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ABSTRACT 
 

 

 
Digital Image-based Elasto-Tomography (DIET) is an emerging technology for non-

invasive breast cancer screening. This technology relies on obtaining high resolution 

images of a breasts surface under high frequency actuation; typically 50-100Hz. Off-the-

shelf digital cameras are unable to capture images directly at these speeds and current 

digital camera set-ups that are potentially capable of high speed image capture are either 

low in resolution, expensive, or occupy a volume too large to have them placed about the 

breast in a dense array.  A method is presented for obtaining the required high speed 

image capture at a resolution of 1280x1024 (1.3 mega-pixels) and actuation frequency of 

100Hz. The apparatus uses two Kodak CMOS KAC-9648 imaging sensors in 

combination with frame grabbers and the dSpace™ control system, to produce an 

automated image capture system. 

 

The final working system produced images that enabled effective 3D motion tracking of 

the surface of a silicon phantom actuated at 100Hz. The surface of the phantom was 

strobed at pre-selected phases from 0 to 360 degrees, and an image was captured for each 

phase. The times at which image capture occurred were calculated for a phase lag 

increment of 10 degrees resulting in an image effectively every 0.00028s for the actuator 

cycle of 0.01s. The comparison of the actual trigger times and pre-selected ideal trigger 

times gave a mean absolute error of 1.4%, thus demonstrating the accuracy of the final 

system. 
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Chapter 1 

 

Introduction 

 
 
1.1 Motivation 
 
Breast cancer is the second leading cause of death in women after lung cancer. It is estimated 

that each year the disease is diagnosed in over one million women worldwide [1]. In New 

Zealand, breast cancer accounts for the highest mortality rate of all cancers among women and it 

has the sixth highest death rate out of 173 developed countries.  

 

The key to surviving breast cancer is early detection and treatment. One of the common methods 

of detection is mammography. Mammography works on the principles of x-ray attenuation 

differences between normal tissue and diseased tissue [2]. This means that malignant tissue will 

absorb a different amount of radiation by comparison to its healthy counterpart. As a result, the 

contrast between the two will appear different on the film. However, the contrast between the 

two types of tissue is only about 10-15% and small tumours often go undetected, as 

mammogram analysis is done by humans who may miss such small differences. The 

mammogram procedure is also quite unpleasant leading to a less than ideal compliance rate 

among eligible women. More specifically it involves compressing the breast, to achieve a 

smaller uniform thickness, in order to get the best possible image of the entire tissue volume.   

 

Digital Image-based Elasto-Tomography (DIET) is an emerging technology for non-invasive 

breast cancer screening. The DIET system relies on the mechanical properties of the breast and 

looks for regions of high stiffness since cancerous tissue is between 3 and 10 times stiffer than 

healthy tissue in the breast [3-5]. 
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The DIET system uses digital imaging of a dynamically actuated breast surface to determine 

tissue surface motion. It then reconstructs the 3D internal tissue stiffness distribution for that 

motion using advanced inverse finite boundary element methods [13-14]. This process can thus 

be broken down into four fundamental steps it is also shown in Figure 1.1: 

 

(1) Actuation: Sinusoid motion is induced in the breast via a controlled actuator. 

(2) Image Capture: A set of images is captured of the breast through a full range of motion, 

and co-ordination with the actuator. 

(3) Motion Tracking and Measurement: The captured images are analysed to track and 

determine breast motion and amplitude over the entire tissue surface in 3D space.  

(4) Tissue Stiffness Reconstruction:  Using the known actuated frequency and phase and the 

measured breast tissue motion can be used to determine the distribution of tissue 

stiffness. This distribution is re-constructed by a finite element method.  

 

Presently, there are other elasto-tomographic methods based on magnetic resonance [11] and 

ultrasound [12] modalities. Both methods are capable of measuring the tissue and are undergoing 

rapid development across the globe. However, they are also costly in terms of equipment and 

take significant time to use. They are therefore limited for practical screening applications and 

are still primarily research activities instead of begin in regular clinical use. Another 

elastography method was investigated by Kirkpatrick and Duncan (2001) [10]. In their 

experiments they used a laser or “coherent optical radiation” to create a backscattered speckle 

pattern. This pattern is then read into a computer using a linear array CCD camera with a 

telecentric lens. The movement of this speckle pattern is a result of relative sample surface 

movement, making it possible to determine the surface strain. 
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Figure 1.1: A General overview of the DIET system 

 

The benefit of using the laser speckle pattern is that it increases the spatial resolution of strain 

measurements. The disadvantage is it only acts on the surface of the sample, where ultrasound or 

MRI provides deeper, full volume strain measurements, but at reduced spatial resolution. 

Furthermore the laser can only image small parts of the sample a time. The size of the 

Kirkpatrick experimental set-up also makes it cumbersome beyond the confines of the 

laboratory, and it is thus not yet suitable for clinical breast cancer screening.  

 

The DIET system, in contrast, is silicon based and is thus potentially low cost low size and 

portable technology could therefore potentially be used in any medical centre, or transported to 

remote areas. In addition, the use of silicon technology ensures that as silicon technology 

improves and scales upward in capability, so will the DIET system performance. This scalability 

of performance is not true for wave-based X-Ray or ultrasound approaches.  
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1.2 Image Capture 

For optimal 3D tissue reconstruction, the breast is actuated at 50-100 Hz [13-14]. This frequency 

is well outside the frequencies of biological processes, such as breathing and heart rate. The 

amplitude of actuation is about 1-5 mm, which takes into account patient comfort, and 

limitations on actuator and motion measurements. At these high frequencies, image capture is 

therefore a challenging task, since clear, crisp images at high resolution are required for high 

density, accurate velocity and displacement vectors to be obtained. This requirement for the 

cameras puts the array of pixels required in the SVGA range (1264x1016), at minimum. Based 

prior analysis of field of view size and desired spatial resolution, images of 4-16 Mpixels will be 

required [15] 

 

This project develops and implements a method for combining a stroboscope with “off the shelf” 

CMOS imaging sensors to enable high frequency high-resolution image capture for the DIET 

system. In particular, the KAC-9648 SVGA CMOS imaging sensors from Kodak are used and 

the image capture method developed in this research is shown to efficiently and automatically 

grab images from the breast with actuation frequencies of 50-100 Hz. 

 

As a result, the need for very expensive high speed, high frame rate image capture, which often 

comes only at lesser resolution, is avoided. In particular, the approach presented allows low cost 

standard imaging sensors to be used. These sensors are growing in size (Mpixels) and speed on 

an annual base, so the approach presented in this thesis allows this technology to be utilized as it 

appears rather than waiting for it to be used in high speed image capture systems. 

 

This project uses CMOS imaging sensors due to their reduced size over their commercial CCD 

counterparts.  This difference would allow the freedom of placing more cameras in a dense array 

to capture all actuated breast motion with very high resolution, as shown in Figure 1.2. This 
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choice thus also enables greater imaging resolution to be obtained while maintaining simplicity 

or a lack of greater complexity, in the silicon technology used. 

 

Figure 1.2: Showing a possible set-up for digital cameras about the breast. The cameras are indicated 
here as the black cylindrical objects about the breast and are in a dome like configuration. The reduced 
size of the CMOS imaging sensors allows for a denser array of cameras. 
 

1.2.1 Direct Imaging 

The last six years has seen the CMOS imagining sensors develop significantly, as an alternative 

to the CCD. As a result, more research is being done to increase the rate of image capture at ever 

increasing resolution. For example, Lauxtermann etal (1999)  produced a CMOS imaging sensor 

that could capture images at a rate of 5000 picture/second at a resolution of 256x256 [6]. 

Kleinfelder etal (2001) produced an imaging sensor capable of 10,000 frames/s at a resolution of 

352x288 [7], which streams data at 1 Gpixels/s with each pixel being represented in 8-bits. The 

frame rates on these imaging sensors is very impressive, however their lack of resolution makes 

them impracticable for this project.  

 

A CMOS imaging sensor was developed by Krymski etal (2003) in which they produced a 

sensor with the capacity to capture 240 frames/s at a resolution of 2352x1728 [8]. This sensor 

however, had trouble finding optics that would fit the large chip size.  Thus, currently there are 

no direct imaging sensors that are able to satisfy the unique high density and speed requirements 
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of the DIET system. What is needed is high speed image capture from standard off-the-shelf 

CMOS imaging sensors or a means of obtaining it with less stringent speed requirements. 

 

1.2.2 Indirect Imaging 

A group of researchers at the University of Stanford [9] achieved high-speed image capture 

using off-the-shelf CMOS imaging sensors of mid-range resolution. They took 52 off-the-shelf 

CMOS imaging sensors of resolution 640x480 and a frame rate of 30fps, and arranged them in a 

circular array, as shown in Figure 1.3. They where mounted at three points on the body of the 

camera, to allow them to be adjusted independently of one another. One of the central cameras 

was chosen to be the reference camera in order to align the other 51 cameras to the same field of 

view. The cameras are triggered in a certain sequence one after the other to produce an overall 

very high frame rate. This sequence is shown in Figure 1.4. 

 

 

Figure 1.3: The set-up of the 52 CMOS imaging sensors 

The resulting images produce seamless high speed capture at the centre of the image with image 

inconsistencies around the edges. The authors are able to produce frame rate of up to 1560 fps. 

The images from each camera are processed to correct image distortion from the cameras pixel 

readout. 
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Figure 1.4: This illustrates the firing sequence of the 52 CMOS imaging sensors 

 

However, the method is limited, because the footage being captured must lie far from the array 

of cameras. Furthermore, an array that large to would have to be placed far from the breast, 

making the integration of this research into the DIET system impracticable if a portable system is 

required or desirable 

 

1.3 Summary  

The objective of this thesis to use standard off-the-shelf CMOS cameras, and capture frame rates 

of 50-100fps at a resolution of at least 1264x1016. Specifically, this will involve controlled 

actuation of the breast, strobing the background light and co-ordinating image capture with a 

triggered electronic shutter.  Capturing images at different phases of a sinusoidal actuation and 

response enable motion to be captured without high speed sensors. The approach will thus also 

be shown to be readily generalised to larger sensors as well. 

 

Chapter 2 will discuss the major requirements for getting the overall system working, including a 

short summary of an earlier prototype that was done prior to this thesis and a focus on the 

problems encountered. Chapter 3 will describe how a user would set-up the system to produce a 

set of captured images, and will discuss the settings available to gain the desired results. This 

chapter will also include specific examples to demonstrate the procedure. Chapter 4 will look at 
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the how the code is structured between the different pieces of equipment.  Chapter 5 will 

examine the results of the image capture system and discuss system limitations.  Finally, Chapter 

6 will summarize the effectiveness of the overall system, and discuss the potential areas for 

improvement in the system. 



 
 
 
 
 
PART II  
METHODOLOGY 
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Chapter 2 

 

Image Capture Apparatus 

 

 
This chapter describes the fundamental image capture systems in this research. 
 
2.1 Prior Image Capture System 
 
The image capture system used prior to this research was a very simple set-up made of off-the-

shelf commercial products. Specifically it consisted of the following fundamental items: 

• Two Canon PowerShot™ Digital Cameras 

• Electromagnetic Actuator 

• dSpace™ Control System 

• Laser Interferometer 

• Triggerable Stroboscope 

The layout for this equipment can be seen in Figure 2.1.  

 

 
Figure 2.1: Previous image capture set-up [16] 
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The two commercial digital cameras were set-up on mounts, so that their positions remained 

fixed after camera calibration. A computer controls these commercial cameras via a USB link. 

Each camera has its own GUI, which enables the triggering of image capture at times defined by 

the user. However, this triggering is a manual process, requiring the user to move the mouse 

cursor between GUI’s. The resulting images are encoded to a specific image format, usually 

JPEG, and saved to a local memory card.  

 

While the image capture is occurring, the dSpace™ control system drives the triggerable 

stroboscope and electromagnetic actuator in a sinusoidal pattern. Constant feedback from the 

laser interferometer allows precise control of the actuator and strobe. The strobe is triggered to 

flash at a specific predefined point in the actuators motion. The result is that this lighting 

provides the effect of a stationary actuator as it is the only from of light for image capture with 

all other light blocked by a black curtain. This enables the motion of the object under actuation 

to be imaged at discrete user defined intervals in the actuators cycle. The actual position of the 

actuator relative to the commanded position is monitored using the laser interferometer, which 

obtains velocity information of the actuator and thus provides actuator displacement after 

integration of the velocity. This separate use of the laser sensor for feedback control ensures the 

motion of the actuator maintains a precise, user-defined frequency and amplitude over the image 

capture process. 

 

The overall effect is that the sinusoidal tissue response can be imaged at specific points in the 

response without high speed imagery, as several cycles may be used to create a single image. 

This approach assumes linear, or largely linear, response to these small amplitude inputs, as seen 

in previous elastography studies [13]. It also allows high resolution imaging at any sensor speed. 

Several points of the actuator cycle can be captured so that magnitude and phase (relative to 

actuation) can be determined for the tissue motion. 
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2.2 Motivation for the New System 

The manual triggering of the cameras in the initial set-up is a very time consuming task, 

especially when multiple images are required to be taken to capture a good image at each phase 

shift. In addition, the use of these commercial cameras limits the options for adjusting the 

properties of the camera. For example, the option of decreasing the size of the active window 

reduces the exposure time per frame and consequently increases the frame rate that the camera is 

capable of producing. However, there is of course also a trade off between increasing the frame 

rate and decreasing the resolution. Thus, the control of these attributes amongst others will make 

the camera system more adaptive and robust to changes in or, eventually, clinical laboratory 

conditions.  

 

Another advantage of using purpose built cameras in this system instead of commercial cameras 

is the ability to attach the stroboscope directly to the CMOS imaging sensor itself. This feature 

would allow the camera to synchronize the strobe flash with the frame integration, to optimise 

the frame exposure time as shown in Figure 2.2. It would also dramatically shrink the overall 

system package and provide better overall lighting quality [16].  

 

 
Figure 2.2: Shown here are the timing diagrams for the strobe synchronization with image sensor snap. 
This is a brief representation of where the triggering of the strobe occurs.  
 

Furthermore, the CMOS imaging sensors can be automatically triggered externally to perform a 

single frame snap. This feature provides the advantage of capturing image data at more precisely 

controlled times. In the case of this system, the external trigger is provided by the dSpace™ 

control system, itself a precise electronic, programmed real time system.  
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Finally, the CMOS imaging sensor has a significant size advantage over the commercial camera, 

in that the CMOS is almost a third the size of the commercial camera. This reduction in size is 

because the CMOS imaging sensor does not require onboard image processing, image storage, or 

a local power source. This size difference also means a denser array of cameras can be placed 

about the test piece to obtain larger amounts of data without increasing in system size.    

 

The electromagnetic actuator used in the initial system was the Derritron vibration 

electromagnetic exciter, which operates on the same principles as a voice coil. To gain position 

information for the actuator, a laser interferometer was used to measure the velocity of the 

actuator, and then integrated to find the displacement. An improved version of a “voice-coil” 

actuator was developed at the university as a final year project [17]. The result was an actuator 

that performed as well as its predecessor, but included a linear transducer, which provides 

continuous position data to dSpace™. This new actuator and sensor system enables the actuator 

position to be automatically monitored, rather than using the laser interferometer, which requires 

extensive external user set-up takes further space. 

 

2.3 New Image Capture System Overview 

The setup for the new image capture system developed and presented in this thesis is divided 

into two main sections: 

• Image Capture 

• Actuator and Trigger Control 

The overall layout for the image capture and related trigger and data lines is illustrated in Figure 

2.3. 

 

 

 



Image Capture Apparatus 
 
13

2.3.1 Image Capture 
 
The image capture computer (ICC) handles all the capturing and storing of the digital images. 

The ICC contains two PCI frame grabbers and an I2C adapter.  The PCI frame grabbers capture 

all the image data arriving from the imaging sensors along the pixel data lines, as shown in 

Figure 2.3. 

 

Two Kodak KAC-9648 colour image sensors are used in this apparatus. Each sensor produces 

image data output in the form of 10-bits per pixel at a resolution of 1280 x 1024. Communication 

between the image capture computer and the camera is carried out via the I2C adapter.  The 

adapter has two digital lines coming out of it, the first is the serial data line (SDL) and the second 

is the serial clock line (SCL).  

 
Figure 2.3: The layout for the digital image capture system 

Right Camera Left Camera 

Image Capture 
Computer 

dSpace 
Computer 

Ethernet Connection 

Frame Grabber Trigger (1) 

Frame Grabber Trigger (2) 

I2C Lines

Pixel Data 
Lines 

Electronic 
Shutter 
Trigger 
Lines (1) & 
(2) 

Strobe 

Strobe Trigger 
Line (Right) Strobe Trigger 

Line (Left) 

Framegrabber 1 

Framegrabber 2 

I2C Adapter 
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Both cameras are connected in parallel to these two serial lines and each has a unique bus 

address as shown in Figure 2.4. When the I2C adapter communicates with the left camera, for 

example, it first transmits the bus address, of the left camera. This puts the camera in a state to 

listen for any information arriving down the two serial lines. This information could be a change 

in the active window size required by the user or same other input. The right camera then ignores 

this information since the I2C adapter is only “addressing” the left camera. 

 

There are two camera configurations required, involving a communication between the I2C 

adapter and the cameras. The first camera configuration is the initialisation of the digital 

cameras, which enables them to be compatible with the frame grabbers. The result of this 

initialisation is a continuous stream of video data, which is displayed on the screen and enables 

the user to adjust colour gains, focus, camera position and aperture size as required. 

 

The second configuration puts the cameras into a state where they are able to receive a digital 

pulse from dSpace™, which triggers the frame exposure and strobe activation. Specifically, there 

is an input pin and an output pin on the sensor that is automatically configured after instructions 

from the I2C adaptor, as shown in Figure 2.5.  

