offset 287.88, 716.08 Width 15.39 Height 21.73 points
 Mask co-ordinates: Horizontal, vertical offset 31.69, 48.88 Width 551.32 Height 657.24 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -19.0112 673.5355 64.2758 145.7523 287.8833 716.0842 15.39 21.7271 31.6853 48.883 551.3237 657.243

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 25
 57
 25
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -2.72, 684.40 Width 52.51 Height 78.76 points
 Mask co-ordinates: Horizontal, vertical offset -2.72, 210.93 Width 42.55 Height 84.19 points
 Mask co-ordinates: Horizontal, vertical offset 445.40, 314.13 Width 17.20 Height 12.67 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -2.7159 684.399 52.507 78.7605 -2.7159 210.9305 42.5488 84.1923 445.4044 314.134 17.2006 12.6741

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 26
 57
 26
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 37.12, 692.55 Width 14.48 Height 65.18 points
 Mask co-ordinates: Horizontal, vertical offset 472.56, 47.98 Width 96.87 Height 133.98 points
 Mask co-ordinates: Horizontal, vertical offset 449.93, 315.04 Width 4.53 Height 5.43 points
 Mask co-ordinates: Horizontal, vertical offset 434.54, 474.37 Width 162.95 Height 70.61 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 37.117 692.5466 14.4847 65.1811 472.5632 47.9776 96.8664 133.9835 449.9308 315.0392 4.5265 5.4318 434.5409 474.3709 162.9529 70.6129

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 27
 57
 27
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 32.59, 620.12 Width 89.62 Height 106.82 points
 Mask co-ordinates: Horizontal, vertical offset 363.02, 558.56 Width 208.22 Height 131.27 points
 Mask co-ordinates: Horizontal, vertical offset 363.93, 455.36 Width 16.30 Height 18.11 points
 Mask co-ordinates: Horizontal, vertical offset 20.82, 64.27 Width 534.12 Height 159.33 points
 Mask co-ordinates: Horizontal, vertical offset 304.18, 767.69 Width 23.54 Height 30.78 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 32.5906 620.1231 89.6241 106.8246 363.0227 558.5632 208.2175 131.2676 363.928 455.3597 16.2953 18.1059 20.8217 64.2729 534.1232 159.3317 304.1786 767.686 23.5377 30.78

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 28
 57
 28
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 382.03, -0.00 Width 211.84 Height 115.88 points
 Mask co-ordinates: Horizontal, vertical offset 527.79, 363.02 Width 48.89 Height 153.90 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 382.0338 -0.0029 211.8387 115.8776 527.7861 363.0198 48.8859 153.8999

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 29
 57
 29
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 21.73, 689.83 Width 28.06 Height 50.70 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 21.7271 689.8307 28.0641 50.6964

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 29
 57
 29
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 184.68, 439.06 Width 95.96 Height 9.96 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 184.6799 439.0644 95.9611 9.9582

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 29
 57
 29
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 460.79, 755.01 Width 11.77 Height 17.20 points
 Mask co-ordinates: Horizontal, vertical offset 9.05, 687.11 Width 42.55 Height 47.98 points
 Mask co-ordinates: Horizontal, vertical offset 283.36, 219.98 Width 267.06 Height 122.21 points
 Mask co-ordinates: Horizontal, vertical offset 184.68, 29.87 Width 44.36 Height 20.82 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 460.7944 755.0119 11.7688 17.2006 9.0529 687.1149 42.5488 47.9805 283.3568 219.9835 267.0616 122.2146 184.6799 29.8718 44.3594 20.8217

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 30
 57
 30
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 173.82, 795.75 Width 28.06 Height 28.97 points
 Mask co-ordinates: Horizontal, vertical offset 27.16, 697.98 Width 19.92 Height 45.26 points
 Mask co-ordinates: Horizontal, vertical offset 543.18, 598.40 Width 18.11 Height 30.78 points
 Mask co-ordinates: Horizontal, vertical offset 9.05, 305.08 Width 43.45 Height 91.43 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 173.8163 795.75 28.0641 28.9694 27.1588 697.9784 19.9165 45.2646 543.1761 598.3961 18.1058 30.78 9.0529 305.081 43.4541 91.4347

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 31
 57
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 25.35, 40.74 Width 181.06 Height 180.15 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 25.3482 40.7353 181.0587 180.1534

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 32
 57
 32
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 12.67, 673.54 Width 42.55 Height 107.73 points
 Mask co-ordinates: Horizontal, vertical offset -4.53, 37.11 Width 602.93 Height 491.57 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 12.6741 673.5354 42.5488 107.7299 -4.5265 37.1141 602.9255 491.5744

