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history of mathematics. Without a past we can not think of a future.

I am deeply thankful to the Saudi Arabia’s government and to our King Abdullah

Bin Abdul-Aziz Al Saud for their generous support whilst I did my research. I will

be happy to share my knowledge in future with potential students and colleagues.

Special thanks to my main supervisors Lecturer Clemency Montelle and Senior

Lecturer John Hannah who have been supportive while I was working to get my

Master degree.

My parents Ahmed and Fawziah Bajri prayed intensely for me while I did my

Master Thesis. I feel blessed to be your daughter. My husband Mohsin Bajri and

my three children Hazim, Abdulaziz (sons) and Razaan (daughter) have been close

to me and encouraged and supported me while I have been in Christchurch.

I would like to thank my brothers Moqbel and Ibrahem and my sisters Nouf and

Sara for giving me the positive energy to do my best.

I felt happy to meet in person with Professor Katz in Christchurch and to observe

his interest in my Thesis. I do appreciate his questions and comments regarding my

work.

It was nice to see that the Associate Professor Mohammad Bagheri suggested

me the topic of the Master Thesis (i.e. Al-Samaw’āl and his contribution into the
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Abstract

Al-Samaw’āl (with the complete name Al-Samaw’āl Ibn Yahyā Al-Maghrib̄ı), born

around 1130 in Baghdad, Iraq, is best known in the History of Mathematics for his

seminal work the Al-Bāhir f̄ı Al-Jabr (literally The Splendid Book of Algebra) which

he composed at the prodigious age of nineteen. In this work, following the Euclidean

tradition, Al-Samaw’āl put together and advanced many key algebraic rules formu-

lated by his predecessors, notably Al-Khwārizmi, Ibn Turk, Ibn Qurra, Al-Kūh̄ı,

Al-Uql̄ıd̄ıs̄ı, Abū’l-Wafā, Al-Karaj̄ı, Ibn Aslam, Al-Sijz̄ı, Ibn Al-Haytham, Qustā

Ibn Lūqā, and Al-Har̄ır̄ı.

Al-Bāhir is a large work and consists of four sections. Section one provides an

account of operations on polynomials in one unknown with rational coefficients, sec-

tion two deals essentially with second-degree equations, indeterminate analysis, and

summations, section three concerns irrational quantities, and section four presents

the application of algebraic principles to a number of problems. In this thesis, we

give close attention to book four from the second section in which Al-Samaw’āl

discusses mathematical relations which amount to the binomial theorem and the

Pascal triangle and lays out a table of binomial coefficients and demonstrates how

to generalise the entries in the table for any desired value. Our main contribution

is a complete translation of the Arabic text, the first time this has been done in a

European language. We will then provide a detailed mathematical commentary and

offer a careful analysis of the status and impact of this work in the History of Math-

ematics, paying due attention to the historical context in which it was produced.



3

1 Introduction: Historical Overview

1.1 A Brief Biographical Sketch

Al-Samaw’āl (with the complete name Al-Samaw’āl Ibn Yahyā Al-Maghrib̄ı) was

the son of Yehuda ben Abun (or Abu’l-Abbās Yahyā Al-Maghrib̄ı). Al-Samaw’āl

was born around 1130 in Baghdad, Iraq and passed away around 1180 in Maragha,

Iran. His father was a Jewish scholar who was educated in religion and Hebrew

literature, and who emigrated from Fez (Morocco) to Baghdad. His mother, Anna

Isaac Levi was an educated woman who was originally from Basra (Iraq).

With the encouragement of his maternal uncle who was a physician, Al-Samaw’āl

took up the study of medicine and exact sciences at the age of thirteen. He stud-

ied medicine with Abu’l-Barakāt while he observed the practical work of his uncle.

Simultaneously with medical studies, Al-Samaw’āl started to learn mathematics, be-

ginning with Hindu methods of computation, z̄ıjes (astronomical tables), arithmetic,

and misāha (practical techniques for measure determination for use in surveys), and

after that algebra and geometry.

Because of his advanced level in mathematics, Al-Samaw’āl was unable to find a

teacher to instruct him beyond the level of the first books of Euclid’s Elements and

he was obliged to study independently. Al-Samaw’āl studied, in addition to Euclid,

Algebra of Abū Kāmil, the book Al-Badi of Al-Karaj̄ı, and Arithmetic of Al-Was̄ıt̄ı

(who collaborated in making astronomical observations with Umar Al-Khayyāmı̄

between 1072 and 1092) with the result that by the age of 18 Al-Samaw’āl had a

sound knowledge of the advanced works in mathematics.

However, despite his talent in mathematics, Al-Samaw’āl spent the majority of his

life as an itinerant physician in and around Maragha, travelling throughout Iraq,
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Syria, Kūhistan, and Ādharbayjān. Al-Samaw’āl was a successful physician and had

emirs among his patients. Al-Samaw’āl created several new medicines, including an

almost miraculous theriac (antidote to poison) and wrote an extant medical book

Nuzhat Al-Ashāb (usually translated as The Companions’ Promenade in the Garden

of Love).

A seminal moment in Al-Samaw’āl’s life was his conversion to Islam. This con-

version was particularly surprising given the fact that Al-Samaw’āl’s father was a

rabbi (Jewish high religious authority) and Al-Samaw’āl was raised in accordance

with Jewish traditions. However, after many years of questioning, finally after a

dream which included visions of the prophet Mohammad, he converted to the Is-

lamic faith.1 The conversion had a profound effect on his intellectual outlook.

Despite writing many treatises against the Jewish faith,2 Al-Samaw’āl nurtured a

somewhat tolerant and liberal attitude towards different religious traditions. He

argued that it was less important what religious tradition a person ascribed to, be it

1Under the main title of the article The Conversion to Islam of Al-Samau’āl Ibn Yahyā Al-
Maghrib̄ı we can see written in small characters that he had a vision of the Prophet Mohammad
in the night of Friday, Arafa of the Arabic year 558. This day of Arafa represents in fact the day
when Al-Samaw’āl converted from the Jewish religion to Islam. From an European calendar point
of view Al-Samaw’āl converted to Islam on 8 November, 1163 (8 November, 558 in the Arabic
calendar) prompted by this vision.

2After his conversion to the Muslim religion Al-Samaw’āl wrote a polemic against the Jews.
The book with the title Ifhām Tā’ifat Al-Yahūd is a polemic against all Judaic religions. Later on,
Al-Samaw’āl wrote another book Ghāyat Al-Majhūd f̄ı al-Radd Ala’l-Nasāra wa’l-Yahūd (Decisive
Refutation of the Christians and the Jews) where he presents his beliefs against the Christian and
Jewish religion. Al-Samaw’āl wrote another treaty against Jewish people Badhl al-Majhud f̄ı Iqnā
al-Yahūd (The Effort to Persuade the Jews) which has been lost unfortunately since World War
II. For a long time Al-Samaw’āl did not convert to Islam from respect for his father. Things
did change after he lived far away from his father and after he had a dream with the vision of
the Prophet Mohammad. Approximately 100 years after Al-Samaw’āl’s death, the Iraki Jewish
Physician and Philosopher Sād B. Mans.ūr B. Kammūna wrote Critical Inquiry into the Three
Faiths and presented Al-Samaw’āl’s work as the most important and typical summary of Muslim
polemics against Jews. Al-Samaw’āl’s work The Conversion to Islam of Al-Samau’āl Ibn Yahyā
Al-Maghrib̄ı was translated from Arabic into Latin and from Latin in many different European
languages. The Latin translation of this document is Epistola Samuelis Marrocani ad R. Isaacum
Contra Errores Judaeorum. The original version of Al-Samaw’āl’s book The Confutation of the
Jews exists in Tehran, and is dated 685/1286. There is a manuscript present in Cairo and dated
732/1332. It consists the longer (later) version and Al-Samaw’āl’s Vita. From this version from
Cairo many editions have been reproduced and translated.
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Muslim, Christian, or Jewish, but rather the ways in which an individual exempli-

fied social consciousness associated with those religious traditions, including living a

good life, contributing to social welfare, the maintenance of public institutions, and

the community, and so on. Al-Samaw’āl put much emphasis on the logically equal

validity of all faiths and the social value of religion.

We are pleased to see Al-Samaw’āl’s wisdom present in his intellectual writings. His

way of presenting the text is typical to a well-educated Jewish person as Al-Samaw’āl

was born a Jew. He recognises the problems which would normally be ignored by a

Muslim educated person and feels responsibility for all of these problems. Like many

scholars of his time, Al-Samaw’āl acutely understood the challenges of furthering

scholarship and the development of ideas, as he reveals in the following quotes.

Al-Samaw’āl acknowledges the achievements of his predecessors as vital to insight

and discovery as follows:

There is no idea that might enter someone’s brain which might not before

have entered the brain of someone else. Every intelligent person knows

that the fact that someone is able to correct former scholars does not

imply that the same man possesses a greater knowledge than themselves

in all their branches of knowledge. It merely implies that he has fur-

ther progressed than themselves in the knowledge of just that particular

matter [17, pages 563–564].

He was well aware of the delicate notion of the original text which could easily be

altered because of the scribe’s ignorance. This observation was to his credit as he

himself included translations or paraphrases of his predecessors.

For how many reasons may errors enter the works of excellent scholars!

Some errors may be due to a copyist or scribe who miswrites a word
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or omits something. If many copyists thereafter copy the same text in

succession, and each one of them further miswrites or omits words in

passages where the original copyist had already made copying mistakes,

the result will be very bad and the mistakes patent [17, pages 563–564].