 

The first pin is called a triggered snap pin, which receives the pulse from dSpace™ and starts 

frame exposure. The second pin is called an external sync, which supplies a pulse to activate the 

strobe. The precise timing of the strobe trigger from the camera is preset and cannot be changed 

by the user. 
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SDL 

SCL 

Left Camera 

Right Camera 

Left Camera Address Left Camera Address

Hello I am here and ready 

 

 
 

SDL 

SCL 

Left Camera 

Right Camera 

Configuration Data

Figure 2.4: (Top) The cameras address being sent out from the I2C adapter. (Bottom) The configuration 
data being sent to the left camera. 
 

After both camera configurations are performed, enabling compatibility with the frame grabbers 

and triggering of the frame exposure and strobe activation, the cameras are ready for image 

capture of the actuated test phantom. More details on these configurations and image capture are 

given in Chapter 4.  

 

 



Image Capture Apparatus 
 

16

 

 
Figure 2.5: The process of strobe trigger by the camera 
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The cameras used in this system produce images that are in colour. To get the coloured images 

the pixels on the image sensor itself are arranged in a pattern known as a Bayer Pattern, as shown 

in Figure 2.6. The pixels in this pattern are sensitive to the colours of green, blue and red 

respectively, as shown in Figure (a), (b) and (c). This sensitivity is achieved by filtering the light 

and only allowing the required colours of the incoming image to register at the pixel sites. To 

obtain a complete colour image to be rendered to an image file and to the screen, the Bayer 

Pattern data the needs to be processed into three complete colour arrays. 
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(a) Green (b) Blue (c)  Red 
 

Figure 2.6: The Bayer Pattern and the separate colour arrays 
 

Specifically, the white spaces in the colour arrays of Figure 2.6(a), (b) and (c) are filled by 

interpolating the pixel values of the pixels adjacent to the white space. This colour interpolation 

is performed on every frame arriving at the ICC. The reason for the dominant green in the Bayer 

Pattern is because the human eye is most sensitive to the colour green. 

 
 
2.3.2 Actuator and Strobe Trigger Control 
 
The set-up for the actuator and trigger control is shown below in Figure 2.7. The dSpace™ 

computer uses Simulink from Matlab™ to create a system for controlling the input and output 

signals. The system for processing the signals is built up from blocks, similar to a wiring 

diagram, where Simulink blocks are connected together to perform its portion of the image 

capture task on the dSpace™ module.  
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Figure 2.7: An outline of the dSpace control system set-up. The rounded boxes indicate the software 
contribution. 
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The portion of the image capture process for which the dSpace™ is responsible, is the generation 

and synchronising of signals sent to the actuator and necessary trigger signals. Once the diagram 

is ready it is automatically transferred to a C code format, uploaded to dSpace™, and then run by 

dSpace™ in real-time inside the dSpace™ module. The settings in the Simulink™ diagram can 

be adjusted in real-time using the dSpace™ software ControlDesk™. ControlDesk™ makes it 

possible to automatically perform real time adjustments of the working embedded code in the 

dSpace™ module. For example, resetting the trigger signals to the frame grabbers and cameras, 

and real time adjustment of the actuator amplitude.  

 

ControlDesk ™ also allows trigger settings to be modified via a user built project interface, 

which will be discussed in detail in Chapter 3. The rounded boxes in Figure 2.7 represent the 

programs interactions with the hardware where ControlDesk™ and Matlab™ are constantly 

talking to one another and adjusting the settings in the dSpace™ module. 
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The programming language used to automate ControlDesk™ is known as Python. Python is a 

high level scripting, interpreted and interactive object-oriented programming language. The 

Python™ code is used to talk to the ICC and automate the sending of the trigger signals. The 

hierarchy for the operation of Simulink™, ControlDesk™ and Python™ can be seen in Figure 

2.8 

 

 
Figure 2.8: The hierarchy of control for the dSpace™ set-up 

Controls

Controls

Python

ControlDesk™

Simulink™

 
 

A 50-100 Hz sinusoidally (or periodically) actuated silicon phantom would require 50-100 fps in 

the imaging sensors. Since the frame rates of the CMOS imaging sensors for this project have a 

maximum rate of 18 fps at full resolution, it is therefore not possible to directly image the 

phantom. To overcome this problem the high-speed phantom is strobed at specific points in its 

motion, thus effectively rendering the object “stationary” at that point in its resulting sinusoidal 

periodic response.  

 

Shown in Figure 2.9 is an example of 12 different phase angles in the actuator’s cycle where a 

user requires an image of the phantom. By introducing a phase shift between the actuators 

motion and the point of triggering the strobe, the object can be made “stationary” at each of these 

12 user defined points in its response and thus an image taken. 
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Figure 2.9: Shows an example of a 12 Hz command signal that would drive the sinusoidal motion of an 
actuator. 

 
 
In this example, the phase shifts are at increments of 30 degrees labelled 1 to 12 in Figure 2.9. A 

similar process could be used to capture images of an object at any predefined points in an 

actuator cycle for any actuator frequency.  

 

For the DIET system, this provides the required ability to capture a sequence of high-resolution 

images of a 50-100 Hz actuated silicon breast phantom describing the displacement response 

throughout a 360-degree cycle. At each point the tissue surface motion is imaged and captured. 

From this data the magnitude and phase of the response relative to the input, can be readily 

obtained as it is assumed the small sinusoidal inputs result in a sinusoidal response at the (steady 

state) frequency.  

 

The actuator used in this system has a linear transducer (LVDT), built into the core of the 

actuator, which sends data back to the dSpace™ module, as shown in Figure 2.7. However, the 
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form of this data is a voltage potential thus further processing is required to obtain position 

information. 
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Figure 2.10: The plotted LVDT voltage with measured displacement 

 
 

This task was achieved by taking a set of measured LVDT displacement positions and their 

resulting voltages and calculating the linear correlation line which is shown in Figure 2.10. The 

voltage arriving from the LVDT to dSpace™ can then be converted to displacement using the 

formula: 

 

)62.727.1( −×= VoltagentDisplaceme  mm    (1) 

 

Equation (1) can then be used to tune the actuator to the commanded displacement amplitude 

signal using a proportional controller. Note that a PID controller was not used due to limitations 

on the actuator resulting in the control system becoming unstable with the introduction of the 

integral and differential gains. However, a proportional controller gave sufficiently accurate 

results in this work. 
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 2.4 Summary 

The solution for capturing high speed images from cameras with a low frame rate is based on the 

predicable motion of the controlled actuator, moving the phantom in a sinusoidal motion. 

Tracking this motion allows the capturing of a single image frame at user-defined intervals. The 

current image capture apparatus has introduced the following changes over the prior image 

capture set-up: 

(1) Introduction of CMOS imaging sensor, reducing camera envelope. 

(2) The integration of a new electromagnetic actuator, with an internal linear position 

sensor (LVDT). 

(3) Automated image capture with the “hand shaking” between actuator control and 

image capture control, reducing the overall image capture time. 

These improvements have been made, to provide the initial steps to a completely automated 

breast cancer screening system. 
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Chapter 3 

Image Capture Applications Set-up 

 

This chapter covers how a user operates the image capture system to produce images for surface 

motion tracking. The first section will discusses the set-up of dSpace™ to provide actuator control 

and image capture. The second section discusses the way to change camera settings and image 

storage preferences on the ICC.  

 

Note that the ICC application caters to each camera independently, so the user operation of the 

camera settings will be explained for the left camera. The process is identical for the right camera.  

This independent approach to settings accounts for the use of different and/or specialized cameras 

over an entire system. 

 
Figure 3.1: The current image capture set-up
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3.1 dSpace™ User Set-Up 

The dSpace™ application is driven from ControlDesk™, a program designed to interface with the 

code running on the dSpace™ module shown in Figure 2.8 of Chapter 2. Setting up of the dSpace 

side of the image capture operation consists of the following main steps: 

 

• Loading the Simulink™ block diagram 

• Starting the ControlDesk™ layout 

• Zeroing the LVDT and setting the desired actuator amplitude 

• The setting and tuning of the proportional gain on the LVDT signal (if required) 

• Starting the dSpace™ server 

 

The end result of this process is a running actuator and a computer that is prepared to receive data 

from the ICC and drive the image capture process. 

 

Once the ControlDesk™ application is running an associated Simulink™ block diagram that defines 

how the dSpace™ module will run the actuator and activate the triggers, is enabled. This 

Simulink™ system is then built and automatically downloaded to dSpace™ system by pressing 

Ctrl+B. As soon as the diagram is built to the module, the actuator and trigger signal control layout 

is loaded, as shown in Figure 3.2. Figure 3.2 illustrates all the different options available to the user 

in the ControlDesk™ layout. 
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Figure 3.2: The ControlDesk™ Image Capture Layout  
 

After the layout has been animated, using the layout animation button in Figure 3.2, the signals from 

the actuator can be read and the values of the gains changed. Once this is achieved, the user can 

freely interact with the variables in the diagram built to the module, including changes to the 

proportional (‘P’) gain, command signal amplitude and frequency, and the feedback of actuator 

position information in volts. However, the downloaded Simulink™ diagram does not start sending 

the command signal to the actuator until the user clicks on the ON/OFF button. The zeroing of the 

LVDT involves moving the offset slider also shown in Figure 3.2 until the horizontal line (LVDT 

signal) is sitting on zero in the signal plot. This process is shown in Figure 3.3. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 3.3: Zeroing the LVDT signal. (a) The signal is before offset is applied. (b) The signal after offset is 
applied. (c) The slider used to achieve the signal offset. 
 

3.1.1 Controlling the LVDT signal 

The actuator in this image capture system, uses a proportional or ‘P’ controller to precisely control 

the actuator motion during the image capture process. Note that due to the dynamics of the actuator, 

the addition of significant integral or derivative control produces an unstable result. Thus, these 

gains are typically set to zero on the ControlDesk™ layout.  
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Once the LVDT is zeroed, the proportional gain is slowly increased until the signal amplitude 

matches the amplitude of the command signal. At this point, the LVDT signal needs to be 

monitored, because as the actuator warms-up the amplitude increases, requiring the gain to be 

decreased until the system reaches equilibrium. This process usually takes five minutes. Once this 

equilibrium is achieved the signals should look like those illustrated in Figure 3.4, where it is not 

required that the phases match perfectly, depending on what phase lag offset has been set. 

 

 
Figure 3.4: The two signals with synchronized amplitude, the command signal in green (light) and the 
LVDT signal in red (dark) 
 

However at zero degrees of lag these signals would overlap. Finally, any residual phase lag between 

the command signal and the LVDT signal is not a problem since the image capture triggering 

system uses the LVDT signal, which is giving a true reading of actuator displacement, rather that the 

command signal 

 

3.1.2 Starting of the dSpace™ server 

In the image capture system, the server is the dSpace™ computer. It receives the information from 

the ICC and relays that information to the dSpace™ module via the ControlDesk™ layout. Once the 
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user’s settings are finalized in the ControlDesk™ layout of Figure 3.2, the user activates the “Start 

Server” button.  

 

When the server is started, a message is sent to the user in the Python™ interpreter interface, as 

shown in Figure 3.5.  This message indicates that the dSpace™ server is running. The Python™ 

interface also displays the progress of the image capture process by showing the user the current 

image number and phase lag. Once the image capture cycle has been completed the Python code that 

drives the image capture on the dSpace™ computer also switches off the actuator. 

 

 
Figure 3.5: The Python™ interface after the “Start Server” button is pressed 

 

3.2 The ICC Image Capture Application 

The image capture application consists of two main dialog boxes: 

 

• The main start-up dialog 

• The camera settings tabbed dialog 

 

The main start-up dialog is activated from the desktop and is shown in Figure 3.6. All other dialogs 

are activated from the main dialog in Figure 3.6 at the request of the user. Before starting the main 

image capture application (MICA), the cameras must first be powered up. Upon activation of the 

MICA the cameras are placed into the mode where they stream video directly to the main dialog.   
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Image Capture 
Cycle Settings

 MICA 
Application 
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Figure 3.6: The Main Image Capture Application (MICA) 
 

The I2C communications between the cameras and the adapter are registered in the log window that 

is also  shown in Figure 3.6.  During the I2C communications, the status of the image capture 

process is also passed to this window. The messages indicate at what phase and image number the 

capture process is currently operating as well as any errors that may occur with socket 

communications and frame grabber interface. 

 

The “Image Cycle Settings” box contains the variables that can be changed with respect to where in 

sinusoidal the actuator cycle the user requires images. These settings are taken from the MICA and 

sent to the dSpace™ computer. Therefore, they must be set by the user before the image capture 

process begins. 

 

Initially, the cameras must first be calibrated. This task requires static images from both cameras 

where the calibration objects three faces are clearly visible to both cameras while it rest on top of the 
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actuator. The “Get Cal. Images” button in Figure 3.6 takes images from the cameras at the same 

time and saves them to a path specified by the user.  

 

The other features of the MICA are the option of saving the application log for later examination, 

and clearing of the log for each image capture cycle. The application log provides a running 

feedback to the user on the progress of the image capture cycle including any errors that occur. The 

application log in operation is shown in the example given in Figure 3.7.  

 

 
Figure 3.7: The application log in operation 

The camera settings can be changed for each camera by clicking on the left (or right) camera 

settings button in Figure 3.6. Pressing these buttons activates the camera settings dialog box shown 

in Figure 3.8. In the dialog of Figure 3.8, there are three sliders, one for each of the primary colours 

that make up the Bayer pattern on the CMOS image sensor. The movement of these sliders adjusts 

the colours in the image providing adjustment to laboratory light conditions. This function is also 

illustrated in Figure 3.8 over the range of colours. Alternatively, the values of the colour gain can be 

added in the edit box to the right of the respective slider.  The cameras themselves have a fine 

adjustment that takes place on the lens, which is attached on the front of the sensor. The front 

portion of the lens is for the focus and, further back is the adjustment of the iris, which allows more 

or less light onto the imaging sensor. These adjustments are shown in Figure 3.9 for the camera 

hardware used in this study. 
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Figure 3.8: The adjusted colour gains at different extremes. The first image is the camera settings dialog 
upon activation 
 
 
The active window of the camera can be changed in Figure 3.8, as well. The active window on the 

cameras, is the part of the image sensor array where the pixel data is collected. The mouse selection 

check box at the bottom of the camera settings shown in Figure 3.10 can be selected to activate a set 

of cross hairs, which are moved using the mouse to select the active window area. Alternatively, the 

values/coordinates of the new active window can be manually entered into the dialog.  Once an 

active window selection is made, a message box pops up asking whether the user would like to keep 

the current selection or try again. Clicking on the “Accept” button shown in Figure 3.8 accepts the 

chosen colour gain and active window selection. This decision loads all the requested values to a 

‘.dat’ file that is then stored in the local directory of the MICA. 
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Figure 3.9: Position of lens fine adjustment 
 

 

 
Figure 3.10: The process of mouse selection 

The second tab of the camera settings dialog is used to store the path selection, for the captured 

images. There are two separate paths to be chosen. The first is for the calibration images and the 

second is for actuated image capture. These dialogs are shown in Figure 3.11. The path is chosen by 

clicking the browse button and selecting a path. Up to five previous paths can be stored in the drop 

down list. Along with the path selection, it is also possible to select the format of the image being 

saved. Once the path and image formats have been chosen, again the “Accept” button is pressed to 

store the path settings to another ‘.dat’ file. 
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Figure 3.11: The process of image format selection and saving path selection 

 

With all the users settings satisfied the “Accept & Run” button in Figure 3.6 is pressed to start the 

image capture process. The ControlDesk™ layout, at this point should be listening for the 

connection from the image capture computer. The progress of the image capture process is 

communicated to the user via the MICA application log window in Figure 3.6. 

 

3.3 Summary 

The dSpace™ module acts as the overall controller for the image capture process and is started 

before the set-up on the ICC begins. The dSpace™ module runs the actuator and activates the 

camera triggers with user instruction from the ControlDesk™ image capture layout. The user can 

change the proportional control gain of the LVDT, and the command signal amplitude and 

frequency for the actuator. The ICC image capture application is activated from the desktop and the 

user has access to a range of camera and image cycle settings, and can change the active window of 

the camera. Once all the settings are saved, the image capture process is be started from the main 

image capture application on the desktop.  



34 

Chapter 4 

Image Capture Software Structure 

 
 
This chapter covers the main structure of the code used in the image capture system and how 

different parts of the code interact with each other in order to capture an image sequence. The 

description of the code will be simplified to block diagram form, and the more detailed aspects 

of the code can be found in Appendices A1 and B1. The chapter is thus divided into two main 

sections: 

 

(1) The operation of the Simulink diagram and Python™ code that is running on 

the dSpace™ computer, which drives the actuator and supplies trigger signals 

to coordinate the image capture process. 

(2) The main image capture application (MICA), which is responsible for the 

capturing, processing and storing of the images 

 

4.1 Simulink™ Diagrams and Python™ Code 

The Simulink™ diagram is used to generate the trigger pulses for the image capture process and 

to drive the actuator at the required amplitude and frequency. The diagram is divided up into 

three main parts: 

 

• Trigger pulse and actuator signal generation 

• Data Storage 

• Python™ Code Structure 
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Each section will be explained in more detail with there respective part of the Simulink™ 

diagram. 

 

4.1.1 Trigger Pulse and Actuator Signal Generation 

This part of the diagram deals with incrementing the phase lag on the trigger signals and the 

generation of the trigger signals themselves. It is this part of the overall diagram on which the 

Python™ code acts directly to switch the trigger signals on and off. The phase lag is there to 

introduce a controlled delay in degrees to the trigger signals, enabling sampling of different 

portions of a sinusoidal response. 

