

HIGH SPEED DIGTIAL IMAGE CAPTURE METHOD FOR A DIGTIAL IMAGE-

BASED ELASTO-TOMOGRAPHY BREAST CANCER SCREEING SYSTEM

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Master of Mechanical Engineering

in the

University of Canterbury

By

Crispen James Berg

University of Canterbury

2006

ABSTRACT

Digital Image-based Elasto-Tomography (DIET) is an emerging technology for non-

invasive breast cancer screening. This technology relies on obtaining high resolution

images of a breasts surface under high frequency actuation; typically 50-100Hz. Off-the-

shelf digital cameras are unable to capture images directly at these speeds and current

digital camera set-ups that are potentially capable of high speed image capture are either

low in resolution, expensive, or occupy a volume too large to have them placed about the

breast in a dense array. A method is presented for obtaining the required high speed

image capture at a resolution of 1280x1024 (1.3 mega-pixels) and actuation frequency of

100Hz. The apparatus uses two Kodak CMOS KAC-9648 imaging sensors in

combination with frame grabbers and the dSpace™ control system, to produce an

automated image capture system.

The final working system produced images that enabled effective 3D motion tracking of

the surface of a silicon phantom actuated at 100Hz. The surface of the phantom was

strobed at pre-selected phases from 0 to 360 degrees, and an image was captured for each

phase. The times at which image capture occurred were calculated for a phase lag

increment of 10 degrees resulting in an image effectively every 0.00028s for the actuator

cycle of 0.01s. The comparison of the actual trigger times and pre-selected ideal trigger

times gave a mean absolute error of 1.4%, thus demonstrating the accuracy of the final

system.

 i

ACKNOWLEDGEMENTS

Firstly, I would like to thank Dr Geoff Chase, Dr Chris Hann and Rodney Elliot for their

upmost support and guidance. Their foresight and expertise were invaluable in

completing my work and the knowledge and experience I have gained from their

leadership has been immeasurable. I would also like to thank my mother and father, my

nana, my brother Timothy and my girlfriend Jessica for their never ending support and

encouragement, without which I would not have gotten very far. Finally, I would like to

thank my mates in Christchurch for the good times, which will only continue in the years

to come.

“They are able who think they are able”

Virgil, 70-19 BC
Roman poet

 ii

Table of Contents

Abstract ……………………………………………………………………….. i

Acknowledgements …………………………………………………………… ii

List of Figures ……………………………………………………………….. vi

Chapter 1 Introduction

 1.1 Motivation ……………………………………………………………... 1
 1.2 Image Capture …………………………………………………………. 4
 1.2.1 Direct Imaging ……………………………………………………... 5
 1.2.2 Indirect Imaging …………………………………………………… 6
 1.3 Summary ……………………………………………………………...... 7

Chapter 2 Image Capture Apparatus

 2.1 Prior Image Capture System …………………………………………… 9
 2.2 Motivation for the New System ……………………………………….. 11
 2.3 New Image Capture System Overview ……………………………….. 12
 2.3.1 Image Capture ……………………………………………………... 14
 2.3.2 Actuator and Strobe Trigger Control …………………………………. 17
 2.4 Summary ……………………………………………………………...... 22

Chapter 3 Image Capture Applications Set-up

 3.1 dSpace™ User Set-up …………………………………………………. 24
 3.1.1 Controlling the LVDT signal ……………………………………….. 26
 3.1.2 Starting of the dSpace™ server ……………………………………... 27
 3.2 The ICC Image Capture Application …………………………………… 28
 3.3 Summary ………………………………………………………………. 33

 iii

Chapter 4 Image Capture Software Structure

 4.1 Simulink™ Diagrams and Python™ Code …………………………….. 34
 4.1.1 Trigger Pulse and Actuator Signal Generation ………………………. 35
 4.1.2 Data Storage ……………………………………............................. 38
 4.1.3 Python™ Code Structure …………………………………………... 39
 4.2 The Main Image Capture Application (MICA) …………………………….. 40
 4.2.1 The Camera Settings Dialog …………………………………………. 45
 4.3 Summary …………………………………………………………………. 48

Chapter 5 Image Capture Results

 5.1 Preparation ……………………………………………………………... 50
 5.2 Preliminary Image Capture Results ……………………………………….. 51
 5.3 Corrected Image Capture Results …………………………………………. 54
 5.4 Surface Motion Tracking …………………………………………………. 60
 5.5 Summary …………………………………………………………………. 64

Chapter 6 Conclusion and Future Work

 6.0 Conclusion ……………………………………………………………….. 66
 6.1 Future Work ……………………………………………………………... 67
 6.1.0 Rebuild of the Camera Lens Arrangement …………………………… 68
 6.1.1 Replacing the dSpace™ module Concept …………………………… 68
 6.1.2 Experimental Apparatus Concept …………………………………… 70
 6.1.3 Actuator Development Concept ……………………………………... 72

References ……………………………………………………………………….. 74

Appendices A Visual C++ Code

 A.1 Detailed Visual C++ Code Explanation …………………………………….. A-1
 A.2 Main Dialog Initialisation Code …………………………………………… A-17
 A.3 The Main Image Streaming Code (Left Camera) ………………………… A-18
 A.4 Applying Camera Settings Code (Left Camera) ………………………… A-19
 A.5(a) Bit Masking For Camera Factory Setting (Left Camera) …………… A-19
 A.5(b) Writing Value to Camera (Left Camera) ……………………………… A-20

 iv

 A.6 Converter of Integer Value to Hexadecimal Value Function …………….. A-20
 A.7 I2C Interface Code ………………………………………………………….. A-21
 A.8 The ‘Spit Message’ Function ………………………………………………... A-22
 A.9 The Initial Start-up of the Image Capture Process ……………………….. A-22
 A.10The ‘While Loop’ of Communications Thread ……………………………. A-23
 A.11 The Trigger Set-Up Function ……………………………………………… A-24
 A.12 Kill Focus Event Example ………………………………………………….. A-25
 A.13 File Path and Browse Dialog Box …………………………………………. A-26
 A.14 ComboBox Change Example ……………………………………………… A-26

Appendices B Python™ and ControlDesk™ Code

 B.1 Detailed Python™ and ControlDesk™ Operation Explanation ….............. B-1
 B.2 The Python Header ………………………………………………………….. B-9
 B.3 ControlDesk Automation ……………………………………............................ B-9
 B.4 Socket Communications ………………………………………………………... B-10
 B.5 Receive Function ……………………………………………………………. B-11
 B.6 ControlDesk™ GUI Button Events …………………………………………… B-12

 v

List of Figures

Figure 1.1 A General overview of the DIET system ……… 3

Figure 1.2 Showing a possible set-up for digital cameras about the

breast. The cameras are indicated here as the black

cylindrical objects about the breast and are in a dome like

configuration. The reduced size of the CMOS imaging

sensors allows for a denser array of cameras.

……… 5

Figure 1.3 The set-up of the 52 CMOS imaging sensors ……… 6

Figure 1.4 This illustrates the firing sequence of the 52 CMOS

imaging sensors

……… 7

Figure 2.1 Previous image capture set-up [16] ……… 9

Figure 2.2 Shown here are the timing diagrams for the strobe

synchronization with image sensor snap. This is a brief

representation of where the triggering of the strobe occurs.

……… 11

Figure 2.3 The layout for the digital image capture system ……… 13

Figure 2.4 (Top) The cameras address being sent out from the I2C

adapter. (Bottom) The configuration data being sent to the

left camera.

……… 15

Figure 2.5 The process of strobe trigger by the camera ……… 16

Figure 2.6 The Bayer Pattern and the separate colour arrays ……… 17

Figure 2.7 An outline of the dSpace control system set-up. The

rounded boxes indicate the software contribution.

……… 18

Figure 2.8 The hierarchy of control for the dSpace™ set-up ……… 19

 vi

Figure 2.9 Shows an example of a 12 Hz command signal that would

drive the sinusoidal motion of an actuator.

……… 20

Figure 2.10 The plotted LVDT voltage with measured displacement ……… 21

Figure 3.1 The current image capture set-up ……… 23

Figure 3.2 The ControlDesk™ Image Capture Layout ……… 25

Figure 3.3 Zeroing the LVDT signal. (a) The signal is before offset is

applied. (b) The signal after offset is applied. (c) The

slider used to achieve the signal offset.

……… 26

Figure 3.4 The two signals with synchronized amplitude, the

command signal in green (light) and the LVDT signal in

red (dark)

……… 27

Figure 3.5 The Python™ interface after the “Start Server” button is

pressed

……… 28

Figure 3.6 The Main Image Capture Application (MICA) ……… 29

Figure 3.7 The application log in operation ……… 30

Figure 3.8 The adjusted colour gains at different extremes. The first

image is the camera settings dialog upon activation

……… 31

Figure 3.9 Position of lens fine adjustment ……… 32

Figure 3.10 The process of mouse selection ……… 32

Figure 3.11 The process of image format selection and saving path

selection

……… 33

Figure 4.1 The first parts of the trigger generation ……… 35

Figure 4.2 The contents of the trigger generation block ……… 36

Figure 4.3 The effect of adding the flip-flop gate to the diagram ……… 37

 vii

Figure 4.4 The processing of the square LVDT signal into a single

trigger pulse of variable duration

……… 37

Figure 4.5 The actuator signal generation and control part of the

Simulink™ diagram

……… 38

Figure 4.6 The blocks that deal with data arriving back from the

LVDT

……… 39

Figure 4.7 The main structure for the Python™ code ……… 39

Figure 4.8 The overview of MICA code structure ……… 41

Figure 4.9 Video Streaming code structure ……… 42

Figure 4.10 An overview of the Ethernet Communications code block ……… 43

Figure 4.11 The Triggered Image Set-up Code Block ……… 44

Figure 4.12 The overview of the camera setting dialog box code

blocks

……… 45

Figure 4.13 An overview of the Image Manipulation code block ……… 46

Figure 4.14 An overview of Image Storage operation and code block

interaction

……… 48

Figure 5.1 The silicon phantom used in the experiments and its

dimensions

……… 50

Figure 5.2 A graph of the dSpace trigger pulse/strobe trigger pulse

time period

……… 52

Figure 5.3 The dSpace trigger pulses and strobe trigger pulses on a

phase lag of 0-degrees over three images with the strobe

trigger times from Figure 5.2.

……… 53

Figure 5.4 The new strobe trigger set-up ……… 54

 viii

Figure 5.5 The Simulink™ blocks added (within the dashed region)

to the trigger generation sub-block of Figure 4.2 to deal

with firing the strobe

……… 55

Figure 5.6 The timing of the modified strobe trigger ……… 56

Figure 5.7 The comparison of the average strobe triggering times

over the four image capture runs compared with the

ideal triggering times.

……… 57

Figure 5.8 (a) The actual position of the actuator compared to an Ideal

position at a snapshot of the actuators motion taken at

1.8207 seconds.

……… 58

Figure 5.8 (b) The mean actuator displacement compared with the

ideal actuator displacement over 20,000 actuator cycles.

……… 59

Figure 5.8 (c) The compiled actuator displacements at the time of the

strobe firing, compared with an ideal actuators

displacement at that point.

……… 59

Figure 5.9 The silicon phantom with 54 black dots on the surface

moving at 1.2 mm of amplitude starting at phase lag of 0

degrees and moving to a phase lag of 360 degrees from

the left camera.

……… 61

Figure 5.10 Tracking motion of the dots on the silicon phantoms

surface, using images from the DIET image capture

system. The identified dots are denoted by crosses.

……… 62

Figure 5.11 The motion of a single dot on the surface of the silicon

phantom.

……… 62

 ix

Figure 5.12 The 3D reconstruction of the tracked points from the

phantoms surface.

……… 63

Figure 5.13 The virtual silicon phantom with the mapped points in

red over the surface

……… 64

Figure 6.1 The set-up for the introduction of microcontrollers to the

image capture system.

……… 69

Figure 6.2 Possible new experimental set-up. ……… 71

Figure 6.3 Possible solution for the removal of the main actuator

bearing.

……… 72

 x

PART I

INTRODUCTION

 1

Chapter 1

Introduction

1.1 Motivation

Breast cancer is the second leading cause of death in women after lung cancer. It is estimated

that each year the disease is diagnosed in over one million women worldwide [1]. In New

Zealand, breast cancer accounts for the highest mortality rate of all cancers among women and it

has the sixth highest death rate out of 173 developed countries.

The key to surviving breast cancer is early detection and treatment. One of the common methods

of detection is mammography. Mammography works on the principles of x-ray attenuation

differences between normal tissue and diseased tissue [2]. This means that malignant tissue will

absorb a different amount of radiation by comparison to its healthy counterpart. As a result, the

contrast between the two will appear different on the film. However, the contrast between the

two types of tissue is only about 10-15% and small tumours often go undetected, as

mammogram analysis is done by humans who may miss such small differences. The

mammogram procedure is also quite unpleasant leading to a less than ideal compliance rate

among eligible women. More specifically it involves compressing the breast, to achieve a

smaller uniform thickness, in order to get the best possible image of the entire tissue volume.

Digital Image-based Elasto-Tomography (DIET) is an emerging technology for non-invasive

breast cancer screening. The DIET system relies on the mechanical properties of the breast and

looks for regions of high stiffness since cancerous tissue is between 3 and 10 times stiffer than

healthy tissue in the breast [3-5].

Introduction

2

The DIET system uses digital imaging of a dynamically actuated breast surface to determine

tissue surface motion. It then reconstructs the 3D internal tissue stiffness distribution for that

motion using advanced inverse finite boundary element methods [13-14]. This process can thus

be broken down into four fundamental steps it is also shown in Figure 1.1:

(1) Actuation: Sinusoid motion is induced in the breast via a controlled actuator.

(2) Image Capture: A set of images is captured of the breast through a full range of motion,

and co-ordination with the actuator.

(3) Motion Tracking and Measurement: The captured images are analysed to track and

determine breast motion and amplitude over the entire tissue surface in 3D space.

(4) Tissue Stiffness Reconstruction: Using the known actuated frequency and phase and the

measured breast tissue motion can be used to determine the distribution of tissue

stiffness. This distribution is re-constructed by a finite element method.

Presently, there are other elasto-tomographic methods based on magnetic resonance [11] and

ultrasound [12] modalities. Both methods are capable of measuring the tissue and are undergoing

rapid development across the globe. However, they are also costly in terms of equipment and

take significant time to use. They are therefore limited for practical screening applications and

are still primarily research activities instead of begin in regular clinical use. Another

elastography method was investigated by Kirkpatrick and Duncan (2001) [10]. In their

experiments they used a laser or “coherent optical radiation” to create a backscattered speckle

pattern. This pattern is then read into a computer using a linear array CCD camera with a

telecentric lens. The movement of this speckle pattern is a result of relative sample surface

movement, making it possible to determine the surface strain.

Introduction

3

Figure 1.1: A General overview of the DIET system

The benefit of using the laser speckle pattern is that it increases the spatial resolution of strain

measurements. The disadvantage is it only acts on the surface of the sample, where ultrasound or

MRI provides deeper, full volume strain measurements, but at reduced spatial resolution.

Furthermore the laser can only image small parts of the sample a time. The size of the

Kirkpatrick experimental set-up also makes it cumbersome beyond the confines of the

laboratory, and it is thus not yet suitable for clinical breast cancer screening.

The DIET system, in contrast, is silicon based and is thus potentially low cost low size and

portable technology could therefore potentially be used in any medical centre, or transported to

remote areas. In addition, the use of silicon technology ensures that as silicon technology

improves and scales upward in capability, so will the DIET system performance. This scalability

of performance is not true for wave-based X-Ray or ultrasound approaches.

Introduction

4

1.2 Image Capture

For optimal 3D tissue reconstruction, the breast is actuated at 50-100 Hz [13-14]. This frequency

is well outside the frequencies of biological processes, such as breathing and heart rate. The

amplitude of actuation is about 1-5 mm, which takes into account patient comfort, and

limitations on actuator and motion measurements. At these high frequencies, image capture is

therefore a challenging task, since clear, crisp images at high resolution are required for high

density, accurate velocity and displacement vectors to be obtained. This requirement for the

cameras puts the array of pixels required in the SVGA range (1264x1016), at minimum. Based

prior analysis of field of view size and desired spatial resolution, images of 4-16 Mpixels will be

required [15]

This project develops and implements a method for combining a stroboscope with “off the shelf”

CMOS imaging sensors to enable high frequency high-resolution image capture for the DIET

system. In particular, the KAC-9648 SVGA CMOS imaging sensors from Kodak are used and

the image capture method developed in this research is shown to efficiently and automatically

grab images from the breast with actuation frequencies of 50-100 Hz.

As a result, the need for very expensive high speed, high frame rate image capture, which often

comes only at lesser resolution, is avoided. In particular, the approach presented allows low cost

standard imaging sensors to be used. These sensors are growing in size (Mpixels) and speed on

an annual base, so the approach presented in this thesis allows this technology to be utilized as it

appears rather than waiting for it to be used in high speed image capture systems.

This project uses CMOS imaging sensors due to their reduced size over their commercial CCD

counterparts. This difference would allow the freedom of placing more cameras in a dense array

to capture all actuated breast motion with very high resolution, as shown in Figure 1.2. This

Introduction

5

choice thus also enables greater imaging resolution to be obtained while maintaining simplicity

or a lack of greater complexity, in the silicon technology used.

Figure 1.2: Showing a possible set-up for digital cameras about the breast. The cameras are indicated
here as the black cylindrical objects about the breast and are in a dome like configuration. The reduced
size of the CMOS imaging sensors allows for a denser array of cameras.

1.2.1 Direct Imaging

The last six years has seen the CMOS imagining sensors develop significantly, as an alternative

to the CCD. As a result, more research is being done to increase the rate of image capture at ever

increasing resolution. For example, Lauxtermann etal (1999) produced a CMOS imaging sensor

that could capture images at a rate of 5000 picture/second at a resolution of 256x256 [6].

Kleinfelder etal (2001) produced an imaging sensor capable of 10,000 frames/s at a resolution of

352x288 [7], which streams data at 1 Gpixels/s with each pixel being represented in 8-bits. The

frame rates on these imaging sensors is very impressive, however their lack of resolution makes

them impracticable for this project.

A CMOS imaging sensor was developed by Krymski etal (2003) in which they produced a

sensor with the capacity to capture 240 frames/s at a resolution of 2352x1728 [8]. This sensor

however, had trouble finding optics that would fit the large chip size. Thus, currently there are

no direct imaging sensors that are able to satisfy the unique high density and speed requirements

Introduction

6

of the DIET system. What is needed is high speed image capture from standard off-the-shelf

CMOS imaging sensors or a means of obtaining it with less stringent speed requirements.

1.2.2 Indirect Imaging

A group of researchers at the University of Stanford [9] achieved high-speed image capture

using off-the-shelf CMOS imaging sensors of mid-range resolution. They took 52 off-the-shelf

CMOS imaging sensors of resolution 640x480 and a frame rate of 30fps, and arranged them in a

circular array, as shown in Figure 1.3. They where mounted at three points on the body of the

camera, to allow them to be adjusted independently of one another. One of the central cameras

was chosen to be the reference camera in order to align the other 51 cameras to the same field of

view. The cameras are triggered in a certain sequence one after the other to produce an overall

very high frame rate. This sequence is shown in Figure 1.4.

Figure 1.3: The set-up of the 52 CMOS imaging sensors

The resulting images produce seamless high speed capture at the centre of the image with image

inconsistencies around the edges. The authors are able to produce frame rate of up to 1560 fps.

The images from each camera are processed to correct image distortion from the cameras pixel

readout.

