
Trees and Terraces

Sarah Jayne Mark

A thesis submitted in partial fulfilment

of the requirements for the degree of

Masters of Science in Mathematics

University of Canterbury

New Zealand

June 2016

Contents

1 Introduction 3

1.1 Overview . 3

1.2 Graphs . 7

1.3 Phylogenetic trees . 8

1.3.1 Equivalence . 9

1.4 Rooted phylogenetic trees . 9

1.4.1 Pendant subtree . 10

1.4.2 Deletion, contraction, and suppression 10

1.4.3 Distance . 11

1.4.4 Cluster . 11

1.4.5 Restriction, refinement and display 12

1.4.6 Compatibility . 12

1.4.7 Rooted triples . 13

1.4.8 Terraces . 14

1

1.5 Operations on rooted phylogenetic trees 14

1.5.1 NNI- and rSPR-related trees . 16

1.5.2 A note on vertex labels . 16

2 A navigation system for tree space 18

2.1 Introduction . 18

2.2 Tree Manipulations . 21

2.3 Proof of Theorem 2.1.3 . 30

2.4 Algorithm and Complexity . 32

2.4.1 Algorithm . 32

2.4.2 Complexity . 36

2.5 Concluding comments . 37

3 A terrace with only one tree 39

3.1 Introduction . 39

3.1.1 Definitions . 40

3.2 Two trees define a single tree . 43

3.2.1 Binary to binary . 43

3.2.2 Non-binary to binary . 49

3.2.3 Non-binary to non-binary . 51

3.2.4 A simple case in which three trees define a single tree 54

2

3.3 Concluding comments . 58

3

Abstract

The reconstruction of evolutionary trees from data sets on overlapping sets of species

is a central problem in phylogenetics. Provided that the tree reconstructed for each subset

of species is rooted and that these trees fit together consistently, the space of all parent

trees that ‘display’ these trees was recently shown to satisfy the following property: there

exists a path from any one parent tree to any other parent tree by a sequence of local

rearrangements (nearest neighbour interchanges) so that each intermediate tree also lies in

this same tree space. However, the proof of this result uses a non-constructive argument.

In this thesis we describe a specific, polynomial-time procedure for navigating from any

given parent tree to another while remaining in this tree space. We then investigate a

related problem, the conditions under which there is only one parent tree. These results

are of particular relevance to the recent study of ‘phylogenetic terraces’.

Deputy Vice-Chancellor’s Office
Postgraduate Office

Co-Authorship Form

This form is to accompany the submission of any thesis that contains research reported in co-
authored work that has been published, accepted for publication, or submitted for publication. A
copy of this form should be included for each co-authored work that is included in the thesis.
Completed forms should be included at the front (after the thesis abstract) of each copy of the thesis
submitted for examination and library deposit.

Please indicate the chapter/section/pages of this thesis that are extracted from co-authored work and
provide details of the publication or submission from the extract comes:
Chapter 2 of the thesis is extracted from Sections 2.3, 3, and 4 of the paper A navigation system for
tree space published in the Journal of Graph Algorithms and Applications, Vol 20, no 2, pages 247-
268.
Some parts of Chapter 1 of the thesis are extracted from Section 2 of the aforementioned paper.

Please detail the nature and extent (%) of contribution by the candidate:
The work in the paper was carried out by the candidate under the supervision and guidance of
Jeanette McLeod and Mike Steel. (100%)

Certification by Co-authors:
If there is more than one co-author then a single co-author can sign on behalf of all
The undersigned certifys that:
� The above statement correctly reflects the nature and extent of the PhD candidate’s

contribution to this co-authored work
� In cases where the candidate was the lead author of the co-authored work he or she wrote the

text

Name: Sarah Mark Signature: Sarah Mark Date: 14-06-16

Acknowledgements

I would like to thank my supervisors Dr Jeanette McLeod and Professor Mike Steel

for their guidance and support. I could not have imagined having a better supervisory

team and mentors. They were always there to listen and give advice, and their patience

and encouragement helped me persevere and overcome any obstacles I faced. I am also

thankful for their insightful comments on countless revisions of this thesis.

I would also like to thank my parents for providing me with unfailing support and

continuous encouragement throughout my years of study and through the process of

researching and writing this thesis. This accomplishment would not have been possible

without them. Thank you.

This research was supported by scholarships from the Biomathematics Research Cen-

tre and the University of Canterbury.

2

Chapter 1

Introduction

1.1 Overview

A central goal in systematic biology is to reconstruct and analyze a (phylogenetic) tree to

describe the evolutionary relationships among present-day species. This reconstruction is

based on a comparison of the species’ genetic data [4], an activity which has accelerated

greatly in recent years due to the rapid advances in new genomic sequencing technology.

While biologists in the 1970s might have reconstructed a tree for a dozen species using a

single gene, today, phylogenetic trees are routinely constructed for hundreds or thousands

of species, often based on hundreds or thousands of genes. These phylogenetic trees

reveal how species today trace back to a common ancestor, by displaying the branching

pattern and timing of separation events. For the group of species under study, they also

provide insights into how particular evolutionary innovations arose (e.g. multicellularity,

photosynthesis, wings, large brains, etc). Phylogenetic trees can also shed light on the

amount of biodiversity captured by different subsets of species, and how much of this

biodiversity may be at risk from extinction in the near future (a recent example is the

analysis in [5] of the reconstructed tree for all ∼10, 000 species of birds).

3

Tree reconstruction methods often attempt to combine the evolutionary information

of many different genes. One of the problems with such an approach is that each gene

may be present in only a subset of the species; this is known as patchy taxon coverage.

This may be because the gene simply does not exist in some species or because the gene,

though present, is yet to be sequenced for those species. Moreover, the set of species

that lack a given gene typically varies from gene to gene. Attempting to combine the

information in these overlapping data sets often results in large collections of trees, each

of which display all of the available information/evolutionary relationships.

Patchy taxon coverage has a direct combinatorial consequence for tree reconstruction

methods, which often seek to optimize (e.g. minimize) some objective function based on

how well the data ‘fit’ each tree. The result can be large collections of equally-optimal

trees (i.e. a flat landscape of trees), that form a (phylogenetic) ‘terrace’ [9]. Consider a set

of species X and the subset XG of these species for which gene G is present. Suppose that

T is a fully-resolved (i.e. binary) tree for set of species X. Consider a scoring function s

that assigns a positive real value for each such pair (G, T). In biological applications, s

will generally satisfy the following equation:

s(G, T) = s(G, T |XG), (1.1)

where T |XG is the phylogenetic tree with set of species XG obtained from T by deleting

all species in X for which gene G is not present. This condition essentially says that

species for which the gene is not present should not affect how well the data for the gene

‘fits’ the tree under consideration.

Now suppose the data contains of a sequence of genes G = (G1, G2, . . . , Gk) rather

than just a single gene. Given the score s(Gi, T) for each i, how might we combine them

to obtain a score s(G, T), called the s-score of T , for how well this collection of genes

4

‘fits’ T? One option is simply to form a linear sum and let

s(G, T) =
k∑

i=1

s(Gi, T). (1.2)

We say that any such scoring scheme is linear. Given the sequence of genes G, we seek

to find a tree that minimizes s(G, T). While linearity may seem a strong condition to

impose, it turns out that some standard phylogenetic methods select a tree that minimizes

a linear scoring scheme, such as maximum likelihood or maximum parsimony (see [9, 8]

for further details). Both of these methods also satisfy Eqn. (1.1), as do several others

that fail linearity.

Now suppose that T ∗ is a fully-resolved tree that has some particular score (e.g. the

optimal score) for G under a scoring function s that satisfies Eqn. (1.1) and is linear

(Eqn. (1.2)). Suppose that T is any other tree for which T |Xi = T ∗|Xi for all i, i.e. when

we restrict both T and T ∗ to the set of species XGi
, we obtain the same tree. The tree T

then has the same score as T ∗ for G. To see this, simply observe that

s(G, T) =
k∑

i=1

s(Gi, T) =
k∑

i=1

s(Gi, T |XGi
) =

k∑

i=1

s(Gi, T
∗|XGi

) =
k∑

i=1

s(Gi, T
∗) = s(G, T ∗).

The set of all phylogenetic trees T with set of species X for which T |Xi = T ∗|Xi for

all i is referred to as the terrace containing T ∗. Note that all trees on this terrace have

the same s–score (when Eqns. (1.1) and (1.2) hold). In real applications, a terrace can

be very large, for example, 61 million equally-optimal (maximum likelihood) trees for a

data set consisting of 298 species of grasses on three genes [9]. The existence of large

flat landscapes of trees can make the search for optimal trees by hill-climbing approaches

more problematic, and ways in which search times on terraces can be improved are still

being sought [3].

In this thesis, we explore a further combinatorial consequence of patchy taxon cov-

erage: namely, for any terrace of trees (which thus have the same s-score), it is possible

to move from any one tree on the terrace to any other tree on the terrace by making

5

a series of local elementary tree re-arrangments, while always remaining on that terrace

(i.e. not altering the s-score). These local re-arrangements are called ‘nearest neighbour

interchange’ (NNI) operations. This result follows from a theorem, first stated and proved

in the PhD thesis of Magnus Bordewich [2] using an inductive argument. The motiva-

tion for this thesis is to provide an explicit algorithm for constructing a sequence of NNI

operations to move from any tree on a terrace to any other tree on the same terrace. In

our approach, the details of the scoring function s play no real role since a terrace is the

set of binary trees displaying the set of trees {T |X1, . . . , T |Xk}, where T is some tree on

that terrace. Thus we deal simply with sets of trees on overlapping sets of species as our

input.

It is important to note that, although the trees comprising a terrace have the same

s–score (when Eqns. (1.1) and (1.2) hold), there may be other trees with the same s–score

that are not on this terrace. We can see this even in the simple case where Xi = X for

all i (i.e. we have complete taxon coverage). Then for any fully-resolved tree T , the

terrace containing T is just T itself, yet for certain data there may be many resulting

maximum parsimony trees. Moreover, in this setting of complete taxon coverage, we

have known since the early 1990s that for particular data, there may be two or more

optimal trees with optimal parsimony scores that cannot be connected by a sequence of

NNI operations passing only through optimal trees [6]). The result in this thesis concerns

connectivity under NNI within a single terrace and so its relevance is particular to the

setting of partial taxon coverage. In general, the set of trees with a given s–score is be a

union of one or more terraces.

The structure of this thesis is as follows. The remainder of this chapter is dedicated

to defining necessary terms and operations on trees. In Chapter 2 we summarize a result

from Bordewich’s PhD thesis [2], then present our main result, namely that we can

construct, in polynomial time, a sequence of trees from any tree on a terrace to any other

6

tree on the terrace, where all of the intermediate trees are also on the terrace. This proof

yields a polynomial-time algorithm to obtain the aforementioned sequence of trees. In

Chapter 3, we investigate the related problem of the conditions under which two trees

on overlapping sets of species define a single tree. We present and independently prove

two theorems previously proved in [1], then summarize our investigations into two much

harder, more general versions of this problem and discuss the many cases and conditions

which need to be considered.

1.2 Graphs

We begin by providing some necessary definitions and direct the reader to Semple and

Steel [10] for further definitions and terminology. The focus of this thesis is trees,

but before we can formally define a tree, we must first define a graph. A graph G =

(V (G), E(G)) is a nonempty set V (G) of vertices, together with a (possibly empty) set

E(G) of unordered pairs of vertices of G, called edges. Let e = {u, v} be an edge of a

graph G. We call u and v the endpoints of e. We say u and v are adjacent vertices,

and edge e is incident to vertices u and v. The degree of a vertex is the number of

vertices adjacent to it. A subgraph of a graph G is a graph G′ = (V (G′), E(G′)) for which

V (G′) ⊆ V (G) and E(G′) ⊆ E(G).

A walk in a graph G is a non-empty, finite sequence of vertices u1, u2, . . . uk for which

ui ∈ V (G) for all i (1 ≤ i ≤ k), and {uj, uj+1} ∈ E for each j (1 ≤ j ≤ k − 1). The

length of a walk is the number of edges it contains. A path in G is a walk in which all the

vertices are distinct. A cycle is a walk of length at least 3 in which u1 = uk. A graph is

connected if, given any two vertices u and v of G, there is a path from u to v. Otherwise,

the graph is disconnected.

7

1.3 Phylogenetic trees

A tree T = (V (T), E(T)) is a graph that is connected and contains no cycles. Note that

we are only dealing with finite trees (i.e. trees in which V(T) is finite) in this thesis. A

vertex of T with degree one is called a leaf. All other vertices are called interior vertices.

An interior edge of T is an edge in which both endpoints are interior vertices. Any

subgraph S of a tree is itself a tree and we call S a subtree of T .

A labeled tree is a tree in which each vertex has been assigned a unique label by which

it can be identified. A semi-labeled tree is a tree in which some of the vertices have been

assigned unique labels.