 

 
Figure 4.1: The first parts of the trigger generation 

 
 
The first parts of the trigger generation shown in Figure 4.1 illustrate where the phase lag is 

introduced into the image capture process. The signal being fed into the trigger generation 

arrives directly from the LVDT in the actuator. The reason for using the LVDT signal to drive 

the trigger signal generation is so the triggering of the camera snap can be achieved at pre-

defined points in the actuators sinusoidal input cycle.  
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The variable transport delay is used to introduce the phase lag to the signal being passed to the 

trigger signal generation block. The Simulink™ block corresponding to the variable transport 

delay buffers the incoming signal and then feeds it out again, but at a delayed time, defined by 

the required phase lag.  The variable transport delay, requires the delay to be in seconds, and so 

the phase lag needs to be converted from degrees to fractions of a second. When the LVDT 

signal enters the trigger signal generation block, it is converted to a square wave oscillating at the 

actuators frequency between the values of zero and one as shown in Figure 4.2.  

 

 
Figure 4.2: The contents of the trigger generation block 

 
 

Also shown in Figure 4.2, are two switches labelled “Start” and “Reset” that are turned on and 

off using ControlDesk™, which is driven by the Python™ code. When the “Start” switch is set 

to the value of ‘1’, the transformed square wave, or clock signal which comes from the 

sinusoidal LVDT signal, begins to pass to the pulse generation sub-block via the “AND” gate, in 

Figure 4.2. The “AND” is a logical operator that provides an output of ‘1’ when both inputs are 

‘1’ and provides an output of ‘0’ if either input is ‘0’. The JK flip-flop in Figure 4.2 is another 

logical operator that is used to align the activation of the “Start” switch with the rising edge of 

the clock signal to achieve the full pulse width, as illustrated in Figure 4.3.  Hence, when the 

“Start” switch is turned on, and the clock signal is high, there will be two ‘1’s at the “AND” gate 

allowing the clock signal to pass through, and thus producing a camera snap.  
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Figure 4.3: The effect of adding the flip-flop gate to the diagram 
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The camera snap results from a single pulse that is sent to the cameras and the frame grabbers. 

The pulse is produced in the triggering sub-section block, the contents of which are displayed in 

the Figure 4.4.  

 

 
Figure 4.4: The processing of the square LVDT signal into a single trigger pulse of variable duration 
 
 
This single pulse is taken from the aligned clock signal shown in Figure 4.3, and it is the first 

rising edge into the triggering sub-section block. Hence, it is important that it is aligned with the 

correct delay governed by the variable transport delay and not by the random nature of switching 

the output of the “AND” on half way through an already risen pulse, producing a delay rising 

edge at the output of the “AND” gate. The process of producing a trigger pulse starts with the 

clock signal that is fed into a counter, and a maximum value block, which grabs the maximum 

value of the clock signal, see Figure 4.4.  

 



Image Capture Software Structure 
 

38

The switch to the right of the counter and maximum value blocks is a threshold switch that 

controls the trigger pulse width to the camera. The switch takes the highest value of the incoming 

signal, which is the output of the maximum value block of Figure 4.4, and holds it there for a 

specified number of counts, in this case 50 counts. Each count is registered by the counter after a 

rising edge in the clock signal, which occurs at the frequency of the LVDT signal and 

consequently the actuator frequency. Once the 50 counts are delivered to the threshold switch, 

the output is changed to ground completing the trigger pulse. The counter and the maximum 

value block undergo a reset via the “Reset” switch shown in Figure 4.2. The threshold of the 

switch can be changed to achieve a longer pulse width by increasing the number of counts it 

requires to do so.  A longer pulse width may be desired if more than one frame from the camera 

is required, in which case the trigger to the camera must be held high for a longer period of time.  

 

The generation of the signal for the actuator is achieved from the signal generation block in 

Figure 4.5. The incoming signal is passed through proportional, integral and derivative gains; as 

shown in Figure 4.5, where the integral and derivative control gains are set to zero for stability 

reasons as discussed in Chapter 3. 

 

 
Figure 4.5: The actuator signal generation and control part of the Simulink™ diagram 

 
 
 

4.1.2 Data Storage 

Voltage data arrives from the LVDT into the dSpace™ module via the A/D (Analogue to 

Digital) lines, and enters the Simulink™ diagram via the ‘DS2001_B1’ block shown in Figure 
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4.6. The incoming signal is stored in a local memory block making the data available to all 

blocks that may require it. However, before the data reaches the storage block, the voltage data is 

converted to displacement in millimetres using Equation (1) of Chapter 2. The block 

representation of Equation (1) is shown in Figure 4.6. 

 

 

 

Figure 4.6: The blocks that deal with data arriving back from the LVDT 

 
4.1.3 Python™ Code Structure 

The Python™ code drives the operation of the ControlDesk™ in Figure 3.2 of Chapter 3. The 

Python™ code’s operation is detailed in Figure 4.7. 

 
Figure 4.7: The main structure for the Python™ code 
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Once the “Start Server” button is pressed the main part of the Python™ code creates a 

communication socket and waits for a connection attempt from the ICC.  When the ICC connects 

with the dSpace™ computer the receive part of the code is started and the main Ethernet 

communications begin. Upon notification from the ICC that the cameras and frame-grabbers are 

ready, the “Start” and “Reset “ switch are turned on and off, to produce the trigger pulse to the 

camera and frame-grabbers.  After each trigger pulse is sent, the phase lag between the trigger 

and the actuator position is incremented in degrees in the gain block shown in Figure 4.1, using 

the same Python™ code. Once the image capture cycle has ended the Python™ Ethernet sockets 

close, signalling to the ICC to do the same. 

 

4.2 The Main Image Capture Application (MICA)  

The settings window for each camera, shown in Figures 3.8 and 3.10 of Chapter 3, are activated 

from the MICA. The MICA code structure is broken down into the following sections: 

 
• Video Streaming 

• Ethernet Communications 

• Triggered Image Set-up 

• Camera Settings Dialog 

 
These sections of code are arranged as shown in the flow diagram in Figure 4.8. The video 

streaming starts as soon as the MICA is started and continues to stream video data from the 

cameras until the user starts the image capture process. The sections of code corresponding to the 

camera settings begin to run when the user wishes to change the colour gains or the size of the 

active capture window. This process is shown in Figure 3.8 of Chapter 3.  
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Figure 4.8: The overview of MICA code structure 
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The video streaming portion of the code can be further broken down into the flow diagram 

shown in Figure 4.9. Once the video streaming is started the I2C adapter applies the first of two 

configurations to the cameras, which puts them in a state to stream pixel data to the frame 

grabbers in a form that they can process. In the image capture system, OpenGL™ is used to scale 

and display the pixel data arriving from the cameras. This approach requires the OpenGL™ 

libraries to be initialised first, whereby windows are created that are attached to the OpenGL™ 

objects. These windows are where OpenGL™ places the scaled pixel data.  

 

A session is then started with the frame grabbers. This session initialises the frame grabbers and 

gets them ready to receive the pixel data arriving from the cameras. The first part of the video 

streaming code structure deals with the initialisation of the components required to display the 

images on the screen. Subsequently, as shown in Figure 4.9, the code enters a while loop where 

each cycle of the loop one frame of pixel data is grabbed from the frame grabbers. 
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Figure 4.9: Video Streaming code structure 

I2C Applies Video 
Configuration to the 

Cameras 

OpenGL™ 
Initialisation and 

Window Initialisation

Frame grabbers 
Initialisation 

Obtaining 10-bit raw 
pixel data from 

cameras 

Bayer Pattern Colour 
Decoding 

Image Scaling and 
Displaying 

Looping this section of 
code to obtain fresh 

pixel data

Video Stream 
Started 

 
Once the image capture process is started in Figure 4.8, the Ethernet communications that 

control the image capture process on the ICC begin. An overview of this section is shown Figure 

4.10 and it is broken up into five main parts. The first part of the Ethernet communications deals 

with the initialisation and opening of the socket communications, which enables the dSpace™ 

computer and the ICC to communicate. The second part, is the starting of the receive loop, which 

runs constantly throughout the image capture process. It runs in a loop independent of the 

ethernet code block, and relays any message from the dSpace™ computer to the code block. One 

such message would be ‘CamerasReady’, which notifies the dSpace™ computer that the cameras 

are ready to receive the trigger pulse to ‘snap’ and image.  

 

After the receive loop has begun the commanded events loop is started to allow other functions 

like the message log and the receive loop in the MICA to continue to run. The next block in 

Figure 4.10 is the triggered events code section that obtains processed commands from the 
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receive loop block. Based on those commands the code block performs specific tasks, including 

the triggered image set-up and the sending of data and commands to the dSpace™ computer.  

 

 
Figure 4.10: An overview of the Ethernet Communications code block  
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The final block is reached upon the completion of the image capture cycle where commands are 

first sent to the dSpace™ computer to close its communications sockets, and then the ICC waits 

and closes its sockets. 

 

Following the starting of the Ethernet Communications, the triggered image set-up part of the 

code is begun, as shown in Figure 4.8. This block is explained in more detail in Figure 4.11. 

Before acquiring the triggered images the I2C adapter applies the second of the two 

configurations to the cameras, which puts them into the state where they are listening for the 

trigger pulse from dSpace™. The frame-grabbers are then initialised.  

 



Image Capture Software Structure 
 

44

Note that any one frame-grabber cannot run multiple sessions at once.  Hence, before the 

triggered image set-up the session for streaming the video from the cameras must be terminated. 

A new session always requires fresh initialisation of the frame-grabbers. Following frame-

grabber initialisation there is the initialisation of the CImage class. This class is produced by 

Microsoft Windows™, and is used to encode the pixel data to a chosen image format.  

 

At this point, the frame-grabbers need to be configured to receive a trigger pulse from dSpace™ 

into one of their external trigger lines. The code block then stops and waits for the trigger from 

dSpace™, as shown in Figure 4.11. Once the trigger has been received, the pixel data is taken 

directly from the memory buffers on the frame-grabber cards themselves. The triggered pixel 

data is then passed to the CImage class to encode the image to a user-defined image format and 

stored in a user-defined path. 

 

 
Figure 4.11: The Triggered Image Set-up Code Block 
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When the entire process is successful, a message is sent to the Ethernet communication code 

block, notifying it of a successful capture and to proceed with the rest of the image capture 

process. 
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4.2.1 The Camera Settings Dialog 

The camera-setting dialog can be broken down into the following sections of code: 

 
• Image Manipulation Tab 

• Image Storage Paths Tab  

 
These two sections are activated at the request of the user as shown in Figure 4.12. 

 

 
Figure 4.12: The overview of the camera setting dialog box code blocks 
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The code that runs the image manipulation tab can be further broken down into the components 

shown in Figure 4.13. The image manipulation tab is first started when the camera settings 

dialog is started and it begins to stream video from the camera that needs its settings changed. 

The video is displayed on the screen, in this case using the CImage class which is used to save 

the captured images. The colour gains for the image are changed by moving the sliders or by 

entering the value directly into the edit box to the left of the slider.  

 

The sliders are a bar that is selected using the left mouse button, and while continuing to hold 

that button down allows the mouse to move the slider bar to the left or right of its designed limits 
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to increment colour gain values, as shown in Figure 3.8. Any changes to these GUI controls 

trigger an event within the code. The triggered event then takes the values from the slider or edit 

box and applies them to the Bayer pattern decoding function in the main loop. This change 

happens in real time to allow the user to sample the different gains.  

 

 
Figure 4.13: An overview of the Image Manipulation code block 
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If the user wants to change the size of the active window, the values can be entered into the 

dialog in the edit boxes for the active window. Alternatively the mouse selection check box can 

be ticked and the mouse can be used to perform this task. The launching of the mouse selection 

creates two cross hairs, as shown in Figure 3.10, that which follows the mouse cursor across the 

streamed video image. The cross hairs themselves are drawn directly to the incoming video 

streaming functions that are part of the CImage class.  
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When the left mouse button is double clicked it triggers an event that grabs the mouse cursor 

current position in screen co-ordinates, scales them to the streamed video window co-ordinates, 

and places a marker box at the recently chosen point on the image. The same process is done for 

a second point, usually in the bottom right hand side of the video window. These two points 

define a rectangle which is the new active window size. The second mouse point selection 

contains the new window size and triggers an event that updates the edit boxes for the active 

window selection.  

 

A message box then appears asking the user whether they wish to update the video image. If yes, 

the image is scaled to the video window, giving the user a chance to sample different active 

window scenarios. Once the user has chosen the required settings, the accept button is pressed, 

and all the changed settings are stored in a .dat file under a name defined by the application. 

They are stored in this .dat file for two reasons. The first reason is it allows the settings to be 

transfer to the MICA, and the second reason is to give the user the option of applying the same 

settings to the cameras for repeated image capture cycles.  

 

There are two image storage paths for each camera. The first path is for the storage of the 

calibration images, and the second path is for the captured images. The blocks of code arranged 

in Figure 4.14 illustrate their interaction with the user. The image storage dialog interacts with 

the tab class the same way as the image manipulation dialog. Once the image storage dialog is 

started, a .dat file containing five previous paths for the images is loaded into the drop down list 

box. 
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Figure 4.14: An overview of Image Storage operation and code block interaction 
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Once the dialog has been initialised the user can select the path for the respective types of 

images. The process of path selection is the same for both image types. 

 

4.3 Summary 

The image capture software is divided up into two separate parts Simulink™ and Python™ 

running on the dSpace™ computer and Visual C++ running on the ICC. The software running on 

the dSpace™ computer drives the actuator and controls the trigger pulses that are sent for the 

cameras, the frame grabbers and the strobe. These functions are performed by the Simulink™ 

diagram built for the dSpace™ module and is controlled by the Python™ software. The 

Python™ software then “talks” to the Visual C++ software running on the ICC, which manages 

the running of the cameras, the frame grabbers, and the storing of captured images. The Visual 
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C++ software and the Python™ software communicate with one another to achieve a complete 

image capture cycle, and this communication occurs through an Ethernet link between the two 

computers. 

 



 
 
 
 
 
PART III  
 
RESULTS 



50 

Chapter 5 

Image Capture Results 
 
 
5.1 Preparation 
 
In this chapter, the application of the image capture system is examined using a silicon phantom, 

moulded in a cylindrical shape. The silicon phantom used in this experiment is a two-part mix 

solid silicon elastomer, and is as shown in Figure 5.1. The silicon gel formula and ingredients are 

sourced from Factor II Inc. 

 

 

Figure 5.1: The silicon phantom used in the experiments and its dimensions 

~50 mm 

 ~40 m
m

 

 

This silicon polymer was chosen because of similarities with the elastic properties of human 

tissue. The preparation of the silicon phantom begins by building a mould, which in this case 

comprises of a short section of PVC piping sealed at one end. The silicon polymer arrives as two 

components part ‘A’ and part ‘B’, mixed in a ratio of 10% of ‘A’ for the total volume of ‘B’ into 

which ‘A’ is being mixed. Part ‘B’ is the actual silicon rubber itself and arrives as a liquid 

rubber. The part ‘A’ solidifies part ’B’ into a silicon rubber solid of a specific stiffness. 
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The phantom and mould are is then placed under a vacuum to remove all air bubbles caused by 

mixing the two components together, and the solution is poured into the mould and allowed to 

set. The dots seen on the silicon phantom are applied manually using water-based paint and are 

used to aid in the tracking surface motion when actuated. 

 
 

5.2 Preliminary Image Capture Results and Problems 

 

The initial tests of the image capture set-up revealed an unforeseen problem. The problem was 

that the time period between when camera fired the strobe flash and the camera received the 

trigger pulse to snap a frame was inconsistent and unpredictable. This inconsistency makes it 

very difficult to align the strobe trigger with the phase position in the actuators cycle.  

 

Specifically, consider the case of the actuator moving at a frequency of 100 Hz, which is the 

maximum frequency required of this image capture system. Thus, the actuator and silicon 

phantom move through a 360-degree cycle every 0.01 seconds. The problem is that while the 

time periods between the dSpace™ trigger pulse and the strobe trigger pulse are consistent at a 

time resolution of 0.1 seconds; it can fluctuate randomly over the finer resolution of 0.01 

seconds. This behaviour is demonstrated in Figure 5.2 for the left camera over 7 images at a 

phase lag of 0-degrees and a 100Hz signal. In other words, the camera is not designed for 

precision strobing greater than 10 Hz image capture frequency. 
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Figure 5.2: A graph of the dSpace trigger pulse/strobe trigger pulse time period 

 

Figure 5.3 shows the result of the fluctuations in Figure 5.2 on the position of the actuator and 

consequently the silicon phantom for the first three images taken. Figures 5.3 (a), (c) and (e), 

illustrate that the dSpace™ module consistently sends the snap trigger at almost exactly zero 

degrees of phase lag. Figures 5.3 (b), (d) and (f) show the inconsistent triggering of the strobe 

from image to image and where it occurs in the actuators motion.  The resulting images are 

therefore captured at almost random points of the actuators cycle. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 5.3: The dSpace trigger pulses and strobe trigger pulses on a phase lag of 0-degrees over three 
images with the strobe trigger times from Figure 5.2. 
 
 
A second problem was also discovered involving external sync time variations between the two 

cameras. For example, triggering the strobe using the right camera resulted in partial images 

from the left camera on random phase lags. This problem was due to the left camera not being 
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ready for the strobe to flash at the same time as the right camera, even though the dSpace trigger 

pulse was sent to the cameras at the same time. 

 

5.3 Corrected Image Capture Results 
 

In this section the following problems are addressed and results presented: 
 
 

• Inconsistencies in required strobe trigger between cameras 

• An inconsistent time period, at the required time resolution, between  the dSpace trigger 

pulse and the strobe trigger pulse 

 

Both of these problems are addressed simultaneously with the introduction of solid state AND 

gate and a feed back pulse to the dSpace™ module, which triggers the strobe flash. As shown in 

Figure 5.4, the solid state AND gate is attached to the two external sync lines from each camera, 

and this addition aligns the two pulses into one coherent pulse that is fed into the dSpace™ 

module.  