Introduction

7

Figure 1.4: This illustrates the firing sequence of the 52 CMOS imaging sensors

However, the method is limited, because the footage being captured must lie far from the array

of cameras. Furthermore, an array that large to would have to be placed far from the breast,

making the integration of this research into the DIET system impracticable if a portable system is

required or desirable

1.3 Summary

The objective of this thesis to use standard off-the-shelf CMOS cameras, and capture frame rates

of 50-100fps at a resolution of at least 1264x1016. Specifically, this will involve controlled

actuation of the breast, strobing the background light and co-ordinating image capture with a

triggered electronic shutter. Capturing images at different phases of a sinusoidal actuation and

response enable motion to be captured without high speed sensors. The approach will thus also

be shown to be readily generalised to larger sensors as well.

Chapter 2 will discuss the major requirements for getting the overall system working, including a

short summary of an earlier prototype that was done prior to this thesis and a focus on the

problems encountered. Chapter 3 will describe how a user would set-up the system to produce a

set of captured images, and will discuss the settings available to gain the desired results. This

chapter will also include specific examples to demonstrate the procedure. Chapter 4 will look at

Introduction

8

the how the code is structured between the different pieces of equipment. Chapter 5 will

examine the results of the image capture system and discuss system limitations. Finally, Chapter

6 will summarize the effectiveness of the overall system, and discuss the potential areas for

improvement in the system.

PART II
METHODOLOGY

9

Chapter 2

Image Capture Apparatus

This chapter describes the fundamental image capture systems in this research.

2.1 Prior Image Capture System

The image capture system used prior to this research was a very simple set-up made of off-the-

shelf commercial products. Specifically it consisted of the following fundamental items:

• Two Canon PowerShot™ Digital Cameras

• Electromagnetic Actuator

• dSpace™ Control System

• Laser Interferometer

• Triggerable Stroboscope

The layout for this equipment can be seen in Figure 2.1.

Figure 2.1: Previous image capture set-up [16]

Image Capture Apparatus

10

The two commercial digital cameras were set-up on mounts, so that their positions remained

fixed after camera calibration. A computer controls these commercial cameras via a USB link.

Each camera has its own GUI, which enables the triggering of image capture at times defined by

the user. However, this triggering is a manual process, requiring the user to move the mouse

cursor between GUI’s. The resulting images are encoded to a specific image format, usually

JPEG, and saved to a local memory card.

While the image capture is occurring, the dSpace™ control system drives the triggerable

stroboscope and electromagnetic actuator in a sinusoidal pattern. Constant feedback from the

laser interferometer allows precise control of the actuator and strobe. The strobe is triggered to

flash at a specific predefined point in the actuators motion. The result is that this lighting

provides the effect of a stationary actuator as it is the only from of light for image capture with

all other light blocked by a black curtain. This enables the motion of the object under actuation

to be imaged at discrete user defined intervals in the actuators cycle. The actual position of the

actuator relative to the commanded position is monitored using the laser interferometer, which

obtains velocity information of the actuator and thus provides actuator displacement after

integration of the velocity. This separate use of the laser sensor for feedback control ensures the

motion of the actuator maintains a precise, user-defined frequency and amplitude over the image

capture process.

The overall effect is that the sinusoidal tissue response can be imaged at specific points in the

response without high speed imagery, as several cycles may be used to create a single image.

This approach assumes linear, or largely linear, response to these small amplitude inputs, as seen

in previous elastography studies [13]. It also allows high resolution imaging at any sensor speed.

Several points of the actuator cycle can be captured so that magnitude and phase (relative to

actuation) can be determined for the tissue motion.

Image Capture Apparatus

11

2.2 Motivation for the New System

The manual triggering of the cameras in the initial set-up is a very time consuming task,

especially when multiple images are required to be taken to capture a good image at each phase

shift. In addition, the use of these commercial cameras limits the options for adjusting the

properties of the camera. For example, the option of decreasing the size of the active window

reduces the exposure time per frame and consequently increases the frame rate that the camera is

capable of producing. However, there is of course also a trade off between increasing the frame

rate and decreasing the resolution. Thus, the control of these attributes amongst others will make

the camera system more adaptive and robust to changes in or, eventually, clinical laboratory

conditions.

Another advantage of using purpose built cameras in this system instead of commercial cameras

is the ability to attach the stroboscope directly to the CMOS imaging sensor itself. This feature

would allow the camera to synchronize the strobe flash with the frame integration, to optimise

the frame exposure time as shown in Figure 2.2. It would also dramatically shrink the overall

system package and provide better overall lighting quality [16].

Figure 2.2: Shown here are the timing diagrams for the strobe synchronization with image sensor snap.
This is a brief representation of where the triggering of the strobe occurs.

Furthermore, the CMOS imaging sensors can be automatically triggered externally to perform a

single frame snap. This feature provides the advantage of capturing image data at more precisely

controlled times. In the case of this system, the external trigger is provided by the dSpace™

control system, itself a precise electronic, programmed real time system.

Image Capture Apparatus

12

Finally, the CMOS imaging sensor has a significant size advantage over the commercial camera,

in that the CMOS is almost a third the size of the commercial camera. This reduction in size is

because the CMOS imaging sensor does not require onboard image processing, image storage, or

a local power source. This size difference also means a denser array of cameras can be placed

about the test piece to obtain larger amounts of data without increasing in system size.

The electromagnetic actuator used in the initial system was the Derritron vibration

electromagnetic exciter, which operates on the same principles as a voice coil. To gain position

information for the actuator, a laser interferometer was used to measure the velocity of the

actuator, and then integrated to find the displacement. An improved version of a “voice-coil”

actuator was developed at the university as a final year project [17]. The result was an actuator

that performed as well as its predecessor, but included a linear transducer, which provides

continuous position data to dSpace™. This new actuator and sensor system enables the actuator

position to be automatically monitored, rather than using the laser interferometer, which requires

extensive external user set-up takes further space.

2.3 New Image Capture System Overview

The setup for the new image capture system developed and presented in this thesis is divided

into two main sections:

• Image Capture

• Actuator and Trigger Control

The overall layout for the image capture and related trigger and data lines is illustrated in Figure

2.3.

Image Capture Apparatus

13

2.3.1 Image Capture

The image capture computer (ICC) handles all the capturing and storing of the digital images.

The ICC contains two PCI frame grabbers and an I2C adapter. The PCI frame grabbers capture

all the image data arriving from the imaging sensors along the pixel data lines, as shown in

Figure 2.3.

Two Kodak KAC-9648 colour image sensors are used in this apparatus. Each sensor produces

image data output in the form of 10-bits per pixel at a resolution of 1280 x 1024. Communication

between the image capture computer and the camera is carried out via the I2C adapter. The

adapter has two digital lines coming out of it, the first is the serial data line (SDL) and the second

is the serial clock line (SCL).

Figure 2.3: The layout for the digital image capture system

Right Camera Left Camera

Image Capture
Computer

dSpace
Computer

Ethernet Connection

Frame Grabber Trigger (1)

Frame Grabber Trigger (2)

I2C Lines

Pixel Data
Lines

Electronic
Shutter
Trigger
Lines (1) &
(2)

Strobe

Strobe Trigger
Line (Right) Strobe Trigger

Line (Left)

Framegrabber 1

Framegrabber 2

I2C Adapter

Image Capture Apparatus

14

Both cameras are connected in parallel to these two serial lines and each has a unique bus

address as shown in Figure 2.4. When the I2C adapter communicates with the left camera, for

example, it first transmits the bus address, of the left camera. This puts the camera in a state to

listen for any information arriving down the two serial lines. This information could be a change

in the active window size required by the user or same other input. The right camera then ignores

this information since the I2C adapter is only “addressing” the left camera.

There are two camera configurations required, involving a communication between the I2C

adapter and the cameras. The first camera configuration is the initialisation of the digital

cameras, which enables them to be compatible with the frame grabbers. The result of this

initialisation is a continuous stream of video data, which is displayed on the screen and enables

the user to adjust colour gains, focus, camera position and aperture size as required.

The second configuration puts the cameras into a state where they are able to receive a digital

pulse from dSpace™, which triggers the frame exposure and strobe activation. Specifically, there

is an input pin and an output pin on the sensor that is automatically configured after instructions

from the I2C adaptor, as shown in Figure 2.5.

The first pin is called a triggered snap pin, which receives the pulse from dSpace™ and starts

frame exposure. The second pin is called an external sync, which supplies a pulse to activate the

strobe. The precise timing of the strobe trigger from the camera is preset and cannot be changed

by the user.

Image Capture Apparatus

15

SDL

SCL

Left Camera

Right Camera

Left Camera Address Left Camera Address

Hello I am here and ready

SDL

SCL

Left Camera

Right Camera

Configuration Data

Figure 2.4: (Top) The cameras address being sent out from the I2C adapter. (Bottom) The configuration
data being sent to the left camera.

After both camera configurations are performed, enabling compatibility with the frame grabbers

and triggering of the frame exposure and strobe activation, the cameras are ready for image

capture of the actuated test phantom. More details on these configurations and image capture are

given in Chapter 4.

Image Capture Apparatus

16

Figure 2.5: The process of strobe trigger by the camera

Trigger Snap Pin

Trigger Snap Pin

External Sync Pin

External Sync Pin

Partial Frame Exposure

Digital Pulse From
dSpace™

Digital Pulse to
trigger Strobe Flash

CMOS Imaging Sensor

CMOS Imaging Sensor

The cameras used in this system produce images that are in colour. To get the coloured images

the pixels on the image sensor itself are arranged in a pattern known as a Bayer Pattern, as shown

in Figure 2.6. The pixels in this pattern are sensitive to the colours of green, blue and red

respectively, as shown in Figure (a), (b) and (c). This sensitivity is achieved by filtering the light

and only allowing the required colours of the incoming image to register at the pixel sites. To

obtain a complete colour image to be rendered to an image file and to the screen, the Bayer

Pattern data the needs to be processed into three complete colour arrays.

Image Capture Apparatus

17

(a) Green (b) Blue (c) Red

Figure 2.6: The Bayer Pattern and the separate colour arrays

Specifically, the white spaces in the colour arrays of Figure 2.6(a), (b) and (c) are filled by

interpolating the pixel values of the pixels adjacent to the white space. This colour interpolation

is performed on every frame arriving at the ICC. The reason for the dominant green in the Bayer

Pattern is because the human eye is most sensitive to the colour green.

2.3.2 Actuator and Strobe Trigger Control

The set-up for the actuator and trigger control is shown below in Figure 2.7. The dSpace™

computer uses Simulink from Matlab™ to create a system for controlling the input and output

signals. The system for processing the signals is built up from blocks, similar to a wiring

diagram, where Simulink blocks are connected together to perform its portion of the image

capture task on the dSpace™ module.

Image Capture Apparatus

18

Figure 2.7: An outline of the dSpace control system set-up. The rounded boxes indicate the software
contribution.

dSpace™ Computer

LVDT Feedback

Uploading block diagram
ControlDesk Matlab dSpace™ Module

dSpace™ monitoring and real-time adjustment
Actuator with
LVDT Frame

Grabbers
Cameras

Triggering
Signals

The portion of the image capture process for which the dSpace™ is responsible, is the generation

and synchronising of signals sent to the actuator and necessary trigger signals. Once the diagram

is ready it is automatically transferred to a C code format, uploaded to dSpace™, and then run by

dSpace™ in real-time inside the dSpace™ module. The settings in the Simulink™ diagram can

be adjusted in real-time using the dSpace™ software ControlDesk™. ControlDesk™ makes it

possible to automatically perform real time adjustments of the working embedded code in the

dSpace™ module. For example, resetting the trigger signals to the frame grabbers and cameras,

and real time adjustment of the actuator amplitude.

ControlDesk ™ also allows trigger settings to be modified via a user built project interface,

which will be discussed in detail in Chapter 3. The rounded boxes in Figure 2.7 represent the

programs interactions with the hardware where ControlDesk™ and Matlab™ are constantly

talking to one another and adjusting the settings in the dSpace™ module.

Image Capture Apparatus

19

The programming language used to automate ControlDesk™ is known as Python. Python is a

high level scripting, interpreted and interactive object-oriented programming language. The

Python™ code is used to talk to the ICC and automate the sending of the trigger signals. The

hierarchy for the operation of Simulink™, ControlDesk™ and Python™ can be seen in Figure

2.8

Figure 2.8: The hierarchy of control for the dSpace™ set-up

Controls

Controls

Python

ControlDesk™

Simulink™

A 50-100 Hz sinusoidally (or periodically) actuated silicon phantom would require 50-100 fps in

the imaging sensors. Since the frame rates of the CMOS imaging sensors for this project have a

maximum rate of 18 fps at full resolution, it is therefore not possible to directly image the

phantom. To overcome this problem the high-speed phantom is strobed at specific points in its

motion, thus effectively rendering the object “stationary” at that point in its resulting sinusoidal

periodic response.

Shown in Figure 2.9 is an example of 12 different phase angles in the actuator’s cycle where a

user requires an image of the phantom. By introducing a phase shift between the actuators

motion and the point of triggering the strobe, the object can be made “stationary” at each of these

12 user defined points in its response and thus an image taken.

Image Capture Apparatus

20

Figure 2.9: Shows an example of a 12 Hz command signal that would drive the sinusoidal motion of an
actuator.

In this example, the phase shifts are at increments of 30 degrees labelled 1 to 12 in Figure 2.9. A

similar process could be used to capture images of an object at any predefined points in an

actuator cycle for any actuator frequency.

For the DIET system, this provides the required ability to capture a sequence of high-resolution

images of a 50-100 Hz actuated silicon breast phantom describing the displacement response

throughout a 360-degree cycle. At each point the tissue surface motion is imaged and captured.

From this data the magnitude and phase of the response relative to the input, can be readily

obtained as it is assumed the small sinusoidal inputs result in a sinusoidal response at the (steady

state) frequency.

The actuator used in this system has a linear transducer (LVDT), built into the core of the

actuator, which sends data back to the dSpace™ module, as shown in Figure 2.7. However, the

Image Capture Apparatus

21

form of this data is a voltage potential thus further processing is required to obtain position

information.

Correlation Line, y = 1.27x - 7.62

-8

-6

-4

-2

0

2

4

6

8

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Measured Voltage (v)

D
is

pl
ac

m
en

t (
m

m
)

Figure 2.10: The plotted LVDT voltage with measured displacement

This task was achieved by taking a set of measured LVDT displacement positions and their

resulting voltages and calculating the linear correlation line which is shown in Figure 2.10. The

voltage arriving from the LVDT to dSpace™ can then be converted to displacement using the

formula:

)62.727.1(−×= VoltagentDisplaceme mm (1)

Equation (1) can then be used to tune the actuator to the commanded displacement amplitude

signal using a proportional controller. Note that a PID controller was not used due to limitations

on the actuator resulting in the control system becoming unstable with the introduction of the

integral and differential gains. However, a proportional controller gave sufficiently accurate

results in this work.

Image Capture Apparatus

22

 2.4 Summary

The solution for capturing high speed images from cameras with a low frame rate is based on the

predicable motion of the controlled actuator, moving the phantom in a sinusoidal motion.

Tracking this motion allows the capturing of a single image frame at user-defined intervals. The

current image capture apparatus has introduced the following changes over the prior image

capture set-up:

(1) Introduction of CMOS imaging sensor, reducing camera envelope.

(2) The integration of a new electromagnetic actuator, with an internal linear position

sensor (LVDT).

(3) Automated image capture with the “hand shaking” between actuator control and

image capture control, reducing the overall image capture time.

These improvements have been made, to provide the initial steps to a completely automated

breast cancer screening system.

23

Chapter 3

Image Capture Applications Set-up

This chapter covers how a user operates the image capture system to produce images for surface

motion tracking. The first section will discusses the set-up of dSpace™ to provide actuator control

and image capture. The second section discusses the way to change camera settings and image

storage preferences on the ICC.

Note that the ICC application caters to each camera independently, so the user operation of the

camera settings will be explained for the left camera. The process is identical for the right camera.

This independent approach to settings accounts for the use of different and/or specialized cameras

over an entire system.

Figure 3.1: The current image capture set-up

Image Capture Applications Set-up

24

3.1 dSpace™ User Set-Up

The dSpace™ application is driven from ControlDesk™, a program designed to interface with the

code running on the dSpace™ module shown in Figure 2.8 of Chapter 2. Setting up of the dSpace

side of the image capture operation consists of the following main steps:

• Loading the Simulink™ block diagram

• Starting the ControlDesk™ layout

• Zeroing the LVDT and setting the desired actuator amplitude

• The setting and tuning of the proportional gain on the LVDT signal (if required)

• Starting the dSpace™ server

The end result of this process is a running actuator and a computer that is prepared to receive data

from the ICC and drive the image capture process.

Once the ControlDesk™ application is running an associated Simulink™ block diagram that defines

how the dSpace™ module will run the actuator and activate the triggers, is enabled. This

Simulink™ system is then built and automatically downloaded to dSpace™ system by pressing

Ctrl+B. As soon as the diagram is built to the module, the actuator and trigger signal control layout

is loaded, as shown in Figure 3.2. Figure 3.2 illustrates all the different options available to the user

in the ControlDesk™ layout.

Image Capture Applications Set-up

25

Layout
Animation
Button

Graph
Runtime
Settings

LVDT
Signal

dSpace™
Command Signal

Actuator
ON/OFF Button

Actuator
PID
Controller
Gains

Command
Signal and
Actuator
Amplitude
Settings

LVDT Signal
Offset Slider

Server Start
Button

Python
Interpreter
Interface

Figure 3.2: The ControlDesk™ Image Capture Layout

After the layout has been animated, using the layout animation button in Figure 3.2, the signals from

the actuator can be read and the values of the gains changed. Once this is achieved, the user can

freely interact with the variables in the diagram built to the module, including changes to the

proportional (‘P’) gain, command signal amplitude and frequency, and the feedback of actuator

position information in volts. However, the downloaded Simulink™ diagram does not start sending

the command signal to the actuator until the user clicks on the ON/OFF button. The zeroing of the

LVDT involves moving the offset slider also shown in Figure 3.2 until the horizontal line (LVDT

signal) is sitting on zero in the signal plot. This process is shown in Figure 3.3.

Image Capture Applications Set-up

26

(a)

(b)

(c)

Figure 3.3: Zeroing the LVDT signal. (a) The signal is before offset is applied. (b) The signal after offset is
applied. (c) The slider used to achieve the signal offset.

3.1.1 Controlling the LVDT signal

The actuator in this image capture system, uses a proportional or ‘P’ controller to precisely control

the actuator motion during the image capture process. Note that due to the dynamics of the actuator,

the addition of significant integral or derivative control produces an unstable result. Thus, these

gains are typically set to zero on the ControlDesk™ layout.

Image Capture Applications Set-up

27

Once the LVDT is zeroed, the proportional gain is slowly increased until the signal amplitude

matches the amplitude of the command signal. At this point, the LVDT signal needs to be

monitored, because as the actuator warms-up the amplitude increases, requiring the gain to be

decreased until the system reaches equilibrium. This process usually takes five minutes. Once this

equilibrium is achieved the signals should look like those illustrated in Figure 3.4, where it is not

required that the phases match perfectly, depending on what phase lag offset has been set.

Figure 3.4: The two signals with synchronized amplitude, the command signal in green (light) and the
LVDT signal in red (dark)

However at zero degrees of lag these signals would overlap. Finally, any residual phase lag between

the command signal and the LVDT signal is not a problem since the image capture triggering

system uses the LVDT signal, which is giving a true reading of actuator displacement, rather that the

command signal

3.1.2 Starting of the dSpace™ server

In the image capture system, the server is the dSpace™ computer. It receives the information from

the ICC and relays that information to the dSpace™ module via the ControlDesk™ layout. Once the

Image Capture Applications Set-up

28

user’s settings are finalized in the ControlDesk™ layout of Figure 3.2, the user activates the “Start

Server” button.

