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Abstract

Stress induced hyperglycaemia is prevalent in critical care. Since the landmark

paper published by Van den Berghe et al. (2001) a great deal of attention has

been paid to intensive insulin therapy in an ICU setting to combat the adverse

e�ects of elevated glucose levels and poor glycaemic control. Glycaemic control

protocols have been extensively developed, tested and validated within an ICU

setting. However, little research has been conducted on the e�ects of a glycaemic

control protocol in a less acute ward setting. There are many additional challenges

presented in a ward setting, such as the variation in meals and levels of activity

between patients, from day to day and throughout the day.

A simple compartment model is used to describe the nature of insulin and

glucose metabolism in patients of the Cardiothoracic Ward (CTW). A stochas-

tic model of the �tted insulin sensitivity parameter is generated for this cohort

and validated against cohorts of similar characteristics. The stochastic model

is then used to run simulations of predictive control on 7 CTW patients, which

shows signi�cantly tighter glucose control than what is obtained with regular

clinical procedures. However, the rate of severe hypoglycaemia is an unaccept-

ably high 4.2%. The greatest challenge in maintaining tight glycaemic control in

such patients is the consumption of meals at irregular times and of inconsistent

quantities.

Insulin sensitivity was compared to extensive hourly clinical data of 36 ICU

patients. From this data a sepsis score of value 0-4 was generated as gold standard

marker of sepsis. Comparing the sepsis score to insulin sensitivity found that

insulin sensitivity provides a negative predictive diagnostic for sepsis. High insulin

sensitivity of greater than SI = 8 � 10�5 L mU�1 min�1 rules out sepsis for the

majority of patient hours and may be determined non-invasively in real-time

from glycaemic control protocol data. Low insulin sensitivity is not an e�ective

diagnostic, as it can equally mark the presence of sepsis or other conditions.
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Chapter 1

Introduction

The bene�ts of glycaemic control in hospitalised and ambulatory patients, such

as a reduction mortality, morbidity and length of stay has been extensively in-

vestigated (Van den Berghe et al., 2001, 2006b,a; Goldberg et al., 2004b,a; Chase

et al., 2006c; Clayton et al., 2006; Collier et al., 2005; Garg et al., 2007; Krinsley,

2003a,b, 2004; Langouche et al., 2007; Laver et al., 2004; Plank et al., 2006; Zerr

et al., 1997). This research was prompted by Van den Berghe et al. (2001) who

found a 42% reduction in mortality among a critically ill cohort with intensive

insulin therapy (IIT). The bene�ts found are largely attributed to a reduction

in hyperglycaemia. In particular, many studies in critically ill cardiac and car-

diothoracic patients have also seen signi�cant improvements in patient outcome

using intensive insulin therapy (Goldberg et al., 2004c; Malmberg et al., 1995).

However, the methods of maintaining glycaemic control for less acutely ill patients

and the bene�ts from such control have not been fully explored.

This research is aimed at developing insulin sensitivity tools for use in Christchurch

Hospital, with particular emphasis on glycaemic control in the less acute wards

within the hospital. Christchurch Hospital already has the paper based glycaemic

control protocol SPRINT in place as a nearly established protocol in the Inten-

sive Care Unit (ICU) (Chase et al., 2006c; Lonergan et al., 2006b,a), however

the 1-2 hourly measurements required to obtain tight glycaemic control would be

excessively burdensome within a ward.

The incidence of Type II diabetes is disproportionately high in critical care

(). Even so, diabetes is rapidly becoming one of the most common, preventable

and manageble diseases, particularly in the developed world (Wild et al., 2004).

It has been estimated that 2.8% of the adult population su�ered from diabetes

in 2000 (Wild et al., 2004) and this is expected to rise (Wild et al., 2004; King

et al., 1998). New Zealand is not exempt from this trend and some 68,000 people
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were found to have diabetes in 2000 (Wild et al., 2004). Thus, developing means

of maintaining good glycaemic control will have increasing importance and in the

years to come.

Pharmacokinetic models of the insulin-glucose system have been used to trial,

test and devlop both glycaemic control strategies and glucose tolerance tests and

clinical trials have shown good correspondence with predicted outcomes (Loner-

gan et al., 2006b,a; Chase et al., 2006a; Lotz et al., 2006b,a; Lin, 2007). The use

of such models is a safe way of investigating control strategies. A validated, ac-

curate and simple model will also be highly bene�cial in developing any real time

control tools, although presently such technologies are limited by measurement

accuracy and ease. However, such models can provide real time estimates of in-

sulin sensitivity data, which could potentially be used to asses patient condition.



Chapter 2

Background

2.1 Metabolism during Illness

The body's main source of energy is glucose, which once sourced from the diet is

stored as glycogen. It is circulated through the bloodstream at a concentration

typically 4-6 mmol L�1. Under healthy physiological conditions the constant

supply of glucose to muscle cells and adipose cells and other cells throughout the

body is regulated by the hormone insulin and sourced from glycogen and stored

protein.

Insulin is a peptide hormone sythesized and secreted by the �-cells in the

islets of langerhans which are located in the pancreas. Insulin promotes glucose

uptake and utilization by cells not located in the central nervous system, which

has the e�ect of lowering plasma glucose levels. High insulin levels also promote

the storage of glucose as glycogen. Glycogen is stored in all cells, but is found in

highest concentrations in the liver and muscle cells. Insulin release is triggered

in response to increased blood glucose levels, such as those encountered after

consumption of a meal.

When the blood glucose levels fall, such as between meals, the �-cells of the

islets of langerhans will produce glucagon, which induces glycogenolysis in order

to maintain healthy glucose levels. Glycogenolysis is the process of converting

stored glycogen into glucose and takes place in the liver.

In the periods of fasting, glucose supply is maintained by gluconeogenesis

and fat oxidation. Gluconeogenesis is the production of glucose from amino

acids, lactate and glycerol and takes place primarily in the liver, although the

kidneys also contribute approximately 10% of the total output. This process is

stimulated by low blood glucose levels and suppressed by high levels of insulin.

In a diabetic patient or patient under physiological stress, gluconeogenesis is

often overstimulated resulting in hyperglycaemia. Under physiological stress, the
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catabolism of lipids and protein as a fuel is also increased. Lipid metabolism

is also stimulated by uncontrolled diabetes or prolonged starvation, however,

circulating insulin supresses this mechanism.

When the periods between meals are extended, such as in the case of a CTW

patient su�ering the the e�ects of treatment or surgery, this mechanism becomes

more dominant than normally encountered in everyday life. The use of cate-

chloamines, vasoconstrictors and glucocorticoids also contribute to overstimula-

tion of gluconeogenesis. If fasting is prolonged beyond 2 days, glucose supply to

the brain is sourced from the production of hepatic ketone bodies, which then

inhibits gluconeogenesis fuelled by muscle tissue (Chiolero et al., 1997).

2.2 Diabetes and Glycaemic Control

There are two primary forms of diabetes, with varying levels of severity. A patient

with Type I diabetes has no �-cell function and must inject exogenous insulin in

order to maintain glycaemic control, thus the term 'Insulin Dependent Diabetic'.

A patient with Type II diabetes displays reduced cellular responsiveness to insulin

throughout the body as well as reduced response to heightened levels of insulin.

Reduced insulin sensitivity observed in Type II diabetes is most commonly caused

by poor diet consisting of a high concentration of carbohydrate (CHO) rich foods

or foods with high sugar content. Type II diabetes can typically be managed with

healthy eating and exercising habits combined with weight loss, but is rapidly

becoming a common disorder throughout developed nations (DPPRG, 2002).

The use of oral hypoglycaemics, such as thiazolidinediones, biguanides or

sulfonylureas are used to increase insulin sensitivity of patients exhibiting high

resistance to insulin. The use of such medications enables patients with Type

II diabetes to reduce or eliminate the need for exogenous insulin. However, a

2002 study found that healthy lifestyle changes in the form of increased physical

activity and improved diet resulted in a much larger reduction in the incidence of

Type II diabetes than those recieving the oral hypoglycaemic, Metformin (DP-

PRG, 2002).

Glycaemic control has been recognised as an important part of reducing the

serious complications associated with diabetes, such as retinopathy, neuropathy,

cardiac dysfunction and reduced resistance to infection. Glycaemic control is

commonly measured by levels of Haemoglobin A1c (HbA1c) in the blood, which

reects the concentrations of glucose which have been present over the lifecycle

of haemoglobin (approximately 180 days) (Bennett et al., 2007). Healthy levels
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of HbA1c are between 4-6%, although many diabetics target a value below 7%.

Currently, the World Health Organisation (WHO) does not recognise this as a

diagnostic tool for diabetes.

When determining post-prandial insulin doses, a diabetic patient typically

estimates the quantity of carbohydrates in the meal to estimate the required

insulin input. The ratio of insulin:CHO is dependent on the extent of �-cell

impairment, but typically ranges from 1:8-1:32.

It has been suggested that the creation of an arti�cial pancreas will allow

diabetes su�ers to maintain healthy blood glucose levels with minimal risk and

increased ease (Teixeira and Malin, 2008). However, the control achieveable with

such technology remains unsatisfactory, largely due to the absence of reliable a

continuous glucose monitor (CGM). A CGM tests glucose levels intermittently

using samples from the interstitium, however the error in the measurements is

much greater than that found in �nger prick measuring equipment (Nichols et al.,

2007). Thus, ambulatory patients are currently limited to the use of insulin

pumps or manual insulin administration to obtain good glycaemic control.

However, signi�cant advances in glycaemic control for ambulatory diabetes

have been made, particularly with the use of insulin glargine. Glargine is a

long acting insulin which has no pronounced peak action and a short rise time.

It acts continuously over a 24 hour period, thus allowing a single daily dose

for basal insulin secretion replacement. Glargine has been found to have similar

bene�ts as neutral protamine Hagedorn (NPH) insulin, although there is evidence

that the use of glargine results in lower HbA1c levels and reduced night-time

hypoglycaemia than NPH (Wang et al., 2007; Fritsche et al., 2003; Wang et al.,

2003; Yki-Jrvinen et al., 2006). The cause of the hypoglycaemia is likely due

to the more pronounced peak of NPH, which could also result in higher average

glucose levels.

Several studies using the Holman and Turner algorithm ? for insulin titra-

tion (refer to Equation 2.2) have been conducted with and without oral hypo-

glycaemics ??. Using this algorithm on Type II diabetics, along with a regular

dose of glimepiride (a suonylurea), Fritsche found that a regular morning dose of

glargine signi�cantly reduced HbA1c levels compared to evening doses of glargine

or NPH. However, all interventions demonstrated a reduction in fasting blood

glucose and HbA1c levels (Fritsche et al., 2003).

Insulin Dose =
GE � 50

10
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Where GE is the fasting plasma glucose level in mg dl�1.

Other titration schemes involve similar sliding scale adjustments to insulin

dose based on fasting glucose levels (?Riddle et al., 2003; Davies et al., 2005).

Studies in which insulin doses are guided by patient or physician/investigator

experience rather than by a speci�c formula have observed similar bene�ts from

targeted glucose control. However, all of these were designed around dose adjust-

ment occuring at frequencies between 2 days and one week. Because the average

length of stay of a patient in the CTW is of the order of one week, such systems

will not have reached a �nal balance by the time of discharge. Similarly, they

are not dynamic enough to accomodate the rapid changes in patient condition or

daily routine which may occur in a ward.

Strange suggests that once basal insulin titration has been conducted for 12

weeks, the optimal basal dose will have been found and then meal boluses should

be investigated (Strange, 2007). However, in a CTW environment, patients need

targeted glycaemic control in the short term, so while such methods may im-

prove ambulatory diabetic care, such considerations are beyond the scope of this

research.

2.3 Insulin and Intensive Insulin Therapy

Stress induced hyperglycemia is prevalent in critical care, and can occur in pa-

tients with no history of diabetes (Capes et al., 2000; Van den Berghe et al., 2001;

Mizock, 2001; McCowen et al., 2001). Critically ill patients exhibit increased en-

dogenous glucose production, reduced insulin production, and increased insulin

resistance (Mizock, 2001; McCowen et al., 2001; Doran, 2004). Excessive enteral

feeding of glucose and administration of glucocorticoids can further exacerbate

hyperglycemia (Patino et al., 1999; Ahrens et al., 2005; Krishnan et al., 2003).

Hyperglycemia worsens outcomes leading to risk of further complications,

particularly sepsis (Bistrian, 2001), myocardial infarction (Capes et al., 2000),

and polyneuropathy and multiple organ failure (Van den Berghe et al., 2001)

as well as increased length of stay (Garg et al., 2007). Van den Berghe et al.

(2001, 2003, 2006b) showed that tight glucose control averaging 5.7-6.0 mmol/L

reduced ICU mortality 18-45% for patients with greater than 3 days stay. Krinsley

(2003b, 2004) showed a 17-29% reduction in mortality with a higher glucose

limit of 7.75 mmol/L. These studies detail the clinical signi�cance of maintaining

normoglycemia, and indicate that elevated glucose levels outside the target range

are associated with poorer outcomes (Krinsley, 2003a; Van den Berghe et al.,
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2003; Collier et al., 2005). Tight control also minimises rebound hyperglycaemia

on discharge to the wards (Krinsley, 2003b) and minimises development of (new)

infections due to elevated blood glucose (Krinsley, 2003a, 2004; Goldberg et al.,

2004b).

Clinical studies that did not include mortality endpoints include those by

Goldberg et al. (2004b), Laver et al. (2004) and Thomas et al. (2005). A compar-

ison of SPRINT to these protocols has been completed using virtual trials and

retrospective patient data by Lonergan et al. (2006b). This study showed that

SPRINT provided tighter control and higher time in glycaemic control bands

(Lonergan et al., 2006b).

Malmberg et al. (1995) found that a insulin-glucose infusion resulted in a

29% reduction in 1-year mortality among diabetic patients following a myocardial

infarction. For patients who had not previously recieved insulin, the reduction in

1-year mortality was 52%.

Adaptive model-based protocols for insulin-mediated glucose control have

shown promise, but have limitations with respect to easy implementation and

complexity (Ahrens et al., 2005; Krishnan et al., 2003; Bistrian, 2001; Van den

Berghe et al., 2003) The SPRINT protocol satis�ed the need for a simple and

easily implemented means of getting the e�ectiveness of computerised, model-

based protocols into long term clinical testing. SPRINT was developed to mimic

e�ective model-based methods (Van den Berghe et al., 2003, 2006b), and is unique

in its use of both insulin and nutrition inputs for tight glycaemic regulation.