Al-Samaw’āl was also deeply sensitive to issues of translation.

The situation is even worse in the case of translators who transmitted

knowledge from one language to the other. They often understood pas-

sages which they attempted to translate differently from what the author

had intended them to be understood. They also frequently encountered

difficulties in certain passages and treated them as they thought it would

be correct. The author, then, is held responsible while, in fact, he is not

to blame [17, pages 563–564].

Such sensitivity to these issues and his active interest in a broad number of fields

had an interesting impact on his mathematics, as we shall see below.

1.2 Al-Samaw’āl’s Mathematical Contributions

Al-Samaw’āl’s most important contribution to mathematics was a work called Al-

Bāhir f̄ı Al-Jabr (literal translation: The Splendid Book of Algebra)3 where he put

together the algebraic rules formulated by his predecessors Al-Khwārizmı̄, Ibn Turk,

Ibn Qurra, Al-Karaj̄ı, Abū Kāmil Ibn Aslam, Al-Sijz̄ı, Ibn Al-Haytham, Qustā Ibn

Lūqā, and Al-Har̄ır̄ı and developed and furthered their scope. Despite being only 19

when it was composed, this work became Al-Samaw’āl’s most famous. In this book

Al-Samaw’āl shows that the techniques of arithmetic could be fruitfully applied in

3Some critics/scientists consider Al-Samaw’āl’s book Al-Bāhir f̄ı Al-Jabr to be entitled Al-Bāhir
f̄ı Al-Hisāb (The Splendid Book on Calculation). This is only partly true because Al-Samaw’āl
presents in Al-Bāhir f̄ı Al-Jabr a section with calculations, but in fact in all the original documents
written in Arabic, the title is written as Al-Bāhir f̄ı Al-Jabr.
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algebra. This has been dubbed the “arithmetisation of algebra” which was initiated

by his predecessors. He gave the first description of this development as follows:

. . . with operating on unknowns using all the arithmetical tools, in the

same way as the arithmetician operates on the known [1, page 9].

From a general point of view the term of “arithmetisation of algebra” means the

transposition and extension of elementary operations of arithmetic, algorithms like

Euclidean division, or the extraction of roots of algebraic expressions, in particular

polynomials. Applying the arithmetisation of algebra between the tenth and twelfth

centuries, mathematicians developed polynomial algebra and reached a clearer un-

derstanding of the algebraic structure of real numbers.

From Al-Samaw’āl’s Arabic text, we understand that the complex process of arith-

metisation of algebra involves giving:

1. The multiplication and division of algebraic powers.

2. The theory of the division of polynomials.

3. The calculus with signs.

4. The binomial coefficients and the binomial formula.

Among the many subjects covered in the work, Al-Samaw’āl presented methods of

dividing polynomials and extracting the square root of polynomials. These meth-

ods were ingenious and contrasted with European methods of approaching these

mathematical problems. He also developed exponent rules, operations with nega-

tive numbers, and rationalising fractions with surds in the denominator.

As we have seen, Al-Samaw’āl was indebted to his many predecessors. But the main

source of inspiration, and the individual whom he directly credits for many parts
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of his work is the scholar Al-Karaj̄ı (early eleventh century), whose work he quotes

and develops. Al-Samaw’āl admired Al-Karaj̄ı but also pointed out the deficiencies

of his work. Although Al-Karaj̄ı invented an algorithm for extracting the square

root of polynomials with positive coefficients, Al-Samaw’āl improved this algorithm

in the sense that he could extract the square root of polynomials with negative co-

efficients as well. Al-Karaj̄ı did a lot of work in algebra but expressed his numbers

in words rather than symbols. This represents a very difficult obstacle in terms of

memorising and improving the knowledge in algebra. Al-Samaw’āl overcame this

situation using a table where he associated to each power of an unknown x a place in

the table. In Al-Samaw’āl’s table a polynomial was represented by the sequence of

a polynomial’s coefficients written in Hindu numerals. Al-Samaw’āl’s technique of

presenting the coefficients by symbols (that is using the Hindu numerals) represents

a decisive step in the development of symbolism and is requisite to the progress of

algebra.

The book Al-Bāhir consists of four parts. Part one provides an account of opera-

tions (for example, multiplication, division, ratio, and the extraction of the root) on

polynomials in one unknown with rational coefficients. Part two deals essentially

with second-degree equations, indeterminate analysis, binomial coefficients and the

binomial formula, and summations. In this part Al-Samaw’āl presents a noteworthy

calculation of the coefficients of (a+b)n. Al-Samaw’āl organises these coefficients into

a Trapezium which we are inclined to call Al-Samaw’āl’s Right Trapezium. These

coefficients will be arranged later on in a triangular table known in the western world

as Tartaglia’s or Pascal’s triangle. Al-Samaw’āl solved in Book 2 of Al-Bāhir many

quadratic equations which had been attacked and solved algebraically previously by

mathematicians like Al-Khwārizmı̄ and Al-Karaj̄ı. Al-Samaw’āl offered geometric

solutions for these types of equations. Part three concerns irrational quantities. Part

four presents the application of algebraic principles to a number of problems.
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Al-Bāhir is an extension of the algebra of polynomials presented previously by Al-

Karaj̄ı. The difference between Al-Samaw’āl’s work and Al-Karaj̄ı’s work is that Al-

Samaw’āl included negative powers and coefficients. Al-Karaj̄ı, in contrast, treated

only polynomials with positive powers and coefficients. Al-Samaw’āl could tackle

even challenging problems. At one point he discusses the solution of 210 simultane-

ous equations in ten unknowns.

Al-Karaj̄ı invented the algorithm of square root extraction but he could not suc-

ceed in applying it for polynomials with subtractive coefficients. It is argued that

a great obstacle in this context is the fact that Al-Karaj̄ı’s algebra lacked symbols.

Al-Samaw’āl initiated a symbolic style of reasoning in algebra in the sense that he

used a visualisation in which he associated to each power of “x” a place in a table

in which a polynomial was represented by the sequence of its coefficients, written in

Hindu numerals.

In part 2 of Al-Bāhir, Al-Samaw’āl gave geometrical solutions to the six types of

equations (which we represent using modern notation):

3 simple types: ax = b, x2 = bx, and x2 = a,

3 difficult (complex) types: a + x2 = bx, a = bx + x2, and x2 = a + bx.

Al-Karaj̄ı gave algebraic solutions to these equations.

Later, we are going to see how Al-Samaw’āl presented a remarkable calculation of the

coefficients of (a+b)n. Al-Karaj̄ı already discovered these coefficients after 1007 but
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unfortunately his original computations have been lost by being destroyed.4 For this

reason Al-Samaw’āl’s results are of particular interest for the history of mathematics.

In his most famous book Al-Bāhir f̄ı Al-Jabr (The Splendid Book on Algebra) Al-

Samaw’āl develops the study of polynomials. He starts defining powers like x, x2, x3,

. . . , x−1, x−2, x−3, . . . and after defining polynomials Al-Samaw’āl describes opera-

tions with polynomials for addition, subtraction, multiplication, and division. He

also gives methods for the extraction of the roots of polynomials.

Al-Samaw’āl created a table which assists with the multiplication of different expo-

nents (see Table 1).

Note: For clarity, we reproduce the table using modern notation. Al-Samaw’āl’s

notation is different from the classical European one. Instead of writing x−8 for ex-

ample, he wrote “part māl cube cube” and instead of writing x8 Al-Samaw’āl wrote

“māl cube cube” (see section 2.1).

As we observe, in the first row of the table he wrote the absolute values of the

exponents of x. In the second row, he wrote x to different powers starting from x9

and decreasing the powers until x−9. In the third row, he substituted x by 2 starting

from 29 = 512 and finishing with 2−9 = 1
29

= 1
512

. In the fourth row, he substituted

x by 3 and started from 39 = 19683 and finished with 3−9 = 1
39

= 1
19683

.

Al-Samaw’āl used the table above to explain the law of exponents xm · xn = xm+n

as follows. He describes the law with reference to the position of the factors in the

table.

The distance of the order of the product of the two factors from the

4 	á�
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order of one of the two factors is equal to the distance of the order of

the other factor from the unit. If the factors are in different directions,

then we count the distance from the order of the first factor towards the

unit; but, if they are in the same direction, we count away from the unit

[2, page 141].

For example, in order to multiply x3 by x4, we count four orders to the left of column

3 and get the result as x7. To multiply x3 by x−2, we count two orders to the right

from column 3 and get the answer x1. Using these rules, Al-Samaw’āl could easily

multiply polynomials in x and 1
x

as well as divide such polynomials by monomials.

He was also able to divide polynomials by polynomials using a similar chart.

1.3 Al-Samaw’āl’s Approach Towards the Development of

the Binomial Expansion Formula

The most impressive contribution of Al-Samaw’āl is the development of the co-

efficients of the binomial expansion of (a + b)n. In his exposition, he presents 5

propositions which begin at the case (a + b)1 and works to (a + b)4 and describes

a mathematical induction-like process to establish higher powers. Along with the

propositions, Al-Samaw’āl presents a table with the coefficients of the binomial ex-

pansion:

(a + b)n =
n∑

k=0

Cn
k a

n−kbk,

where n is a positive integer and the values Cn
k are the binomial coefficients. In

this table Al-Samaw’āl presents the coefficients from (a + b)1 up to (a + b)12. Al-

Samaw’āl’s table is similar to the one famously known as Pascal’s triangle which

was presented by Blaise Pascal (1623-1662), almost 500 years after Al-Samaw’āl.
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Al-Samaw’āl wrote the expressions for the binomial expansions in words. For ex-

ample, in the case n = 4, Al-Samaw’āl writes:

Any number divided into two parts, its square-square is equal to the

square-square of each part, four times the product of each by the cube

of the other, and six times the product of the squares of each part [16,

page 65].