When the server is started, a message is sent to the user in the Python™ interpreter interface, as

shown in Figure 3.5. This message indicates that the dSpace™ server is running. The Python™

interface also displays the progress of the image capture process by showing the user the current

image number and phase lag. Once the image capture cycle has been completed the Python code that

drives the image capture on the dSpace™ computer also switches off the actuator.

Figure 3.5: The Python™ interface after the “Start Server” button is pressed

3.2 The ICC Image Capture Application

The image capture application consists of two main dialog boxes:

• The main start-up dialog

• The camera settings tabbed dialog

The main start-up dialog is activated from the desktop and is shown in Figure 3.6. All other dialogs

are activated from the main dialog in Figure 3.6 at the request of the user. Before starting the main

image capture application (MICA), the cameras must first be powered up. Upon activation of the

MICA the cameras are placed into the mode where they stream video directly to the main dialog.

Image Capture Applications Set-up

29

Image Capture
Cycle Settings

 MICA
Application
Log Window

Figure 3.6: The Main Image Capture Application (MICA)

The I2C communications between the cameras and the adapter are registered in the log window that

is also shown in Figure 3.6. During the I2C communications, the status of the image capture

process is also passed to this window. The messages indicate at what phase and image number the

capture process is currently operating as well as any errors that may occur with socket

communications and frame grabber interface.

The “Image Cycle Settings” box contains the variables that can be changed with respect to where in

sinusoidal the actuator cycle the user requires images. These settings are taken from the MICA and

sent to the dSpace™ computer. Therefore, they must be set by the user before the image capture

process begins.

Initially, the cameras must first be calibrated. This task requires static images from both cameras

where the calibration objects three faces are clearly visible to both cameras while it rest on top of the

Image Capture Applications Set-up

30

actuator. The “Get Cal. Images” button in Figure 3.6 takes images from the cameras at the same

time and saves them to a path specified by the user.

The other features of the MICA are the option of saving the application log for later examination,

and clearing of the log for each image capture cycle. The application log provides a running

feedback to the user on the progress of the image capture cycle including any errors that occur. The

application log in operation is shown in the example given in Figure 3.7.

Figure 3.7: The application log in operation

The camera settings can be changed for each camera by clicking on the left (or right) camera

settings button in Figure 3.6. Pressing these buttons activates the camera settings dialog box shown

in Figure 3.8. In the dialog of Figure 3.8, there are three sliders, one for each of the primary colours

that make up the Bayer pattern on the CMOS image sensor. The movement of these sliders adjusts

the colours in the image providing adjustment to laboratory light conditions. This function is also

illustrated in Figure 3.8 over the range of colours. Alternatively, the values of the colour gain can be

added in the edit box to the right of the respective slider. The cameras themselves have a fine

adjustment that takes place on the lens, which is attached on the front of the sensor. The front

portion of the lens is for the focus and, further back is the adjustment of the iris, which allows more

or less light onto the imaging sensor. These adjustments are shown in Figure 3.9 for the camera

hardware used in this study.

Image Capture Applications Set-up

31

Figure 3.8: The adjusted colour gains at different extremes. The first image is the camera settings dialog
upon activation

The active window of the camera can be changed in Figure 3.8, as well. The active window on the

cameras, is the part of the image sensor array where the pixel data is collected. The mouse selection

check box at the bottom of the camera settings shown in Figure 3.10 can be selected to activate a set

of cross hairs, which are moved using the mouse to select the active window area. Alternatively, the

values/coordinates of the new active window can be manually entered into the dialog. Once an

active window selection is made, a message box pops up asking whether the user would like to keep

the current selection or try again. Clicking on the “Accept” button shown in Figure 3.8 accepts the

chosen colour gain and active window selection. This decision loads all the requested values to a

‘.dat’ file that is then stored in the local directory of the MICA.

Image Capture Applications Set-up

32

Lens Focus
Adjustment

Lens Iris
Adjustment

Figure 3.9: Position of lens fine adjustment

Figure 3.10: The process of mouse selection

The second tab of the camera settings dialog is used to store the path selection, for the captured

images. There are two separate paths to be chosen. The first is for the calibration images and the

second is for actuated image capture. These dialogs are shown in Figure 3.11. The path is chosen by

clicking the browse button and selecting a path. Up to five previous paths can be stored in the drop

down list. Along with the path selection, it is also possible to select the format of the image being

saved. Once the path and image formats have been chosen, again the “Accept” button is pressed to

store the path settings to another ‘.dat’ file.

Image Capture Applications Set-up

33

Figure 3.11: The process of image format selection and saving path selection

With all the users settings satisfied the “Accept & Run” button in Figure 3.6 is pressed to start the

image capture process. The ControlDesk™ layout, at this point should be listening for the

connection from the image capture computer. The progress of the image capture process is

communicated to the user via the MICA application log window in Figure 3.6.

3.3 Summary

The dSpace™ module acts as the overall controller for the image capture process and is started

before the set-up on the ICC begins. The dSpace™ module runs the actuator and activates the

camera triggers with user instruction from the ControlDesk™ image capture layout. The user can

change the proportional control gain of the LVDT, and the command signal amplitude and

frequency for the actuator. The ICC image capture application is activated from the desktop and the

user has access to a range of camera and image cycle settings, and can change the active window of

the camera. Once all the settings are saved, the image capture process is be started from the main

image capture application on the desktop.

34

Chapter 4

Image Capture Software Structure

This chapter covers the main structure of the code used in the image capture system and how

different parts of the code interact with each other in order to capture an image sequence. The

description of the code will be simplified to block diagram form, and the more detailed aspects

of the code can be found in Appendices A1 and B1. The chapter is thus divided into two main

sections:

(1) The operation of the Simulink diagram and Python™ code that is running on

the dSpace™ computer, which drives the actuator and supplies trigger signals

to coordinate the image capture process.

(2) The main image capture application (MICA), which is responsible for the

capturing, processing and storing of the images

4.1 Simulink™ Diagrams and Python™ Code

The Simulink™ diagram is used to generate the trigger pulses for the image capture process and

to drive the actuator at the required amplitude and frequency. The diagram is divided up into

three main parts:

• Trigger pulse and actuator signal generation

• Data Storage

• Python™ Code Structure

Image Capture Software Structure

35

Each section will be explained in more detail with there respective part of the Simulink™

diagram.

4.1.1 Trigger Pulse and Actuator Signal Generation

This part of the diagram deals with incrementing the phase lag on the trigger signals and the

generation of the trigger signals themselves. It is this part of the overall diagram on which the

Python™ code acts directly to switch the trigger signals on and off. The phase lag is there to

introduce a controlled delay in degrees to the trigger signals, enabling sampling of different

portions of a sinusoidal response.

Figure 4.1: The first parts of the trigger generation

The first parts of the trigger generation shown in Figure 4.1 illustrate where the phase lag is

introduced into the image capture process. The signal being fed into the trigger generation

arrives directly from the LVDT in the actuator. The reason for using the LVDT signal to drive

the trigger signal generation is so the triggering of the camera snap can be achieved at pre-

defined points in the actuators sinusoidal input cycle.

Image Capture Software Structure

36

The variable transport delay is used to introduce the phase lag to the signal being passed to the

trigger signal generation block. The Simulink™ block corresponding to the variable transport

delay buffers the incoming signal and then feeds it out again, but at a delayed time, defined by

the required phase lag. The variable transport delay, requires the delay to be in seconds, and so

the phase lag needs to be converted from degrees to fractions of a second. When the LVDT

signal enters the trigger signal generation block, it is converted to a square wave oscillating at the

actuators frequency between the values of zero and one as shown in Figure 4.2.

Figure 4.2: The contents of the trigger generation block

Also shown in Figure 4.2, are two switches labelled “Start” and “Reset” that are turned on and

off using ControlDesk™, which is driven by the Python™ code. When the “Start” switch is set

to the value of ‘1’, the transformed square wave, or clock signal which comes from the

sinusoidal LVDT signal, begins to pass to the pulse generation sub-block via the “AND” gate, in

Figure 4.2. The “AND” is a logical operator that provides an output of ‘1’ when both inputs are

‘1’ and provides an output of ‘0’ if either input is ‘0’. The JK flip-flop in Figure 4.2 is another

logical operator that is used to align the activation of the “Start” switch with the rising edge of

the clock signal to achieve the full pulse width, as illustrated in Figure 4.3. Hence, when the

“Start” switch is turned on, and the clock signal is high, there will be two ‘1’s at the “AND” gate

allowing the clock signal to pass through, and thus producing a camera snap.

Image Capture Software Structure

37

Figure 4.3: The effect of adding the flip-flop gate to the diagram

Converted Wave Arriving
from LVDT Readings

Without Flip-Flop

With Flip-Flop

Delayed Rising Edge

The camera snap results from a single pulse that is sent to the cameras and the frame grabbers.

The pulse is produced in the triggering sub-section block, the contents of which are displayed in

the Figure 4.4.

Figure 4.4: The processing of the square LVDT signal into a single trigger pulse of variable duration

This single pulse is taken from the aligned clock signal shown in Figure 4.3, and it is the first

rising edge into the triggering sub-section block. Hence, it is important that it is aligned with the

correct delay governed by the variable transport delay and not by the random nature of switching

the output of the “AND” on half way through an already risen pulse, producing a delay rising

edge at the output of the “AND” gate. The process of producing a trigger pulse starts with the

clock signal that is fed into a counter, and a maximum value block, which grabs the maximum

value of the clock signal, see Figure 4.4.

Image Capture Software Structure

38

The switch to the right of the counter and maximum value blocks is a threshold switch that

controls the trigger pulse width to the camera. The switch takes the highest value of the incoming

signal, which is the output of the maximum value block of Figure 4.4, and holds it there for a

specified number of counts, in this case 50 counts. Each count is registered by the counter after a

rising edge in the clock signal, which occurs at the frequency of the LVDT signal and

consequently the actuator frequency. Once the 50 counts are delivered to the threshold switch,

the output is changed to ground completing the trigger pulse. The counter and the maximum

value block undergo a reset via the “Reset” switch shown in Figure 4.2. The threshold of the

switch can be changed to achieve a longer pulse width by increasing the number of counts it

requires to do so. A longer pulse width may be desired if more than one frame from the camera

is required, in which case the trigger to the camera must be held high for a longer period of time.

The generation of the signal for the actuator is achieved from the signal generation block in

Figure 4.5. The incoming signal is passed through proportional, integral and derivative gains; as

shown in Figure 4.5, where the integral and derivative control gains are set to zero for stability

reasons as discussed in Chapter 3.

Figure 4.5: The actuator signal generation and control part of the Simulink™ diagram

4.1.2 Data Storage

Voltage data arrives from the LVDT into the dSpace™ module via the A/D (Analogue to

Digital) lines, and enters the Simulink™ diagram via the ‘DS2001_B1’ block shown in Figure

Image Capture Software Structure

39

4.6. The incoming signal is stored in a local memory block making the data available to all

blocks that may require it. However, before the data reaches the storage block, the voltage data is

converted to displacement in millimetres using Equation (1) of Chapter 2. The block

representation of Equation (1) is shown in Figure 4.6.

Figure 4.6: The blocks that deal with data arriving back from the LVDT

4.1.3 Python™ Code Structure

The Python™ code drives the operation of the ControlDesk™ in Figure 3.2 of Chapter 3. The

Python™ code’s operation is detailed in Figure 4.7.

Figure 4.7: The main structure for the Python™ code

ControlDesk™ Layout
“Start Server” Button
is Pressed

Python™ Ethernet
Sockets Initialised

Server Started
Waiting for

Connection from ICC

Start Receive Loop Receive Loop Listens
for Message from ICC

ICC Connects to
dSpace™ Computer

Ethernet
Communications

Starts Sending
Messages between

Computer

Messages
from ICC Activation of Trigger

Pulse for Camera
Snap and Frame-

grabber

Closing of Socket
after Image Capture

Cycle

Looping Code
Block

Image Capture Software Structure

40

Once the “Start Server” button is pressed the main part of the Python™ code creates a

communication socket and waits for a connection attempt from the ICC. When the ICC connects

with the dSpace™ computer the receive part of the code is started and the main Ethernet

communications begin. Upon notification from the ICC that the cameras and frame-grabbers are

ready, the “Start” and “Reset “ switch are turned on and off, to produce the trigger pulse to the

camera and frame-grabbers. After each trigger pulse is sent, the phase lag between the trigger

and the actuator position is incremented in degrees in the gain block shown in Figure 4.1, using

the same Python™ code. Once the image capture cycle has ended the Python™ Ethernet sockets

close, signalling to the ICC to do the same.

4.2 The Main Image Capture Application (MICA)

The settings window for each camera, shown in Figures 3.8 and 3.10 of Chapter 3, are activated

from the MICA. The MICA code structure is broken down into the following sections:

• Video Streaming

• Ethernet Communications

• Triggered Image Set-up

• Camera Settings Dialog

These sections of code are arranged as shown in the flow diagram in Figure 4.8. The video

streaming starts as soon as the MICA is started and continues to stream video data from the

cameras until the user starts the image capture process. The sections of code corresponding to the

camera settings begin to run when the user wishes to change the colour gains or the size of the

active capture window. This process is shown in Figure 3.8 of Chapter 3.

Image Capture Software Structure

41

Figure 4.8: The overview of MICA code structure

MICA Dialog is
Displayed

MICA Started Video Streaming Code
is Started

Alter
Camera

Settings? Yes

No

Camera Settings Dialog
Started

Starting Ethernet
Communications

Start Image
Capture
Process

No

Yes

Left Camera

Right Camera

Which
Camera?

Left

Right Right Camera

Left Camera

Triggered Image
 Set-up

Left Camera

Right Camera

The video streaming portion of the code can be further broken down into the flow diagram

shown in Figure 4.9. Once the video streaming is started the I2C adapter applies the first of two

configurations to the cameras, which puts them in a state to stream pixel data to the frame

grabbers in a form that they can process. In the image capture system, OpenGL™ is used to scale

and display the pixel data arriving from the cameras. This approach requires the OpenGL™

libraries to be initialised first, whereby windows are created that are attached to the OpenGL™

objects. These windows are where OpenGL™ places the scaled pixel data.

A session is then started with the frame grabbers. This session initialises the frame grabbers and

gets them ready to receive the pixel data arriving from the cameras. The first part of the video

streaming code structure deals with the initialisation of the components required to display the

images on the screen. Subsequently, as shown in Figure 4.9, the code enters a while loop where

each cycle of the loop one frame of pixel data is grabbed from the frame grabbers.

Image Capture Software Structure

42

Figure 4.9: Video Streaming code structure

I2C Applies Video
Configuration to the

Cameras

OpenGL™
Initialisation and

Window Initialisation

Frame grabbers
Initialisation

Obtaining 10-bit raw
pixel data from

cameras

Bayer Pattern Colour
Decoding

Image Scaling and
Displaying

Looping this section of
code to obtain fresh

pixel data

Video Stream
Started

Once the image capture process is started in Figure 4.8, the Ethernet communications that

control the image capture process on the ICC begin. An overview of this section is shown Figure

4.10 and it is broken up into five main parts. The first part of the Ethernet communications deals

with the initialisation and opening of the socket communications, which enables the dSpace™

computer and the ICC to communicate. The second part, is the starting of the receive loop, which

runs constantly throughout the image capture process. It runs in a loop independent of the

ethernet code block, and relays any message from the dSpace™ computer to the code block. One

such message would be ‘CamerasReady’, which notifies the dSpace™ computer that the cameras

are ready to receive the trigger pulse to ‘snap’ and image.

After the receive loop has begun the commanded events loop is started to allow other functions

like the message log and the receive loop in the MICA to continue to run. The next block in

Figure 4.10 is the triggered events code section that obtains processed commands from the

Image Capture Software Structure

43

receive loop block. Based on those commands the code block performs specific tasks, including

the triggered image set-up and the sending of data and commands to the dSpace™ computer.

Figure 4.10: An overview of the Ethernet Communications code block

Ethernet
Communications
Started

Initialisation of socket
communications and
opening of sockets

Starting of the receive
loop

Listen for incoming
messages

Starting of the
commanded events

loop

The running of a
block of events

triggered by
commands from

Triggered image
 set-up

Data and commands
sent to dSpace™

Received
Commands

Closing of sockets
upon completion of
image capture cycle

Constantly looping
for entire image
capture cycle

Looping Code
Block

The final block is reached upon the completion of the image capture cycle where commands are

first sent to the dSpace™ computer to close its communications sockets, and then the ICC waits

and closes its sockets.

Following the starting of the Ethernet Communications, the triggered image set-up part of the

code is begun, as shown in Figure 4.8. This block is explained in more detail in Figure 4.11.

Before acquiring the triggered images the I2C adapter applies the second of the two

configurations to the cameras, which puts them into the state where they are listening for the

trigger pulse from dSpace™. The frame-grabbers are then initialised.

Image Capture Software Structure

44

Note that any one frame-grabber cannot run multiple sessions at once. Hence, before the

triggered image set-up the session for streaming the video from the cameras must be terminated.

A new session always requires fresh initialisation of the frame-grabbers. Following frame-

grabber initialisation there is the initialisation of the CImage class. This class is produced by

Microsoft Windows™, and is used to encode the pixel data to a chosen image format.

At this point, the frame-grabbers need to be configured to receive a trigger pulse from dSpace™

into one of their external trigger lines. The code block then stops and waits for the trigger from

dSpace™, as shown in Figure 4.11. Once the trigger has been received, the pixel data is taken

directly from the memory buffers on the frame-grabber cards themselves. The triggered pixel

data is then passed to the CImage class to encode the image to a user-defined image format and

stored in a user-defined path.

Figure 4.11: The Triggered Image Set-up Code Block

I2C Applies Second
Image Configuration to

Cameras
Frame-grabber
Initialisation

Initialisation of CImage
class

Set & Configure
Frame-grabber to
Receive External

Trigger

Grab Pixel Data
Directly from Frame-

grabber Local Memory
Buffer

Trigger From dSpace™

Using CImage class to
Encode Image to User
Defined Image Format

Send Message to Ethernet
Communications Code
Notifying it of Image

Capture

Get a Triggered
Image

When the entire process is successful, a message is sent to the Ethernet communication code

block, notifying it of a successful capture and to proceed with the rest of the image capture

process.

Image Capture Software Structure

45

4.2.1 The Camera Settings Dialog

The camera-setting dialog can be broken down into the following sections of code:

• Image Manipulation Tab

• Image Storage Paths Tab

These two sections are activated at the request of the user as shown in Figure 4.12.

Figure 4.12: The overview of the camera setting dialog box code blocks

Left or Right Camera
Settings Dialog

Dialog opens on
image manipulation

tab

Set Image
Paths?

Yes

No

Selection and setting
of image storage paths

on selected tab

Maintain image
manipulation tab

Finished?
No

Yes

Save setting and exit
camera setting dialog

The code that runs the image manipulation tab can be further broken down into the components

shown in Figure 4.13. The image manipulation tab is first started when the camera settings

dialog is started and it begins to stream video from the camera that needs its settings changed.

The video is displayed on the screen, in this case using the CImage class which is used to save

the captured images. The colour gains for the image are changed by moving the sliders or by

entering the value directly into the edit box to the left of the slider.