Poor glycaemic control is caused reduced ability to maintain safe levels by

normal physiological reactions to elevated glucose levels. The physiological stress

of surgery or illness may also induce a signi�cant inammatory response which

causes insulin resistance (Virkamaki and Yki-Jarvinen, 1994). Combined with

increased endogenous glucose production (Chambrier et al., 2000), the patient

may experience signi�cant hyperglycaemia. The reduction of these dangerous

glucose levels, as well as the anti-imammatory e�ects of insulin, are the most

likely reasons for the success of IIT.

Hypoglycaemic events are the biggest risk of insulin therapies. If large doses

are administered without regular measurement of glucose levels the patient is

put at risk. This is particularly true when dealing with patients who have a pre-

existing diabetes as they may not recognise that they have become hypoglycaemic

due to repeated exposure to low glucose levels, which builds up a resistance to

the symptoms (Boyle et al., 1995).
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2.4 Sepsis and Insulin Sensitivity

Sepsis has a mortality rate of 40-50% (Tsiotou et al., 2005; Esteban et al., 2007)

and occurs in 11.8% of ICU patients in Australasia (Finfer et al., 2004). Sepsis

de�ned by the presence of two or more symptoms of Systemic Inammatory

Response Syndrome (SIRS) and infection. SIRS is de�ned by the presence of one

or more of the following:

� body temperature greater than 38� or less than 36�

� heart rate greater than 90 beats per minute

� hyperventilation, a respiratory rate greater than 20 min�1 or a PaCO2 of

less than 32 mmHg

� a white blood cell count of greater than 120000 cells �l�1 or less than 4000

cells �l�1

Severe sepsis is said to be de�ned by the above criteria for sepsis as well as organ

dysfunction, hypoperfusion or hypotension. Severe sepsis becomes classi�ed as

septic shock when hypotension remains pronounced (systolic arterial pressure <

90 mmHg or mean arterial pressure (MAP) < 60) in spite of uid resuscitation.

(Tsiotou et al., 2005)

The inammatory response to such widespread infection causes vasodilation

and fever as well as increasing endogenous glucose production. The inammation

is caused by Interleukin-1 (IL-1) and tumor necrosis factor-� (TNF-�). The use

of both of these biomarkers has been used as a diagnostic test with limited suc-

cess. Positive blood cultures however, while de�nitive, take too long to process

to maintain clinical applicability and thus sepsis remains di�cult to positively

identify with certainty. There is a documented relationship between insulin re-

sisitance (S�1I ) and infection (Virkamaki and Yki-Jarvinen, 1994; Rassias et al.,

1999) however the relationship between real time identi�ed insulin sensitivity

metrics has not been related to a diagnosis of sepsis. The accurate identi�cation

of sepsis is an important clinical problem because the overuse of antibiotics leads

to antibiotic resistant bacteria.

2.5 Pharmacokinetic Models

Identifying insulin sensitivity requires capturing the fundamental dynamics of

the glucose regulatory system. The minimal model of Bergman (1979; 1981;

1987; 2005) encapsulates the essential insulin-glucose dynamics through the use
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of 3 compartments. This model has been adapted to best suit the cohort being

considered. Two important variations of the model are discussed here.

2.5.1 ICU Model

Chase et al. (2006c); ? and Lonergan et al. (2006b,a) used the system described by

Equations 2.1-2.5. This model has been applied to an ICU cohort in Christchurch

Hospital with signi�cant success in model-based and paper-based glycaemic con-

trol clinical trials. Extensive validation of the model has also been carried out.

_G = �pGG�
SI(G+GE)Q

1 + �GQ
+ P (t) (2.1)

_Q = �kQ+ kI (2.2)

_I = �
nI

1 + �II
+
uex

V
+
IBe

�uex

V
(2.3)

P (ti < t < ti+1) = �Pi+1 + ( �Pi � �Pi+1)e
�kpd(t�ti) where �Pi+1 < �Pi (2.4)

P (ti < t < ti+1) = �Pi+1 + ( �Pi � �Pi+1)e
�kpr(t�ti) where �Pi+1 > �Pi (2.5)

Where G(t) [mmol/L] is the plasma glucose above an equilibrium level, and

I(t) [mmol/L] is the plasma insulin resulting from exogenous insulin input, uex(t)

[mU/min]. The e�ect of previously infused insulin being utilised over time is rep-

resented by Q(t) [mU/L], with k [1/min] accounting for the e�ective life of insulin

in the system. Patient endogenous glucose clearance and insulin sensitivity are

pG [1/min] and SI [L/(mU.min)], respectively. The parameter V [L] is the insulin

distribution volume and n [1/min] is the constant �rst order decay rate for in-

sulin from plasma. Total plasma glucose input is denoted P (t) [mmol/(L.min)].

Endogenous insulin production is given by IB [mU/min]. Michaelis-Menten func-

tions are used to model saturation, with �I [L/mU] used for the saturation

of plasma insulin disappearance, and �G [L/mU] for the saturation of insulin-

dependent glucose clearance. kpr and kpd are the e�ective half lives of glucose

transport from gut to plasma for both increasing and decreasing feed rates re-

spectively, and �Pi and �Pi+1 are the steps in enteral glucose feed rates. Generally,

k; kpr; kpd; n; �G; �I and V are set to generic population values.

2.5.2 Ambulatory Diabetic Model

Ambulatory diabetics recieve a wide variety of insulins through the subcutaneous

route. Wong (?2008; 2008) developed a �ve compartment model which describes
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the action of many of these insulins following administration and their decompo-

sition into hexameric and dimeric/monomeric state. The insulins considered in

this model are:

� RI - a short acting insulin

� MI - a short acting insulin

� NPH - an intermediate acting insulin

� lente - an intermediate acting insulin

� ultralente - a long acting insulin

� glargine - a long acting insulin

Equations 2.6-2.14 de�ne the absorption kinetics.

_xi(t) = �(k3 + kd;i)xi(t) + k2xdm(t) (2.6)

_xh(t) = �(k1 + kd)xh(t) + kcrys;NPHcNPH(t) + kcrys;lenclen(t) + uh;RH(t):::

+uh;NPH(t) + uh;len (2.7)

_xdm(t) = �(k2 + kd)xdm(t) + k1xh(t) + k1;ulenxh;ulen(t) + k1;glaxh;gla(t) + umono(t):::

+um;RHt(t) + um;NPH(t) + um;len(t) + um;ulen(t) + um;gla(t) (2.8)

_cNPH(t) = �kcrys;NPHcNPH(t) + uc;NPH(t) (2.9)

_clen(t) = �kcrys;lenclen(t) + uc;len(t) (2.10)

_xh;ulen(t) = �(k1;ulen + kd)xh;ulen(t) + kcrys;ulenculen(t) + uh;ulen(t) (2.11)

_culen(t) = �kcrys;ulenculen(t) + uc;ulen(t) (2.12)

_xh;gla(t) = �(k1;gla + kd)xh;gla(t) +min(kprep;glapgla(t); rdis;max) + uh;gla(t) (2.13)

_pgla(t) = �min(kprep;glapgla(t); rdis;max) + up;gla(t) (2.14)

Where:

xi is mass in the interstitium compartment [mU]

xh is mass in the hexameric compartment [mU]

xh;ulen is mass in the ultralente hexameric compartment [mU]

xh;gla is mass in the glargine hexameric compartment [mU]

xdm is mass in the dimer/monomer compartment [mU]

cNPH is mass in the NPH crystalline protamine compartment [mU]

clen is mass in the lente crystalline zinc compartment [mU]

pgla is mass in the glargine precipitate compartment [mU]

k1 is hexamer dissociation rate [min�1]
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k1;ulen is ultralente hexamer dissociation rate [min�1]

k1;gla is glargine hexamer dissociation rate [min�1]

k2 is dimeric/monomeric insulin transport into interstitium [min�1]

k3 is interstitium insulin transport rate into plasma [min�1]

kd;i is rate of loss from interstitium [min�1]

kd is rate of di�usive loss from hexameric and dimeric/monomeric state

compartments [min�1]

kprep;gla is glargine precipitate dissolution rate [min�1]

kcrys;len is lente zinc crystalline dissolution rate [min�1]

kcrys;ulen is ultralente zinc crystalline dissolution rate [min�1]

kcrys;NPH is NPH protamine crystalline dissolution rate [min�1]

rdis;max is maximum glargine preciptate dissolution rate [mU min�1]

uh is RI hexamer state insulin input [mU min�1]

uh;NPH is NPH hexamer state insulin input [mU min�1]

uh;len is lente hexamer state insulin input [mU min�1]

uh;ulen is ultralente hexamer state insulin input [mU min�1]

uh;gla is glargine hexamer state insulin input [mU min�1]

umono is MI dimer/monomer state insulin input [mU min�1]

um;RH is RI dimer/monomer state insulin input [mU min�1]

um;NPH is NPH dimer/monomer state insulin input [mU min�1]

um;len is lente dimer/monomer state insulin input [mU min�1]

um;ulen is ultralente dimer/monomer state insulin input [mU min�1]

um;gla is glargine dimer/monomer state insulin input [mU min�1]

The model above has been validated against various pharmacokinetic studies

�nding good correspondence between almost all predicted peak values and target

data (?Wong et al., 2008; Wong, 2008).

2.5.3 Parameter Identi�cation using the Integral Fitting

Method

The integral �tting method of Hann et al. (2005) has been extensively used for

parameter identi�cation of long term pharmacokinetic models (Lonergan et al.,

2006a; ?). The integral �tting method is convex and generates a linear system to

be solved. An analysis of the error introduced into the method by approximating

the glucose curve as a piecewise linear pro�le (refer to Equation 2.15) found

that no additonal error is introduced by the �tting process. This is shown by
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Equations 2.16 and 2.17, which are the two patient speci�c terms of the error term

introduced. As shown, both are of the order � (a measure of the best possible �t)

which is not a�ected by the glucose data approximation. Note that this analysis

is for the application of the method to the ICU model, where both SI and pG are

�tted parameters.

0 � j�(t)j � � where G(t)T;real = G(t)T;approx + �(t) (2.15)�����
pG�(t� t0)

pG
R t
t0
GT;real(t)dt

����� <
�(t� t0)R t

t0
1dt

= � where GT;real = 1 (2.16)

�����
SI�(t� t0)

SI
R t
t0
GT;real(t) �Q(t)dt

����� <
�
R t
t0
�Q(t)R t

t0
�Q(t)dt

= � where GT;real = 1 (2.17)

(2.18)

2.5.4 Stochastic Modelling

Lin et al. (2008) used a stochastic model to describe the characteristics of an

ICU population. Because SI is a Markov variable, the probability of SI;n+1 = y

is de�ned by the previous state, SI ; n, as shown in Equation 2.19.

p(SI;n+1 = yjSI;n = x) =
p(SI;n = x; SI;n+1 = y)

p(SI;n = x
) (2.19)

The probabilities required in Equation 2.19 are de�ned by the available clin-

ical data, using Equation 2.20.

p(x; y) =
1

n

nX
i=1

�(x;xi; �
2
xi
)

pxi

�(y; yi; �
2
yi
)

pyi
(2.20)

pxi =
Z
1

0
�(x;xi; �

2
xi
) (2.21)

pyi =
Z
1

0
�(y; yi; �

2
yi
) (2.22)

Where xi and yi represent the SI;n and SI;n+1 pairs in the clinical data.

The �(x;xi; �
2
xi
) term represents a non-negative normal probability distribution

function centered at xi and similarly for yi. Integrating Equation 2.20 gives

Equation 2.23.
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p(x) =
Z
p(x; y)dy =

1

n

nX
i=1

�(x;xi; �
2
xi
)

pxi
(2.23)

Thus, Equation 2.19 can be written as shown in Equations 2.24 and 2.25.

p(SI;n+1 = yjSI;n = x) =
nX
i=1

!i(x)
�(x;xi; �

2
xi
)

pxi
(2.24)

!i(x) =

�(x;xi;�
2
xi
)

pxiPn
j=1

�(x;xj ;�2xj )

pxj

(2.25)





Chapter 3

Cohort Data

3.1 CTW Patient Data

Glycaemic control data from patients experiencing hyperglycaemia in the CTW

of Christchurch Hospital in the year 2007 was gathered for this study. Patients

in the CTW typically have a one week turnaround and there are 10 beds. Ethics

approval from the South Island Regional Ethics Committee was obtained for this

research.

Obtaining glycaemic control data for patients in the CTW presented signif-

icant challenges. Only patients recieving insulin were of interest because these

are patients that have experienced poor glucose control and thus reect the tar-

get population for new glycaemic control strategies. In addition, patients not

recieving exogenous insulin cannot be as accurately modelled as those who are

due to the unknown endogenous metabolic response to such inputs. Without

exogenous insulin, all glucose regulation is performed by endogenous production

of insulin and glucose,and its endogenous clearance of the same. These processes

cannot be accurately modelled without further, high density, clinical data, such

as C-peptide levels, over time that are not available in this case.

The primary di�culty in data collection was accurately determining the se-

lected patients' carbohydrate intake. Patients in the CTW eat hospital meals, as

well as food brought in from outside of the hospital. Generally, no detailed record

of food consumed is kept. To enable a study cohort to be modlled, nurses in the

CTW kept a record of hospital meals ordered and the proportion consumed for

those patients recieving insulin. Using nutritional data from Christchurch Hos-

pital, the carbohydrate value of patient meals could be calculated and adjusted

to the portion eaten.

However, several errors are inherent in this method. There is a discretisation

error as the proportion consumed was only recorded as 0%, 25%, 50% 75% or
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Figure 3.1 Distribution of blood glucose measurements from all 7 patients of the CTW
cohort. The �tted probability density function assumes a lognormal distribution

100%. There is also a degree of subjective judgement involved in recording a

proportion consumed, which may vary between nurses. Finally, the proportion

consumed does not take into account which particular foods in a meal were con-

sumed. For example, if 50% of a meal was consumed, this does not necessarily

mean that 50% of carbohydrates in that meal was consumed. A patient may

select the carbohydrate rich foods, or avoid those foods depending on tastes.

Finally, errors in the documentation process were also present. Di�culties oc-

cured with meal times being ommitted from recorded data. If such cases ocurred

in isolation and the rest of the data was of high quality, an estimate of the time

of consumption could be made based on regular meal times and glycaemic data.

Where data measurements were largely vague or inaccurate, the entire data set

for that period had to be excluded, further limiting the amount of useable data.