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 33
 57
 33
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 329.53, 714.27 Width 66.09 Height 34.40 points
 Mask co-ordinates: Horizontal, vertical offset -11.77, 153.90 Width 63.37 Height 592.06 points
 Mask co-ordinates: Horizontal, vertical offset 26.25, 286.07 Width 78.76 Height 86.91 points
 Mask co-ordinates: Horizontal, vertical offset 300.56, 219.08 Width 200.98 Height 146.66 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 329.5268 714.2737 66.0864 34.4011 -11.7688 153.897 63.3705 592.0619 26.2535 286.0699 78.7605 86.9081 300.5574 219.0781 200.9752 146.6576

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 34
 57
 34
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 11.77, 687.11 Width 38.02 Height 64.28 points
 Mask co-ordinates: Horizontal, vertical offset 55.22, 746.86 Width 17.20 Height 3.62 points
 Mask co-ordinates: Horizontal, vertical offset 19.92, 80.57 Width 581.20 Height 445.40 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 11.7688 687.1149 38.0223 64.2758 55.2229 746.8642 17.2006 3.6212 19.9165 80.5683 581.1984 445.4044

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 35
 57
 35
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 491.57, 574.86 Width 51.60 Height 98.68 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 491.5743 574.8585 51.6018 98.677

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 35
 57
 35
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 9.96, 652.71 Width 37.12 Height 104.11 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 9.9582 652.7137 37.117 104.1088

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 36
 57
 36
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 5.43, 688.93 Width 41.64 Height 74.23 points
 Mask co-ordinates: Horizontal, vertical offset 248.05, 439.06 Width 14.48 Height 12.67 points
 Mask co-ordinates: Horizontal, vertical offset 189.21, 440.88 Width 8.15 Height 3.62 points
 Mask co-ordinates: Horizontal, vertical offset 441.78, 512.39 Width 28.06 Height 9.96 points
 Mask co-ordinates: Horizontal, vertical offset 3.62, 68.80 Width 156.62 Height 25.35 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 5.4318 688.9255 41.6435 74.234 248.0504 439.0645 14.4847 12.6741 189.2063 440.875 8.1476 3.6212 441.7832 512.3932 28.0641 9.9582 3.6212 68.7994 156.6158 25.3482

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 37
 57
 37
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 9.05, 688.93 Width 38.02 Height 53.41 points
 Mask co-ordinates: Horizontal, vertical offset 97.77, 575.76 Width 37.12 Height 27.16 points
 Mask co-ordinates: Horizontal, vertical offset 65.18, 403.76 Width 74.23 Height 68.80 points
 Mask co-ordinates: Horizontal, vertical offset 165.67, 326.81 Width 29.87 Height 9.05 points
 Mask co-ordinates: Horizontal, vertical offset 210.93, 355.78 Width 10.86 Height 7.24 points
 Mask co-ordinates: Horizontal, vertical offset 274.30, 327.71 Width 255.29 Height 14.48 points
 Mask co-ordinates: Horizontal, vertical offset 260.72, 140.32 Width 14.48 Height 7.24 points
 Mask co-ordinates: Horizontal, vertical offset 238.09, 78.76 Width 19.92 Height 20.82 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 9.0529 688.9255 38.0223 53.4123 97.7717 575.7637 37.117 27.1588 65.1811 403.758 74.2341 68.8023 165.6687 326.808 29.8747 9.0529 210.9334 355.7775 10.8635 7.2423 274.3039 327.7134 255.2928 14.4847 260.7245 140.3176 14.4847 7.2423 238.0922 78.7576 19.9164 20.8218

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 38
 57
 38
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 353.97, 439.06 Width 9.05 Height 10.86 points
 Mask co-ordinates: Horizontal, vertical offset 251.67, 436.35 Width 6.34 Height 13.58 points
 Mask co-ordinates: Horizontal, vertical offset 96.87, -0.00 Width 162.05 Height 119.50 points
 Mask co-ordinates: Horizontal, vertical offset 357.59, 669.91 Width 3.62 Height 19.01 points
 Mask co-ordinates: Horizontal, vertical offset 363.02, 669.01 Width 115.88 Height 15.39 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 353.9698 439.0645 9.0529 10.8635 251.6716 436.3486 6.337 13.5794 96.8664 -0.0029 162.0475 119.4987 357.5909 669.9143 3.6212 19.0112 363.0227 669.009 115.8776 15.39

