1987 Honours Project

A BASIC Translator

Supervisor: P. J. Ashton

Department of Computer Science

University of Canterbury

Simon Dear

-- Contents --

1. Introduction
1.1. The Aim of The Project
1.2. A Brief Introduction to the SDR2

2. Design of SDR-BASIC

2.1. SDR-BASIC Should Provide a Useful Subset of Common
BASIC Features

2.2. SDR-BASIC Should Reflect Its Compiled Nature

2.3. Control of Memory Usage Is Required

2.4. SDR-BASIC Should Take Into Acount The Limitations
Of The SDR2 Hardware

2.5. SDR-BASIC Should Meet The SDR2 Requirements
2.5.1 Access to the SDR2 Heap
2.5.2. NULL fields in the heap
2.5.3. Input Output Facilities

3. Design of the Intermediate Language
3.1. The Syle of Code Produced - ADL or Intermediate language?
3.2. The Choice of the Intermediate Language
3.3. The Intermediate Language Adopted

4. The SDR-BASIC Translator
4.1. Issues in Translator Design
4.2. Issues in Translator Implementation
4.2.1. The Symbol Table
4.2.2. The Scanner
4.2.3. The Parser
4.2.3.1. Recursive Descent Parsers
4.2.3.2. Error Handling
4.2.3.3. Type Checking
4.2.3.4, Automatic Type Checking
4.2.4, Code Generation
4.2.4.1. The Code Produced
4.3. Translator Output
4.4, Issues in Porting the Macintosh Version to an IBM PC

5. The Interpreter

6. Results’
6.1. What has been done
6.2. What more could be done
6.2.1. Enhancing SDR-BASIC
6.2.1.1. Adding More BASIC features
6.2.1.2. Providing better interfacing with the SDR2
6.2.2. Improving the Translator
6.2.3. Improving the Interpreter
6.2.4. Improving the Development Environment

7. Conclusion

8. References

[E =Y

— = 00 00 AN\ N H LW w

—— Appendices --

A. The SDR2
A.1. The Hardware
A.2. The Software
A.3. Data Storage
A.4. External Programs
A.5. System Parameters

B. SDR-BASIC
B.1. A Brief Overview of SDR-BASIC
B.2. SDR-BASIC in BNF

C. The Intermediate Language
C.1. The Stack
C.2. An Overview of the Intermediate Language
C.3. Predefined Variables
C.4. Heap Record Types

D. The SDR-BASIC translator
D.1. Using the Translator
D.2. An example of an error listing
D.3. An example of the code listing
D.4. An example of the dump listing
D.5. The Translator Code

Project Report A BASIC translator

Section One.
Introduction.

Datacom Software Research has developed software for a hand-held data recorder used by
surveyors, called the SDR2. They would like to enable users to write programs in a
BASIC-like language, that can be run on the SDR2.

This project involves writing a translator that will convert a program written in a
BASIC-like language into an intermediate code form. The translated programs are to be run
on an SDR2. Programs will be developed on a micro-computer (probably an IBM PC or a
compatlble) and the intermediate code produced will be loaded into the SDR2 where it will
be interpreted.

The BASIC-like language (which will be called SDR-BASIC from here on) should provide
a useful subset of commonly implemented BASIC features. SDR-BASIC must also
provide access to the data stored in the SDR2 memory as well as access to input and output
facilities.

1.1. The Aim of The Project.

There are five sub-goals that must be reached in completing this project:

1. Getting to know the SDR2.
Before any other part is undertaken, a survey of the features of the SDR2 needs to be
made. An overview of the SDR2 environment is given in Appendix A.

2. Specifying the BASIC-like language.

SDR-BASIC needs be designed so that commonly found BASIC features are present.
More importantly, there should be features to allow access to SDR2 internal data structures
and input/output facilities. An overview is given in Appendix B.

3. Specifying the intermediate language.

The intermediate language is what will be loaded into the SDR2 for a program to be
executed. It will have to be designed to reflect the hardware and software of the SDR2,
especially taking into acount the memory limitations. In-depth details are given in
Appendix C.

4, Writing the translator.

The translator will need to check the syntax and semantics of an SDR-BASIC program,
and produce an intermediate langauge form of the program along with appropriate listings.
Documentation is given in Appendix D.

5. Writing the intermediate language interpreter.

The interpreter will be developed on a PDP-11 in ADL, the language in which the software
for the SDR2 has been developed. If there is not enough time, a specification of the
intermediate language and an outline of the interpreter will be given.

1.2. A Brief Ingtoduction to the SDR2,

The SDR2 collects, verifies and stores observations taken from surveying instruments. It
comes with a collection of data collection and calculation programs for surveying
applications.

Observations are taken automatically from electronic survey instruments, via a special

Page 1

Project Report A BASIC translator

interface and cable. Once stored in memory, the data can be used for further calculations,
browsed through, or down loaded to a micro-computer using the communications
interface.

The SDR2 has 32k bytes of RAM. Observations are stored here as heap records, which
vary in length depending on their type. Also the RAM can be used to store external
programs, which can be loaded in through the communications interface. Programs that
run on the SDR2 are either written in assembler or ADL, a stack-based language rather like
Forth.

Unfortunately, the SDR2 is not programmable by the user. As there are competing systems

-on the market that provide user programming it was considered a worth while project to
implement a system which allows the user to run BASIC programs.

Page 2

Project Report A BASIC translator

Section Two.
Design of SDR-BASIC.

In the original specification of the program there was some flexibility given to the nature of
the language. Datacom require that it is BASIC-like. This provides the opportunity to
design a language that is significantly more powerful that your everyday BASIC.

The reason why Datacom decided that a BASIC-like language should be implemented is
because the SDR2 is a tool for surveyors. It is more likely that surveyors are acquainted
with BASIC than any other language.

In specifying SDR-BASIC there were several design goals that had to be met.

2.1, SDR-BASIC Should Provide a Uselful Subset of Common BASIC features..

Some research had to be done to find out what features of BASIC were desirable and
should be retained. BASIC is the most common language implemented on small personal
computers. BASICs normally vary in the features added to take advantage of the sound
and graphics hardware. Control structures, variable types, and built-in mathematical
functions are almost standard across BASICs.

It should be noted thet there are many dialects of BASIC, No one has true claim to be the
BASIC. There is an ANSI standard for BASIC, but it is not widely implemented.
Microsoft BASIC[4], or close relatives, is probably the most widely used dialect. It is
almost identical to the BASIC distributed with IBM PCs. Because it is so widely available
SDR-BASIC has been based on Microsoft BASIC.