Figure 3.1 shows the blood glucose data for the CTW cohort. There is a high

mean value and mode, which is indicative of the fact that the patients included

are those who require glycaemic control. The data does not necessarily cover a

patient's entire stay in the CTW, but represents di�erent stages of the recovery

process. The quality of data available dictated the periods that have been selected

for investigation was not dependent on the time spent in the CTW. Periods of

no insulin administration were omitted. However, these omitted periods are not

reected in any of the statistics presented.
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3.1.1 Cohort Statistics

A total of 7 sets of patient data were of su�cient quality to be used in this study,

comprising a total of 278 blood glucose measurements over 744 hours (approxi-

mately 1 measurement every 2.6 hours). After some sections of poor data quality

were removed, the remaining number of patient hours was 692 which included

269 glucose measurements (approximately 1 measurement every 2.6 hours). The

summary statistics for this cohort are shown in Tables 3.1 and 3.2. Full cohort

details are shown in Table 3.3.

Mean IQR1 SD2

Length of Data Series 98.9 63.8-113.0 47.5
Age 69.4 65.0-75.3 7.9
Sex (% Male) 71 - -

1 Inter-quartile range
2 Standard deviation

Table 3.1 Summary statistics of CTW patient data

Median Blood Glucose during stay (mmol L�1) 8.9
Blood Glucose standard deviation (mmol L�1) 3.8
BG readings below 4 mmol L�1 (%) 2.2
BG readings above 6 mmol L�1 (%) 88.5
BG readings above 7 mmol L�1 (%) 79.9
BG readings above 7.75 mmol L�1 (%) 69.1
BG readings above 10 mmol L�1 (%) 37.2

Table 3.2 Summary statistics of CTW patient glycaemic control data

The ratio between number of measurements and hours of data varies signi�-

cantly between patients. High data density is ideal because it allows identi�cation

of higher frequency changes in insulin sensitivity over time and thus gives a better

approximation to the likely true patient behaviour. Large insulin doses also en-

able more accurate �ts. Overall, the cohort also has entirely diagnosed diabetes

which is one likely reason for the generally greater measurement frequency.

It is important to remember that the cohort includes only CTW patients

experiencing glycaemic control problems and does not represent typical CTW

characteristics overall. However, the patients included in the cohort are those

who would likely bene�t from any control technologies that are developed. Thus

it is created for protocol design, rather than representing a speci�c unit.

Patient 7 had a period of 34 hours in which no meal data is available. It is

uncertain whether no meal was eaten during this time or if data was not recorded,
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however the latter case is most likely based on the data. For this reason, the last

54 hours of data was removed from the study. The data in Tables 3.1-3.3 reects

this ommission.

Using the methods and model described in Chapter 4, an SI pro�le was �t

for the entire set of data available, including the last 54 hours for Patient 7. The

errors in this �t due to reaching imposed upper and lower limits on SI were then

corrected for by �tting a new glucose input curve. This curve closely follows the

modelled glucose input from the CHO content of CTW meals, with three notable

exceptions marked by arrows in Figure 3.2.

The �rst is during the middle of the 34 hour period missing meal data where

it is highly likely that a meal or two was eaten during this time, shown by the

two peaks of modelled glucose input. This conclusionappeals to common sense,

which dictates that no patient that had been eating regular meals would refuse

food for a period of 34 hours and then resume regular eating habits the next day.

The presence of two insulin administrations during this period also support this

theory.

The second discrepancy lies in the slightly elevated levels of �tted glucose

input when compared to modelled meal intakes. Because the level of elevation

is reasonably constant, and is maintained between meals, it likely reects an

elevated level of EGP. This elevation is likely caused by slightly excessive levels

over normal of the increased physiological stress and catecholamine activity that

is typical after cardiac surgery.

The �nal unexpected peak in modelled glucose for Patient 7 appears at the

end of the data collection period. Data for one breakfast meal of 35.2g of CHO

was available for this patient, but the time of consumption and some quantities

consumed were ommitted so this meal was left out of the data set. However, the

time of the unknown glucose input does not correspond to a breakfast meal and

it is therefore likely that this meal was consumed at the end of the data collection

period, where there is a �nal unexpected peak in modelled glucose intake appears.

3.2 Ambulatory Diabetic Patient Data

Due to the limited patient turnover in the CTW alternative soures of relevant

glycaemic control data were utilised. Ambulatory diabetic individuals present

many similar characteristics of CTW patients and a cohort of such patients was

already available from the research of Wong et al (?). Additionally, data from the

Automated Insulin Dosage Advisor (AIDA) online2(Lehmann and Deutsch, 1993)
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Figure 3.2 Fitted SI pro�le of Patient 7 with error correction using �tted glucose intake

test cases was utilised and considered part of the ambulatory diabetic patient

group. Both sets of patients exhibit signi�cant diurnal rhythms. However, it is

unknown whether CTW patients exhibit similar rhythms.

Ambulatory diabetics frequently encounter problems with glycaemic control,

particularly in response to the variable nature of meals and exercise. In the

CTW setting, sustained exercise is not encountered, but the problems with post-

prandial glycaemic control are very similar, as is the overall physiological stress.

Patients in the CTW are also sometimes newly diagnosed with Type II diabetes,

which is identi�ed or highlighted by hyperglycaemia seen during their hospital

stay. In other cases, it is possible that glycaemic control problems are early

warning signs of the onset of Type II diabetes or simply caused by the stress

of their condition. In either case, the cohort of ambulatory diabetic patients

provides additional hours of clinical data relevant to glycaemic control of less

acutely ill patients. For much of this research, the ambulatory diabetic cohort is

considered independently of the CTW cohort to detect any signi�cant variances

in behaviour or characteristics. In the absence of signi�cant variance, the chorts

can be considered simultaneously in developing tools for a more general ward

cohort.
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3.2.1 Cohort Statistics

A summary of the cohort statistics is shown in Table 3.4. The overall data

illustrates a hyperglycaemic cohort. In particular, the 20.6% over 10 mmol L�1

indicate a signi�cant level of variability in control.

Median Blood Glucose during stay (mmol L�1) 6.9
Blood Glucose interquartile range (mmol L�1) 5.0-9.4
BG readings below 4 mmol L�1 (%) 12.6
BG readings above 6 mmol L�1 (%) 61.7
BG readings above 7 mmol L�1 (%) 47.9
BG readings above 7.75 mmol L�1 (%) 40.9
BG readings above 10 mmol L�1 (%) 20.6

Table 3.4 Summary statistics of ambulatory diabetic patient data

3.3 ICU Patient Data

Extensive glycaemic conrol data for 394 patients admitted to Christchurch Hos-

pital ICU between 2001 and 2007 is available for this study. Much of this data

is from patients that were placed on the SPRINT protocol between 2005 and

2007. All glucose readings in these patients were taken using a GlucocardTM

test strip. Enteral nutrition consisted primarily of Diabetic Resource, although

Glucerna, Jevity, NovoSource and several other feed types were used at various

times throughout the study. The common use of enteral feeds in the ICU gives

easily quanti�able CHO intake values, reducing the overall error in the insulin

sensitivity �ts.

However, enteral nutrition is rarely encountered in the wards and thus this

data provides little insight into the characteristics of meal metabolism and gly-

caemic management. Similarly, the heightened degree of illness in ICU patients

compared with the ward patients means that overall metabolism and insulin sen-

sitivity pro�les are likely to vary signi�cantly, as would the underlying causes of

hyperglycaemia. For these reasons, a general ICU cohort is not applicable to a

study of glycaemic control in the wards.

Given these points, the transition of ICU patients from a critically ill state

to a less acute state that leads to admission to a ward is of particular interest.

This transition frequently coincides with less exogenous insulin dependence due

to a reduction in stress-induced endogenous glucose production and increasing

endogenous insulin production. Therefore, patients require a less intensive in-



22 CHAPTER 3 COHORT DATA

sulin regime. The mechanics of making this transition safely have been largely

neglected within most hospitals. To examine the patient characteristics found

during this transition period, the last 36 hours data of of all ICU patients dis-

charged to a ward are examined, which consisted of 131 patients from the original

SPRINT cohort of 394. These 36 hours of data could represent the last 36 hours

in the ICU or the last 36 hours of insulin administration in the ICU. Of this

group, 87% of the data included patients still recieving enteral nutrition. The

remaining 13% of patient hours had no meal data available.

Also of interest from this 394 patient cohort is the use of insulin sensitivity

metrics to identify sepsis. In order to correlate hour by hour SI pro�les to a

patient's sepsis status, further clinical data was required. The collection of this

additional clinical data was very time consuming and thus only conducted on

36 patients that were identi�ed by experienced clinical sta� and blood culture

results as having had sepsis during their ICU stay. These patients were also

selected from the 394 patient cohort and thus all had su�cient glycaemic control

data density to provide good insulin sensitivity �ts. In addition to the existing

glycaemic control data, extensive hour-by-hour clinical data of the sepsis cohort

was gathered. This data had information on the following:

� Heart rate

� Blood pressure

� Respiration rate

� Temperature

� FiO2

� Fluid balance

� Glasgow Coma Scale (GCS) score

Aditionallly, any atrial �brilation was noted, as well as the use of any of the

following drugs:

� Antibiotics

� Vasopressin

� Adrenaline

� Noradrenaline

� Dobutamine

From this information, conclusions about the speci�c times of sepsis can be

drawn.
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3.3.1 Cohort Statistics

The statistics for the �nal 36 hours of the stable ICU cohort is shown in Table 3.5.

It is likely that this ICU cohort underestimates the presence of hyperglycaemia

due to the majority of the cohort being on the SPRINT protocol during their

ICU stay. However, the insulin sensitivity pro�les are still likely to reect a

broadly similar metabolic status to those patients entering the CTW, particularly

in the situation where glycaemic control protocols are in use before admission (eg.

during surgery, ICU patients transitioning to the less acute wards).

Sex (% male) 74.7
Mean age (years) 58.9
Mean APACHE II
Median length of SPRINT use
Median Blood Glucose during stay (mmol L�1) 5.8
Blood Glucose interquartile range (mmol L�1) 5.1-6.6
BG readings below 4 mmol L�1 (%) 3.0
BG readings above 6 mmol L�1 (%) 40.5
BG readings above 7 mmol L�1 (%) 15.2
BG readings above 7.75 mmol L�1 (%) 7.8
BG readings above 10 mmol L�1 (%) 1.7

Table 3.5 Cohort Statistics for the ICU patients included in this study

The statistics for the 36 patient sepsis subcohort is shown in Table 3.6. This

data set also indicates a tightly controlled cohort. However, it is also more

hyperglycaemic than the cohort of Table 3.5, as might be expected.

Sex (% male)
Mean age (years)
Mean APACHE II
Median length of SPRINT use 101
Median Blood Glucose during stay (mmol L�1) 6.0
Blood Glucose interquartile range (mmol L�1) 5.3-6.8
BG readings below 4 mmol L�1 (%) 2.4
BG readings above 6 mmol L�1 (%) 49.3
BG readings above 7 mmol L�1 (%) 20.1
BG readings above 7.75 mmol L�1 (%) 10.9
BG readings above 10 mmol L�1 (%) 2.1

Table 3.6 Cohort statistics for patients potentially having experienced sepsis





Chapter 4

Modelling and Parameter Identi�cation

4.1 Model Structure

The �nal form of the model used is given in Equations 4.1-4.5. In Equation 4.3,

X is given the value found by Equation 2.6 in the subcutaneous insulin model

described in Section 2.5.2. A description of all other parameters and a discussion

of their numerical determination is included in Section 4.2.

_GT = �pGGT �
SIGTQ

1 + �GQ
+ P (t) + EGP (4.1)

_Q = kI � kQ (4.2)

_I =
�nI

1 + �II
+
k2X

Vi
+
u(t)

Vi
+
IB

Vi
(4.3)

_S = k3S + uCHO(t) (4.4)

_T = min(k4T; amax) + k5S (4.5)

P (t) =
min(k4T; amax)

Vp
(4.6)

Where:

GT is blood glucose [mmol L�1]

pG is endogenous glucose clearance [min�1]

SI is insulin sensitivity [L mU�1 min�1]

Q is utilised insulin [mU]

�G is the Michaelis-Menton constant for insulin mediated glucose clearance

[L mU�1]

P (t) is plasma glucose input [mmol L�1 min�1]

EGP is endogenous glucose production [mmol L�1 min�1]
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k is the e�ective life of insulin [min�1]

I is plasma insulin [mU]

n is the insulin decay rate from the plasma [min�1]

�I is the Michaelis Menton constant for plasma insulin clearance [L mU�1]

k2 is the rate of transport of insulin from the intersitium into plasma [min�1]

X is insulin from the interstitium [mU min�1]

u(t) is the exogenous insulin inputs [mU min�1]

Vi is the distribution volume of insulin [L]

IB is endogenous insulin secretion [mU min�1]

S is the CHO content of the stomach [g]

T is the CHO content of the ileum [g]

uCHO is the CHO content of meals consumed [g min�1]

k3 is the CHO gastric emptying rate [min�1]

k4 is the CHO gut absorption rate [min�1]

amax is the maximum gut CHO absorption rate [g min�1]

Vp is glucose plasma distribution volume [L]

4.2 Parameter Values

The minimal model proposed by Bergman et al. (1979, 1981, 1987) describes the

dominant e�ects in glucose-insulin kinetics. This model has since been modi�ed

to suit the particular characteristics of di�erent populations (Bergman, 2005).

The study of critically ill patients in Christchurch Hospital's ICU from 2001-

2008 used the model described in Section 2.5.1 by Equations 2.1 - 2.5. The

primary driving factor identi�ed in such patients is the insulin sensitivity which

is proportional to feed

glucose� insulin
when glucose is at a steady state.

4.2.1 Insulin Sensitivity

Insulin sensitivity is a lumped parameter describing the combined e�ects of in-

sulin on glucose uptake, which is the primary function of insulin. Under normal

physiological functioning, the presence of insulin stimulates the cell walls enabling

glucose to pass through to be processed by mitochondria. When the e�ect of in-

sulin is diminished, a patient is said to be insulin resistant, which is equivalent

to a low insulin sensitivity.

Insulin sensitivity has been shown to vary signi�cantly throughout the day
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and during the course of illness (Wilinska et al., 2003; Langouche et al., 2007). It

is the driving parameter behind glucose changes and thus likely to be the key to

achieving good glycaemic control. SI is �tted as a piecewise constant parameter,

varying hourly. It is limited to values of 1�10�5 and 6�10�3 L mU�1 min�1,

which extends signi�cantly higher than most reported ranges (Bettini et al., 1995;

Doran, 2004), but as will be demonstrated in Section ??, the modelled value does

not typically extend beyond 2�10�3 L mU�1 min�1, which is within the range

reported by McDonald et al. (2000).

4.2.2 Endogenous Glucose Production

In order to more accurately capture the true time varying pro�les of insulin

sensitivity in a critically ill patient the model given in Equations 2.1-2.3 were

modi�ed to include an endogenous glucose production (EGP) term, Equation 2.1

is thus replaced by Equation 4.1 of the ICU model in Section 2.5.1.