The sliders are a bar that is selected using the left mouse button, and while continuing to hold

that button down allows the mouse to move the slider bar to the left or right of its designed limits

Image Capture Software Structure

46

to increment colour gain values, as shown in Figure 3.8. Any changes to these GUI controls

trigger an event within the code. The triggered event then takes the values from the slider or edit

box and applies them to the Bayer pattern decoding function in the main loop. This change

happens in real time to allow the user to sample the different gains.

Figure 4.13: An overview of the Image Manipulation code block

Image manipulation
started

Initialisation of
CImage class and

frame grabber session
Adjust colour

gains
Adjust active

window

Yes

No

Obtaining raw 10-bit
pixel data

Bayer pattern decoding

Image scaling and
displaying

Yes

Appling gains to
streamed image

Applying window changes
to streamed image

No

Looping to obtain
fresh pixel data

Saving of adjusted
settings to a .dat file

Exiting of dialog and
closing of frame
grabber session

If the user wants to change the size of the active window, the values can be entered into the

dialog in the edit boxes for the active window. Alternatively the mouse selection check box can

be ticked and the mouse can be used to perform this task. The launching of the mouse selection

creates two cross hairs, as shown in Figure 3.10, that which follows the mouse cursor across the

streamed video image. The cross hairs themselves are drawn directly to the incoming video

streaming functions that are part of the CImage class.

Image Capture Software Structure

47

When the left mouse button is double clicked it triggers an event that grabs the mouse cursor

current position in screen co-ordinates, scales them to the streamed video window co-ordinates,

and places a marker box at the recently chosen point on the image. The same process is done for

a second point, usually in the bottom right hand side of the video window. These two points

define a rectangle which is the new active window size. The second mouse point selection

contains the new window size and triggers an event that updates the edit boxes for the active

window selection.

A message box then appears asking the user whether they wish to update the video image. If yes,

the image is scaled to the video window, giving the user a chance to sample different active

window scenarios. Once the user has chosen the required settings, the accept button is pressed,

and all the changed settings are stored in a .dat file under a name defined by the application.

They are stored in this .dat file for two reasons. The first reason is it allows the settings to be

transfer to the MICA, and the second reason is to give the user the option of applying the same

settings to the cameras for repeated image capture cycles.

There are two image storage paths for each camera. The first path is for the storage of the

calibration images, and the second path is for the captured images. The blocks of code arranged

in Figure 4.14 illustrate their interaction with the user. The image storage dialog interacts with

the tab class the same way as the image manipulation dialog. Once the image storage dialog is

started, a .dat file containing five previous paths for the images is loaded into the drop down list

box.

Image Capture Software Structure

48

Figure 4.14: An overview of Image Storage operation and code block interaction

Image Storage
Start

Load up to 5 previous
paths for captured and
calibrated image into
drop down list from

.dat file

Which
Paths?

Captured Images Calibration Images

Select new
path

Select new
path

Drop down list
selection

Use browse button to
select path from
browse dialog

Use browse button to
select path from
browse dialog

New path added to
respective drop down

list and .dat file

Yes Yes

No No

Accept the setting for
both sets of paths and

formats

Settings stored in .dat
file

Once the dialog has been initialised the user can select the path for the respective types of

images. The process of path selection is the same for both image types.

4.3 Summary

The image capture software is divided up into two separate parts Simulink™ and Python™

running on the dSpace™ computer and Visual C++ running on the ICC. The software running on

the dSpace™ computer drives the actuator and controls the trigger pulses that are sent for the

cameras, the frame grabbers and the strobe. These functions are performed by the Simulink™

diagram built for the dSpace™ module and is controlled by the Python™ software. The

Python™ software then “talks” to the Visual C++ software running on the ICC, which manages

the running of the cameras, the frame grabbers, and the storing of captured images. The Visual

Image Capture Software Structure

49

C++ software and the Python™ software communicate with one another to achieve a complete

image capture cycle, and this communication occurs through an Ethernet link between the two

computers.

PART III

RESULTS

50

Chapter 5

Image Capture Results

5.1 Preparation

In this chapter, the application of the image capture system is examined using a silicon phantom,

moulded in a cylindrical shape. The silicon phantom used in this experiment is a two-part mix

solid silicon elastomer, and is as shown in Figure 5.1. The silicon gel formula and ingredients are

sourced from Factor II Inc.

Figure 5.1: The silicon phantom used in the experiments and its dimensions

~50 mm

 ~40 m
m

This silicon polymer was chosen because of similarities with the elastic properties of human

tissue. The preparation of the silicon phantom begins by building a mould, which in this case

comprises of a short section of PVC piping sealed at one end. The silicon polymer arrives as two

components part ‘A’ and part ‘B’, mixed in a ratio of 10% of ‘A’ for the total volume of ‘B’ into

which ‘A’ is being mixed. Part ‘B’ is the actual silicon rubber itself and arrives as a liquid

rubber. The part ‘A’ solidifies part ’B’ into a silicon rubber solid of a specific stiffness.

Image Capture Results

51

The phantom and mould are is then placed under a vacuum to remove all air bubbles caused by

mixing the two components together, and the solution is poured into the mould and allowed to

set. The dots seen on the silicon phantom are applied manually using water-based paint and are

used to aid in the tracking surface motion when actuated.

5.2 Preliminary Image Capture Results and Problems

The initial tests of the image capture set-up revealed an unforeseen problem. The problem was

that the time period between when camera fired the strobe flash and the camera received the

trigger pulse to snap a frame was inconsistent and unpredictable. This inconsistency makes it

very difficult to align the strobe trigger with the phase position in the actuators cycle.

Specifically, consider the case of the actuator moving at a frequency of 100 Hz, which is the

maximum frequency required of this image capture system. Thus, the actuator and silicon

phantom move through a 360-degree cycle every 0.01 seconds. The problem is that while the

time periods between the dSpace™ trigger pulse and the strobe trigger pulse are consistent at a

time resolution of 0.1 seconds; it can fluctuate randomly over the finer resolution of 0.01

seconds. This behaviour is demonstrated in Figure 5.2 for the left camera over 7 images at a

phase lag of 0-degrees and a 100Hz signal. In other words, the camera is not designed for

precision strobing greater than 10 Hz image capture frequency.

Image Capture Results

52

Figure 5.2: A graph of the dSpace trigger pulse/strobe trigger pulse time period

Figure 5.3 shows the result of the fluctuations in Figure 5.2 on the position of the actuator and

consequently the silicon phantom for the first three images taken. Figures 5.3 (a), (c) and (e),

illustrate that the dSpace™ module consistently sends the snap trigger at almost exactly zero

degrees of phase lag. Figures 5.3 (b), (d) and (f) show the inconsistent triggering of the strobe

from image to image and where it occurs in the actuators motion. The resulting images are

therefore captured at almost random points of the actuators cycle.

Image Capture Results

53

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: The dSpace trigger pulses and strobe trigger pulses on a phase lag of 0-degrees over three
images with the strobe trigger times from Figure 5.2.

A second problem was also discovered involving external sync time variations between the two

cameras. For example, triggering the strobe using the right camera resulted in partial images

from the left camera on random phase lags. This problem was due to the left camera not being

Image Capture Results

54

ready for the strobe to flash at the same time as the right camera, even though the dSpace trigger

pulse was sent to the cameras at the same time.

5.3 Corrected Image Capture Results

In this section the following problems are addressed and results presented:

• Inconsistencies in required strobe trigger between cameras

• An inconsistent time period, at the required time resolution, between the dSpace trigger

pulse and the strobe trigger pulse

Both of these problems are addressed simultaneously with the introduction of solid state AND

gate and a feed back pulse to the dSpace™ module, which triggers the strobe flash. As shown in

Figure 5.4, the solid state AND gate is attached to the two external sync lines from each camera,

and this addition aligns the two pulses into one coherent pulse that is fed into the dSpace™

module.

Figure 5.4: The new strobe trigger set-up

AND
GATE

Left Camera

dSpace™
Module

Strobe

External Sync
Line Left

External Sync
Line Right

Strobe Trigger

Single Input Trigger
to dSpace™
Module

Right Camera

Image Capture Results

55

The single coherent external pulse sent to the dSpace™ module from the AND gate is then

aligned with the rising edge of the now phase-lagged LVDT signal, which is then passed back

out to trigger the strobe. The single external strobe trigger is aligned in much the same way as

the camera snap trigger pulse using flip-flops Simulink™ blocks, as shown in Figure 5.5.

Figure 5.5: The Simulink™ blocks added (within the dashed region) to the trigger generation sub-block
of Figure 4.2 to deal with firing the strobe

The strobe itself actually triggers on the falling edge of the trigger pulse and not the rising edge

because of the way the strobe was designed by the manufacturer. Due to the falling edge trigger,

a ‘NOT’ gate is used to invert the edge. The implementation of this ‘NOT’ gate achieves the

result shown in Figure 5.6.

Each rising edge of the square wave LVDT lagged signal occurs at a specific point in the

actuators motion. This rising edge is moved to other positions in the actuators motion, by

adjusting the phase lag desired. It is this rising edge that the strobe must trigger on to capture the

actuator at that specific position. The external sync from the cameras notifies the image capture

system that the cameras are ready for the strobe flash, but the flash must occur on the rising edge

Image Capture Results

56

of the lagged LVDT signal. Thus, the external sync must remain high until the next rising edge

in the lagged LVDT signal, which is at 0.01s intervals for 100Hz actuation.

Since the external sync therefore may remain high for ~0.25-0.3s, there is plenty of time for the

strobe to receive a rising edge and thus trigger a camera flash. The result of the solid state AND

gate and feedback pulse to the dSpace™ module applied to the apparatus outlined in Chapter 2,

allows the strobe to trigger at the points shown in Figure 5.7

Figure 5.6: The timing of the modified strobe trigger

NOT

0.01s

~0.25 - 0.3s

External
Sync

LVDT
Lagged
Signal

Edge
passing
through,
gate, and
Flip-Flop Strobe Fires

Figure 5.7 compares the actual strobe triggering time with the ideal, where the mean absolute

error is approximately 1.4%. This demonstrates the accuracy of the timing of the strobe firing.

The gradient of the graph shown in Figure 5.7 of the ideal strobe trigger times follows the

experimental strobe triggers very closely. This result indicates that the progression of the phase

lag over 0-360 degrees is evenly distributed. Furthermore, the complete phase lag occurs almost

precisely in 0.01s, indicating the image capture process has occurred within a 360 degree

waveform, oscillating at 100Hz.

Image Capture Results

57

Figure 5.7: The comparison of the average strobe triggering times over the four image capture runs
compared with the ideal triggering times.

It should also be noted that the actuator has imperfections or error in its motion. A snap shot of

the actuators motion at t = 1.8207s compared with an ideal case shown in Figure 5.8(a), shows a

time period where the difference in the two waveforms is at a minimum corresponding to the

best achievable actuator motion. The variation in frequency for Figure 5.8(a) is between ~98 to

100Hz or less than 2%.

Image Capture Results

58

Figure 5.8(a): The actual position of the actuator compared to an Ideal position at a snapshot of the
actuators motion taken at 1.8207 seconds.

An average of 20,000 actuator waveforms was taken, and the result is plotted in Figure 5.8(b)

showing that a larger error dominates the motion. Since Figures 5.8(a) and (b) involve direct

measurements of the actuator displacement, errors can be attributed to the dynamics of the

actuator itself. In other words, there are physical limitations in the current actuator. Further

experimental work and potential improvements need to be done in the future.

Image Capture Results

59

Figure 5.8(b): The mean actuator displacement compared with the ideal actuator displacement over
20,000 actuator cycles.

Figure 5.8(c): The compiled actuator displacements at the time of the strobe firing, compared with an
ideal actuators displacement at that point.

Image Capture Results

60

In practice, images of a silicon phantom’s displacement response to one specific period of the

actuator, as in Figure 5.8(a) for example, cannot be achieved. As discussed in Chapter 2, the way

to build up one complete cycle of the actuated silicon phantom, is to strobe at pre-defined phase

angles and capture an image at each strobed point in time. To further validate the method the

phase lag increment is chosen to be 10 degrees so that strobing occurs every 0.00028s of the

0.01s cycle.

The actuator displacements at the time of the strobe firing are plotted in Figure 5.8(c). Note that

the specific times that the images are taken can vary significantly between runs. However,

relative to the 0.01s cycle the image capture times are very consistent, as shown in Figure 5.7.

For example, the first 10 image capture times in Figure 5.8(c) are:

 t = [5.541, 14.5413, 24.3915, 34.1817, 44.0121, 53.8224, 63.6525, 73.4427, 83.2932, 93.0834]

With respect to the 0.01s cycle the 10 image capture times are effectively:

t = [0.0002, 0.0005, 0.0007, 0.001, 0.0013, 0.0016, 0.0017, 0.002, 0.0024, 0.0026]

These values are very close to multiples of 0.00028, as required. The results in Figure 5.8(c)

show similar behaviour to Figures 5.8(a) and (b), further demonstrating the accuracy of the

strobe and camera trigger system of Chapter 3.

5.4 Surface Motion Tracking

Six images of the silicon phantom corresponding to 60 degrees intervals from 0-300 degrees are

shown in Figure 5.9. The frequency of actuation is 100Hz with amplitude of 1.2mm. On the face

Image Capture Results

61

common to both cameras there are 54 black dots, which are used to help track the surface motion

of the phantom.

Figure 5.9: The silicon phantom with 54 black dots on the surface moving at 1.2 mm of amplitude
starting at phase lag of 0 degrees and moving to a phase lag of 360 degrees from the left camera.

To validate the image capture system the black dots shown in Figure 5.9 are used to track the

displacement of the moving surface of the phantom. The motion tracking is performed using

software constructed by Richard Brown as part of his PhD thesis.

Image Capture Results

62

Figure 5.10: Tracking motion of the dots on the silicon phantoms surface, using images from the DIET
image capture system. The identified dots are denoted by crosses.

Figure 5.10 shows the moving phantom and crosses overlaid by the image tracking algorithm.

Figure 5.11 shows an example of the 3D tracked motion for one of the points in Figure 5.10.

Note that a small number of the dots shown in Figure 5.10 on the surface of the silicon phantom

could not be tracked because they move outside the field of view shared by both cameras.

Figure 5.11: The motion of a single dot on the surface of the silicon phantom

Image Capture Results

63

An example of the reconstructed surface for one point in the actuators cycle is shown in Figure

5.12. The 3D mapped positions of the dots are then used to construct a virtual silicon phantom

with the mapped dots displayed in red as shown in Figure 5.13. This 3D visualisation of the

virtual phantom is generated by assuming that the silicon phantom is rotationally symmetric, and

the final rendered phantom was created by rotating one column of dots about the central axis of

the phantom and adding a flat top surface. The calculated 3D locations of the points were then

overlaid on top of the phantom to create the final image. The software for generating Figure 5.13

was written by Richard Brown.

Note that Figure 5.13 is not an accurate 3D reconstruction of the whole surface rather a means of

visually validating the results and demonstrating the application of the imaging system. The

virtual silicon phantom visually agrees with the physical silicon phantom results shown in Figure

5.9 throughout the actuation cycle. This data further validates the successful operation of the

camera system and, in particular, shows that images can be captured at high frequencies at a

sufficient image quality that makes it possible to retrieve useful surface motion data.

Figure 5.12: The 3D reconstruction of the tracked points from the phantoms surface

Image Capture Results

64

Figure 5.13: The virtual silicon phantom with the mapped points in red over the surface

5.5 Summary

Initial tests of the high-speed image capture system show that there were inconsistencies with the

time period between the external sync pulse and the receiving of the snap trigger pulse from

dSpace™. Furthermore, there were small inconsistencies between cameras as to when the

external pulse was sent even though the cameras received the same snap trigger pulse at the same

time. These two problems were addressed by gathering the external sync pulses from both

cameras and feeding them into the dSpace™ module, via an AND gate. The AND gate allowed

the inconsistencies of the external sync pulse between cameras to be combined into one coherent

external pulse which was fed into dSpace™. This pulse was then used to trigger the strobe at the

required time to obtain an image of the phantom at specified actuator position.

The resulting images were of a quality that allowed 3D motion tracking software to successfully

track the surface motion of an actuated silicon phantom at a frequency of 100Hz and amplitude

of 1.2 mm. However, analysis of the trigger time data and actuator position data showed that the

Image Capture Results

65

actuator was not performing with as consistent a frequency as might be desired introducing some

errors outside the control of this research.

PART IV

CONCLUSIONS

66

Chapter 6

Conclusion and Future Work

This chapter summarizes the tests undertaken on the image capture system, and discusses possible

future work on the system. Future work is presented as possible directions for the improvement of

the automated image capture system towards developing a final prototype.

6.0 Conclusion

A high-speed digital image capture system for Digital Image-based Elasto-Tomography (DIET)

breast cancer screening has been presented. The final system satisfies the DIET system requirements

of a completely automated relatively low cost method for capturing images of a silicon phantoms

surface under sinusoid actuation at high frequencies up to 100 Hz. The image capture system was

successfully tested on a silicon phantom moving at 100 Hz and amplitude of ~1.2 mm, providing

accurate surface motion tracking at a high image resolution of 1280x1024. The image capture

system also included functionality for the manipulation of colour gains and active windows making

the system more adaptive to testing and laboratory conditions.

An important feature was the use of the dSpace™ control system module, which allowed the image

capture process to take place outside of the Windows™ operating system message loops. This

approach greatly increased the control over the timing of the events that go into capturing the high-

speed images. It also more exactly matches any such commercial system, which would also use

similar embedded operating system.

Conclusion and Future Work

67

The construction of the digital cameras, in-house allowed a greater flexibility when it came to

integrating them into the overall system. In addition, using Kodak’s KAC-9648 CMOS imaging

sensor, allows a reduction in complex circuitry in the camera design, simplifying making the future

development and production of the digital cameras easier.

The comparison between the ideal and actual strobe triggering times, showed that the strobe was

correctly triggered at the required predefined phase angles with a mean absolute error of ~1.4%.

There were variations of the displacement of the actuator compared with the ideal actuator

displacement at which the strobe triggers corresponding to a variation of 95-100 Hz within one

image capture cycle. However, this displacement error was shown to be attributable to the dynamic

properties of the actuator itself. For example, internal friction and the returning frequency of the

LVDT signal varying slightly either side of the reference frequency for the introduction of the phase

lag. A more exact next generation actuator will resolve these issues.

The time taken to complete an entire image capture run, of 37 images per camera took ~6 minutes

upon review of the image capture log in the main application. This time can be reduced with the

refining of the Ethernet protocols between the dSpace™ and image capture computer (ICC). The

refining of the protocols could potentially reduce this image capture time by half (~3 minutes).

Additionally, a custom designed system might reduce this test time by a further 2-10x.

6.1 Future Work

This section discusses possible directions for the continued development of the DIET image capture

system towards achieving a robust and versatile image capture system. Possible next generation

improvements for the image capture system are summarized as follows:

Conclusion and Future Work

68

• The introduction of wider lenses with the ability to auto focus

• Replacement of the dSpace™ module with a self contained microcontroller

• Upgrade of the experimental apparatus and the introduction of ring flash devices for each

camera

• Actuator development

6.1.0 Rebuild of the Camera Lens Arrangement

Currently, there is no zoom on the cameras. Thus, the object being imaged must be placed close to

the lens, producing a fish eye effect that could potentially affect the accuracy of camera calibrations

and motion sensing. The manual placement of the object could also produce varying fish eye effects

between multiple cameras, complicating the identification of common points between images and

introducing further sources of error. The solution would be to introduce a wider lens to the digital

camera with auto focus properties. The auto focus could involve a motorized lens system that

analyze the incoming images and adjust the focus to optimize high spatial frequencies in the stream

data indicating a well-focused camera. Once calibration is achieved the focus could be locked by the

user for the duration of the image capture process. This capability is commonly available a modern

digital cameras and could likely be obtained “off the shelf” in future prototypes.