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 38
 57
 38
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 198.26, 760.44 Width 110.45 Height 67.90 points
 Mask co-ordinates: Horizontal, vertical offset 520.54, 422.77 Width 79.67 Height 139.42 points
 Mask co-ordinates: Horizontal, vertical offset 436.35, 313.23 Width 21.73 Height 38.02 points
 Mask co-ordinates: Horizontal, vertical offset 423.68, 179.25 Width 85.10 Height 72.42 points
 Mask co-ordinates: Horizontal, vertical offset 21.73, 68.80 Width 80.57 Height 93.25 points
 Mask co-ordinates: Horizontal, vertical offset 125.84, 24.44 Width 119.50 Height 99.58 points
 Mask co-ordinates: Horizontal, vertical offset 62.47, 439.06 Width 63.37 Height 40.74 points
 Mask co-ordinates: Horizontal, vertical offset 77.86, 549.51 Width 77.86 Height 12.67 points
 Mask co-ordinates: Horizontal, vertical offset 28.06, 648.19 Width 36.21 Height 19.92 points
 Mask co-ordinates: Horizontal, vertical offset 15.39, 697.07 Width 36.21 Height 76.04 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 198.2593 760.4436 110.4458 67.897 520.5438 422.7691 79.6658 139.4152 436.3514 313.2286 21.7271 38.0223 423.6773 179.2452 85.0976 72.4235 21.7271 68.7994 80.5711 93.2452 125.8358 24.44 119.4987 99.5823 62.4653 439.0644 63.3706 40.7382 77.8552 549.5102 77.8552 12.6741 28.0641 648.1872 36.2117 19.9164 15.39 697.073 36.2117 76.0447

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 39
 57
 39
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 9.96, 698.88 Width 56.13 Height 32.59 points
 Mask co-ordinates: Horizontal, vertical offset -11.77, 54.31 Width 605.64 Height 580.29 points
 Mask co-ordinates: Horizontal, vertical offset 414.62, 677.16 Width 67.90 Height 82.38 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 9.9582 698.8837 56.1282 32.5906 -11.7688 54.3148 605.6413 580.2931 414.6244 677.1566 67.897 82.3817

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 40
 57
 40
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 12.67, 690.74 Width 35.31 Height 76.04 points
 Mask co-ordinates: Horizontal, vertical offset -26.25, 32.59 Width 178.34 Height 158.43 points
 Mask co-ordinates: Horizontal, vertical offset 267.97, 617.41 Width 209.12 Height 39.83 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 12.6741 690.736 35.3065 76.0447 -26.2535 32.5877 178.3428 158.4263 267.9669 617.4073 209.1228 39.8329

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 41
 57
 41
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 393.80, 719.71 Width 95.96 Height 38.93 points
 Mask co-ordinates: Horizontal, vertical offset 390.18, 611.07 Width 42.55 Height 33.50 points
 Mask co-ordinates: Horizontal, vertical offset 331.34, 566.71 Width 25.35 Height 9.96 points
 Mask co-ordinates: Horizontal, vertical offset -6.34, 506.06 Width 64.28 Height 56.13 points
 Mask co-ordinates: Horizontal, vertical offset 9.96, 672.63 Width 37.12 Height 90.53 points
 Mask co-ordinates: Horizontal, vertical offset 65.18, 432.73 Width 80.57 Height 25.35 points
 Mask co-ordinates: Horizontal, vertical offset 271.59, 60.65 Width 28.97 Height 38.93 points
 Mask co-ordinates: Horizontal, vertical offset 400.14, 291.50 Width 77.86 Height 110.45 points
 Mask co-ordinates: Horizontal, vertical offset 391.99, 424.58 Width 79.67 Height 32.59 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 393.8026 719.7054 95.9611 38.9276 390.1815 611.0702 42.5488 33.4959 331.3374 566.7108 25.3482 9.9583 -6.3371 506.0562 64.2758 56.1282 9.9582 672.6302 37.117 90.5293 65.1811 432.7274 80.5711 25.3482 271.588 60.6518 28.9694 38.9276 400.1397 291.5016 77.8552 110.4458 391.9921 424.5797 79.6658 32.5906

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 42
 57
 42
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 27.16, 685.30 Width 21.73 Height 85.10 points
 Mask co-ordinates: Horizontal, vertical offset 104.11, 445.40 Width 29.87 Height 36.21 points
 Mask co-ordinates: Horizontal, vertical offset 70.61, 63.37 Width 157.52 Height 83.29 points
 Mask co-ordinates: Horizontal, vertical offset 402.86, 254.38 Width 119.50 Height 68.80 points
 Mask co-ordinates: Horizontal, vertical offset 526.88, 162.95 Width 38.02 Height 76.95 points
 Mask co-ordinates: Horizontal, vertical offset 297.84, 299.65 Width 48.89 Height 9.96 points
 Mask co-ordinates: Horizontal, vertical offset 335.86, 611.07 Width 84.19 Height 53.41 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 27.1588 685.3043 21.7271 85.0976 104.1087 445.4015 29.8747 36.2117 70.6129 63.3677 157.5211 83.287 402.8556 254.3846 119.4987 68.8023 526.8808 162.95 38.0223 76.95 297.8416 299.6492 48.8858 9.9583 335.8639 611.0702 84.1923 53.4124