The use of the EGP term allows the removal of the GE term to give glucose

dynamics, where GT = G + GE. These changes allow for greater accuracy in

determining SI pro�les by eliminating the use of equilibrium glucose which is

unknown and must therefore be estimated by statistical means. The GE term

was best estimated by a 12-hourly average of G, which allows some uptake of

insulin sensitivity dynamics into this term, which would be particularly true in

patients exhibiting diurnal cycles such as ambulatory diabetics or less critically ill

patients. By eliminating this periodic re-estimation, the insulin sensitivity found

by the model will more accurately represent true patient dynamics and is also

more physiologically accurate than GE.

EGP is held at a constant 3 mg min�1, which is within the reported range

(Chambrier et al., 2000; Mittelman et al., 1997; Singhal et al., 2002; Dalla Man

et al., 2007). It is at the higher end of the range found by Chambrier et al. (2000)

for both septic and control patients, but the standard deviation was much higher

in septic patients than the control and consequently no statistically signi�cant

di�erence between the groups was observed. Thus, EGP is considered constant

for all patients, whether or not they had sepsis. The value of 3 mg min�1 was

selected to provide minimum time of modelled SI on imposed upper or lower

limits.

It should be noted that the physiological EGP rate has high interpatient vari-

ability and depends on a variety of factors, such as physiological stress, nutrition

levels and glucose levels. The e�ect of stress is likely to be minimal as all pa-
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tients in each cohort is under similar levels of physiological stress, however, with

ambulatory diabetic patients, such stress levels could vary signi�cantly during

the course of a day as well as from patient to patient. However, a varying EGP

rate would mathematically uptake SI variation and so a constant rate for each

patient must be chosen. Similarly, when patients consuming regular meals are

considered, it is likely that EGP would be supressed immediately following meal

consumption which usually induce periods of elevated glucose levels due to the

diabetic nature of the chort. However, this e�ect is not modelled and thus it

is possible that insulin secretion will be overestimated during such periods, or

insulin sensitivity may be overestimated during such periods.

4.2.3 Central Nervous System Uptake

The central nervous system is biologically insulated from low blood glucose levels

since, unlike other cells in the body, insulin is not needed for glucose uptake.

This allows a constant uptake of glucose into the cells of the CNS essentially

regardless of glucose levels in the blood. The only exception to this is extreme

hypoglycaemic incidents (below approximately 2 mmol L�1) at which point the

patient experiences dizziness and loss of consciousness (Guyton and Hall, 2000).

The physical symptoms of such lowered glucose levels can reduce with repeated

exposures to such glycaemic levels, however the ultimate outcome of death is still

death if the hypoglycaemia is left untreated. The changes in glucose metabolism

during such severe hypoglycaemic incidents is, however, beyond the scope of this

research and thus CNS uptake is considered to have a constant e�ect on glucose

levels over time.

Since CNS glucose uptake is not insulin mediated it cannot be included in the

systemic uptake term in Equation 4.1. It has the mathematical e�ect of reducing

the EGP of the body, although this should not be mistaken for a physiological

e�ect. However, for purposes of this study, the EGP term is considered to denote

the overall e�ect of non-glucose dependent parameters on change in blood glucose.

4.2.4 Glucose Clearance

The rate of glucose clearance from the plasma by non-insulin stimulated means

is modelled by the use of a lumped fractional clearance rate, pG. This term

originates from the original 3-compartment model of Bergman 1981. Studies

suggest that the e�ect of variability in pG over time is minimal in comparison

to SI . For this reason, pG is considered a constant over time for each patient,
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although interpatient variability is allowed for in the CTW cohort. The �nal pG

values are limited between 0.002 and 0.02 min�1, which largely covers the range

found in clinical studies (Avogaro et al., 1989; Bergman et al., 1981; Bettini et al.,

1995; Cobelli et al., 1999; Furler et al., 1985; McDonald et al., 2000; Pillonetto

et al., 2002; ?).

4.2.5 Endogenous Insulin Secretion

In moving focus from critically ill ICU patients to the less acute wards such as

the CTW, endogenous insulin secretion(EIS) becomes a more prominent feature.

This is evidenced by post-prandial peaks in insulin sensitivity when �tted using

the model described in Equations 2.1-2.3. An example of such a �t is shown in

Figure 4.1. The majority of meal inputs, as shown in the P (t) curve induces a

peak in insulin sensitivity for between 1-4 hours after the initial carbohydrate

input.

Figure 4.1 An example of a patients SI pro�le compared to modelled glucose intake with no
endogenous insulin secretion

Since SI is �tted hourly, it is likely that this compensation for EIS misses

the �rst peak phase of insulin secretion which usually last for approximately

10 minutes before reducing and then re-elevating for 2-3 hours following a meal

(Guyton and Hall, 2000; Pratley and Weyer, 2001). However, it is also possible

that this �rst phase secretion is absent due to the impairment of beta cell response

inherent in the nature of diabetes. A comparison between a healthy post-prandial

insulin response and that of a patient with Type II diabetes is shown in Figure

4.2. Note that a patient with Type I diabetes would exhibit negligible levels of

insulin.

An upper limit of endogenous insulin secretion is imposed to maintain phys-

iological accuracy. A limit of 10 U hr�1 is imposed on all insulin secretion rates.
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Figure 4.2 A qualitative comparison between the endogenous insulin secretion pro�les of a
healthy patient and one with Type II diabetes in response to a meal. Note that the �rst phase
response of a healthy patient is completely missed by the patient with Type II diabetes.

This value lies on the upper range for of insulin secretion rates in obese pa-

tients derived from a two-compartment model based on C-peptide measurements

(Polonsky et al., 1988) and is almost twice that found by a study in healthy

subjects during glucose infusion(Porksen et al., 1997). While not all patients in

the cohort are obese, it is likely that some will fall into this category, thus it is

necessary that the upper limit allows for this. At all other times, basal insulin

secretion is considered negligible.

Hyperglycaemia in the CTW was more commonly observed in patients with

a history of diabetes and it is therefore likely that the cause is in failure of

natural glucose control systems exacerbated by stress than solely stress-induced

hyperglycaemia. Coupled with the lower insulin doses encountered in the CTW,

this implies that insulin secretion is likely to be less signi�cantly suppressed in

such patients.

Modelling the arrival of endogenous insulin secretions (EIS) into the plasma

allows basal replacement therapy to be modelled where the reduced endogenous

function is allowed to manage post-prandial glucose rises. Basal replacement

therapy for Type II diabetics has been investigated as a control strategy by

numerous studies as summarised in Section 2.2.

It is well documented that exogenous insulin suppresses the secretion of en-

dogenous insulin. This was taken into account by the e�u(t) factor of IB in the

ICU model, where IB was assumed constant. However, the supression of EIS is

assumed to be complete at all times except for 3 hours after a meal. It is as-

sumed that after meals, EIS in a Type II diabetic is not suppressed by exogenous

insulin in any levels that would be encountered in a practical situation. If EIS
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is not suppressed to the extent assumed, the e�ect would be overestimation of

insulin inputs, which would result in higher glucose levels than desired. However,

underestimating IB could result in an insulin overdose, causing hypoglycaemic

events. Therefore, the inclusion of EIS in initial pilot trials is the safest option

and accounting for EIS suppression might be developed after initial clinical trials.

It is important to note that the secretion rates calculated are the rates of

secreted insulin that arrives in the plasma, not the rate of secretion by the �-cells.

Approximately 50% of the insulin secreted by �-cells is cleared by the liver before

taking e�ect on cellular glucose uptake. However, the aim of this research is to

accurately model the dynamics between glucose and exogenous insulin rather than

endogenous insulin dynamics and therefore the exact values rate insulin secretion

and extraction are not required and would simply add unnecessary complexity to

the model.

4.2.6 Subcutaneous Insulin

Wong et al. (2008); Wong (2008) modelled the e�ect of various types of insulin

used in ambulatory diabetic patient management. While only IV insulin and

insulin glargine are investigated for use in this study, much of the data available

is from patients using a wide variety of insulin types. Thus the arrival of these

insulins into the plasma needs to be modelled. This is achieved by the use of a

subcutaneous insulin model described in Section 2.5.2.

4.3 Parameter Identi�cation

4.3.1 Population Constants

The value of all population constants used are given in Table 4.3.1.

4.3.2 Fitted Parameters

Both insulin sensitivity (SI) and endogenous insulin secretion (IB) are considered

variables in this model and thus both parameters must be �tted. Insulin sensi-

tivity is assumed piecewise constant over each hour, whereas insulin secretion

is constant over 10 minute periods. The model given in Section 4.1, which is

used for the CTW patients thus includes a nonlinear term, SIGtQeff in Equation

4.1, to the system to be solved. Nonlinear solution methods present a signi�cant

computational burden, which reduces the available number of paitient hours that
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Parameter Value
�G 0.015 L mU�1

�I 0.0017 L mU�1

EGP 1.16 mmol L�1 min�1

n 0.16 min�1

k 0.0099 min�1

k2 0.0649 min�1

k3 0.0388 min�1

k4 0.0097 min�1

amax 1.1
Vp 22% of bodymass
Vi 15% of bodymass

Table 4.1 Constant model parameters used

can be considered. Therefore, the �tting is not solved as a simultaneous system,

but rather as a sequential series of SI pro�les, with Qeff resolved for 3 hours

following the meal periods, assuming a constant SI . It has been shown (Wilinska

et al., 2004; la Fleur, 2003; la Fleur et al., 2001) that insulin sensitivity varies

signi�cantly over a day and therefore it is not expected that insulin sensitivity

would remain constant over the 3 hours following a meal. However, a constant

SI is required to identify endogenous insulin secretion.

Data is divided into periods for �tting, where each period goes from 3 hours

following the last meal (or the �rst available data point) up to 3 hours following

the next meal. If another meal is eaten within the �nal three hours, then SI

becomes variable again 3 hours following the last meal. Once each section has

been solved, SI is re�tted over the whole time period to correct any error which

arises from needing negative IB values, which are not physiologically possible.

Integrating Equation 4.1 over a time period gives:

Z t+x

t

_Gdt = Gt+x �Gt = �pG

Z t+x

t
Gdt� SI

Z t+x

t
GQdt+

Z t+x

t

P (t) + EGP

V
dt(4.7)

In Equation 4.7, x is 10 when SI is being �tted and 1 when IB is being �tted.

Thus, there are 6 and equations for SI and IB respectively when solving the

system, which is of the form: [A]

0
@ SI

Q

1
A = b. Such a system can be solved by

the method of least squares.

Once the system has been solved, (t)Q(t) can be found since SI;tn�3 is known.

Di�erentiating the last 18 elements of the solution vector then gives the GQ



4.3 PARAMETER IDENTIFICATION 33

product over time and thus Qeff (and hence Q) can be found. From known

Q the _Q equation can be integrated written in terms of
R
Idt using the same

method as above. The integrated Equation 4.2 is given in Equation 4.8. From

this equation, a system of the form [k] (~I) = Q can be written and solved.

Z t+1

t

_Qdt = Qt+1 �Qt = �k
Z t+1

t
Qdt+ k

Z t+1

t
Idt (4.8)

Finally, from this solution,
R
IBdt can be �tted to the _I equation using known

insulin inputs. Equation 4.3 is shown in its integrated form in Equation ??. The

solution to the resulting system is the desired 18� 1 solution vector of endogenous

insulin secretion. The linear least squares solution for IB is bound to be positive.

Z t+1

t

_Idt = It+1 � It = �n
Z t+1

t

I

1 + �II
dt+

1

V

Z t+1

t
u(t)dt+

1

V

Z t+1

t
IBdt (4.9)

The �t values of IB should approximate the expected pro�le of insulin secre-

tion, shown in Figure 4.2. It is possible to �t a curve through these secretion

rates found to reect this pro�le and use this curve for the insulin secretion model,

however due to the small changes in rate that occur over 10 minutes, with the

occasional exception of an acute spike in the initial stage, it is likely that this

would not a�ect the accuracy of the �ts obtained.

An example of a patient �tted using this method is shown in Figure 4.3. The

shaded regions indicate time during which SI is held constant and IB is �tted.

It can be seen that the period of IB �tting is sometimes longer than three hours,

which occurs when a patient consumes a meal within 3 hours of the last. In this

case, SI is held constant for the duration of the meals and becomes variable again

3 hours after the �nal meal.

An extensive validation study of this model is yet to be carried out. C-

peptide data would need to be available to con�rm the EIS rates �tted using the

methods described above. Similarly, continued data collection in relevant patient

cohorts will assist in validating the model, particularly if insulin is administered

throughout the patients stay.
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Figure 4.3 Fitted and modelled data for CTW patient 5



Chapter 5

Stochastic Modelling

The improvement of glycaemic control with increased measurement and inter-

vention adjustment frequency is well established. However, in many settings,

the increased burden on clinical sta� introduced by such glycaemic control pro-

tocols is restrictive (Mackenzie et al., 2005; Aragon, 2006). Thus, minimising

the frequency of adjustment or measurement in glucose control strategies is of

paramount importance to attain maximum e�ectiveness for minimal impact on

clinical burden. In this chapter, stochastic modelling methods are employed to

generate a virtual patient cohort that reects the physiology of patients encoun-

tered in less acute wards with lower nurse:patient ratios. These pro�les can then

be used in control utilizing 1-3 hourly measurements to optimize clinical burden

in the overall result.

5.1 Methodology

To predict the e�ect of a treatment protocol on a population, understanding

insulin-glucose dynamics alone is insu�cient. Time varying pro�les of patient

speci�c parameters are required to simulate how any therapies interact with

these progressions over time. However, to achieve good correspondence between

simulation and clinical results many hundreds of hours of clinical data are re-

quired, which takes time and resources to collect. Stochastic modelling enables

understanding of population characteristics as a probabilistic model using Markov

chains.

It is physiologically expected and well recorded that current insulin sensitivity

of a patient is related to insulin sensitivity after one hour. Given that future

insulin sensitivity can be viewed as a conditional progression from a present

insulin sensitivity state, it can be modelled using Markov chains. Lin (2007)

developed a stochastic model of insulin sensitivities of critically ill patients using
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a cohort of 394 ICU patients from Christchurch Hospital using 2-dimensional

kernel density estimation.

Such predictive measures reduce the heightened risk of hypoglycaemic episodes

in patients recieving intensive insulin therapy (Chase et al., 2007). The model

is de�ned by con�dence bands based on clinically observed parameter variations.