The features that are to be implemented should be ones that appear in most BASICs. They
should be common enough for the programmer not to have any difficulty when
programming. Also it is considered important that SDR-BASIC has the look and 'feel' of
other BASICs. It would have been possible to enhance BASIC to produce a version that
had procedures, local variables, user defined data types, and sophisticated file handling.
But this is probably a bit excessive, considering that the language is going to be used by
surveyors who have only been acquainted with BASIC.,

An outline of SDR-BASIC is given in Appendix B.

2.2. SDR-BASIC Should Reflect Its Compiled Nature,

BASIC is traditionally used in an interactive environment. The program is entered line by
line, usually by typing the line in directly from the command line. Most systems provide
line editors or screen editors so programs can be modified. At any stage, the program can
be run. At run time interpreter checks for syntax and semantic errors. When an error
occurs, the offending line can be corrected and the program can be run again. Once the
program has finished running, the variables can still be interrogated from the command
line.

As an SDR-BASIC program is compiled into an intermediate code, many of the features
that come with interactive BASICs simply will not apply. There will be no need for
commands that are normally issued from the command line, like DELETE (a line), SAVE,
LOAD (a program), RUN, CONT or LIST. Also commands like STOP which are
normally issued from inside the program will not be needed.

Page 3

Project Report A BASIC translator

It is desirable to do as much work at translation time as possible. All syntax checking is
done at translation time, rather than at run-time in many interactive systems. Also, type
checking and memory allocation should be done at translation time. Therefore, if any
enhancements to commonly used BASIC features further this aim they should be adopted.

One of the most noticeable features of BASICs is that every line has a line number or label
attached to it. In an interactive environment this is one way of being able to specify the
logic ordering of lines without resorting to a screen editor. In a compiled version of
BASIC beginning each line with a label is rather pointless. The logical ordering of the lines
is simply the physical ordering of the lines as they appear in the source. The other use for
line numbers is to specify the line where execution will continue after a branch. For this
reason, line numbers have been retained in SDR-BASIC. They only need to be at the start
of the line that is branched to. Even though line numbers are integers, in SDR-BASIC they
can appear in any order, as with Fortran.

In some BASICs the binding between FOR and NEXT in loops is done at run time rather
than at compile time. For example, the following will loop around 10 times.

10 GOTO 40

20 NEXT i%

30 END

40 FOR i% = 1 TO 10

50 GOTO 20
However, this dynamic binding only leads to spaghetti-like looping structures and makes
the program hard to follow. Therefore SDR-BASIC forces the programmer to have the
NEXT following the FOR. This means that the FOR is always bound to the same NEXT.
This has the advantage that less run-time management of for loops is needed. The very
same restriction applies to REPEAT...UNTIL and WHILE...WEND loops as well.

2.3, Control of Memory Usage is Needed,

Memory allocation poses a major problem for most BASICs. The space requirements for
strings and arrays is normally determined at run time. This is not at all desirable in a
compiled BASIC, especially SDR-BASIC as memory on the SDR2 is a limited resource.

The dimensions of an array in BASIC are specified by using a DIM statement, which has
the following syntax:
DIM arrayname (dimensions)

The problem that arises here is the fact that the dimension is specified as an integer
expression. It is almost impossible for the translator do determine the value of the
expression at translation time as the expression might have operands that have yet to be
initialised. Therefore, in SDR-BASIC the dimensions must be specified as integer
constants, thus avoiding any problems. A possible enhancement to this scheme is to allow
constant expressions (that is, expressions involving only constants), but this was not
attempted.

BASIC strings have dynamic string lengths. Every string has a maximum possible length
(normally 256 characters), but the space needed to store the string depends only on its
current length. On the SDR2 this scheme could cause problems, as there is little or no
control on the string space that is required. Consider for example:

DIM AS(100)

There is a 3 byte (16 bit address of string and one byte string length) overhead for each of
the 101 array elements. This creates a minimum of 303 (=101 * 3) bytes storage
requirement. However, if all strings were their maximum length, then a maximum of
26159 (=(256 + 3) * 101) bytes is needed. As the SDR2 has only 32k of RAM, some
steps are needed to avoid memory-hungry programs.

Page4

Project Report A BASIC translator

For this reason, in SDR-BASIC strings have a default maximum length of just 32
characters. If larger strings are needed (or shorter ones are desired!), the programmer has
to specify the space needed. To do this, the length of the string should be enclosed
between brackets after the string identifier, at the first reference to the string in the
program. For example,

fred$[128] = "n»
sets the upper limit of the length of string fred$ to be 128.

Using this method, the storage requirements for strings is known exactly at
translation-time, and the amount can be kept to a manageable level.

2.4, SDR-BASIC Should Take Into Account The Limitations Of The SDR2s Hardware,

As SDR-BASIC is to be run on a hand-held computer which has its own set of
idiosyncrasies, constriants have had to be imposed on some BASIC features,

The main one concerns the INPUT statement. In most BASICs the syntax is:
INPUT {optional prompt} variable (..variable)

However, remember that the SDR2 has only a 16 character display. If a large number of
variables needed to be inputed, the prompt could very well scroll off the screen to make
room for the typed data. This would be very off putting. Therefore the restriction that only
one input variable can be included in the INPUT statement has been made. This is
probably desirable from the point of view that there could be difficulty in getting the
SDR2s input routines to handle multiple input values anyway.

2.5. SDR-BASIC Should Meet The SDR2 Requirements,

An important requirement of SDR-BASIC was to provide access to the internal data
structures and input/output facilities of the SDR2.

2.5.1. Access to the SDR2 Heap.

The user needs to be able to add as well as retrieve records from the heap. There does not
need to be any provision for deletion and editing of records. This is because, under New
Zealand law, once a surveyor has made an observation he or she is required not to delete or
modify it.

The heap consists of records of varying types. This in itself poses problems for adding and
retreiving. Also BASIC doesn't provide for any way of handling records. To get around
this problem the following methods were considered:

(a) For retreiving from the heap, successive characters (or possibly one string) are read.
The programmer has to convert numeric strings to numbers, and interpret the data
him/herself. Writing is done in a similar way.

(b) For retreiving, string and numeric values can be read successivly. The programmer has
to make sure that he or she is reading the right type at the right time. Wntmg is done in a
similar way.

(c) Implement records structures in BASIC, Whole heap records could be retreived and
added at one time.

Page 5

Project Report A BASIC translator

(d) Several variables could be predefined, each one representing a different heap field.
Retreiving would be done by one command that would retrieve the record type off the
heap, and then update appropriate variables. Adding records would be done by looking at
the type of record to be added and the using the appropriate variables.