A phylogenetic tree T is a semi-labeled tree in which only the leaves of T are labeled

and each interior vertex has degree at least three, as illustrated in Figure 1.1. Note that

we sometimes label the interior vertices of a tree (in addition to the leaves) for ease of

reference. A binary phylogenetic tree is a phylogenetic tree in which each interior vertex

has degree three.

a

b

c

d

e

f

Figure 1.1: An example of a phylogenetic tree.

Let P (X) be the set of all phylogenetic trees with leaf label set X. Consider P =

{T1, . . . , Tk}, where trees T1, . . . Tk have leaf sets X1, . . . Xk respectively. Then

L(P) =
k⋃

i=1

Xi

denotes the leaf set of P . For a single tree Ti, for ease of notation, we write L({Ti}) =

L(Ti) = Xi.

8

1.3.1 Equivalence

Two trees T, T ′ ∈ P (X) are equivalent if there is a map φ : V (T) → V (T ′) such that

φ(l) = l for all l ∈ X and a map ψ : E(T)→ E(T ′) such that adjacency is preserved. If

T and T ′ are equivalent, we write T ∼= T ′. If T has subtree t and T ′ has subtree t′, where

t ∼= t′, then, to aid exposition, we say that T ′ has subtree t.

1.4 Rooted phylogenetic trees

A rooted tree is a tree that has exactly one distinguished vertex called the root ; in Figure

1.2 this is the vertex r. For two vertices v and w of a rooted tree T , if the path from the

root of T to w includes v, then we say that w is a descendant of v, and v is an ancestor

of w. Note that a vertex of T is both a descendant and an ancestor of itself. For example,

in Figure 1.2, v is an ancestor of v, w, a, b, and c, and these vertices are all descendants

of v. If v is an ancestor of w and {v, w} is an edge of T (as in Figure 1.2), we say that v

is the parent of w and w is a child of v. In this case, we call the edge {v, w} an arc from

v to w and denote this edge (v, w). Note that a parent of a vertex v is always unique,

but v may have many children. For example, in Figure 1.2, v is the parent of w and c,

and so w and c are the children of v. The number of children of a vertex v is called the

outdegree of v.

a b

c

d e

r

v

w

xT

Figure 1.2: An example of a rooted phylogenetic tree.

A rooted binary tree is a rooted tree in which every interior vertex has exactly two

9

children; in other words, all interior vertices have degree 3, except the root, which has

degree 2. For example, the tree T in Figure 1.2 is binary.

A rooted phylogenetic tree is a rooted tree that is also a phylogenetic tree, i.e. a rooted

tree T in which the leaves of T are labeled. Let RP (X) be the set of all such trees with

leaf label set X. A rooted binary phylogenetic tree is a rooted phylogenetic tree in which

all interior vertices have outdegree two. Let RB(X) denote the set of all such trees with

leaf label set X. Note that RB(X) ⊆ RP (X). A tree T ∈ RP (X) with only one interior

vertex (which is the root) is called a star.

1.4.1 Pendant subtree

Consider a tree T ∈ RP (X) with vertex v. A pendant subtree tv of T is a subtree of T

whose vertex set consists of vertex v and all of its descendants in T . The vertex v is the

root of the subtree tv. If v is not the root of T , then tv is a proper pendant subtree of T . If

v is a child of the root of T , then tv is a maximal proper pendant subtree of T . Throughout

the rest of this thesis, ‘subtree’ will refer to a pendant subtree unless otherwise specified.

The most recent common ancestor of two vertices v and w is the root of the minimal

subtree containing both v and w. For example, in Figure 1.2, the most recent common

ancestor of a and x is r, and the most recent common ancestor of v and w is v.

1.4.2 Deletion, contraction, and suppression

Consider a tree T = (V (T), E(T)) ∈ RP (X), and an arc e = (v, u) of T . The tree

T \ e = (V (T), E(T) \ {e}) is obtained from T by deleting e. Given two vertices u and

x of a tree T , identifying these two vertices u and x with a single vertex produces a

tree in which the vertices u and x are replaced with a new vertex w such that all arcs

10

incident to u or x are now incident to w. The tree obtained from T by deleting edge

e = (v, u) and identifying its endpoints u and v with a single vertex w is denoted T/e

and is obtained from T by contracting e. Let x be an interior vertex of T . Delete all but

one of its outgoing arcs to produce a tree T ′ in which x has outdegree one. Suppose x is

not the root of T ′ and let e1 = (w, x) and e2 = (x, y) be arcs of T ′. The tree T ′′ obtained

from T ′ by deleting vertex x and arcs e1 and e2 from T ′ and inserting arc (w, y) is said

to be obtained from T ′ by suppressing x. Note that a tree equivalent to T ′′ can also be

obtained as T ′/e1 or T ′/e2. Now suppose that x is the root of T ′ and let (x, y) be its

incident arc. Then x is suppressed by deleting x and the arc (x, y), producing a tree T ′′

with root y.

Let v be a vertex of T and let e1, . . . , ek be the arcs of T incident to v. The treee

T \ v = (V (T) \ {v}, E(T) \ {e1, . . . , ek}) is obtained from T by deleting v. Let e = (v, u)

be an arc of T and let tu be the subtree of T with root u. We define T \ tu to be the tree

obtained from T by deleting tu and the arc e.

1.4.3 Distance

Consider a tree T . The distance between two vertices, say u and v, of T , distT (u, v), is

the length of the shortest path between u and v in T . The distance between two edges

e = {u1, u2} and e′ = {v1, v2} in T is distT (e, e′) = min{distT (ui, vj) : i, j ∈ {1, 2}}. In

Figure 1.2, distT (w, d) = 4 and distT ((w, b), (x, e)) = 3 (which is the distance between

the vertices w and x).

1.4.4 Cluster

A cluster of a tree T ∈ RP (X) is a subset of X consisting of all leaves that are descendants

of a given vertex v in T , {x ∈ X : x is a descendant of v}, i.e. the leaf set of the subtree

11

tv of T . The collection of all clusters of T , denoted C(T), defines T . A maximal proper

cluster of T is the leaf set of a maximal proper subtree of T . In Figure 1.2,

C(T) = {{a, b, c, d, e}, {a, b, c}, {a, b}, {d, e}, {a}, {b}, {c}, {d}, {e}}.

Except for the cluster {a, b, c, d, e}, these are all maximal proper clusters of T .

1.4.5 Restriction, refinement and display

Let tree T ∈ RP (X) and let X ′ ⊆ X. Then T |X ′ ∈ RP (X ′), called the restriction of T

to X ′, is the tree for which

C(T |X ′) = {C ∩X ′ : C ∈ C(T) and C ∩X ′ 6= ∅}.

We can obtain T |X ′ from T by deleting all maximal subtrees whose leaf set is a sub-

set of X \ X ′ and then suppressing all vertices with outdegree one. In Figure 1.3,

T |{a, b, d} = T1.

Let tree T ′ ∈ RP (X). We say that T refines T ′ (or is a refinement of T ′) if

C(T ′) ⊆ C(T). In Figure 1.3, T1 is a refinement of T2 as C(T2) = {{a, b, d}, {a}, {b}, {d}}

and C(T1) = C(T2) ∪ {{a, b}} so C(T2) ⊂ C(T1).

Let X ′′ ⊆ X, and let T ′′ ∈ RP (X ′′). We say that T displays T ′′ if T |X ′′ is a refinement

of T ′′. In Figure 1.3, X ′′ = {a, b, d} and X = {a, b, c, d}, and tree T1 displays trees T2

and T3. Note that T2 also displays T3.

1.4.6 Compatibility

A set P of rooted phylogenetic trees (respectively, rooted binary phylogenetic trees)

is compatible if there exists a tree T ∈ RP (X) (respectively, T ∈ RB(X)) such that

T displays each tree in the set P . We then say that T displays P . Note that T is

12

a b

c

d

aa bb d

d

T1
T2 T3

Figure 1.3: An example of a binary phylogenetic tree T1 and two trees

T2 and T3 that are displayed by T1.

not necessarily in the set P . Let P (respectively P B) denote the set of all rooted

phylogenetic trees (respectively rooted binary phylogenetic trees) that display P . Note

that P B ⊆ P .

1.4.7 Rooted triples

A rooted triple is a tree T ∈ RB(X) where |X| = 3. A rooted triple with X = {a, b, c} is

denoted ab|c if the path from a to b does not intersect the path from c to the root of T .

Let r(T) denote the set of all rooted triples displayed by T . Figure 1.4 shows an example

of a set R of rooted triples and two trees T, T ′ ∈ R B.

a b d b c d a b e

R ={ }
a b

c

ed

T

a cb

d

eT ′

, ,
f

Figure 1.4: An example of a set R of rooted triples and two rooted

binary phylogenetic trees T and T ′ that both display R.

Note that we only need to consider a set of rooted triplesR rather than a more general

set of rooted phylogenetic trees P , since the latter can be converted into the former so

that the trees displaying R are exactly those which display P . Let P ′ be a set of rooted

phylogenetic trees such that each tree in P ′ has at least one internal arc, i.e. there are no

13

stars. Then P ′ B = RP ′ B, where RP ′ is the set of rooted triples such that, for each

rooted triple ab|c ∈ RP ′ , there is some tree in P ′ which displays ab|c. The case in which

P contains at least one tree that is a star will be dealt with later.

1.4.8 Terraces

Consider a tree T with leaf set X and the subsets X1, . . . , Xk, where Xi (X. Consider

the set of trees P = {T |X1, . . . , T |Xk} (a set of trees on overlapping leaf sets). Let tree

T ′ display P . The set of all such trees T ′ is called a terrace of trees [9]. Note that this

terrace contains the tree T . In the simplest case, where Xi = X for all i, the terrace

containing T is just T itself.

Relating this back to the biology, X is a set of species and XG is the subset of X of

species for which gene G is present. Let T be a tree that displays all of the evolutionary

relationships given by this data. Then T is a fully-resolved (binary) tree with leaf set (set

of species) X. Consider the set of induced subtrees T |XG1 , T |XG2 , . . . , T |XGn . The set

of trees displaying T |XG1 , T |XG2 , . . . , T |XGn is called a terrace. Each of the trees in this

terrace, including T , display all of the evolutionary information given by the subsets XG.

1.5 Operations on rooted phylogenetic trees

Consider tree T ∈ RB(X) and let e = (v, u) be an arc of T . The tree T ′ given by

introducing a new vertex w into T , deleting arc e, and inserting arcs (v, w) and (w, u)

into T is obtained from T by subdividing e with w. So the tree T ′ = (V (T ′), E(T ′)) where

V (T ′) = V (T) ∪ {w} and E(T ′) = (E(T) \ {e}) ∪ {(v, w), (w, u)}.

The following operation allows us to “prune” a subtree of a tree T and “regraft” it

elsewhere in T .

14

rSPR (rooted subtree prune and regraft) operation: Let T ∈ RB(X) and let e = (v, u)

be an arc of T . We say that T ′ ∈ RB(X) is an rSPR-neighbour of T if T ′ can be obtained

from T by the following procedure. Let tu be the subtree of T rooted at u. Delete arc e,

pruning the subtree tu. Choose an arc f = (w, z) of T \ tu. Then, to regraft tu:

If w is not the root of T \ tu,

(i) subdivide f with a vertex x.

If w is the root of T \ tu, either do (i) or

(ii) introduce a vertex x and insert the arc (x,w). Note that x is the root of the resulting

tree.

Now insert the arc (x, u) into T , regrafting tu, and, lastly, suppress v.

We have now obtained tree T ′, an rSPR-neighbour of T . We write T
rSPR∼ T ′ and we say

that this rSPR operation is performed with respect to tu. Note that
rSPR∼ is an equivalence

relation. Figure 1.5 shows two examples of rSPR operations with respect to subtree tu

of T1. The tree T2 is obtained from T1 by option (i) above, where f = (v3, v4), and T3 is

obtained from T1 by option (ii) above, where f = (r, v2).

v1

v

v2
v3

v4

r r

x

r

xv1 v1

v2 v2v3
v3

v4 v4

u u

u

tu tu

tuT1 T2 T3

Figure 1.5: An example of a tree T1 and two trees T2 and T3 each

obtained from T1 by performing an rSPR operation with respect to tu.

An NNI (nearest neighbour interchange) operation on a rooted tree is a special case

of an rSPR operation in which f = {w, z} and w is adjacent to v (w 6= u). If a tree T ′ is

15

obtained from a tree T by an NNI operation, we say that T ′ is an NNI-neighbour of T

and write T
NNI∼ T ′. Note that T

NNI∼ T and, if T
NNI∼ T ′, then T ′

NNI∼ T .

1.5.1 NNI- and rSPR-related trees

We define a sequence of rSPR-related trees to be a sequence of trees, say (T1, . . . , Tn),

for which Ti
rSPR∼ Ti+1 for all 1 ≤ i < n; that is, each tree in the sequence can be

obtained from the previous tree by a single rSPR operation (not necessarily with respect

to the subtree tu). We refer to these rSPR operations as a sequence of rSPR operations.