Here the term square-square refers to x4. This phrase is equivalent to

(a + b)4 = a4 + b4 + 4a3b + 4ab3 + 6a2b2.

He uses the well-known Arabic terminology “thing”, “māl”, “cube” and so on up to

“cube cube cube cube”. In contemporary mathematics we would write the previous

terms using symbols consequently as x, x2, x3, and x12.

To give some insight into his approach, let us see how Al-Samaw’āl obtains the

formula for (a+ b)4. Assuming that c = a+ b, and since c4 = c · c3 and c3 is already

given by

c3 = (a + b)3 = a3 + b3 + 3ab2 + 3a2b,

it follows that

(a + b)4 = (a + b)(a + b)3 = (a + b)(a3 + b3 + 3ab2 + 3a2b).

By using repeatedly the result (r + s)t = rt + st, a result which he quotes from

Euclid’s Elements, book II, Al-Samaw’āl finds that this last quantity equals
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Figure 1: The version of the table as produced in the manuscript.

(a + b)a3 + (a + b)b3 + (a + b)3ab2 + (a + b)3a2b

= a4 + a3b + ab3 + b4 + 3a2b2 + 3ab3 + 3a3b + 3a2b2

= a4 + b4 + 4ab3 + 4a3b + 6a2b2.

The procedure described by Al-Samaw’āl for constructing this table is the familiar

one, that any entry comes from adding the entry to the left of it to the entry just

above that one. He then notes that one can use the table to read off the expansion

of any power up to the twelfth of a number divided into two parts. Al-Samaw’āl did

not have recourse to the techniques of induction to generalise this result. However,

he presents a number of generalising examples which show how to expand binomials

to any desired power.
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Unfortunately for the future development of Mathematics, some of the most impor-

tant work of Islamic Mathematicians, including the work of Al-B̄ırūn̄ı, Al-Samaw’āl,

Al-Khayāmı̄, Sharaf Al-Dı̄n Al-Tūs̄ı, and most of that of Ibn Al-Haytham were not

made widely available outside the Arabic tradition. As a consequence, rather than

building on these Islamic contributions, European mathematicians were compelled

to rediscover much of the same material centuries later.
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2 Text and Translation

2.1 Introduction to Translation

Text

Al-Samaw’āl’s Al-Bāhir exists in two manuscripts, one in the Aya Sofya Library in

Istanbul, Turkey and the other manuscript in the Esat Afandi Library in Cairo. The

manuscript from Turkey has the number 3155 and the manuscript from Cairo has

the number 2118. A critical edition has been made by Roshdi Rashed based on these

two manuscripts, with selected passages translated into French and an accompany-

ing mathematical commentary. Roshdi Rashed translated most of Al-Samaw’āl’s

results adding his personal flair by not keeping the order or by not presenting Al-

Samaw’āl’s results in the same manner. Roshdi Rashed mentioned Proposition 3

and Proposition 5 but he did not translate them. Where the translation is done,

the translation is not always a literal one. This critical edition has been used as the

basis of the translation presented here, with several minor emendations. In the text

emendations have been indicated by use of square brackets [· · · ] when something

critical is missing in the Arabic version. In the English translation, glosses or supple-

mentary material necessary for sense have been indicated by (· · · ) when we explain

in English an expression or a word written either in Arabic or English. Additions

which have been deemed crucial for intelligibility have been indicated in footnotes.

In translating these passages, we have attempted to be as literal as possible to con-

vey the fullest impression of the original text for non-Arabic speakers. However, on

occasion there was need to make minor modifications to the text for the mathemati-

cal integrity or consistency of the work. These have been clearly identified and noted.

Below, we present the Arabic text taken directly from the critical edition, a literal

translation, and a mathematical commentary. For most propositions we have “para-
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phrased” the mathematical content. The first paraphrase attempts to stick as close

as possible to the original using modern notation. The second (where appropriate)

is a modern symbolic explanation of the same reasoning. For flow and clarity, we

have done this proposition by proposition. The passage from Al-Bāhir we have

concentrated on is the material covering the rules for expansion leading up to and

including the construction of the table of binomial coefficients. This is the first time

the extended section has been translated as a whole into English. ([1], pages 104-112)

Numerals and Numbers

The text uses three distinct ways to represent numbers: number symbols or glyphs,

number words, and abjad notation, a numerical system in which the 28 letters of

the Arabic alphabet are assigned a numerical value. In the Arabic alphabet there

are 28 letters, 22 are common to other alphabets like Phoenecian, Hebrew, Ara-

maic, and Greek and 6 letters are specific to the Arabic alphabet. The order of

the assignment of letter to numerical values is not based on the classical ordering

of the Arabic alphabet, but rather follows the Greek (Ionian) tradition. The first

letters of these 2 alphabets are the same, “ @ ”, (which is pronounced as “aliph”)

and “H. ” (which is pronounced as “bā”). From a classical perspective, the letters

following “ @ ”, “aliph” and “H. ”, “bā” are “h. ”, (which is pronounced as “ḡım”),

and “X”, (which is pronounced as “dāl”). This notation was widespread especially

in mathematics. Most notably, it is not a place value system of numeration, but

works in the following way: Numbers 1 to 9 in the first row are the first nine letters

of the Arabic equivalents of the Greek alphabet. The second row contains the next

9 letters with numbers from 10 to 90, the third row contains 9 letters with numbers

from 100 to 900, and the fourth row contains the 28th letter “
	

¨” which is associated

with the number 1000. The notation is then as in Table 2:
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@ H. h. X è ð 	P h  

A B G D H W Z H. T.

1 2 3 4 5 6 7 8 9

ø



¼ È Ð
	

à � ¨
	

¬ �

Y K L M N S A. F. S.

10 20 30 40 50 60 70 80 90

�
� P

�
�

�
H

�
H p

	
X

	
�

	
 

Q R Sh T Th Kh Dh D. Z.

100 200 300 400 500 600 700 800 900

	
¨

Gh

1000

Table 2: Arabic alphabetic (abjad ) notation

The other form of notation, which is based on the Hindu-Arabic base-10 place-value

notation, has 10 glyphs as follows:

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

The following Arabic-English table shows the letters most commonly used in our
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translations.

@ H. k. X è 	P h   ¼ È Ó
	
à

a b c d e f g h i j k l

Terminology

At the outset of his work, Al-Samaw’āl explains his technical terminology which

forms his language of algebra. These terms are not original to him, but are part

of the established “algebraic tradition”. He states, noting the interchangeability of

terms:

...when we multiply every number by itself then the result from the

multiplication will be called māl or square or radicand and that the

number which is multiplied by itself will be called side or thing or root.

We call the number which is a combination of the multiplication of 3

numbers cube if the 3 numbers are equal. If the 3 numbers are not equal

we will call the number solid [1, pages 17-18, author’s own translation].

The building blocks of his system are:

x is defined as side, thing, or root (i.e., modern “x”). The Arabic versions for x are

respectively ©Ê
	

�, Zú


æ
�
�, or P

	
Yg. which are respectively pronounced as d. al‘, shay, or

jadhr.

x2 is defined as quantity, square, or radicand. The Arabic version for x2 are re-

spectively ÈA
�
Ó, ©K. QÓ, or Pð

	
Ym.

× which are respectively pronounced as māl, muraba‘, or

majdhur.
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x3 is defined as cube. The Arabic version for x3 is I. ªºÓ which can be pronounced

as muka‘ab.

x4 is defined as square square. The Arabic version for x4 is ÈA
�
Ó ÈA

�
Ó which can be

pronounced as māl māl or “square square”.

x1 · x2 · x3 is defined as a solid. The Arabic version for x1 · x2 · x3 is Õæ�m.
× which can

be pronounced as mujasam.

As we can observe the above definitions given by Al-Samaw’āl are completely inter-

changeable from an English linguistic view-point. For example we can interchange

“side” with “thing” or “root” in order to get the same idea of x. Al-Samaw’āl him-

self uses the words interchangeably. He does not have a fixed technical vocabulary.

Furthermore, Al-Samaw’āl’s vocabulary reveals he is still tied to the geometrical

context that he has inherited from his Greek predecessors. For example, he has two

terms that he uses to express the concept of “product”. The first is “d. rb” which

is from the verb to multiply, and the second is “musatah. ” which literally translates

as surface. These are used interchangeably. Furthermore, sometimes he talks about

a “side”, which is “d. al‘” and sometimes he talks about a “number” to express the

same thing also. However, proposition two, for example, shows us that he is simply

thinking of numbers.

Al-Samaw’āl’s use of voice is interesting too in this respect. In line with the Eu-

clidean tradition, he often invokes the first person singular, especially to state a

proposition, for example “I say that...”. Often he invokes the third person plural

imperative (“Let us multiply...”), which too echoes the Euclidean mode of expres-

sion. He seems to be using these words because they are traditional.
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Most propositions are accompanied by a simple diagram. In some cases it is not

immediately obvious how the diagram supports the mathematical action in the text

as Al-Samaw’āl makes no mention of these visual aids in the text, except for the

long passage on how to construct the triangle of binomial coefficients. It is clear

they have a purpose, usually pedagogical or to clarify the procedure described in

the text.