All Options require some heap manipulation functions to be implemented. Options (¢) and
(d) would be the easiest for the programmer to use. (a) and (b) involve a lot of fiddling
around, and the prossibility of errors arising due to unread or unwritten data is quite high.
Option (c) requires major enhancements to be made to BASIC, as record structures need to
be implemented. The last option does not require any further enhancements to BASIC
(other than the few extra heap functions), and the resulting apperance does not deviate
from BASIC at all.

Weighing all this up, option (d) was chosen, where predefined variables would be used.
This method also involves a memory saving as the predefined variables could reside in the
translator's memory space rather than in the code space.

SDR-BASIC allows for the following operations to be made on the heap. Functions that
support searching are already built into the SDR2.

Retreiving:
Retreive the last element added to the heap. (GETLAST)
Retreive the record that was added after the last one referenced.

(GETNEXT)
Retreive the record that was added before last one referenced.
(GETPREVIOUS)

Searching: .
Search through the heap, and retrieve the last record of the given
type.(GETTYPE (type))

Search through the heap and retreive the last record which contains the given
point number (either as a source point or a target point).
(GETPT (point))

Adding:

Add a record to the end of the heap. The records type is in stored in
the variable RECORDTYPE. (ADD).

2.5.2. NULL fields in the heap.

In heap records some REAL fields have a special value to indicate they are empty, as
opposed to containing the value zero. This special value is NULL. NULL is a special form
of real. It has the property of being able to be propagated through expressions. That is, if
one of the operands in a real expression is NULL then the result is also NULL.

SDR-BASIC has a 'pre-defined' constant called NULL. It can be used anywhere a real
value could normally be present. That is, in expressions or in comparisons.

2.5.3. Input Output Facilities.

SDR-BASIC should be able to let programmers to input and output data. Output to the
screen and input from the keyboard have been considered earlier.

Input can come from two places: readings taken automatically from electronic surveying

equipment, and data sent via the RS232 port. As the one interface has a dual role of being
the connector for to surveying equipment, these two are basically the same.

Page 6

Project Report A BASIC translator

Output can be via the RS232 port, or via the acoustic coupler. The SDR2 has an internal
parameter called ACOUSTIC which determines where the output is to be directed to. To
avoid the programmer having to deal with this, two output commands are supported by
SDR-BASIC.

Output: Output via the RS232 port., (LPRINT)
Output via the acoustic coupler. (PRINT#)

Input: Input via the RS232 port. (LINPUT)
Input from surveying equipment. JINPUT#)

Page7

Project Report A BASIC translator

Section Three.
Design of the Intermediate Language.

SDR-BASIC programs will be translated into some other langauge. It is this other
language that will be loaded into the SDR2 when a program is to be run. This section
addresses the choice and design aspects of this language.

3.1. The Style of Code Produced. ADL or Intermediate Language?

There are many possible choices for the langauge that the translator produces.
(a) The machine code native to the SDR2.

(b) An intermediate language, such as P-codes.

(c) A tokenised form of BASIC.

(d) ADL, the language in which many of the SDR2 program have been written.

It is desirable for the translator to do as much work (breaking high level commands into
more primitive ones, converting expressions into post-fix notation etcetera) as possible in
the translation process. Therefore the choice of simply tokenising is not a wise one. Also,
many high level features of the SDR2 need to be accessible. Producing machine code
would make this very difficult. Therefore options (b) and (d) are the only sensible options.

To determine the better of translating into ADL or into an intermediate language, the
following issues should be.considered: -

(a) Ease of Implementation.

If the intermediate language approach was taken then both a translator and an interpreter
would have to be written. However intermediate language generation is relatively straight
forward, especially as the author has had much experience in this approach.

Producing ADL code has the advantage that only the translator need be written. However,
it will undoubtably be much more complicated than with the intermediate language
approach. One reason for this is that libraries would need to be used to avoid including
large pieces of unnecessary code. Linking would be done as a part of the translation
process. There would also be problems with the constraints placed upon external ADL
programs. In particular, an external program can have only 128 variables. Also there is a
limit on how large the program can be. Therefore it is doubtful that large SDR-BASIC
programs could be written.

(b) Memory Requirements
Memory usage is an important issue with the SDR2, Therefore the end approach should
require as little of it as possible.

The intermediate language would be interpreted. This requires both the code of translated
program and the interpreter to be in memory at one time. However, the intermediate code
should be quite compact, as the code to execute high level instructions would appear in the
interpreter only once. Also, it is possibility for the variable storage space to be controlled
by the interpreter. This would mean that this space would only need to be allocated for the
one running program.

The alternative results in there only being the translated program in memory at one time.

However, the code for high level commands would be duplicated in all programs that were
currently in memory.

Page 8

Project Report A BASIC translator

(c) Maintainability.
(i) Changes to the way ADL is implemented might occur in the future (see Appendix A). It
is possible for several versions of the SDR2 EPROM to be in existence at one time.

The intermediate language approach gives some independence between the code generated
and the version of SDR2 being run. If a new version of the SDR2 is released, only the
interpreter would need to be modified (or recompiled). The translator itself would not
require any modification.

The ADL approach gives no independence from the contents of the EPROM. Therefore, it
is possible that several versions of the translator might be in existance. When a new
EPROM is released, the code generation of the translator would need to be modified, as
well as the ADL libraries required for linking. Also, all translated programs would have to
be retranslated.

(i1) Enhancements to SDR-BASIC might be made in the future (see Section 6.2.1.). The
translator will need to be modified to reflect these changes.

With an intermediate language, the translator would have to be modified to make
allowances for the changes. If the intermediate code also had to be updated then the
interpreter twould have to be changed. As there could be several versions of the interpreter
in existance (one for each version of the SDR2 EPROM), each version would require
modification.

With ADL code, the translator would require modifiaction and possibly some new entries
to the libraries.

(d) Portability.
Translated programs could be given to SDR2 users who do not have access to the
translator. Also, high level functions could be developed by Datacom and then distributed
to SDR2 users.

As the intermediate language is independent from the SDR2 EPROM version, intermediate
code would be portable. Users without access to a translator would require a copy of the
interpreter. Several versions of the intermediate language could be in existance at any one
time (see part (c)). Therefore file transfer could only be done between systems running the
same interpreter.

If ADL code was produced by the translator, code could only be ported between SDR2s
with the same version EPROM.

(e) Speed.

As ADL is itself interpreted (by a machine code program), using an interpreter would add
another level of complexity. It is likely that interpreted programs will run several times
slower than ADL programs doing the same thing.

() Run Time Errors.
As inexperienced users will be writing the programs it is possible that run time errors will
occur, Having an interpreter gives one more layer of protection from nastey side effects
than does the ADL code approach. Meaningful error message could be generated by the
interpreter when something untoward happens. This possibility does not arise with the
alternative approach.

