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SEMICLASSICAL PROJECTIVE PLANES 

OVER HALF-ORDERED FIELDS 

GUNTER F. STEINKE 

Department of Mathematics & Statistics 
University of Canterbury, Christchurch, New Zealand 

ABSTRACT. This paper concerns a generalization of Moulton planes constructed by 
J. J ak6bowski [2]. We consider those planes over ordered fields and solve the isomor­
phism and collineation problem posed in [2]. 

1. Introduction and notation 

J. J ak6bowski [2] recently constructed a family of affine planes that generalize 
Pierce's construction [5] of Moulton planes. His affine planes are defined over half-

- ( or pseudo-) ordered fields, that is, fields IF with a multiplicative subgroup P of 
index two. In particular, P contains all non-zero squares of IF so that a finite half­
ordered field cannot have characteristic two. Elements of P and of the other coset 
of non-zero elements are called positive and negative respectively. For finite fields 
IF= GF(q), the Galois field of order q, P consists precisely of the non-zero squares 
of IF. A half-ordered field is called an ordered field, if P is closed under addition. In 
particula~, such fields have characteristic zero and -1 is negative. 

A mapping f from a half-ordered field IF into itself is called order-preserving or 
order-reversing ifandonlyif(f(x)-f(y))(x-y)-1 > Oor(f(x)-f(y))(x-y)-1 < 0, 
respectively, for all distinct x, y E IF. Given two permutations f, g of a half-ordered 
field IF that are either both order-preserving or both order-reversing Jak6bowski's 
construction of the incidence structure C f,g(IF) is as follows. The point set is IF x IF 
and lines are the vertical lines Le = {( c, y) I y E lF} for c E IF, the usual Euclidean 
lines of non-negative slope La,b = {(x, ax+ b)I x E lF} for a, b E IF, a~ 0, and lines 
of the form La,b = {(x,g- 1(af(x) + b))I x E IF} for a, b E IF, a< 0. Indeed, C1, 9 (1F) 
is an affine plane if and only if each function x 1-t g(ax + b) - cf(x) from IF to itself 
is surjective for all a, b, c E IF, c < 0 < a; see [2, Theorem 1]. 

Each affine plane C f,g(lF) extends to a projective plane. We denote the points 
at infinity of lines La,b and Le by (a) and ( oo) respectively. The line at infinity is 
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denoted by Lrx:i· Dualising this plane by La,b H- (a,b), Le H- (-c) for c E IF, and 
LX) H- ( oo) yields a projective plane Dh,g(IF): here the point set is 

IF x IF U {( m) I m E IF} U { ( oo)} 

and lines are the line at infinity 

Loo = { ( m) I m E IF} U { ( oo)}, 

the vertical lines 
L c = {( c, y) I y E IF} u {( CX))}' 

and the non-vertical lines of the form 

{(x, mx + t)I x E IF, x ~ O} U {(x, h(m)x + g(t))I x E IF, x < O} U {(m)} 

where his defined by h(m) = - f(-m). 
The mapping 

{ 
(x, y), 

(x, y) f--l, ( h(l)-h(O) x y-h(O)x-g(O)) 
g(l)-g(O) ' g(l)-g(O) ' 

(m) H- (m) 

( CX) ) f--l, ( CX) ) 

if x ~ 0 

if x < 0 

is an isomorphism from Dh,9 (1F) to Dh,,g1(!F) where g'(t) = :rn=;~~~ and h'(m) = 
~\7}::;g]. Furthermore, g' and h' are both order-preserving and both fix O and 1. 
So it is no loss of generality to assume that g and h are both order-preserving and 
that both fix O and 1. We always make this assumption in the remainder of this 
paper and we denote the collection of all order-preserving permutations of IF that 
fix O and 1 by rrt,1 (IF). 

With a slight modification one can likewise show that each plane Cf ,g (IF) is 
isomorphic to a plane Cf' ,g' (JF) with f', g' E rrt, 1 (IF). 

A direct consequence of the dualisation process is the following. 

1.1. Theorem. Let IF be a half-ordered field and let Dh,g(IF) be the incidence 
structure described above with g and h both fixing O and 1. Then Dh,g(!F) is a 
projective plane if and only if h and g are order-preserving permutations of lF such 
that 

(1) each function x H- g(ax + b) + ch(-x) from lF to itself is surjective for all 
a, b, c E IF, c < 0 < a. 

Note that the mapping defined in (1) above is a permutation of IF. The injectivity 
follows from the fact that hand g are order-preserving. We always assume that (1) 
is satisfied in the remainder of this paper. 
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To that end let rr< 1) (IF) be the collection of all pairs (g, h), g, h E rrt 1 (IF), that 
satisfy (1). ' 

For lF = R the planes Dh,g(R) are isomorphic to the planes Ph,g constructed by 
the author in [11]; cf. [11, 2.3]. Condition (1) of the foregoing theorem is satisfied 
for any two order-preserving homeomorphisms g, h of R; see [2, §2 Proposition 1]. 
The resulting projective planes are topological projective planes in the sense that 
the point set and the set of lines carry Hausdorff topologies such that the geometric 
operations of joining two distinct points by a line and intersecting two distinct lines 
in a point are continuous; cf. [9]. We call the planes Ph,g semi-classical projective 
planes because the geometries and topologies on A+ = R + x R and A- = R - x R 
are the same as on the corresponding subsets of the (topological) real Desarguesian 
projective plane. For these planes the isomorphism problem has been completely 
solved, cf. [11, §3,4]. 

Having this construction in mind, the non-vertical lines of Dh,g(IF) are 'discon­
tinuous' at the points of intersection with Lo. To avoid this we use a different and 
more symmetrical model of the planes Dh,g(IF). The new description is obtained 
via the isomorphism 

( ) { 
(x,y), 

x,y r-t (g-l(x),g-1(y)), 

(m) r-t (m) 

(oo) r-t (oo). 

if x 2 O 

if x < 0 

The vertical lines remain the same and the non-vertical lines of the projective plane 
Ph,g(IF) now have the form 

Lm,t ={(x,mx +t)I x E IF,x 2 O} 

U {(x,g-1(h(m)g(x) +g(t)))I x E IF,x::; O} U {(m)}. 

In the usual coordinatization of a projective plane with respect to the frame 

v = ( oo ), u = (0), o = (0, 0), and e = (1, 1) 

(see [4, 1.5]) the ternary operation is given by 

{
ax+ b, 

r(a,x, b) = g-1(h(a)g(x) + g(b)), 
if x 2 0 

if x < 0 

Thus non-verticallines can be described as {( x, r( a, x, b)) I x E IF} U {(a)} for a, b E IF. 
Furthermore, Ph,g(IF) = Pah,ag(IF) for each order-preserving automorphism a of IF. 