A sequence of rSPR operations from T1 to Tn is called a minimum sequence of rSPR

operations if it is the shortest sequence of rSPR operations that starts with the tree T1

and produces the tree Tn. If each of the rSPR operations in a sequence is performed with

respect to the subtree tu, then we refer to this as a sequence of rSPR operations with

respect to tu. We define an analogous set of terms for NNI operations.

1.5.2 A note on vertex labels

u
v

tu

a1

a2 a3

a4

a5

a6w

a1

a2 a3

a4

a5

a6w

u
tu

x

r r
T T 0

Figure 1.6: An example of the labeling of vertices before (T) and after

(T ′) an NNI operation with respect to tu.

When we perform an operation (such as a contraction or an NNI operation) on a tree

T , existing vertices may be deleted or new vertices inserted to produce the tree T ′. These

new vertices will be labeled as required and all other vertices retain the same labels in

16

T ′ as they had in T . Figure 1.6 shows an example of this for an NNI operation. In this

example, the subtree tu rooted at u is pruned and regrafted. Vertex v of T is suppressed

and new vertex x is inserted, so V (T ′) = (V (T) \ {v}) ∪ {x}. All other vertex labels

remain the same.

17

Chapter 2

A navigation system for tree space

2.1 Introduction

In this chapter, we explore a further combinatorial consequence of patchy taxon coverage:

namely, for any terrace of trees, it is possible to move from any one tree on the terrace to

any other tree on the terrace by performing a sequence of NNI operations, while always

remaining on that terrace. This result follows from a theorem, first stated and proved in

the PhD thesis of Magnus Bordewich [2], based on an inductive argument. The motivation

for this chapter is to provide an explicit algorithm for constructing a sequence of NNI

operations from any one tree T on the terrace to any other tree T ′ on the terrace. In our

approach, the details of the scoring function s play no real role since a terrace is the set

of binary trees displaying the set of rooted trees {T |X1, . . . , T |Xk}, where T is some tree

on that terrace. Thus we deal simply with sets of rooted trees on overlapping leaf sets as

our input.

The structure of this chapter is as follows. Later in this section, we summarize a

result from [2] and state the main result of this chapter. In Section 2.2 we present and

prove some preliminary results and then, in Section 2.3, we provide a proof of the main

18

result. This is followed, in Section 2.4, by an algorithm and an analysis of its complexity.

We end with some brief concluding comments in Section 2.5.

For any two trees T, T ′ ∈ RB(X), there is a sequence of trees (T1, T2, . . . , Tn) such

that T = T1, T ′ = Tn, and Ti
NNI∼ Ti+1 for all i (1 ≤ i < n) [7]. In this chapter, we consider

two trees, T and T ′, that display a set of rooted triples R, and find a sequence of trees

satisfying the aforementioned conditions, along with the additional condition that each

tree in the sequence displays R.

The following result was stated and proved in the PhD Thesis of Bordewich [2].

Theorem 2.1.1. Let R be a set of rooted triples. Suppose that T, T ′ ∈ R B and L(T) =

L(T ′). Then there is a sequence of trees (T1, T2, . . . , Tn) such that:

1. T1 = T and Tn = T ′,

2. Ti
NNI∼ Ti+1 for 1 ≤ i < n, and

3. Ti ∈ R B for 1 ≤ i ≤ n (i.e. each Ti displays R).

We first note that Theorem 2.1.1 is equivalent to the following:

Theorem 2.1.2. Let T, T ′ ∈ R B, where R = r(T) ∩ r(T ′) and L(T) = L(T ′). Then

there is a sequence of trees (T1, T2, . . . , Tn) such that Properties (1)–(3) of Theorem 2.1.1

hold.

To see why these two theorems are equivalent, first assume that Theorem 2.1.1 holds.

Let R′ be the set of rooted triples in Theorem 2.1.1 (for clarity of notation). If we let

R′ = r(T)∩ r(T ′) in Theorem 2.1.1, we have Theorem 2.1.2. Now assume that Theorem

2.1.2 holds. Once again let R′ be the set of rooted triples in Theorem 2.1.1 (for clarity

of notation). Since R′ ⊆ r(T) ∩ r(T ′) and each Ti displays r(T) ∩ r(T ′), then T , T ′, and

each Ti will also display R′, so Theorem 2.1.1 holds.

Figure 2.1 shows an example to illustrate Theorem 2.1.2. In this example, R =

19

r(T) ∩ r(T ′) = {ac|d, ac|e, ac|f, de|a, de|c, ef |d}. It is easy to check that T1, . . . , T4 all

displayR, and each tree can be obtained from the previous tree by a single NNI operation.

a b

d

e f a

b

c d

e f a

b

c
d
e f a

b
c

d

e f

T2 T3 T4 = T ′T = T1

c

Figure 2.1: An example to illustrate Theorem 2.1.2 with R =

{ac|d, ac|e, ac|f, de|a, de|c, ef |d}.

We are only considering rooted trees in this chapter because there is no result directly

analogous to Theorem 2.1.1 for unrooted trees and quartet trees (the unrooted analogue

of rooted triples). To see this, consider the following counterexample. The two unrooted

trees in Figure 2.2 both display the quartet trees 12|45, 34|16, and 56|23. However, it

is straightforward to check that the two trees in Figure 2.2 are the only two trees which

display these quartet trees and that they are not one (unrooted) NNI operation apart.

See [10] for further information and definitions.

1 12

23

34 45

56

6

Figure 2.2: The two unrooted trees that display the quartets 12|45,

34|16, and 56|23.

The proof of Theorem 2.1.1 in [2] is based on an inductive argument. We present an

alternative proof that provides an explicit procedure for obtaining the sequence of trees

(T1, . . . , Tn).

The main result of this chapter is the following theorem.

20

Theorem 2.1.3. Given T, T ′ ∈ R B, where R = r(T) ∩ r(T ′) and L(T) = L(T ′), one

can construct (in polynomial time) a sequence of trees (T1, T2, . . . , Tn) such that:

1. T1 = T and Tn = T ′,

2. Ti
NNI∼ Ti+1 for 1 ≤ i < n, and

3. Ti ∈ R B for 1 ≤ i ≤ n (i.e. each Ti displays R).

This takes into consideration the case in which L(R) ⊂ L(T) = L(T ′), that is, there

are leaves in T and T ′ that are not in any rooted triple in R. We call these leaves (the

leaves in L(T) \ L(R)) free leaves.

Let P ′′ be a set of rooted phylogenetic trees such that at least one of these trees is

a star. Let PS be the subset of P consisting of all trees in P which are stars and let

P ′ = P ′′ \PS. All leaves which are in L(PS)\L(P ′) (i.e. all leaves that are in a tree in PS

and are not in any tree in P ′) are free leaves. So P ′′ B = {T ∈ RP ′ B : L(P ′′) ⊆ L(T)}

where RP ′ B is defined as in section 2.2.

Before we prove Theorem 2.1.3, we need some preliminary results.

2.2 Tree Manipulations

Lemma 2.2.1. Let R be a set of rooted triples and let L = L(R). Suppose that T, T ′ ∈

R B and L(T) = L(T ′). For T ∗ ∈ {T, T ′}, it is possible to construct, in polynomial

time, a sequence of NNI-related trees from T ∗ to a tree T̃ ∗ with subtree T ∗|L such that

each tree in the sequence displays R and T̃ \ (T |L) is equivalent to T̃ ′ \ (T ′|L).

Informally, this means that we can disregard the free leaves, transform T |L into T ′|L,

and then reinstate the free leaves in T ′. As these free leaves do not appear in any of the

rooted triples in R, this process will not affect whether a particular tree displays R.

21

Proof of Lemma 2.2.1. First note that T and T ′ have the same leaf set, and let L(T) =

L(T ′) = {x1, . . . , xm} such that x1, . . . , xn (for some n ≤ m) are the free leaves. The

following steps describe NNI operations which give a sequence of NNI-related trees from

T to a tree T̃ that has subtree T |L. An example of this can be seen in Figure 2.3.

(a) Consider L(T)\L = {x1, . . . , xn}, the free leaves of T . Let U0 = T and let S = (U0).

(b) For j = 1, . . . , n:

(i) If j 6= 1, let vj−1 be the root of the subtree T |(L(T)\{x1, x2, . . . , xj−1}) of Uj−1.

Otherwise (if j = 1), let vj−1 be the root of U0.

(ii) Consider Uj−1. If xj is a child of vj−1, let Uj = Uj−1. Otherwise,

(1) Perform a minimum sequence of NNI operations with respect to xj that

results in a tree in which xj is the grandchild of vj−1. Append the sequence

of trees (each of which is the result of one NNI operation in the sequence)

to S.

(2) If j 6= 1, perform the following NNI operation: prune xj, subdivide the

arc between vj−1 and its parent with a vertex w, insert arc (w, xj), and

suppress the vertex with outdegree one.

Otherwise (if j = 1), perform the following NNI operation: prune x1,

introduce a vertex r′, insert arc (r′, v0) and arc (r′, x1), and suppress the

vertex with outdegree one.

(3) Call the resulting tree Uj and append Uj to the sequence S.

(c) Let T̃ = Un, the last tree of the sequence S. The tree T̃ has subtree T |L, as

required.

The trees in S will only differ on rooted triples that contain some xj (for 1 ≤ j ≤ n),

but by our assumption xj is not in any rooted triple. Therefore S is a sequence of

NNI-related trees from T to T̃ for which each tree in the sequence displays R.

Recall that L(T) = L(T ′) = {x1, . . . , xm}, where x1, . . . , xn (for some n ≤ m) are

22

x1
x2

xn

x1x1

x2

U0 = T

T |L

T̃ = Un

v0 r′ r′ r′

v1
v2

vn

U2U1

Figure 2.3: An example of the process in the proof of Lemma 2.2.1,

where x1, . . . , xn are the free leaves.

the free leaves. Repeating steps (a) through (c) for T ′, we obtain a sequence of trees

S ′, where the first tree in the sequence is T ′ and the last tree is T̃ ′ which has subtree

T ′|L. Now S ′ is a sequence of NNI-related trees from T ′ to T̃ ′ for which each tree in the

sequence displays R. Since step (b) is acting on the leaf sets in T and T ′ in the same

order, T̃ \ (T |L) is equivalent to T̃ ′ \ (T ′|L), as required.

The above result simplifies our analysis so that we can always consider T |L instead of

T , where L is the set of leaves that are not free leaves. We have a sequence of trees from

T to T̃ and a sequence of trees from T ′ to T̃ ′ (which can be reversed to give a sequence

of trees from T̃ ′ to T ′ as NNI operations are invertible). We now need a sequence of trees

from T̃ to T̃ ′. We find a sequence of NNI operations which transforms T |L into T ′|L and

apply these NNI operations to T̃ , transforming the subtree T |L into the subtree T ′|L and

giving the tree T̃ ′.

The following result further simplifies our analysis.

Lemma 2.2.2. Suppose that R is a set of rooted triples and T, T ′ ∈ R B, with L(T) =

L(T ′) = L(R). Suppose that T ′ is obtained from T by one rooted subtree prune and

regraft operation. Then there is a sequence of trees (T0, T1, . . . , Tn) such that:

1. T0 = T and Tn = T ′,

2. Ti
NNI∼ Ti+1 for 0 ≤ i < n, and

3. Ti ∈ R B for 0 ≤ i ≤ n (i.e. each Ti displays R).

23

Proof. Consider the trees T and T ′. By our assumption, T
rSPR∼ T ′. If T = T ′ or T

NNI∼ T ′,

we are done. So suppose that this is not the case. Let the rSPR operation be with respect

to some subtree tu of T . Then T and T ′ both have subtree tu. Let v0 be the parent of

u in T (the vertex v0 always exists because tu is a proper subtree of T). Similarly, let v′

be the parent of u in T ′. When defining the neighbours of v′ in T ′, there are two cases

to consider. The first case is that v′ has three neighbours, u, vn, and vn+1. Note that vn

and vn+1 are both in T , so there is a path v0, . . . , vn, vn+1 in T . The second case is that

v′ has two neighbours, u and vn. In this case, v′ is the root of T ′. As vn is in T , there is

a path v0, . . . , vn in T .

We now describe the minimum sequence of NNI operations with respect to tu that is

performed to obtain T ′ from T .

a) In the first NNI operation, delete the arc (v0, u) from T , subdivide the arc {v1, v2}

with a vertex w1, insert arc (w1, u), and then suppress v0. Call the resulting tree T1.

b) For i = 2, . . . , n − 1, perform the following (ith) NNI operation: Delete the arc

(wi−1, u) from Ti−1, subdivide the arc {vi, vi+1} with a vertex wi, insert arc (wi, u),

and then suppress the vertex wi−1. Call the resulting tree Ti.

c) The last (nth) NNI operation is as follows. If vn is the root of Tn−1 and v′ is

the root of T ′, delete the arc (wn−1, u) from Tn−1, introduce a vertex wn, and

insert arc (wn, vn). (Note that, in this case, wn is the root of the resulting tree.)

Otherwise, delete the arc (wn−1, u) from Tn−1, and subdivide the arc {vn, vn+1} with

a vertex wn.

d) Insert arc (wn, u) and then suppress the vertex wn−1. The resulting tree is T ′, where

wn = v′.