When Datacom suggested this project they had envisaged the intermediate langauge
approach would be adopted. From the previous discussion, it is very hard to conclude if
this is indeed the best. To arrive at any conclusion one must assume probabilities of certain
factors occuring.

Page 9

Project Report A BASIC translator

However, because the intermediate language approach is easier to implement and possibly
easier to maintain and port, it has been the one adopted.

3.2. The Choice of the Intermediate Language,

There are many types of intermediate langauges that could be used for this project. Much
time could be saved if a standard intermediate language were adopted.

The advantages of using a standard intermediate language are many. There are code
optimisers and improvers available that could be improve the compactness of the code.
Also there are many interpretters available, which would come in useful in the testing stage
at least. Using a standard intermediate language increases the portability of SDR-BASIC to
other machines.

However, SDR-BASIC calls for many hardware and SDR2 specific instructions. It is
possible that interfacing to the SDR2 could be achieved using an standard intermediate
language. This would be at the sake of compactness, or would involve introducing new
instructions resulting in losing the standardness aspect. For example, the instruction for
adding a new heap element could simply be 'Add'. In a standard intermediate langauge the
code to do the same thing would be broken down into loading all relevant variables on the
stack, and then call an external procedure.

Designing a custom intermediate language for SDR-BASIC has the advantage that the
choice of instructions can be tailored to BASIC. It is not always desirable to break down
BASIC statements down into primitive instructions. Using a higher-level instructions
instead of many low level ones has the advantage of using less memory as well as
improving the execution speed. An example is the code generated for the FOR...NEXT
loop. The syntax of the loop is:

FOR loop variable =initial value TO upper bound {STEP increment}

loop body

NEXT {loop variable)
The step increment can be an expression and because of this the value of the expression
might only be known at run time. Therefore the code generated under a standard coding
scheme must take into account the fact that the sign of the increment affects the test that has
to be done at the end of each loop iteration. If the increment is positive then the loop cycles
around until the loop variable is greater than the upper bound. Otherwise the loop cycles
around until the loop variable is less than the 'upper’ bound. A much more elegant way is
to have an instruction called NEXT. The interpretation of NEXT takes into account the
sign of the increment.

Page10

Project Report A BASIC translator

3.3. The Intermediate Language Adopted.

The intermediate langauge that has been used is outlined in Appendix C. The main features
of it are:

(a) The name of the instructions are meaningful!
The names of the instructions are given meaningful names, rather that cryptic four letter
mnemonics. For example, there are

AddInteger

BranchTrue

PrintString

(b) It is based on a stack machine rather than one with registers.

This method was chosen because it is far simpler to generate intermediate code. With a
register-based machine the translator must keep acount of which registers hold values to be
operated upon. Also, the instructions themselves are more complicated as information
about source and destination addresses must be stored. In addition, the interpreter will be
easier to write as ADL is itself stack based.

(c) The stack elements are 16 bit signed integers.
This size was chosen because ADL integers (and addresses) are also 16bits long.

REALs and STRINGs are represented on the stack by their address. REALS are in the
same format as in the SDR2; 6 bytes. Strings are stored as a length byte followed by the
string, Note that this effectively limits strings to be less the 256 characters long.

(d) Instructions vary in length.

Instructions can consists from between one byte and 257 bytes. Most instructions are
either one or three bytes long. One byte is alway used for the operation part of the
instruction. Two bytes are used for the operand part. Exceptions to these rules are:

LoadConstReal real
LoadConstString length string
BranchIndexed numlLabels labelList
CallIndexed numLabels labelList

(e) There are special purpose instructions for SDR2 access.

To interface with SDR2 features there are several simple instructions. It is left up to the
interpreter to carry out the more detailed aspects of these instructions, such as assigning
values to the appropriate variables. ‘

Page 11

Project Report A BASIC translator

Section Four.
The SDR-BASIC Translator.

The SDR-BASIC translator should do the following.

(a) Check the syntax of an SDR-BASIC program and give appropriate error messages.
The translator should generate error messages that are meaningful to the programmer, and
give some indication where they have occurred. To avoid errors cascading, some form of
resynchronisation is needed. '

(b) Check that typing is consistent and give appropriate error messages.
The parser should trap errors in expressions that are in conflict with the type rules of
SDR-BASIC.,

(c) Produce an intermediate code version of the SDR-BASIC program.

A valid intermediate code version (or none at all) should be produced. Space for variables
should be allocated. The code should be dumped to a file in the SDR2 extrenal program
format.

(d) Produce appropriate listings.
An listing showing where errors occur in the program.

There are many ways of writing a translator, There are systematic methods such as
recursive descent parsers. Given an LL grammar for the language, there are well defined
methods for writing a compiler in a high level language. Such an approach can be fast and
is very flexible.

Translators can also be developed with automatic parser generators, or so-called compiler
compilers. An example is YACC that is supplied with the Unix operating system. The
advantage of using such software tools is that it is very easy to produce a prototype.
However from personal experience they have been found to perform badly when error
detection and recovery is added to the parser.

If an automatic parser generator was to be used for developing this project, it would
probably be done with using YACC on the departmental version of Unix. However,
Datacom do not have Unix. Any future maintenance would be quite inconvenient for them.
The parser would require porting to an IBM PC every time modifications to the translator
were made.

For these reasons it was considered that a recursive descent translator should be developed
in a micro-computer environment. The prefered language to use was Pascal, and as
Datacom have many IBM PCs using Turbo Pascal, this product was used. Due to the
unavailability of IBM PCs or clones, the development was done on an Apple Macintosh
usingTurbo Pascal, and the final product will be ported to an IBM PC.

4.1. Issues in Translator Design.

Conceptually a translator consists of four main program units
(a) scanner (Jexical analyser),

(b) parser (syntax analyser),

(c) semantic analyser,

(d) code generator.

Page12

Project Report A BASIC translator

The scanner processes the input characters and recognises the symbols of the language.
The parser takes these symbols and recognises the constituent parts of the program. With
knowledge of these constituent parts the semantic analyser can gather information about
what the program means. With this information the code generator can then generate
equivalent code.

In recursive descent parsers, the actual structure of a translator differs slightly this
conceptual view. Central to it are compiling procedures that do the syntax analysis, which
call the scanner, semantic analyser, and code generator. Often the semantic analysis is done
along with the syntax analysis in the compiling procedures.

Symbolic information about symbols and variables are stored in a symbol table. All four
program units of the translator need to access the table. The scanner intetrogates it to check
if the string of characters read in correspond to a reserved word, or a user variable. The
parser has to update information about variables as the are declared. The semantic analyser
updates and uses information about variable types. The code generator stores and retrieves
information about memory addresses of variables.