We also call the planes Ph,g(IF) semi-classical projective planes since the geome­
tries induced on A+ = P x IF and A_ = N x IF, where P and N denotes the set of 
positive and negative elements of lF respectively, are the same as on the correspond­
ing subsets of the Desarguesian plane over IF. We call A+ and A_ the positive and 
negative half-plane respectively. Furthermore, if IF is an ordered field, the induced 
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order-topologies on A+ and A_ are the same as on the corresponding subsets of the 
Desarguesian plane. 

Since Moulton planes are self-dual, it is not surprising that Moulton planes occur 
in both families C f,g(IF) and Ph,g(IF). The generalized Moulton planes constructed 
by W. A. Pierce [5] can be found among the planes Ph,g(IF) with g being the identity, 
or more generally, g being an order-preserving automorphism of IF. Such a plane 
with g = id is Desarguesian if and only if h = id; see [5, Theorem 4]. In order 
to distinguish between different generalizations of Moulton planes we use the term 
Pierce-Moulton plane for the planes constructed by W.A. Pierce in [5]. What is 
usually refered to as a Moulton plane and all isomorphic models will be called a 
Pickert-Moulton plane following W.A. Pierce [7]; see Definition 1.6 below. 

We rather consider the projective planes Ph,g(IF) than their duals CJ,g(IF). All 
results can easily be reinterpreted in terms of the planes CJ,g(IF). 

In [6] and [7] W. A. Pierce determined the general form of isomorphisms between 
non-Desarguesian Pierce-Moulton planes and of all collineations of such planes. The 
non-Desarguesian Moulton plane over the field with nine elements plays a special 
role. Each collineation of this plane of order nine fixes ( oo) and L00 , but Lo may 
be mapped to a different vertical line. For detailed information about collineations 
of this plane we refer to [6, §3] and [7, §3]. Each isomorphism between the other 
non-Desarguesian Pierce-Moulton planes maps ( oo) to the corresponding point at 
infinity except when IF is an ordered field and the planes are Pickert-Moulton planes. 
We shall see that a similar picture emerges for ordered semi-classical planes. 

1.2. Definition. Let IF be a half-ordered B.eld and let q E IF, q > 0. Then the map 
µq : IF ----+ IF is denned by 

{ 
x, 

µq(x) = 
qx, 

if x ~ 0 

if x < 0 

It readily follows that µq defined as above is an order-preserving permutation of 
IF if and only if (1-x)(q-x) > 0 for all x < 0. In that case, condition (1) of 
Theorem 1.1 is satisfied for h = µq and g = id, that is, we obtain a semi-classical 
projective plane Pµq,id(IF). Moreover, every µq, q > 0, is order-preserving if IF is 
an ordered field. Also note that µ1 = id is always order-preserving. However, we 
conjecture that IF must be an ordered field if µq is order-preserving for sufficiently 
many q > 0. If every µq, q > 0, is order-preserving, then we obtain the following. 

1.3. Proposition. Let IF be a half-ordered B.eld, IF#- GF(3). Suppose that every 
µq, q > 0, is order-preserving. Then IF is ordered with respect to the given half­
ordering. In particular, IF is inB.nite. 

Proof. By assumption and the preceding remark, (1-x)(q-x) > 0 for all x < 0 < q. 
In particular, (1 - x)(x2 

- x) > 0 for all x < 0. Hence, -x > 0 for all x < 0. This 
implies that -1 < 0. Substituting x = -1, one then obtains 2(q + 1) > 0 for all 
q > 0. 

Suppose that 2 < 0. Then u 2 + 1 < 0 for all u #- 0. For u #- 0, 1 let q = ( u - 1 )2
, 

x = u 2 + 1. Then 2u3 = (1 - x)(q - x) > O; hence u < 0 for all u #- 0, 1. However, 
this implies IF= GF(3). 
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Therefore 2 > 0 and q + 1 > 0 for all· q > 0. Hence P is closed under addition. 
This shows that IF is ordered with respect to the given half-ordering. D 

1.4. Definition. We call two permutations f E rrt 1 (IF) and f' E rrt 1 (JE) afflnely 
' ' equivalent to each other if and only if there are order-preserving isomorphisms</>, 'ljJ 

from IF onto lE ( that is, <p and 'ljJ are :Held isomorphisms that map positive elements of 
IF to positve elements oflE and negative elements to negative ones) and a, b, c, d E IF, 
a, c # 0, such that 

f'(ef>(x)) = 'ljJ(cf(ax + b) + d) for all x E IF. 

For lE = IF, this de:Bnes an equivalence relation on rrt 1 (IF). 
Let A(IF) denote the collection of all permutatio~s f E rrt,1 (IF) such that f is 

afflnely equivalent to an order-preserving permutation µq (see De:Bnition 1.2) for 
some q E IF, q > 0. 

Note that the definition of A(IF) uses only those permutations µq that are order­
preservmg. 

1.5. Remark. The equivalence class of the identity is the set Aut+(JF) of all 
order-preserving automorphisms of IF. Furthermore, it readily follows that if a 
permutation f' E rrt 1 (JE) is afflnely equivalent to an order-preserving automorphism 

' of IF, then f' is an order-preserving automorphism of lE. 
Since µ 1 = id is the only additive permutation among the mappings µq, q > 0, 

the additive permutations in A(IF) are precisely the order-preserving automorphisms 
of IF. 

After these preliminaries we can define Pickert-Moulton and Pierce-Moulton 
planes. 

1.6. Definition. We call a semi-classical plane 'Ph, 9 (1F) with (h,g) E rr(l)(JF) a 
Pickert-Moulton plane if and only if g E Aut+(JF), h E A(IF) or h E Aut+(JF), 
g E A(IF). 

We call a semi-classical plane Ph,9 (1F) with (h,g) E rr(l)(JF) a Pierce-Moulton 
plane if and only if g E Aut+(JF), or h E Aut+(JF). 

Pickert-Moulton planes are direct generalizations of Moulton's original plane over 
JR (the plane 'Pµ 2 ,id(JR)); cf. [3]. Each such plane is isomorphic to a plane 'Pµq,ia(IF) 
by means of isomorphisms of types 2.1, 2.2, 2.3, 2.4; see section 2. The planes 
described in [7, §4, Theorem 2) are the Pickert-Moulton planes with g = id over an 
ordered field. 

In Pierce-Moulton planes that are not Pickert-Moulton planes the 2-set {Lo, L=} 
is mapped to the corresponding 2-set of lines; cf. [6], [7]. Furthermore, each such 
isomorphism is a composition of isomorphisms of types 2.1, 2.2, 2.3, 2.4. Similarly, 
it was shown in [11] that for IF= JR each isomorphism between semi-classical planes 
that are not Pierce-Moulton planes is a composition of isomorphisms of types 2.1, 
2.3, and 2.4. Isomorphisms of the form 2.2 do not occur because JR admits no 
other automorphism than the identity. Moreover, Ph,9 (JR) with h,g E IIt,1(JR) is 
Desarguesian if and only if g = h = id. 
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Neither the algebraic-geometric method of Pierce [6], [7] nor the topological local 
approach of Steinke [11] for the the solution of the isomorphism and collineation 
problem applies to general semi-classical planes. Instead we shall use a 'local' 
algebraic-geometric method (that is, we study suitable Desarguesian subsets) and 
we eventually have to restrict ourselves to planes over ordered fields. But then a 
surprisingly similar picture will emerge. 