We now have a sequence of NNI-related trees from T to T ′. Next, we prove that for

each i (0 ≤ i ≤ n), Ti ∈ R B. Let ri denote the root of Ti for each i. We proceed using

induction on i and note that T0 = T ∈ R B by assumption.

24

Assume that Ti ∈ R B for some i < n. To see that Ti+1 ∈ R B, consider a rooted

triple ab|c ∈ R. Recall that a tree displays ab|c if and only if the path from a to b does

not intersect the path from c to the root of the tree. This is the case in Ti and we show

that it is also the case in Ti+1. There are six possible cases to be considered with respect

to the possible locations of a, b, and c in Ti. Let vab be the most recent common ancestor

of a and b in Ti and let vabc be the most recent common ancestor of a, b, and c in Ti.

Recall that all of the NNI operations are with respect to tu.

Case 1: a, b, c ∈ tu. In this case, in Ti, the (a-b)-path (the path from a to b) does not

intersect the (c-ri)-path, so, in tu, the (a-b)-path does not intersect the (c-u)-path. The

tree Ti+1 contains the subtree tu, so, as before, the (a-b)-path does not intersect the (c-u)-

path and hence, in Ti+1, the (a-b)-path does not intersect the (c-ri+1)-path. Therefore,

Ti+1 displays ab|c.

Case 2: a, b, c 6∈ tu. In this case, in Ti, no element of the (a-b)-path, or the (c-ri)-path,

is in tu. Let q be the path between vab and vabc in Ti and let p be a path in Ti with

one endpoint in the (a-b)-path and the other endpoint in the (c-ri)-path. Then p must

contain q, so |p| ≥ |q|. Therefore, the (a-b)- and (c-ri)-paths intersect if and only if q

has length zero, in which case vab = vabc. Assume that Ti+1 does not display ab|c, so

the (a-b)- and (c-ri+1)-paths intersect and so, by the same argument, vab = vabc. Then,

in Ti+1, vabc has three children and so Ti+1 is not a binary tree. This is a contradiction

because, by definition, an NNI operation on a binary tree produces another binary tree.

Therefore Ti+1 displays ab|c.

Case 3: a, b ∈ tu and c 6∈ tu. In this case, in Ti, the (a-b)-path is contained entirely

in tu and the (c-ri)-path contains no arcs or vertices in tu, so these two paths do not

intersect. Performing an NNI operation on Ti to obtain Ti+1 will not affect this, so the

same property will hold in Ti+1. In Ti+1, the (a-b)-path will be contained entirely in tu

and the (c-ri+1)-path will not contain any of these vertices or arcs, so these two paths do

25

not intersect. Therefore, Ti+1 displays ab|c.

Case 4: b, c ∈ tu and a 6∈ tu (which is analogous to the case a, c ∈ tu, b 6∈ tu). In

this case, in Ti, the (a-b)-path and the (c-ri)-path both contain u, so these two paths

intersect. Therefore, Ti does not display ab|c, which is a contradiction. It is thus not

possible that b, c ∈ tu and a 6∈ tu.

Case 5: a ∈ tu and b, c 6∈ tu (which is analogous to the case b ∈ tu, a, c 6∈ tu). Let

v′ab be the most recent common ancestor of a and b in Ti+1 and let v′abc be the most

recent common ancestor of a, b, and c in Ti+1. First assume that, in Ti+1, v′ab is a

proper descendant of v′abc. Then Ti+1 displays ab|c. Now assume that this is not the

case; that is, in Ti+1, v′ab is not a proper descendant of v′abc. Then the (a-b)-path and the

(c-ri+1)-path intersect. Furthermore, in Ti+1, both the (a-b)-path and the (c-ri+1)-path

contain vabc. Now for each Tk, where k > i, both the (a-b)-path and the (c-rk)-path

contain vabc. Hence, in Tn = T ′, both the (a-b)-path and the (c-rn)-path contain vabc, so

these two paths intersect, a contradiction of the assumption that T ′ ∈ R B. Therefore,

Ti+1 displays ab|c.

Case 6: c ∈ tu and a, b 6∈ tu. Let v′ab and v′abc be defined as in case 5. First assume that,

in Ti+1, v′abc is a proper ancestor of v′ab. Then Ti+1 displays ab|c. Now assume that this is

not the case; that is, in Ti+1, v′abc is not a proper ancestor of v′ab. Then u (and therefore

c) is a descendant of vab. So the (a-b)-path and the (c-ri+1)-path intersect. Furthermore,

in Ti+1, both the (a-b)-path and the (c-ri+1)-path contain vab. Now for each Tk, where

k > i, both the (a-b)-path and the (c-rk)-path contain vab. Hence, in Tn = T ′, both the

(a-b)-path and the (c-rn)-path contain vab, so these two paths intersect, a contradiction

of the assumption that T ′ ∈ R B. Therefore, Ti+1 displays ab|c.

In each of the six cases, either the scenario is not possible (case 4) or Ti+1 displays ab|c.

Since ab|c was an arbitrary rooted triple inR, we can extend this result to all of the rooted

triples in R, so Ti+1 ∈ R B. Therefore, by induction, Tj ∈ R B for all 0 ≤ j ≤ n.

26

Lemma 2.2.2 allows us to convert a sequence of rSPR operations into an equivalent

sequence of NNI operations.

Lemma 2.2.3. Let R be a set of rooted triples and suppose that T ∈ R B and ab|c ∈ R.

Then a, b ∈ C for some maximal proper cluster C of T .

Proof. Let r be the root of T and let C and C̄ be the maximal proper clusters of T . For

ab|c ∈ R suppose, without loss of generality, that a ∈ C and b ∈ C̄. The most recent

common ancestor of a and b is then r, so the path from a to b will contain r and so this

path will intersect the path from c to r. Therefore ab|c 6∈ R, a contradiction. Hence if

ab|c ∈ R, then either a, b ∈ C or a, b ∈ C̄.

Lemma 2.2.4. Let R be a set of rooted triples and let T ∈ R B, where L(T) = L(R).

Let C and C̄ be non-empty subsets of L(T) for which C ∪ C̄ = L(T), C ∩ C̄ = ∅, and

C and C̄ are maximal proper clusters of at least one tree in R B. Consider T |C and

T |C̄, with roots rC and rC̄ respectively. Let T̂ ∈ R B be the tree rooted at r̂ composed

of exactly the subtrees T |C and T |C̄ and the arcs (r̂, rC) and (r̂, rC̄). Then there is a

sequence of trees (T1, T2, . . . , Tn) such that:

1. T1 = T and Tn = T̂ ,

2. Ti|C = T |C and Ti|C̄ = T |C̄ for 1 ≤ i ≤ n,

3. Ti
rSPR∼ Ti+1 for 1 ≤ i < n, and

4. Ti ∈ R B for 1 ≤ i ≤ n.

Proof. We first show how to obtain, from T , a tree T ′ with subtree T ′|C = T |C. For

any i (1 ≤ i ≤ n), the tree Ti contains one or more maximal subtrees whose leaf sets are

subsets of C. If Ti contains only one such subtree, then that subtree must be T |C and

so T ′ = Ti. Now consider the case in which Ti contains two or more such subtrees. Let

tv be a minimal subtree of Ti containing exactly two maximal subtrees, tx and ty, whose

leaf sets are subsets of C. (Note that tv may contain leaves in C̄.) We assume i ≤ n− 2

27

and apply the following two rSPR operations, starting at Ti, to produce a tree in which

there is a subtree with leaf set L(tx) ∪ L(ty).

(a) Consider v, the most recent common ancestor of x and y. If v is not the root of Ti,

let v′ be the parent of v, and subdivide the arc (v′, v) with a vertex u. Otherwise

(if v is the root of Ti), introduce a vertex u and insert arc (u, v).

(b) Prune tx, insert arc (u, x), regrafting tx, and suppress the vertex with outdegree

one. Call the resulting tree Ti+1. Note that Ti+1|C = T |C (and similarly for C̄).

(c) Subdivide the arc (u, x) with a vertex u′. Prune ty, insert arc (u′, y), regrafting ty,

and suppress the vertex with outdegree one. Call the resulting tree Ti+2. We now

have a subtree tu′ of Ti+2 containing exactly the leaves in L(tx) ∪ L(ty). Note that

Ti+2|C = T |C (and similarly for C̄).

v,

v

a
b
c

tx

x y

ty

v,

v

a b
c

tx

x

y

ty

u v,

v

a b c

tx

xy
ty

u
u,

Ti Ti+1 Ti+2

Figure 2.4: An example of steps (a) to (c) in the proof of Lemma 2.2.4

We now prove by induction on |C| that we can repeatedly perform the above sequence

of rSPR operations to obtain, from T , a tree T ′ with subtree T ′|C = T |C. In the case

|C| = 1, T ′ = T and so the result holds. Consider the case |C| = 2. Let C = {x, y} and

C̄ = L(T) \ {x, y}. Starting with T , apply the above steps (a) through (c), where tx and

ty are each a single leaf (x and y respectively), to obtain a tree T3 = T ′ with a subtree

containing exactly the leaves in L(tx) ∪ L(ty) = {x} ∪ {y} = C, as required.

Assume that, for tree T with 2 ≤ |C| ≤ k (for some k ≥ 2), we can perform a sequence

of rSPR operations to obtain a tree T ′ with subtree T ′|C = T |C. Now consider a tree T

28

where |C| = k + 1, and let tv be the minimal subtree of T such that C ⊆ L(tv). Then tv

has two maximal proper subtrees, say t′ and t′′, each of which must contain at least one

leaf in C, and so each contains no more than k leaves in C. By the induction assumption,

we obtain a tree T ∗ with subtree t∗v containing subtrees t′|C and t′′|C. Now t∗v is the

minimal subtree of T ∗ containing t′|C and t′′|C, so we apply steps (a) through (c) above,

starting with the tree T ∗, to obtain a tree T ′ with a subtree containing exactly the leaves

in L(t′|C) ∪ L(t′′|C) = C, as required.

We now prove that neither of the rSPR operations in steps (a) through (c) violate any

rooted triples inR. Note that tx or ty (or both) may consist of only a single leaf. Consider

the rSPR operation with respect to tx (given in steps (a) and (b)) used to obtain Ti+1 from

Ti (1 ≤ i ≤ n − 2). Assume that Ti displays R, but suppose, without loss of generality,

that Ti+1 does not display rooted triple ab|c ∈ R. Consider Ti and a, b, c ∈ L(Ti), and the

possible locations of the leaves a, b, and c in Ti with respect to the subtrees tx, ty, and tv.

The scenarios in which a, b ∈ L(tx) or a, b 6∈ L(tx) result in contradictions. So, without

loss of generality, consider the scenarios in which a ∈ L(tx) and b 6∈ L(tx). The cases in

which c 6∈ L(tv) or b 6∈ L(tv) also result in contradictions, so assume that b, c ∈ L(tv).

If b ∈ L(ty), then c 6∈ L(tv), which is a contradiction, hence b 6∈ L(ty). However, since

b 6∈ L(tx) and b 6∈ L(ty), b 6∈ C, which is a contradiction of Lemma 2.2.3 because C is

a maximal proper cluster of some tree in R B. This concludes the case analysis. All

possibilities result in contradictions, hence Ti+1 displays ab|c. Now consider the rSPR

operation with respect to ty (given in step (c)) used to obtain Ti+2 from Ti+1. Assume

that Ti+1 displays R, but suppose, without loss of generality, that Ti+2 does not display

rooted triple ab|c ∈ R. Consider Ti+1 and a, b, c ∈ L(Ti+1), and the possible locations of

the leaves a, b, and c in Ti+1 with respect to the subtrees tx, ty, and tu. Similar reasoning,

replacing tv with tu (recalling u is the parent of v in Ti+1) and swapping tx and ty, again

leads to contradictions. Hence, Ti+2 displays ab|c.

29

We now show how to obtain T̂ from T ′. In T ′, let w be the root of subtree T |C, and

let x be the parent of w (x always exists as w is not the root of T ′, otherwise |C̄| = 0). If

x is the root of T ′, then T |C is a maximal proper subtree of T ′ and so T̂ = T ′. Otherwise,

the following rSPR operation is performed to obtain T̂ from T ′. Let r′ be the root of T ′.

Prune subtree T |C, introduce a vertex r̂, insert arc (r̂, r′) and arc (r̂, w), regrafting T |C,

and suppress the vertex with outdegree one. We have now obtained a tree T̂ (with root

r̂) with maximal proper subtrees T |C and T |C̄, as required.

We now prove that this rSPR operation does not violate any rooted triples in R.

Assume that T ′ displays R but suppose, without loss of generality, that T̂ does not

display rooted triple ab|c ∈ R. Consider T ′ and a, b, c ∈ L(T ′), and the possible locations

of the leaves a, b, and c in T ′ with respect to the subtree T |C. The scenarios in which

a, b ∈ L(T |C) or a, b 6∈ L(T |C) result in contradictions. So, without loss of generality,

consider the scenario in which a ∈ L(T |C) and b 6∈ L(T |C). Then a ∈ C and b 6∈ C,

which is a contradiction of Lemma 2.2.3. Hence T̂ displays ab|c.