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 43
 57
 43
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -0.91, 685.30 Width 52.51 Height 66.99 points
 Mask co-ordinates: Horizontal, vertical offset 266.16, 623.74 Width 225.42 Height 38.93 points
 Mask co-ordinates: Horizontal, vertical offset 491.57, 724.23 Width 22.63 Height 32.59 points
 Mask co-ordinates: Horizontal, vertical offset 398.33, 725.14 Width 44.36 Height 28.97 points
 Mask co-ordinates: Horizontal, vertical offset 86.91, 434.54 Width 35.31 Height 19.92 points
 Mask co-ordinates: Horizontal, vertical offset 65.18, 392.89 Width 10.86 Height 6.34 points
 Mask co-ordinates: Horizontal, vertical offset 58.84, 516.92 Width 18.11 Height 11.77 points
 Mask co-ordinates: Horizontal, vertical offset 434.54, 305.08 Width 25.35 Height 61.56 points
 Mask co-ordinates: Horizontal, vertical offset 274.30, -0.00 Width 79.67 Height 15.39 points
 Mask co-ordinates: Horizontal, vertical offset 524.16, 373.88 Width 72.42 Height 151.18 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -0.9053 685.3042 52.507 66.9917 266.1563 623.7443 225.4181 38.9276 491.5743 724.2319 22.6324 32.5906 398.3291 725.1372 44.3594 28.9694 86.9082 434.538 35.3064 19.9164 65.1811 392.8945 10.8635 6.3371 58.8441 516.9197 18.1059 11.7689 434.5409 305.081 25.3482 61.56 274.3039 -0.0029 79.6658 15.39 524.1649 373.8833 72.4235 151.184

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 44
 57
 44
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 389.28, 720.61 Width 111.35 Height 18.11 points
 Mask co-ordinates: Horizontal, vertical offset 5.43, 686.21 Width 39.83 Height 60.65 points
 Mask co-ordinates: Horizontal, vertical offset 130.36, 76.04 Width 24.44 Height 68.80 points
 Mask co-ordinates: Horizontal, vertical offset 445.40, 63.37 Width 154.81 Height 260.72 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 389.2762 720.6107 111.3511 18.1059 5.4318 686.2095 39.8329 60.6547 130.3623 76.0417 24.4429 68.8023 445.4044 63.3677 154.8052 260.7245

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 45
 57
 45
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 390.18, 717.89 Width 203.69 Height 42.55 points
 Mask co-ordinates: Horizontal, vertical offset 38.02, 655.43 Width 45.26 Height 28.97 points
 Mask co-ordinates: Horizontal, vertical offset 0.91, 701.60 Width 46.17 Height 49.79 points
 Mask co-ordinates: Horizontal, vertical offset 1.81, 537.74 Width 103.20 Height 100.49 points
 Mask co-ordinates: Horizontal, vertical offset 33.50, 73.33 Width 567.62 Height 522.35 points
 Mask co-ordinates: Horizontal, vertical offset 13.58, 64.27 Width 37.12 Height 86.00 points
 Mask co-ordinates: Horizontal, vertical offset 149.37, 10.86 Width 89.62 Height 33.50 points
 Mask co-ordinates: Horizontal, vertical offset 282.45, 2.71 Width 41.64 Height 9.05 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 390.1815 717.8949 203.691 42.5488 38.0223 655.4297 45.2647 28.9694 0.9053 701.5996 46.17 49.7911 1.8106 537.7415 103.2034 100.4875 33.4959 73.3259 567.619 522.3544 13.5794 64.273 37.117 86.0029 149.3734 10.8607 89.624 33.4958 282.4516 2.713 41.6435 9.0529