The interaction between programs units and the symbol table is shown in figure 1.

characters ———3| acantier

™
4 evembol table
Parger ¢ 4
7
'
code : intermediate
geterator language
Figure 1.

4.2, Issues in Translator Implementation,

The translator that has been implemented is based very loosely on the P4 public domain
Pascal compiler [2,3]. The translator is a one pass compiler. It stores the code that it builds
up in memory until all parsing has finished. Because of this, the size of an SDR-BASIC
program is limited. However, as memory is critical on the SDR2 anyway this does not
pose much of a problem. At present, up to 8k of code can be generated successfully.

Page 13

Project Report A BASIC translator
4.2.1. The Symbol Table.

In the SDR-BASIC translator, the symbol table consists of an array of table elements. Each
element consists of an identifier, a class identifier, and various other fields whose
relevance depends on the class.

The classes of symbol table records and their relevant fields are:

Class Fields
Reserved words. The corresponding symbol.

Built-in functions. The corresponding symbol.
The type the function returns.
Labels. A flag to indicate that the label has been referenced.
A flag to indicate that the label exists.
The address of where the code for the line starts. 7}
The address of where the users data starts after this line.
The address in the code space of last used RESTORE
statement to this line.
Variables. The type.
For string variables, the maximum size.
The address of the variable. ¥
Array variables. The type.
For string variables, the maximum size.
Number of dimensions.
Linked list of array dimensions.
The address of the variable.

Note: The exact location of these might not be known at the time they are first referenced.
In such cases, all references to them are chained together until the actual address is known.
When it is, the chain is used to determine the addresses in the code space that need to be
patched up. The last element in the chain has a value of -1.

In the SDR-BASIC translator, there are 503 elements in the hash table. Of these about 130
are taken up with reserved words and built-in functions., When the number of elements
used is 450, no more elements can be elements. This is to avoid degrading of performance
when the table gets full. It is unlikely that this will happen anyway, as there is room for
320 vraiables, arrays, user defined functions, and labels. If more space is needed, a
constant in the program is all that need be changed.

Page 14

Project Report A BASIC translator

A hash function is used to find particular elements in the symbol table. The key for the
function is the identifier. The hash function used is:

index = (ordinal wvalue of first character * 17 +
ordinal value of last character * 103 +
length of identifier * 55) modulo 503

If the element at index is not the desired one, 37 is added to the index (modulo 503). The
resolving continues until either the correct or an unused element is found. This hash
function was chosen because it gives good results. Arriving at it was a bit of a hit and miss
affair. The SDR-BASIC translator keeps a record of the number of retries that had to be
made. By monitoring this, and changing the values of the factors, the hash function was
able to be fine tuned. '

4.2.2. The Scanner

The scanner converts input characters to symbols. The following diagrams shows how the
input symbol is determined from the first non-blank character.

apace
Proceas identifier,
lett Can be - yezerved word
atay t—yp ertex :O - built-in function
- variable

- uger ~defined function

O String literal.
., digdit :O Hutnerie literal,
gpecial ho
b 4, -, %, /.=, 4,0, 4=, ate
end of line =O Return EOLMey

Figure 2.

Page15

Project Report A BASIC translator

Several unusual features of the scanner need explaining,

In SDR-BASIC a variable is identified by its identifier and type. This means that all the
following variables are all different.

banana% (integer)
bananas (string)
banana! (real)
banana$% () (integer array)
banana$ () (string array)
banana! () (real array)

To complicate matters, the following can appear:

banana (default type for identifiers starting with 'b")
banana () (array of default type for identifiers starting with 'b")

At some stage, the type of the identifier read in must be determined. To simplify the parser,
this is done in the scanner. As variables have unique entries in the symbol table, a unique
identifier is crcatéd from the one read in. For example, if 'banana' was read in, and the
default type for variable begining with 'b' was string, then the unique identifier used is

banana$'. Similarly, if the array "oanana' was read, 'banana$ (' would be used.

Labels are handled in the scanner rather than in the parser. A label always appears at the
start of the line. When the scanner finds a integer constant at the start of the line, it adds the
label to the symbol table. Also, if there is are any previous references to this line earlier in
the program, the scanner patches up the code space so that the branches are directed to the
current value of the code pointer.

4.2.3. The Parser.

The parser is modelled on a recursive descent approach. Error detection and resolution,
and type checking have been added. These aspects are very well documented in the
literature on the subject [5]. Therefore the coverage here is rather superficial.

Page 16

Project Report A BASIC translator

4.2.3.1. Recursive Descent Parsers.

Recursive descent compilers are designed for LL grammars. An LL grammar for
SDR-BASIC is given in Appendix B.

The parser (for an LL1 grammar) is constructed as follows. For each terminal symbol in
the grammar, a procedure is written that checks to see if the last scanned symbol is correct,
and then reads in the next symbol by calling the scanner, For each production, a procedure
is written which calls the procedures corresponding to the symbols in the right hand side of
the production in order. The parser is started by calling the scanner, and then calling the
top-level parsing procedure.

This is a very basic recipe. It will normally be modified to avoid recursive calls. Also,
terminal symbols that appear only in one production might be handled in the procedure for
that production. For example, in the SDR-BASIC grammar, we have

<program> <lines>
<lines> <line> | <line> eoln <lines>

For these productions the following Pascal procedures could be constructed.

I

procedure pPROGRAM;
begin
pLINES;

end;

prodedure pLINES;
begin
pLINE;
while (insy = eolnsy) do begin
insymbol; {skip past end of line}
pLINE;
end;

end;

The parsing procedures are normally padded out with error detection code. Also, in some
places type checking code needs to be added.

Page17

Project Report A BASIC translator

4.2.3.2. Error Handling,

To detect errors a check is made to see if the symbol last read in from the scanner is the
same as the one that is expected. If they are different, an error message should be
displayed, and the symbol stream from the scanner should be resynchronised.

Resynchronisation requires knowing all the symbols that can follow the one that is being
checked in the given context. To do this, a follow set is passed as a parameter to each of
the parsers procedures. The follow set passed on consists of the follow set passed to the
calling procedure plus the symbols that can follow in the given context. To resynchronise,
input symbols are skipped until one if found to be in the follow set.

4.2.3.3. Type Checking,

Most of the type checking is concerned with expression parsing. The parser has to make
sure that the types of operands being operated upon are the same. If they are not, either
type coercion must be done or a type mismatch error must be given.