Using Monte Carlo methods, statistically accurate SI pro�les can be generated,

thus creating a 'Virtual Patient'. Validation against 23,324 hours of clinical

SPRINT data has shown an excellent correspondence in control algorithm re-

sults on Virtual Patients (Lin et al., 2008; Chase et al., 2007).

The probabilistic model generated will determine the most likely insulin sen-

sitivity to follow a given present value for a subset of patients. The probability of

each outcome for a given present value is determined by the �tted clinical data.

It is assumed that insulin sensitivity is dependent only on its previous hourly

value. Clinically, this assumption holds true because patients generally experi-

ence changes in their metabolism that are caused by unmodelled external factors,

such as a worsening of the admission condition. However, there is evidence that

insulin sensitivity generally progresses during a patients stay (Langouche et al.,

2007).

This should not a�ect the validity of the Markovian assumption for the appli-

cation of the model to the control problem since it is not trends over long periods

of time that a�ect a patient's need for insulin or glucose, but rather over 2-3 hour

periods. The control inputs need to be able to respond to the higher frequency

changes in insulin sensitivity. However, if data included long periods of stay, the

Markovian property assumption may become invalid.

Two dimensional kernel density estimation of SI is generated from the data

described in Section 5.2. The conditional probability of each outcome is calcu-

lated by the probability of the sequence of data as determined by the observed

frequency in clinical data and normalised by the probability of the initial condi-

tion. Since SI values are continuous a discretisation must be made to calculate

these probabilities. For the models presented in this thesis, SI is discretised with

a resolution of 6�10�5 L mU�1 min�1. The probability density function is such

that the integral of the probability curve between 1 � 10�6 and 6 � 10�3 L mU�1

min�1 is equal to one. Thus, a slice along the SI;t-axis of the generated density

functions gives the distribution of likelihood of the subsequent SI reading for a

given current SI . The joint probability density function is weighted by the prob-

ability of SI;t = x so that the most likely SI values have highest density values.

The normalisation is such that the integral of the surface is equal to one.
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5.2 Probability Model

Using the methods of Lin et al. (2006, 2008) as described in Section 2.5.4, a two

dimensional kernel estimation function was generated using the subset of 394

patients admitted to the Christchurch Hospital ICU during the years 2001-2007

and experienced hyperglycaemia during their ICU stay. Details of this subset are

given in Section 3.3. Patients from this cohort were chosen to isolate more stable

ICU patients which would closely resemble the characteristics of a patient found

in the CTW. This was achieved by selecting patients that were discharged to the

ward and examining the last 36 hours of their ICU stay. In total, 4104 hours

of patient data pairs were available for the model generation, collected from 130

patients of the 394 cohort. The di�erence between the expected number of hours

(130 patients � 36 hours) is due to some of the 130 patient stays being shorter

than 36 hours, or at least the period of glycaemic data available did not exceed

36 hours.

It is expected that the glycaemic control data of ward patients is fundamen-

tally di�erent to that of ICU patients. ICU patients are more critically ill and

recieve larger doses of insulin which is entirely intravenous (IV). However, it is

not uncommon for patients to recieve IV insulin as part of the SPRINT protocol

and need to transition to subcutaneous insulin. This transition needs to be ex-

amined also. For this purpose, the last 36 hours of ICU patient data of patients

discharged to a ward following their ICU stay were examined. This is the period

most closely resembling the physiological characteristics of a patient in the ward,

although nutrition and insulin therapies will be signi�cantly di�erent once a pa-

tient is in the ward. These di�erences necessitate the use of additional insulin

compartments to describe the action of the range of insulin therapies encountered.

All of these patients were on the SPRINT protocol during the stable period

that was isolated and 87% of patients were on the SPRINT protocol for insulin

administration alone. That is, 13% of patient hours considered were collected

from patients consuming regular, unregulated meals, which is also a characteristic

of patients in the CTW. However, data on the meals consumed is not available

and thus no compensatory measures such as endogenous insulin secretion spikes

are considered.

The insulin sensitivity pair distribution is shown in Figure 5.1 along with

the con�dence intervals. The probability densities generated for this cohort of

data are shown in Figure 5.2 and Figure 5.3. The density of data available for

insulin sensitivities greater than 3 � 10�3 mU L�1 min�1 is very low as shown in
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Figure 5.1. Therefore, there is poor model quality for insulin sensitivities greater

than this, expressed as an irregular and highly asymmetric surface. Overall,

the amount of data available is likely insu�cient to generate a model which will

accurately represent the characteristics of a patient in the CTW, as would be

expected from the results of Lin et al. (2008, 2006) which observed convergence

after 1200 patient hours with a smaller domain of possible SI values.

Figure 5.1 Con�dence intervals for SI;t+1 values for stable ICU cohort

The SI data used in the model creation uses 3 point smoothing, however in

order to maintain clinical applicability the smoothing was done using the last

3 SI values rather than using future values, as would normally be done. This

type of smoothing has the potential to introduce a lag in a controller's response

to changes in glucose levels, but would also prevent a controller overreacting to

a spike in percieved SI reading due to a contaminated sample or similar error.

This type of retrospective smoothing could be easily implemented into a clinical

setting and therefore the use of smoothing does not adversely a�ect the useability

of the results. Smoothing has the e�ect of tightening the probability distribu-

tions towards the line SI;t = SI;t+1 as can be seen in comparing (a) and (b) of

Figure 5.2. The high frequency noise that is removed by smoothing is unlikely to

be physiologically accurate as variation in SI has been shown to vary diurnally

(la Fleur, 2003; la Fleur et al., 2001).
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Figure 5.2 Probability density function for ICU patients

Figure 5.3 Joint probability density function for ICU patients
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(a) No smoothing (b) 3 point smoothing

Figure 5.4 The e�ect of smoothing on lower section of insulin sensitivity distributions

5.2.1 Validation

5.2.1.1 Data Inclusion

Table 5.1 shows the model for the same patients, but using increased or decreased

periods of data inclusion. Comparing the data between these groups shows that

the period of inclusion does not signi�cantly a�ect the model developed for ran-

dom sample sets of 1000 values. The p-values for Table 5.1 are calculated using

the Kolmogorov-Smirnov test, which compares the two sample sets and tests the

hypothesis that the data values are drawn from the same distribution. Thus, the

results indicate the desired similarity in this case.

Hours prior to discharge Hours of Data P-value*
12 1577 0.78
24 2919 0.43
36 4104 0.85
48 5224 -

*P values comparing the distribution from 48 hours of inclusion

to the stated number of hours inclusion

Table 5.1 Comparison of insulin sensitivity distributions for varying hours prior to discharge
included

There is a high density of readings at the imposed lower limits of SI in the

ICU cohort. The lower limit of SI (1�10
�6 L mU�1 min�1) is frequently found

during periods of time when a patient is given no insulin. If patients with a

period of more than 6 hours without insulin are excluded from the model, the

probability distributions show lower densities at these limiting values, as can

be seen by comparing Figures 5.1 and 5.5. However, increased asymmetry and
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irregularities increase due to the reduced quantity of data available, particularly

at SI above 2� 10�3 L mU�1 min�1.

Figure 5.5 Con�dence intervals for SI;t+1 values for stable ICU cohort, excluding periods
without insulin dosing

5.2.1.2 Random Walk compared to Clinical Data

To test the validity of assumption of SI as a Markov variable, the results from a

random walk of 2 and 3 hours is compared to the con�dence intervals expected

from clinical data. The results of this analysis are shown in Table 5.2. Table 5.2

indicates that while the 90% con�dence interval gives a good bound on the clinical

data, the model signi�cantly overestimates the variability in the 50% con�dence

interval creating a narrower peaked distribution. The key aspect is that the data

distribution on either side of the median remains relatively constant. A large

trend to one side would indicate time dependent directed progression of clinical

data that is unmodelled in this case. There is a large change in the 50% con�dence

interval at 2 hour predictions, but as all other elements are largely equal, it is

likely the result of some set of outliers in the data.

5.2.1.3 Comparison to other data

In addition to the ICU patient data, the 7 CTW patient �tted pro�les were

examined. This time of hourly varying SI constituted 88.4% of patient time over

the given cohort. For the remaining 11.6% of patient time, EIS was �tted and

SI held constant. Variance in SI during this time is considered after IB has
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1 hour 2 hours 3 hours
50% Con�dence Interval 62.2% 68.2% 62.6%
90% Con�dence Interval 91.8% 91.0% 89.7%
Number of Patients Above 50th percentile 57.1% 50.9% 51.5%
Number of Patients Below 50th percentile 42.9% 48.1% 48.5%

Table 5.2 Proportion of clinical ICU SI;t and SI;t+2;3 pairs falling between model generated
from a 2 and 3 hour random walk

been �tted and therefore these periods are thus still able to be included in the

stochastic model. To omit the SI values during this time would bias the model

towards times during which meals are not eaten.

Finally, data from 10 Ambulatory Diabetic patients was utilized to compare

SI distributions. It is expected that these patients will exhibit higher SI values

than the CTW or ICU patients because they are otherwise healthy subjects.

However, this data provides a comparison to ensure that the modi�ed �tting

method employed on CTW patients is not causing any signi�cant changes between

the groups.

A comparison of the stochastic model generated to a similar model generated

by the limited amount of clinical data speci�c to the problem is summarised

below. The clinical data is then compared to the stochastic model created and

the results are shown in Table 5.3.

1 hour 2 hours 3 hours
50% Con�dence Interval 47.9% 49.8% 45.2%
90% Con�dence Interval 79.4% 81.4% 78.2%

Table 5.3 Incidence of SI;t and SI;t+1 pairs from CTW patients within ICU patient con�dence
intervals

Figures 5.6-5.7 shows the distribution of SI;t+1 for each group. In all cases,

Lin et al. (2006, 2008) found that with approximately 1200 patient hours of data,

model convergence was observed, when compared with a similar model from

23,000 patient hours. However, the range of possible SI readings was limited

from 1 � 10�5 L mU�1 min�1 to 1:2 � 10�3 L mU�1 min�1 and in the models

generated for the CTW and ambulatory cohorts, the model uses an increased

range of 1�10�5 L mU�1 min�1 to 6� 10�3 L mU�1 min�1. It is therefore likely

that more data will be required to obtain an equally reliable model.

Figures 5.6 and 5.7 show the con�dence intervals for available data from the

CTW and ambulatory diabetic patients respectively. However, in both cases, the
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Figure 5.6 Con�dence intervals for SI;t+1 values for CTW cohort

number of hours available is low (600 hours combined) compared to that for the

ICU cohort model (over 4000). Hence, its reliability may be less and variability

greater.

It is clear that there is a greater relative density of low SI in the CTW cohort

than the ICU patients, likely due to the presence of diabetes in all patients

included in the study. The CTW patients showed greater density of data in

the higher SI range than the ambulatory diabetics. This result is likely because

the CTW cohort has a subset of diabetic patients, but also includes patients

experiencing glycaemic control problems without any previous history of diabetes.

Therefore, it is possible that some CTW patients' hyperglycaemia is not due to

insulin resistance, but due to increased stress-related gluconeogenesis brought on

by their condition or surgery. The CTW patients also show signi�cantly higher

variance, which could be expected due to their changing condition.

5.2.1.4 Model Convergence

To determine if su�cient data is available to produce reliable model results a

model convergence study was carried out. The convergence study is conducted on

the stable ICU cohort as it has the greatest amount of data available. Following

the method of Lin 2007, the patients are divided into four equal groups and

a model is built from 3 of the 4 data sets. The remaining data set can then

be compared to the modelled con�dence intervals and the proportion of data

lying between these bounds can be compared. The statistics for each group are
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Figure 5.7 Con�dence intervals for SI;t+1 values for Ambulatory Diabetic cohort

summarised in Table 5.4.

The results of the study are summarised in Table 5.5 and there is some sig-

ni�cant variance between the sets of patients and the �nal combined result. This

outcome indicates that additional data may be required for model convergence.

In light of this, it is expected that the CTW model with much less data will

also require further clinical results before a satisfactory stochastic model can be

developed.

Group APACHE II Age Gender LOSa Mean BG
(% Male) (Days) (mmol L�1)*

1 19.7 56.3 73.3 13.6 5.7
2 18.2 60.1 75.1 8.8 6.2
3 20.3 61.5 75.1 11.0 5.2
4 19.8 57.9 74.5 12.2 6.0

a Length of stay
* p < 0.05

Table 5.4 Average statistics for data groups used in convergence study

It is interesting to note that the predicted con�dence intervals are consistently

conservative, particularly the 50% con�dence bounds. This behaviour has been

observed by other studies (?Lin et al., 2008, 2006). This result may be due

to the variance estimator employed, and could potentially be corrected by bias-

variance trade-o�. Interestingly, the pontentially more useful 90% bounds are
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Percentage of Data Percentage of Data
Excluded Test Group falling between the falling between the

50% con�dence interval 90% con�dence interval
1 60.1 91.4
2 57.5 90.2
3 66.5 92.4
4 66.3 94.6
- 61.2 92.1

Table 5.5 Proportion of SI;t+1 values falling between predicted con�dence bounds in conver-
gence study over 5 test groups

more accurate indicating a mismatch between the clinical data and assumed

distributions.





Chapter 6

Glycaemic Control Protocols

Glycaemic control has been shown to reduce mortality, sepsis and other negative

outcomes in critically ill patients. It has also been recognised as an important

factor in managing diabetes in ambulatory patients. The methods of attaint-

ing normoglycaemia in such a variety of patient parameters and lifestyles have

however proved far more elusive. Lonergan et al. (2006b) produced the paper

based SPRINT protocol for use in critically ill patients, particularly those on en-

teral feed. This protocol increased patient time between 4.4-6.1 mmol L�1 from

30% to 53.9% (?). However, SPRINT requires measurements every 1-2 hours,

which is a large clinical burden. Alternative strategies based on the principle

of SPRINT but employing the use of long-acting insulin or predictive measures

could potentially make tight glycaemic control accessible in a ward setting.

6.1 SPRINT in the Wards

6.1.1 SPRINT with Insulin Infusions

SPRINT is a nearly established protocol in Christchurch Hospital ICU. How-

ever, the ICU has a 1:1 nurse to patient ratio, allowing for the extra burden

that SPRINT places on clinical sta�. The frequent blood glucose readings and

insulin/feed adjustments (1-2 hourly) and hourly bolus administrations are likely

to become overly cumbersome within a ward setting where nurse to patient ratios

are closer to 1:3 or worse. Therefore, measurement periods of 1-3 hours are more

likely to achieve practical success in clinical implementation. For this purpose,

insulin infusions are also likely to be better suited. Infusions require less time to

complete protocol related tasks and would likely need adjustment less frequently

once stability is attained. The greatest risk of this approach is that of hypogly-

caemia, which may result from infusions being allowed to run over the speci�ed
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Figure 6.1 The SPRINT insulin wheel

time period.