2.2 Title and opening statement

Text

�
é
�
J

	
K A

�
�
JË @ éË A

��
®�ÜÏ @ 	áÓ ©K. @

�QË @ H. A
�
J. Ë

�
@

�
éK
X�

�
YªË@

�
HB

�
ñêj. ÖÏ @ h. @ �Q

	
j

�
J�@ ú

�
Î« A

�
îE.

	
àA

�
ª

�
J��


�
éJ
�Y

	
Jë

	á�
�
ë@ �QK. ú




	
¯

	
àA

�	
J
	
¯ ñëð

�
éK
X�

�
YªË@ Èñ�B

�
@ ú




	
¯

�
éJ


	
K A

�
�
JË @ éË A

��
®ÖÏ @ 	áÓ ©K. @

�QË @ H. A
�
J. Ë @

	áÓ Èð

�

B@ 	á

	
®Ë @

Translation

Chapter 4 from Section 2

About the Geometrical Demonstrations Used to Extract the Numerical Unknowns

There are two methods. The first method from Chapter 4 from Section 2 consists

of the numerical foundation (algebraic proof).
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2.3 Proposition One

Text
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�
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�Q

	
®

	
J
	
¯ ©K. @
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�
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�
IËA

�
�
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�
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�
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�
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�
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�
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�
¯
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¯ ,[ h h. Q
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�
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�
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�
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�
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�
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�
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�
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�
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�
Í@ è
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�

�
I
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�
¿ Y

�
¯ð k. ú

�
Í@ H.

�
éJ.�
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�
Í@ h

�
éJ.�

	
�
	
¯   h @

�
X

�
Y«

A
�	
KXP@ A

�
Ó ½Ë

	
Xð h ú




	
¯' 	P i¢�ÖÏ ðA

�
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¯ è i¢�Ô

	
¯ ,   ú

�
Í@ h

�
éJ.�

	
�» 	P ú

�
Í@ è

�
éJ.�

	
�
	
¯

.
	á�
J.

	
K

	
à@

• • • •

X k. H. @

• • • •

  h 	P è

• • • •

Translation

[For] every four numbers, the product of the surface 5 of the first and the second by

the surface of the third and the fourth is equal to the product of the surface of the

5Al-Samaw’āl has two ways to refer to the product of two numbers. He can use the Arabic word
“i¢�Ó” which literally means surface, or he can use the word “H. Qå

	
�” which means “product”.

In order to capture the difference, we preserve his choice even though the mathematical meaning
is the same.
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first and the third by the surface of the second and the fourth.

Let us consider four numbers ā, b̄, c̄, d̄. Let us multiply ā by b̄ to get ē and let

us multiply ā by c̄ to get f̄ . Let us multiply c̄ by d̄ to get ḡ. [Let us multiply b̄ by

d̄ to get h̄.] Then I say that the product of ē and ḡ is equal to the product of f̄ and h̄.

Its demonstration: [When] the number ā is multiplied [respectively] by the two

numbers b̄ and c̄, then there results from the multiplication [respectively] 2 numbers

ē and f̄ . Then the ratio of ē to f̄ is the same as the ratio of b̄ to c̄. Moreover, multi-

plying d̄ by b̄ and d̄ by c̄, we obtain [respectively] h̄ and ḡ. Then the ratio of h̄ to ḡ

is the same as the ratio of b̄ to c̄. We know that the ratio of ē to f̄ is the same as the

ratio of b̄ to c̄. Then the ratio of ē to f̄ is the same as the ratio of h̄ to ḡ. Then, the

surface of ē and ḡ is equal to the surface of f̄ and h̄. This is what we wished to explain.

Mathematical Commentary

In contemporary symbolism Al-Samaw’āl is going to prove that

(ab)(cd) = (ac)(bd).

First paraphrase: using modern symbols, but staying close to his style of reason-

ing.

Setting out

Let a, b, c, d be four numbers.

Let ab = e and ac = f , and let cd = g and bd = h.

Then I say that eg = fh.
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Demonstration

Multiplying a by b and c gives e and f [respectively].

Hence the ratio e : f is the same as the ratio b : c.

Moreover, multiplying d by b and c gives h and g [respectively].

Hence the ratio h : g is the same as the ratio b : c.

Thus the ratio e : f is the same as the ratio h : g.

Hence eg = fh which is what we wished to explain.

Second paraphrase: using symbolic algebra.

Claim: (ab)(cd) = (ac)(bd).

Demonstration

Since

ab

ac
=

b

c
=

bd

cd

we have

(ab)(cd) = (ac)(bd).

• • • •

d c b a

• • • •

g h f e

• • • •
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The above geometric figure created by Al-Samaw’āl can be interpreted in various

ways. One way is to say that geometrically speaking we associate to each letter of

the alphabet a point. We start with the first 8 letters of the English alphabet a, b, c,

d, e, f , g, and h and we can keep on continuing. As the reader would already know,

the letters into the Arabic alphabet are written from right to left, different from the

English alphabet. From another perspective we can see that the table represents an

image of our above proposition in the sense that the ratio of h̄ to ḡ is also the same

as the ratio of b̄ to c̄ and the ratio of ē to f̄ is the same as the ratio of h̄ to ḡ and

those ratios are symmetrically presented into the table.

2.4 Proposition Two

Text
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• @ è k.

• • • •

  • h •

• • • •

• H.
	P X

Translation

The surface of two sides each cubed is equal to the cube of their surface. Let the 2

cubic numbers be the 2 numbers ā and b̄ and let their sides be c̄ and d̄ and let their

square be ē and f̄ and let us multiply c̄ by d̄ and we get the number ḡ and let us

multiply ā by b̄ and we get h̄. Then I say that the number h̄ is equal to the cube of

the number ḡ.

Its demonstration: Indeed, it was indicated in the arithmetical sections that if

the square number ē is multiplied by the square number f̄ there results from this

multiplication the square of the number ḡ, the surface. Then, if the previous re-

sult is multiplied by the surface of c̄ and d̄, I mean by the number ḡ, there results

from this the cube of the number ḡ, and it is from the product of the surface of

ē and f̄ and the surface of c̄ and d̄. But the result from the product of the sur-

face of ē and f̄ and the surface of c̄ and d̄ is equal to the result from the product of

the surface c̄ and ē and the surface of f̄ and d̄, as we explained in the previous result.

Therefore the result from the product of the surface of ē and c̄ and the surface of

d̄ and f̄ is equal to the cube of the number ḡ. But, the result from the product c̄

and ē [is the number ā] and the surface of d̄ and f̄ is the number b̄. Therefore the

surface of ā and b̄, I mean the number h̄, is equal to the cube of number ḡ and this
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is what we wished to explain.

Mathematical Commentary

Another mathematical fact which is proved by Al-Samaw’āl is:

The cube of a surface of two numbers is equal to the surface of the cube of the first

one and the cube of the second one.

In modern mathematics Al-Samaw’āl proves that (cd)3 = c3d3.

First paraphrase: using modern symbols, but staying close to his style of reason-

ing.

Setting out

Let a and b be cubes: a = c3 and b = d3.

Let c2 = e and d2 = f .

Let cd = g and ab = h.

Then I say that h = g3.

Demonstration

We already know that

ef = g2.

Multiplying by cd = g gives

(ef)(cd) = g3.

By Proposition 1 we have

(ef)(cd) = (ce)(fd)

and so

(ce)(fd) = g3.
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But ce = a and fd = b. Thus

ab = h = g3

which is what we wished to explain.

Second paraphrase: using symbolic algebra.

Claim: c3d3 = (cd)3.

Demonstration

We already know that

c2d2 = (cd)2.

Multiplying by cd gives

(c2d2)(cd) = (cd)3.

By Proposition 1 we have

(c2d2)(cd) = (c2c)(d2d)

and so

(c2c)(d2d) = (cd)3

But c2c = c3 and d2d = d3. Thus

c3d3 = (cd)3

which is what we wanted.

The proof using symbolic algebra makes it easier to see how we might use induction

to prove that cndn = (cd)n.
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• a e c

• • • •

h • g •

• • • •

• b f d

The above table symmetrically presents all identities from the proof of Proposition

2 like for example

ef = g2,

cd = g,

ce = a,

fd = b,

ab = h.

From the first two above equalities, we obtain that

efcd = g3.

Therefore

h = cefd = g3.
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2.5 Proposition Three
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Translation

[When] any number is divided into two parts, then its cube is equal to the sum of

the cubes of its two parts and the product of each of its parts and the square of the

other part taken three times.
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Its example: If a number ab is divided at the point c̄, then I say that the cube

of ab is equal to the cube of ac and the cube of cb and the product of ac and the

square of cb three times and the product of cb and the square of ac 3 times.6

Its demonstration: Indeed, the square of ab is equal to the square of ac and the

square of cb and the product of ac and cb taken twice.

If we multiply ab by its square, we obtain its cube. The cube of ab is equal to the

product of ab and the square of ac, the square of cb and the product of ac and cb

taken twice.

The product of ab and any number is equivalent to the product of ac and cb by this

number, as Euclid explained in the first proposition of Book 2.

The product of the square of ac by ac and by cb and the product of the square of

cb by cb and by ac and the product of double the surface encompassed by ac and cb

by ac and the product of this also by cb is equivalent to the cube of ab.