2. Isomorphisms that map {L0 ,L00 } onto {L~,L~} 

There are four fundamental types of isomorphisms between semi-classical projec­
tive planes all of which map the point ( oo) in one plane to the corresponding point 
( oo') in the other plane. 

2.1. Isomorphisms induced by linear maps: 

{ 

(a1x, a2y + a3x + a4), 

(x,y) I-* (( ')-l(h(~)-h(=-;;-) ( )) ( ')-l(g(y)-h(=-;;-)g(x)-g(~))) 
g (l-a4)- (~) g X , g (l-a4)- (~) ) g a2 g a2 g a2 g a2 

( m) I-* ( a2 m + a3 ) 
a1 

(oo) I-* (oo) 

where ai E IF, a1 > 0, a2 =/:. 0, and 

h( a1 x-aa) _ h( -a3) 
h' ( ) a2 a2 

X = h( a1 ~aa) _ h( ::a) ' 

g( x-a4) _ g( -a4) 
I ( ) a2 a2 

g X = (l-a4)- (-a4) g a2 g a2 

This map yields an isomorphism from Ph,g(IF) to Ph,, 9,(IF). 

x 2: 0 

x<O 

2.2. Isomorphisms induced by isomorphisms from a half-ordered field IF to a half­
ordered field IE: 

(x,y) I-* (a(x),a(y)) 

( m) I-* ( a( m)) 

(oo) I-* (oo) 

where a is an order-preserving isomorphism from IF to IE. This map yields an 
isomorphism from Ph,g(IF) to P ahcx-1,aga-1 (IE). 

2.3. Isomorphisms that interchange the roles of the two half-planes: Let n E IF, 
n < 0. Then 

( ) { 
(g(h-1(n)x),g(y)), 

x,y I-* 
(ng(x),g(y)), 

(m) I-* (h(m)) 
n 

(oo) I-* (oo) 

if x 2: 0 

if x < 0 
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is an isomorphism from Ph,g(IF) to Pii,,g-1 (IF) where the permutation his defined by 
~ _ 1 -1 
h(x) - h-l(n)h (nx). 

2.4. Isomorphisms that interchange the roles of the two lines Lo and Lex:,: 

{ 

( 
1 1!..) if x > 0 x' x , 

( x y) f--7 (h-1(-1-) h-1 ( g(y) )) if x < 0 
' g(x) ' g(x) ' 

(y), if x = 0 

(m) f--7 (O,m) 

(oo) f--7 (oo). 

This map yields an isomorphism from Ph,g(IF) to P 9 ,h(IF). 

Note that all four types of isomorphisms yield planes whose describing permu­
tations again are order-preserving and fix O and 1. The pairs of the describing 
permutations even belong to II(l)(IF) or rr(l)(IE). This can directly be seen for the 
resulting permutations in isomorphisms of types 2.1, 2.2 and 2.4; for isomorphisms 
of type 2.3 it is best to use Theorem 1.1. Furthermore, corresponding describing 
permutations under isomorphisms of types 2.1 and 2.2 are affinely equivalent to 
each other. 

2.5. Lemma. Let a be an additive bijection from the half-ordered field IF onto 
the field IE such that a( ab) = a( a )a( b) for all a E IF and for all b in a subgroup S 
of the multiplicative group P of positive elements of index at most two. Suppose 
that S = P if IF c:: GF(9), the field of order nine. Then a is an isomorphism from 
IF onto IE. 

Proof. Let K be the collection of all x E IF such that a( ax) = a( a )a( x) for all a E IF. 
It readily follows that K is a subfield of IF. Furthermore, K contains S which has 
index 2 or 4 in the multiplicative group of IF. However, this can only occur if K = IF 
or IF c:: GF(9). Since in the latter case S = P, we must also have K = IF. This 
shows that a is an isomorphism between the fields IF and IE. D 

2.6. Proposition. Let,1 beanisomorphismfromPh,g(IF) toPh,, 9 ,(IE) with(g,h) E 
rr(l)(IF) and (g', h') E rr(l)(IE) that maps the points of the frame v, u, o, e in Ph,g(IF) 
( defined as in section 1) to the corresponding points of the frame v', u', o', e' in 
Ph,, 9,(IE). ThenIFandIEareisomorphicfields. IfIF~ GF(9), then,1isinducedbyan 
order-preserving isomorphism from IF to IE as in 2.2 unless Ph,g(IF) is Desarguesian. 

Proof. When IF '.:::::'. GF(9) the projective plane Ph,g(IF) has order nine. Hence 
Ph' ,g' (IE) has the same order and IE must be a field of order nine, that is, IE c:: 
GF(9) c:: IF. We therefore assume that IF~ GF(9) in the sequel. 

Let T and T 1 denote the respective ternary operations obtained by coordinatizing 
Ph,g(IF) and Ph, ,g' (IE) relative to the frames v, u, o, e and v', u', o', e', respective­
ly. An isomorphism ,1 as above is given by (x,y) f--7 (a(x),a(y)) where a is an 
isomorphism between the ternary fields of Ph,g(IF) and Ph' ,g' (IE), that is, 

a(T(a,x,b)) = T1(a(a),a(x),a(b)) for all a,b,x E IF. 
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In particular, a(O) = 0 and a(l) = 1. Substituting x = 1, we obtain 

a(a + b) = a(r(a, 1, b)) = r'(a(a), 1,a(b)) = a(a) + a(b) for all a, b E IF. 

This shows that a : IF -+ IE is additive. 
Let S be the collection of all positive elements of IF whose image under a is also 

positive. For x E S one obtains 

a(ax) = a(r(a,x,O)) = r'(a(a),a(x),O) = a(a)a(x) 

for all a E IF. It follows that Sis a subgroup of Pr of index at most two. Lemma 2.5 
then shows that a is an isomorphism between the fields IF and IE. The corresponding 
isomorphism between the projective planes has the form 2.2 but we do not yet know 
whether or not a is order-preserving. 

We now assume that there is an u E IF, u > 0 such that a( u) < 0. Since La,b is 
mapped to La(a),a(b), we have 

(2) g'(a(a)a(u) + a(b)) = g'(a(au + b)) = h'(a(a))g'(a(u)) + g'(a(b)) 

for all a, b E IF. For b = 0 we find 

(3) l( a( a)a( u)) = h'( a( a))g' ( a( u )) . 