SPRINT is an adaptive glycaemic control protocol that responds to changes in

glucose (derivative control) by adjusting feed and insulin doses. Because SPRINT

is well established in Christchurch Hospital's ICU a similar control system would

be easier to clinically implement in the wards than other novel approaches. CTW

patients are not enterally fed and thus all nutrition comes from meals consumed

at irregular intervals over the course of a day, followed by nightime fasting. Sim-

ulations were run on CTW and ambulatory diabetic patients using the SPRINT

insulin wheel only (see Figure 6.1) to determine IV insulin infusions. Meals were

not modi�ed or controlled in any way, as would be expected in a clinical setting.

The simulations showed very poor glycaemic control with a very high inci-

dence of hypoglycaemia. These results are potentially dangerous and unaccept-

able for clinical practice. The summary statistics for the response of the cohort

to this algorithm is shown in Table 6.1.

In particular, hypoglycaemia was common following meals and during long

fasting periods, such as during night. SPRINT was also slow to mitigate the

high blood glucose levels observed following large carbohydrate intakes. These



6.1 SPRINT IN THE WARDS 49

results are actually to be expected, as SPRINT was designed for patients receiving

relatively constant glucose inputs and required adjustment of the feed rates based

on glucose levels. Since the glucose intake (in the form of meals) in CTW patients

are more like impulses than constant forces on the system, SPRINT cannot adjust

to the rapid changes in glucose levels and insulin requirements. In addition,

assuming constant nutrition means that it is equally slow to shut o� insulin

between irregular CTW meals.

It is not clear if the model employed is overestimating a patients postpran-

dial response to insulin infusions, but highly likely. Insulin sensitivity generally

peaks around meal times, as described in Section 4.2.5. If this e�ect is not

physiologically real and instead represents a modelling error due to the omission

of endogenous insulin secrection then the hypoglycaemia incidence rate will be

overstated.

To check the extent of this possible modeling error, identical simulations were

run using the modi�ed model described by Equations 4.1-4.3 which include a �t-

ted IB. The summary statistics for these simulations are shown in Table 6.1.

It is important to note that the model employed in these simulations has not

undergone validation for the CTW cohort or similar group. Thus, the protocols

proposed below could potentially be underestimating insulin sensitivity during

endogenous insulin secretion. If this is the case, then the response to insulin in-

puts would be much larger than expected and could thus induce a hypoglycaemic

incident.

The inclusion of EIS does mean that a portion of the required insulin to allow

uptake of the glucose input into the cells is provided by the body's physiological

responses to elevated levels. If this portion of insulin recommended is counted as

part of the SPRINT input, then it would help counteract the e�ects of underesti-

mating insulin sensitivity while using SPRINT, as EIS is the uptake of modeled

insulin sensitivity dynamics when insulin sensitivity is frozen.

6.1.2 Modi�cations to SPRINT

The results of the CTW cohort being controlled by the SPRINT insulin wheel

(Figure 6.1) are summarised in Table 6.1. The results show a high level of hy-

poglycaemia and little success in maintaining blood glucose levels in a desireable

4-7 mmol L �1 band.

The response of SPRINT to changes in blood glucose are agressive in terms

of insulin dose adjustments. SPRINT is able to deliver a high dose of insulin
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in response to blood glucose spikes without signi�cantly increasing the risk of

hypoglycaemia as feed levels in the ICU can be increased on the next hour if a

large drop of blood glucose is observed. In contrast, in the wards, this response

is not available because of the nature of nutrition recieved by the patient.

Similarly, the Insulin Wheel is not designed to respond to large carbohydrate

intakes that result in blood glucose spikes. A spike in glucose in an ICU patient

represents either an erroneous measurement or a change in patient condition.

Thus, SPRINT needs to respond to this change by adjusting baseline doses grad-

ually until equilibrium is achieved. Clearly this response is not appropriate to

postprandial blood glucose behaviour. To address these issues, several modi�-

cations were made to the SPRINT insulin wheel and/or its use, as described

below.

6.1.2.1 Reducing Insulin Dose

SPRINT is generally too aggressive in reducing glucose for CTW cohorts, with

little safeguard against hypoglycaemia as the feed is not modulated. Therefore,

simulations were run that administered the recommended SPRINT dose as an

infusion, less 1 U hr�1. The results of these simulations are shown in Table 6.1

and are compared to the unmodi�ed SPRINT results for the same cohort.

SPRINT SPRINT reduced
by 1 U hr�1

Fit Parameter(s): SI SI and IB SI SI and IB
Time between 4.0-6.1 mmol L�1 37.3% 35.4% 36.8% 33.6%
Time between 4.0-7.0 mmol L�1 47.1% 49.7% 49.2% 46.7%
Time between 4.0-7.75 mmol L�1 54.0% 57.0% 56.2% 56.6%
Time above 6 mmol L�1 39.2% 48.0% 45.3% 52.2%
Time below 4 mmol L�1 24.4% 17.4% 19.2% 15.7%
Time below 2.5 mmol L�1 10.0% 6.6% 6.6% 5.1%
Time below 2.2 mmol L�1 3.5% 1.5% 1.8% 1.3%
Mean Blood Glucose (mmol L�1) 6.2 6.6 6.5 6.8
Standard Deviation (mmol L�1) 3.2 3.2 3.2 3.2

Table 6.1 Simulation results for SPRINT and SPRINT reduced by 1 U hr�1

Table 6.1 clearly indicates that while the incidence of hypoglycaemic episodes

is greatly reduced by reducing the SPRINT infusion, it is at the cost of an in-

crease in hyperglycaemia. It appears that this change merely shifted the glucose

distribution toward the higher blood glucose region, while losing some tightness

of control. This outcome is also illustrated by Figure 6.2.
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Figure 6.2 Blood glucose readings distribution for SPRINT and two modi�cations

6.1.3 Meal Dependent Boluses

Emulating the principles of 'Carb Counting' (Section 2.2), a strategy to include

meal boluses into the SPRINT protocol was investigated. The number of car-

bohydrates consumed in a meal was used as a guide to the IV insulin bolus

administered. The use of similar principles has been investigated by several stud-

ies (Raslov et al., 2004; Perriello et al., 2005; Dailey et al., 2004; ?), although

rapid acting subcutaneous insulins were used instead of IV insulin. Meal boluses

were to be administered to a patient one and sometimes also two hours after

consuming a meal, their size based on the carbohydrate content of what was

eaten and in some cases, the time of the day. Using two meal boluses instead

of one allows for a conservative choice to be made in the �rst instance and then

correction of an inadequate bolus at the second, if required, without prolonged

hyperglycaemia. The results for these simulations are given in Tables 6.2 and

Figure ctwvsbolus. A constant 1 U hr�1 IV infusion was present at all times,

except for when glucose levels fell below 5 mmol L�1.

This approach should remedy the problem with slow response to blood glucose

peaks that SPRINT inherently entails. However, because such large doses are

being administered in bolus form, a much higher risk of hypoglycaemia may be

present. While in some cases, boluses deliver good reduction in postprandial

glucose spikes, others reach dangerously low blood glucose rates. It is important

to note that the model employed here is not validated in these low glucose readings

of less than 2 mmol L�1 and thus �gures below this value are likely indicative
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Figure 6.3 A comparison between the glucose distributions of CTW clinical data and pre-
dictive control results. Fits assume a lognormal distribution.

only. It is likely that glucose levels this low would cause severe phsyical symptoms,

which would alert clinical sta� to the situation. Levels this low should also induce

an increase in EGP, which is not modelled directly due to the high di�culty in

quantifying such an e�ect given inter-patient variability.

Bolus at 1 hr: CHO/8 CHO/16 CHO/32 CHO/32
Bolus at 2 hrs: - - - CHO/64
Time between 4.0-6.1 mmol L�1 34.2% 35.0% 33.6 34.3%
Time between 4.0-7.0 mmol L�1 45.4% 45.3% 44.6 44.8%
Time between 4.0-7.75 mmol L�1 52.6% 53.6% 53.1 53.4%
Time above 6 mmol L�1 45.1% 46.7% 49.3% 46.6%
Time below 4 mmol L�1 22.3% 19.4% 18.8% 20.1%
Time below 2.5 mmol L�1 10.3% 9.2% 8.8% 9.4%
Time below 2.2 mmol L�1 5.8% 5.2% 4.9% 4.6%
Mean Blood Glucose (mmol L�1) 6.3 6.8 6.6 6.5%
Standard Deviation (mmol L�1) 3.9 3.7 3.7 3.6%

Table 6.2 Simulation results for protocols using meal dependent boluses. All dosing ratios
include a constant 1 U hr�1 IV infusion, except for when glucose below 5 mmol L�1 is measured

6.1.4 Basal Insulin Replacement Strategies

Glargine mimics the basal insulin secretion of a healthy pancreas and lasts for

approximately 24 hours. It exhibits no peak action and therefore is not a sub-

stitute for post-prandial insulin secretion, which (if required) must be replaced
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with a bolus of short acting insulin or with endogenous function. For this rea-

son, glargine administration trials are run only on the insulin sensitivity pro�les

that include EIS. Glargine has often been used in conjunction with oral hypogly-

caemics and insulin dose is usually adjusted over a period of weeks to ensure good

equilibrium. However, patients in the CTW require targeted glycaemic control

over a period of a few days, so the titration of glargine must be relatively rapid.

Daily glargine dose adjustments for the Treat-to-Target protocol (Riddle

et al., 2003) are given in Table 6.3. All patients start on a 10U dose, which

is then adjusted daily. Meal boluses of CHO
16

are preserved for one simulation.

Simulation results are summarised in Table 6.4 for this approach.

Morning Fasting Glucose Dose Adjustment
(mmol L�1)

� 10 +8U
7.8 - 10 +6U
6.7 - 7.8 +4U
5.6 - 6.7 +2U
� 5.6 -

Table 6.3 Glargine dose titration for Treat-to-Target protocol

Meal Bolus No Bolus
Time between 4.0-6.1 mmol L�1 37.3% 12.1%
Time between 4.0-7.0 mmol L�1 47.1% 23.4%
Time between 4.0-7.75 mmol L�1 54.0% 33.0%
Time above 6 mmol L�1 39.2% 82.4%
Time below 4 mmol L�1 24.4% 5.9%
Time below 2.5 mmol L�1 10.0% 2.5%
Time below 2.2 mmol L�1 3.5% 1.4%
Mean Blood Glucose (mmol L�1) 8.9
Standard Deviation (mmol L�1) 3.9

Table 6.4 Simulation results for glargine based protocol

The results in Table 6.4 suggest that insulin glargine is not appropriate for

control of CTW patients. While the glucose levels do normalise after several days

of treatment (see Figure 6.4), the initial period sees little to no improvement over

the actual clinical results (shown as a dashed line).
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Figure 6.4 An example of a CTW patient on the Treat-to-Target protocol

6.2 Predictive Control

Predictive control has been used by ?? to e�ectively control glucose in intensive

care. Similar principles can be applied to less critically ill patients in order to

determine the e�ectiveness of glycaemic control methods at less frequent mea-

surement and intervention intervals. The model used for prediction is shown in

Figure 5.3. The �rst SI value is predicted based on the 50th percentile of the

stochastic model of the appropriate cohort. The second is based on the initial SI

reading, but from the model's 50th percentile after two hours and the same for

the third. Thus, the predictions are all made based on data that is only acquired

every third hour. Thus, the uncertainty grows with time, as seen by the 50% and

90% con�dence bands. An example of these growing con�dence bands are shown

in Figure 6.5.

The target to be achieved greatly a�ects the performance of the controller.

Performance is altered by varying insulin infusions from between 0 and 10 U hr�1

with resolution of 0.5 U hr�1. To prevent unacceptable levels of hypoglycaemia,

a target can be set that keeps the 5th percentile above 4 mmol L�1, however,

when con�dence bands are large, this necessarily requires a large probability of

hyperglycaemia. Thus, for this study, a target of 5 mmol L�1 or a reduction of

1.5 mmol L�1 hr�1 is set, with no constraints on the lower con�dence bands.

To examine the e�ect of measurement frequency, predictive control is run

based on 1,2 or 3 hourly measurements. The glycaemic control results are shown
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Figure 6.5 An example of the growth of con�dence bands over time. In the blood glucose
graph, the dotted line represents the �tted clinical outcome over the time considered. The 50%
and 90% con�dence bands of blood glucose are shown in dark grey and light grey respectively.
The modelled glucose pro�le is shown by the solid line. The red lines indicate the ideal blood
glucose range. For the insulin sensitivity graph, the actual �tted SI pro�le is shown in a
solid blue line while the 50% and 90% con�dence intervals in SI are shown in dark red and
red respectively. The insulin infusion graph indicates the insulin dose administered and the
carbohydrate intake graph indicates the time and carbohydrate content of meals
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in Table 6.5. To summarise the results in Table 6.5, Figure 6.2 shows the blood

glucose range of the 90% con�dence interval and its growth over time for this

cohort. It is clear that while 1 hour prediction is easy to target due to such small

variance, 2 and 3 hourly prediction contains much more uncertainty and is thus

a potentially riskier process.

Measurement Frequency: 1 2 3
Time between 4.0-6.1 mmol L�1 46.1% 36.2% 36.4%
Time between 4.0-7.0 mmol L�1 54.5% 42.5% 46.6%
Time between 4.0-7.75 mmol L�1 59.9% 50.0% 52.5%
Time above 6 mmol L�1 36.4% 45.9% 42.8%
Time below 4 mmol L�1 18.5% 19.0% 21.6%
Time below 2.5 mmol L�1 8.7% 6.8% 5.6%
Time below 2.2 mmol L�1 3.4% 2.3% 6.4%
Mean Blood Glucose (mmol L�1) 6.1 6.8 6.4
Standard Deviation (mmol L�1) 3.1 3.6 3.6

Table 6.5 Simulation results for predictive insulin based protocol

(a) 50% con�dence range growth (b) 90% con�dence range growth

Figure 6.6 The growth in prediction range over 3 hours

6.2.1 Variable Timing

Upon close examination of Figure 6.2 it is clear that there are some periods during

which 3 hourly predictions do maintain good correspondence with the actual

observed progressions. It is these periods that we wish to isolate in variable timing

methods to reduce the burden of glycaemic control on clinical sta�. Because

some probability bands become much larger over the two hourly measurements,

a variable timing scheme is tested. This approach requires a measurement to be
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Timing Options: 1-2 hourly 2-3 hourly 1-2-3 hourly
Time between 4.0-6.1 mmol L�1 37.3% 36.8% 35.7%
Time between 4.0-7.0 mmol L�1 48.9% 45.3% 47.7%
Time between 4.0-7.75 mmol L�1 55.6% 50.6% 54.1%
Time above 6 mmol L�1 39.2% 49.7% 50.8%
Time below 4 mmol L�1 24.4% 14.8% 14.9%
Time below 2.5 mmol L�1 5.3% 5.8% 4.2%
Time below 2.2 mmol L�1 1.6% 1.6% 1.7%
Mean Blood Glucose (mmol L�1) 6.8 6.5 6.9
Standard Deviation (mmol L�1) 3.3 3.2 3.3
Time of 1 hourly measurements 47.5% - 47.6%
Time of 2 hourly measurements 52.6% 73.7% 27.3%
Time of 3 hourly measurements - 26.3% 25.3%

Table 6.6 Simulation results for variable timing schemes using a large allowable band of 3
mmol L�1

taken when the probability bands become 'too large' (here de�ned as 3 mmol

L�1) or after the maximum period of time between measurements. The target

used is 5 mmol L�1, as used previously.