6.1.1 Replacing the dSpace™ module Concept

The dSpace™ module performs very well when tracking the actuators motion and triggering the

camera snap and strobe. However, the Ethernet aspect of the system tends to slow the image capture

process and is prone to corruption when insufficient bandwidth is made available to the process.

One possible solution could be the introduction of one or more PSoC™ microcontrollers that would

Conclusion and Future Work

69

be communicated to, from the Image Capture Computer (ICC) over the same I2C bus as the cameras

as shown in Figure 6.1.

Figure 6.1: The set-up for the introduction of microcontrollers to the image capture system

Left Camera Right Camera
I2C Lines

Actuator Control
PSoC™

Trigger Control
PSoC™

AND
Gate

Frame Grabber
Triggering Signals

Strobe
Actuator

Command
Signal

LVDT Signal

Strobe Trigger

Electronic
Shutter
Trigger
Lines (1) &
(2)

External
Sync Lines
from each
Camera

Conclusion and Future Work

70

The I2C communications protocols are an industry standard and, as such, provides a robust and

reasonably fast communication between the adapter and all devices on the bus. This will allow the

ICC to more quickly and efficiently notify trigger control that the cameras and the frame grabbers

are prepared for the triggers, and that the images have been successfully saved to allow the

incrementing of the phase lag.

Furthermore, the Python™ code used to automate ControlDesk™ is a high level scripting,

interpreted and interactive object-oriented programming language. It thus runs slower than the C++

software running on the ICC to which it is communicating. Hence, the C++ software needs to be

slowed to effectively communicate with the dSpace™ computer. Finally, this approach would allow

the whole image capture process to be driven from a single computer, rather than setting up two

different computers. Again it is a next step towards a standard, commercial prototype for this type of

mechatronic system.

6.1.2 Experimental Apparatus Concept

The upgrade of the experimental apparatus would see the introduction of four or five more cameras

and the introduction of ring flash devices to each camera. The ring flashes would trigger from one

single trigger and have all the cameras external syncs tied together. The ring flashes could be

constructed from high intensity light emitting diodes, and positioned around the lens of each camera,

as shown in Figure 6.2. This arrangement would provide and even distribution of light at high

intensity. The current strobe flash, while providing adequate lighting for the capturing of the images,

required the colour gains on the cameras to be increased with a completely opened lens iris.

Conclusion and Future Work

71

Furthermore, the current strobe is bulky and restricts the placement of the cameras about the silicon

phantom test piece. This change would thus significantly improve the quality of images captured.

Figure 6.2: Possible new experimental set-up

Camera One

Camera Two

Camera Three

Silicon Phantom

5 More Cameras
One Placed on Each

Face

The View Shared
by Both Camera
One and Two

Ring Flash

Spring Loaded
Adjustment

The cameras could also be mounted via four spring loaded studs to allow the small movement of the

cameras orientation, to set-up experimental tests. The number of cameras would depend on the angle

of view of each camera to increase the size of the surface of the silicon phantom available to both

cameras, and how many cameras it would take to capture the entire surface of the silicon phantom,

in binocular vision. In summary, a more flexible and efficient prototype system to aid further

development.

Conclusion and Future Work

72

6.1.3 Actuator Development Concept

The current actuator performs well, within the design specifications. However, the actuator was

difficult to control with a standard PID controller. It was found that the actuator also needed a period

of time to “warm-up” before the system become stable. This behaviour was perhaps due to the

expansion properties of the main nylon bearing, which appears to guide and align the actuator

piston. Nylon bearings are not designed for high cyclic wear situations without regular lubrication.

Furthermore, there did not seem to be any way of applying lubrication to the main bearing from the

outside. In the report that accompanied the finished actuator, a sintered bronze bearing was

suggested, but was not implemented due to high cost. A possible solution for the replacement of the

current nylon bearing would be to remove the bearing all together and implement a second

diaphragm, as shown in Figure 6.3.

Top Diaphragm

Magnet

Bottom
Diaphragm

Actuator Piston

Figure 6.3: Possible solution for the removal of the main actuator bearing

Conclusion and Future Work

73

The piston would thus be suspended between the two diaphragms one at the top and the other at the

bottom with the magnetic field in the middle. This design would also do away with the need for

lubrication. Furthermore, the heating that comes with moving the piston through the nylon bearing

at high speeds does not allow the piston to return to the zero position easily, as the piston is perhaps

being gripped by the warm nylon, due to the nylon expanding when heated.

 74

References

[1] I. S. Fentiman, “Breast Cancer in Older Women”, Breast Cancer Online, Vol. 5 2002

[2] D. B. Kopans, “Breast Imaging”, 2nd Edition, Lippincott Williams & Wilkins, U.S.A, 1997

[3] Samani etal, “Measuring the Elastic Modulus”, Phys. med. Biol, 48:2183-2198, 2003

[4] Kroustop etal, “Elastic moduli of the Breast”, Ultrasonic Imaging, 20:260-274, 1998

[5] Wellman and Howe, “Breast tissue Stiffness”, Harvard BioRobotics Laboratory Technical
Report 2000

[6] S. Lauxtermann, P. Schwider, P. Setiz, H. Bloss, J. Ernst, H. Firla, “A high speed CMOS
imager acquiring 5000 frames/sec”, IEEE, pp. 875-878 (1999)

[7] S. Kleinfelder, S. Lim, X. Liu, A. E. Gamal, “A 10,000 Frames/s CMOS Digital Pixel
Sensor”, IEEE Journal of Solid-State Circuits, Vol. 36, No. 12, pp. 2049-2059 (December 2001)

[8] A. I. Krymski, N. E. Bock, N. Tu, D. V. Blerkom, E. R. Fossum, “A High-Speed, 240-
Frames/s, 4.1-Mpixel CMOS Sensor”, IEEE Transactions on Electron Devices, Vol. 50, No. 1,
pp. 130-135 (January 2003)

[9] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, M. Horowitz, “High-Speed Videography Using a
Dense Camera Array”, Presented at CVPR (2004)

[10] S. J. Kirkpatrick, D. D. Duncan, “Acousto-optical Elastography”, Proceedings of SPIE,
Vol. 4257, pp. 426-432 (2001)

[11] Oida etal, “Magnetic Resonance Elastography: in vivo measurements of elasticity for
human tissue”, International Conference in Informatics Research for Development of
Knowledge Society Infrastructure, 2004

[12] Maurice etal, “Non-Invasive Vascular Elastography: Theoretical Framework”, IEE
Transactions on medical Imaging, 23:164-180, 2004

[13] E.E.W. Van Houten, K.D. Paulsen, M.I. Miga, F.E. Kennedy and J.B. Weaver, “An
overlapping subzone technique for MR based elastic property reconstruction”, Magnetic
Resonance in Medicine, 1999, 42(4), pp 779-786.
[14] E.E.W. Van Houten, J.B. Weaver, M.I. Miga, F.E. Kennedy and K.D. Paulsen, “Elasticity
reconstruction from experimental MR displacement data: Initial experience with an overlapping
sub-zone finite element inversion process”, Medical Physics, 2000, 27(1), pp 101-107.

[15] A. Peters, A. Milsant, J. Rouze, L. Ray, J.G. Chase and E.E.W. Van Houten, “Digitial
Image-based Elasto-Tomography: Proof of Concept Studies for Surface Based Mechanical
Property Reconstruction”, Japanese Society of Mechanical Engineers (JSME) International
Journal, Series C, Vol 47(4), pp 1117-1123, (2004).

References

75

[16] A. Peters, S. Wortmann, R. Elliott, M. Staiger, J.G. Chase and E.E.W. Van Houten, “Digital
Image-based Elasto-Tomography: First experiments in surface based mechanical property
estimation of gelatine phantoms”, Japanese Society of Mechanical Engineers (JSME)
International Journal, Series C, Vol 48(4), pp 562-569, (2005).

[17] J. Fincher, A. Morrison, C. Murray, J. Steel, “Diet System Actuator”, Final Year Project,
(2005).

Figures

[Figure 1.1] A. Hii, “Cluster Tracking Algorithms for a DIET System”, Masters Thesis, (2006)

[Figure 1.3 & 1.4] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, M. Horowitz, “High-Speed
Videography Using a Dense Camera Array”, Presented at CVPR (2004)

[Figure 2.1] Stefan Wortmann, “Soft-Tissue Actuation and Imaging-based Motion Measurement
System”, Diploma-Thesis, (2006)

Appendix A

Visual C++ Code

A1 Detailed Visual C++ Code Explanation ……... A-1

A2 Main Dialog Initialisation Code ……… A-17

A3 The Main Image Streaming Code (Left Camera) ……... A-18

A4 Applying Camera Settings Code (Left Camera) ……... A-19

A5(a) Bit Masking For Camera Factory Setting (Left
Camera)

……... A-19

A5(b) Writing Value to Camera (Left Camera) ……... A-20

A6 Converter of Integer Value to Hexadecimal Value

Function

…….. A-20

A7 I2C Interface Code ……... A-21

A8 The ‘Spit Message’ Function ……... A-22

A9 The Initial Start-up of the Image Capture Process …….. A-22

A10 The ‘While Loop’ of Communications Thread …….. A-23

A11 The Trigger Set-Up Function …….. A-24

A12 Kill Focus Event Example …….. A-25

A13 File Path and Browse Dialog Box …….. A-26

A14 ComboBox Change Example …….. A-26

Appendices A

A-1

A1: Detailed Visual C++ Code Explanation

What is outlined in appendix A is a descriptive explanation for the operation of the major parts of

the code which operates on the ICC. References to blocks of code can be found after the text in

sperate appendix blocks. Below in Figure A1.1 is the hierarchy for the dialog box activation. This

gives an indication of what happens and when.

The executable
is activated

DietOpv1.2.cpp
is executed

DietOpv1.2Dlg.cpp
is executed

CLeftCameraSetting.cpp
is executed

CRightCameraSetting.cpp
is executed

 CImageMatR.cpp is

executed

CImageMat.cpp is
executed

CSavingSettings.cpp is
executed

CSavingSettingsR.cpp
is executed

Figure A1.1: Hierarchy for dialog box activation

A1.1 The Main Image Streaming

The main image streaming occurs upon the activation of the image capture program on the ICC, and

streams video data from the frame grabbers to the main dialog box. A lot of the code that allows this

to happen is repeated in other parts of the application. This section of the application uses

OpenGL™ to scale the images and display them in the application. The image streaming is started

in the initialisation of the main dialog code shown in Appendix A2. The lines in particular are (21)

and (22) which start the functions that take the data from the frame grabbers and display it on the

screen. However before this occurs, we must set-up windows, which are attached to the main dialog

Appendices A

A-2

box, in which the image streaming functions can put the image data, this is done in line (19) of

Appendix A2.

The process of streaming the images from the cameras to the screen can be assumed to be the same

for both cameras, and so the explanation will always make reference to the left camera. Figure A1.2

shows a flow diagram for the operation of the image streaming process. The first operation to occur

after the beginning of the function is the registering of the newly created window with the

OpenGL™ processes. This occurs in Appendix A3 line (6) to (12). Then the frame grabbers are set-

up using the functions that accompanied them in the frame grabber’s driver software. Since there are

two frame grabbers we must address the frame grabber to which the left camera is connected. In

Appendix A3 line (13) this is done when setting up the interface session for the frame grabber, and

the frame grabber being used is denoted in that line by “img1”. The numbering of the frame

grabbers begins at zero (“img0”), hence we are addressing the second frame grabber and

consequently the left camera. What follows line (13) is just applying the settings for the size of the

images the frame grabbers can expect to get from the CMOS imagers, and this continues until line

(21). In line (30) we use the “grab” function which is used to always ‘grab’ new image data from the

cameras and place it in the “LeftCamImaqBuffer”.

Appendices A

A-3

Starting Image
Streaming Thread

Directing OpenGL™ to
Initialised Window

Initialisation of Frame
Grabber Functions

Bit Shifting
Operations

OpenGL™
Displays Images

Figure A1.2: The operation of the image streaming function

At this point the image data is still at its original dimensions it arrives from the cameras at, and so it

needs to be reduced in size in order to display the entire image data on the screen. For this we use

OpenGL™ in particular OpenGL™’s function ‘glPixelZoom’ in line (50) of Appendix A3. By

providing the function with a scale factor of 0.3 for the x and y dimensions, the image data being

transferred to 8-bit is be reduce to a third of its original size, and displayed using the ‘glDrawPixel’

function in the main dialog box.

A1.2 The Apply New Camera Settings Event

An event is the triggering of an action by way of user interaction or an application process. Figure

A1.3 shows the layout of the actions that occur upon the activation of the event, which applies new

camera settings.

Appendices A

A-4

Figure A1.3: Layout of ‘Applying New Camera Settings’ to the Cameras

Reading of the
Cameras .dat

Files

Switching the
Multiplexer to

the Correct
Camera

What Type of
Register Writing

Writing a
Window Value
to the Register

Bit Masking a
Function of the

Camera

Writing Value to
the Camera

Register

Changing
Decimal Value

into a
Hexadecimal

value

Writing Value to
the Camera

Register

When applying new settings to the cameras, the data for the settings arrives from the .dat files

created using the CImageMat class for each camera. The values entered into the dialog box that is

ran using the CImageMat class, are the values for the camera window settings. The values are then

saved to the LeftCameraSettings.dat file, using windows CArchive class. The code for retrieving

these settings is outline for the left camera in Appendix A4. The values are read out in the order they

were read into the .dat file, and are a read out into a local variable created by the programmer. The

values read out of the .dat file are decimal values of base 10 that need to be converted into a

hexadecimal value of base 16 format before they can be written to the cameras registers. All

registers require the information to be in hexadecimal format.

Hexadecimal is shorthand for binary information. Each hexadecimal value represents 4-bits of

binary data as shown in table A1.1.

Appendices A

A-5

Table A1.1: Binary Values and there respective Hexadecimal values

Binary Hexadecimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Hexadecimal can be used to represent 8-bits or one byte as ‘0x0E’ which has a decimal value of 14.

The values of the window dimension to be written to the camera register are of base 10 and must be

converted to base 16 in order for the camera to make sense of the data. The function built to carry

out this conversion is outlined in Appendix A6. Since most of the values to be converted are larger

than 255 they are represented in 16-bits or two bytes. When reading a hexadecimal value larger than

8-bits there are the ‘Most Significant Bits’ (MSB) and ‘Least Significant Bits’ (LSB) that determine

the size of the resulting decimal value.

9AE2

MSB LSB

160161162163

Figure A1.4: The Column Set-up for Base 16 Decimal Values

Normally we would see the hexadecimal value in Figure A1.4 as ‘0x2EA9’ but it is shown here to

illustrate where the resulting decimal value comes from.

Appendices A

A-6

The value of the hexadecimal number in Figure A1.4 is:

() () () () 1194591610161416216 0123 =×+×+×+×

Once the camera window values have been converted to base 16 formats they are separated into

their MSB and LSB components and sent to the I2C interface code outline in Appendix A7 to be

written to the camera registers. As well as windowing information being written to the cameras

onboard factory settings can be changed, which includes the enabling of the external triggering pin

on the CMOS imaging chip. This modification of factory settings is done using process call

‘masking’. On the CMOS imaging chip itself each register is the size of 8-bits and has a unique

address. Each register for the camera settings may contain more than one adjustable setting, and

each setting is turned ‘on’ or ‘off’ by setting its respective value to either ‘1’ or ‘0’. For example one

register may resemble that in Figure A1.5, where some camera functions have been enable while

others have not. If we only wish to affect one of the camera settings then we take the current value

of the camera register and ‘or’ it with another byte, with a ‘1’ in the position of the bit we wish to

change.

Appendices A

A-7

Figure A1.5: The operation of bit masking

Strobe Sync.

Extern. Trigger

HCLK Sync.

VCLK Sync.

PXCLK Sync.

Timer Delay

Battery Use

Hard Reset

1

0

0

0

1

1

0

1

Register 49h

1 0 0 0 1 1 0 1

‘or’ the Byte with

0 1 0 0 0 0 0 0

The Result

1 1 0 0 1 1 0 1

Only this bit was
changed

Once it is known, which register the information is going, the I2C interface code then communicates

with the cameras to write the data there.

The I2C interface code in Appendix A7 follows a specific format. The first part of the code (lines (5)

to (33)) is for the bit mask and the second part (lines (36) to (53)) is for the writing of specific

values. The code for actually writing the data to the cameras is the same over both sections.

The format for writing data to the camera registers is as follows:

• The ‘WriteAddress’ function is used with the ‘KAC_9648_write_address’ value sent. This is

the address of the camera with the write-bit enabled. This occurs in line (8) and (36) of

Appendix A7.

• Then the ‘WriteData’ function is used to tell the camera which register will be receiving the

data. This occurs in line (37)

Appendices A

A-8

• The ‘WriteData’ function is used again to actually write the data to the camera register. This

occurs in line (38)

• Then the ‘WriteStop’ function is used to halt communications with the CMOS image device.

This occurs in line (39).

All of the functions described above use the adapter class functions. In Appendix A7 an object of

the adapter class is taken and initialised, in line (3) and (4) respectively, before any communications

occur. The I2C interface code is built to check the data recently written to the specified register. This

is done by the following:

• The ‘WriteAddress’ function is used with the ‘KAC_9648_write_address’ value sent. This is

the address of the camera with the write-bit enabled. This occurs in line (40) of Appendix

A7.

• The ‘WriteData’ function is used to tell the CMOS imaging device which register the data

will be read from. This occurs in line (41).

• The ‘Restart’ function is used in line (42), with the ‘KAC_9648_read_address’ sent to the

CMOS imaging sensor. The ‘Restart’ function is use to restart communications with the

device, with the register of interest already been pre-selected for reading.

• The ‘ReadData’ function is used twice in lines (43) and (44). The reason for this is because

the first ‘ReadData’, reads the data from the buffer on the I2C communications adapter card

in the computer, which just contains the recent register address. The second time the

‘ReadData’ function is called it grabs the data off the CMOS imaging device, from the

specified register.

Appendices A

A-9

• The second call to ‘ReadData’ stores the contents of the register as ‘Register_Value3’ in line

(44).

• Then the ‘WriteStop’ function is used to halt communications with the CMOS image device.

This occurs in line (45).

Once the value of the current register has been obtained it is compared with the value that was

intended to be written to the register to confirm the writing of the data has taken place. If the write

was successful the I2C interface code returns a value of ‘1’, otherwise a value of ‘2’ is return,

indicating there has been an error in data writing to that register. This value is then used to prompt

the user in the main dialogs, log window that an error has occurred with the camera registers.

A1.3 Start Image Capture Process

The automatic capturing of the triggered images occurs in this process. The function used to carry

out this task uses the CSocket class, explained in chapter 3 to communicate between itself and the

dSpace computer.

Figure A1.6: The Initial Stages of Running the Image Capture Function

Starting of
the Image
Capture
Process

Connect to
the dSpace
Computer

Processing
of Setting
for dSpace

The Starting of
the

Communications
Thread

Appendices A

A-10

Figure A1.6 outlines the initial stages of starting the image capture process. The connection to the

dSpace computer is carried out with the use of the DietOpSocket class; the connection is made using

the port number ‘2345’ as in Appendix A9 line (3). This port number has to be the same on the

dSpace computer for the connection to be made.