 

 
Figure 5.4: The new strobe trigger set-up 
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The single coherent external pulse sent to the dSpace™ module from the AND gate is then 

aligned with the rising edge of the now phase-lagged LVDT signal, which is then passed back 

out to trigger the strobe. The single external strobe trigger is aligned in much the same way as 

the camera snap trigger pulse using flip-flops Simulink™ blocks, as shown in Figure 5.5.  

 

 
Figure 5.5: The Simulink™ blocks added (within the dashed region) to the trigger generation sub-block 
of Figure 4.2 to deal with firing the strobe 
 
 
The strobe itself actually triggers on the falling edge of the trigger pulse and not the rising edge 

because of the way the strobe was designed by the manufacturer. Due to the falling edge trigger, 

a ‘NOT’ gate is used to invert the edge. The implementation of this ‘NOT’ gate achieves the 

result shown in Figure 5.6.  

 

Each rising edge of the square wave LVDT lagged signal occurs at a specific point in the 

actuators motion. This rising edge is moved to other positions in the actuators motion, by 

adjusting the phase lag desired. It is this rising edge that the strobe must trigger on to capture the 

actuator at that specific position. The external sync from the cameras notifies the image capture 

system that the cameras are ready for the strobe flash, but the flash must occur on the rising edge 
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of the lagged LVDT signal. Thus, the external sync must remain high until the next rising edge 

in the lagged LVDT signal, which is at 0.01s intervals for 100Hz actuation.  

 

Since the external sync therefore may remain high for ~0.25-0.3s, there is plenty of time for the 

strobe to receive a rising edge and thus trigger a camera flash. The result of the solid state AND 

gate and feedback pulse to the dSpace™ module applied to the apparatus outlined in Chapter 2, 

allows the strobe to trigger at the points shown in Figure 5.7 

 

 
Figure 5.6: The timing of the modified strobe trigger 
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Figure 5.7 compares the actual strobe triggering time with the ideal, where the mean absolute 

error is approximately 1.4%. This demonstrates the accuracy of the timing of the strobe firing. 

The gradient of the graph shown in Figure 5.7 of the ideal strobe trigger times follows the 

experimental strobe triggers very closely. This result indicates that the progression of the phase 

lag over 0-360 degrees is evenly distributed. Furthermore, the complete phase lag occurs almost 

precisely in 0.01s, indicating the image capture process has occurred within a 360 degree 

waveform, oscillating at 100Hz.    
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Figure 5.7: The comparison of the average strobe triggering times over the four image capture runs 
compared with the ideal triggering times. 
 

 

It should also be noted that the actuator has imperfections or error in its motion. A snap shot of 

the actuators motion at t = 1.8207s compared with an ideal case shown in Figure 5.8(a), shows a 

time period where the difference in the two waveforms is at a minimum corresponding to the 

best achievable actuator motion. The variation in frequency for Figure 5.8(a) is between ~98 to 

100Hz or less than 2%. 
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Figure 5.8(a): The actual position of the actuator compared to an Ideal position at a snapshot of the 
actuators motion taken at 1.8207 seconds. 
 
 
An average of 20,000 actuator waveforms was taken, and the result is plotted in Figure 5.8(b) 

showing that a larger error dominates the motion. Since Figures 5.8(a) and (b) involve direct 

measurements of the actuator displacement,   errors can be attributed to the dynamics of the 

actuator itself. In other words, there are physical limitations in the current actuator. Further 

experimental work and potential improvements need to be done in the future. 
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Figure 5.8(b): The mean actuator displacement compared with the ideal actuator displacement over 
20,000 actuator cycles. 
 

 
Figure 5.8(c): The compiled actuator displacements at the time of the strobe firing, compared with an 
ideal actuators displacement at that point. 
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In practice, images of a silicon phantom’s displacement response to one specific period of the 

actuator, as in Figure 5.8(a) for example, cannot be achieved. As discussed in Chapter 2, the way 

to build up one complete cycle of the actuated silicon phantom, is to strobe at pre-defined phase 

angles and capture an image at each strobed point in time. To further validate the method the 

phase lag increment is chosen to be 10 degrees so that strobing occurs every 0.00028s of the 

0.01s cycle. 

 

The actuator displacements at the time of the strobe firing are plotted in Figure 5.8(c). Note that 

the specific times that the images are taken can vary significantly between runs. However, 

relative to the 0.01s cycle the image capture times are very consistent, as shown in Figure 5.7. 

For example, the first 10 image capture times in Figure 5.8(c) are: 

 

 t = [5.541, 14.5413, 24.3915, 34.1817, 44.0121, 53.8224, 63.6525, 73.4427, 83.2932, 93.0834] 

 

With respect to the 0.01s cycle the 10 image capture times are effectively: 

 

t = [0.0002, 0.0005, 0.0007, 0.001, 0.0013, 0.0016, 0.0017, 0.002, 0.0024, 0.0026] 

 

These values are very close to multiples of 0.00028, as required. The results in Figure 5.8(c) 

show similar behaviour to Figures 5.8(a) and (b), further demonstrating the accuracy of the 

strobe and camera trigger system of Chapter 3. 

 

5.4 Surface Motion Tracking 
 
Six images of the silicon phantom corresponding to 60 degrees intervals from 0-300 degrees are 

shown in Figure 5.9. The frequency of actuation is 100Hz with amplitude of 1.2mm. On the face 
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common to both cameras there are 54 black dots, which are used to help track the surface motion 

of the phantom.  

 

 

 

 
Figure 5.9: The silicon phantom with 54 black dots on the surface moving at 1.2 mm of amplitude 
starting at phase lag of 0 degrees and moving to a phase lag of 360 degrees from the left camera. 
 
To validate the image capture system the black dots shown in Figure 5.9 are used to track the 

displacement of the moving surface of the phantom. The motion tracking is performed using 

software constructed by Richard Brown as part of his PhD thesis. 
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Figure 5.10: Tracking motion of the dots on the silicon phantoms surface, using images from the DIET 
image capture system. The identified dots are denoted by crosses. 
 

Figure 5.10 shows the moving phantom and crosses overlaid by the image tracking algorithm. 

Figure 5.11 shows an example of the 3D tracked motion for one of the points in Figure 5.10. 

Note that a small number of the dots shown in Figure 5.10 on the surface of the silicon phantom 

could not be tracked because they move outside the field of view shared by both cameras.  

 
Figure 5.11: The motion of a single dot on the surface of the silicon phantom 
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An example of the reconstructed surface for one point in the actuators cycle is shown in Figure 

5.12. The 3D mapped positions of the dots are then used to construct a virtual silicon phantom 

with the mapped dots displayed in red as shown in Figure 5.13. This 3D visualisation of the 

virtual phantom is generated by assuming that the silicon phantom is rotationally symmetric, and 

the final rendered phantom was created by rotating one column of dots about the central axis of 

the phantom and adding a flat top surface. The calculated 3D locations of the points were then 

overlaid on top of the phantom to create the final image. The software for generating Figure 5.13 

was written by Richard Brown.  

 

Note that Figure 5.13 is not an accurate 3D reconstruction of the whole surface rather a means of 

visually validating the results and demonstrating the application of the imaging system. The 

virtual silicon phantom visually agrees with the physical silicon phantom results shown in Figure 

5.9 throughout the actuation cycle. This data further validates the successful operation of the 

camera system and, in particular, shows that images can be captured at high frequencies at a 

sufficient image quality that makes it possible to retrieve useful surface motion data. 

 
Figure 5.12: The 3D reconstruction of the tracked points from the phantoms surface 
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Figure 5.13: The virtual silicon phantom with the mapped points in red over the surface 

 

5.5 Summary 

Initial tests of the high-speed image capture system show that there were inconsistencies with the 

time period between the external sync pulse and the receiving of the snap trigger pulse from 

dSpace™. Furthermore, there were small inconsistencies between cameras as to when the 

external pulse was sent even though the cameras received the same snap trigger pulse at the same 

time. These two problems were addressed by gathering the external sync pulses from both 

cameras and feeding them into the dSpace™ module, via an AND gate. The AND gate allowed 

the inconsistencies of the external sync pulse between cameras to be combined into one coherent 

external pulse which was fed into dSpace™.  This pulse was then used to trigger the strobe at the 

required time to obtain an image of the phantom at specified actuator position.  

 

The resulting images were of a quality that allowed 3D motion tracking software to successfully 

track the surface motion of an actuated silicon phantom at a frequency of 100Hz and amplitude 

of 1.2 mm. However, analysis of the trigger time data and actuator position data showed that the 
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actuator was not performing with as consistent a frequency as might be desired introducing some 

errors outside the control of this research. 
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Chapter 6 

Conclusion and Future Work 
 
 
 
This chapter summarizes the tests undertaken on the image capture system, and discusses possible 

future work on the system. Future work is presented as possible directions for the improvement of 

the automated image capture system towards developing a final prototype. 

 

6.0 Conclusion 
 
A high-speed digital image capture system for Digital Image-based Elasto-Tomography (DIET) 

breast cancer screening has been presented. The final system satisfies the DIET system requirements 

of a completely automated relatively low cost method for capturing images of a silicon phantoms 

surface under sinusoid actuation at high frequencies up to 100 Hz. The image capture system was 

successfully tested on a silicon phantom moving at 100 Hz and amplitude of ~1.2 mm, providing 

accurate surface motion tracking at a high image resolution of 1280x1024. The image capture 

system also included functionality for the manipulation of colour gains and active windows making 

the system more adaptive to testing and laboratory conditions. 

 

An important feature was the use of the dSpace™ control system module, which allowed the image 

capture process to take place outside of  the Windows™ operating system message loops. This 

approach greatly increased the control over the timing of the events that go into capturing the high-

speed images. It also more exactly matches any such commercial system, which would also use 

similar embedded operating system. 
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The construction of the digital cameras, in-house allowed a greater flexibility when it came to 

integrating them into the overall system. In addition, using Kodak’s KAC-9648 CMOS imaging 

sensor, allows a reduction in complex circuitry in the camera design, simplifying making the future 

development and production of the digital cameras easier. 

 

The comparison between the ideal and actual strobe triggering times, showed that the strobe was 

correctly triggered at the required predefined phase angles with a mean absolute error of ~1.4%. 

There were variations of the displacement of the actuator compared with the ideal actuator 

displacement at which the strobe triggers corresponding to a variation of 95-100 Hz within one 

image capture cycle. However, this displacement error was shown to be attributable to the dynamic 

properties of the actuator itself. For example, internal friction and the returning frequency of the 

LVDT signal varying slightly either side of the reference frequency for the introduction of the phase 

lag. A more exact next generation actuator will resolve these issues.  

 

The time taken to complete an entire image capture run, of 37 images per camera took ~6 minutes 

upon review of the image capture log in the main application. This time can be reduced with the 

refining of the Ethernet protocols between the dSpace™ and image capture computer (ICC). The 

refining of the protocols could potentially reduce this image capture time by half (~3 minutes). 

Additionally, a custom designed system might reduce this test time by a further 2-10x. 

 

6.1 Future Work 
 
This section discusses possible directions for the continued development of the DIET image capture 

system towards achieving a robust and versatile image capture system. Possible next generation 

improvements for the image capture system are summarized as follows: 
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• The introduction of wider lenses with the ability to auto focus 

•  Replacement of the dSpace™ module with a self contained microcontroller 

• Upgrade of  the experimental apparatus and the introduction of ring flash devices for each 

camera  

• Actuator development 

 

6.1.0 Rebuild of the Camera Lens Arrangement 

Currently, there is no zoom on the cameras. Thus, the object being imaged must be placed close to 

the lens, producing a fish eye effect that could potentially affect the accuracy of camera calibrations 

and motion sensing. The manual placement of the object could also produce varying fish eye effects 

between multiple cameras, complicating the identification of common points between images and 

introducing further sources of error. The solution would be to introduce a wider lens to the digital 

camera with auto focus properties. The auto focus could involve a motorized lens system that 

analyze the incoming images and adjust the focus to optimize high spatial frequencies in the stream 

data indicating a well-focused camera. Once calibration is achieved the focus could be locked by the 

user for the duration of the image capture process. This capability is commonly available a modern 

digital cameras and could likely be obtained “off the shelf” in future prototypes. 

 

6.1.1 Replacing the dSpace™ module Concept 

The dSpace™ module performs very well when tracking the actuators motion and triggering the 

camera snap and strobe. However, the Ethernet aspect of the system tends to slow the image capture 

process and is prone to corruption when insufficient bandwidth is made available to the process. 

One possible solution could be the introduction of one or more PSoC™ microcontrollers that would 
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be communicated to, from the Image Capture Computer (ICC) over the same I2C bus as the cameras 

as shown in Figure 6.1. 

 

 
Figure 6.1: The set-up for the introduction of microcontrollers to the image capture system 
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The I2C communications protocols are an industry standard and, as such, provides a robust and 

reasonably fast communication between the adapter and all devices on the bus.  This will allow the 

ICC to more quickly and efficiently notify trigger control that the cameras and the frame grabbers 

are prepared for the triggers, and that the images have been successfully saved to allow the 

incrementing of the phase lag.  

 

Furthermore, the Python™ code used to automate ControlDesk™ is a high level scripting, 

interpreted and interactive object-oriented programming language. It thus runs slower than the C++ 

software running on the ICC to which it is communicating. Hence, the C++ software needs to be 

slowed to effectively communicate with the dSpace™ computer. Finally, this approach would allow 

the whole image capture process to be driven from a single computer, rather than setting up two 

different computers. Again it is a next step towards a standard, commercial prototype for this type of 

mechatronic system. 

 

 

6.1.2 Experimental Apparatus Concept 

The upgrade of the experimental apparatus would see the introduction of four or five more cameras 

and the introduction of ring flash devices to each camera. The ring flashes would trigger from one 

single trigger and have all the cameras external syncs tied together. The ring flashes could be 

constructed from high intensity light emitting diodes, and positioned around the lens of each camera, 

as shown in Figure 6.2. This arrangement would provide and even distribution of light at high 

intensity. The current strobe flash, while providing adequate lighting for the capturing of the images, 

required the colour gains on the cameras to be increased with a completely opened lens iris. 
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Furthermore, the current strobe is bulky and restricts the placement of the cameras about the silicon 

phantom test piece. This change would thus significantly improve the quality of images captured. 

 

 
Figure 6.2: Possible new experimental set-up 
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The cameras could also be mounted via four spring loaded studs to allow the small movement of the 

cameras orientation, to set-up experimental tests. The number of cameras would depend on the angle 

of view of each camera to increase the size of the surface of the silicon phantom available to both 

cameras, and how many cameras it would take to capture the entire surface of the silicon phantom, 

in binocular vision. In summary, a more flexible and efficient prototype system to aid further 

development. 
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6.1.3 Actuator Development Concept 

The current actuator performs well, within the design specifications. However, the actuator was 

difficult to control with a standard PID controller. It was found that the actuator also needed a period 

of time to “warm-up” before the system become stable. This behaviour was perhaps due to the 

expansion properties of the main nylon bearing, which appears to guide and align the actuator 

piston. Nylon bearings are not designed for high cyclic wear situations without regular lubrication. 

Furthermore, there did not seem to be any way of applying lubrication to the main bearing from the 

outside. In the report that accompanied the finished actuator, a sintered bronze bearing was 

suggested, but was not implemented due to high cost. A possible solution for the replacement of the 

current nylon bearing would be to remove the bearing all together and implement a second 

diaphragm, as shown in Figure 6.3.    

 

 

Top Diaphragm 

Magnet 

Bottom 
Diaphragm 

Actuator Piston 

Figure 6.3: Possible solution for the removal of the main actuator bearing 



Conclusion and Future Work 
 
73

The piston would thus be suspended between the two diaphragms one at the top and the other at the 

bottom with the magnetic field in the middle. This design would also do away with the need for 

lubrication. Furthermore, the heating that comes with moving the piston through the nylon bearing 

at high speeds does not allow the piston to return to the zero position easily, as the piston is perhaps 

being gripped by the warm nylon, due to the nylon expanding when heated. 
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A1: Detailed Visual C++ Code Explanation 
 
What is outlined in appendix A is a descriptive explanation for the operation of the major parts of 

the code which operates on the ICC. References to blocks of code can be found after the text in 

sperate appendix blocks. Below in Figure A1.1 is the hierarchy for the dialog box activation. This 

gives an indication of what happens and when. 

 
 

The executable 
is activated 

DietOpv1.2.cpp 
is executed 

DietOpv1.2Dlg.cpp 
is executed 

CLeftCameraSetting.cpp 
is executed 

CRightCameraSetting.cpp 
is executed 

 
 CImageMatR.cpp is 

executed 

CImageMat.cpp is 
executed 

CSavingSettings.cpp is 
executed 

 
 
 

CSavingSettingsR.cpp 
is executed  

 
 
 
 
 
 
 
 

Figure A1.1: Hierarchy for dialog box activation 
 
A1.1 The Main Image Streaming 

The main image streaming occurs upon the activation of the image capture program on the ICC, and 

streams video data from the frame grabbers to the main dialog box. A lot of the code that allows this 

to happen is repeated in other parts of the application. This section of the application uses 

OpenGL™ to scale the images and display them in the application. The image streaming is started 

in the initialisation of the main dialog code shown in Appendix A2. The lines in particular are (21) 

and (22) which start the functions that take the data from the frame grabbers and display it on the 

screen. However before this occurs, we must set-up windows, which are attached to the main dialog 
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box, in which the image streaming functions can put the image data, this is done in line (19) of 

Appendix A2.  