The results for this approach show signi�cant improvement and reduce the

clinical burden during times when uncertainty in patient response is low. A

comparison between the 1-2-3 hourly measurement control and the existing CTW

clinical practice data is shown in Figure 6.7. Table 6.6 also summarizes the results.

In all cases, hypoglycaemia and control are much improved over prior, more rigid

approaches to control.

6.3 Discussion

The simulations using a simple insulin sensitivity �t appear to indicate that EIS

needs to be taken into account when modeling CTW patient behaviour. The

majority of the major hypoglycaemic events that occurred are due to large doses

of insulin being given in response to a post-prandial spike (or in anticipation

of such), which occur simultaneously alongside sharp increases in SI . It was

explained in Section 4.2.5 that the presence of EIS would be manifested in the

current model as an increasing SI and it is hypothesised that this modelling error

is the cause of this anomoly. However, even when consideration of EIS is made,

basal replacement strategies alone are inadequate to control hyperglycaemia in

the cohorts studied here, which have a greater diabetes focus.

Clearly some clinical validation of the above results is required to ensure that
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Figure 6.7 A comparison between the glucose distributions of CTW clinical data and pre-
dictive control results. Fits assume a lognormal distribution.

the inclusion of EIS is capturing the essential dynamics of the patients' glucose

system. However, these results do provide a working model for the development

of clinical trials. The initial results indicate that improved insulin therapies in a

ward setting are possible using predictive control and could potentially improve

clinical outcomes for less acutely ill ward patients. However, further studies will

have to be completed to create a user-friendly and paper based version of the

protocol.

Predictive control shows the most promise as a control strategy, but also

requires the most resources. Thus, a look up table based protocol should be

developed from the results presented here. The creation of lookup tables can be

assisted by the use of virtual patients to ensure coverage of all likely scenarios.

The results from predictive control simulations also show that 3 hourly measure-

ments are possible. However, the removal of 1 hourly measurements from the

protocol altogether result in signi�cant loss of tight control. It is likely that 50%

of measurements with one hour frequency would be too clinically burdensome in

a less acute ward setting. Thus, the acceptable bands may need to be widened

or reduced performance accepted if tight control is to be obtained.

From all of the results presented, it is clear that the tight glycaemic control

achieved by SPRINT in the ICU cannot be readily emulated for similar or Type I

diabetes focused cohorts in a ward setting. The inability to achieve these results is

largely due to the consumption of meals, which are varied in timing and quantity.

However, predictive control strategies do show some reduciton of hyperglycaemia

as well as a tighter glucose distribution accross the CTW cohort than is currently
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achieved clinically.





Chapter 7

Sepsis Diagnosis

Severe sepsis and septic shock has a high incidence rate and high mortality rate

in an ICU (Angus et al., 2001; Carrigan et al., 2004; Dellinger et al., 2004). The

cost of treating sepsis and of additional bed hours required in sepsis patients is

reported to be $16.7 billion dollars in the United States (Angus et al., 2001).

Insulin control protocols have been widely used to tightly control blood glucose

values (Chase et al., 2006b; Lonergan et al., 2006a; Goldberg et al., 2004b,c;

Krinsley, 2003b; Chase et al., 2006a; Van den Berghe et al., 2006b, 2001), which

has shown to result in a reduction in the incidence of sepsis (Van den Berghe

et al., 2001).

Diagnosis of sepsis presents many challenges in a clinical setting. A positive

culture should precede the use of antibiotics (Dellinger et al., 2004). However,

blood culture results take 24-48 hours, or longer, to process (Carrigan et al., 2004).

More rapid diagnosis can be achieved using a variety of biomarkers. Procalcitonin

(PCT) has been extensively investigated as such a tool, with speci�city values

ranging from slighter better than random (55%) to almost perfect (88%). Tang

et al. (2007) reviewed 18 such studies and found a mean speci�city of 71%, with

the upper limit of the 95% con�dence interval reaching only 76% (lower limit

of 67%). Balci et al. (2003) found PCT was the only marker that had a strong

negative predictive value (NPV) of 90%, as well as an 89% positive predictive

value (PPV). IL-8 was a distant second to these values, with a PPV of 53%

and NPV of 69% (Balci et al., 2003), however Harbarth et al. (2001) report

a much higher PPV of 80% and 79% for IL-6. Other biomarkers investigated

as a diagnostic by Balci include TNF�, CRP, IL-6 and PCT, with even lower

diagnostic values (Balci et al., 2003).

Another problem in sepsis diagnosis is the di�erentiation between sepsis and

SIRS. For this purpose, studies have found that the diagnostic value of CRP
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is greatly increased if it is considered in conjunction with C3a or to a lesser

extent C4 (immune system proteins) (Sungurtekin et al., 2006). However, for all

tests, a minimum lag time of typically 2-3 hours is still present (Carrigan et al.,

2004). Therefore, other signs must be investigated to assist in making the most

timely diagnosis and potentially starting appropriate treatments, such as uid

resuscitation, and vasopressor and inotrope use. The earlier these interventions

are correctly applied, the better the mortality outcome (Bridges and Dukes, 2005;

Rivers et al., 2001). Rivers et al. (2001) found that early goal-directed treatment

of sepsis reduced mortality from 46.5% to 30.5%.

The negative e�ect of sepsis on insulin sensitivity and glucose metabolism is

well documented (Agwunobi et al., 2000; Chambrier et al., 2000; Rusavy et al.,

2005). However, the mechanisms by which these changes take place are not fully

understood. It has been suggested that sepsis induces a signi�cant counterregu-

latory hormone response, causing the reduction in insulin sensitivity

Insulin sensitivity can be found using lumped parameter compartment models

that have had extensive clinical validation in critical care (Lonergan et al., 2006a;

Chase et al., 2006a; Wong et al., 2006; Chase et al., 2005; Lonergan et al., 2006b;

Shaw et al., 2006). In such models, varying insulin sensitivity is the driving dy-

namic. Alternatively, glycaemic control protocols usually provide some measure

of insulin sensitivity in real time. An example of one such protocol is SPRINT,

which regulates enteral nutrition rates and insulin boluses (Chase et al., 2006b;

Lonergan et al., 2006a,b). Enteral nutrition and insulin are modulated according

to the patient's current blood glucose level and the change in blood glucose level

as well as prior hour interventions, and an insulin sensitivity metric may also

be derived from these input data. This insulin sensitivity information whether

model based or estimated from intervention data is available without additional

invasive procedures, outside of those required for glucose control.

7.1 Methods

Using the cohort described in Section 3.3 - a subset of 30 patients who potentially

had sepsis during their hospital stay - comprehensive hour-by-hour clinical data

was examined to isolate the time and duration of sepsis. Every hour a value for

SI was identi�ed creating a patient-speci�c and time varying pro�le.
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Sepsis Patients Non Sepsis Patients Total
Number of Patients 30 113 143

Total Hours 6,744 19,709 26,453
Number of Hours 2,036 5,493 7,529

in which _GT = 0

Table 7.1 Summary of patient hours in each subset of the ICU cohort

7.1.1 Sepsis Score

From the clinical data, a sepsis classi�cation score (ss) was generated for each

hour of the patients stay that strictly follows the American College of Chest

Physicians/Society of Critical Care Medicine guideline de�nitions of 1992 and

2003 (ACCP, 1992; Mitchell M. Levy et al., 2003). The criteria for the sepsis

score (ss) are de�ned in Tables 7.2-7.4. The organ failure criteria scoring in Table

7.3 uses the most relevant elements of the de�nitions for the Sepsis-related Organ

Failure Assessment (SOFA) score (Vincent et al., 1996). The sepsis score thus

includes Systemic Inammatory Response Score (SIRS) and SOFA organ failure

criteria, as well as including factors for treatments indicated in sepsis. Thus,

it provides better correlation than any single criterion (Mitchell M. Levy et al.,

2003).

This sepsis score is similar to that used by Clayton et al. (2006), where a

SIRS of 3 or more was required alongside an infection or one of:

1. WBCs in a normally sterile body uid

2. Perforated viscus

3. Radiographic evidence of pneumonia with purulent sputum production

4. Strong clinical evidence of an infection without an identi�ed pathogen.

The combination of hour-by-hour signs of infection along with a de�nitive di-

agnosis of infection at some point during the patient's stay is the key factor in

developing a useful sepsis score for this study. While sepsis is not a discrete pro-

cess, but rather a continuum of severity of infection, in order to generate an ROC,

some gold standard diagnosis must be assumed. To identify a clear signal, only

the most severe and clear cut instances of sepsis should be required. Thus, the

requirement of a positive culture ensures that sepsis was present at some point

during the patient stay while the use of hour by hour signs pinpoint the precise

times at which sepsis was most severe.

In Table 7.2 a tick indicates a necessary criterion and all necessary criteria
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Sepsis Score De�nition
SIRS Infection Organ Fluid Inotrope High
� 2 during Failure Resuscitation Use Inotrope

stay � 1 Use a

0 Normal
1 Sepsis
2 Severe Sepsis
3 Septic Shock
4 Refractory

Septic Shock
a Adrenaline or Noradrenaline > 0.2 mg min �1 kg�1

Table 7.2 Sepsis Score criteria

must be present to attain the indicated score. For example, a patient only on

uid therapy resuscitation would attain a sepsis score of 0. For this study, the

gold standard diagnosis of sepsis is a sepsis score of 3 or more. This ss=3 value

corresponds to a SIRS score of 2 or more, an organ failure score of 1 or greater,

uid resuscitationtherapy and inotropic therapyinotrope use of any amount all at

the time of investigation, and an infection during the patient's ICU stay. Tables

7.3 and 7.4 de�ne the organ failure and SIRS scores utilized in this overall score.

Score System Criteria
+1 Cardiovascular MAP � 60 mmHg

OR need for inotropes
+1 Respiratory PaO2/FiO2 � 250 mmHg/mmHg

� 200 mmHg/mmHg
with pneumonia

+1 Renal Urine Output < 0.5 mL/kg/hr
+1 Blood Platelets < 80

OR 50% drop in 3 days

Table 7.3 Organ Failure criteria

For this 30 patient sepsis cohort, the mean APACHE II score was 22 with a

range of 7-40. The mean length of stay was 11.7 days with a range of 0.7-59 days.

The mean sepsis score for this subset was 0.5 throughout their stay. However, 45

patient hours had a sepsis score of 3 or higher at some point in their stay.
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Score Criteria
+1 Temperature � 36� C

� 38� C
+1 Heart Rate � 90 min�1

+1 Respiratory Rate � 20 min�1

OR PaCO2 � 32 mm Hg
+1 White Blood � 4 � 109 L�1

Cell Count � 12 � 109 L�1

OR presence of > 10% granulocytes

Table 7.4 SIRS criteria

7.1.2 Reciever Operating Characteristic

The de�nition of categorisation of all possible test outcomes is given in Table 7.5.

The ratios of positive results are de�ned in Equations 7.1-7.4.

Patients with Sepsis
True False

Patients with low* True True Positive (TP) False Positive (FP)
insulin sensitivity False False Negative (FN) True Negative (TN)
* Low is de�ned as being below a cuto� value

Table 7.5 De�nitions of test outcome used in the ROC generation

sensitivity =
TP

TP + FN
(7.1)

specificity =
TN

TN + FP
(7.2)

Positive Predictive V alue =
TP

TP + FP
(7.3)

Negative Predictive V alue =
TN

TN + FN
(7.4)

From the sepsis score information, a Receiver Operating Characteristic (ROC)

curve was drawn for the 30 patients using the model-based insulin sensitivity, (SI)

as the marker, and a sepsis score of ss = 3 as the diagnostic. An ROC curve plots

the sensitivity of a diagnostic test against 1-speci�city, which is equivalent to the

true positive rate plotted against the false positive rate, for all possible cuto�

values. A completely random test is represented as a line at 45 degrees to each

axis, representing an additional false positive result for each false negative result

eliminated. A perfect test (100% speci�city and 100% sensitivity) is a vertical
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line up the sensitivity axis at 1-speci�city=0 and then a horizontal line along the

1-speci�city axis, allowing selection of a cuto� with a zero false positive rate and

a zero false negative rate. An example of each of these extreme cases is shown

in Figure 7.1. It is expected that real diagnostic tests lie between these two lines

indicating the presence of some false positives and some false negatives. The

choice of cuto� is usually that which is furtherest from the diagnonal axes, and

thus minimises the sum of both false results.

Figure 7.1 An example of an ROC with a perfectly accurate test (sensitivity=1, speci-
�city=1) and a random test (sensitivity=0.5, speci�city=0.5)

7.1.3 Simple Insulin Sensitivity

The generate ROC curve is compared to the estimated insulin sensitivity iden-

ti�ed by the SPRINT protocol, referred to as simple insulin sensitivity or SSI .

This approximated insulin sensitivity is evaluated only at times that the change

in glucose is less than the measurement error of 7% (Arkray, 2001) (ie. _G = 0 ).

The formula for SSI is given by Equation 7.5 and the derivation of this term is

shown below. Starting from Equation 4.1 and setting _G = 0 gives:

0 = �pGG� SIQ;effG+ P (t) + EGP

Then, assuming endogenous glucose clearance and production is small �rst equa-

tion above becomes:

0 = �SIQ;effG+ P (t)

The �nal assumption made is that Q;eff is entirely inuenced by exogenous inputs

and thus has no saturation e�ects. This assumption implies that the e�ect of

insulin administered previously is small compared to the current insulin input,

which means that SSI will be a more accurate measure of insulin sensitivity
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during large exogenous insulin inputs. Finally, simple algebraic rearrangement

results in the following de�nition:

SI =
P (t)

Q;effG

This de�nition is an approximated SI value when glucose is in a steady state.