(So, expressing differently), the product of the square of 7[ab] and [ab] is the cube

of ac and the product of the square of ac and cb and the product of the square of cb

and ac and the product of double the surface that is encompassed by ac and cb by

6Observation: The notations used by Al-Samaw’āl are of strict geometric significance. ab
signifies the segment [ab], ac signifies the segment [ac], and cb signifies the segment [cb]. From a
geometric point of view, we can represent this below:

• • •

a c b

7We suggest that the text is corrupted here and for sense we replace ac and ac by ab and ab.
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each one of ac and 8 cb [and the cube of cb].9

But, for every surface, if we multiply the surface by one of its sides then the re-

sult from this product is equal to the product of the square of that side and the

other side, since for every three numbers, the product of the first and the second and

then by the third is equal to the product of the first and the third then by the second.

Thus, the existing cube of ab is equal to the cube of ac and the cube of cb and the

product of ac and the square of cb taken three times and the product of cb and the

square of ac taken three times and this is what we wished to explain.

Mathematical Commentary

Symbolically speaking, let us see how Al-Samaw’āl proves that

(a + b)3 = a3 + b3 + 3a2b + 3ab2.

Paraphrase: using symbolic algebra.10

Claim: (a + b)3 = a3 + b3 + 3(ab2 + a2b).

Demonstration

We already know that

(a + b)2 = a2 + b2 + 2ab.

8As we observe Al-Samaw’āl realised the properties of commutativity of addition and multi-
plication as he changed the expression from the above paragraph into the expression from this
paragraph.

9For transcription reasons cb
3

has not been written into Al-Samaw’āl’s original document.
10We have replaced Al-Samaw’āl’s line segments by algebraic symbols. To stay close to his

notation we have used the following correspondences:
The line AB represents the number a + b.
The line AC represents the number a.
The line CB represents the number b.
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Multiplying by a + b we get

(a + b)3 = (a + b)(a2 + b2 + 2ab).

For any number x we have (a+ b)x = ax+ bx, as Euclid explains in Elements II, 1.

So we get

a2a + a2b + b2a + b2b + (2ab)a + (2ab)b = (a + b)3.

But (xy)x = x2y since for any three numbers p, q, r we have (pq)r = (pr)q.

Thus

(a + b)3 = a3 + b3 + 3ab2 + 3a2b,

which is what we wished to explain.

2.6 Proposition Four
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Translation

[When] any number is divided into two parts, then the square square of the divided

number is equal to the square square of each one of the two parts and the product

of each one of the two parts and the cube of the other part taken four times and

the product of the square of one of them and the square of the other taken six times.

Its example: When a number ab is divided into two parts, and they are ac and

cb, then the square square of ab is equal to the square square of ac and the square

square of cb and the product of ac and the cube of cb taken four times, and the

product of cb and the cube of ac taken four times, and the product of the square of

ac and the square of cb taken six times.

Its demonstration: Indeed, the square square of ab is the product of ab and its

cube and we explained in the previous proposition that the cube of ab is equal to

the cube of ac and the cube of cb and the product of ac and the square of cb taken

three times and the product of cb and the square of ac taken three times, and (we

know that) the product of the number ab and any number is equal to the product

of that number and ac and cb.
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Therefore, the product of the cube of ac by ac, which is the square square of ac, and

by cb and the product of the cube of cb by cb, which is the square square of cb, and

ac and the product of the surface of the square of cb and ac taken three times by ac

and by cb [and the product of the surface of the square of ac by cb taken 3 times by

ac and by cb] is the square square of ab.

But, three times the product of the surface of the square of ac and cb by ac (is equal

to) three times the product of the cube of ac and cb.

Similarly, three times the surface of the product square of ac and cb by cb (is equal

to) three times the product of the square of ac and the square of cb. Similarly, three

times the product of the surface of the square of cb and ac by ac is equal to three

times the product of the square of ac and the square of cb. And three times the

product of the surface of the square of cb and ac by cb is equal to three times the

product of the cube of cb and ac.

Therefore, the square square of ab is equal to the square square of ac and the square

square of cb, and the product of ac and the cube of cb taken four times, and the

product of cb and the cube of ac taken four times, and the product of the square of

ac and the square of cb taken six times. And this is what we wished to explain.

Mathematical Commentary

Let us go further in more difficult proofs and see how Al-Samaw’āl is going to prove

that:

(a + b)4 = a4 + b4 + 4a3b + 4ab3 + 6a2b2.
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Paraphrase: using symbolic algebra.11

Claim:

(a + b)4 = a4 + b4 + 4ab3 + 4a3b + 6a2b2.

Demonstration

We know that

(a + b)4 = (a + b)(a + b)3

and we saw in Proposition 3 that

(a + b)3 = a3 + b3 + 3ab2 + 3a2b.

Therefore

(a + b)4 = (a + b)(a3 + b3 + 3a2b + 3ab2).

We know that, for any number x, we have (a + b)x = ax + bx.

So we get

a3a + a3b + b3a + b3b + (3a2b)a + (3a2b)b + (3ab2)a + (3ab2)b = (a + b)4.

Here a3a = a4 and b3b = b4.

But (3a2b)a = 3a3b.

11As in Proposition 3, we have replaced Al-Samaw’āl’s line segments by algebraic symbols.
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Similarly (3a2b)b = 3a2b2 and (3ab2)a = 3a2b2 and (3ab2)b = 3ab3.

Thus

(a + b)4 = a4 + b4 + 4ab3 + 4a3b + 6a2b2

which is what we wished to explain.

2.7 Proposition Five
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Translation

The māl māl of the surface of every two numbers is equal to the surface of the māl

māl of each of them.

Let the numbers be the two numbers ā and b̄ and their surface be the number c̄.

Then, I say that the māl māl of c̄ is equal to the product of the māl māl of ā and

the māl māl of b̄.

Its demonstration: We multiply ā by itself and we get d̄ and we multiply ā by d̄

to get ē and we multiply ē by ā to get f̄ , then f̄ is māl māl of ā.

Let us multiply b̄ by itself and we get ḡ and let us multiply ḡ by b̄ to get h̄ and let

us multiply h̄ by b̄ to get ī then ī is māl māl of b̄.

We multiply c̄ by itself and we get j̄ and we multiply j̄ by c̄ to get k̄ and multiply k̄

by c̄ to get l̄ then l̄ is māl māl of c̄. Then, I say that l̄ is equal to the surface of f̄ and ī.

Therefore, because the two sides of c̄ are the two numbers ā and b̄ and the two sides

of j̄ are the two numbers d̄ and ḡ which are squared, we obtain that the ratio of the

surface c̄ to the surface j̄ is compounded of the ratio of ā to d̄ and the ratio of b̄ to

ḡ.

Thus, the ratio of ā to d̄ is equivalent to the ratio of d̄ to ē because the two numbers

ā and d̄ are multiplied by the (same) number ā and the result is d̄ and ē.

And the ratio of b̄ to ḡ is equivalent to the ratio of ḡ to h̄ because the two numbers

b̄ and ḡ are multiplied by the (same) number b̄ and the result is ḡ and h̄. [And the
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ratio of c̄ to j̄ is equivalent to the ratio of j̄ to k̄ because when the two numbers c̄

and j̄ are multiplied by the same number c̄ and the result is j̄ and k̄.] Therefore,

the ratio of 12 [j̄ to k̄] is compounded of the ratio of d̄ to ē and the ratio of ḡ to h̄.

But j̄ is the surface of d̄ and ḡ so k̄ is the surface of ē and h̄. This was evident from

the converse of Proposition 5 from Book VIII of The Elements.13 But, the ratio of

d̄ to ē is equivalent to the ratio of ē to f̄ and the ratio of ḡ to h̄ is equivalent to the

ratio of h̄ to ī. And the ratio of j̄ to k̄ is equivalent to the ratio of k̄ to l̄.

The ratio of k̄ to l̄ is compounded of the ratio of ē to f̄ and the ratio of h̄ to ī. As

when we multiply ē by h̄ we get k̄ so when we multiply f̄ by ī we get l̄. And this is

what we wished to explain.

Mathematical Commentary

First paraphrase: using modern symbols, but staying close to his style of reason-

ing.

Setting out

Let the two numbers be a and b, and let their product be c.

Then I say that c4 = a4b4.

12For mathematical reasons we substituted the ratio of c̄ to j̄ by the ratio of j̄ to k̄.
13Proposition 5 from Book VIII of The Elements: “Plane numbers have to one another the ratio

compounded of the ratios of their sides.”
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Demonstration

Construction

Let a2 = d and ad = e and ae = f , so that f = a4.

[Similarly] let b2 = g and bg = h and bh = i, so that i = b4.

And let c2 = j and cj = k and ck = l, so that l = c4.

Then I say that l = fi.

Explanation

[Now] since c = ab and j = dg, the ratio c : j is the ratio compounded of the ratios

a : d and b : g14.

But the ratio a : d is equal to the ratio d : e since a and d multiplied by a give d

and e [respectively]15.

[Similarly] the ratio b : g is equal to the ratio g : h since b and g multiplied by b give

g and h.

[Similarly, the ratio c : j is equal to the ratio j : k since c and j multiplied by c give

j and k.]

Therefore, the ratio [j : k] is the ratio compounded of the ratios d : e and g : h.

But j = dg so k = eh.

This follows from a converse to Elements VIII, 5.16

But the ratio d : e equals the ratio e : f ,

and the ratio g : h equals the ratio h : i,

and the ratio j : k equals the ratio k : l.