The processing of the settings for dSpace occurs in Appendix A9. It starts with the updating of the

data in the ‘dSpace Settings Field’, which occurs in line (13). The updating makes sure that the

information for the settings is arriving directly from the main GUI. The data arriving from these

fields are strings and are packaged up to be send to the dSpace computer in line (16) as

‘PhaseValues’. The spaces included in the combined string to be sent to dSpace are there to help the

dSpace computer sort the data into its necessary places. The dSpace computer uses the ‘split’

function to break up the sent string.

A1.3.1 The Communications Thread

All communications carried out on the ICC are done inside a thread so that other functions, like the

main image streaming, can continue to run within the main dialog code. The communications

between the ICC and dSpace™ computer occur by sending message strings back and forth between

the two computers. Once the communications thread begins, it starts a ‘while’ loop that loops

continually until it is told to end by the dSpace computer. The dSpace computer is the driver of the

image capture process, in that the ICC only acts when instructed by the dSpace computer and not

before.

Appendices A

A-11

The ‘while’ loop that comprises the main part of the communications thread contains many different

‘if’ statements that respond to a given message string. The structure of the communication threads

‘while’ loop is outlined in Figure A1.7.

Figure A1.7: The layout of the communications thread ‘while’ loop

While loop

‘If’ statement 1

‘If’ statement 2

‘If’ statement 3

‘If’ statement 4

‘If’ statement 5

End

When the ‘while’ loop is running the ‘OnReceive’ event, which is part of the DietOpSocket class is

constantly listening for new messages which are passed to the ‘while’ loop in Figure A1.7 during its

operation from the ICC. The function of each ‘if’ statement shown in Figure A1.7is:

• ‘If’ Statement 1: This statement is activated when the ‘GetPhases’ string is sent by the

dSpace computer and received by the ICC. When asked for the settings for the dSpace

computer, the ICC will send them repeatedly until the dSpace computer acknowledges there

arrival.

• ‘If” Statement 2: This statement is activated when the ‘SetCameras’ string is sent by the

dSpace computer and received by the ICC. The statement then starts the frame grabbers

waiting on the trigger signals (Appendix A10 line (37) and (38)). The cameras themselves

begin waiting for the trigger signals once the external pin is enabled during the configuring

of the cameras registers. The statement then sends a ‘CamerasReady’ string to the dSpace

computer, so dSpace can send the trigger signal.

Appendices A

A-12

• ‘If’ Statement 3: This statement is activated upon the successful triggering and saving of an

image from the cameras. The statement then sends a message to the dSpace computer telling

the computer that the images have been stored and to continue on with the image capture

process.

• ‘If’ Statement 4: This statement is activated when the capture of the image has not been

successful. It then posts a message in the log window in the main dialog box. It does not alert

the dSpace computer to the error, in order to maintain the image capture process as a whole.

• ‘If’ Statement 5: This statement is activated when the ‘ResetCameras’ string is sent by the

dSpace computer and received by the ICC. It is used to reset all ‘if’ statements in the ‘while’

loop in order to capture another image. Once the ICC computer has reset all its statements a

string is sent to the dSpace computer tell it to reset its ‘if’ statements as well.

The reason why all the ‘if’ statement must undergo a reset is because, as well as acknowledging the

message string, instructions sent from the dSpace computer, the ‘if’ statement also contains another

condition that will only allow the contents of the ‘if’ statement to run if that condition is ‘TRUE’.

Once inside the contents of the statement, that same condition is set to ‘FALSE’. This stops the

same ‘if’ statement from being activated twice, during the running of the ‘while’ loop.

The trigger functions, which are started in line (37) and (38) of appendix A10, are expanded to the

function shown in Appendix A11. As is can be seen there in Appendix A11 the first part of the

trigger setting is the same over all the frame grabber functions. The important line is (30) as this puts

the frame grabber in the mode to receive the trigger signal from the dSpace computer. Once the

trigger has been sent the image data is read directly from the frame grabbers local memory which

occurs in line (34) which then feeds the image to the ‘CopyBufferTriggerLeft’ image buffer which is

Appendices A

A-13

then saved in line (42) to a folder specified by the user, and is denoted in this line as ‘m_filename’.

This path is defined in the CSavingSettings dialog box.

Throughout the ‘while’ loop there are smaller ‘while’ loops which aid in the sending of the message

string between the two computers. This is achieved by the loop continuing to send the same

instruction message over and over again until or ‘while’ there is no acknowledgement of the

messages arrival at the other computer. As soon as the instruction message makes it to the other

computer that computer sends an acknowledgement message until the first computer stops sending

the instruction message. This concept is outlined in figure A1.8.

Event Command

Command
Acknowledgement

DSpace
Computer

Iris
Computer

Figure A1.8: The string message sending layout

Once all the communications between the two computers has been completed the socket created on

both computers are closed. The ICC lets the dSpace computer close its sockets first.

A1.4 Saving Information Log Process

The information log is a method of making the user aware of what is occurring within the workings

of the image capture process. The messages are posted using the ‘Spit Message’ function shown in

Appendix A8. This function takes message strings and posts them in the log window box shown in

Chapter 3 Figure 3.6. The messages are time stamped.

Appendices A

A-14

The box to which the messages are posted to in Figure 3.6 is referred to as a ‘ListBox’. Once the

‘ListBox’ is drawn in the GUI a variable is attached to the ‘ListBox’. Attaching a variable to the

‘ListBox’ allows the programmer to control how it operates. In Appendix A8 the ‘Spit Message’

functions uses the ‘m_list’ variable to post the strings to the ‘ListBox’. Before the message is posted

it is formatted using the CString class. This occurs in line (6) of Appendix A8. A snap shot of the

system time is taken in line (4) and placed at the start of the string. Most strings sent to the ‘Spit

Message’ function are loaded from the string table in the compliers resource folder. Each string has

an I.D which is loaded into an intermediate string before it is passed to the ‘Spit Message’ function.

Upon pressing the ‘Save Log’ button in the GUI shown in figure 3.6, each line in the ‘ListBox’ is

read into a rich edit file that is saved under a file name specified by the user. The log can then be

cleared by clicking the ‘Clear Log’ button on the GUI shown in figure 4.3.

A1.5 The CLeftCameraSetting Class

The CLeftCameraSetting class is a dialog class that controls the workings of the ‘tab’ shift between

the CImageMat dialog and the CSaveSettings dialog. The ‘tab’ shift is the selecting of either the

CImageMat dialog or the CSaveSettings dialog, within the CleftCameraSetting dialog. The

CLeftCameraSetting dialog is shown in Figure A1.9, at the top are two tabs, tab1 and tab2. Clicking

on either tab changes the displayed dialog in the space below the tabs.

The displaying of CImageMat dialog and the CSaveSettings dialog is carried out by first taking an

object of both classes, and placing them into a dialog array. Within the dialog array each dialog

object can be accessed from the array by specifying the corresponding array number. The selection

of each tab corresponds to the requested dialog object in the dialog array. The requested dialog is

Appendices A

A-15

then displayed in the lower part of the CleftCameraSetting dialog using the ‘SetWindowPos’ with

the ‘SWP_SHOWWINDOW’ flag included in the function definition.

The tabs to be
selected from

Figure A1.9: The dialog layout of the CleftCameraSetting dialog

The dialog displayed in the CLeftCameraSetting dialog then behaves exactly like it would if it

where a stand alone dialog.

A1.6 The CSavingSettings Class

The CSavingSettings class operates the CSavingSettings dialog box which is responsible for the

obtaining of the file paths, for saving the images, from the user. The dialog box shown in Figure

A1.10 that is tied to the CSavingSettings class, uses Combo Boxes to allow the user to select from

image formats and previously chosen file paths. Each ComboBox corresponds to a variable that will

be archived to a .dat file upon the pressing of ‘Accept’ button in the dialog box of Figure A1.10.

The pressing of the ‘Browse’ button in Figure A1.10 starts the function in Appendix A13 and

presents the user with the standard browser dialog box. Once the path is chosen by the user, the path

is cast to a ‘char’ and saved as ‘LeftCamCalPath’ in line (22) of Appendix A13. The reason for

casting the path to a ‘char’ was to make the file path easier to integrate with the frame grabber driver

Appendices A

A-16

software functions. The lines (3) to (16) in Appendix A13 is the defining of the of browse dialog

box.

The image format
ComboBox

Figure A1.10: The layout of the CSavingSettings dialog box

The CSavingSettings class, which runs the CSavingSettings dialog box, makes use of the combo

boxes ‘OnCbnSelchange’ event or ‘on selection change’. An example of the ‘OnCbnSelchange’

event is shown in Appendix A14. This event allows the dialog box to update the variables for that

particular ComboBox to the variable chose by the user from the ComboBox’s drop-down list. The

drop-down list for the ‘Image Format’ variables are loaded in upon the initialisation of the

CSavingSettings dialog box, and indexed to keep track of the selected ‘Image Format’. The image

path combo boxes have their lists updated upon the selection of a path from the browse dialog box

and the ‘OnCbnSelchange’ event for these combo boxes overwrites the path previously chosen by

the browse dialog box with the newly selected path from the ComboBox’s drop-down list.

Appendices A

A-17

A2: Main Dialog Initialisation Code

(1) BOOL CDIETOPv12Dlg::OnInitDialog()
(2) {
(3) CDialog::OnInitDialog();

 // Add "About..." menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.
(4) ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
(5) ASSERT(IDM_ABOUTBOX < 0xF000);

(6) CMenu* pSysMenu = GetSystemMenu(FALSE);
(7) if (pSysMenu != NULL)
(8) {
(9) CString strAboutMenu;
(10) strAboutMenu.LoadString(IDS_ABOUTBOX);
(11) if (!strAboutMenu.IsEmpty())
(12) {
(13) pSysMenu->AppendMenu(MF_SEPARATOR);
(14) pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
(15) }
(16) }

// Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
(17) SetIcon(m_hIcon, TRUE); // Set big icon
(18) SetIcon(m_hIcon, FALSE); // Set small icon
(19) CamWindowInitialistion();
(20) CamStreamImageScale = 0.3;
(21) AfxBeginThread(StartUpLeftCamStream,(LPVOID)this);
(22) AfxBeginThread(StartUpRightCamStream,(LPVOID)this);
(23) ServerStatus = 1;
(24) CalledArray[0] = FALSE;
(25) CalledArray[1] = FALSE;
(26) CalledArray[2] = FALSE;
(27) CalledArray[3] = FALSE;
(28) CalledArray[4] = FALSE;
(29) ExecutedArray[0] = FALSE;
(30) ExecutedArray[1] = FALSE;
(31) ExecutedArray[2] = FALSE;
(32) ExecutedArray[3] = FALSE;
(33) ExecutedArray[4] = FALSE;

(34) Ethernet_Mess.Format("Initializing CDietOpSocket Class.......");

(35) spit_Message(Ethernet_Mess);

(36) if (!AfxSocketInit())
(37) {
(38) Ethernet_Mess.Format("Initializing Failed");
(39) spit_Message(Ethernet_Mess);
(40) CalledArray[1]=TRUE;
(41) }
(42) else
(43) {
(44) Ethernet_Mess.Format("Done");
(45) spit_Message(Ethernet_Mess);
(46) }

(47) return TRUE; // return TRUE unless you set the focus to a control
(48) }

Appendices A

A-18

A3: The Main Image Streaming Code (Left Camera)

(1) void CDIETOPv12Dlg::LeftCamStream()
(2) {
(3) CDIETOPv12Dlg* LeftCamProp = this;
(4) int error, acqWinWidthLeft, acqWinHeightLeft;
(5) unsigned int bufSize, bytesPerPixel;
(6) HWND hLeftCam;

Applying settings to
the frame grabber
capturing the left
images

Directing
OpenGL™ to
Initialised Window

(7) hLeftCam = LeftCamWindow->GetSafeHwnd();
(8) HGLRC hgLeftCam;
(9) HDC hdLeftCam = ::GetDC(hLeftCam);
(10) MySetPixelFormat(hdLeftCam);
(11) hgLeftCam = wglCreateContext(hdLeftCam);
(12) wglMakeCurrent(hdLeftCam, hgLeftCam);

(13) errChk(imgInterfaceOpen ("img1", &LeftCamInterfaceID));
(14) errChk(imgSessionOpen (LeftCamInterfaceID, &LeftCamSessionID));
(15) errChk(imgGetAttribute (LeftCamSessionID, IMG_ATTR_ROI_WIDTH,

 &acqWinWidthLeft));
(16) errChk(imgGetAttribute (LeftCamSessionID, IMG_ATTR_ROI_HEIGHT,
 &acqWinHeightLeft));

(17) errChk(imgSetAttribute (LeftCamSessionID, IMG_ATTR_ROI_WIDTH,
 acqWinWidthLeft));
(18) errChk(imgSetAttribute (LeftCamSessionID, IMG_ATTR_ROI_HEIGHT,

 acqWinHeightLeft));
(19) errChk(imgSetAttribute (LeftCamSessionID, IMG_ATTR_ROWPIXELS,

 acqWinWidthLeft));
(20) errChk(imgGetAttribute (LeftCamSessionID, IMG_ATTR_BYTESPERPIXEL,
 &bytesPerPixel));
(21) bufSize = acqWinWidthLeft * acqWinHeightLeft * bytesPerPixel;
(22) errChkLeft(imgCalculateBayerColorLUT(redGainLeft, greenGainLeft,

 blueGainLeft, LeftredLUT, LeftgreenLUT, LeftblueLUT,
 bitsPerPixelLeft));

(23) errChkLeft(imgCreateBuffer(LeftMainVideoCamSessionID, FALSE, bufSizeLeft,
 &RGBBufferLeft));

(24) BYTE* InterBufferLeft = new BYTE[bufSizeLeft];
(25) BYTE* FinalBufferLeft = new BYTE[bufSizeLeft];
(26) int i, Counter3, Counter37;
(27) for(i=0; i<NUM_RING_BUFFERS; i++)
(28) ImaqBuffersLeft[i] = NULL;
 // Setup and launch the ring acquisition
(29) errChkLeft(imgRingSetup(LeftMainVideoCamSessionID,

 NUM_RING_BUFFERS, (void**)ImaqBuffersLeft, 0, TRUE));
(30) while(VideoLoopControlLeft==TRUE){
(31) if(::WaitForSingleObject(mythingLeft->m_EndVideoLeftCamera,0)

==WAIT_OBJECT_0)
(32) {
(33) VideoLoopControlLeft = FALSE;
(34) ResetEvent(mythingLeft->m_EndVideoLeftCamera);
(35) }
(36) errChkLeft(imgSessionExamineBuffer (LeftMainVideoCamSessionID,

 BufNumLeft, &currBufNumLeft, &bufAddrLeft));
(37) errChkLeft(imgBayerColorDecode(RGBBufferLeft, (void *)bufAddrLeft,

 acqWinHeightLeft, acqWinWidthLeft, acqWinWidthLeft,
 acqWinWidthLeft, LeftredLUT, LeftgreenLUT,
 LeftblueLUT, IMG_BAYER_PATTERN_GRGR_BGBG,
 bitsPerPixelLeft, 0));

(38) Counter3 = 0;
(39) Counter37 = bufSizeLeft;
(40) glClear (GL_COLOR_BUFFER_BIT);
(41) glColor3f (0.0,0.0,0.0);
(42) glMatrixMode(GL_PROJECTION);
(43) glViewport(0,0,0,0);
(44) glLoadIdentity();
(45) glRasterPos2i(0,0);
(46) glPixelZoom(CamStreamImageScale, CamStreamImageScale);
(47) glDrawPixels(acqWinWidthLeft,acqWinHeightLeft,GL_BGRA,

 GL_UNSIGNED_BYTE, RGBBufferLeft);
(48) glFlush();
(49) SwapBuffers(hdLeftCam);
(50) errChkLeft(imgSessionReleaseBuffer (LeftMainVideoCamSessionID));

Appendices A

A-19

(51) BufNumLeft ++;

(52) }
(53) InterBufferLeft = NULL;
(54) FinalBufferLeft = NULL;
(55) delete InterBufferLeft;
(56) delete FinalBufferLeft;
(57) wglMakeCurrent(NULL, NULL);
(58) ::ReleaseDC (hLeftCam, hdLeftCam);
(59) wglDeleteContext(hgLeftCam);
(60) Error :
(61) if(error<0)
(62) DisplayIMAQError(error,LeftCamProp);

 // dispose of the buffer
(63) if (LeftCamImaqBuffer != NULL)
(64) imgDisposeBuffer(LeftCamImaqBuffer);

 // Close the interface and the session
(65) if(LeftCamSessionID != 0)
(66) imgClose (LeftCamSessionID, TRUE);
(67) if(LeftCamInterfaceID != 0)
(68) imgClose (LeftCamInterfaceID, TRUE);
(69) }

A4: Applying Camera Settings Code (Left Camera)

(1) void CDIETOPv12Dlg::OnBnClickedApplyCameraSettings()
(2) {
(3) Adapter Initialise_Adapter;
(4) int return_value;
(5) int return_value2;
(6) int RegWriteStatus;

(7) CFile LeftCameraFrameSettings;
(8) if(LeftCameraFrameSettings.Open("LeftCamSettings.dat",CFile::modeRead)

==FALSE){
(9) AfxMessageBox("There is no LeftCamSettings.dat file
 available",MB_OK);
(10) return;};
(11) CArchive ar3(&LeftCameraFrameSettings,CArchive::load);

Retrieving
Camera Window
Information

(12) ar3 >> LeftCam_woi_row_pointer >> LeftCam_woi_column_pointer >>
 LeftCam_woi_row_depth >> LeftCam_woi_column_width >>
 LeftCam_vf_row_depth >> LeftCam_vf_column_width;
(13) ar3.Close();
(14) LeftCameraFrameSettings.Close();

A5 (a): Bit Masking For Camera Factory Setting (Left Camera)

(1) RegWriteStatus = CMOS_Register_Writer(BIT_MASKING,

KAC9648_FRAME_MODE_SINGLE_FRAME_MASK, 0x40);
(2) if(RegWriteStatus==1)
(3) {
(4) RegMessage.LoadString(IDS_LEFT_CAM_SINGLE_SHUTTER);
(5) spit_Message(RegMessage);
(6) }
(7) else if(RegWriteStatus==2)
(8) {
(9) RegMessage.LoadString(IDS_NO_WRITE_LEFT_CAM_SINGLE_SHUTTER);
(10) spit_Message(RegMessage);
(11) }

Appendices A

A-20

A5 (b): Writing Value to Camera (Left Camera)

(1) IntegerToHex(LeftCam_woi_column_pointer);
(2) TransferLSB = Bit_Array[0];
(3) TransferMSB = Bit_Array[1];
(4) RegWriteStatus = CMOS_Register_Writer(NO_BIT_MASKING, TransferMSB,
 0x49);
(5) if(RegWriteStatus==1)
(6) {
(7) RegMessage.LoadString(IDS_WRITE_TO_REG49HL);
(8) spit_Message(RegMessage);
(9) RegWriteStatus = 0;
(10) }
(11) else if(RegWriteStatus==2)
(12) {
(13) RegMessage.LoadString(IDS_NO_WRITE_TO_REG49HL);
(14) spit_Message(RegMessage);
(15) RegWriteStatus = 0;
(16) }