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 46
 57
 46
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -5.43, 660.86 Width 54.32 Height 103.20 points
 Mask co-ordinates: Horizontal, vertical offset 391.99, 720.61 Width 102.30 Height 64.28 points
 Mask co-ordinates: Horizontal, vertical offset 247.15, 441.78 Width 12.67 Height 9.96 points
 Mask co-ordinates: Horizontal, vertical offset 285.17, 7.24 Width 13.58 Height 8.15 points
 Mask co-ordinates: Horizontal, vertical offset 224.51, 331.33 Width 38.02 Height 14.48 points
 Mask co-ordinates: Horizontal, vertical offset 381.13, 487.05 Width 32.59 Height 26.25 points
 Mask co-ordinates: Horizontal, vertical offset 371.17, 626.46 Width 59.75 Height 34.40 points
 Mask co-ordinates: Horizontal, vertical offset 10.86, 411.91 Width 30.78 Height 98.68 points
 Mask co-ordinates: Horizontal, vertical offset 506.06, 454.45 Width 27.16 Height 75.14 points
 Mask co-ordinates: Horizontal, vertical offset 532.31, 576.67 Width 59.75 Height 109.54 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -5.4318 660.8613 54.3176 103.2035 391.9921 720.6107 102.2982 64.2758 247.1451 441.7803 12.6741 9.9582 285.1674 7.2395 13.5794 8.1476 224.5128 331.3345 38.0223 14.4847 381.1285 487.0451 32.5906 26.2535 371.1703 626.4602 59.7494 34.4011 10.8635 411.9057 30.78 98.677 506.0591 454.4545 27.1588 75.1394 532.3126 576.6691 59.7494 109.5405

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 47
 57
 47
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 374.79, 716.99 Width 124.93 Height 42.55 points
 Mask co-ordinates: Horizontal, vertical offset 12.67, 678.06 Width 37.12 Height 76.95 points
 Mask co-ordinates: Horizontal, vertical offset 159.33, 479.80 Width 47.08 Height 3.62 points
 Mask co-ordinates: Horizontal, vertical offset 179.25, 431.82 Width 87.81 Height 33.50 points
 Mask co-ordinates: Horizontal, vertical offset 438.16, 280.64 Width 28.97 Height 128.55 points
 Mask co-ordinates: Horizontal, vertical offset 485.24, 462.60 Width 101.39 Height 90.53 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 374.7915 716.9895 124.9305 42.5488 12.6741 678.0619 37.117 76.95 159.3317 479.8027 47.0753 3.6212 179.2481 431.8221 87.8135 33.4958 438.162 280.6381 28.9694 128.5516 485.2373 462.6021 101.3929 90.5293

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 48
 57
 48
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 11.77, 687.11 Width 36.21 Height 77.86 points
 Mask co-ordinates: Horizontal, vertical offset 165.67, 440.88 Width 170.20 Height 13.58 points
 Mask co-ordinates: Horizontal, vertical offset 485.24, 114.97 Width 52.51 Height 29.87 points
 Mask co-ordinates: Horizontal, vertical offset 143.04, -0.00 Width 92.34 Height 24.44 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 11.7688 687.1149 36.2117 77.8552 165.6687 440.875 170.1952 13.5794 485.2373 114.9694 52.507 29.8746 143.0364 -0.0029 92.3399 24.4429

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 49
 57
 49
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 379.32, 716.08 Width 130.36 Height 54.32 points
 Mask co-ordinates: Horizontal, vertical offset 356.69, 632.80 Width 76.95 Height 70.61 points
 Mask co-ordinates: Horizontal, vertical offset 406.48, 573.05 Width 35.31 Height 38.93 points
 Mask co-ordinates: Horizontal, vertical offset 237.19, 428.20 Width 25.35 Height 41.64 points
 Mask co-ordinates: Horizontal, vertical offset 187.40, 437.25 Width 10.86 Height 9.05 points
 Mask co-ordinates: Horizontal, vertical offset 285.17, 65.18 Width 292.41 Height 140.32 points
 Mask co-ordinates: Horizontal, vertical offset 525.07, 19.91 Width 51.60 Height 51.60 points
 Mask co-ordinates: Horizontal, vertical offset -4.53, -0.00 Width 223.61 Height 182.87 points
 Mask co-ordinates: Horizontal, vertical offset -11.77, 302.37 Width 36.21 Height 78.76 points
 Mask co-ordinates: Horizontal, vertical offset 8.15, 697.98 Width 39.83 Height 83.29 points
 Mask co-ordinates: Horizontal, vertical offset 418.25, 288.79 Width 128.55 Height 37.12 points
 Mask co-ordinates: Horizontal, vertical offset 517.83, 323.19 Width 37.12 Height 66.09 points
 Mask co-ordinates: Horizontal, vertical offset 443.59, 502.44 Width 109.54 Height 73.33 points
 Mask co-ordinates: Horizontal, vertical offset 413.72, 451.74 Width 92.34 Height 63.37 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 379.318 716.0842 130.3622 54.3176 356.6856 632.7972 76.9499 70.6129 406.4768 573.0479 35.3064 38.9276 237.1869 428.2009 25.3482 41.6435 187.3958 437.2539 10.8635 9.0529 285.1674 65.1782 292.4098 140.3205 525.0702 19.9136 51.6017 51.6017 -4.5265 -0.0029 223.6075 182.8693 -11.7688 302.3651 36.2117 78.7606 8.1476 697.9784 39.8329 83.287 418.2456 288.7858 128.5517 37.117 517.8279 323.1869 37.117 66.0864 443.5938 502.435 109.5405 73.3287 413.7191 451.7385 92.3399 63.3705