14by Elements VIII, 5
15by Elements VII, 17
16In this context, Elements VIII, 5 says that if j = dg and k = eh then the ratio j : k is the

same as the ratio d : e compounded with the ratio g : h. The converse which is needed here should
say that if the ratio j : k is the same as the ratio d : e compounded with the ratio g : h and if
j = dg, then k = eh.
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Hence the ratio k : l is the ratio compounded of the ratios e : f and h : i.

But [we know that] k = eh so we get l = fi

which is what we wished to explain.

Second paraphrase: using symbolic algebra.

We know that

ab

(ab)2
=

a

a2
b

b2

But

a

a2
=

a2

a3

and

b

b2
=

b2

b3

and similarly17

ab

(ab)2
=

(ab)2

(ab)3
.

Hence

(ab)2

(ab)3
=

a2

a3
b2

b3
.

But we know that (ab)2 = a2b2 so we must have 18 (ab)3 = a3b3.

Now

a2

a3
=

a3

a4

and

b2

b3
=

b3

b4

and similarly

(ab)2

(ab)3
=

(ab)3

(ab)4
.

17We have incorporated some changes to the manuscript at this point.
18We observe that in the above paragraph Al’Samaw’āl proved that (ab)3 = a3b3 using a different

method from the one already given in Proposition 2.
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Hence

(ab)3

(ab)4
=

a3

a4
b3

b4
.

But we know that (ab)3 = a3b3 so we must have19(ab)4 = a4b4.

Al-Samaw’āl creates a mathematical table in order to summarise the properties

specified in the proved theorem.

The table looks like:

@ X è 	P

k. È Ó
	
à

H. h   ¼

The Arabic letters are written in classical Arabic per column starting first row, third

row, and second row.

When he explains the equalities (properties) present on these three rows, Al-Samaw’āl

starts with the first row, third row, and second row. If we translate the table’s Arabic

letters into English letters, the table looks like:

a d e f

c j k l

b g h i

As we observe the alphabetical order is not preserved into the English alphabet as

it is into the Arabic classical alphabet.

19Once again it can be seen easily how we might use induction to prove that (ab)n = anbn.
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The table can be interpreted as follows:

First row:

d is obtained multiplying a by itself (d = a2).

e is obtained multiplying a by d (e = ad).

f is obtained multiplying a by e (f = ae).

f is the māl māl (square square) of a (f = a4).

Third row:

g is obtained multiplying b by itself (g = b2).

h is obtained multiplying b by g (h = bg).

i is obtained multiplying b by h (i = bh).

i is the māl māl (double square) of b (i = b4).

Second row:

j is obtained multiplying c by itself (j = c2).

k is obtained multiplying c by j (k = cj).

l is obtained multiplying c by k (l = ck).

l is the māl māl (double square) of c (l = c4).

Explanation:

We used the same order “First row”, “Third row”, and “Second Row” as Al-

Samaw’āl used in his table. As we observe, respecting the alphabetical order, the

first row deals with a, the third with b, and the second row with c.
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Making the above substitutions, the previous table is going to look like:

a a2 a3 a4

c c2 c3 c4

b b2 b3 b4

As we observe Al-Samaw’āl obtained some other properties like:

c is the surface of a and b (c = ab).

j is the surface of d and g (j = dg).

k is the surface of e and h (k = eh). (1)

l is the surface of f and i (l = fi). (2)

Al-Samaw’āl explains that the ratio of c to j is equal to the ratio of a to d times the

ratio of b to g.

c

j
=

a

d
× b

g
. (3)

Al-Samaw’āl explains again how he created his table as

a

d
=

d

e
(4)

and

b

g
=

g

h
. (5)

From (3), (4), and (5) we obtain that the ratio of c to j is equal to the ratio of d to

e multiplied by the ratio of g to h, which can be written symbolically as
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c

j
=

d

e
× g

h
.

To structure the information on the table, we can write that

a

d
=

d

e
=

e

f
.

b

g
=

g

h
=

h

i
.

c

j
=

j

k
=

k

l
.

Al-Samaw’āl proved as well that

k

l
=

e

f
× h

i
.

Observation: The above equality can be easily proved applying (1) and (2).

From the previous results (Section 2.7, First paraphrase, Mathematical commen-

tary), we obtain that:

j

k
=

d

e
× g

h
.

Therefore, although Al-Samaw’āl did not prove, we can prove that

j

k
=

c2

c3
=

1

c
. (6)

d

e
=

a2

a3
=

1

a
. (7)

g

h
=

b2

b3
=

1

b
. (8)



46

From the equalities (7) and (8), we obtain that

d

e
× g

h
=

1

a
× 1

b
=

1

ab
=

1

c
. (9)

From (6) and (9), we obtain that

j

k
=

d

e
× g

h
,

and the proof is done.

2.8 Cases n = 5 and Higher

Text
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�
Ó i¢�ÖÏ ðA

�
�Ó 	áK
X

�
Y« É¿ i¢�Ó I. ª» ÈA

�
Ó

	
à@ ú

�
Î« 	áëQ�. K


	
àA

�
J
J. Ë @ @

�	
Yë É

�
JÖß. ð

.
�
@
�
Y«A

�
�

	
¯ @

�	
Yë ú

�
Î«ð Q

	
k

�
B@ I. ª» ÈA

�
Ó ú




	
¯ A

�
ÒëYg@

ðA
�

�Ó I. ª» ÈA
�
Ó

	
àA

�	
¯

	á�
Ò�
�
®K. Õæ�

�
®K
 X

�
Y« É¿

	
à@ ú

�
Î« 	áëQ�. K


	
à@ é

	
JºÖß
 Y

�
®

	
¯ èA

�	
JÊ

�
¯ A

�
Ó Ñê

	
¯ 	áÓð

�Ô
	

g Q
	

k
�
B@ ÈA

�
Ó ÈA

�
Ó [ú




	
¯] A

�
Òî

	
DÓ Yg@

�
ð É¿ H. Qå
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�
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.
�
A
�	
®«A

�	
�Ó ½Ë

	
X @

�
ñÊ

�
JK
 A

�
Ó

�
ð

�
H@ �QÓ

�
èQå

�
�« Q

	
k

�
B@ I. ªºÓ ú




	
¯ A

�
Òî

	
DÓ Yg@

�
ð É¿ ©K. QÓ

�
ð

�
H@ �QÓ

Translation

By the same method it can be demonstrated that the māl cube of the surface of any

two numbers is equal to the surface of the māl cube of one of them by the māl cube

of the other, and so on in increasing order.

For a person who understands what we have done then that person can demonstrate

that for every number divided into two parts the māl cube is equal to the māl cube

of each of the two parts and the product of each one by the māl māl of the other
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one taken 5 times and the product of the square of each of them by the cube of the

other taken 10 times, and so on for the next ascending cases.

Mathematical Commentary

Observation: As can be observed from the above 2 passages, we can see that

mathematical induction is present again in Al-Samaw’āl’s work. This leads us to

recognise Al-Samaw’āl’s contribution towards the development of mathematical in-

duction. Although Al-Samaw’āl did not use symbols like for example the concept of

“n” or “k”, he used in a certain sense the language and modes of expression available

to him in order to make us think that he knew about mathematical induction.

From a symbolical point of view, although Al-Samaw’āl did not prove it, he observed

that the same methods could be used to show that:

(1) (ab)5 = a5b5,

and for n>5,

(ab)n = anbn.

(2) (a + b)5 = a5 + b5 + 5a4b + 5ab4 + 10a2b3 + 10a3b2,

and for n>5,

(a + b)n = an + bn + nan−1b + nabn−1 + · · · .

In conclusion, Al-Samaw’āl tells us that we are going to observe the coefficients of

the development of each binomial. In fact, as we are going to see, Al-Samaw’āl will

build his table starting with (a + b)1 and going up to (a + b)12.
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2.9 The Methodology of How to Construct the Table
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Table 3: Table of the coefficients of the binomial expression (a + b)n with n from 1

to 12 in modern Arabic writing.

Translation

Let us now mention a principle for knowing the number of times that are necessary

to multiply these degrees by each other for any number divided into two parts.

Al-Karaj̄ı says: in order to achieve that, you place “one” on a table and “one” below

it, then move the first one into another column and add the first one to the one below

it, then you obtain “two” and you put the two under the [translated] one, and you
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place the second one below the two, then you have one, two, and one. This indicates

that for every number consisting of two numbers and, if you multiply each of them

by itself once, since the two ends are one and one, and if you multiply one of them

by the other twice, since the middle term is two, we obtain the square of that number.

Then we transfer the one in the second column into another column, add the first

one [from the second column] to the two [under it], we obtain three and we write

it under the one [in the third column]. Therefore, we add the two [from the second

column] to the one below it, we obtain three, we write it below the first three, [and

then write one under this three]. Thus, we obtain the third column which contains:

one, three, three, and one. This teaches us that the cube of any number consisting

of two numbers is the cube of each of them and the product of each of them by the

square of the other taken three times.