 

The process of streaming the images from the cameras to the screen can be assumed to be the same 

for both cameras, and so the explanation will always make reference to the left camera. Figure A1.2 

shows a flow diagram for the operation of the image streaming process. The first operation to occur 

after the beginning of the function is the registering of the newly created window with the 

OpenGL™ processes. This occurs in Appendix A3 line (6) to (12). Then the frame grabbers are set-

up using the functions that accompanied them in the frame grabber’s driver software. Since there are 

two frame grabbers we must address the frame grabber to which the left camera is connected. In 

Appendix A3 line (13) this is done when setting up the interface session for the frame grabber, and 

the frame grabber being used is denoted in that line by “img1”. The numbering of the frame 

grabbers begins at zero (“img0”), hence we are addressing the second frame grabber and 

consequently the left camera. What follows line (13) is just applying the settings for the size of the 

images the frame grabbers can expect to get from the CMOS imagers, and this continues until line 

(21). In line (30) we use the “grab” function which is used to always ‘grab’ new image data from the 

cameras and place it in the “LeftCamImaqBuffer”.  
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Figure A1.2: The operation of the image streaming function 

 
At this point the image data is still at its original dimensions it arrives from the cameras at, and so it 

needs to be reduced in size in order to display the entire image data on the screen. For this we use 

OpenGL™ in particular OpenGL™’s function ‘glPixelZoom’ in line (50) of Appendix A3. By 

providing the function with a scale factor of 0.3 for the x and y dimensions, the image data being 

transferred to 8-bit is be reduce to a third of its original size, and displayed using the ‘glDrawPixel’ 

function in the main dialog box. 

 
A1.2 The Apply New Camera Settings Event 
 
An event is the triggering of an action by way of user interaction or an application process. Figure 

A1.3 shows the layout of the actions that occur upon the activation of the event, which applies new 

camera settings.    
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Figure A1.3: Layout of ‘Applying New Camera Settings’ to the Cameras 
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When applying new settings to the cameras, the data for the settings arrives from the .dat files 

created using the CImageMat class for each camera. The values entered into the dialog box that is 

ran using the CImageMat class, are the values for the camera window settings. The values are then 

saved to the LeftCameraSettings.dat file, using windows CArchive class. The code for retrieving 

these settings is outline for the left camera in Appendix A4. The values are read out in the order they 

were read into the .dat file, and are a read out into a local variable created by the programmer.  The 

values read out of the .dat file are decimal values of base 10 that need to be converted into a 

hexadecimal value of base 16 format before they can be written to the cameras registers. All 

registers require the information to be in hexadecimal format. 

 
Hexadecimal is shorthand for binary information. Each hexadecimal value represents 4-bits of 

binary data as shown in table A1.1. 
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Table A1.1: Binary Values and there respective Hexadecimal values 

Binary Hexadecimal
0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1000 8 
1001 9 
1010 A 
1011 B 
1100 C 
1101 D 
1110 E 
1111 F 

 
Hexadecimal can be used to represent 8-bits or one byte as ‘0x0E’ which has a decimal value of 14. 

The values of the window dimension to be written to the camera register are of base 10 and must be 

converted to base 16 in order for the camera to make sense of the data. The function built to carry 

out this conversion is outlined in Appendix A6. Since most of the values to be converted are larger 

than 255 they are represented in 16-bits or two bytes. When reading a hexadecimal value larger than 

8-bits there are the ‘Most Significant Bits’ (MSB) and ‘Least Significant Bits’ (LSB) that determine 

the size of the resulting decimal value. 

9AE2

MSB LSB 

160161162163

 
Figure A1.4: The Column Set-up for Base 16 Decimal Values 

 
Normally we would see the hexadecimal value in Figure A1.4 as ‘0x2EA9’ but it is shown here to 

illustrate where the resulting decimal value comes from.  
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The value of the hexadecimal number in Figure A1.4 is:  

 

( ) ( ) ( ) ( ) 1194591610161416216 0123 =×+×+×+×  

 

Once the camera window values have been converted to base 16 formats they are separated into 

their MSB and LSB components and sent to the I2C interface code outline in Appendix A7 to be 

written to the camera registers. As well as windowing information being written to the cameras 

onboard factory settings can be changed, which includes the enabling of the external triggering pin 

on the CMOS imaging chip. This modification of factory settings is done using process call 

‘masking’. On the CMOS imaging chip itself each register is the size of 8-bits and has a unique 

address. Each register for the camera settings may contain more than one adjustable setting, and 

each setting is turned ‘on’ or ‘off’ by setting its respective value to either ‘1’ or ‘0’. For example one 

register may resemble that in Figure A1.5, where some camera functions have been enable while 

others have not. If we only wish to affect one of the camera settings then we take the current value 

of the camera register and ‘or’ it with another byte, with a ‘1’ in the position of the bit we wish to 

change. 
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Figure A1.5: The operation of bit masking 
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Once it is known, which register the information is going, the I2C interface code then communicates 

with the cameras to write the data there. 

 

The I2C interface code in Appendix A7 follows a specific format. The first part of the code (lines (5) 

to (33)) is for the bit mask and the second part (lines (36) to (53)) is for the writing of specific 

values. The code for actually writing the data to the cameras is the same over both sections. 

 
 
The format for writing data to the camera registers is as follows: 

 

• The ‘WriteAddress’ function is used with the ‘KAC_9648_write_address’ value sent. This is 

the address of the camera with the write-bit enabled. This occurs in line (8) and (36) of 

Appendix A7. 

• Then the ‘WriteData’ function is used to tell the camera which register will be receiving the 

data. This occurs in line (37) 
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• The ‘WriteData’ function is used again to actually write the data to the camera register. This 

occurs in line (38)  

• Then the ‘WriteStop’ function is used to halt communications with the CMOS image device. 

This occurs in line (39). 

 

All of the functions described above use the adapter class functions. In Appendix A7 an object of 

the adapter class is taken and initialised, in line (3) and (4) respectively, before any communications 

occur. The I2C interface code is built to check the data recently written to the specified register. This 

is done by the following: 

 

• The ‘WriteAddress’ function is used with the ‘KAC_9648_write_address’ value sent. This is 

the address of the camera with the write-bit enabled. This occurs in line (40) of Appendix 

A7. 

• The ‘WriteData’ function is used to tell the CMOS imaging device which register the data 

will be read from. This occurs in line (41). 

• The ‘Restart’ function is used in line (42), with the ‘KAC_9648_read_address’ sent to the 

CMOS imaging sensor. The ‘Restart’ function is use to restart communications with the 

device, with the register of interest already been pre-selected for reading. 

• The ‘ReadData’ function is used twice in lines (43) and (44). The reason for this is because 

the first ‘ReadData’, reads the data from the buffer on the I2C communications adapter card 

in the computer, which just contains the recent register address. The second time the 

‘ReadData’ function is called it grabs the data off the CMOS imaging device, from the 

specified register.  
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• The second call to ‘ReadData’ stores the contents of the register as ‘Register_Value3’ in line 

(44). 

• Then the ‘WriteStop’ function is used to halt communications with the CMOS image device. 

This occurs in line (45). 

 

Once the value of the current register has been obtained it is compared with the value that was 

intended to be written to the register to confirm the writing of the data has taken place. If the write 

was successful the I2C interface code returns a value of ‘1’, otherwise a value of ‘2’ is return, 

indicating there has been an error in data writing to that register.  This value is then used to prompt 

the user in the main dialogs, log window that an error has occurred with the camera registers. 

 
 
 
A1.3 Start Image Capture Process 
 
The automatic capturing of the triggered images occurs in this process. The function used to carry 

out this task uses the CSocket class, explained in chapter 3 to communicate between itself and the 

dSpace computer.  

 
Figure A1.6: The Initial Stages of Running the Image Capture Function 
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Figure A1.6 outlines the initial stages of starting the image capture process. The connection to the 

dSpace computer is carried out with the use of the DietOpSocket class; the connection is made using 

the port number ‘2345’ as in Appendix A9 line (3). This port number has to be the same on the 

dSpace computer for the connection to be made.  

 
The processing of the settings for dSpace occurs in Appendix A9. It starts with the updating of the 

data in the ‘dSpace Settings Field’, which occurs in line (13). The updating makes sure that the 

information for the settings is arriving directly from the main GUI. The data arriving from these 

fields are strings and are packaged up to be send to the dSpace computer in line (16) as 

‘PhaseValues’. The spaces included in the combined string to be sent to dSpace are there to help the 

dSpace computer sort the data into its necessary places. The dSpace computer uses the ‘split’ 

function to break up the sent string.    

 
 
 
A1.3.1 The Communications Thread 
 
All communications carried out on the ICC are done inside a thread so that other functions, like the 

main image streaming, can continue to run within the main dialog code.  The communications 

between the ICC and dSpace™ computer occur by sending message strings back and forth between 

the two computers. Once the communications thread begins, it starts a ‘while’ loop that loops 

continually until it is told to end by the dSpace computer. The dSpace computer is the driver of the 

image capture process, in that the ICC only acts when instructed by the dSpace computer and not 

before. 
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The ‘while’ loop that comprises the main part of the communications thread contains many different 

‘if’ statements that respond to a given message string. The structure of the communication threads 

‘while’ loop is outlined in Figure A1.7. 

 

 
Figure A1.7: The layout of the communications thread ‘while’ loop 

While loop 

‘If’ statement 1

‘If’ statement 2

‘If’ statement 3
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End

 
When the ‘while’ loop is running the ‘OnReceive’ event, which is part of the DietOpSocket class is 

constantly listening for new messages which are passed to the ‘while’ loop in Figure A1.7 during its 

operation from the ICC. The function of each ‘if’ statement shown in Figure A1.7is: 

 

• ‘If’ Statement 1: This statement is activated when the ‘GetPhases’ string is sent by the 

dSpace computer and received by the ICC. When asked for the settings for the dSpace 

computer, the ICC will send them repeatedly until the dSpace computer acknowledges there 

arrival. 

• ‘If” Statement 2: This statement is activated when the ‘SetCameras’ string is sent by the 

dSpace computer and received by the ICC. The statement then starts the frame grabbers 

waiting on the trigger signals (Appendix A10 line (37) and (38)). The cameras themselves 

begin waiting for the trigger signals once the external pin is enabled during the configuring 

of the cameras registers. The statement then sends a ‘CamerasReady’ string to the dSpace 

computer, so dSpace can send the trigger signal.  
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• ‘If’ Statement 3: This statement is activated upon the successful triggering and saving of an 

image from the cameras. The statement then sends a message to the dSpace computer telling 

the computer that the images have been stored and to continue on with the image capture 

process. 

• ‘If’ Statement 4: This statement is activated when the capture of the image has not been 

successful. It then posts a message in the log window in the main dialog box. It does not alert 

the dSpace computer to the error, in order to maintain the image capture process as a whole. 

• ‘If’ Statement 5:  This statement is activated when the ‘ResetCameras’ string is sent by the 

dSpace computer and received by the ICC. It is used to reset all ‘if’ statements in the ‘while’ 

loop in order to capture another image. Once the ICC computer has reset all its statements a 

string is sent to the dSpace computer tell it to reset its ‘if’ statements as well. 

 

The reason why all the ‘if’ statement must undergo a reset is because, as well as acknowledging the 

message string, instructions sent from the dSpace computer, the ‘if’ statement also contains another 

condition that will only allow the contents of the ‘if’ statement to run if that condition is ‘TRUE’. 

Once inside the contents of the statement, that same condition is set to ‘FALSE’. This stops the 

same ‘if’ statement from being activated twice, during the running of the ‘while’ loop. 

 
The trigger functions, which are started in line (37) and (38) of appendix A10, are expanded to the 

function shown in Appendix A11.  As is can be seen there in Appendix A11 the first part of the 

trigger setting is the same over all the frame grabber functions. The important line is (30) as this puts 

the frame grabber in the mode to receive the trigger signal from the dSpace computer. Once the 

trigger has been sent the image data is read directly from the frame grabbers local memory which 

occurs in line (34) which then feeds the image to the ‘CopyBufferTriggerLeft’ image buffer which is 
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then saved in line (42) to a folder specified by the user, and is denoted in this line as ‘m_filename’. 

This path is defined in the CSavingSettings dialog box. 

 
Throughout the ‘while’ loop there are smaller ‘while’ loops which aid in the sending of the message 

string between the two computers. This is achieved by the loop continuing to send the same 

instruction message over and over again until or ‘while’ there is no acknowledgement of the 

messages arrival at the other computer. As soon as the instruction message makes it to the other 

computer that computer sends an acknowledgement message until the first computer stops sending 

the instruction message. This concept is outlined in figure A1.8. 

 

Event Command 

Command 
Acknowledgement 

DSpace 
Computer 

Iris 
Computer 

 
Figure A1.8: The string message sending layout 

 
Once all the communications between the two computers has been completed the socket created on 

both computers are closed. The ICC lets the dSpace computer close its sockets first. 

 
A1.4 Saving Information Log Process 
 
The information log is a method of making the user aware of what is occurring within the workings 

of the image capture process. The messages are posted using the ‘Spit Message’ function shown in 

Appendix A8. This function takes message strings and posts them in the log window box shown in 

Chapter 3 Figure 3.6. The messages are time stamped.  
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The box to which the messages are posted to in Figure 3.6 is referred to as a ‘ListBox’. Once the 

‘ListBox’ is drawn in the GUI a variable is attached to the ‘ListBox’. Attaching a variable to the 

‘ListBox’ allows the programmer to control how it operates. In Appendix A8 the ‘Spit Message’ 

functions uses the ‘m_list’ variable to post the strings to the ‘ListBox’. Before the message is posted 

it is formatted using the CString class. This occurs in line (6) of Appendix A8. A snap shot of the 

system time is taken in line (4) and placed at the start of the string. Most strings sent to the ‘Spit 

Message’ function are loaded from the string table in the compliers resource folder. Each string has 

an I.D which is loaded into an intermediate string before it is passed to the ‘Spit Message’ function.  

 

Upon pressing the ‘Save Log’ button in the GUI shown in figure 3.6, each line in the ‘ListBox’ is 

read into a rich edit file that is saved under a file name specified by the user. The log can then be 

cleared by clicking the ‘Clear Log’ button on the GUI shown in figure 4.3. 

 
A1.5 The CLeftCameraSetting Class 
 
The CLeftCameraSetting class is a dialog class that controls the workings of the ‘tab’ shift between 

the CImageMat dialog and the CSaveSettings dialog. The ‘tab’ shift is the selecting of either the 

CImageMat dialog or the CSaveSettings dialog, within the CleftCameraSetting dialog. The 

CLeftCameraSetting dialog is shown in Figure A1.9, at the top are two tabs, tab1 and tab2. Clicking 

on either tab changes the displayed dialog in the space below the tabs.  

 

The displaying of CImageMat dialog and the CSaveSettings dialog is carried out by first taking an 

object of both classes, and placing them into a dialog array. Within the dialog array each dialog 

object can be accessed from the array by specifying the corresponding array number. The selection 

of each tab corresponds to the requested dialog object in the dialog array. The requested dialog is 
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then displayed in the lower part of the CleftCameraSetting dialog using the ‘SetWindowPos’ with 

the ‘SWP_SHOWWINDOW’ flag included in the function definition.  

 

 

The tabs to be 
selected from 

Figure A1.9: The dialog layout of the CleftCameraSetting dialog 
 
The dialog displayed in the CLeftCameraSetting dialog then behaves exactly like it would if it 

where a stand alone dialog. 

 
A1.6 The CSavingSettings Class 
 
The CSavingSettings class operates the CSavingSettings dialog box which is responsible for the 

obtaining of the file paths, for saving the images, from the user. The dialog box shown in Figure 

A1.10 that is tied to the CSavingSettings class, uses Combo Boxes to allow the user to select from 

image formats and previously chosen file paths. Each ComboBox corresponds to a variable that will 

be archived to a .dat file upon the pressing of ‘Accept’ button in the dialog box of Figure A1.10.  

 

The pressing of the ‘Browse’ button in Figure A1.10 starts the function in Appendix A13 and 

presents the user with the standard browser dialog box. Once the path is chosen by the user, the path 

is cast to a ‘char’ and saved as ‘LeftCamCalPath’ in line (22) of Appendix A13. The reason for 

casting the path to a ‘char’ was to make the file path easier to integrate with the frame grabber driver 
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software functions. The lines (3) to (16) in Appendix A13 is the defining of the of browse dialog 

box. 

 

 

The image format 
ComboBox 

Figure A1.10: The layout of the CSavingSettings dialog box 
 
 
The CSavingSettings class, which runs the CSavingSettings dialog box, makes use of the combo 

boxes ‘OnCbnSelchange’ event or ‘on selection change’. An example of the ‘OnCbnSelchange’ 

event is shown in Appendix A14. This event allows the dialog box to update the variables for that 

particular ComboBox to the variable chose by the user from the ComboBox’s drop-down list. The 

drop-down list for the ‘Image Format’ variables are loaded in upon the initialisation of the 

CSavingSettings dialog box, and indexed to keep track of the selected ‘Image Format’. The image 

path combo boxes have their lists updated upon the selection of a path from the browse dialog box 

and the ‘OnCbnSelchange’ event for these combo boxes overwrites the path previously chosen by 

the browse dialog box with the newly selected path from the ComboBox’s drop-down list.   
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A2: Main Dialog Initialisation Code  
 
(1) BOOL CDIETOPv12Dlg::OnInitDialog() 
(2) { 
(3)  CDialog::OnInitDialog(); 
 
 // Add "About..." menu item to system menu. 
 