A6: Converter of Integer Value to Hexadecimal Value Function

(1) void CDIETOPv12Dlg::IntegerToHex(int Integer)
(2) { counter = 0;
(3) value2 = 0;
(4) value1 = 0;
(5) power = 0.0;
(6) Hex_Array[0] = 0;
(7) Hex_Array[1] = 0;
(8) Hex_Array[2] = 0;
(9) Hex_Array[3] = 0;
(10) int LSB = 0;
(11) int MSB = 0;
(12) while((Integer-16)>0)
(13) {
(14) counter2 = 0;
(15) while(Integer>=16)
(16) {
(17) Integer = Integer-16;
(18) counter2++;
(19) };
(20) Hex_Array[counter] = Integer;
(21) counter++;
(22) Integer = counter2;
(23) }
(24) Hex_Array[counter] = Integer;
(25) counter++;
(26) for(i=0;i < counter;i++)
(27) {
(28) power = (i+0.0);
(29) Base16factor = (int)pow(16.0,power);
(30) value1 = Hex_Array[i]*Base16factor;
(31) i++;
(32) power = (i+0.0);
(33) Base16factor = (int)pow(16.0,power);
(34) value2 = Hex_Array[i]*Base16factor;

(35) if(i==1)
(36) {
(37) LSB = value1 + value2;
(38) }
(39) else if(i==3)
(40) {
(41) MSB = value1 + value2;
(42) }

Appendices A A-21

(43) }
(44) Bit_Array[0] = LSB;
(45) Bit_Array[1] = MSB;
(46) }

A7: I2C Interface Code

(1) int CDIETOPv12Dlg::CMOS_Register_Writer(int type, int Data, int Reg)
(2) {
(3) Adapter Camera_Settings;
(4) Camera_Settings.Initialise();
(5) int WriteQuery = 0;
(6) if(type==1)
(7) {

Writing Specific
Values to Registers

Bit Masking the
Registers

(8) Camera_Settings.WriteAddress(KAC_9648_write_address
,ACKNOWLEDGE);

(9) Camera_Settings.WriteData(Reg);
(10) Camera_Settings.Restart(KAC_9648_read_address

,DO_NOT_ACKNOWLEDGE);
(11) Camera_Settings.ReadData(DO_NOT_ACKNOWLEDGE);
(12) int Register_Value2 = Camera_Settings

.ReadData(DO_NOT_ACKNOWLEDGE);
(13) Camera_Settings.WriteStop();
(14) int MaskApp = (Register_Value2 | Data);

(15) Camera_Settings.WriteAddress(KAC_9648_write_address

,ACKNOWLEDGE);
(16) Camera_Settings.WriteData(Reg);
(17) Camera_Settings.WriteData(MaskApp);
(18) Camera_Settings.WriteStop();

(19) Camera_Settings.WriteAddress(KAC_9648_write_address

,ACKNOWLEDGE);
(20) Camera_Settings.WriteData(Reg);
(21) Camera_Settings.Restart(KAC_9648_read_address

,DO_NOT_ACKNOWLEDGE);
(22) Camera_Settings.ReadData(DO_NOT_ACKNOWLEDGE);
(23) int Register_Value3 = Camera_Settings

.ReadData(DO_NOT_ACKNOWLEDGE);
(24) Camera_Settings.WriteStop();
(25) if(Register_Value3==MaskApp)
(26) {
(27) WriteQuery = 1; // There is a successful write to the
 camera register.
(28) }
(29) else
(30) {
(31) WriteQuery = 2; // There is no write to the camera

regsiter.
(32) }

(33) }
(34) else if(type==0)
(35) {
(36) Camera_Settings.WriteAddress(KAC_9648_write_address

,ACKNOWLEDGE);
(37) Camera_Settings.WriteData(Reg);
(38) Camera_Settings.WriteData(Data);
(39) Camera_Settings.WriteStop();

(40) Camera_Settings.WriteAddress(KAC_9648_write_address

,ACKNOWLEDGE);
(41) Camera_Settings.WriteData(Reg);
(42) Camera_Settings.Restart(KAC_9648_read_address

,DO_NOT_ACKNOWLEDGE);
(43) Camera_Settings.ReadData(DO_NOT_ACKNOWLEDGE);
(44) int Register_Value3 = Camera_Settings

.ReadData(DO_NOT_ACKNOWLEDGE);

Appendices A

A-22

(45) Camera_Settings.WriteStop();

(46) if(Data==Register_Value3)
(47) {
(48) WriteQuery = 1; // There is a successful write to the

camera register.
(49) }
(50) else
(51) {
(52) WriteQuery = 2; // There is no write to the camera
 regsiter.
(53) }

(54) };

(55) return WriteQuery;
(56) }

A8: The ‘Spit Message’ Function

(1) void CDIETOPv12Dlg::spit_Message(CString Message)
(2) {
(3) LPSYSTEMTIME lpSystemTime = new _SYSTEMTIME;
(4) GetLocalTime(lpSystemTime);
(5) CString Message_Post;
(6) Message_Post.Format("[%d:%d:%d] %s",lpSystemTime->wHour,lpSystemTime-
 >wMinute,lpSystemTime->wSecond, Message);
(7) m_list.AddString(Message_Post);
(8) m_list.SetScrollPos(0,0,TRUE);
(9) }

A9: The Initial Start-up of the Image Capture Process

(1) void CDIETOPv12Dlg::OnBnClickedAcceptandrun()
(2) {

(3) if(ConnectSocket("dSpace",2345)){
(4) Ethernet_Mess.LoadString(IDS_TALKING);
(5) spit_Message(Ethernet_Mess);
(6) }
 else
(7) {
(8) Ethernet_Mess.LoadString(IDS_NO_CONNECTION);
(9) spit_Message(Ethernet_Mess);
(10) return;
(11) }

(12) if(ServerStatus==1){
(13) UpdateData(TRUE); The Processing of

the Settings for
dSpace

(14) CString Space = " ";
(15) CString Identifier = "1";
(16) PhaseValues = Identifier + Space + m_LowerPhaseValue + Space +
 m_UpperPhaseValue + Space +
 m_PhaseIncrement + Space + m_NumImagesPerPhase + Space +
 m_AcutatorFrequency;
(17) AfxBeginThread(IrisClientThread,(LPVOID)this);
(18) ServerStatus = 0;
(19) }
(20) else if(ServerStatus==0){
(21) Ethernet_Mess.LoadString(IDS_SERVER_IS_RUNNING);
(22) spit_Message(Ethernet_Mess);
(23) };
(24) }

Appendices A

A-23

A10: The ‘While Loop’ of Communications Thread

(1) while (CalledArray[1]==FALSE){

(2) if(CalledArray[3]==TRUE && ExecutedArray[3]==FALSE && CalledArray[1]==FALSE){
(3) Ethernet_Mess.LoadString(IDS_PHASE_INFO);
(4) spit_Message(Ethernet_Mess);
(5) if(SentValues==1){
(6) pImageFileInfo->ImageNumber = 1;
(7) while(*AckMessage != *Iris_Instruction){
(8) dSpace_Instruction = "IncreasedPhase";
(9) m_pSocket->Send(dSpace_Instruction,100);
(10) Sleep(3);
(11) };
(12) };

(13) if(SentValues==0){
(14) pImageFileInfo->ImageNumber = 1;
(15) dSpace_Instruction = PhaseValues;
(16) while(*AckMessage != *Iris_Instruction){
(17) m_pSocket->Send(dSpace_Instruction,100);
(18) Sleep(3);
(19) }
(20) SentValues=1;
(21) }

(22) IntermedateString.LoadString(IDS_PHASE_STATUS);
(23) Ethernet_Mess.Format(IntermedateString,pImageFileInfo->CurrentPhase);
(24) spit_Message(Ethernet_Mess);

(25) pImageFileInfo->CurrentPhase = pImageFileInfo->CurrentPhase + StepPhase;
(26) ExecutedArray[3]=TRUE;

(27) }

(28) if(CalledArray[2]==TRUE && ExecutedArray[2]==FALSE)
(29) {
(30) ExecutedArray[0]=FALSE;
(31) CalledArray[0]=FALSE;
(32) IntermedateString.LoadString(IDS_IMAGE_STATUS);
(33) Ethernet_Mess.Format(IntermedateString,pImageFileInfo->ImageNumber);
(34) spit_Message(Ethernet_Mess);
(35) Ethernet_Mess.LoadString(IDS_CAMERA_TRIGGER_SETUP);
(36) spit_Message(Ethernet_Mess);
(37) AfxBeginThread(LeftCamTrigThread,static_cast<LPVOID>(pImageFileInfo));
(38) AfxBeginThread(RightCamTrigThread,static_cast<LPVOID>(pImageFileInfo));

(39) char *StrChange2 = "NULL";
(40) strcpy(Iris_Instruction,StrChange2);
(41) while(*AckMessage != *Iris_Instruction){
(42) dSpace_Instruction = "CamerasReady";
(43) m_pSocket->Send(dSpace_Instruction,100);
(44) Sleep(3);
(45) }
(46) if(*AckMessage==*Iris_Instruction){
(47) CamerasReady = 1;
(48) }
(49) ExecutedArray[2] = TRUE;
(50) pImageFileInfo->ImageNumber++;
(51) }

(52) if(pImageFileInfo->ImageStatus==1 && CamerasReady == 1)
(53) {
(54) Ethernet_Mess.LoadString(IDS_CONFIRMED_TRIGGER_OCCURED);
(55) spit_Message(Ethernet_Mess);
(56) CamerasReady = 0;
(57) pImageFileInfo->ImageStatus = 0;
(58) char *StrChange = "NULL";
(59) strcpy(Iris_Instruction,StrChange);

Appendices A

A-24

(60) while(*AckMessage != *Iris_Instruction){
(61) dSpace_Instruction = "TriggerCompleted";
(62) m_pSocket->Send(dSpace_Instruction,100);
(63) Sleep(3);
(64) }
(65) }

(66) if(pImageFileInfo->ImageStatus==-1 && CamerasReady == 1)
(67) {
(68) IntermedateString.LoadString(IDS_TRIGGER_FAILED);
(69) Ethernet_Mess.Format(IntermedateString,

pImageFileInfo->ImageNumber,
pImageFileInfo->CurrentPhase);

(70) spit_Message(Ethernet_Mess);
(71) CamerasReady = 0;
(72) }

(73) if(CalledArray[0]==TRUE && ExecutedArray[0]==FALSE)
(74) {
(75) ExecutedArray[0]=TRUE;
(76) ExecutedArray[2]=FALSE;
(77) ExecutedArray[3]=FALSE;
(78) CalledArray[2]=FALSE;
(79) CalledArray[3]=FALSE;
(80) pImageFileInfo->ImageStatus = 0;

(81) while(*AckMessage != *Iris_Instruction){
(82) dSpace_Instruction = "ResetedCameras";
(83) m_pSocket->Send(dSpace_Instruction,100);
(84) Sleep(3);
(85) }
(86) }
(87) Ethernet_Mess.LoadString(IDS_COMPLETED_TIGGER);
(88) spit_Message(Ethernet_Mess);
(89) ServerStatus = 1;
(90) CalledArray[1]=FALSE;
(91) }

A11: The Trigger Set-Up Function

(1) errChk(imgInterfaceOpen ("img1", &LeftCamTrigInterfaceID));

Generic Frame
Grabber Set-Up Code

(2) errChk(imgSessionOpen (LeftCamTrigInterfaceID, &LeftCamTrigSessionID));
(3) errChk(imgGetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROI_WIDTH,

 &acqWinWidthLeft));
(4) errChk(imgGetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROI_HEIGHT,
 &acqWinHeightLeft));
(5) errChk(imgSetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROI_WIDTH,
 acqWinWidthLeft));
(6) errChk(imgSetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROI_HEIGHT,

 acqWinHeightLeft));
(7) errChk(imgSetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROWPIXELS,

 acqWinWidthLeft));
(8) errChk(imgGetAttribute (LeftCamTrigSessionID, IMG_ATTR_BYTESPERPIXEL,
 &bytesPerPixel));
(9) errChkLeft(imgCreateBufList(20, &LeftMainVideoCamBufListIDTriggerLeft));
(10) bufSize = acqWinWidthTriggerLeft * acqWinHeightTriggerLeft * 4;
(11) BYTE* InterBufferTriggerLeft = new BYTE[bufSize];
(12) BYTE* FinalBufferTriggerLeft = new BYTE[bufSize];
(13) bufSize2 = acqWinWidthTriggerLeft * acqWinHeightTriggerLeft * bytesPerPixel;
(14) ImaqBuffersTriggerLeft = (void **) malloc (10* sizeof(void*));
(15) CopyBufferTriggerLeft = (uInt8 *) malloc (bufSize2 * sizeof(uInt8));
(16) for (i = 0; i < 10; i++)
(17) {
(18) errChkLeft(imgCreateBuffer(LeftMainVideoCamSessionIDTriggerLeft,

IMG_DEVICE_FRAME, bufSize2, &ImaqBuffersTriggerLeft[i]));
(19) errChkLeft(imgSetBufferElement(LeftMainVideoCamBufListIDTriggerLeft, i,

IMG_BUFF_ADDRESS, (uInt32)ImaqBuffersTriggerLeft[i]));
(20) errChkLeft(imgSetBufferElement(LeftMainVideoCamBufListIDTriggerLeft, i,

Appendices A

A-25

IMG_BUFF_SIZE, bufSize2));
(21) bufCmd = (i == (10 - 1)) ? IMG_CMD_LOOP : IMG_CMD_NEXT;
(22) errChkLeft(imgSetBufferElement(LeftMainVideoCamBufListIDTriggerLeft, i,
 IMG_BUFF_COMMAND, bufCmd));
(23) }
(24) errChkLeft(imgMemLock(LeftMainVideoCamBufListIDTriggerLeft));
(25) errChkLeft(imgSessionConfigure(LeftMainVideoCamSessionIDTriggerLeft,

LeftMainVideoCamBufListIDTriggerLeft));
(26) errChkLeft(imgSessionAcquire(LeftMainVideoCamSessionIDTriggerLeft, TRUE, NULL));
(27) errChkLeft(imgCalculateBayerColorLUT(redGainTriggerLeft, greenGainTriggerLeft,

blueGainTriggerLeft, redLUTTriggerLeft, greenLUTTriggerLeft,
blueLUTTriggerLeft, bitsPerPixel));

(28) errChkLeft(imgCreateBuffer(LeftMainVideoCamSessionIDTriggerLeft, FALSE, bufSize,
&RGBBufferTriggerLeft));

(29) static int currBufNum, lastBufNum = 0xFFFFFFFF;
(30) errChkLeft(imgSessionWaitSignal(LeftMainVideoCamSessionIDTriggerLeft,

IMG_EXT_TRIG0,IMG_SIGNAL_STATE_FALLING,100000));
(31) Sleep(1500);
(32) errChkLeft(imgGetAttribute (LeftMainVideoCamSessionIDTriggerLeft,

IMG_ATTR_LAST_VALID_BUFFER, &currBufNum));
(33) if ((currBufNum != lastBufNum) && (currBufNum != 0xFFFFFFFF)){
(34) errChkLeft(imgSessionCopyBuffer (LeftMainVideoCamSessionIDTriggerLeft,

currBufNum, CopyBufferTriggerLeft, FALSE));
(35) errChkLeft(imgBayerColorDecode(RGBBufferTriggerLeft,

(void *)CopyBufferTriggerLeft, acqWinHeightTriggerLeft,
acqWinWidthTriggerLeft, acqWinWidthTriggerLeft,
acqWinWidthTriggerLeft, redLUTTriggerLeft,
greenLUTTriggerLeft, blueLUTTriggerLeft,
IMG_BAYER_PATTERN_GRGR_BGBG, bitsPerPixel, 0));

(36) m_hBitmapImageTriggerLeft = CreateBitmap(acqWinWidthTriggerLeft,
acqWinHeightTriggerLeft,1,32,(BYTE*)RGBBufferTriggerLeft);

(37) CString m_filename;
(38) m_filename.Format(TriggerImageFilePathLeft,pImageFileInfoLeft.ImageNumber,

pImageFileInfoLeft.CurrentPhase);
(39) CImage MyImage;
(40) MyImage.Attach(m_hBitmapImageTriggerLeft);
(41) Sleep(300);
(42) MyImage.Save(m_filename);
(43) MyImage.Destroy();
(44) InterBufferTriggerLeft = NULL;
(45) FinalBufferTriggerLeft = NULL;
(46) delete InterBufferTriggerLeft;
(47) delete FinalBufferTriggerLeft;
(48) delete MyImage;
(49) m_hBitmapImageTriggerLeft = NULL;
(50) delete m_hBitmapImageTriggerLeft;
(51) free(InterBufferTriggerLeft);
(52) free(FinalBufferTriggerLeft);
(53) free(MyImage);
(54) free(m_hBitmapImageTriggerLeft);}

A12: Kill Focus Event Example

(1) void CImageMat::OnEnKillfocusEditwoirowpointer0()
(2) {
(3) UpdateData(TRUE);
(4) if((woi_row_pointer_0 < 16) | (woi_row_pointer_0 > 1023))
(5) {
(6) AfxMessageBox("The WOI row pointer must be greater than 16 and
 less than 1023");
(7) woi_row_pointer_0 = 16;
(8) UpdateData(FALSE);
(10) WOIROWPOINTER.SetFocus();
(11) WOIROWPOINTER.SetSel(0,-1);
(12) }
(13) }

Appendices A

A-26

A13: File Path and Browse Dialog Box

(1) void CSavingSettings::OnBnClickedCalBrowse()
(2) {
(3) BROWSEINFO bi;
(4) m_LeftCamPathAccept.EnableWindow(TRUE);
(5) char szPathLeftCal[MAX_PATH + 1];
(6) LPITEMIDLIST pidl;
(7) BOOL bResult = FALSE;

(8) IMalloc *imalloc;
(9) SHGetMalloc(&imalloc);
(10) ZeroMemory(&bi, sizeof(bi));

(11) bi.hwndOwner = m_hWnd;
(12) bi.pidlRoot = NULL;
(13) bi.pszDisplayName = NULL;
(14) bi.lpszTitle = TEXT("Select the folder you wish to save the Calibration
 images");
(15) bi.ulFlags = BIF_STATUSTEXT|BIF_NONEWFOLDERBUTTON|BIF_RETURNONLYFSDIRS;
(16) bi.lParam = NULL;

(17) pidl = SHBrowseForFolder(&bi);
(18) SHGetPathFromIDList(pidl,szPathLeftCal);
(19) m_LeftCameraCal.AddString(szPathLeftCal);
(20) m_LeftCameraCal.SetCurSel(0);
(21) m_LeftCameraCal.SetFocus();
(22) LeftCamCalPath = (char)szPathLeftCal;

(23) imalloc->Free(pidl);
(24) imalloc->Release();
(25) }

A14: ComboBox Change Example

(1) void CSavingSettings::OnCbnSelchangeCombo2()
(2) {
 // The extention for saving the Calibration images
(3) UpdateData();
(4) m_LeftCamPathAccept.EnableWindow(TRUE);
(5) if(m_nDropListIndex < 0) return;
(6) LPTSTR CalImagesExt = "NULL";
(7) m_LeftCameraCalImgFormat.GetLBText(m_nDropListIndex, CalImagesExt);
(8) LeftCamCalImgFormat = (char)CalImagesExt;

(9) }

Appendix B

Python™ and ControlDesk™ Code

B1 Detailed Python™ and ControlDesk™ Operation

Explanation

……... B-1

B2 The Python Header ……. B-9

B3 ControlDesk Automation ……... B-9

B4 Socket Communications ……... B-10

B5 Receive Function ……... B-11

B6 ControlDesk™ GUI Button Events ……... B-12

Appendices B

B-1

B1: Detailed Python™ and ControlDesk™ Operation Explanation

What is outlined in appendix B is a descriptive explanation for the operation of the Python™ and

its interaction with ControlDesk™. References to blocks of code can be found after the text in

sperate appendix blocks.