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 50
 57
 50
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -3.62, 678.97 Width 51.60 Height 86.00 points
 Mask co-ordinates: Horizontal, vertical offset 114.07, 276.11 Width 24.44 Height 43.45 points
 Mask co-ordinates: Horizontal, vertical offset 260.72, 297.84 Width 39.83 Height 90.53 points
 Mask co-ordinates: Horizontal, vertical offset 291.50, 394.71 Width 18.11 Height 18.11 points
 Mask co-ordinates: Horizontal, vertical offset 397.42, 369.36 Width 21.73 Height 19.01 points
 Mask co-ordinates: Horizontal, vertical offset 106.82, 430.92 Width 29.87 Height 39.83 points
 Mask co-ordinates: Horizontal, vertical offset 151.18, 675.35 Width 31.69 Height 16.30 points
 Mask co-ordinates: Horizontal, vertical offset 63.37, 647.28 Width 14.48 Height 19.92 points
 Mask co-ordinates: Horizontal, vertical offset 365.74, 560.37 Width 57.03 Height 76.95 points
 Mask co-ordinates: Horizontal, vertical offset 438.16, 304.18 Width 19.92 Height 29.87 points
 Mask co-ordinates: Horizontal, vertical offset 235.38, 75.14 Width 95.06 Height 9.05 points
 Mask co-ordinates: Horizontal, vertical offset 130.36, 82.38 Width 36.21 Height 77.86 points
 Mask co-ordinates: Horizontal, vertical offset 85.10, 78.76 Width 19.92 Height 12.67 points
 Mask co-ordinates: Horizontal, vertical offset 53.41, 101.39 Width 22.63 Height 61.56 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -3.6212 678.9672 51.6017 86.0029 114.067 276.1116 24.4429 43.4541 260.7245 297.8387 39.8329 90.5293 291.5045 394.7051 18.1059 18.1059 397.4238 369.3568 21.7271 19.0112 106.8246 430.9168 29.8747 39.8329 151.184 675.346 31.6853 16.2953 63.3705 647.2819 14.4847 19.9165 365.7386 560.3738 57.0335 76.95 438.162 304.1757 19.9164 29.8747 235.3763 75.1365 95.0558 9.0529 130.3623 82.3788 36.2117 77.8552 85.0976 78.7576 19.9164 12.6741 53.4123 101.39 22.6323 61.5599

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 51
 57
 51
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 7.24, 766.78 Width 144.85 Height 12.67 points
 Mask co-ordinates: Horizontal, vertical offset -4.53, 683.49 Width 77.86 Height 65.18 points
 Mask co-ordinates: Horizontal, vertical offset 248.05, 442.69 Width 9.96 Height 8.15 points
 Mask co-ordinates: Horizontal, vertical offset 258.91, 452.64 Width 17.20 Height 24.44 points
 Mask co-ordinates: Horizontal, vertical offset 441.78, 269.77 Width 43.45 Height 68.80 points
 Mask co-ordinates: Horizontal, vertical offset 9.05, 14.48 Width 233.57 Height 254.39 points
 Mask co-ordinates: Horizontal, vertical offset 413.72, 38.92 Width 143.94 Height 108.64 points
 Mask co-ordinates: Horizontal, vertical offset 411.91, 630.08 Width 57.94 Height 59.75 points
 Mask co-ordinates: Horizontal, vertical offset 472.56, 735.10 Width 29.87 Height 36.21 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 7.2424 766.7807 144.8469 12.6741 -4.5265 683.4937 77.8553 65.1811 248.0504 442.6856 9.9582 8.1476 258.9139 452.6439 17.2006 24.4429 441.7832 269.7746 43.4541 68.8023 9.0529 14.4818 233.5657 254.3875 413.7191 38.9247 143.9417 108.6352 411.9085 630.0814 57.9388 59.7494 472.5632 735.0954 29.8747 36.2117