We can then write the metric identi�ed, as shown in Equation 7.5.

SSI =
60P (t)

I(t)G
(7.5)

In evaluating this metric, when blood glucose is not available at any hour, the

last reading taken is used. The number of patient hours that satisfy the _G = 0

criteria are shown in Table 7.1.

Alternatively, the combined estimated e�ect of EGP and CNS could be added

to the P (t) factor. However, this choice would serve only to scale the curve unless

patient speci�c values were availale. The implications of the curve are calibrated

by empirical data and thus this process would unnecessarily add complexity to

the calculation of SSI , as no additional diagnostic power would be gained.

7.2 Results

Figure 7.2 and Table 7.6 shows the insulin sensitivity distributions for 130 patients

compared with APACHE II score, discretising the patient set into 9 groups of

APACHE II scores. Note that the remaining 13 patients are not included in the

APACHE II score groups due to unavailable APACHE II score data. None of

these 13 were in the 30 patient sepsis cohort. Figure 7.2 shows the high density

of low SI readings found in all groups with APACHE II greater than 6.

The ROC curve for model-based SI data from 6744 patient hours is shown

in Figure 7.3. The sensitivity of the insulin sensitivity test was found to be

77.8% and the speci�city, 82.2%. The positive predictive value was 2.8% and the

negative predictive value was 99.8%. The cuto� value for this test was an SI

of 8�10�5 L mU�1 min�1. Over 85% of the 26,453 identi�ed insulin sensitivity

values for the general ICU cohort (143 patients, with and without sepsis) were

above the 8�10�5 L mU�1 min�1 cuto�.

Over 85% of the time, an ICU patient's insulin sensitivity will be above the

cuto� point of 8�10�5 L mU�1 min�1 as found from �tting the 26,453 hours of

the 143 general overall ICU patient cohort employed.
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Figure 7.2 Insulin Sensitivity (SI) distributions of ICU patients grouped by APACHE II
scores

Insulin sensitivity distributions were compared with APACHE II score, dis-

cretising the patient set into 9 groups of APACHE II scores. The results for 130

patients are shown in Figure 2 and Table 7.6. Note that the remaining 13 patients

are not included in the APACHE II score groups due to unavailable APACHE II

score data. None of these 13 were in the 30 patient sepsis cohort.

The SSI ROC curve for the applicable 2036 patient hours that _G = 0 is

shown in Figure 7.4. The sensitivity of the insulin sensitivity test was found to

be 68.8% and the speci�city, 81.7%. The positive predictive value was 2.9% and

the negative predictive value was 99.7%. The cuto� value for this test was an

SSI of 2.8�10�4 L mU�1, which is approximately 3 times higher than that for SI

in Figure 12. For 82.7% of the time, an ICU patient's simple insulin sensitivity

(SSI) will be above this cuto� point of 2.8�10�4 L mU�1 as found from the 7529

hours of the 143 general ICU patient cohort (28% of 26,453 available hours). This

82.7% result is similar to the result for SI over the full time period.
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APACHE II Percentage of time
score range below cuto�

1 - 5 2.3
6 - 10 15.3
11 - 15 8.7
16 - 20 12.7
21 - 25 14.8
26 - 30 15.3
31 - 35 20
36 - 40 15.3
41 - 45 19.8

Table 7.6 Time spent below SI = 8 � 10�5 L mU�1 min�1, the cuto� value for ss �3

7.3 Discussion

Absence of sepsis shows a strong correlation with a higher SI . The ROC shown

in Figure 7.3 indicates that insulin sensitivity can exclude a sepsis diagnosis far

more accurately than it can make one. Speci�cally, 87% of the time in this ICU

cohort it is 99.8% certain that a patient does not have sepsis (ss = 2) due to a

modeled insulin sensitivity of greater than 8�10�5 L mU�1 min�1.

However, as a positive predictor, insulin sensitivity is not applicable. Figure

7.2 shows that with increasing APACHE II scores, the lognormal distribution of

SI tends to lower SI values (Kruskal-Wallis Test p<0.05). This result indicates

that not only sepsis, but other severe illness and e�ects could be responsible for

a low SI value in a critically ill patient, causing a high number of false positives.

This result explains the low positive predictive value of either insulin sensitivity

metric (SI or SSI).

The SSI was an inferior predictor to the model based SI pro�les, but the

negative predictive value was still very high o�ering the possibility of ruling out

sepsis in 82.7% of patient hours. However, with additional data the cut-o� point

identi�ed by the ROC may move signi�cantly, but these predictive values should

only change slightly. A limiting factor in this analysis is that only 16 septic patient

patient hours with sepsis, out of 2036 patient hours, were available for this part

of the study. This limited quantity of data is due to the requirements of non-zero

feed enteral nutrition and insulin input and negligible changes in blood glucose

for Equation 7.5. Overall, only approximately 30% of patient hours (30.2% of

patient hours in the sepsis cohort and 32% in the complete cohort) were available

to compute SSI and 32% in the complete cohort, creating a potential further



70 CHAPTER 7 SEPSIS DIAGNOSIS

Figure 7.3 ROC of Modeled Insulin Sensitivity (SI) as a predictor of Sepsis (ss �3)

limitation for the simpler metric.

While the sensitivity of the test remained relatively unchanged for SSI versus

SI , the speci�city dropped greatly due to a large increase in the number of false

positives. This result can be partly explained by the protocol's reduced resolution.

However, it is possible that another e�ect is due to the pool of data being reduced

by the requirement that change in measured glucose is less than 7% of previous

measurement (measurement error). Constant blood glucose is more likely to

be found in more stable patients who are generally less likely to have sepsisbe

septic. This unintended �ltering in using the simpli�ed SSI metric increases the

proportion of patients with low baseline insulin sensitivity, to patients with sepsis

induced low insulin sensitivity. In particular, 40% of septic hours with sepsis in

the sepsis cohort were eliminated by the criterion. This �ltering also causes the

discretised appearance of the ROC curve, by reducing the number of available

data points, particularly periods of sepsis.

However, the 1 U hr�1 insulin requirement for the estimated metric is not

as restrictive in an ICU as in a less acute ward setting. A 1 U hr�1 or greater

insulin dosage is frequently called for in glycaemic control protocols and is often

sustained for prolonged periods of a patients' hyperglycaemic stay. Similarly,

patients will typically not spend signi�cant periods of time fasting in an ICU.

For this study, only enteral feed nutrition was considered as oral and parenteral
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Figure 7.4 ROC of Insulin Sensitivity (SSI) evaluated in real time as a predictor of Sepsis

feed nutrition were not used.

The advantage of SSI as a predictor is that it can be very easily evaluated

in real time with only a pocket calculator. Hence, a clinician can obtain useful

information about a patient's condition without invasive, computationally inten-

sive or time consuming tests. While the simple method introduces additional

uncertainty by reduced resolution, as well as o�ering limited availability, the re-

duction in computational e�ort could justify its use over a model based approach

if the computational resources were not available (eg. A PDA with program).

A growing trend toward computation driven protocols is occurring which could

lead towards the regular use of a modeled SI value (Chase et al., 2006a; Plank

et al., 2006; Shulman et al., 2007; Thomas et al., 2005).

Figure 4 shows the correlation between model SI and SSI . The R
2 value for

the relationship is 0.68. This stronger correlation supports the similarity between

the �ndings of the SI and SSI diagnostics, despite the small amount of sepsis

hours available for the latter. This comparison between insulin sensitivities is for

7529 hours of the general ICU cohort of 143 patients. The comparison includes

times when blood glucose values are changing by less than 7% and when insulin

received is greater than 1 U hr�1. The latter constraint is applied to include

only times when EGP is su�ciently suppressed. If the requirement is extended

to those times at which a patient receives 1.5 U hr�1 of insulin, the R2 value

increases to 0.78 by eliminating the outliers as shown. Additionally, the model SI

�t limits the values to 1 � 10�5 L mU�1 min�1 = SI = 1� 10�3 L mU�1 min�1,
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whereas SSI is unrestricted in value. These di�erent limits have also reduced the

correlation between SI and SSI .

With the discretised nature of the gold standard sepsis de�nition used (ss =

3), it is clear that some error must be present in the gold standard used in the

derivation of the ROC curves. This error may limit the reliability of the results.

However, with limited blood culture and biomarker data available due to the

retrospective nature of the study, this error was unavoidable.

Patients who have Type I or Type II diabetes are excluded from this study.

If these patients were to be included it is likely that the sensitivity and predictive

value would be even lower than at present since these patients will present with

insulin resistance (at least, in Type II diabetics). The prevalence of Type II

diabetes is high and disproportionately so in an ICU (King et al., 1998; Umpierrez

et al., 2002), and is expected that Type II diabetics will have longer hospital stays

due to increased insulin resistance, further limiting the clinical applications of this

study.

Figure 7.5 shows an example of ss over time in comparison with SI . The

shaded areas represent a diagnosis of sepsis according to the respective param-

eters. It can be seen that during the initial 48 hours of the patients stay, SI is

very low and ss peaks multiple times during this period. At all other times, ss

is 1 or less, and SI rarely falls below the cuto� value.

Figure 7.5 An example of ss and SI variance over time
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Conclusions

This study has presented the variable nature of patient's glycaemic stability in

a less acute ward. Modi�cations to a standard ICU model have been made to

identify the limited endogenous insulin secretion that such patients are likely to

display in response to consumption of a meal. This model has not been validated.

From the glycaemic data of 7 CTW patients a stochastic model was generated

and validated against a subcohort of 131 stable ICU patients. Model convergence

was not observed, most likely due to the increased range of insulin sensitivity

observed. This stochastic model was used in predictive control for varied and

lengthened intervention periods. The amount of data available which is

The simulation results on 7 CTW patients reveal that glycaemic levels in

the ward cannot be adequately controlled by a SPRINT based system, nor by

meal boluses. Due to the highly variable nature of insulin sensitivity, which is

a�ected by such a wide range of factors, no accurate delivery of insulin dose is

possible without considering the progression of the probability bounds and us-

ing predictive control strategies. However, while the simulation results illustrate

tighter control than what was clinically obtained during the patients' stay, there

is a unacceptably high rate of hypoglycaemia (4% below 2.5 mmol L�1). It is

uncertain if such high hypoglycaemic episodes Even so, glycaemic variability (and

thus uncertainty) was found to increase with increasing time between measure-

ments, limiting the success of predictive control. Thus, it is likely that in order

to provide glycaemic control to a ward in a safe and time-e�cient manner some

compromise on performance in hyperglycaemia reduction will have to be made.

Insulin sensitivity was found to be a good diagnostic marker of the absence

of sepsis in an ICU cohort - high insulin sensitivity can rule out the presence of

sepsis in a critically-ill non-diabetic patient for the majority of their stay. Sepsis

is ruled out when modelled insulin sensitivity is above SI = 8 � 10�5 L mU�1.
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This condition is met for 85% of all patient hours in this general ICU setting.

Insulin sensitivity below 8 � 10�5 L mU�1 min�1 can be due to either sepsis or

other underlying conditions. The accuracy and exibility of model based insulin

sensitivity gives better reliability as a diagnostic for sepsis. However, insulin

sensitivity can be reasonably accurately evaluated using estimated methods in

real time by using glycaemic control protocol data. These estimated values pro-

vide similar negative predictive values. This study shows the potential of insulin

sensitivity as a diagnostic metric for sepsis when used as a negative predictor,

however it will also require a larger validation study including more complete

blood culture data to fully validate it for clinical use.
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Future Work

This paper has presented a framework for investigating the introduction of a

glycaemic control strategy into less acute wards. While, no satisfactory means of

avoiding the risk of hypoglycaemia has been found, there are some bene�ts to be

gained from the results found.

Additional data of patients from the less acute wards would greatly assist the

understanding of typical population characteristics. If more data was available

to the generation of the stochastic model, greater reliability would be evident in

predictive control. Similarly, simulation of glycaemic control on a larger cohort

might give better estimates of how a general ward population would respond to

any treatment strategies.

No validation of the model used in this study has been conducted. It is pos-

sible that the model is overestimating hypoglycaemic episodes since the increase

in EGP that should arise from low glucose levels is not modelled. Clinical trials

using a much less agressive means of control, such as the Treat-to-Target protocol

utilising glargine and no meal boluses would indicate if such incidences are being

overestimated without risking patient safety. If the results of such trials allow for

the consideration of increasing EGP then this mechanism can be easily included

in the model and greater control obtained from the increased reliability. How-

ever, it would be unwise to trial a protocol using variable EGP without further

validation when it is clear from the results presented that neglecting the variance

indicates that severe hypoglycaemia would result.

There are some unexplored avenues in control strategy which may also justify

further investigation. The target set in predictive control signi�cantly a�ects the

outcome, as expected. Thus, experimentation with di�erent targets may yield a

more clinically viable control strategy. Similarly, insulin could be limited when

the 5% con�dence band falls below 4 mmol L�1.
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Meal boluses are typically very e�ective in the management of diabetes, how-

ever a rigid protocol has shown little success in this research. Possibly this is

due to a lack of patient speci�c doses. That is, insulin sensitivity is not taken

into account when determining the bolus, only the blood glucose level. Simi-

larly, no progression of patient condition is allowed for. Thus, developing a more

exible and responsive controller of meal boluses many signi�cantly reduce the

post-prandial peaks of blood glucose.

There are many aspects of regular meal consumption that have not been

investigated here, particularly in relation to predictive control. The consumption

of meals should be included in the predictions using expected values of glucose rise

and fall from a meals. Similarly, some estimate of the likely endogenous insulin

secretions should improve the viability of glycaemic control. Such estimates of

EIS will need to be patient speci�c to account for the signi�cant variance in �-cell

function observed in the varying levels diabetes or insulin-resistance.

Some analysis of the e�ect of errors in meal estimates is also essential to devel-

oping a working protocol. Such sensitivity analyses would give greater protection

against hypoglycaemic incidences in the event of miscalculation of carbohydrate

intakes.

This study has presented insulin sensitivity models and tools for use in a clin-

ical setting based upon critically ill and less acutely ill patients. The diagnostic

value of insulin sensitivity measures may be further improved by better sepsis

criteria. At present, the discretisation of a gold standard diagnosis of sepsis indi-

cates that sepsis is rapidly switching between presence and absence on an hourly

basis. Smoothing of sepsis score data or improved logical criteria for a diagnosis

may prevent this and identify periods rather than hours during which sepsis is

present. With this improved accuracy, the positive predictive value of SI and

SSI is likely to improve and a new cuto� value will be found.
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