B1.0 ControlDesk™ Operation and Interfacing

ControlDesk™ is a program built to control the Simulink™ diagram while it is running in the

dSpace module. An interface is built using ControlDesk™ in the form a GUI to talk to the

Simulink™ code while it is running. Only once the diagram is uploaded to the module can it be

access.

There are two signal switches outline in the ControlDesk™ GUI the reset switch and the send

signal switch. These are both edit boxes, which are connected to a switch located in the

Simulink™ diagram. They are numerical edit boxes have buttons located on the right side of the

box to increment the value inside the box, but these have been disabled to stop the values being

change by sources other that the automation code. The automation code changes the values

inside these edit boxes, in order to control the sending of the pulse out of the dSpace module

amongst other functions. The edit boxes correspond to the following tasks by inserting the

following values:

• “Reset”→ Trigger Pulse Control; Reset Switch (1 = On, 0 = Off)

• “Send Signal” → Trigger Pulse Control; Signal Switch (1 = On, 0 = Off)

• “Actuator Frequency” → Strobe and Actuator Control; Signal Generator (Box Value =

Frequency)

• “Phase Lag” → Strobe and Actuator Control; Phase Delay (Box Value = Phase Delay)

• “Image Number” → Python Script; Image Number Update

Appendices B

B-2

• “Main Frequency” → Strobe and Actuator Control; Main Frequency (Box Value =

Frequency)

The plotter in the GUI plots the position of the actuator, from the memory stores in the block

diagram. The buttons in the GUI trigger events in the automation code that is part of the GUI

written in python. The events occur when the button is down. The “Start Server” button activates

the python server that will be communicating with the ICC to co-ordinate image capture with

trigger pulse generation.

B1.1 Python Script Layout and Operation

The python scripting language is a high level programming language. This means that a lot of the

manual memory allocation that programmers usually deal with using lower level programming

languages, is taken care of in python without the programming have to worry about it. Another

difference between python, than say visual C++, is that in python strings are not terminated with

the null character where as in visual C++ they are. Usually the null (\x00) must be added

manually in the python script when ever an instruction is sent to the ICC. Another important

difference between python and visual C++, is in python when dealing with “if” or “while”

statements, their conditions are followed by a colon and the contents of the statement is indented

below to indicate to the python interpreter what code is part of that statement.

The use of python to automate the ControlDesk™ GUI is an option offered by ControlDesk™

and due to the versatility and ease of programming in python it is possible to create socket

communications between the dSpace computer and the ICC. If the correct PCI boards required to

interface with the dSpace module, were in fact installed on the ICC the socket communications

could still be used. The TCP/IP provide common ground for the image capture and camera

controlling visual C++ program to interface with the python script controlling ControlDesk™,

Appendices B

B-3

and hence send the trigger pulses, even though they are two completely different programming

languages.

The python script running the ControlDesk™ GUI can be broken up into the following sections:

• The Python Header

• ControlDesk™ Automation

• Ethernet Communications

• ControlDesk™ GUI Button Events

B1.1.0 The Python Header

The header for the automation is shown in Appendix B2. The header includes all the libraries

being used in the following script. The header in Appendix B2 is of a similar layout to that of a

visual C++ “.h” file in that specific libraries are included, or in this case imported to make use of

specific functions that are part of them. In the case where “from” is used the programmer only

uses certain items from that library. For example: “from time import sleep”, this is saying we

only want to use the sleep function from the time library. This sleep function is used to

temporary halt started threads, to give other programs time to catch-up or perform other

functions first.

The header also includes definition of instructions to be sent to the ICC. The computer name of

the ICC is called ‘Iris’ and the header includes all the pre-defined instructions for the ICC.

Appendices B

B-4

B1.1.1 ControlDesk™ Automation

The automation of ControlDesk™ is achieved using the using the header import libraries

“cdacon” and “cdautomationlid” shown in Appendix B2. The script for automating the buttons

on the ControlDesk™ GUI is shown in Appendix B3. The script in Appendix B3 follows a

specific format. The 4 lines of script from (6) to (9) is the format for changing the value in one

numerical edit box. The value that appears in the box, and hence has an influence on the running

Simulink™ diagram, is place there during the running of line (7), where the value is changed to

“1”.

B1.1.2 Ethernet Communications

The Ethernet communications are achieved using the socket capabilities of the python script

programming language. Appendix B4 shows the layout of the python script for the Ethernet

communications. The lines from (4) to (22) are the initialisation of variable and string commands

used by the Ethernet Comms. The socket set-up is the almost the same as the visual C++

applications. First a socket is created, as shown in line (23) appendix B4, using the python

function socket with the flags “AF_INET” and “SOCK_STREAM”. The flags are there to define

the properties of the socket. The “AF_INET” or “Address Family: Internet” flag, means that the

socket will being using the Internet Protocol (IP). The “SOCK_STREAM” flag assigns the use

of the Transmission Control Protocol (TCP) to the created socket and is usually combined with

the IP, since the TCP uses IP to find hosts on the network. The creation of the socket in line (23)

can be thought of as the building of the type of cable that will be connecting the dSpace and ICC

to one another. The structure of socket communications is discussed in chapter 3. Then in line

(25) we bind the address format to the socket as defined in line (11) appendix B2. This address

assigns a port number to the newly created socket. The computer connecting to the dSpace

computer must connect using the same socket number or nothing will happen.

Appendices B

B-5

The created socket is then told to listen for any connection attempts made to the dSpace

computer (appendix B4, line (27)). The dSpace is set-up as a server. Once the dSpace computer

has accepted the connection from the ICC, the accept command creates another socket called

“CommSocket”, by which all the sending and receiving of command strings is handled.

B1.1.3 The Receive Function

All instructions that travel between the two computers are communicated using strings. When a

string is received by the dSpace computer it is then checked against the array of possible

commands in the receive function shown in Appendix B5. The receive function is started in the

Server function (appendix B4, line (32)) as a thread. The receive command, which is part of the

socket library sits inside a “while” loop that is set to loop “forever”. Once the function arrives at

the “recv” command in line (4) the function stops and waits for data to arrive from the ICC. It is

for this reason that the “Receive” function is ran inside a thread because if it was not the script

could not perform other functions while it is waiting for it next command. The set-up of this

“Receive” function is use in much the same way as the “OnReceive” event is in the visual C++

application.

Once the Receive function has acquired data it is expected that this data is in the form of a string,

and because the string is arriving from the ICC it will have a null character on the end of it.

Anything after this null character is just rubbish that has filled up the remaining space in the

message buffer. The null character is found using pythons, “find” command which returns an

index in the string of the null position. The string command is then compared against all the

commands the script has been programmed to accept. If the command has not already been

called, then the “CalledArray” index (corresponding to the command called), is changed to a “1”

(fig B1.1), which will be registered in the main server loops in the Server function.

Appendices B

B-6

Figure B1.1: The changing of the CalledArray upon an instruction from the ICC

CommandArray = [‘CameraReady’,’TriggerCompleted’,’ResetCameras’,’1’,’IncreasedPhase’]

CalledArray = [0 , 0 , 0 , 0, 0]

Instruction from ICC ‘CameraReady’

CalledArray = [1 , 0 , 0 , 0, 0]

B1.1.4 The Server Function

The server function handles all the processing of the received instructions from the ICC. All the

tasks for controlling the triggering sequence are contained within 3 “while” loops, arranged as

shown in figure B1.2.

Figure B1.2: The pseudo layout of the server function script

While loop 1: (Get Phase Loop)

‘If’ statement 1

‘If’ statement 2

End

While loop 2: (Increment Phase)

While loop 3: (Increment Image Number)

‘If’ statement 3

‘If’ statement 4

‘If’ statement 5

‘If’ statement 6

End

‘If’ statement 7
End

Appendices B

B-7

The server script for handling the instructions from the ICC follows the initialisation of the

socket script.

Throughout the server script there is smaller while loops that provide a type of “handshaking”

between the two computers. An example of theses loops can be seen in appendix B4 lines (54) to

(56). What is happening, is that any instruction being sent to the ICC, is being sent over and over

again, in periods determined by the “sleep” function until the ICC sends an acknowledgment

string to the dSpace computer which is then picked up by the receive function and then made

available to the “while” loop so that it stops sending. The arrangement of this message sending is

illustrated in figure B1.3.

Figure B1.3: This shows the command string is being constantly sent to the ICC until the ICC send back
the acknowledgment that the command has arrived

Event Command

Command
Acknowledgement

DSpace
Computer

Iris
Computer

This process of handshaking is done in the visual C++ application as well in a similar format.

The communications between the two computers occur as follows:

• The start button on the ControlDesk™ GUI is press starting the server on the dSpace

computer, which then waits for a connection from the ICC.

• The connection is made from the ICC and accept by the dSpace computer at which point

an instruction is sent to the ICC requesting information on the phases and actuator

frequency (‘if’ statement 2).

Appendices B

B-8

• Once the phase and actuator information is received by the dSpace computer the

information is processed inside “if” statement 1.

• The program then moves into “while” loop 2 and then into “while” loop 3 then to “if”

statement 3 which send the instruction to the ICC to set-up the cameras and frame

grabbers for receiving the triggers.

• Once the acknowledgement is sent from the ICC that the cameras are ready, the trigger

function is executed in “if” statement 4.

• The ICC, upon receiving the trigger signal, then captures the images and saves them and

then sends the ‘TriggerCompleted’ to the dSpace computer.

• Then in “if” statement 5 a reset instruction is sent to the ICC, to reset the entire ‘if’

statements on the ICC.

• The following ‘if’ statement 6 resets the entire ‘if’ statements on the dSpace computer.

• Once the “while” loop 3 has meet it conditions the program moves on to “if” statement 7

which sends the instruction to the ICC to increase its value of phase.

The above process continues for the user’s specified amount of images per phase increment and

number of phase increments.

The “while” loop 2, provides the increasing of the phase from a user specified being, end and

increment. The “while” loop 3 provides the increasing number of images per phase with the

exception of ‘if’ statement 7, every statement within ‘loop 3 in figure B1.2 is repeated for a user

defined number of images.

B1.1.5 ControlDesk™ GUI Button Events

The ControlDesk™ buttons are outlined in appendix B6. The functions in lines (1) and (3) are

part of the ControlDesk™ automation library and are activated when the when either button on

Appendices B

B-9

the GUI is press down. The first of the button events on line (1) starts the server thread, using the

function shown in line (2) of appendix B6. The function shown in line (2) is part of the thread

library and starts the server function as a thread. The second of the button events on line (3) runs

the trigger function, which is used to test the response of the cameras and frame grabbers.

the GUI is press down. The first of the button events on line (1) starts the server thread, using the

function shown in line (2) of appendix B6. The function shown in line (2) is part of the thread

library and starts the server function as a thread. The second of the button events on line (3) runs

the trigger function, which is used to test the response of the cameras and frame grabbers.

B2: The Python HeaderB2: The Python Header

(1) import socket
(2) import string
(3) import thread
(4) import cdacon
(5) from cdautomationlib import *
(6) from time import sleep
(7) GrabbedPhases = 1
(8) host = ''
(9) port = 2345
(10) Bufsize = 1024
(11) ADDR = (host, port)
(12) AckMessage = 'AckMessage'
(13) AckMessage2 = 'AckMessage\x00'
(14) Iris_Instruction1 = 'GetPhases\x00'
(15) Iris_Instruction2 = 'SetCameras\x00'
(16) Iris_Instruction3 = 'Reset\x00'
(17) Iris_Instruction4 = 'End\x00'
(18) global NumImagePerPhase
(19) ImageCount=1

B3: ControlDesk Automation

(1) def Trigger():
(2) import pythoncom
(3) pythoncom.CoInitialize()
(4) sleep(0.5)
(5) # triggering://dSPACE NumericInput Control_1:WriteData

The script
to change

(6) Instrumentation().ConnectionController.DisableSystemPoll()
(7) Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab

the value in
one
numerical
edit edit

Files\\triggering.lay").Instruments.Item("dSPACE NumericInput Control_1").Value =1.0000000000000000
(8) Instrumentation().ConnectionController.ProcessAnimationEvent("triggering://dSPACE NumericInput

Control_1","WriteData")
(9) Instrumentation().ConnectionController.EnableSystemPoll()
(10) sleep(0.5)
(11) # triggering://dSPACE NumericInput Control_1:WriteData
(12) Instrumentation().ConnectionController.DisableSystemPoll()
(13) Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab

Files\\triggering.lay").Instruments.Item("dSPACE NumericInput Control_1").Value =
0.00000000000000000

(14) Instrumentation().ConnectionController.ProcessAnimationEvent("triggering://dSPACE NumericInput
Control_1","WriteData")

(15) Instrumentation().ConnectionController.EnableSystemPoll()
(16) sleep(0.5)
(17) # triggering://dSPACE NumericInput Control:WriteData
(18) Instrumentation().ConnectionController.DisableSystemPoll()
(19) Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab

Files\\triggering.lay").Instruments.Item("dSPACE NumericInput Control").Value =
1.0000000000000000

(20) Instrumentation().ConnectionController.ProcessAnimationEvent("triggering://dSPACE NumericInput

Appendices B

B-10

Control","WriteData")
(21) Instrumentation().ConnectionController.EnableSystemPoll()
(22) sleep(0.5)
(23) # triggering://dSPACE NumericInput Control:WriteData
(24) Instrumentation().ConnectionController.DisableSystemPoll()
(25) sleep(0.5)
(26) Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab

Files\\triggering.lay").Instruments.Item("dSPACE NumericInput Control").Value =
 0.00000000000000000

(27) Instrumentation().ConnectionController.ProcessAnimationEvent("triggering://dSPACE NumericInput
Control","WriteData")

(28) Instrumentation().ConnectionController.EnableSystemPoll()
(29) sleep(0.5)
(30) Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab

Files\\triggering.lay").Activate()
(31) Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab

Files\\triggering.lay").Activate()
(32) pythoncom.CoUninitialize()

B4: Socket Communications

(1) def Server():
(2) import pythoncom
(3) pythoncom.CoInitialize()
(4) global dSpace_Instruction
(5) dSpace_Instruction = 'NULL'
(6) GrabbedPhase = 1
(7) PhaseCount = 0
(8) global SetCameras
(9) global ExitReceive
(10) ExitReceive = 0
(11) SyncPhases = 0
(12) global CommandArray
(13) global CalledArray
(14) global ExecutedArray
(15) global BufferArray
(16) global QuitReceive
(17) CommandArray = ['CamerasReady','TriggerCompleted','ResetedCameras','1','IncreasedPhase']
(18) CalledArray = [0,0,0,0,0]
(19) ExecutedArray = [0,0,0,0,0]
(20) BufferArray = [0,0,0,0,0]
(21) QuitReceive = [0,0]
(22) SetCameras = 1
(23) ServerSocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

All the socket
communication
initialising

‘If’ Statement 1

(24) print'starting server'
(25) ServerSocket.bind(ADDR)
(26) print'Listening'
(27) ServerSocket.listen(5)
(28) global CommSocket
(29) CommSocket, addr = ServerSocket.accept()
(30) print'Connection accpeted'
(31) print'Starting the receive'
 ……[ControlDesk™ Automation Code]…………
(32) thread.start_new_thread(Receive,())
(33) ImageCount=1
(34) while(GrabbedPhase==1):
(35) if (dSpace_Instruction[0]=='1'):
(36) Values = dSpace_Instruction.split()
(37) LowerPhaseValue = int(Values[1])
(38) UpperPhaseValue = int(Values[2])
(39) PhaseIncrement = int(Values[3])
(40) NumImagePerPhase = int(Values[4])
(41) ActuatorFrequency = int(Values[5])
(42) NumberOfPhases = (UpperPhaseValue-LowerPhaseValue)/PhaseIncrement

Appendices B

B-11

(43) GrabbedPhase = 0
………[ControlDesk™ Automation Code]…………
(44) print '\nJust got the Phases\n'
(45) if(dSpace_Instruction[0]!='1'):
(46) CommSocket.send(Iris_Instruction1) ‘If’ Statement 2
(47) sleep(0.5)

(48) while(PhaseCount<=UpperPhaseValue):
………[ControlDesk™ Automation Code]…………
(49) print'Current strobe phase is:',PhaseCount
(50) while(ImageCount<=NumImagePerPhase):
(51) if(SetCameras ==1):

‘If’ Statement 4

‘If’ Statement 5

‘If’ Statement 6

‘If’ Statement 7

‘If’ Statement 3

(52) print 'The image count is:',ImageCount
……....[ControlDesk™ Automation Code]……………
(53) dSpace_Instruction = 'NULL'
(54) while(cmp(dSpace_Instruction,AckMessage)!=0):
(55) CommSocket.send(Iris_Instruction2)
(56) sleep(0.5)
(57) SetCameras = 0

(58) if(CalledArray[0]==1 and ExecutedArray[0]==0):
(59) ExecutedArray[0]=1
(60) Trigger()
(61) ImageCount = ImageCount+1
(62) ExecutedArray[2]=0

(63) if(CalledArray[1]==1 and ExecutedArray[1]==0):
(64) ExecutedArray[1]=1
(65) dSpace_Instruction = 'NULL'
(66) while(cmp(dSpace_Instruction,AckMessage)!=0):
(67) CommSocket.send(Iris_Instruction3)
(68) sleep(0.5)
(69) if(CalledArray[2]==1 and ExecutedArray[2]==0):
(70) print'dSpace program has been reseted'
(71) ExecutedArray[2]=1
(72) ExecutedArray[0]=0
(73) ExecutedArray[1]=0
(74) CalledArray[0]=0
(75) CalledArray[1]=0
(76) CalledArray[2]=0
(77) SetCameras=1
(78) dSpace_Instruction = 'NULL'
(79) if(PhaseCount!=UpperPhaseValue):
(80) while(cmp(dSpace_Instruction,AckMessage)!=0):
(81) CommSocket.send(Iris_Instruction1)
(82) sleep(0.5)

(83) PhaseCount = PhaseCount + PhaseIncrement
(84) ImageCount = 1
(85) dSpace_Instruction = 'NULL'
(86) QuitReceive[0] = 1
(87) while(cmp(dSpace_Instruction,AckMessage)!=0):
(88) CommSocket.send(Iris_Instruction4)
(89) sleep(0.5)
(90) CommSocket.close()
(91) ServerSocket.close()

B5: Receive Function

(1) def Receive():
(2) while 1:
(3) global dSpace_Instruction
(4) message = CommSocket.recv(Bufsize)
(5) Null_Position = string.find(message,'\x00')
(6) dSpace_Instruction = message[:Null_Position]
(7) Processed_dSpace_Instruction = dSpace_Instruction.split()

(8) for count in range(4):

Appendices B

B-12

(9) if(cmp(CommandArray[count],Processed_dSpace_Instruction[0])==0 and
 CalledArray[count]!=1):
(10) CalledArray[count]=1

(11) if(QuitReceive[0]!=0 and cmp(dSpace_Instruction,AckMessage)==0):
(12) break

(13) CommSocket.send(AckMessage2)

B6: ControlDesk™ GUI Button Events

(1) def On_Instrumentation_triggering_dSPACEPushButtonControl_ButtonDown(OrderIndex):
(2) thread.start_new_thread(Server,())

(3) def On_Instrumentation_triggering_dSPACEPushButtonControl_1_ButtonDown(OrderIndex):
(4) Trigger()
(5) print 'Just sent the trigger'

	StartingPagesOfThesis
	PART I Introduction
	Chapter 1
	PART II Methodology
	Chapter 2
	Chapter 3
	Chapter 4
	PART III Results
	Chapter 5
	PART IV Conclusions
	Chapter 6
	References
	Appendix A Title Cover
	A1
	Appendix B Title Cover
	B2