Thus the identity (2) becomes g'(a(a)a(u) + a(b)) = g'(a(a)a(u)) + g'(a(b)), i.e. 

g'(x + y) = g'(x) + g'(y) for all x,y E IE. Moreover, h'(x) = 9~~(;[:?) for all x E IE. 
Hence g' and h' are additive. 

Let S' = {y E IEI y > O,a-1 (y) > O}. This is a subgroup of PE of index at 
most two. Let y E S', i.e. y = a(v) > 0 for some v > 0. Then vu > 0 and 
a( vu) = a( v )a( u) < 0. We can therefore substitute uv for u in (3) and with 
x = a(u), y = a(v) we obtain 

h'(xy)g'(a(u)) = g'(xya(u)) = g'(xa(vu)) 

= h'(x)g'(a(vu)) = h'(x)g'(ya(u)) 

= h'(x)h'(y)g'(a(u)) . 

Thus h' ( xy) = h' ( x )h' (y) for all y E S'. So h' is an automorphism of IE by Lem­

ma 2.5. Now g'(x) = h'(a(u))g'(a(u)) = ~:~:~:jjh'(x) = h'(x), because g'(l) = 
h'(l) = 1. Hence g' = h' is an order-preserving automorphism of IE and Ph,, 9,(IE) = 
P(g')-lh' ,id(IE) = Pid,id(IE) is Desarguesian. But then Ph,g(IF) must also be Desar­
guesian. This shows that a( u) > 0 for all u > 0, when Ph,g(IF) is non-Desarguesian. 
One similarly finds that a( u) < 0 for all u < 0 in this case. So a is order-preserving, 
when Ph,g(IF) is non-Desarguesian. 0 

I 
1,--·-· 
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2.7. Remark. (a) When IB' = GF(9), an isomorphism as in Proposition 2.6 is 
induced by a GF(3)-linear map that fixes each element in GF(3); cf. [6, §3]. In 
fact, every GF(3)-linear map can occur. 

(b) Not every field automorphism is order-preserving. For example, consider the 
field IB' = Q( v'2) ~ JR with the Euclidean order. Define a : IB' --+ IB' by a( x + yy'2) = 
x-yy'2 for x, y E Q. Then a is an automorphism ofIB' which is not order-preserving: 
e.g. v'2 > 0 but a( v'2) = -v'2 < 0. 

(c) The mapping (x,y) t-t (a(x),a(y)) extends to a collineation of the Desar­
guesian plane Pid,id(IB') for every automorphism a of IB'; a may or may not be 
order-preserving. Moreover, this collineation fixes the points of the frame v, u, o, e. 
The collineation group of the Desarguesian plane over IB' is the group of semi-linear 
mappings PI' L(3, IB'). This group is flag-transitive. Moreover, the stabilizer of a fl.ag 
(p, L ), p E L, is still transitive on the line pencil through p minus the line L. This 
is in strong contrast to the situation in semi-classical non-Desarguesian planes. 

2.8. Theorem. Let Ph,g(IB') and Ph,, 9,(IE) with (g, h) E rr(l)(IB') and (g', h') E 

rr(l)(IE) be non-Desarguesian semi-classical planes and assume that IB' ~ GF(9). 
Then each isomorphism "( from Ph,g (IB') to Ph' ,g' (IE) that maps {Lo, L 00 } onto 
{Lb, L~} is a composition of isomorphisms of types 2.1 to 2.4. 

Proof. Using an isomorphism of Ph' ,g' (IE) of type 2.4 if necessary, one can assume 
that L 0 and L 00 in one plane are taken to the respective lines in the other plane. 
Applying an isomorphism of type 2.3 if necessary, we can then ensure that the 
point (1, 0) in Ph,g(IB') is mapped to a point in the positive half-plane of Ph,, 9,(IE). 
Finally, applying an isomorphism of Ph' ,g' (IE) of type 2.1, we may assume that the 
points (0, 0), (1, 0), and (1, 1) in Ph,g(IB') are mapped to the corresponding points in 
Ph,, 9 ,(IE). But now we have an isomorphism that maps each point of the frame v, 
u, o, e to the corresponding point of the frame v', u', o', e1

• This is achieved by an 
isomorphism of type 2.2 according to Proposition 2.6. D 

3. Desarguesian planes and the Pierce-Moulton planes 

We say that a projective plane satisfies Desargues' (c,L;L1,L2 ,L3 )-theorem 
where L, L1, L2, L3 are four distinct lines through the point c if and only if for any 
two triangles with vertices =/= c on L1, L2, L3 and two pairs of corresponding sides 
intersecting on L the third pair of sides also intersects at a point of L. This is a spe­
cial form of Desargues' ( c, L )-theorem which is equivalent to the ( c, L )-transitivity 
of the projective plane; cf. [4]. (A projective plane is (p, L )-transitive, where p is a 
point and L is a line, if and only if the group of all central collineations with centre 
p and axis L is transitive on each central line minus p and the intersection with L. 
A projective plane is called (p,p)-transitive if and only if it is (p,L)-transitive for 
all lines L passing through p.) With this notation we have 

3.1. Lemma. The projective plane Ph,g(IB') with (g, h) E II(l)(IB') satisfies De­
sargues' (( oo ), L 00 ; La, Lb, Lc)-theorem for some a, b > 0, c < 0 if and only if g is 
additive. 

i. 
I 

i 
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Proof. Assume that Ph,g(IF) satisfies Desargues' (( oo ), L00 ; La, Lb, Lc)-theorem with 
a, b > 0, c < 0. Fors, t E IF, s =/:- 0, we consider the triangle with vertices v1 = ( a, t), 
Vz = (b,m(b - a)+ t), V3 = (c,t), where m = b..:.a(bh-1

(-:~~~) + s) =/:- 0. Then 
v1v2 = Lm,t-ma and V3V1 = Lo,t, Fixings, one finds that the slopeµ of the line VzV3 

does not depend on t by Desargues' (( oo ), L00 ; La, Lb, Lc)-theorem. Fort = 0 one 
finds v2v3 = Lh-l(-..il.U.) . For arbitrary t we therefore obtain v 2 v 3 = Lh-l(-~) 

g(c) ,s g(c) ,r 

with r = s + t = g-1(g(s) + g(t)). Hence 

g(s + t) = g(s) + g(t) for alls, t E IF, s =/:- 0. 

Since this identity trivially holds true for s = 0, the permutation g is additive. 
Conversely, if g is additive, one has g-1(h(m)g(x) + g(t)) = g-1(h(m)g(x)) + t. 

It readily follows that Ph,9 (1F) is even (( oo ), L00 )-transitive. D 

3.2. Corollary. The projective plane Ph,9 (1F) with (g, h) E rr(l)(IF) is ((oo),L00 )­

transitive if and only if g is additive. 