We have established that each of (T2, T3 . . . , Tn = T̂) display R. Furthermore, since

T = T1 displays R by definition, we have shown that Ti displays R for all 1 ≤ i ≤ n.

The process described in Lemma 2.2.4 will be referred to as disentangling C from T .

We now have all the necessary preliminary results, so we return to the proof of The-

orem 2.1.3.

2.3 Proof of Theorem 2.1.3

Proof of Theorem 2.1.3. We first prove the special case in which L(T) = L(T ′) = L(R)

(i.e. there are no free leaves). We prove that we can obtain a sequence of NNI-related

trees from T to T ′ for which each tree in the sequence displaysR. We use strong induction

30

on m = |L(T)|.

Consider the case m = 2. Then the two children of the root of T ′ are leaves, and since

L(T) = L(T ′), then T = T ′ and so the result holds.

Assume that the result holds for trees T and T ′ with at most k−1 leaves. Now consider

two trees T, T ′ ∈ R B with |L(T)| = |L(T ′)| = |L(R)| = k. Let C and C̄ be the maximal

proper clusters of T ′. Note that L(T) = C ∪ C̄. Consider T and apply Corollary 2.2.4

to disentangle C from T , giving a sequence of rSPR-related trees from T to a tree Ti

(1 < i ≤ n) such that each tree displays R, and the tree Ti has maximal proper subtrees

T |C and T |C̄. Applying Lemma 2.2.2 to this sequence of trees, we obtain a sequence S

of NNI-related trees from T to Ti for which each tree in the sequence displays R.

The tree T ′ has maximal proper subtrees T ′|C and T ′|C̄. Let RC = {ab|c ∈ R :

a, b, c ∈ C} (i.e. the set of rooted triples for which the leaves are all in C). Define RC̄

similarly. Now note that |L(T |C)| = |L(T ′|C)| < k so, by the induction assumption, there

is a sequence of NNI-related trees (T |C, . . . , T ′|C) such that each tree in the sequence

displays RC . Since |L(T |C̄)| = |L(T ′|C̄)| < k, the same applies to C̄.

Consider the sequence of NNI operations above that create the sequence (T |C, . . . , T ′|C).

Starting with tree Ti with subtree T |C, perform this sequence of NNI operations to ob-

tain a tree Tj (1 < i ≤ j ≤ n) with subtree T ′|C, where the rest of the tree remains

unchanged (that is, Ti \ T |C is equivalent to Tj \ T ′|C). Since each tree in the sequence

(Ti, . . . , Tj) displays RC , and Ti \ T |C is equivalent to Tj \ T ′|C, each tree this sequence

displays R. Repeating this process for C̄ (with set of rooted triples RC̄), starting with

the tree Tj, gives the tree T ′ with maximal proper subtrees T ′|C and T ′|C̄, as required.

We now have a sequence of NNI-related trees from Ti to T ′ such that each tree in the

sequence displays R.

Combining this sequence of trees with the earlier sequence S, we obtain a sequence of

31

NNI-related trees (T, . . . , T ′) such that each tree in the sequence displays R, as required.

We now turn to the general case in which L(R) ⊆ L(T) = L(T ′). By Lemma 2.2.1,

there is a sequence of NNI-related trees from T to a tree T̃ with subtree T |L(R), and

there is a sequence of trees from T ′ to a tree T̃ ′ with subtree T ′|L(R), such that each

tree in these sequences displays R and T̃ \ (T |L(R)) is equivalent to T̃ ′ \ (T ′|L(R)).

Next, we need a sequence of NNI-related trees from T̃ to T̃ ′ such that each tree in

the sequence displays R. By the special case (proved above), there is a sequence of NNI-

related trees from T |L(R) to T ′|L(R) such that each tree in the sequence displays R.

Performing the corresponding sequence of NNI operations, starting with the tree T̃ ,

transforms the subtree T |L(R) into T ′|L(R), giving the tree T̃ ′. We now have a sequence

of NNI-related trees from T̃ to T̃ ′ such that each tree displays R, as required.

2.4 Algorithm and Complexity

2.4.1 Algorithm

In this section, we take the steps from the proofs of Lemmas 3.3, 3.4, and 3.6 and create

an algorithm which takes two trees T, T ′ ∈ R B as input and produces a sequence of

NNI-related trees from T to T ′, such that each tree in the sequence displays R. The

algorithm consists of the following five procedures.

The first procedure, FreeLeaves, takes a tree T and a set of rooted triples R as input

and uses steps (a) through (c) in the proof of Lemma 2.2.1 to create a sequence of NNI-

related trees ending with a tree T̃which has a subtree containing exactly the leaves in R

(as illustrated in Figure 2.3). It returns the sequence of NNI-related trees.

Procedure FreeLeaves:

Input: A set R of rooted triples; a tree T ∈ R B.

32

Output: A sequence F of NNI-related trees from T to a tree with subtree T |L(R).

1. Label the free leaves L(T) \ L(R) = {x1, x2, . . . xn}.

2. Apply steps (a) through (c) in the proof of Lemma 2.2.1 where T is the starting

tree and the free leaves are labeled as in step 1 to produce F .

3. Return F .

The second procedure, ToNNI, uses steps (a) through (e) in the proof of Lemma 2.2.2

to produce a sequence of NNI-related trees from a sequence of rSPR-related trees.

Procedure ToNNI:

Input: A sequence S = (S1, . . . , Sk) of rSPR-related trees; a set R of rooted triples

displayed by each tree in S.

Output: A sequence S̃ of NNI-related trees.

1. Let S̃ = ().

2. For i = 1, . . . , k − 1:

(i) Apply steps (a) through (e) from the proof of Lemma 2.2.2 (given in the

appendix) to the trees Si and Si+1 to obtain a sequence Ui of NNI-related

trees, where Si is the first tree in the sequence Ui and Si+1 is the last tree in

the sequence Ui. Each tree in the sequence Ui displays R by Lemma 2.2.2.

(ii) If i 6= k, remove the last tree (Si+1) from Ui (so that it will not be repeated)

and append Ui to S̃.

3. Return S̃.

The third procedure, Disentangle, takes a tree Tcurrent as input and uses steps (a)

through (c) in the proof of Lemma 2.2.4 to disentangle a given leaf set from a specified

subtree of Tcurrent, and returns the resulting sequence of rSPR-related trees.

Procedure Disentangle:

Input: A set R of rooted triples; a tree Tcurrent ∈ R B; the root w of the subtree of

Tcurrent to disentangle; the leaf set C to disentangle.

33

Output: A sequence S of rSPR-related trees.

1. Let tw be the subtree of Tcurrent rooted at w. Let S = () and let Tworking = Tcurrent.

2. While Tworking does not have subtree Tcurrent|C = Tworking|C:

Let tw be the subtree of Tworking rooted at w. There is a minimal subtree of tw

containing exactly two maximal subtrees tx and ty, whose leaf sets are subsets of C

(note that tx or ty may contain only a single leaf). Perform steps (a) through (c)

in the proof of Lemma 2.2.4, starting with the tree Tworking, to obtain two trees T ∗

and T ∗∗, where T ∗∗ has a subtree with leaf set L(tx) ∪ L(ty). Append T ∗ and T ∗∗

to S. Let Tworking = T ∗∗.

3. The tree Tworking now has subtree Tcurrent|C. Consider the root rC of the subtree

Tcurrent|C of Tworking and the root rL of the subtree Tworking|L(R) of Tworking. If

rC is not a child of rL, perform one more rSPR operation to prune the subtree

Tcurrent|C and regraft it to a vertex subdividing the arc between rL and its parent,

giving tree T̂ . Append T̂ to S.

4. Return S.

The fourth procedure, TraverseTree, is a recursive procedure that traverses a tree

depth-first, calls the procedure Disentangle for each subtree, and combines the resulting

sequences of trees. It then returns the entire sequence of rSPR-related trees produced by

all of the recursive calls.

Procedure TraverseTree:

Input: a set R of rooted triples; a tree Tcurrent ∈ R B to traverse; the root w of a

subtree of Tcurrent; a tree T ′ ∈ R B.

Output: A sequence S of rSPR-related trees from Tcurrent to a tree with subtree T ′.

1. Let S = () and let tw be the subtree of Tcurrent rooted at w. If |L(tw)| ∈ {1, 2},

go to step 5 (i.e. if tw consists of only a single leaf or a cherry, return an empty

sequence.)

34

2. Let C be a maximal proper cluster of T ′.

3. Do S = S+Disentangle(R, Tcurrent, w, C). If |S| 6= 0, let Tcurrent be the last tree in

the sequence S.

4. For A ∈ {C, C̄} (where C̄ is the complement of C with respect to L(tw)):

(i) Do S = S+TraverseTree(RA, Tcurrent, rA, T
′|A), where RA = {ab|c ∈ R :

a, b, c ∈ A} and rA is the root of the subtree Tcurrent|A of Tcurrent (the subtree

containing exactly the leaves in A).

(ii) If |S| 6= 0, let Tcurrent be the last tree in the sequence S.

5. Return S.

The last procedure, TreeSequence, takes two trees, T and T ′, as input and uses all

of the above procedures to produce a sequence of NNI-related trees from T to T ′ such

that each tree in the sequence displays R. TreeSequence first calls FreeLeaves with

input T (respectively T ′) to produce a sequence of NNI-related trees from T to a tree T̃

(respectively from T ′ to a tree T̃ ′). TraverseTree is then applied to produce a sequence of

rSPR-related trees from T̃ to T̃ ′, which ToNNI converts into a sequence of NNI-related

trees. Lastly, these three sequences are combined to produce the required sequence of

NNI-related trees from T to T ′.

Procedure TreeSequence:

Input: Two rooted binary phylogenetic trees, T and T ′.

Output: A sequence of NNI-related trees from T to T ′ such that each tree in the sequence

displays R.

1. Let R = r(T) ∩ r(T ′), so T, T ′ ∈ R B. Let L = L(R). Do F = FreeLeaves(R, T)

and F ′ = FreeLeaves(R, T ′). Let T̃ and T̃ ′ be the last trees in the sequences F and

F ′ respectively. Note that T̃ \ (T |L) is equivalent to T̃ ′ \ (T ′|L)).

2. Reverse F ′ and call this sequence of trees
←−
F ′.

3. Do S = TraverseTree(R, T̃ , rT |L, T̃ ′), where rT |L is the root of the subtree T |L of T̃ .

35

Now S is a sequence of rSPR-related trees from T̃ to T̃ ′ for which each tree in the

sequence displays R.

4. Do S̃ = ToNNI(S).

5. Return F + S̃+
←−
F ′, which is a sequence of NNI-related trees from T to T ′ satisfying

the required properties.

2.4.2 Complexity

In this section we calculate the complexity of each procedure. We start by noting that

one rSPR operation is O(1), as is one NNI operation. Recall that T, T ′ ∈ R B and

L(R) ⊆ L(T) = L(T ′). Let n = |L(T)|. Let nR = |L(R)|, the number of leaves in R,

and let nF = |L(T)| − nR, the number of free leaves in T , so that n = nR + nF .

First consider the procedure FreeLeaves. This procedure uses NNI operations to

produce, from T , a tree with subtree T |L(R), as described in the procedure. LetD = d(T)

be the depth of T . For tree T , each leaf requires O(D) NNI operations. There are nF

leaves for which this must be repeated, so this procedure is O(nFD).

Next, we consider the procedure ToNNI applied to a sequence S = (S1, . . . , Sk) of

rSPR-related trees. This procedure produces from S a sequence of NNI-related trees.

Let DS = max{d(Si) for 1 ≤ i ≤ k}. Each rSPR operation corresponds to at most 2DS

NNI operations since, in the worst case, arcs e and f (given in the definition of an rSPR

operation) are distance 2DS − 2 apart. Therefore, each consecutive pair of trees in S

produces a sequence of up to 2DS NNI-related trees. There are k − 1 consecutive pairs

of trees in S, so this procedure is O(kDS) = O(|S|DS).

Consider the procedure Disentangle. Let tw be the subtree of Tcurrent rooted at w.

Disentangling the leaf set C from tw requires up to 2|C| − 1 rSPR operations. Therefore,

the total number of rSPR operations required is at most 2|C|−1. Since 2|C|−1 < 2|C| <

36

2nR, the procedure Disentangle is O(nR).

Now consider the procedure TraverseTree. The maximum recursion depth is nR.

The call to the procedure Disentangle in step 3 is O(nR), as described above. Step 4 is

O(|C|)×O(nR)+O(|C̄|)×O(nR) = (O(|C|)+O(|C̄|))×O(nR) = O(nR)×O(nR) = O(n2
R).

So the overall complexity of the procedure TraverseTree is O(nR) +O(n2
R) = O(n2

R).