The way type checking for expressions is done is the same as if a parse tree were built up
for the expression. At the leaves of this tree there are operands. At the nodes there are
operators. When the scanner reads in an operand (variable, user defined function, literal,
or built-in function) it can determine its type. Starting at the nodes of the tree, the types can
be propagated up until the type of the root node has known. The expected type of the
expression can then be checked with the expected type of the top node for compatibility.

The propagation of types up the tree is done as follows. Each operator can only operate on

a subset of types.
operator valid types
unary - integer, real
+ integer, real, string
- integer, real
* integer, real
/ real
div integer
A real
<S> 2 integer, real, string
and, or, not integer

Page18

Project Report A BASIC translator

Therefore, a check has to be made to see if an operator and its two operands are
compatible. If they are not, an error has occured. If they are, then the two operands are
corerced to the same type if need be, and the type is passed up the tree.

4.2.3.4, Automatic Type Conversion.

Coercion (automatic type conversion) occurs when the given and expected types in an
expression are different, and it is possible to convert the given type to the expected one. In
SDR-BASIC, this can happen between integers and reals. There are occasions when reals
are coerced into integer as well as when integers are coerced into reals. If an operand is
valid for both integers and reals, and coercion is needed, then the integer will be widened
to form a real. An exception to the widening rule is with assignment, where coercion is
always to the type of the left hand side variable,

Consider the following example.

a¥ = b¥% * 2 + c¥

Figure 3.

Here, the * operator is operating on two integer operands. Therefore it produces a result of
type integer. The + operator is operating on an integer and a real. To make the operands the
same type, the integer is widened to a real. The assignment has a left hand of type integer
and a right hand side of type real. On assignment, the right hand side is always coerced to
the type of the left hand side.

Page19

Project Report A BASIC translator

4,2.4. Code Generation.

Code is generated as the program is being parsed. Calls to the code generating procedures
are made by the parser. There are procedures to do the following.

Add a instruction to the code space (procedure Genl)

Add an integer (2 bytes) to the code space (procedure Gen?2)

Add a byte to the code space (procedure Gen3)

Add a real (6 bytes) to the code space (procedure Gen4)

Add a string (1-256 bytes) to the code space (procedure Gen5)

Create space for integer variables (procedure CreatelntegerSpace)

Create space for string variabels (procedure CreateStringSpace)

Create space for real variabels (procedure CreateRealSpace)

These routines maintain the code space and various pointers that reference it.

Each part of the parser handles the code generation for the part of the language that it
parses. As an example, consider the SDR-BASIC GOTO statement. The syntax of the
statement is:

GOTO label

The simplified code for this looks like:

(**)Genl (Branch); {Generate Branch instruction}
PLABEL (...); {Let pLABEL handle the rest!}

Using this methed, code generation can be approached in a modular way.

Page20

Project Report A BASIC translator

4.2.4.1. The Code Generated.,

The code space generated by the translator looks like:

Initiation

Code

Data Ares

Integer Variablez

Real Variables

String Variablez

£ 32767

Figure 4.

The initiation part of the code space consists of instructions to initialise the data pointer and
variables to their default values.

The length of the code varies in length. It has all the code corresponding to the
SDR-BASIC program. The code area always ends in an Exit instruction.

The data area is variable length and always ends in two bytes of 255.

All variables of the same type are strored contiguously. This has been done for two
reasons.

(a) To simplify the initialisation of variables.

(b) For future enhancements to the interpreter. At some later stage, variable space storage
could be allocated in the interpreter. This would make the object code file much smaller. If
variable storage space was deallocated when a program terminates, memory would be
saved in the SDR2. This is becaues only one program's variables are active at on time.

Page?21

Project Report A BASIC translator

4.3, Translator Qutput.

The translator must produce an object code file in the form of an SDR2 external program,
The format consists of lines of the following ASCII characters.

I i 1 1
% Addregs |Addrezs
Bvte 31 | Check-
’ 2: O MSE LSE 0 O Eyte 0 yie 31 toee
| 1

1] L f o)

Figure 5.

Bytes appear as the ASCII representation of their hexadecimal notation, For example, 32 is
represented as the two characters "20'. The check sum is the negative of the sum of all the
bytes on the line.

4.4 Issues in Porting the Macintosh Version to an IBM PC.

As the Macintosh version of the translator has been written in Turbo Pascal, it should be
relatively stright forward to port it to an IBM PC environment.

Macintosh Turbo Pascal and IBM PC Turbo Pascal have the following differences:

(a). In both versions large programs must be broken up into segments. There are separate
segments for code, data and heap space. The size of the segment depends on the computer

system being used.

On the Macintosh, the segments are 32k long. There is a very simple compiler directive for
doing this. One simply incl\udes a Pascal comment before a function or procedure in the
form of |

{S+ segment name}

All code generated after this point will be placed in the named segment.

On the IBM PC, the segments are 64k long. If more than one segment is needed, a
complicated method of overlays is required.

The amount of 68000 code that is generated on the Macintosh is about 52k. This means
that on the Macintosh segmentation has had to be done. However, assuming that about the
same amount of 8086 code is generated on an IBM PC, there will be no need for

segmentation.

Page22

Project Report A BASIC translator

(b) The Macintosh Version of Turbo Pascal has many enhancements over the PC version.
For example, there are more powerful string to number conversions. Such functions have
been avoided if they make for harder porting.

Page23

Project Report A BASIC translator

Section Five.
The Interpreter.

Translated programs will be loaded into the SDR2 where they will be run by an interpreter.
The interpreter will be written in ADL and loaded as an external program.

Because of lack of time, this part of the project has not been completed. This section gives
an outline to what the interpreter should do. Possible difficulties with implementation are
high lighted. ‘

(a) Determining which program to interpret.

The interpreter needs to know which program to interpret. As there can be many in the
SDR2's memory at any one time, some sort of menu selection is needed. Once the
program has been selected interpretation can start,

(b) Machine variables.

Effectively, the interpreter emulates a virtual machine, whose machine language is the same
as the intermediate language used for this project. The interpreter will therefore need to
have some variables and data structures in order to manage the code and data.

i. Program Counter.]
The program counter holds the address of the next instruction to be interpreted. Before a
program is interpreted, the program counter is initialised to zero.

ii. Program Stack.

The intermediate language that is used is a stack oriented one. Therefore a stack must be
implemented. It is possible that the ADL stack can be used for this purpose. The stack will
be empty when the program starts and when it finishes.

The stack elements are 16 bit signed integers.

iii. Stack Pointer.
If a stack is implemented, a stack pointer is needed to point to the first empty element in
the stack.

iv. Frame Pointer.
A frame pointer is needed to reference parameters to user defined functions and built-in
functions in the stack.

v. Data Pointer.