Using an isomorphism of type 2.4, which interchanges the roles of L00 and Lo, 
one readily obtains 

3.3. Corollary. The projective plane Ph, 9 (1F) with (g, h) E rr< 1)(1F) is ((oo), (oo))­
transitive (that is, Ph,g(IF) is a dual translation plane with translation centre ( oo )) 
if and only if g and h are both additive. 

3.4. Lemma. The projective planePh,9 (1F), (g, h) E rr(l)(IF), admits a ((0, 0), L 00 )­

homology "( that takes the point ( 1, 0) to 

(a) (p, 0) where p > 0 if and only if g(px) = g(p)g(x) for all x E IF; 
(b) ( n, 0) where n < 0 if and only if his an automorphism of IF and nh-1 (g( x)) = 

g- 1(g(n)h(x)) for all x E IF. 

Proof. A ((0, 0), L 00 )-homology"( must have the form ( x, y) i--+ ( a( x ), a(y )) for some 
permutation a of IF. ,y((O, y)) can be found as the point of intersection of Lo with 
the line passing through ,y((l, 0)) and the point at infinity of the line through (1, 0) 
and (0, y). Since a line Lm,t is mapped to Lm,a(t), one obtains functional equations 
for a, g, and h. 

Assume that (1, 0) is mapped to (p, 0), p > 0. Then one finds that a(y) = py for 
all y E IF. Since each line Lm,o is fixed, one obtains 

g-1(h(m)g(px)) = pg-1 (h(m)g(x)) 

for all x :S 0. Specializing h(m) = /x) yields g(px) = g(p)g(x). Let u be 

determined by g(u) = h(m)g(x); then g-1(g(p)g(u)) = g-1(g(p)h(m)g(x)) = 
g-1(h(m)g(px)) = pu. This shows that g(pu) = g(p)g(u) for all u E IF. 

Conversely, when that condition is satisfied, the mapping (x,y) i--+ (px,py) is 
indeed a ((0, 0), L00 )-homology. This proves part (a). 
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Assume that 1 ((1, 0)) = (n, 0) where n < 0. Now one finds that a(y) 
g-1(-g(n)h(-y)) for ally E IF. Since 1 (Lm,t) = Lm,a(t), one has 

a(mx + t) = g-1(h(m)g( a(x )) + g( a(t)) 

11 

for all x ~ 0. Thus h(-mx -t) = h(m)h(-x) + h(-t). Evaluating both sides at 
x = 1, t = 0 yields h(-m) = h(-l)h(m) for all m E IF. Form= -1 it follows that 
h(-1) = -1. Therefore h(-m) = -h(m) for all m E IF. Thus 

h(mx + t) = h(m)h(x) + h(t) for all x ~ 0. 

Lemma 2.5 then shows that h must be an automorphism of IF. It also follows that 
a(y) = g-1(g(n)h(y)). 

Since 1
2 is a homology as in part (a), we have on one hand a 2 (x) = a 2 (l)x = 

g-1 (g(n)h(n))x. On the other hand, a 2 (x) = g-1(g(n)h(g- 1 (g(n)h(x)))). Thus 
g(n)h(n)g(x) = g(g-1(g(n)h(n))x) = g(n)h(g-1(g(n)h(x))) because g-1(g(n)h(n)) 
corresponds to the constant pin part (a). Hence nh-1(g(x)) = h-1(h(n)g(x)) = 
g- 1 (g(n)h(x)) 

Conversely, when that condition is satisfied, it readily follows that the mapping 
(x,y) H (g- 1(g(n)h(x)),g- 1 (g(n)h(y))) = (nh- 1 (g(x)),nh- 1 (g(y))) is indeed a 
( ( 0, 0), L 00 )-homology. This proves part (b). D 

We call a semi-classical plane ((0, 0), L 00 )-semi-transitive if and only if the group 
of all ((0, 0), L00 )-homologies is transitive on the positive points of each central 
line, that is, given two points p, q E A+ that are on a line through (0, 0) there 
is a ((0, 0), L00 )-homology that takes p to q. Each Pierce-Moulton plane has that 
property; cf. (6, Lemma 2]. ((0), Lo)-semi-transitivity is defined analogously. 

3.5. Corollary. a)Aprojectiveplane'Ph,g(IF) with (g,h) E rr(l)(IF) is((O,O),L00 )­

semi-transitive if and only if g( xy) = g( x )g(y) for all x, y E IF, y ~ 0. 
b) 'Ph,g(IF) is ( (0, 0), L00 )-transitive if and only if 

(1) h E Aut+(IF), 
(2) (g- 1 h)2 = µq for some q > 0 where µq is as in Definition 1.2, and 

( ) ( { 
g ( x) g ( y), if x ~ 0 or y ~ 0 

3 g xy) = . 
g(q)g(x)g(y), ifx,y<O 

Proof. (a) is an immediate consequence of Lemma 3.4(a). 
For (b) consider the identity nh-1 (g(x)) = g-1(g(n)h(x)) which is true for all 

x, n E IF, n < 0. Replacing h-1 (g(x)) by u, one obtains g(nu) = g(n)hg- 1 h(u) for all 
u, n E IF, n < 0. Using the multiplicative rule for gin ( a), one finds g( u) = hg-1 h( u) 
for all u ~ 0. When u < 0, then g(n)hg-1h(u) = g(nu) = g(un) = g(u)hg-1h(n); 
thus hg- 1 h(u) = Ag(u) where A= hg:::t) > 0. Let q = g-1(\); then q > 0 and 
the above properties (2) and (3) follow. D 
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3.6. Remark. If we define f = h-1g with g, h as in Corollary 3.5.(b), then 
f is order-preserving, J2 = µ1, and f(xy) = f(x)f(y) for all x ~ 0 or y ~ 0. 

q 

Let r = - f ( -1 ); then r > 0. The multiplicative property above gives us l q 

-f2(-1) = -f(-r) = -f(r)f(-1) = r f(r). 
Suppose that f ( x) -=f. x for some x ~ 0. Then 

0 
< J(f(x)) - f(x) = x - f(x) = _

1 
f(x)-x f(x)-x 

because f is order-preserving. Similarly, if we assume that there is an x < 0 such 
that f ( x) -=f. rx, we now find 

0 
< J(f(x)) -f(rx) = }x -f(r)f(x) = rf(r)x -f(r)f(x) = -J(r) 

f(x)-rx f(x)-rx f(x)-rx · 

Thus we must have -1 > 0 in both cases. So when we assume in addition that 
-1 is negative, the above argument shows that f(x) = x for all x ~ 0 and that 
f( x) = rx for all x < 0, i.e. f = µr, In this situation Ph,g(IF) is a Pickert-Moulton 
plane. 