 // IDM_ABOUTBOX must be in the system command range. 
(4)  ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); 
(5)  ASSERT(IDM_ABOUTBOX < 0xF000); 
 
(6)  CMenu* pSysMenu = GetSystemMenu(FALSE); 
(7)  if (pSysMenu != NULL) 
(8)  { 
(9)   CString strAboutMenu; 
(10)   strAboutMenu.LoadString(IDS_ABOUTBOX); 
(11)   if (!strAboutMenu.IsEmpty()) 
(12)   { 
(13)    pSysMenu->AppendMenu(MF_SEPARATOR); 
(14)   pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); 
(15)   } 
(16)  } 
 

// Set the icon for this dialog.  The framework does this automatically 
 //  when the application's main window is not a dialog 
(17)  SetIcon(m_hIcon, TRUE);   // Set big icon 
(18)  SetIcon(m_hIcon, FALSE);  // Set small icon 
(19)  CamWindowInitialistion(); 
(20)  CamStreamImageScale = 0.3; 
(21)  AfxBeginThread(StartUpLeftCamStream,(LPVOID)this); 
(22)  AfxBeginThread(StartUpRightCamStream,(LPVOID)this); 
(23)  ServerStatus = 1; 
(24)  CalledArray[0] = FALSE; 
(25)  CalledArray[1] = FALSE; 
(26)  CalledArray[2] = FALSE; 
(27)  CalledArray[3] = FALSE; 
(28)  CalledArray[4] = FALSE; 
(29)  ExecutedArray[0] = FALSE; 
(30)  ExecutedArray[1] = FALSE; 
(31)  ExecutedArray[2] = FALSE; 
(32)  ExecutedArray[3] = FALSE; 
(33)  ExecutedArray[4] = FALSE; 
 
(34)  Ethernet_Mess.Format("Initializing CDietOpSocket Class.......");   
  
(35)  spit_Message(Ethernet_Mess); 
 
(36)  if (!AfxSocketInit()) 
(37)  { 
(38)   Ethernet_Mess.Format("Initializing Failed");     
(39)   spit_Message(Ethernet_Mess); 
(40)   CalledArray[1]=TRUE; 
(41)  } 
(42)  else 
(43)  { 
(44)   Ethernet_Mess.Format("Done");     
(45)   spit_Message(Ethernet_Mess); 
(46)  } 
 
(47)  return TRUE;  // return TRUE  unless you set the focus to a control 
(48) } 
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A3: The Main Image Streaming Code (Left Camera) 
 
(1) void CDIETOPv12Dlg::LeftCamStream() 
(2) { 
(3)  CDIETOPv12Dlg* LeftCamProp = this; 
(4)  int error, acqWinWidthLeft, acqWinHeightLeft; 
(5)  unsigned int bufSize, bytesPerPixel; 
(6)  HWND hLeftCam; 

Applying settings to 
the frame grabber 
capturing the left 
images 

Directing 
OpenGL™ to 
Initialised Window 

(7)  hLeftCam = LeftCamWindow->GetSafeHwnd(); 
(8)  HGLRC hgLeftCam; 
(9)  HDC hdLeftCam = ::GetDC(hLeftCam); 
(10)  MySetPixelFormat(hdLeftCam); 
(11)  hgLeftCam = wglCreateContext(hdLeftCam); 
(12)  wglMakeCurrent(hdLeftCam, hgLeftCam); 
 
(13)  errChk(imgInterfaceOpen ("img1", &LeftCamInterfaceID)); 
(14)  errChk(imgSessionOpen (LeftCamInterfaceID, &LeftCamSessionID)); 
(15)  errChk(imgGetAttribute (LeftCamSessionID, IMG_ATTR_ROI_WIDTH, 

 &acqWinWidthLeft)); 
(16)  errChk(imgGetAttribute (LeftCamSessionID, IMG_ATTR_ROI_HEIGHT,  
     &acqWinHeightLeft)); 
 
(17)  errChk(imgSetAttribute (LeftCamSessionID, IMG_ATTR_ROI_WIDTH,  
     acqWinWidthLeft)); 
(18)  errChk(imgSetAttribute (LeftCamSessionID, IMG_ATTR_ROI_HEIGHT,  

 acqWinHeightLeft)); 
(19)  errChk(imgSetAttribute (LeftCamSessionID, IMG_ATTR_ROWPIXELS,  

 acqWinWidthLeft)); 
(20)  errChk(imgGetAttribute (LeftCamSessionID, IMG_ATTR_BYTESPERPIXEL,  
     &bytesPerPixel)); 
(21)  bufSize = acqWinWidthLeft * acqWinHeightLeft * bytesPerPixel; 
(22) errChkLeft(imgCalculateBayerColorLUT(redGainLeft, greenGainLeft, 

 blueGainLeft, LeftredLUT, LeftgreenLUT, LeftblueLUT, 
 bitsPerPixelLeft)); 

(23)  errChkLeft(imgCreateBuffer(LeftMainVideoCamSessionID, FALSE, bufSizeLeft, 
 &RGBBufferLeft)); 

(24)  BYTE* InterBufferLeft = new BYTE[bufSizeLeft]; 
(25)  BYTE* FinalBufferLeft = new BYTE[bufSizeLeft]; 
(26)  int i, Counter3, Counter37; 
(27)  for(i=0; i<NUM_RING_BUFFERS; i++) 
(28)   ImaqBuffersLeft[i] = NULL;  
  // Setup and launch the ring acquisition 
(29)  errChkLeft(imgRingSetup(LeftMainVideoCamSessionID, 

 NUM_RING_BUFFERS, (void**)ImaqBuffersLeft, 0, TRUE)); 
(30)  while(VideoLoopControlLeft==TRUE){ 
(31)   if(::WaitForSingleObject(mythingLeft->m_EndVideoLeftCamera,0) 

==WAIT_OBJECT_0) 
(32)   { 
(33)    VideoLoopControlLeft = FALSE; 
(34)    ResetEvent(mythingLeft->m_EndVideoLeftCamera);  
(35)   } 
(36)   errChkLeft(imgSessionExamineBuffer (LeftMainVideoCamSessionID, 

 BufNumLeft, &currBufNumLeft, &bufAddrLeft)); 
(37)   errChkLeft(imgBayerColorDecode(RGBBufferLeft, (void *)bufAddrLeft, 

 acqWinHeightLeft, acqWinWidthLeft, acqWinWidthLeft,  
 acqWinWidthLeft, LeftredLUT, LeftgreenLUT,  
 LeftblueLUT, IMG_BAYER_PATTERN_GRGR_BGBG, 
 bitsPerPixelLeft, 0)); 

(38)   Counter3 = 0; 
(39)   Counter37 = bufSizeLeft; 
(40)   glClear (GL_COLOR_BUFFER_BIT); 
(41)   glColor3f (0.0,0.0,0.0); 
(42)   glMatrixMode(GL_PROJECTION); 
(43)   glViewport(0,0,0,0); 
(44)   glLoadIdentity(); 
(45)   glRasterPos2i(0,0); 
(46)   glPixelZoom(CamStreamImageScale, CamStreamImageScale); 
(47)   glDrawPixels(acqWinWidthLeft,acqWinHeightLeft,GL_BGRA, 

 GL_UNSIGNED_BYTE, RGBBufferLeft); 
(48)   glFlush(); 
(49)   SwapBuffers(hdLeftCam); 
(50)   errChkLeft(imgSessionReleaseBuffer (LeftMainVideoCamSessionID)); 
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(51)   BufNumLeft ++; 
  
(52)  } 
(53)  InterBufferLeft = NULL; 
(54)  FinalBufferLeft = NULL; 
(55)  delete InterBufferLeft; 
(56)  delete FinalBufferLeft; 
(57)  wglMakeCurrent(NULL, NULL); 
(58)  ::ReleaseDC (hLeftCam, hdLeftCam); 
(59)  wglDeleteContext(hgLeftCam); 
(60) Error : 
(61)     if(error<0) 
(62)   DisplayIMAQError(error,LeftCamProp); 
 
  // dispose of the buffer 
(63)  if (LeftCamImaqBuffer != NULL) 
(64)   imgDisposeBuffer(LeftCamImaqBuffer); 
  
  // Close the interface and the session 
(65)     if(LeftCamSessionID != 0) 
(66)      imgClose (LeftCamSessionID, TRUE); 
(67)     if(LeftCamInterfaceID != 0) 
(68)      imgClose (LeftCamInterfaceID, TRUE); 
(69) } 

 
 
A4: Applying Camera Settings Code (Left Camera) 
 
(1) void CDIETOPv12Dlg::OnBnClickedApplyCameraSettings() 
(2) { 
(3)  Adapter Initialise_Adapter; 
(4)  int return_value; 
(5)  int return_value2; 
(6)  int RegWriteStatus; 
  
(7)  CFile LeftCameraFrameSettings; 
(8)  if(LeftCameraFrameSettings.Open("LeftCamSettings.dat",CFile::modeRead) 

==FALSE){ 
(9)   AfxMessageBox("There is no LeftCamSettings.dat file  
    available",MB_OK); 
(10)   return;}; 
(11)  CArchive ar3(&LeftCameraFrameSettings,CArchive::load); 

Retrieving 
Camera Window 
Information 

(12)  ar3 >> LeftCam_woi_row_pointer >> LeftCam_woi_column_pointer >>  
   LeftCam_woi_row_depth >> LeftCam_woi_column_width >>  
   LeftCam_vf_row_depth >> LeftCam_vf_column_width; 
(13)  ar3.Close(); 
(14)  LeftCameraFrameSettings.Close(); 
 
 
 

A5 (a): Bit Masking For Camera Factory Setting (Left Camera) 
 
(1)  RegWriteStatus = CMOS_Register_Writer(BIT_MASKING, 

KAC9648_FRAME_MODE_SINGLE_FRAME_MASK, 0x40); 
(2)  if(RegWriteStatus==1) 
(3)  { 
(4)   RegMessage.LoadString(IDS_LEFT_CAM_SINGLE_SHUTTER); 
(5)   spit_Message(RegMessage); 
(6)  } 
(7)  else if(RegWriteStatus==2) 
(8)  { 
(9)   RegMessage.LoadString(IDS_NO_WRITE_LEFT_CAM_SINGLE_SHUTTER); 
(10)   spit_Message(RegMessage); 
(11)  } 
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A5 (b): Writing Value to Camera  (Left Camera) 
 
(1)  IntegerToHex(LeftCam_woi_column_pointer); 
(2)  TransferLSB = Bit_Array[0]; 
(3)  TransferMSB = Bit_Array[1]; 
(4)  RegWriteStatus = CMOS_Register_Writer(NO_BIT_MASKING, TransferMSB,  
   0x49); 
(5)  if(RegWriteStatus==1) 
(6)  { 
(7)   RegMessage.LoadString(IDS_WRITE_TO_REG49HL); 
(8)   spit_Message(RegMessage); 
(9)   RegWriteStatus = 0; 
(10)  } 
(11)  else if(RegWriteStatus==2) 
(12)  { 
(13)   RegMessage.LoadString(IDS_NO_WRITE_TO_REG49HL); 
(14)   spit_Message(RegMessage); 
(15)   RegWriteStatus = 0; 
(16)  } 
 
 

 
 
A6: Converter of Integer Value to Hexadecimal Value Function 
 
(1) void CDIETOPv12Dlg::IntegerToHex(int Integer) 
(2) { counter = 0; 
(3)  value2 = 0; 
(4)  value1 = 0; 
(5)  power = 0.0; 
(6)  Hex_Array[0] = 0; 
(7)  Hex_Array[1] = 0; 
(8)  Hex_Array[2] = 0; 
(9)  Hex_Array[3] = 0; 
(10)  int LSB = 0;  
(11)  int MSB = 0; 
(12)  while((Integer-16)>0) 
(13)  {  
(14)   counter2 = 0; 
(15)   while(Integer>=16) 
(16)   { 
(17)    Integer = Integer-16; 
(18)    counter2++; 
(19)   }; 
(20)   Hex_Array[counter] = Integer; 
(21)   counter++; 
(22)   Integer = counter2; 
(23)  } 
(24)  Hex_Array[counter] = Integer; 
(25)  counter++;    
(26)  for(i=0;i < counter;i++) 
(27)  { 
(28)   power = (i+0.0); 
(29)   Base16factor = (int)pow(16.0,power); 
(30)   value1 = Hex_Array[i]*Base16factor; 
(31)   i++; 
(32)   power = (i+0.0); 
(33)   Base16factor = (int)pow(16.0,power); 
(34)   value2 = Hex_Array[i]*Base16factor; 
 
(35)   if(i==1) 
(36)   { 
(37)    LSB = value1 + value2; 
(38)   } 
(39)   else if(i==3) 
(40)   {  
(41)    MSB = value1 + value2; 
(42)   } 
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(43)  } 
(44)  Bit_Array[0] = LSB; 
(45)  Bit_Array[1] = MSB; 
(46) } 
 

 
 
A7: I2C Interface Code 
 
(1) int CDIETOPv12Dlg::CMOS_Register_Writer(int type, int Data, int Reg) 
(2) { 
(3)  Adapter Camera_Settings; 
(4)  Camera_Settings.Initialise(); 
(5)  int WriteQuery = 0; 
(6)  if(type==1) 
(7)  { 

Writing Specific 
Values to Registers 

Bit Masking the 
Registers 

(8)   Camera_Settings.WriteAddress(KAC_9648_write_address 
,ACKNOWLEDGE); 

(9)   Camera_Settings.WriteData(Reg); 
(10)   Camera_Settings.Restart(KAC_9648_read_address 

,DO_NOT_ACKNOWLEDGE); 
(11)   Camera_Settings.ReadData(DO_NOT_ACKNOWLEDGE); 
(12)   int Register_Value2 = Camera_Settings 

.ReadData(DO_NOT_ACKNOWLEDGE); 
(13)   Camera_Settings.WriteStop(); 
(14)   int MaskApp = (Register_Value2 | Data); 
 
(15)   Camera_Settings.WriteAddress(KAC_9648_write_address 

,ACKNOWLEDGE); 
(16)   Camera_Settings.WriteData(Reg); 
(17)   Camera_Settings.WriteData(MaskApp); 
(18)   Camera_Settings.WriteStop(); 
 
(19)   Camera_Settings.WriteAddress(KAC_9648_write_address 

,ACKNOWLEDGE); 
(20)   Camera_Settings.WriteData(Reg); 
(21)   Camera_Settings.Restart(KAC_9648_read_address 

,DO_NOT_ACKNOWLEDGE); 
(22)   Camera_Settings.ReadData(DO_NOT_ACKNOWLEDGE); 
(23)   int Register_Value3 = Camera_Settings 

.ReadData(DO_NOT_ACKNOWLEDGE); 
(24)   Camera_Settings.WriteStop(); 
(25)   if(Register_Value3==MaskApp) 
(26)   { 
(27)    WriteQuery = 1; // There is a successful write to the  
       camera register. 
(28)   } 
(29)   else 
(30)   { 
(31)    WriteQuery = 2; // There is no write to the camera 

regsiter. 
(32)   } 
  
(33)  } 
(34)  else if(type==0) 
(35)  { 
(36)   Camera_Settings.WriteAddress(KAC_9648_write_address 

,ACKNOWLEDGE); 
(37)   Camera_Settings.WriteData(Reg); 
(38)   Camera_Settings.WriteData(Data); 
(39)   Camera_Settings.WriteStop(); 
 
(40)   Camera_Settings.WriteAddress(KAC_9648_write_address 

,ACKNOWLEDGE); 
(41)   Camera_Settings.WriteData(Reg); 
(42)   Camera_Settings.Restart(KAC_9648_read_address 

,DO_NOT_ACKNOWLEDGE); 
(43)   Camera_Settings.ReadData(DO_NOT_ACKNOWLEDGE); 
(44)   int Register_Value3 = Camera_Settings 

.ReadData(DO_NOT_ACKNOWLEDGE); 
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(45)   Camera_Settings.WriteStop(); 
 
(46)   if(Data==Register_Value3) 
(47)   { 
(48)    WriteQuery = 1; // There is a successful write to the 

camera register. 
(49)   } 
(50)   else 
(51)   { 
(52)    WriteQuery = 2; // There is no write to the camera  
       regsiter. 
(53)   } 
 
(54)  }; 
 
 
(55)  return WriteQuery; 
(56) } 
 
 
 
 

A8: The ‘Spit Message’ Function 
 
(1) void CDIETOPv12Dlg::spit_Message(CString Message) 
(2) { 
(3)  LPSYSTEMTIME lpSystemTime = new _SYSTEMTIME; 
(4)  GetLocalTime(lpSystemTime); 
(5)  CString Message_Post; 
(6)  Message_Post.Format("[%d:%d:%d] %s",lpSystemTime->wHour,lpSystemTime- 
   >wMinute,lpSystemTime->wSecond, Message); 
(7)  m_list.AddString(Message_Post); 
(8)  m_list.SetScrollPos(0,0,TRUE); 
(9) } 
 
 
 

A9: The Initial Start-up of the Image Capture Process 
 
  
(1) void CDIETOPv12Dlg::OnBnClickedAcceptandrun() 
(2) { 

 
(3)  if(ConnectSocket("dSpace",2345)){ 
(4)   Ethernet_Mess.LoadString(IDS_TALKING); 
(5)   spit_Message(Ethernet_Mess); 
(6)  } 
  else 
(7)  { 
(8)   Ethernet_Mess.LoadString(IDS_NO_CONNECTION); 
(9)   spit_Message(Ethernet_Mess); 
(10)   return; 
(11)  } 
 
(12)  if(ServerStatus==1){ 
(13)   UpdateData(TRUE); The Processing of 

the Settings for 
dSpace 

(14)   CString Space = " "; 
(15)   CString Identifier = "1"; 
(16)   PhaseValues = Identifier + Space + m_LowerPhaseValue + Space +  
    m_UpperPhaseValue + Space + 
    m_PhaseIncrement + Space + m_NumImagesPerPhase + Space +  
    m_AcutatorFrequency; 
(17)   AfxBeginThread(IrisClientThread,(LPVOID)this); 
(18)   ServerStatus = 0; 
(19)  } 
(20)  else if(ServerStatus==0){ 
(21)   Ethernet_Mess.LoadString(IDS_SERVER_IS_RUNNING); 
(22)   spit_Message(Ethernet_Mess); 
(23)  }; 
(24) } 
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A10: The ‘While Loop’ of Communications Thread 
 