The data pointer is needed to reference the data area, where the values in the SDR-BASIC
DATA statement are stored. The data pointer is reset by the Restore address
instruction.

vi. Real and String Operand Space.
As stack elements are 16 bit values, real and string operands cannot be stored there. Some
area is needed internally in the interpreter for this purpose. A problem arises here because
there is no limit to the number of real or string operands that need to be stored. For
example,

al = bl!l ~ b2! ~ b3! ~ b4l ~ ... b,!

requires space for n reals.
The values placed in the stack need only be what is convenient for the interpreter, as the

type of operands is known from the context of the program. Addresses would suffice, as
would indexes into the array where the real and string values are stored.

Page24

Project Report A BASIC translator

(c) Interpreting Instructions.

The interpreter proceeds by starting at the first instruction in the code. It must then interpret
it. This requires reading relevant operands from the code, and stack, and updating the
stack, program variables and 'machine' variables. After the instruction has been
interpreted, the interpreter should procede to the next.

As the intermediate code will reside in the SDR2 memory at an address not known at
translation time, all addresses in the code are in effect an offset from the start address of
the code. Therefore, address conversion will need to be made at run-time.,

Interpretation stops when an error or an Exit instruction is reached.

(d) Problem Instructions.
Most of the intermediate language instructions are straight forward. However, some are
quite complicated.

i. NextInteger, NextReal.
These are high level instructions for controlling the FOR looping construct in BASIC. The
format of these is:

NextInteger start of loop address

NextReal start of loop address

On the stack both expect the following:
Address of loop variable (Next to top)
Address of control block (Top of Stack)
The control block consists of the following:
Upper bound of loop °
Loop increment value
The type of these and the loop variable are the same.

The processing that has to be done is:

1) Load the value of the loop variable onto the stack.

2) Load the loop increment value.

3) Add these values together to give the next value of the loop variable.

4) Store the new value of the loop variable.

4) If the sign of the increment value is positive then:

4a) if the upper bound is greater than the new loop variable value, branch to start of loop,
else terminate loop, else:

4b) if the upper bound is less than the new loop variable value, branch to start of loop, else
terminate loop.

ii.ReadInteger, ReadReal, ReadString ‘
Only strings are stored in the data area. Therefore, to read an integer or a real, the string
will need to be converted.

Also, a check must be made to see it all the data has been used. Two bytes of 255 indicate

the end of the data area. When these are reached, an error should be issued and the
interpretation should cease.

Page25

Project Report A BASIC translator

iii, CallFunc, ReturnFunc

When a user-defined function is called a stack frame must be built up. In this frame, the
previous value of the frame pointer and the return address must be stored. After a function
with n parameters has been called, the stack looks like:

stack pointer —

return address

fraimme pointer —| Previous FP
(FP)

parameter n

parameter 1

The user-defined function will cause the resulting value to be left on the stack. On return
from a function, this stack frame must be broken down. The program counter will need to
be set to the return address, the frame pointer reset. The parameters on the stack should be
removed. The resulting stack will have the result of the function at the top.

iv. Heap Access.
The approach for heap access was designed to be easy for the programmer to use and for
the writer of the translator to write. Unfortunately, the interpretation will be very difficult.

1. Fields

SDR-BASIC has a set of predefined variables that correspond to the names of the fields in
heap records. The variables are stored in the interpreters address space rather than in the
translated program's variable storage area. The reason for this is that there are many of
them, and having to include them in all programs would requite a lot of memory.

2. Adding records to the heap.

When a record is added to the heap, the interpreter has to determine the type of the record.
This is done by looking in the appropriate record. It must then transfer the variables
corresponding to fields in the records of this type to the heap. To do this efficiently, a
look-up table is required.

3. Retreiving records from the heap.

When the record in the heap is located, its type is checked. Variables corresponding to
fields in records of this type must then be updated from the fields in this record.

Page26

Project Report A BASIC translator

Section Six.
Results.

6.1. What has been done.

Up until mid term 1987, much time was spend researching relevant topics. A survey of the
SDR2 was undertaken. What was found is given in Appendix A.

Many versions of BASIC were examined for suitable features. Of these Microsoft BASIC
was chosen as the one to base SDR-BASIC (see Appendix B) upon.

From personal experience and from relevant literature, the intermediate language was
designed. An overview is given in Appendix C.

Programming was started in mid term 1987. It was originally intended for the development
work be done on an IBM PC, lent by Datacom. Because of high demand for IBM PCs at
Datacom, this was not possible.

The translator was written using Turbo Pascal on an Apple Macintosh. Over 3500 lines of
code have been produced. The translator has been completed to the stage where it correctly
parses, type checks and generates code. If there are no errors, the code generated is output
in the SDR2 external file format. An error listing is produced. Also, a dump of the code in
intermediate language format is produced. Some documentation for the translator is given
in Appendix D.

There are still one or two loose ends to tidy up with the translator. The author did not have
time to determine the format of real numbers as they are stored internally in the SDR2.
Where reals must be put in the code (in the LoadConstInteger instruction) an appropriate
sized space is allocated.

The translator has not yet been ported to an IBM PC. However, there should be little
difficulty in doing this.

Because of lack of time, the implementation of the interpreter was not attempted. Much
back ground work would need to be done before any programming could start. ADL has to

be mastered, along with understanding the many details of the internal structures of the
SDR2.

6.2. What More Could Be Done.

There is still a lot of work that could be done in this project. It there was time the following
would have been attempted.

6.2.1. Enhancing SDR-BASIC.

As it stands, SDR-BASIC provides some powerful features, including many
enhancements to allow the programmer to use SDR2 features. However, there are still
many areas which could be improved.

Page27

Project Report A BASIC translator
6.2.1.1. Adding more BASIC features,

SDR-BASIC is based on Microsoft BASIC. There are many features that have not been
implemented so far because they were considered to be not important. Many of these are
string functions, like STRING$ (string, n) which returns a string constisting of the given
string duplicated n times. There are also numerical functions like a random number
generator. These would not be useful for most surveying applications. However, they
would be if the programmer would like to develop recreational programs.

An important omission is that there is no way of reading one input character at a time from
the keyboard. SDR-BASIC INPUT reads in a whole line of characters that end in a
new-line. Often there are times when it would be convenient to scan the keyboard to see
whick keys are being depressed or to wait until one key is pressed. Many BASICs provide
an INKEY$ or GET function to do precisely this. These could be adopted by
SDR-BASIC.

Experienced SDR-BASIC programmers might like there to be structured programming
constructs. BASIC programs tend to turn quickly into a rats nest of branches. Structured
programming constructs like procedures, functions, and local variables could make
SDR-BASIC programms much more readable.