The condition -1 < 0 is essential. For example, each finite field of odd square 
order possesses an involutory automorphism O' -=f. id and -1 > 0. Hence 0'

2 = id = 
µ1 and r = 1, but O' -=f. µ1. Furthermore, O' is order-preserving. 

3.7. Corollary. The projective plane Ph,g(IF) with (g,h) E rr(l)(IF) is ((oo),L00 )­

transitive and ((O,O),L 00 )-semi-transitive if and only if g is an order-preserving 
automorphism of IF. In this case Ph,g(IF) = Pg-ih,id(IF) is a Pierce-Moulton plane. 

Proof. This is an immediate consequence of Lemma 2.5, Corollary 3.2 and Corollary 
3.5.(a). 0 

3.8. Remark. In a finite field IF of odd order rrt 1 (IF) consists precisely of the 
automorphisms of IF; cf. [l]. Hence, a semi-classical projective plane over such a 
field is isomorphic to a Pierce-Moulton plane P O:',id(IF) for some order-preserving 
automorphism a of IF. Furthermore, each such plane is a dual translation plane 
according to Corollary 3.3 and is ((0, 0), L00 )- and ((0), Lo )-semi-transitive. 

If IF has prime order, then IF admits only the identity as an automorphism. 
Therefore both describing permutations h, g must be the identity and a semi­
classical plane over such a field must be Desarguesian. 

3.9. Theorem. The projective plane Ph,g(IF) with (g, h) E rr(1)(1F) is Desarguesian 
if and only if h = g is an order-preserving automorphism of IF. 

Proof. Assume that Ph,g(IF) is Desarguesian. In particular, Ph,g(IF) is (( oo ), L00 )­

transitive and ((O,O),L00 )-semi-transitive. By Corollary 3.7 g is an automorphism 
of IF and Ph,g(IF) = Pg-ih,id(IF). But such a Pierce-Moulton plane is Desarguesian 
if and only if g-1 h = id according to [5, Theorem 4]. 

Conversely, if g = h is an order-preserving automorphism of IF, it readily follows 
that Ph,g(IF) = Pg-ih,id(IF) = Pid,id(IF) is Desarguesian. 0 



SEMICLASSICAL PROJECTIVE PLANES 13 

3.10. Remark. Let IF= GF(9), the field of order nine. By Remark 3.8 rrt 1 (IF) = 
{id, a} where a is the unique involutory automorphism of GF(9). Hence, ~ semi­
classical projective plane over GF(9) is either Desarguesian or isomorphic to a 
Pierce-Moulton plane Pa,id(IF). In particular, each semi-classical plane of order 
nine is a dual translation plane and both describing permutations are additive. 

4. Isomorphisms that map ( oo) to ( oo') 

In this section we determine isomorphisms between semi-classical planes that 
map ( oo) to ( oo'). In the dualised planes these isomorphisms correspond to 'affine' 
isomorphisms, that is, isomorphisms between the affine planes Cf ,g. This in turn 
allows us to determine the affine collineation of those planes. 

4.1. Proposition. If an isomorphism "/ from Ph,g (IF) to Ph' ,g' (IE) with (g, h) E 

rr(l) (IF) and (g', h') E rr<1) (IE) maps the point ( oo) onto ( oo') and maps L 00 onto 
L'oo but fails to map Lo onto L~, then g, h, g' and h' must be additive. 

Proof. We first consider the case that IF'.::::::'. GF(9). Then Ph,g(IF) and Ph,,g,(IE) have 
order nine. Hence g, h, g', h' are additive by Remark 3.10. We therefore assume 
that IF '/:. G F( 9) in the sequel. 

Assume that Lo is not mapped onto L~. Up to isomorphisms of type 2.3 and 
2.1 we may assume that Lo, Li, Lo,o, and Lo,1 are mapped to Li, L~, L~,o, and 
L~ 1 , respectively. (Under such isomorphisms the additivity of the describing per­
m~tations is preserved.) Then"/ has the form (x,y) f-t (a(x),,B(y)) with bijections 

. a, ,8 : IF --+ IE; furthermore, a(O) = 1, a(l) = 0, ,8(0) = 0, ,8(1) = 1. Because 
1((0, t)) = (1, ,B(t)) and 1((1, m + t)) = (0, ,B(m + t)), the line Lm,t is mapped to 
LP(t)-,B(m+t),,B(m+t)' Fixing m, the slopes of the image lines 1(Lm,t) cannot depend 
on t. Thus ,B(m + t) = ,B(m) + ,B(t), that is, ,8 is additive and Lm,t is mapped to 

L'_,B( m) ,,B( m+t) · 
We first show that it is not possible that a( x) 2: 0 for all x 2: 0 and that a( x) < 0 

for all x < 0. Suppose the contrary. As 1(Lm,o) = L'_,B(m),,B(m) we find 

(4) ,B(mx) = -,B(m)a(x) + ,B(m) 

for all x 2: 0. In particular, for m = 1, one obtains a( x) = 1 - ,8( x) for all x 2: 0. 
Substituting this expression for a into ( 4) yields ,8( mx) = ,8( m ),8( x) for all m, x E IF, 
x 2: 0. Hence ,8 is an isomorphism from IF onto IE by Lemma 2.5. Similarly, one 