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 52
 57
 52
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 19.01, 686.21 Width 29.87 Height 54.32 points
 Mask co-ordinates: Horizontal, vertical offset 113.16, 717.89 Width 19.92 Height 14.48 points
 Mask co-ordinates: Horizontal, vertical offset 229.04, 727.85 Width 152.09 Height 4.53 points
 Mask co-ordinates: Horizontal, vertical offset 393.80, 738.72 Width 20.82 Height 21.73 points
 Mask co-ordinates: Horizontal, vertical offset 0.00, 55.22 Width 600.21 Height 335.86 points
 Mask co-ordinates: Horizontal, vertical offset 261.63, -0.00 Width 79.67 Height 18.11 points
 Mask co-ordinates: Horizontal, vertical offset 107.73, 439.97 Width 192.83 Height 12.67 points
 Mask co-ordinates: Horizontal, vertical offset 101.39, 558.56 Width 12.67 Height 6.34 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 19.0112 686.2095 29.8747 54.3176 113.1617 717.8948 19.9165 14.4847 229.0392 727.8531 152.0893 4.5264 393.8026 738.7166 20.8218 21.7271 0 55.22 600.2096 335.8639 261.6298 -0.0029 79.6658 18.1058 107.7299 439.9697 192.8275 12.6741 101.3929 558.5632 12.6741 6.337

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 53
 57
 53
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 6.34, 652.71 Width 43.45 Height 91.43 points
 Mask co-ordinates: Horizontal, vertical offset 100.49, 430.92 Width 18.11 Height 31.69 points
 Mask co-ordinates: Horizontal, vertical offset 134.89, 432.73 Width 9.96 Height 11.77 points
 Mask co-ordinates: Horizontal, vertical offset 304.18, 360.30 Width 62.47 Height 91.43 points
 Mask co-ordinates: Horizontal, vertical offset 47.08, 63.37 Width 387.47 Height 74.23 points
 Mask co-ordinates: Horizontal, vertical offset 390.18, 602.92 Width 35.31 Height 54.32 points
 Mask co-ordinates: Horizontal, vertical offset 391.09, 724.23 Width 79.67 Height 37.12 points
 Mask co-ordinates: Horizontal, vertical offset 459.89, 435.44 Width 109.54 Height 239.00 points
 Mask co-ordinates: Horizontal, vertical offset 87.81, 609.26 Width 11.77 Height 26.25 points
 Mask co-ordinates: Horizontal, vertical offset 99.58, 743.24 Width 144.85 Height 11.77 points
 Mask co-ordinates: Horizontal, vertical offset 477.09, 224.51 Width 21.73 Height 41.64 points
 Mask co-ordinates: Horizontal, vertical offset 446.31, 310.51 Width 12.67 Height 23.54 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 6.3371 652.7137 43.4541 91.4347 100.4876 430.9168 18.1059 31.6853 134.8887 432.7274 9.9582 11.7688 304.1786 360.3039 62.4653 91.4346 47.0753 63.3677 387.4656 74.2341 390.1815 602.9225 35.3064 54.3176 391.0868 724.2319 79.6658 37.1171 459.8891 435.4433 109.5405 238.9975 87.8135 609.2596 11.7688 26.2535 99.5823 743.243 144.8469 11.7689 477.0897 224.5099 21.7271 41.6435 446.3097 310.5128 12.6741 23.5377

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 54
 57
 54
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 29.87, 694.36 Width 42.55 Height 31.69 points
 Mask co-ordinates: Horizontal, vertical offset 186.49, 147.56 Width 10.86 Height 9.05 points
 Mask co-ordinates: Horizontal, vertical offset 296.94, 215.46 Width 273.40 Height 279.74 points
 Mask co-ordinates: Horizontal, vertical offset 313.23, 66.08 Width 76.04 Height 74.23 points
 Mask co-ordinates: Horizontal, vertical offset 339.49, 555.85 Width 172.91 Height 102.30 points
 Mask co-ordinates: Horizontal, vertical offset 425.49, 696.17 Width 81.48 Height 62.47 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 29.8747 694.3572 42.5488 31.6852 186.4904 147.5599 10.8635 9.053 296.9362 215.457 273.3987 279.7357 313.2315 66.0835 76.0446 74.2341 339.485 555.8473 172.9111 102.2981 425.4879 696.1678 81.4764 62.4653