6.2.1.2. Providing better interfacing with the SDR2,

With SDR-BASIC a programmer can access heap records and write their own input/output
drivers. There are many other features of the SDR2 that would be useful.

(a) Access to the configuaration variables.
Configuration variables specify the working environment of the SDR2. They can be
viewed using the Parameters menu option. The variables include:
Unit used for input and output. (Values stored in the heap are in standard units).
- Angle (degrees)
- Distance (meters)
- Pressure (mm Hg)
- Temperature (degrees Celsius)
Optional correction flags
- sea level correction
- Atmosphere correction
Tolerances
- Vertical observation tolerance
- Horizontal observation tolerance
Input/Output parameters
- Tranfer speed
- Parity option flag
- Word length
- Checksum option flag
- Acoustic
- Timeout period

These parameters are stored in the heap, and so they can be retreived with the heap
manipulation commands. However, it would be much nicer if there were a set of
pre-defined variables for these. These variables would need to have values assigned to
them just before a program is run.

Configuration parameters should only be able to be referenced. If they could be modified,
it is possibility that they might not be reset after the program. This would leave the SDR2
in a undesirable state, which is not desirable.

(b) Unit conversion functions.

Values are stored in the heap in standard units. It is these that the programmer must deal

Page28

Project Report A BASIC translator

with, With the present version of SDR-BASIC, the programmer must write user defined
functions to convert between units. For example, to convert between degress Celcius and
Fahrenheit,

DEF FNCtoF (degC) = degC*9/5 + 32

Functions to convert between these units and other commonly used ones will make
customising input and output much easier.

(c) Angle input.

On the SDR?2 angles can be entered in as decimal values or in a special degrees/minutes and
seconds format (ddd.mmss). However, SDR-BASIC only has routines to input integers,
reals and string. It is not a trivial task to provide angle input using the present features of
SDR-BASIC. Therefore, introducing an angle input command would be extremely useful.

(d) Input/Output modifications.

In SDR-BASIC there is no way of telling if output or input was successfully completed.
Knowing the status of i/o operations makes for more robust programs. A pre-defined
variable could be introduced called STATUS. It could be updated after every input and
output to reflect how successful the operation was.

In SDR-BASIC the input routines read in information until a new-line is reached. Often,
the delimiter might be something different, such as a space or comma. Some way of
specifying the delimiter would make input more flexible.

6.2.2. Improving the Translator.

The translator reads in a SDR-BASIC program and produces equivalent intermediate code.
There are many ways in which this code can be improved.

(a) Adding range checking information.

The intermediate language has instructions designed for range checking. (see Appendix C).
To keep the amout of code to a minimum, the translator does not make use of them.
However, as inexperienced programmers will be using the translator, it might be desirable
to add range checking.

(b) Compiler directives
Once a program has been written, tested and found to be without errors, the code size
could be reduced by turning range checking off. To do this compiler directives could be
introduced. These could form a part of an SDR-BASIC comment. For example

REM *norange
would turn range checking off, and

REM *range
would turn range checking on again.

Many other compiler directives could be included. Ones to control listings, code generation
and case sensitivity are obvious candidates.

(¢) Adding debugging information.

Inexperience users are likely to be faced with run-time errors from time to time. It is up to
the implementor of the interpreter to provide meaningful error messages. When an error
occurs, it will be very difficult to determine where it occured. For this reason, including
dubugging information with the intermediate code is a good idea.

This can be achieved by adding information to the end of the data area (see section 4.2.4.).
This information could consist of a table of pairs of address and line numbers. The
addresses are where the code for the corresponding line number starts in the object code.
When an error occurs, the interpreter can determine which line the error occurred.

Page29

Project Report A BASIC translator

(d) Warnings against bad programming practices.

BASICs tend to be very liberal when it comes to branching. It is possible to branch into a
loop. Such practices often lead to stange errors occuring. To deter the programmer from
doing this, warnings could be given at translation time.

(e) Optimisation.
As memory and speed requirements of the intermediate code are very important for this
project, an attempt at optimisation would be worth while.

(f) The intermediate language could be improved.

Some attention to compactness was made when the intermediate language was designed.
The end result was quite adaquate. However, more time could be spent fine-tuning. The
result would be far more compact code,

All operands are 16 bit signed integers. Often only 8 bit integers are needed. Therefore,
variable length operands could be used. For example, the instruction LoadConstInteger has
one operand which is always in the range -32768 < operand < 32767. If the operand was
in the range 0 < operand < 255 only 8 bits are needed.

6.2.3. Improving the Interpreter.

The specifications for the interpreter in section 5 are for the translated code as it now
stands. If changes were made elsewhere they would have to reflected in the interpreter
also. There are also a few ways to improve the interactivity of the interpreter.

(a) Allocation of Varjable Storage Space.

At present variable storage space is included as a part of every translated prog1am
However, the variables only remain active during program execution. Before and after a
program is run they are not used. To save on space, the code and interpreter could be
modified so that the variables were allocated when a program starts running, and are
deallocated when the program ends. In this way, at most one set of program variables
occupy memory at one time.

(b) Debuging Facilities.

The suggestion of adding debugging information to the code was mentioned in 6.2.2, part
c. The interpreter would be able to make use of this information, especially when run-time
errors occur. Also, a trace facility could be introduced. The interpreter could process one
line, display the line number and then wait for a key press. This would allow non-fatal
errors to be pin-pointed more accurately.

(c) Loading in SDR-BASIC Programs.

At present, programs are loaded into memory as external programs. It would be nice if the
interpreter could handle this input. It would help the interpreter keep track of which
programs have been loaded into the SDR2. Also, a more flexible code file could be
employed, which has a header to give useful information about the code.

Page 30

Project Report A BASIC translator

6.2.4. Improving the Development Environment,

At the moment, programs will be written and translated on an IBM PC, and the
intermediate code will then be loaded into the SDR2. Testing of the program will be done
on the SDR2. If any modification is needed, the source on the IBM PC must be updated,
retranslated, down loaded to the SDR2, and retested. Ideally, the turn around time between
testing and modification should be kept to a minimum. The following will make for a better
development environment.

(a) IBM PC testing phase.

An IBM PC-based interpreter could be implemented so that the whole testing phase could
be done in the same environment. To do this, ADL and the SDR2 software would need to
be ported to an IBM PC. This is a major task in itself.

An alternative is to write an interpreter in Pascal which would test the standard features of
SDR-BASIC. Though not totally useful, it would give some assurance to how error-free a
program is.

(b) Include a debugger in the SDR2-based interpreter.
Thi