obtains from 1(L1,o) = L'_1,1 that a(x) = (g')- 1
(

91
~~~;)-

1
) for all x < 0. Because 

g' and h' are order-preserving, a(x) < 0 is equivalent to 1 - ,B(x) < 0 for x < 0. 
We define the sign of an element x E IF by sign(x) = 1, -1, or O if x is positive, 

negative, or zero, respectively. Obviously, the sign function is multiplicative. Then 

sign( x) = sign( a( x)) for all x E IF, x # 0, 1 if and only if 

sign( x) = sign(l - ,8( x)) for all x E IF, x # 0, 1 if and only if 

sign(l - x) = sign(,8( x)) for all x E IF, x # 0, 1. 
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We thus obtain 

1 = sign(,B(x),B( ! )) = sign(,B(x))sign(,B( ! )) 
x x 

= sign(l - x)sign(l - !) = sign(-! )sign((l - x)2) 
x x 

=sign(-!) . 
x 

This implies -f > 0 for all x =J. 0, 1 - a contradiction. 
This proves that there must be some a > 0 such that a( a) < 0 or some c < 0 

with a(c) > 0. In the former case Desargues' ((oo),L00 ;L0 ,L1 ,La)-theorem is 
valid in Ph,9 (IF). Hence Desargues' (( oo'), L'oc,; L~, L~, L~(a))-theorem must be valid 
in Ph,,9 ,(IE). It follows from Lemma 3.1 that g1 is additive. Since 1(Lm,-ma) = 
L'_/3(m),/3((l-a)m) passes through 1((a,O)) = (a(a),O) for every m E IF, one obtains 

h'(-,B(m))g'(a(a)) + g'(,8((1-a)m)) = 0 for all m E IF. Thus h'(x) = g'(;(a))g'(x­
,B(a,B-1(x))) and h' is additive because g' and ,Bare additive. But then Ph,,9,(IE) is 
(( oo'), ( oo'))-transitive. Therefore Ph,g(IF) must be (( oo ), ( oo ))-transitive and g and 
h are additive by Corollary 3.2. 

In the latter case where one has some c < 0 with a( c) > 0 the roles of Ph,g (IF) and 
Ph' ,g' (IE) are interchanged and one similarly finds that all describing permutations 
are additive. D 

Using isomorphisms of type 2.4 one obtains 

4.2. Corollary. If')' maps the point ( oo) onto ( oo') and 1( {Lo, L00 }) and { L~, L'oc,} 
have precisely one line in common, then g, h, g1

, and h' must be additive. 

4.3 General hypotheses in the remainder of this note: 
IF and IE are ordered fields. The corresponding projective planes Ph,g(IF) and 
Ph' ,9 , (IE) with (g, h) E rr(l) (IF) and (g', h') E rr(l) (IE) are ordered planes in the 
sense of [10); see also [4, §9) or [13). 

The relation of separation between pairs of points on a projective line is invariant 
under projectivities. It is naturally inherited from the order of the coordinatizing 
field with which affine lines can be identified. An isomorphism 'Y from Ph,g(IF) 
to Ph' ,g' (IE) is order-preserving if it preserves the relation of separation between 
pairs of points on a line. In particular, the isomorphisms of types 2.1 to 2.4 are 
order-preserving. 

4.4. Lemma. Let B = {(x, y)I x :s; 1, y ~ O} U {(m)I m :s; O} U {( oo )}. If the 
subgeometry of Ph,g(IF) induced on B is Desarguesian, then h is an automorphism 
of IF and g(x) = h(x) for all x ~ 0. 

Proof. For c < 0 and m > 0, m =J. 1, we consider the lines Lo,o, L1,-c, Lm,-mc· 
Each triangle with vertices 

c-a 
(a+ --,0) E Lo,o, (a,a - c) E L1,-c and (a,m(a - c)) E Lm,-mc 

c- r 
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is in B for O < a < H;-c, r > 0. The three sides of such a triangle intersect 
L 00 at (oo),(c - r),(m(c - r)) E B. Varying a, c and r so that c - r remains 
constant, one obtains perspective triangles. Therefore, the lines Lo,o, L1,-c, Lm,-mc 
must intersect at Lo,o n L1,-c = {(g-1(-g(-c)), O)} by Desargues' theorem. Hence 
g(-mc) = h(m)g(-c) for all c < 0 < m. Substituting c = -1 yields h(m) = g(m) 
for all m 2: 0. Furthermore, 

(5) g(mp) = g(m)g(p) for all m,p 2: 0. 

Let 
v1 =(0,t), v2=(a,t), V3=(c,g-1(h(-l)g(c)+g(t+a))) 

for O < a :S 1, c < 0, t 2: 0. Then vi, v2, V3 belong to B. The sides of the triangle 
formed by these points are 

V1 V2 = Lo,t, V2V3 = L-1,a+t, V3V1 = Lµ,,t 

whereµ= h-1 (h(-1) + g(a~~)c)g(t)) < 0. Fixing O < a :S 1 and c < 0, one finds 
that µ does not depend on t by Desargues' theorem. Thus 

g(a + t) = g(a) + g(t) for all t 2: 0, 0 :Sa :S 1. 

Together with (5) this implies that g(x + y) = g(x) + g(y) for all x,y 2: 0. 
We now consider the lines Lo,b, Lh-1(-1),a+b, Lm,g-l(g(b)-h(m)g(a)) with b 2: 0, 

0 <a::::; 1, a< -h-1(-1), m < h-1(!~!~) = !, m "I- O,h-1(-1). These lines 

must intersect at (s(g- 1(g(a) + g(b)) - b), b) = (sa, b), wheres= - h-l(-l) > 0, by 

Desargues' theorem: the triangles with vertices ( u, b ), ( u, g-1( -g( u) + g( a+ b ))), 
(g- 1(dg(1:ta)),g-1(h(m)d~l (g(u) - g(a)) + g(b))) have sides intersecting L00 at 
(oo), (h-1(dh(m))), and (h-1(dh(m) + d - 1)), respectively. Here d and u are to 

be chosen such that dm < 0, d(h(m) + 1) < 1, and dg(1:/(a) < 0, e.g. d = 2, 

u < 0 for m < h-1(-1), 1 < d < h(~)+l' u < 0 for h-1(-1) < m < 0, and d < 0, 

u < g-1
( g~)) for O < m < !· Under these restrictions the triangles are perspective 

for all suitable u < 0. Thus 

g(b - msa) = g(b) - h(m)g(a). 

Substituting b = 0 yields h( m) = - g( ~(a)a) for all m :S 0. Let O < m < ! ; then 
g(b - msa) = g(b) - h(m)g(a) = g(b) - g(m)g(a) = g(b) - g(ma) > 0. Therefore 
b - msa > 0 and g(b) = g(b - msa) + g(ma) = g(b + (1 - s)ma). Since g is a 
permutation, one has s = 1, that is, h(-1) = -1. Furthermore, h(m) = _ g(~~a) = 

-g(-m) for all m :S 0. 
So far we have obtained that g( x + y) = g( x) + g(y) and g( xy) = g( x )g(y) for all 

{
g(x), ifx>O 

x,y 2: 0 and that h(x) = ( ) . - . For x > 0 we now have h(-x) = 
-g -x ' 1f x < 0 

-g(x) = -h(x). Together with the additive and multiplicative properties of g and 
the identity g( x) = h( x) for x 2: 0 this shows that h must be an automorphism of 
IF. D 
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4.5. Proposition. If I maps ( oo) to ( oo') and also maps L00 onto L'oo but fails 
to map L0 onto L~, then 'Ph,g(IF) and 'Ph,,g,(IE) must be Desarguesian. 

Proof. As in the proof of Proposition 4.1 we may assume that the lines Lo, L1, Lo,o, 
and Lo,1 are mapped to Li, L~, L~,o, and L~,1, respectively. Then B = {(x, y)I x::::; 