 
(1) while (CalledArray[1]==FALSE){ 
 
(2) if(CalledArray[3]==TRUE && ExecutedArray[3]==FALSE && CalledArray[1]==FALSE){ 
(3)  Ethernet_Mess.LoadString(IDS_PHASE_INFO); 
(4)  spit_Message(Ethernet_Mess); 
(5)  if(SentValues==1){ 
(6)   pImageFileInfo->ImageNumber = 1; 
(7)   while(*AckMessage != *Iris_Instruction){ 
(8)    dSpace_Instruction = "IncreasedPhase"; 
(9)    m_pSocket->Send(dSpace_Instruction,100); 
(10)    Sleep(3); 
(11)    }; 
(12)  }; 
      
(13)  if(SentValues==0){ 
(14)   pImageFileInfo->ImageNumber = 1; 
(15)   dSpace_Instruction = PhaseValues; 
(16)   while(*AckMessage != *Iris_Instruction){ 
(17)    m_pSocket->Send(dSpace_Instruction,100); 
(18)    Sleep(3); 
(19)   } 
(20)  SentValues=1; 
(21)  } 
      
(22) IntermedateString.LoadString(IDS_PHASE_STATUS); 
(23) Ethernet_Mess.Format(IntermedateString,pImageFileInfo->CurrentPhase); 
(24) spit_Message(Ethernet_Mess); 
      
(25) pImageFileInfo->CurrentPhase = pImageFileInfo->CurrentPhase + StepPhase; 
(26) ExecutedArray[3]=TRUE; 
 
(27) } 
 
(28) if(CalledArray[2]==TRUE && ExecutedArray[2]==FALSE) 
(29) { 
(30)  ExecutedArray[0]=FALSE; 
(31)  CalledArray[0]=FALSE; 
(32)  IntermedateString.LoadString(IDS_IMAGE_STATUS); 
(33)  Ethernet_Mess.Format(IntermedateString,pImageFileInfo->ImageNumber); 
(34)  spit_Message(Ethernet_Mess); 
(35)  Ethernet_Mess.LoadString(IDS_CAMERA_TRIGGER_SETUP); 
(36)  spit_Message(Ethernet_Mess); 
(37)  AfxBeginThread(LeftCamTrigThread,static_cast<LPVOID>(pImageFileInfo)); 
(38)  AfxBeginThread(RightCamTrigThread,static_cast<LPVOID>(pImageFileInfo)); 
 
(39)  char *StrChange2 = "NULL"; 
(40)  strcpy(Iris_Instruction,StrChange2); 
(41)  while(*AckMessage != *Iris_Instruction){ 
(42)   dSpace_Instruction = "CamerasReady"; 
(43)   m_pSocket->Send(dSpace_Instruction,100); 
(44)   Sleep(3); 
(45)  } 
(46)  if(*AckMessage==*Iris_Instruction){ 
(47)   CamerasReady = 1; 
(48)  } 
(49)  ExecutedArray[2] = TRUE; 
(50)  pImageFileInfo->ImageNumber++; 
(51) } 
 
(52) if(pImageFileInfo->ImageStatus==1 && CamerasReady == 1) 
(53) { 
(54)  Ethernet_Mess.LoadString(IDS_CONFIRMED_TRIGGER_OCCURED); 
(55)  spit_Message(Ethernet_Mess); 
(56)  CamerasReady = 0; 
(57)  pImageFileInfo->ImageStatus = 0; 
(58)  char *StrChange = "NULL"; 
(59)  strcpy(Iris_Instruction,StrChange); 
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(60)  while(*AckMessage != *Iris_Instruction){ 
(61)   dSpace_Instruction = "TriggerCompleted"; 
(62)   m_pSocket->Send(dSpace_Instruction,100); 
(63)   Sleep(3); 
(64)  } 
(65) } 
 
(66) if(pImageFileInfo->ImageStatus==-1 && CamerasReady == 1) 
(67) { 
(68)  IntermedateString.LoadString(IDS_TRIGGER_FAILED); 
(69)  Ethernet_Mess.Format(IntermedateString, 

pImageFileInfo->ImageNumber, 
pImageFileInfo->CurrentPhase); 

(70)  spit_Message(Ethernet_Mess); 
(71)  CamerasReady = 0; 
(72) } 
 
(73) if(CalledArray[0]==TRUE && ExecutedArray[0]==FALSE) 
(74) { 
(75)  ExecutedArray[0]=TRUE; 
(76)  ExecutedArray[2]=FALSE; 
(77)  ExecutedArray[3]=FALSE; 
(78)  CalledArray[2]=FALSE; 
(79)  CalledArray[3]=FALSE; 
(80)  pImageFileInfo->ImageStatus = 0; 
      
(81)  while(*AckMessage != *Iris_Instruction){ 
(82)   dSpace_Instruction = "ResetedCameras"; 
(83)   m_pSocket->Send(dSpace_Instruction,100); 
(84)   Sleep(3); 
(85)  } 
(86) } 
(87) Ethernet_Mess.LoadString(IDS_COMPLETED_TIGGER); 
(88) spit_Message(Ethernet_Mess); 
(89) ServerStatus = 1; 
(90) CalledArray[1]=FALSE; 
(91) } 
 
 
 
 

A11: The Trigger Set-Up Function 
 

 
(1) errChk(imgInterfaceOpen ("img1", &LeftCamTrigInterfaceID)); 

Generic Frame 
Grabber Set-Up Code 

(2) errChk(imgSessionOpen (LeftCamTrigInterfaceID, &LeftCamTrigSessionID)); 
(3) errChk(imgGetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROI_WIDTH, 

 &acqWinWidthLeft)); 
(4) errChk(imgGetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROI_HEIGHT,  
     &acqWinHeightLeft)); 
(5) errChk(imgSetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROI_WIDTH,  
     acqWinWidthLeft)); 
(6) errChk(imgSetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROI_HEIGHT,  

 acqWinHeightLeft)); 
(7) errChk(imgSetAttribute (LeftCamTrigSessionID, IMG_ATTR_ROWPIXELS,  

 acqWinWidthLeft)); 
(8) errChk(imgGetAttribute (LeftCamTrigSessionID, IMG_ATTR_BYTESPERPIXEL,  
     &bytesPerPixel)); 
(9) errChkLeft(imgCreateBufList(20, &LeftMainVideoCamBufListIDTriggerLeft)); 
(10) bufSize = acqWinWidthTriggerLeft * acqWinHeightTriggerLeft * 4; 
(11) BYTE* InterBufferTriggerLeft = new BYTE[bufSize]; 
(12) BYTE* FinalBufferTriggerLeft = new BYTE[bufSize]; 
(13) bufSize2 = acqWinWidthTriggerLeft * acqWinHeightTriggerLeft * bytesPerPixel; 
(14) ImaqBuffersTriggerLeft = (void **) malloc (10* sizeof(void*)); 
(15) CopyBufferTriggerLeft = (uInt8 *) malloc (bufSize2 * sizeof(uInt8)); 
(16) for (i = 0; i < 10; i++) 
(17) { 
(18)  errChkLeft(imgCreateBuffer(LeftMainVideoCamSessionIDTriggerLeft, 

IMG_DEVICE_FRAME, bufSize2, &ImaqBuffersTriggerLeft[i])); 
(19)  errChkLeft(imgSetBufferElement(LeftMainVideoCamBufListIDTriggerLeft, i,  

IMG_BUFF_ADDRESS, (uInt32)ImaqBuffersTriggerLeft[i])); 
(20)  errChkLeft(imgSetBufferElement(LeftMainVideoCamBufListIDTriggerLeft, i,  
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IMG_BUFF_SIZE, bufSize2)); 
(21)  bufCmd = (i == (10 - 1)) ? IMG_CMD_LOOP : IMG_CMD_NEXT; 
(22)  errChkLeft(imgSetBufferElement(LeftMainVideoCamBufListIDTriggerLeft, i,  
   IMG_BUFF_COMMAND, bufCmd)); 
(23) } 
(24) errChkLeft(imgMemLock(LeftMainVideoCamBufListIDTriggerLeft)); 
(25) errChkLeft(imgSessionConfigure(LeftMainVideoCamSessionIDTriggerLeft, 

LeftMainVideoCamBufListIDTriggerLeft)); 
(26) errChkLeft(imgSessionAcquire(LeftMainVideoCamSessionIDTriggerLeft, TRUE, NULL));  
(27) errChkLeft(imgCalculateBayerColorLUT(redGainTriggerLeft, greenGainTriggerLeft, 

blueGainTriggerLeft, redLUTTriggerLeft, greenLUTTriggerLeft, 
blueLUTTriggerLeft, bitsPerPixel)); 

(28) errChkLeft(imgCreateBuffer(LeftMainVideoCamSessionIDTriggerLeft, FALSE, bufSize, 
&RGBBufferTriggerLeft)); 

(29) static int currBufNum, lastBufNum = 0xFFFFFFFF; 
(30) errChkLeft(imgSessionWaitSignal(LeftMainVideoCamSessionIDTriggerLeft, 

IMG_EXT_TRIG0,IMG_SIGNAL_STATE_FALLING,100000)); 
(31) Sleep(1500); 
(32) errChkLeft(imgGetAttribute (LeftMainVideoCamSessionIDTriggerLeft,  

IMG_ATTR_LAST_VALID_BUFFER, &currBufNum)); 
(33) if ((currBufNum != lastBufNum) && (currBufNum != 0xFFFFFFFF)){ 
(34)  errChkLeft(imgSessionCopyBuffer (LeftMainVideoCamSessionIDTriggerLeft, 

currBufNum, CopyBufferTriggerLeft, FALSE)); 
(35)  errChkLeft(imgBayerColorDecode(RGBBufferTriggerLeft,  

(void *)CopyBufferTriggerLeft, acqWinHeightTriggerLeft, 
acqWinWidthTriggerLeft, acqWinWidthTriggerLeft, 
acqWinWidthTriggerLeft, redLUTTriggerLeft,  
greenLUTTriggerLeft, blueLUTTriggerLeft, 
IMG_BAYER_PATTERN_GRGR_BGBG, bitsPerPixel, 0)); 

(36)  m_hBitmapImageTriggerLeft = CreateBitmap(acqWinWidthTriggerLeft, 
acqWinHeightTriggerLeft,1,32,(BYTE*)RGBBufferTriggerLeft); 

(37)  CString m_filename; 
(38)  m_filename.Format(TriggerImageFilePathLeft,pImageFileInfoLeft.ImageNumber, 

pImageFileInfoLeft.CurrentPhase); 
(39)  CImage MyImage; 
(40)  MyImage.Attach(m_hBitmapImageTriggerLeft); 
(41)  Sleep(300); 
(42)  MyImage.Save(m_filename); 
(43)  MyImage.Destroy(); 
(44)  InterBufferTriggerLeft = NULL; 
(45)  FinalBufferTriggerLeft = NULL; 
(46)  delete InterBufferTriggerLeft; 
(47)  delete FinalBufferTriggerLeft; 
(48)  delete MyImage; 
(49)  m_hBitmapImageTriggerLeft = NULL; 
(50)  delete m_hBitmapImageTriggerLeft; 
(51)  free(InterBufferTriggerLeft); 
(52)  free(FinalBufferTriggerLeft); 
(53)  free(MyImage); 
(54)  free(m_hBitmapImageTriggerLeft);} 
 
 

A12: Kill Focus Event Example 
 
 
(1) void CImageMat::OnEnKillfocusEditwoirowpointer0() 
(2) { 
(3)  UpdateData(TRUE); 
(4)  if((woi_row_pointer_0 < 16) | (woi_row_pointer_0 > 1023)) 
(5)  { 
(6)   AfxMessageBox("The WOI row pointer must be greater than 16 and  
     less than 1023"); 
(7)   woi_row_pointer_0 = 16; 
(8)   UpdateData(FALSE); 
(10)   WOIROWPOINTER.SetFocus(); 
(11)   WOIROWPOINTER.SetSel(0,-1); 
(12)  } 
(13) } 
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A13: File Path and Browse Dialog Box 
 
(1) void CSavingSettings::OnBnClickedCalBrowse() 
(2) { 
(3)  BROWSEINFO bi; 
(4)  m_LeftCamPathAccept.EnableWindow(TRUE); 
(5)  char szPathLeftCal[MAX_PATH + 1]; 
(6)  LPITEMIDLIST pidl; 
(7)  BOOL bResult = FALSE; 
 
(8)  IMalloc *imalloc; 
(9)  SHGetMalloc(&imalloc); 
(10)  ZeroMemory(&bi, sizeof(bi)); 
 
(11)  bi.hwndOwner = m_hWnd; 
(12)  bi.pidlRoot = NULL; 
(13)  bi.pszDisplayName = NULL; 
(14)  bi.lpszTitle = TEXT("Select the folder you wish to save the Calibration  
     images"); 
(15)  bi.ulFlags = BIF_STATUSTEXT|BIF_NONEWFOLDERBUTTON|BIF_RETURNONLYFSDIRS; 
(16)  bi.lParam = NULL; 
   
(17)  pidl = SHBrowseForFolder(&bi); 
(18)  SHGetPathFromIDList(pidl,szPathLeftCal); 
(19)  m_LeftCameraCal.AddString(szPathLeftCal); 
(20)  m_LeftCameraCal.SetCurSel(0); 
(21)  m_LeftCameraCal.SetFocus(); 
(22)  LeftCamCalPath = (char)szPathLeftCal; 
 
(23)  imalloc->Free(pidl); 
(24)  imalloc->Release();  
(25) } 

 
 
A14: ComboBox Change Example 
 
(1) void CSavingSettings::OnCbnSelchangeCombo2() 
(2) { 
 // The extention for saving the Calibration images 
(3)  UpdateData(); 
(4)  m_LeftCamPathAccept.EnableWindow(TRUE); 
(5)  if( m_nDropListIndex < 0 ) return; 
(6)  LPTSTR CalImagesExt = "NULL"; 
(7)  m_LeftCameraCalImgFormat.GetLBText(m_nDropListIndex, CalImagesExt); 
(8)  LeftCamCalImgFormat = (char)CalImagesExt; 
 
(9) } 
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B1: Detailed Python™ and ControlDesk™ Operation    Explanation 
 
What is outlined in appendix B is a descriptive explanation for the operation of the Python™ and 

its interaction with ControlDesk™. References to blocks of code can be found after the text in 

sperate appendix blocks. 

 
B1.0 ControlDesk™ Operation and Interfacing 
 
ControlDesk™ is a program built to control the Simulink™ diagram while it is running in the 

dSpace module. An interface is built using ControlDesk™ in the form a GUI to talk to the 

Simulink™ code while it is running. Only once the diagram is uploaded to the module can it be 

access.  

 
There are two signal switches outline in the ControlDesk™ GUI the reset switch and the send 

signal switch. These are both edit boxes, which are connected to a switch located in the 

Simulink™ diagram. They are numerical edit boxes have buttons located on the right side of the 

box to increment the value inside the box, but these have been disabled to stop the values being 

change by sources other that the automation code. The automation code changes the values 

inside these edit boxes, in order to control the sending of the pulse out of the dSpace module 

amongst other functions. The edit boxes correspond to the following tasks by inserting the 

following values: 

 
• “Reset”→ Trigger Pulse Control; Reset Switch (1 = On, 0 = Off) 

• “Send Signal” → Trigger Pulse Control; Signal Switch (1 = On, 0 = Off) 

• “Actuator Frequency” →  Strobe and Actuator Control; Signal Generator (Box Value = 

Frequency) 

• “Phase Lag” → Strobe and Actuator Control; Phase Delay (Box Value  = Phase Delay) 

• “Image Number” → Python Script; Image Number Update 
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• “Main Frequency” → Strobe and Actuator Control; Main Frequency (Box Value = 

Frequency) 

 
The plotter in the GUI plots the position of the actuator, from the memory stores in the block 

diagram. The buttons in the GUI trigger events in the automation code that is part of the GUI 

written in python. The events occur when the button is down. The “Start Server” button activates 

the python server that will be communicating with the ICC to co-ordinate image capture with 

trigger pulse generation. 

 

B1.1 Python Script Layout and Operation 
 
The python scripting language is a high level programming language. This means that a lot of the 

manual memory allocation that programmers usually deal with using lower level programming 

languages, is taken care of in python without the programming have to worry about it. Another 

difference between python, than say visual C++, is that in python strings are not terminated with 

the null character where as in visual C++ they are. Usually the null (\x00) must be added 

manually in the python script when ever an instruction is sent to the ICC. Another important 

difference between python and visual C++, is in python when dealing with “if” or “while” 

statements, their conditions are followed by a colon and the contents of the statement is indented 

below to indicate to the python interpreter what code is part of that statement.    

 
The use of python to automate the ControlDesk™ GUI is an option offered by ControlDesk™ 

and due to the versatility and ease of programming in python it is possible to create socket 

communications between the dSpace computer and the ICC. If the correct PCI boards required to 

interface with the dSpace module, were in fact installed on the ICC the socket communications 

could still be used. The TCP/IP provide common ground for the image capture and camera 

controlling visual C++ program to interface with the python script controlling ControlDesk™, 
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and hence send the trigger pulses, even though they are two completely different programming 

languages.  