Then, we transfer the one from the third column to another column, then we add

the “one” (from the third column) to the three below it, we obtain four to be writ-

ten under the one, then we add three to the three below it, we obtain six to be

written under the four, add the second three to the one below it, we obtain four to

be written under the six, then we transfer the one under the four. Then, the result

from this is another column which contains the numbers: one, four, six, four, and

one. This teaches us that the construction of māl māl from a number consisting of

two numbers is the māl māl of each of them, since the “one” is in the two ends,

then you multiply each number by the cube of the other taken four times, since the

“four” follows ones at the two ends, since the root multiplied by the cube is māl

māl, then, you multiply the square of one of them by the square of the other taken

six times, since the six is the middle and since the square multiplied by the square

is māl māl.
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Then, if we transfer the one from the fourth column into the fifth column and add

the one (in the fourth column) to the four below it, and four to six below it, six to

the four below it and the four to the one below it, then we write down the results

of that continuously respectively under the transferred one and end by writing the

remaining one, we obtain from that the fifth column, its numbers are: 1, 5, 10, 10,

5, and 1. This teaches us that for any number divided into two parts, its māl cube

is equal to the māl cube of each part, since the two ends are one and one, and the

product of each of them by the māl māl of the other taken 5 times, since fives are in

the immediate vicinity of the two end ones and the product of the square of each one

by the cube of the other taken 10 times, since the numbers 10 are in the immediate

vicinity of the two fives. Each of these terms belong to the type māl cube as the

product of the root by māl māl and the product of the cube by māl both give māl

cube.

Therefore, we can continue the algorithm to determine the number of māls and cubes

of any power that we wish to obtain and below we are going to write the associated

diagram.

Manuscript copies depict the table as follows:
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x x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12

1 3 6 10 15 21 28 36 45 55 66

1 4 10 20 35 56 84 120 165 220

1 5 15 35 70 126 210 330 495

1 6 21 56 126 252 462 792

1 7 28 84 210 462 924

1 8 36 120 330 792

1 9 45 165 495

1 10 55 220

1 11 66

1 12

1

Table 4: Table of the coefficients of the binomial expression (a + b)n with n from 1

to 12
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3 Discussion: Induction and the Binomial Theo-

rem

3.1 General Ideas about Al-Samaw’āl’s Contribution in a

Middle Eastern and Worldwide Mathematical Context

We focused mostly on Al-Samaw’āl’s contribution in the development of Mathe-

matics in Islam and worldwide mostly because of the high demand for information

about Islamic Mathematics in the European world. Al-Samaw’āl’s work has not

been translated extensively in English, especially when it is about Pascal’s triangle

and this is the reason why we explored this side.

Regarding Al-Samaw’āl’s participation in the development of the binomial theorem,

we are inclined to say that he did the pioneering research in this area. He proved

the steps for n = 3 up to n = 4 and afterwards he specified the binomial expansion

for n = 5 and continued for the case n > 5.

It is excellent for posterity to be able to read in English what an Islamic mathe-

matician like Al-Samaw’āl could create in terms of new and different mathematical

concepts. Analysing Al-Samaw’āl’s Right Trapezium, we observe the coefficients of

the binomial expansion from (a+ b)1 up to (a+ b)12. Al-Samaw’āl does not just give

the table, he explains how the coefficients have been created. His method of pre-

senting the coefficients of the binomial (a+ b)n is different and unique and occurred

before Pascal created Pascal’s Triangle in a similar manner. This method consists

in Al-Samaw’āl’s Right Trapezium.

From an induction point of view, Al-Samaw’āl has constructed the initial steps of

verifying for n = 3 up to n = 4. Al-Samaw’āl suggests that the proofs can be done
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for n = 5 and for n > 5. He specifies that the mathemtical process can continue for

ascending order cases above 5.

Al-Samaw’āl gives in his table the coefficients up to (a + b)12, which represents a

complex verification of the induction steps. Al-Samaw’āl specifies in writing that

the process can continue for greater powers. Analysing Al-Samaw’āl’s work, we can

say that for his historic times, Al-Samaw’āl’s work is very innovative.

In his book Eléments D’histoire des Mathématiques published in 1960 Bourbaki con-

siders that the principle of mathematical induction had been clearly conceived and

employed for the first time by the Italian F. Maurolico in the 16th century. In spite

of this, we would be tempted to think that because of the historic context and be-

cause of the difficult communication, the information and in our case mathematical

science could not travel among continents. It was definitely easier for the informa-

tion to circulate inside the same continent.

We would claim that Al-Samaw’āl is the father of mathematical induction. Math-

ematical induction is present in Al-Samaw’āl’s work on his right trapezium and

around it, in the sense that Al-Samaw’āl does the verification part up to (a + b)12

and specifies in writing that the process can keep going.

Mathematical induction is also present in Al-Samaw’āl’s proof of

n∑
i=1

i2 =
n∑

i=1

i +
n∑

i=1

i(i− 1),

which is written in Al-Samaw’āl’s original way as:



55

The sum of the squares of the numbers that follow one another in natural

order from one is equal to the sum of these numbers and the product of

each of them by its predecessor [1, page 127].

The proof is done for n = 4.

3.2 Selected Applications from Al-Samaw’āl’s Arithmetical

Treatise Al-Qiwāmı̄ f̄ı Al-Hisāb Al-Hind̄ı

In his treatise Al-Qiwāmı̄ f̄ı Al-Hisāb Al-Hind̄ı Al-Samaw’āl used the table of bi-

nomial coefficients to solve problems posed later in his work. His techniques were

notably accurate. He used this technique to extract the side of a square or a cube,

introducing the problem as follows. To use Al-Samaw’āl’s own words:

When you extract the side of a square or a cube or any other marātib20

and you know the integer part, I mean the closest side of square, cube, or

another martāba21, which is the closest to the required side and if there

is a remainder left, it indicates that the side is a surd (irrational).

(Next, we are going to obtain the decimal part of the number), taking

the numbers from the rule of that side and multiplying each integer part

to the associated martāba (power) by the numbers given by rule (namely

the table of binomial coefficients).

(Finally), you add all new results and increase the sum by 1. The new

quantity is the denominator of the remainder. [13, pages 110-114; au-

thor’s own translation]

20The meaning of the Arabic word marātib is the plural for power.
21The meaning of the Arabic word martāba is the singular for power.
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So, Al-Samaw’āl states a general rule for approaching the non-integer part (decimal

part) of the rational root of an integer by fractions.

Al-Samaw’āl illustrates this with some examples. For instance in Book Al-Qiwāmı̄

f̄ı Al-Hisāb Al-Hind̄ı, Chapter 15, Section 5, Extracting the Fractional Part of an

Irrational Side which Is Closely Approaching the Integer, he describes:

1. Extracting the square root of 60, we find the closest (perfect) square

less than 60 which is 49 and we subtract 49 from 60 in order to get 11.

Next, we multiply 2 from the rule of 22 māl by 7, (which is
√

49) and get

14. Adding 1 to 14, we obtain 15. Then, we determine 11 parts of 15

which is in fact the ratio between 11 and 15. In conclusion
√

60 is 7 and

11 parts of 15 [13, pages 110-114; author’s own translation].

For the case n = 2, Al-Samaw’al’s binomial coefficients in his table are 1, 2, and 1

which he uses to extract the second root.

In other words he seeks x such that

x2 = 60

and his calculations proceed as follows:

√
49 = 7;

60− 49 = 11;

7× 2 = 14;

14 + 1 = 15;

22Please refer to the column associated with x2 from Al-Samaw’āl’s table of the coefficients of
the binomial expression.
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11

15
' 0.733...3.

Thus
√

60 ' 7.733...3.

Modern techniques show that
√

60 = 7.745966, so that Al-Samaw’āl’s technique is

accurate to 2 significant figures.

Another example, which reveals the precision of Al-Samaw’āl’s techniques is as fol-

lows:

2. (An interesting example) is extracting the side of a cube of (volume)

10 (that is 3
√

10), we find the closest (perfect) cube less than 10 which is

8 and we subtract 8 from 10 in order to get the integer part 2. We take

3 and 3 from the line of cube23 and multiply the first 3 by the integer

part 2 and the second 3 by the square of the integer part 22. We add

it all together and increase it by 1 in order to get 19. This 19 is the

denominator of the remainder. Then, we determine 2 parts of 19 which

is in fact the ratio between 2 and 19. In conclusion 3
√

10 is 2 and 2 parts

of 19 [13, pages 110-114; author’s own translation].

For the case n = 3, Al-Samaw’al’s binomial coefficients in his table are 1, 3, 3, and

1 which he uses to extract the third root.

In other words he seeks x such that

x3 = 10

and his calculations proceed as follows:

3
√

8 = 2;

23Please refer to the column allocated to x3 from Al’Samaw’āl’s table of the coefficients of the
binomial expression.
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10− 8 = 2;

3× 2 = 6;

3× 22 = 12;

6 + 12 = 18;

18 + 1 = 19;

2

19
' 0.105263157.

Thus 3
√

10 ' 2.105263157.

Modern techniques show that 3
√

10 = 2.15443469, so that Al-Samaw’āl’s technique

is accurate to 2 significant figures.

3. Another example is extracting the māl māl root (the root of order

4) of 40. We will find the closest (perfect) base of a martāba (power)

of order 4 less than 40 which is 2 (as 24 = 16). The remainder is 24

(as 40 − 16 = 24). We find the numbers of the rule of māl māl as 4,

6, and 4.24 Then, we multiply the first number 4 by the integer part

2, we multiply the second number 6 by the square of the integer part

which is 4, and the third number 4 by the cube of the integer part which

is 8. Adding these values all together and increasing by 1, we obtain

65, which represents the denominator of the remainder. In conclusion,

the side will be 2 and 24 parts of 65 [13, pages 110-114; author’s own

translation].

For the case n = 4, Al-Samaw’al’s binomial coefficients in his table are 1, 4, 6, 4,

and 1 which he uses to extract the fourth root.