Lastly, consider the procedure TreeSequence. Let DT = max{d(T), d(T ′)}. Step 1

is O(nFDT) (two calls to the procedure FreeLeaves). This gives two sequences of trees,

F and F ′, where the length of F ′ is AnFDT for some constant A. Step 2 is therefore

O(nFDT), reversing the sequence F ′. Step 3 is O(n2
R) (call to the procedure Traver-

seTree). This gives a sequence of trees S ′ of length Bn2
R for some constant B. Step

4 is O(|S ′|DS′) = O(Bn2
RDS′) = O(n2

RDS′) (call to the procedure ToNNI). Step 5

concatenates three sequences, the complexity of which can be O(1) (depending on the

implementation). Therefore, the procedure TreeSequence is O(n2
RDS′ + nFDT). Let-

ting Dmax = max{DS′ , DT} and noting that nR ≤ n and nF ≤ n, the complexity is

O(n2Dmax).

Hence, producing a sequence of NNI-related trees from T to T ′ has a complexity of

O(Dmaxn
2).

2.5 Concluding comments

In this chapter, we have provided an explicit polynomial-time procedure for moving be-

tween any two trees on a phylogenetic ‘terrace’ using elementary (NNI) operations, so

that each tree in the sequence also belongs to the terrace. Thus if two trees have an

optimal score under some linear scoring function satisfying Eqn. (1.1), each tree in the

sequence is also optimal. Of course, there are likely to be many other such sequences

37

between the two trees that also lie on the terrace, so having some way of quantifying this

number would be interesting. A further question, that is particularly relevant to many

applications, asks for the development of a polynomial-time approximation procedure

for sampling the trees on a terrace uniformly at random (or, equivalently, the trees that

display a set of rooted triples). An approach based on random NNI or rSPR walks (se-

quences of NNI or rSPR operations) that move between trees on the terrace may provide

a way to approach this problem; this was, in part, the motivation for this research. The

development of an efficient randomized sampling scheme for trees on a terrace seems a

worthy topic for further study.

38

Chapter 3

A terrace with only one tree

3.1 Introduction

Patchy taxon coverage may provide anywhere from very little to a lot of information on

the evolutionary relationships within a set of species. Thus the process of reconstructing

these relationships is capable of producing anywhere from a large terrace of trees [9] to

only a single tree. In this chapter, we will examine the conditions under which a single tree

is produced. We look at the simplest case of this problem - the conditions under which

two trees with overlapping leaf sets define a single tree. Three cases to be considered: (1)

the case in which two binary trees define a binary tree, (2) the case where two non-binary

trees define a binary tree, and finally (3) where two non-binary trees define a non-binary

tree. The conditions were established for the first two cases by Sebastian Böcker in [1].

We restate and independently prove those results here, and then investigate the third

case, including a more general version of this case which is an open problem. When a

set of trees does not define a single tree, we can ask: what is the maximum leaf set we

can restrict these trees to such that they do define a single tree? This is the Maximum

Defining Leaf Set Problem [9]. We ask this question for cases (1) and (2) and provide

39

the solution.

In this chapter, we begin by defining some necessary terms in Section 3.1.1. In Section

3.2, we consider the conditions under which two trees define a single tree. There are

three cases, as described previously, investigated in Sections 3.2.1), 3.2.2, and Section

3.2.3 respectively. In cases (1) and (2), we also show how to construct the tree T and

find the maximum defining leaf set when the two trees do not define a single tree. We

initially hoped to solve the more general problem of the conditions under which three

binary trees define a single binary tree. At the end of Section 3.2 we briefly investigate

this more complicated scenario.

3.1.1 Definitions

In the previous chapter we considered rooted phylogenetic trees. Now we consider (un-

rooted) phylogenetic trees. Recall from Section 1.3 that a phylogenetic tree is a tree

in which all the leaves are labeled and all interior vertices have degree at least three.

Recall that P (X) denotes the set of all phylogenetic trees with leaf set X. A binary

phylogenetic tree is a phylogenetic tree in which all interior vertices have degree three.

Let BP (X) denote the set of all binary phylogenetic trees with leaf label set X. Note

that BP (X) ⊆ P (X). Figure 3.1 shows an example of a binary phylogenetic tree.

The definitions of deletion and contraction given in Section 1.5.1 also apply to phylo-

genetic trees that are not necessarily rooted (using edges in place of arcs).

An X-split is a partition of a set X into two non-empty sets, say A and B. This split

is denoted A|B. For ease of notation we write, for example, {a, b, c}|{d, e} = abc|de and

(A ∪B)|C = AB|C.

Consider a tree T ∈ P (X) and an edge e of T . Then T \ e consists of two com-

ponents, T ′ and T ′′. Now L(T ′)|L(T ′′) is an X-split and we say that this X-split cor-

40

a

b

c

d

u v
T

Figure 3.1: An example of an (unrooted) tree with leaf set X =

{a, b, c, d}.

responds to edge e in T and no other edge of T . For each edge of T there is a cor-

responding X-split (and vice-versa); we denote the set of all these splits by Σ(T). We

refer to Σ(T) as the splits of T . If follows that a tree S ∈ BP (X) with |X| ≥ 2 has

|Σ(S)| = 2|X| − 3, since S has 2|X| − 3 edges (see [10]). In Figure 3.1, the set of splits

of T , Σ(T) = {ab|cd, a|bcd, b|acd, c|abd, d|abc}. These splits correspond to the edges

{u, v}, {a, u}, {b, u}, {c, v}, and {d, v} respectively.

The following terms were defined previously for rooted trees; here we define them

for unrooted trees. Let T ∈ P (X) and let X ′ be a non-empty subset of X. Then

T |X ′ ∈ P (X ′), called the restriction of T to X ′, is the tree for which

Σ(T |X ′) = {(A ∩X ′)|(B ∩X ′) : A|B ∈ Σ(T) and A ∩X ′, B ∩X ′ 6= ∅}

We can obtain T |X ′ from T by deleting all maximal subtrees containing only leaves that

are not in X ′ and then suppressing all vertices with degree two. Let T ′ ∈ P (X). We

say that T refines T ′ (or is a refinement of T ′) if Σ(T ′) ⊆ Σ(T). Let X ′′ ⊆ X, and let

T ′′ ∈ P (X ′′). We say that T displays T ′′ if T |X ′′ is a refinement of T ′′.

A set P of phylogenetic trees (respectively, binary phylogenetic trees) is compatible

if there exists a tree T ∈ P (X) (respectively, T ∈ BP (X)) such that T displays each

tree in P . We then say that T displays P . Note that T is not necessarily in P . Let

P P (respectively P BP) denote the set of all phylogenetic trees (respectively binary

phylogenetic trees) that display P . Note that P BP ⊆ P P . If P P = {T} for some

tree T , we say that P defines T . If P P = {T1, . . . , Tn} and there is some Ti (1 ≤ i ≤ n)

41

such that Tj is a refinement of Ti for all j (1 ≤ j ≤ n, j 6= i), we say that P identifies T .

Consider a tree T ∈ BP (X). Let the leaf set Y ⊂ X and let tree T ′ = T |Y . Consider

a split σ of T and a split σ′ of T ′. Let σ = A|B ∈ Σ(T) and σ′ = A′|B′ ∈ Σ(T ′). If

A ∩ Y = A′ and B ∩ Y = B′ then we say that σ extends σ′ and write σ′ ≤ σ.

Consider a tree T1 ∈ BP (X), a leaf set X ′ ⊂ X, and the tree TS = T |X ′ ∈ BP (X ′).

We call tree TS an underlying tree of T1. Consider an edge e = {w, x} of T ′S. This

edge corresponds to some path Pe(T1, TS) of T1 from w to x. Note that Pe(T1, TS) may

consist of only a single edge. Consider an edge {u, v} of T1 where u is an interior vertex

of the path Pe(T1, TS) (not one of the endpoints) and v is not in Pe(T1, TS). Consider

the pendant subtree tv of T rooted at the vertex v and containing nothing in the path

Pe(T1, TS). This pendant subtree tv is called a pendant subtree of Pe(T1, TS), and we say

that this pendant subtree is attached to Pe(T1, TS) at the vertex u (by the edge {v, u}).

We call u the attachment vertex of tv. See Figure 3.2 for an example of these definitions.

w u x

v
tv

T

Figure 3.2: An example of an unrooted tree T with path Pe(T) from w

to x (shown by a thicker red line) and pendant subtree tv attached to

Pe(T) at u.

Assume that the path Pe(T1, TS) has length at least two. Then Pe(T1, TS) has at least

one pendant subtree attached. We can attach these pendant subtrees to edge e in TS,

giving a new tree T2. Note that attaching these subtrees subdivides the edge e and the

order of the attachment vertices remains the same. For example, in Figure 3.3, e = {w, x}

and Pe(T1, TS) = wv1v2v3x. We attach the pendant subtrees t1, t2, and t3 of Pe(T1, TS) to

edge e of TS. This gives the tree T2 with path wv1v2v3x and with the pendant subtrees

42

t1, t2, and t3 attached to v1, v2, and v3 respectively. These definitions can be formalized

using splits, though this is not given here.

w x w x

t1 t2 t3

v1 v2 v3

TS T2a

b b

ac c

d d

w x

t1 t2 t3

v1 v2 v3

T1a

b

c

d

Figure 3.3: An example of a tree T1 with underlying tree TS and a tree

T2 obtained from TS by attaching the pendant subtrees t1, t2, and t3.

3.2 Two trees define a single tree

In this section we investigate the conditions under which two trees define a single tree.

There are three cases to consider, which are dealt with in the following sections.

3.2.1 Binary to binary

We first state and prove the conditions under which two binary trees define a single tree.

Theorem 3.2.1. Let T1 ∈ BP (X1) and T2 ∈ BP (X2) be compatible. Let X = X1 ∪X2

and Y = X1∩X2, and let TS ∼= T1|Y ∼= T2|Y . Then T1 and T2 define (up to isomorphism)

a tree T ∈ BP (X) if and only if for each split σ′ ∈ Σ(TS), either

(a) |{σ ∈ Σ(T1) : σ′ ≤ σ}| = 1 or

(b) |{σ ∈ Σ(T2) : σ′ ≤ σ}| = 1.

43

For some edge e = {u, v} of TS with corresponding split σ′ of TS, if condition (a)

holds then there is only one split, say σf , of T1 that extends σ′. This split σf corresponds

to some edge f of T1 and so the path Pe(T1, TS) consists of only the edge f = {u, v}.

As Pe(T1, TS) has length one, it contains no attachment vertices and therefore has no

pendant subtrees. Hence, for each edge e of TS, conditions (a) and (b) are equivalent to

specifying that only Pe(T1, TS) or Pe(T2, TS), but not both, has pendant subtrees. We

will use this notion in the proof of Theorem 3.2.1 below. Note that no pendant subtrees

may be attached to the endpoints of any path Pe(T1, TS) because then T1 would be a

non-binary tree. Similarly for T2. This theorem was proved by Böcker in [1]. Here we

explicitly state and independently prove this theorem.

Proof. (←) We assume that either (a) or (b) holds and prove that the tree T is unique.

We use proof by induction on k = |X1| + |X2|. Note that the result holds in the case

X1 = X2 = Y because then TS ∼= T1
∼= T2

∼= T , so we assume that X1 6= X2. Note also

that, without loss of generality, if Y = X1 then TS ∼= T1 so T2 displays T1 and hence

T ∼= T2 so the result holds. So we assume that X1 6= Y and X2 6= Y .

Since X1 and X2 are non-empty, we first consider the case in which k = 2. Then, as

X1 6= X2, the leaf set X consists of exactly two distinct leaves, and so T is simply the

tree consisting of these two leaves connected by an edge. As there are no other unrooted

trees on two vertices, {T1, T2} BP = {T} and so T1 and T2 define T , as required.

Assume that the result holds when 2 ≤ k ≤ n − 1. Recall that X1 6= Y and let

x ∈ X1 \ Y . Consider trees T2 and T1|(X1 \ {x}) and underlying tree TS. For each

edge e of TS, if Pe(T2, TS) has pendant subtrees, attach these pendant subtrees to e, or if

Pe(T1|(X1 \ {x}), TS) has pendant subtrees, attach these pendant subtrees to e. Call the

resulting tree T ∗. Note that since either condition (a) or (b) holds by assumption, only

Pe(T2, TS) or Pe(T1|(X1 \ {x}), TS), but not both, will have pendant subtrees for a given

edge e of TS. So tree T ∗ displays trees T1|(X1 \ {x}) and T2 and so, by the induction

44

assumption, T ∗ ∈ BP (X \ {x}) is the unique tree displaying T1|(X1 \ {x}) and T2.

Now consider the case in which k = n. Assume that there are two distinct trees,

T, T ′ ∈ BP (X), that each display both T1 and T2. Now T and T ′ can be obtained from

T ∗ by attaching the leaf x. Figure 3.4 gives a graphical representation of the following

labelings. Let e1 (respectively e2) be the edge of T ∗ that x is attached to in order to

obtain the tree T (respectively T ′). Note that e1 and e2 are distinct edges of T ∗ as T 6∼= T ′.

In T ∗, let the endpoints of edge e1 be labeled u1 and v1 and let the endpoints of edge e2

be labeled u2 and v2, such that there is a path P from u1 to u2 containing both v1 and v2.