 
The python script running the ControlDesk™ GUI can be broken up into the following sections: 

 

• The Python Header 

• ControlDesk™ Automation 

• Ethernet Communications 

• ControlDesk™ GUI Button Events 

 
 
 
B1.1.0 The Python Header 
 
The header for the automation is shown in Appendix B2. The header includes all the libraries 

being used in the following script. The header in Appendix B2 is of a similar layout to that of a 

visual C++ “.h” file in that specific libraries are included, or in this case imported to make use of 

specific functions that are part of them. In the case where “from” is used the programmer only 

uses certain items from that library. For example: “from time import sleep”, this is saying we 

only want to use the sleep function from the time library. This sleep function is used to 

temporary halt started threads, to give other programs time to catch-up or perform other 

functions first. 

 
The header also includes definition of instructions to be sent to the ICC. The computer name of 

the ICC is called ‘Iris’ and the header includes all the pre-defined instructions for the ICC. 
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B1.1.1 ControlDesk™ Automation 
 
The automation of ControlDesk™ is achieved using the using the header import libraries 

“cdacon” and “cdautomationlid” shown in Appendix B2.  The script for automating the buttons 

on the ControlDesk™ GUI is shown in Appendix B3. The script in Appendix B3 follows a 

specific format. The 4 lines of script from (6) to (9) is the format for changing the value in one 

numerical edit box. The value that appears in the box, and hence has an influence on the running 

Simulink™ diagram, is place there during the running of line (7), where the value is changed to 

“1”.  

 
 
B1.1.2 Ethernet Communications 
 
The Ethernet communications are achieved using the socket capabilities of the python script 

programming language. Appendix B4 shows the layout of the python script for the Ethernet 

communications. The lines from (4) to (22) are the initialisation of variable and string commands 

used by the Ethernet Comms. The socket set-up is the almost the same as the visual C++ 

applications. First a socket is created, as shown in line (23) appendix B4, using the python 

function socket with the flags “AF_INET” and “SOCK_STREAM”. The flags are there to define 

the properties of the socket. The “AF_INET” or “Address Family: Internet” flag, means that the 

socket will being using the Internet Protocol (IP). The “SOCK_STREAM” flag assigns the use 

of the Transmission Control Protocol (TCP) to the created socket and is usually combined with 

the IP, since the TCP uses IP to find hosts on the network. The creation of the socket in line (23) 

can be thought of as the building of the type of cable that will be connecting the dSpace and ICC 

to one another. The structure of socket communications is discussed in chapter 3. Then in line 

(25) we bind the address format to the socket as defined in line (11) appendix B2. This address 

assigns a port number to the newly created socket. The computer connecting to the dSpace 

computer must connect using the same socket number or nothing will happen. 
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The created socket is then told to listen for any connection attempts made to the dSpace 

computer (appendix B4, line (27)). The dSpace is set-up as a server. Once the dSpace computer 

has accepted the connection from the ICC, the accept command creates another socket called 

“CommSocket”, by which all the sending and receiving of command strings is handled.  

 
 
 
B1.1.3 The Receive Function 
 
All instructions that travel between the two computers are communicated using strings. When a 

string is received by the dSpace computer it is then checked against the array of possible 

commands in the receive function shown in Appendix B5. The receive function is started in the 

Server function (appendix B4, line (32)) as a thread. The receive command, which is part of the 

socket library sits inside a “while” loop that is set to loop “forever”. Once the function arrives at 

the “recv” command in line (4) the function stops and waits for data to arrive from the ICC. It is 

for this reason that the “Receive” function is ran inside a thread because if it was not the script 

could not perform other functions while it is waiting for it next command. The set-up of this 

“Receive” function is use in much the same way as the “OnReceive” event is in the visual C++ 

application. 

 
Once the Receive function has acquired data it is expected that this data is in the form of a string, 

and because the string is arriving from the ICC it will have a null character on the end of it. 

Anything after this null character is just rubbish that has filled up the remaining space in the 

message buffer. The null character is found using pythons, “find” command which returns an 

index in the string of the null position. The string command is then compared against all the 

commands the script has been programmed to accept. If the command has not already been 

called, then the “CalledArray” index (corresponding to the command called), is changed to a “1” 

(fig B1.1), which will be registered in the main server loops in the Server function. 
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Figure B1.1: The changing of the CalledArray upon an instruction from the ICC 

CommandArray = [‘CameraReady’,’TriggerCompleted’,’ResetCameras’,’1’,’IncreasedPhase’] 

CalledArray =    [           0           ,                0               ,              0          , 0,             0             ] 

Instruction from ICC ‘CameraReady’

CalledArray =    [           1           ,                0               ,              0          , 0,             0             ] 

 
 
 
B1.1.4 The Server Function 
 
The server function handles all the processing of the received instructions from the ICC. All the 

tasks for controlling the triggering sequence are contained within 3 “while” loops, arranged as 

shown in figure B1.2. 

 

 
Figure B1.2: The pseudo layout of the server function script 

While loop 1: (Get Phase Loop)

‘If’ statement 1

‘If’ statement 2

End 

While loop 2: (Increment Phase)

While loop 3: (Increment Image Number) 

‘If’ statement 3

‘If’ statement 4

‘If’ statement 5

‘If’ statement 6

End 

‘If’ statement 7
End 
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The server script for handling the instructions from the ICC follows the initialisation of the 

socket script. 

 

Throughout the server script there is smaller while loops that provide a type of “handshaking” 

between the two computers. An example of theses loops can be seen in appendix B4 lines (54) to 

(56). What is happening, is that any instruction being sent to the ICC, is being sent over and over 

again, in periods determined by the “sleep” function until the ICC sends an acknowledgment 

string to the dSpace computer which is then picked up by the receive function and then made 

available to the “while” loop so that it stops sending. The arrangement of this message sending is 

illustrated in figure B1.3. 

 

 
Figure B1.3: This shows the command string is being constantly sent to the ICC until the ICC send back 
the acknowledgment that the command has arrived 

Event Command 

Command 
Acknowledgement 

DSpace 
Computer 

Iris 
Computer 

 
 
This process of handshaking is done in the visual C++ application as well in a similar format. 

The communications between the two computers occur as follows: 

 

• The start button on the ControlDesk™ GUI is press starting the server on the dSpace 

computer, which then waits for a connection from the ICC. 

• The connection is made from the ICC and accept by the dSpace computer at which point 

an instruction is sent to the ICC requesting information on the phases and actuator 

frequency (‘if’ statement 2). 
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• Once the phase and actuator information is received by the dSpace computer the 

information is processed inside “if” statement 1. 

• The program then moves into “while” loop 2 and then into “while” loop 3 then to “if” 

statement 3 which send the instruction to the ICC to set-up the cameras and frame 

grabbers for receiving the triggers. 

• Once the acknowledgement is sent from the ICC that the cameras are ready, the trigger 

function is executed in “if” statement 4. 

• The ICC, upon receiving the trigger signal, then captures the images and saves them and 

then sends the ‘TriggerCompleted’ to the dSpace computer. 

• Then in “if” statement 5 a reset instruction is sent to the ICC, to reset the entire ‘if’ 

statements on the ICC. 

• The following ‘if’ statement 6 resets the entire ‘if’ statements on the dSpace computer. 

• Once the “while” loop 3 has meet it conditions the program moves on to “if” statement 7 

which sends the instruction to the ICC to increase its value of phase. 

 

The above process continues for the user’s specified amount of images per phase increment and 

number of phase increments. 

 

The “while” loop 2, provides the increasing of the phase from a user specified being, end and 

increment. The “while” loop 3 provides the increasing number of images per phase with the 

exception of ‘if’ statement 7, every statement within ‘loop 3 in figure B1.2 is repeated for a user 

defined number of images. 

 
 
B1.1.5 ControlDesk™ GUI Button Events 
 
The ControlDesk™ buttons are outlined in appendix B6. The functions in lines (1) and (3) are 

part of the ControlDesk™ automation library and are activated when the when either button on 
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the GUI is press down. The first of the button events on line (1) starts the server thread, using the 

function shown in line (2) of appendix B6. The function shown in line (2) is part of the thread 

library and starts the server function as a thread. The second of the button events on line (3) runs 

the trigger function, which is used to test the response of the cameras and frame grabbers. 

the GUI is press down. The first of the button events on line (1) starts the server thread, using the 

function shown in line (2) of appendix B6. The function shown in line (2) is part of the thread 

library and starts the server function as a thread. The second of the button events on line (3) runs 

the trigger function, which is used to test the response of the cameras and frame grabbers. 

  
  
  
B2: The Python HeaderB2: The Python Header 
 
(1) import socket 
(2) import string 
(3) import thread 
(4) import cdacon 
(5) from cdautomationlib import * 
(6) from time import sleep 
(7) GrabbedPhases = 1 
(8) host = '' 
(9) port = 2345 
(10) Bufsize = 1024 
(11) ADDR = (host, port) 
(12) AckMessage = 'AckMessage' 
(13) AckMessage2 = 'AckMessage\x00' 
(14) Iris_Instruction1 = 'GetPhases\x00' 
(15) Iris_Instruction2 = 'SetCameras\x00' 
(16) Iris_Instruction3 = 'Reset\x00' 
(17) Iris_Instruction4 = 'End\x00' 
(18) global NumImagePerPhase 
(19) ImageCount=1 
 
B3: ControlDesk Automation 
 
(1) def Trigger(): 
(2)     import pythoncom 
(3)     pythoncom.CoInitialize()  
(4)     sleep(0.5) 
(5)     # triggering://dSPACE NumericInput Control_1:WriteData 

The script 
to change 

(6)     Instrumentation().ConnectionController.DisableSystemPoll()  
(7)     Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab 

the value in 
one 
numerical 
edit edit 

Files\\triggering.lay").Instruments.Item("dSPACE NumericInput Control_1").Value =1.0000000000000000 
(8)     Instrumentation().ConnectionController.ProcessAnimationEvent("triggering://dSPACE NumericInput 

Control_1","WriteData") 
(9)     Instrumentation().ConnectionController.EnableSystemPoll() 
(10)     sleep(0.5) 
(11)     # triggering://dSPACE NumericInput Control_1:WriteData 
(12)     Instrumentation().ConnectionController.DisableSystemPoll() 
(13)     Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab 

Files\\triggering.lay").Instruments.Item("dSPACE NumericInput Control_1").Value =  
0.00000000000000000 

(14)     Instrumentation().ConnectionController.ProcessAnimationEvent("triggering://dSPACE NumericInput 
Control_1","WriteData") 

(15)     Instrumentation().ConnectionController.EnableSystemPoll() 
(16)     sleep(0.5) 
(17)     # triggering://dSPACE NumericInput Control:WriteData 
(18)     Instrumentation().ConnectionController.DisableSystemPoll() 
(19)     Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab 

Files\\triggering.lay").Instruments.Item("dSPACE NumericInput Control").Value = 
1.0000000000000000 

(20)     Instrumentation().ConnectionController.ProcessAnimationEvent("triggering://dSPACE NumericInput 
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Control","WriteData") 
(21)     Instrumentation().ConnectionController.EnableSystemPoll() 
(22)     sleep(0.5) 
(23)     # triggering://dSPACE NumericInput Control:WriteData 
(24)     Instrumentation().ConnectionController.DisableSystemPoll() 
(25)     sleep(0.5) 
(26)     Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab 

Files\\triggering.lay").Instruments.Item("dSPACE NumericInput Control").Value = 
  0.00000000000000000 

(27)     Instrumentation().ConnectionController.ProcessAnimationEvent("triggering://dSPACE NumericInput 
Control","WriteData") 

(28)     Instrumentation().ConnectionController.EnableSystemPoll() 
(29)     sleep(0.5) 
(30)     Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab 

Files\\triggering.lay").Activate() 
(31)     Instrumentation().Layouts.Item("c:\\users\\crispen berg\\diet_triggering_test_Testing\\Matlab 

Files\\triggering.lay").Activate() 
(32)     pythoncom.CoUninitialize() 
 
 
 
 
B4: Socket Communications 
 
(1) def Server(): 
(2)     import pythoncom 
(3)     pythoncom.CoInitialize()  
(4)     global dSpace_Instruction 
(5)     dSpace_Instruction = 'NULL' 
(6)     GrabbedPhase = 1 
(7)     PhaseCount = 0 
(8)     global SetCameras 
(9)     global ExitReceive 
(10)     ExitReceive = 0 
(11)     SyncPhases = 0 
(12)     global CommandArray 
(13)     global CalledArray 
(14)     global ExecutedArray 
(15)     global BufferArray 
(16)     global QuitReceive 
(17)     CommandArray = ['CamerasReady','TriggerCompleted','ResetedCameras','1','IncreasedPhase'] 
(18)     CalledArray = [0,0,0,0,0] 
(19)     ExecutedArray = [0,0,0,0,0] 
(20)     BufferArray = [0,0,0,0,0] 
(21)     QuitReceive = [0,0] 
(22)     SetCameras = 1 
(23)     ServerSocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM) 

All the socket 
communication 
initialising  

‘If’ Statement 1  

(24)     print'starting server' 
(25)     ServerSocket.bind(ADDR) 
(26)     print'Listening' 
(27)     ServerSocket.listen(5) 
(28)     global CommSocket 
(29)     CommSocket, addr = ServerSocket.accept() 
(30)     print'Connection accpeted' 
(31)     print'Starting the receive' 
    ……[ControlDesk™ Automation Code]………… 
(32)     thread.start_new_thread(Receive,()) 
(33)     ImageCount=1 
(34)     while(GrabbedPhase==1): 
(35)         if (dSpace_Instruction[0]=='1'): 
(36)             Values = dSpace_Instruction.split() 
(37)             LowerPhaseValue = int(Values[1]) 
(38)             UpperPhaseValue = int(Values[2]) 
(39)             PhaseIncrement = int(Values[3]) 
(40)             NumImagePerPhase = int(Values[4]) 
(41)             ActuatorFrequency = int(Values[5]) 
(42)             NumberOfPhases = (UpperPhaseValue-LowerPhaseValue)/PhaseIncrement 
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(43)             GrabbedPhase = 0 
………[ControlDesk™ Automation Code]………… 
(44)             print '\nJust got the Phases\n' 
(45)         if(dSpace_Instruction[0]!='1'): 
(46)             CommSocket.send(Iris_Instruction1) ‘If’ Statement 2
(47)             sleep(0.5) 
 
(48)     while(PhaseCount<=UpperPhaseValue): 
………[ControlDesk™ Automation Code]………… 
(49)         print'Current strobe phase is:',PhaseCount 
(50)         while(ImageCount<=NumImagePerPhase): 
(51)             if(SetCameras ==1): 

‘If’ Statement 4

‘If’ Statement 5

‘If’ Statement 6

‘If’ Statement 7

‘If’ Statement 3

(52)                 print 'The image count is:',ImageCount 
……....[ControlDesk™ Automation Code]…………… 
(53)                 dSpace_Instruction = 'NULL' 
(54)                 while(cmp(dSpace_Instruction,AckMessage)!=0): 
(55)                     CommSocket.send(Iris_Instruction2) 
(56)                     sleep(0.5) 
(57)                 SetCameras = 0 
 
(58)             if(CalledArray[0]==1 and ExecutedArray[0]==0): 
(59)                 ExecutedArray[0]=1 
(60)                 Trigger() 
(61)                 ImageCount = ImageCount+1 
(62)                 ExecutedArray[2]=0 
 
(63)             if(CalledArray[1]==1 and ExecutedArray[1]==0): 
(64)                 ExecutedArray[1]=1 
(65)                 dSpace_Instruction = 'NULL' 
(66)                 while(cmp(dSpace_Instruction,AckMessage)!=0): 
(67)                     CommSocket.send(Iris_Instruction3) 
(68)                     sleep(0.5) 
(69)             if(CalledArray[2]==1 and ExecutedArray[2]==0): 
(70)                 print'dSpace program has been reseted' 
(71)                 ExecutedArray[2]=1 
(72)                 ExecutedArray[0]=0 
(73)                 ExecutedArray[1]=0 
(74)                 CalledArray[0]=0 
(75)                 CalledArray[1]=0 
(76)                 CalledArray[2]=0 
(77)                 SetCameras=1 
(78)                 dSpace_Instruction = 'NULL' 
(79)         if(PhaseCount!=UpperPhaseValue): 
(80)             while(cmp(dSpace_Instruction,AckMessage)!=0): 
(81)                 CommSocket.send(Iris_Instruction1) 
(82)                 sleep(0.5) 
         
(83)         PhaseCount = PhaseCount + PhaseIncrement 
(84)         ImageCount = 1 
(85)     dSpace_Instruction = 'NULL' 
(86)     QuitReceive[0] = 1 
(87)     while(cmp(dSpace_Instruction,AckMessage)!=0): 
(88)         CommSocket.send(Iris_Instruction4) 
(89)         sleep(0.5) 
(90)     CommSocket.close() 
(91)     ServerSocket.close() 
 
B5: Receive Function 
 
(1) def Receive(): 
(2)     while 1: 
(3)         global dSpace_Instruction 
(4)         message = CommSocket.recv(Bufsize) 
(5)         Null_Position = string.find(message,'\x00') 
(6)         dSpace_Instruction = message[:Null_Position] 
(7)         Processed_dSpace_Instruction = dSpace_Instruction.split() 
 
(8)         for count in range(4): 
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(9)             if(cmp(CommandArray[count],Processed_dSpace_Instruction[0])==0 and  
    CalledArray[count]!=1): 
(10)                 CalledArray[count]=1 
 
(11)         if(QuitReceive[0]!=0 and cmp(dSpace_Instruction,AckMessage)==0 ): 
(12)             break 
 
(13)         CommSocket.send(AckMessage2) 
 
B6: ControlDesk™ GUI Button Events 
 
(1) def On_Instrumentation_triggering_dSPACEPushButtonControl_ButtonDown(OrderIndex): 
(2)     thread.start_new_thread(Server,())        
 
(3) def On_Instrumentation_triggering_dSPACEPushButtonControl_1_ButtonDown(OrderIndex): 
(4)     Trigger() 
(5)     print 'Just sent the trigger' 
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