24Please refer to the column of x4 from Al-Samaw’āl’s table of coefficients for the binomial
expression.
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In other words he seeks x such that

x4 = 40

and his calculations proceed as follows:

4
√

16 = 2;

40− 16 = 24;

4× 2 = 8;

6× 22 = 6× 4 = 24;

4× 23 = 4× 8 = 32;

8 + 24 + 32 = 64;

64 + 1 = 65;

24

65
' 0.369230769.

Thus 4
√

40 ' 2.369230769.

Modern techniques show that 4
√

40 = 2.514866859, so that Al-Samaw’āl’s technique

is accurate to one significant figure.

4. (Let us) extract the māl cube root (the root of order 5) of 250. We

will determine the closest (perfect) māl cube less than 250 which is 3 (as

35 = 243). The remainder is 7 (as 250− 243 = 7). We find the numbers

of the rule of māl cube as 5, 10, 10, and 5.25 Then, we multiply the first

number 5 by the integer part 3, the second number 10 by the square of

3, the third number 10 by the cube of 3, and the fourth number 5 by the

25This affirmation is based on the column of x5 from Al-Samaw’āl’s table regarding the coeffi-
cients of the binomial expression.
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māl māl of 3 (the fourth power of 3). Adding these values all together

and increasing by 1, we obtain 781, which represents the denominator of

the remainder. In conclusion, the side will be 3 and 7 parts of 781, and

the same rule followed for the other marātib (powers) [13, pages 110-114;

author’s own translation].

For the case n = 5, Al-Samaw’al’s binomial coefficients in his table are 1, 5, 10, 10,

5, and 1 which he uses to extract the fifth root.

In other words he seeks x such that

x5 = 250

and his calculations proceed as follows:

5
√

243 = 3;

250− 243 = 7;

5× 3 = 15;

10× 32 = 90;

10× 33 = 270;

5× 34 = 405;

15 + 90 + 270 + 405 = 780;

780 + 1 = 781;

7

781
' 0.00896287.
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Thus 5
√

250 ' 3.00896287.

Modern techniques show that 5
√

250 = 3.017088168, so that Al-Samaw’āl’s technique

is accurate to 2 significant figures. According to Al-Samaw’āl, the same algorithm

applies for powers greater than 5.

3.3 Al-Samaw’āl’s Way of Inspiring Other Generations of

Mathematicians

There are 3 separate themes where different scientists talk about Al-Samaw’āl’s

work.

1) Authors in the Islamic tradition who knew Al-Samaw’āl’s work and used it.

For example Al-Samaw’āl’s book Al-Bāhir f̄ı Al-Jabr represents an inspiration for

Al-Kāsh̄ı’s book Miftah-Al-Hisab (Key of Arithmetic), published in 1427 [7, page 93].

2) Authors in the Western tradition who did not know Al-Samaw’āl but who dupli-

cated some of his ideas.

There are plenty of European mathematicians who discuss the same mathematical

and generally speaking scientific results as Al-Samaw’āl. The French mathematician

Blaise Pascal proved by complete mathematical induction (the basis (base case) and

the inductive step) that for k ≤ n:

Ck
n =

n(n− 1) · · · (n− k + 1)

k!
,
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which makes us think that the research done by plenty of mathematicians before

Pascal has been improved in time until Pascal did the complete induction.

Pascal organised the binomial coefficients into a triangle called Pascal’s (Tartaglia’s)

Triangle. Pascal’s Triangle is a fixed picture in which the coefficients of the binomial

expression (a + b)n are organised in a triangle. What is interesting to mention is

that Al-Karaj̄ı discovered the same triangle (which we are inclined to call Al-Karaj̄ı’s

Triangle) and did the initial research in this area more than 500 years before Pascal

discovered it (this happened after 1007). The Islamic scientist Al-Samaw’āl created

a right trapezium (which we can call Al-Samaw’āl’s Right Trapezium) where we

can observe the coefficients of all binomials starting from (a + b)1 to (a + b)12. His

complex table, which is organised as a right trapezium, has the coefficients (numbers)

organised extremely precisely from a mathematical point of view. In reality the

History of Mathematics tells us that European mathematicians had little access to

the research done by Islamic mathematicians for many years because many Islamic

mathematical scripts have been lost. This is the reason why we would think that

Al-Karaj̄ı’s Triangle was ‘reinvented’ by Pascal. Later on, the scientist Isaac Newton

(1642-1727) found the general formula for expanding out the binomial (a+ b)n. This

formula is given by

(a + b)n = an + C1
na

n−1b + C2
na

n−2b2 + · · ·+ Ck
na

n−kbk + · · ·+ Cn−1
n abn−1 + bn

=
n∑

k=0

Ck
na

n−kbk, 0 ≤ k ≤ n, k, n ∈ N,

and is known as the Binomial Theorem.

The French mathematician Levi ben Gerson (1288-1344) worked on combinatorial

theorems and their proofs. Two of the most important theorems are the ones that
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deal with associativity and commutativity of multiplication. In the proofs of these

theorems ben Gerson introduces, more explicitly than the previous mathematicians,

the most important parts of the method of mathematical induction, what he defined

as the process of “rising step-by-step without end”. In general, when ben Gerson

uses such a proof, he first proves the inductive step that makes the transition from

k to k + 1, then notes that the process begins at some small value of k, then finally

states the complete result.

3) Modern writers who have commented on Al-Samaw’āl’s work.

The most prominent research regarding Al-Samaw’āl is done by the Arabic math-

ematicians Salah Ahmad and Roshdi Rashed in their book Al-Bāhir en Algèbre

d’As-Samaw’al, where Al-Samaw’āl is presented from a bibliographical and scien-

tific point of view [1]. This is not the only book where Rashed presents Al-Samaw’āl

as he also presented Al’Samaw’āl’s research in recent publications [15 and 16].

Al-Samaw’āl’s work is outlined into Victor J. Katz’s book A History of Mathe-

matics. In this book we can see Al-Samaw’āl’s contribution to serious mathematical

work like the law of exponents, the division of polynomials, and Pascal’s triangle [8].

Al-Samaw’āl’s results are present in another book written by Victor J. Katz, The

Mathematics of Egypt, Mesopotamia, China, India, and Islam. In this book we

observe again Al-Samaw’āl’s contribution to techniques involving the binomial co-

efficients and Pascal’s triangle [9].

Another source of inspiration is the Dictionary of Scientific Biography where Al-

Samaw’āl has his own space [7].
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Al-Samaw’āl’s research is present into J. L. Berggren’s book Episodes in the Math-

ematics of Medieval Islam, a book published under the prestigious editor Springer-

Verlag. In Episodes in the Mathematics of Medieval Islam, we can see how Al-

Samaw’āl worked on the law of exponents and on the division of polynomials. All

of Al-Samaw’āl’s work is interesting in its own originality [2].

For example, Karine Chemla discusses in the source Chinese and Arabic Mathe-

matical Writings from the journal Arabic Sciences and Philosophy, volume 4 (1994)

about Al-Samaw’āl’s research [3]. As we already specified, Professor Franz Rosen-

thal presented Al-Samaw’āl’s work into the article Al-Asturlāb̄ı and As-Samaw’al

on Scientific Progress [17]. William C. Waterhouse published the article Note on a

Method of Extracting Roots in As-Samaw’Al which is another great representation

of Al-Samaw’āl’s methods of doing Mathematics [19].

In conclusion, from the piece of research presented above, we can say that Al-

Samaw’āl can be regarded as the “father” of mathematical induction and his work on

binomial expansions was advanced through a type of thearetical reasoning, demon-

stration, and examples that were developed and presented in a unique way.
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ARABIC-ENGLISH GLOSSARY

We specify about those words which have mathematical or technical meaning in the

treatise.

two 	á�

	
J
�
K @

four
�
éªK. P@

to encompass  A
�

g@

to obtain ©
	
®
�
KP@

to extract h. Q
	

j
�
J�@

remainder ú



�
¯A

�
K.

Proof, demonstration 	
àA

�
ëQK.

under, below �
Im�

�
'

construction I. J
»Q
�
K

three
�
é
�
KC

�
�
K
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root P
	
Yg.

result, sum, product ©Ôg
.

kind, type �
	
�k.

to get É�k

result É�A
�

g

to get, to obtain, to produce h. Q
	

k

five
�
é�Ô

	
g

to add X@
�	P

six
�
é
�
J�

thing (x), variable (x) Zú


æ
�
�

to increase, to ascend Yª�

integer hA
�
m�� éªÔg

.
iJ
m

��
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surd, irrational ZA
�
ÖÞ�

multiplication, product H. Qå
	
�

to double
	

­
�
ª

	
�

side ©Ê
	

�

number X@
�
Y«@ éªÔg

.
X

�
Y«

ten
�
èQå

�
�«

to converse �
�
º

�
«

to suppose 	
��Q

�	
¯

rule 	
àñ

	
KA

��
¯

to divide Õæ
�
�
�
¯

power ø
�

ñ
�
¯ éªÔg

.

�
èñ

�
¯

fraction Pñ�» éªÔg
.

Qå�»
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each, every É¿

since, but 	
àñºË

quantity (x2), square/radicand (x2) ÈA
�
Ó

example ÈA
�
�
JÓ

equal É
�
JÓ

times (adverb) �
H@ �QÓ

square (2) ©K. QÓ

measurement
�
ékA

�
�Ó

surface i¢�Ó

is equal to/equals ðA
�

�Ó

cube (x3) I. ªºÓ

is consisting of/consists of
	

­Ë



ñ
�
Ó
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ratio
�
éJ.�

	
�

point
�
é¢

�
®

	
K

to transfer É
��
®

�	
K

one Yg@ð