Let {v1, w} be the edge with endpoint v1 that is not part of the path P . Let A be the

pendant subtree of T ∗ containing vertex u1 and with attachment vertex v1. Similarly, let

C be the pendant subtree of T ∗ containing vertex u2 and with attachment vertex v2, and

let B be the pendant subtree of T ∗ containing vertex w and with attachment vertex v1

(B must exist as e1 and e2 are distinct edges of T ∗). Note that it may be the case that

v1 = v2. If v1 6= v2 then there will be other pendant subtrees attached to interior vertices

of the path P . We call these pendant subtrees t1, . . . , ti, where i = distT ∗(v1, v2)− 1.

We now prove that the subtrees A,B, and C each contain at least one leaf in X1.

Consider the tree T ∗ and underlying tree TS. Assume that, L(B) ⊆ X2. Then no

leaf of B is in Y , so, in T ∗, B is attached to some path Pe(T
∗, TS). We consider the

possible locations of Pe(T
∗, TS) in T ∗ and show that in each case, to obtain either T or

T ′, the leaf x is also be attached to Pe(T
∗, TS), a contradiction. There are three cases to

consider. In the first case, Pe(T
∗, TS) contains edge e1 and the adjacent edge in path P ,

and B attaches directly to Pe(T
∗, TS). In this case, to obtain T , both B and x attach

to Pe(T
∗, TS), a contradiction. In the other two cases, Pe(T

∗, TS) is contained in the

subtree A or is elsewhere in T ∗. In these two cases, to obtain T , there exists a pendant

subtree containing both x and B that attaches to Pe(T
∗, TS), a contradiction. Therefore

L(B) 6⊆ X2, so B contains at least one leaf b ∈ X1.

45

A
B

C

x

x

u1

v1

v2

u2

t1

tiT ∗

Figure 3.4: An illustration of the tree T ∗ showing the labels of the

vertices and subtrees as in the proof of Theorem 3.2.1, and also showing

the attachment points of vertex x to obtain trees T and T ′. The edge

e1 = {u1, v1} is shown in red, and e2 = {u2, v2} is shown in purple.

Note that v1 and v2 may be the same vertex and so the path between

them (and the subtrees t1, . . . , ti) may not exist.

Now assume that L(A) ⊆ X2. Then, as before, subtree A attaches to some path

Pe(T
∗, TS). This path Pe(T

∗, TS) must be contained in T ∗ \ A. Then, to obtain T , there

exists a pendant subtree containing both A and the leaf x that attaches to Pe(T
∗, TS), a

contradiction. So A contains at least one leaf a ∈ X1. Similarly, C contains at least one

leaf c ∈ X1.

Now A, B, and C each contain at least one leaf of X1. So T displays the quartet

ay|bc, and T ′ displays the quartet ab|yc, where a, b, c, x ∈ X1. So T1 must also display

both of these quartets, a contradiction. Hence, by induction, T is unique and so T1 and

T2 define T , as required.

(→) We assume that T is unique and prove that either (a) or (b) holds. Consider the

trees T1 and T2 and underlying tree TS. Assume that, for some edge e of TS, the path

Pe(T1, TS) has at least one pendant subtree, say A, and the path Pe(T2, TS) has at least

46

one pendant subtree, say B. To obtain tree T , which displays both T1 and T2 and also

has underlying tree TS, both A and B must be attached to edge e of TS. However, these

two subtrees can be attached to e in more than one arrangement while still satisfying

the condition that the resulting tree displays both T1 and T2, as illustrated in Figure 3.5.

Note that there are more possible arrangements than those shown in Figure 3.5. These

different arrangements each give a distinct tree that displays both T1 and T2 and so T is

not unique, a contradiction. Therefore only Pe(T1, TS) or Pe(T2, TS), but not both, may

have pendant subtrees, and so either (a) or (b) must hold, as required.

B

AA
B

u

v

u

v

Figure 3.5: An example of two possible ways of attaching the pendant

subtrees A (from tree T1) and B (from tree T2) to the edge e = {u, v}

of TS.

To construct the tree T , start with the tree TS. Consider an edge e of TS. If the

path Pe(T1, TS) has pendant subtrees, then attach these subtrees to e in TS. Similarly for

Pe(T2, TS). By Theorem 3.2.1, only one of these options is possible for a particular edge e

of TS. Consider another edge of TS and repeat this process. Note that in this step we are

actually working with the tree produced by the previous step, rather than the original

tree TS, but the tree TS is the underlying tree of the current tree and it is these edges

that we are attaching pendant subtrees to, as illustrated in Figure 3.6.

If trees T1 ∈ BP (X1) and T2 ∈ BP (X2) do not define a tree T ∈ BP (X) (recall

X = X1 ∪ X2), we find the largest set X ′ ⊆ X such that the trees T ′1 = T1|X ′ and

T ′2 = T2|X ′ define a tree T ′ ∈ RB(X ′). This is a simple case of the Maximum Defining

Leaf Set Problem and was solved in [9]. We independently give the solution here.

47

TS

T1 T2

T

a

b

c

d

a

b

c

d
a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

Figure 3.6: An example of the process used to obtain T from TS. The

underlying tree TS is illustrated with thicker red lines.

We start with the leaf set X and trees T1 and T2, and remove as few leaves as possible

from leaf set X and trees T1 and T2 so that the resulting trees define a single tree. The

removal of these leaves is carried out as follows. Assume that trees T1 and T2 do not

define a tree T . Hence, by Theorem 3.2.1, there is at least one edge e of underlying tree

TS such that both the path Pe(T1, TS) and the path Pe(T2, TS) have pendant subtrees.

Let E ⊆ E(TS) be the set of all such edges. We create the trees T ′1 and T ′2 from trees

T1 and T2 respectively, such that Theorem 3.2.1 is satisfied. So for each edge e ∈ E,

at most one of the paths Pe(T1, TS) or Pe(T2, TS) has pendant subtrees, and so we must

remove the pendant subtrees of either Pe(T1, TS) or Pe(T2, TS). Let Xe(T1, TS) be the

leaf set of the pendant subtrees of Pe(T1, TS) and similarly for T2. The trees T ′1 and T ′2

have the largest possible leaf set, so if |Xe(T1, TS)| ≥ |Xe(T2, TS)|, delete the pendant

subtrees of Pe(T2, TS), otherwise, delete the pendant subtrees of Pe(T1, TS). Note that

if |Xe(T1, TS)| = |Xe(T2, TS)|, we could have deleted the pendant subtrees of Pe(T1, TS)

instead of those of Pe(T2, TS). Repeating this for each edge e ∈ E gives the trees T ′1 and

T ′2 and the required leaf set X ′ = L(T ′1) ∪ L(T ′2). Note that for edges of TS that are not

in E, there is no contradiction of Theorem 3.2.1 and so we do not delete any pendant

subtrees in those cases. The leaf set X ′ can be obtained as

X ′ = Y ∪
⋃

e∈E(TS)

X ′e

48

where

X ′e =

Xe(T1, TS) if |Xe(T1, TS)| ≥ |Xe(T2, TS)|

Xe(T2, TS) otherwise

(3.1)

3.2.2 Non-binary to binary

We now consider the case in which the trees T1 and T2 may be non-binary and investigate

the conditions under which .

Theorem 3.2.2. Let T1 ∈ P (X1) and T2 ∈ P (X2) be compatible. Let X = X1 ∪X2 and

let Y = X1 ∩X2. Let TS ∈ BP (Y) such that TS ≥ T1|Y and TS ≥ T2|Y . Then T1 and T2

define (up to isomorphism) a tree T ∈ BP (X) if

(i) for each split σ′ ∈ Σ(TS), either

(a) |{σ ∈ Σ(T1) : σ′ ≤ σ}| ≤ 1 or

(b) |{σ ∈ Σ(T2) : σ′ ≤ σ}| ≤ 1.

and

(ii) |Σ(Ti)| − |Σ(Ti|Y)| = 2|X1| − 2|Y | for i = 1, 2.

Condition (ii) says that T1 and T2 must be binary except for the subtrees T1|Y and

T2|Y , which ensures that the resulting tree T will be binary.

This result was also proved by Böcker in [1]. We prove it independently here.

Proof. (←) Assume that conditions (i) and (ii) hold and assume that T1 and T2 do not

define a binary tree T ∈ BP (X). So either there is no binary tree T displaying T1 and

T2, or T is not unique.

We first prove that there exists a binary tree that displays trees T1 and T2. By

assumption, the trees T1 and T2 are compatible, so there must be some (not necessarily

binary) tree T ′ that displays both T1 and T2. We can construct such a tree T ′ that

49

displays both T1 and T2 as follows. Consider trees T1 and T2 and underlying tree TS. For

each edge e of TS, if the path Pe(T1, TS) of T1 has pendant subtrees then attach those

pendant subtrees to e, otherwise attach the pendant subtrees of the path Pe(T2, TS) of T2

to edge e. Call the resulting tree T ′. At least one of the paths Pe(T1, TS) and Pe(T2, TS)

must exist, otherwise e would not be an edge of TS. Also, by condition (i), either path

Pe(T1, TS) or path Pe(T2, TS) , but not both, has pendant subtrees. So tree T ′ displays

both T1 and T2. By condition (ii), trees T1 and T2 are both binary, apart from the

subtrees T1|Y and T2|Y , so all pendant subtrees of the paths Pe(T1, TS) and Pe(T2, TS)

are binary. Also, by assumption, TS is binary. Therefore the tree T ′ is also binary. We

now have a binary tree T ′ that displays both T1 and T2.

We now prove that T ′ is unique. Assume that T ′ is not unique. Following the proof

of Theorem 3.2.1 in Section 3.2.1, we obtain a contradiction. (The only change in the

proof of Section 3.2.1 is in the case X1 = X2 = Y . Now TS 6∼= T ′1 6∼= T ′2, but it is still true

that TS ∼= T , so the result still holds in this case.) Hence T ′ is unique. Now T ′ is the

unique binary tree displaying both T1 and T2, as required.

(→) The proof follows that of Theorem 3.2.1 in Section 3.2.1.

The construction of the tree T is the same as in the previous section.

If trees T1 and T2 do not define a tree T , we find the largest set X ′ ⊆ X such that

trees T1|X ′ and T2|X ′ define a tree T ′ ∈ RB(X ′). This is another simple case of the

Maximum Defining Leaf Set Problem, and the solution is given below.

Consider tree T1 and underlying tree TS. Consider an edge e of TS and the path

Pe(T1, TS). Let t1 be the subtree of T1 consisting of the path Pe(T1, TS) and its pendant

subtrees. Define t2 similarly. Note that either the path Pe(T1, TS) or the path Pe(T2, TS)

may not exist (but at least one must exist, otherwise e is not an edge of TS). So either

the subtree t1 of T1 or the subtree t2 of T2 may not exist. As trees T1 and T2 do not

50

define a tree T , condition (ii) may no longer hold, and so the subtrees t1 and t2 may not

be binary. In order for trees T1|X ′ and T2|X ′ to define a binary tree T , we require that

condition (ii) holds for trees T1|X ′ and T2|X ′. So, for each edge e of TS, the subtree t1 of

T1 and the subtree t2 of T2 must be made binary while maintaining the largest possible

leaf set.

Consider the path Pe(T1, TS) of T1. Consider a pendant subtree tv of Pe(T1, TS)

attached by edge {v, u} where vertex u is the attachment vertex. We can consider the

subtree tv as a rooted tree with root v. Visiting the vertices of subtree tv in a depth-first

order, for each interior vertex x of tv, if the outdegree of vertex x is greater than two,

prune the subtree of tx with the smallest number of leaves, repeating until vertex x has

outdegree two. Call the resulting binary subtree t′v (which will still have root v) and

replace the pendant subtree tv of Pe(T1, TS) with the subtree t′v. Repeat this process for

each pendant subtree of Pe(T1, TS). Lastly, for any binary pendant subtrees that share

an attachment vertex, keep the pendant subtree with the largest leaf set and prune the

others, so that each pendant subtree has a unique attachment vertex. Note that none of

the attachment vertices are deleted.

Repeating the above process for each edge e of TS and corresponding path Pe(T1, TS)

gives a tree T1B that satisfies condition (ii) while retaining the largest possible leaf set.

The tree T2B is obtained similarly.

We now use the same process as in Section 3.2.1, using the trees T1B and T2B instead

of T1 and T2, to obtain the leaf set X ′, as required.

3.2.3 Non-binary to non-binary

Two compatible non-binary trees define a single tree T if and only if Theorem 3.2.2 holds.

So, in this section, we investigate the related and more general problem of the conditions

51

under which two compatible non-binary trees T1 and T2 identify a non-binary tree T , i.e.

the conditions under which there is some tree T ∈ {T1, T2} P such that every tree in

{T1, T2} P is a refinement of T .

This investigation revealed that the result does not follow directly from the previous

two sections. Firstly, as T may be non-binary, unlike the previous two cases we must

consider that we may attach a pendant subtree to either an edge or a vertex of TS. In this

new scenario, where a pendant subtree is attached to a vertex v of TS, the existing vertex

v is the attachment vertex of that pendant subtree. Note that this situation applies only

to this case.