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 55
 57
 55
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 2.72, 675.35 Width 47.98 Height 89.62 points
 Mask co-ordinates: Horizontal, vertical offset 16.30, 329.52 Width 200.98 Height 24.44 points
 Mask co-ordinates: Horizontal, vertical offset 341.30, 296.93 Width 247.15 Height 426.39 points
 Mask co-ordinates: Horizontal, vertical offset 284.26, 294.22 Width 25.35 Height 32.59 points
 Mask co-ordinates: Horizontal, vertical offset 81.48, -0.00 Width 103.20 Height 63.37 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 2.7159 675.346 47.9806 89.6241 16.2953 329.524 200.9752 24.4429 341.2956 296.9334 247.1451 426.3932 284.2621 294.2175 25.3482 32.5906 81.4764 -0.0028 103.2035 63.3705

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 56
 57
 56
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 287.88, 15.39 Width 9.05 Height 6.34 points
 Mask co-ordinates: Horizontal, vertical offset 385.65, 695.26 Width 81.48 Height 62.47 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 287.8833 15.3871 9.0529 6.3371 385.655 695.2625 81.4764 62.4652

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 56
 57
 56
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 189.21, 440.88 Width 7.24 Height 6.34 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 189.2063 440.875 7.2424 6.3371

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 55
 57
 55
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 503.34, 281.54 Width 81.48 Height 454.46 points
 Mask co-ordinates: Horizontal, vertical offset 104.11, 363.02 Width 303.27 Height 153.90 points
 Mask co-ordinates: Horizontal, vertical offset 14.48, 525.07 Width 82.38 Height 126.74 points
 Mask co-ordinates: Horizontal, vertical offset 148.47, 250.76 Width 19.01 Height 19.92 points
 Mask co-ordinates: Horizontal, vertical offset 161.14, 189.20 Width 203.69 Height 52.51 points
 Mask co-ordinates: Horizontal, vertical offset 107.73, 26.25 Width 135.79 Height 123.12 points
 Mask co-ordinates: Horizontal, vertical offset 434.54, 457.17 Width 59.75 Height 105.92 points
 Mask co-ordinates: Horizontal, vertical offset 421.87, 703.41 Width 47.98 Height 86.91 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 503.3432 281.5434 81.4764 454.4573 104.1087 363.0198 303.2733 153.8999 14.4847 525.0673 82.3817 126.7411 148.4681 250.7634 19.0112 19.9164 161.1422 189.2034 203.691 52.507 107.7299 26.2506 135.794 123.1199 434.5409 457.1703 59.7494 105.9193 421.8668 703.4102 47.9806 86.9081

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 57
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 516.92, -0.00 Width 81.48 Height 822.01 points
 Mask co-ordinates: Horizontal, vertical offset 428.20, 295.12 Width 24.44 Height 52.51 points
 Mask co-ordinates: Horizontal, vertical offset 210.93, 315.94 Width 121.31 Height 26.25 points
 Mask co-ordinates: Horizontal, vertical offset 14.48, 26.25 Width 286.07 Height 111.35 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 516.9225 -0.0029 81.4764 822.0065 428.2038 295.1228 24.4429 52.507 210.9334 315.9445 121.3093 26.2535 14.4847 26.2506 286.0727 111.3511

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 57
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 411.91, 622.84 Width 13.58 Height 17.20 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 411.9085 622.839 13.5794 17.2006

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 57
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -2.72, 697.98 Width 54.32 Height 80.57 points
 Mask co-ordinates: Horizontal, vertical offset 50.70, 664.48 Width 4.53 Height 28.97 points
 Mask co-ordinates: Horizontal, vertical offset 69.71, 685.30 Width 3.62 Height 7.24 points
 Mask co-ordinates: Horizontal, vertical offset 146.66, 672.63 Width 12.67 Height 10.86 points
 Mask co-ordinates: Horizontal, vertical offset -12.67, -0.00 Width 605.64 Height 475.28 points
 Mask co-ordinates: Horizontal, vertical offset 343.11, 588.44 Width 66.09 Height 147.56 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -2.7159 697.9784 54.3176 80.5711 50.6964 664.4826 4.5265 28.9694 69.7076 685.3043 3.6212 7.2424 146.6576 672.6302 12.6741 10.8635 -12.6741 -0.0029 605.6413 475.2791 343.1062 588.4379 66.0864 147.5629

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 57
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 287.88, 399.23 Width 110.45 Height 16.30 points
 Mask co-ordinates: Horizontal, vertical offset 236.28, 446.31 Width 38.93 Height 15.39 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 287.8833 399.2316 110.4458 16.2953 236.2816 446.3068 38.9276 15.39

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 57
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 222.70, 449.93 Width 19.01 Height 10.86 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 222.7022 449.928 19.0111 10.8635

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 57
 1
 1

 1

 HistoryList_V1
 qi2base