However, this is not as straightforward as in the previous cases, and we cannot simply

specify that we may not attach pendant subtrees of both tree T1 and tree T2 to the same

edge of tree TS, and similarly for attaching pendant subtrees to a particular vertex of TS.

If, in T1, there are one or more pendant subtrees with the same attachment vertex and for

which each of these pendant subtrees consists of only a single leaf, we call this collection

of pendant subtrees a tussock of T1. In the case where a tussock of T1 and a tussock of

T2 both attach to the same edge or vertex w of TS (to obtain T1 and T2 respectively), to

obtain T we may attach both of these tussocks to w in TS, as illustrated in Figure 3.7

for the case where w is an edge of TS. This is because, in T1, the tussock allows for all

possible resolutions, as it does in T2, and the combined larger tussock of T also allows for

all possible resolutions. Hence any subtree displaying these tussocks of T1 and T2 will be

a refinement of the larger tussock of T and vice-versa.

It is also the case that for a vertex v and incident edge e of tree TS, we cannot attach

pendant subtrees of tree T1 to vertex v and pendant subtrees of tree T2 to edge e, or vice-

versa, as illustrated in Figure 3.8. Figure 3.8 shows trees T1 and T2, where underlying

tree TS is the quartet ab|cd. The trees T3 and T4 both display T1 and T2 but tree T3

displays the quartet ax|by while tree T4 displays the quartet ab|xy. So there is no tree T

52

a

b

c

d
e

f

a

b

c

a

b

c

g

h g

h

d e
f

T1 T2 T

Figure 3.7: An example of attaching a tussock of T1 and a tussock of

T2 to an edge of TS.

such that T3 and T4 are both refinements of T and where T displays both T1 and T2. In

any such tree T , the pendant edges incident to a, b, x, and y share an endpoint, but then

T does not display T2. This situation occurs any time pendant subtrees of T1 and T2 are

attached to a vertex v and an incident edge e of TS, respectively (or vice-versa).

a

b

c

d

a

b

c

dy x

a

b

c

dx y

T1 T2

T4a

b

c

dx

T3

y

Figure 3.8: An example of pendant subtrees of T1 and T2 attaching to

an incident vertex and edge, respectively, of TS, and two trees, T3 and

T4, that both display T1 and T2.

Another issue is illustrated in Figure 3.9. The trees T3 and T4 each display both tree

T1 and tree T2 but there is no tree T such that T3 and T4 are refinements of T and where

T displays both T1 and T2. In tree T3, the pendant edges incident to a, b, and y share an

endpoint, and, in tree T4, the pendant edges incident to y and c share an endpoint. So,

in any such tree T , the pendant edges incident to a, b, c, and y share an endpoint, but

then T does not display T2.

53

a

b

c y

d

e

a a

a

b

b

b

c

c cy y

d

d d

e

ee

x

x x

T1 T2
a

cb

d

e

TS

T3 T4

Figure 3.9: An example of two trees T1 and T2, the tree TS, and two

trees T3 and T4 that both display T1 and T2.

These examples illustrate that this case is far more complicated than the previous two

cases and requires further investigation to determine exactly the set of conditions under

which two non-binary trees identify a single non-binary tree.

3.2.4 A simple case in which three trees define a single tree

In this section we state and prove a simple case in which three trees define a single tree.

Theorem 3.2.3. Let Ti ∈ BP (Xi) for i = 1, 2, 3 be compatible. Let X = X1 ∪X2 ∪X3

and let Y = X1 ∩X2 ∩X3. Let TS = T1|Y ∼= T2|Y ∼= T3|Y . Then T1, T2, and T3 define

(up to isomorphism) a tree T ∈ BP (X) if, for each split σ′ ∈ Σ(TS), at least two of the

following hold

(a) |{σ ∈ Σ(T1) : σ′ ≤ σ}| = 1,

(b) |{σ ∈ Σ(T2) : σ′ ≤ σ}| = 1,

(c) |{σ ∈ Σ(T3) : σ′ ≤ σ}| = 1.

This condition states that at most one of Pe(T1, TS) , Pe(T2, TS) , and Pe(T3, TS) has

pendant subtrees. If this is true, then T can be obtained by the same process as in

Section 3.2.1. The proof, given below, follows that of Theorem 3.2.1 with a few minor

54

alterations.

Proof. We assume that at least two of (a), (b), and (c) hold, and prove that the tree T is

unique. We use proof by induction on k = |X1|+ |X2|+ |X3|. Note that the result holds

in the case X1 = X2 = X3 = Y because then TS ∼= T1
∼= T2

∼= T3
∼= T , so we assume,

without loss of generality, that X1 6= X2.

Consider the case in which X1 = X3, without loss of generality. Then T1
∼= T3, so by

Theorem 3.2.1 the result holds. So we also assume that X1 6= X3 and X2 6= X3.

Since X1, X2, and X3 are non-empty, we first consider the smallest case, in which

k = 3. Then, X consists of exactly three distinct leaves, and so T is simply the star with

these three leaves. As there are no other unrooted trees on three vertices, {T1, T2, T3} BP =

{T} and so T1, T2, and T3 define T , as required.

Assume that the result holds when 3 ≤ k ≤ n− 1. Assume without loss of generality

that X1 6= Y and let x ∈ X1 \Y . Consider trees T2, T3, and T1|(X1 \ {x}) and underlying

tree TS. For each edge e of TS, if Pe(T2, TS) has pendant subtrees, attach these pendant

subtrees to e, or similarly for T3 and T1|(X1 \ {x}). Call the resulting tree T ∗. Note

that since at most one of conditions (a), (b), and (c) does not hold, at most one of the

three paths will have pendant subtrees for a given edge e of TS. So tree T ∗ displays trees

T1|(X1 \ {x}), T2, and T3 and so, by the induction assumption, T ∗ ∈ BP (X \ {x}) is the

unique tree displaying trees T1|(X1 \ {x}), T2, and T3.

Now consider the case in which k = n. Assume that there are two distinct trees,

T and T ′, that each display trees T1, T2, and T3. Now T and T ′ can be obtained from

T ∗ by attaching the leaf x. Figure 3.10 gives a graphical representation of the following

labelings. Let e1 (respectively e2) be the edge of T ∗ that x is attached to in order to

obtain the tree T (respectively T ′). Note that e1 and e2 are distinct edges of T ∗ as T 6∼= T ′.

In T ∗, let the endpoints of edge e1 be labeled u1 and v1 and let the endpoints of edge e2

55

be labeled u2 and v2, such that there is a path P from u1 to u2 containing both v1 and v2.

Let {v1, w} be the edge with endpoint v1 that is not part of the path P . Let A be the

pendant subtree of T ∗ containing vertex u1 and with attachment vertex v1. Similarly, let

C be the pendant subtree of T ∗ containing vertex u2 and with attachment vertex v2, and

let B be the pendant subtree of T ∗ containing vertex w and with attachment vertex v1

(B must exist as e1 and e2 are distinct edges of T ∗). Note that it may be the case that

v1 = v2. If v1 6= v2 then there will be other pendant subtrees attached to interior vertices

of the path P . We call these pendant subtrees t1, . . . , ti, where i = distT ∗(v1, v2)− 1.

A
B

C

x

x

u1

v1

v2

u2

t1

tiT ∗

Figure 3.10: An illustration of the tree T ∗ showing the labels of the

vertices and subtrees as in the proof of Theorem 3.2.3, and also showing

the attachment points of vertex x to obtain trees T and T ′. The edge

e1 = {u1, v1} is shown in red, and e2 = {u2, v2} is shown in purple.

Note that v1 and v2 may be the same vertex and so the path between

them (and the subtrees t1, . . . , ti) may not exist.

We now prove that the subtrees A,B, and C each contain at least one leaf in X1.

Consider the tree T ∗ and underlying tree TS. Assume that, L(B) ⊆ X2 ∪ X3, i.e. B

contains no leaves in X1. If B contains a leaf in X2 and a leaf in X3 then B is not a

pendant subtree of some path Pe(T
∗, TS) (or contained within such a pendant subtree).

Any other subtree of T ∗ contains at least one leaf in Y , so B contains a leaf in Y and

56

hence a leaf in X1, a contradiction. So assume without loss of generality that L(B) ⊆ X2.

Then no leaf of B is in Y , so, in T ∗, B is attached to some path Pe(T
∗, TS). We consider

the possible locations of Pe(T
∗, TS) in T ∗ and show that in each case, to obtain either T

or T ′, the leaf x is also attached to Pe(T
∗, TS), a contradiction. There are three cases to

consider. In the first case, Pe(T
∗, TS) contains edge e1 and the adjacent edge in path P ,

and B attaches directly to Pe(T
∗, TS) . In this case, to obtain T , both B and x attach to

Pe(T
∗, TS), a contradiction. In the other two cases, Pe(T

∗, TS) is contained in the subtree

A or is elsewhere in T ∗. In these two cases, to obtain T , there exists a pendant subtree

containing both x and B that attaches to Pe(T
∗, TS), a contradiction. Now all cases lead

to contradictions, so L(B) 6⊆ X2 ∪X3 and therefore B contains at least one leaf b ∈ X1,

as required.

Now consider the subtree A. Assume that L(A) ⊆ X2 ∪ X3. If A contains a leaf in

X2 and a leaf in X3 then, as in the case of the subtree B, this gives a contradiction. So

assume without loss of generality that L(A) ⊆ X2. Then, as before, subtree A attaches

to some path Pe(T
∗, TS). This path Pe(T

∗, TS) must be contained in T ∗ \ A. Then, to

obtain T , there exists a pendant subtree containing both A and the leaf x that attaches

to Pe(T
∗, TS) a contradiction. Again, all cases lead to contradictions, so L(A) 6⊆ X2 ∪X3

and therefore A contains at least one leaf a ∈ X1, as required. Similarly, C contains at

least one leaf c ∈ X1.

Now A, B, and C each contain at least one leaf of X1 (a, b, and c respectively). So T

displays the quartet ax|bc and T ′ displays the quartet ab|xc, where a, b, c, x ∈ X1. So T1

also displays both of these quartets, a contradiction. Hence, by induction, T is unique

and so T1, T2, and T3 define T , as required.

This is only the simplest case in which T1, T2, and T3 define a single tree T . Further

57

investigation revealed that there are far more cases to be considered, many of which are

more complicated than the case described above.

3.3 Concluding comments

In this chapter we explored the simplest cases in which a set of trees defines (or identifies,

in the case of non-binary trees) a single tree. But investigation revealed that some of

these seemingly simple cases are actually quite hard and lead to many conditions and

sub-cases. We established the conditions under which two binary trees define a single

binary tree, which also led to the solution to the Maximum Defining Leaf Set problem for

this case, and similarly for two non-binary trees defining a single binary tree. However,

the more general problem of the conditions under which two non-binary trees identify a

single, non-binary tree has been left open. Some observations were made that may help

whoever next picks up this problem, if only just to serve as a reminder that it is not as

simple as it may seem at first glance.

This chapter also briefly looked at the conditions under which three binary trees define

a single binary tree and provided a proof of the simplest sub-case of this. There is plenty

of further work to be done here, continuing the investigation into the conditions under

which three binary trees define a single binary tree with a view to generalizing these

findings, if possible, to obtain the conditions under which a set of binary trees (of any

given size) defines a single binary tree. There is also the generalization of this problem

to non-binary trees, and the generalization of a solution to the Maximum Defining Leaf

Set Problem to be considered in each of these cases.

58

Bibliography

[1] Böcker, S. (1999). From Supertrees to Subtrees. PhD thesis, University of Bielefeld.

[2] Bordewich, M. (2003). The Complexity of Counting and Randomised Approximation.

PhD thesis, University of Oxford.

[3] Chernomor, O., Minh, B. Q., and von Haeseler A, A. (2015). Consequences of common

topological rearrangements for partition trees in phylogenomic inference. J. Comput.

Biol., 22:1–14.

[4] Felsenstein, J. (2004). Inferring phylogenies. Sinauer Press.

[5] Jetz, W., Thomas, G. H., Joy, J. B., Redding, D. W., Hartmann, K., and Mooers,

A. O. (2014). Global distribution and conservation of evolutionary distinctness in birds.

Curr. Biol., 24:1–12.

[6] Maddison, D. R. (1991). The discovery and importance of multiple islands of most-

parsimonious trees. Syst. Zool., 40:315–328.

[7] Robinson, D. F. (1971). Comparison of labeled trees with valency three. J. Comb.

Theory B, 11:105–119.

[8] Sanderson, M. J., McMahon, M. M., Stamatakis, A., Zwickl, D., and Steel, M. (2015).

Impacts of terraces on phylogenetic inference. Syst. Biol., page syv024.

59

[9] Sanderson, M. J., McMahon, M. M., and Steel, M. (2011). Terraces in phylogenetic

tree space. Science, 333:448–450.

[10] Semple, C. and Steel, M. (2003). Phylogenetics. Oxford University Press.

60