l,y ~ O} U {(m)I m::::; O} U {(oo)} is mapped to a subset of A~ U {L~,L'oo}, and 
so the induced geometry on B must be Desarguesian. Hence his an automorphism 
of IF and g( x) = h( x) for all x ~ 0 by Lemma 4.4. Furthermore, g is additive by 
Proposition 4.1. The additivity of g then gives us g(x) = -g(-x) = -h(-x) = h(x) 
for all x < 0. This shows that g = h is an automorphism of IF. So 'Ph,g(IF) and 
consequently 'Ph' ,g' (IE,) are Desarguesian by Theorem 3.9. 0 

4.6. Remark. (a) In the situation of Proposition 4.1 both planes 'Ph,g(IF) and 
'Ph' ,g' (IE,) are dual translation planes with translation centres ( oo) and ( oo') respec­
tively. 

(b) The non-Desarguesian Moulton plane of order nine provides an example of 
a non-Desarguesian semi-classical dual translation plane that admits collineations 
that fix ( oo) and L00 but map Lo to a different vertical line; cf. [6, §3]. 

( c) In [6, Lemma 4] W.A. Pierce proved by using the ((0, 0), L 00 )-semi-transitivity 
of his planes that an isomorphism between non-Desarguesian Pierce-Moulton planes 
that maps ( oo) to ( 00

1
) and L00 to L'oo must also map Lo to L~. Furthermore, if 

the Pierce-Moulton planes have order greater than nine, each such isomorphism is a 
composition of isomorphisms of types 2.1 and 2.2; see [6, Theorem 1]. In particular, 
such an isomorphism is 'order-preserving'. 

(d) For the bijections a and /3 in the proof of Proposition 4.1 one can show that 
a= 1- /3. Since Lm,o is taken to L'_/3(m),/3(m)' one obtains the functional equations 

/3(mx) = /3(m)/3(x) for all x ~ O,a(x) ~ 0 

f3(g- 1 (h(m)g(x))) = f3(m)/3(x) for all x < O,a(x) ~ 0 

g1(/3(m(l - x))) = h'(/3(m))g'(/3(1- x)) for all x ~ O,a(x) < 0 

and all m E IF. If in addition -1 < 0 < 2 in both fields, the second and third 
identity imply that g = h and g1 = h'. In view of Lemma 2.5 we conjecture that 
/3, g, g1 are also multiplicative, that is, g, g1 are automorphisms. Therefore, and 
because of the situtation in Pierce-Moulton planes described in (c), we conjecture 
that Proposition 4.5 holds true for a considerably larger class of half-ordered fields 
IF and IE, than the class of ordered fields. 

4.7. Corollary. If I maps (oo) to (oo') and 1({L0 ,L00 }) and {L~,L'oo} have 
precisely one line in common, then 'Ph,g(IF) and 'Ph',g'(IE,) must be Desarguesian. 

4.8. Proposition. If, maps (oo) to (oo') and 1 ({L0 ,L00 }) and {L~,L'oo} have 
no line in common, then 'Ph,g(IF) and 'Ph,,g,(E) must be Desarguesian. 

Proof. Assume that 1 (Lc) = L~ and 1 (La) = L'oo with c, d -=/=- 0, oo. Using isomor­
phisms of types 2.3 and 2.4, if necessary, we may assume that c < d, 0 < d and that 
points with abscissa between c and d are taken to points of the positive half-plane 
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A+ and points with abscissa less than c or greater than d are taken to points of 
the negative half-plane A~. Thus the sub geometry induced on both collections of 
points is Desarguesian. In particular, Desargues' (( oo ), L=; La, Lb1 , LbJ-theorem is 
valid for all a < 0, c and d < b1, b2. Hence g is additive by Lemma 3.1. 

Now, if we choose a > d, we can find perspective triangles with vertices whose 
abscissa are less than c and negative on the lines Lo,o, L1,-a, Lm,-g-l(h(m)g(a)) with 
m -j. 0, 1. Consequently, these lines must intersect at (a, 0) by Desargues' theorem. 
Thus 

g(ma) = h(m)g(a) for all m,a E IF,a > d. 

Given p > 0, we choose a > d, i; we have then pa > d. Thus h(mp)g(a) = 

g(mpa) = h(m)g(pa) = h(m)h(p)g(a). This shows that h(mp) = h(m)h(p) for all 

m,p E IF, p > 0. Moreover, g(m) = g(r;:a) = h(1:)g(a) = f~:~h(m) = h(m) since 
g(l) = h(l) = 1. Hence g = h and g = h is an automorphism of IF according to 
Lemma 2.5. Thus Ph,g(IF) and consequently Ph,,9,(E) are Desarguesian by Theorem 
3.9. D 

An immediate consequence of Theorem 2.8, Corollary 4. 7 and Proposition 4.8 is 
the following 

4.9. Theorem. If,' is an order-preserving isomorphism between non-Desarguesian 
semi-classical projective planes over ordered fi.elds that maps the point ( oo) onto 
(oo'), then 'Y maps {L0 ,L=} onto {L~,L~}. Furthermore, such an isomorphism is 
a composition of isomorphisms of types 2.1 to 2.4. 

5. Isomorphisms that do not map ( oo) onto ( oo') 

Such isomorphisms exist for Pierce's planes if and only if IF and IE: are order­
isomorphic ordered fields and both planes are Pickert-Moulton planes (see Def­
inition 1.6). In this section we assume the hypotheses 4.3. Furthermore, ')' is an 
order-preserving isomorphism from Ph,g(IF) to Ph,,9,(E) (where (g,h) E rr(l)(IF) and 
(g',h') E II(l)(JE:)) that fails to map the point (oo) onto (oo'). 

5.1. Proposition. If 'Y( {Lo, L=}) and {L~, L~} have precisely one line in com­
mon, then Ph,g(IF) and Ph, ,g' (IE:) must be Pickert-Moulton planes. 

Proof. Up to isomorphisms of type 2.4 we may assume that ,'(L=) = L~. Using an 
isomorphism of type 2.1, we can then assume that 'Y((O)) = ( oo') and ,'(Lo,o) = L~. 
Finally, applying an isomorphism of type 2.3, if necessary, we can achieve that 
,-1cA+) = B+ := {(x, y) E IF X IFI y > O} because ')' is order-preserving. We 
then have ')'- 1(A~) = B_ := {(x,y) E IF x IFI y < O}. Hence the subgeometry 
induced on B± U {Lo,o, L=} is Desarguesian. It follows from Lemma 4.4 that his 
an automorphism of IF and that 

(6) g(x)=h(x) forallx~O. 
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We use now that B_ U {Lo,o, L 00 } is also Desarguesian. For c < 0 < a and m < 0 
we consider the lines Loo, L-1 c, Lm -me· These lines must intersect at Lo O n 

' ' ' ' L-i,c = {(c,O)} by Desargues' theorem. Thus g(-mc) = -h(m)g(c). Substituting 
c = -1 and h(m) = -g(-m) from (6), we obtain g(m) = g(-m)g(-1). Thus 

{ 
g( x ), if x 2:: 0 . 1 

h(x) = __ 1 _ ( ) 'f O, that 1s, h-1g = µq where q = - h-lg(-l) and 
g(-1) g X , 1 X < 

µq is defined as in Definition 1.2. This shows that Ph,g(IF) is a Pickert-Moulton 
plane. Interchanging the roles of Ph,g(IF) and Ph, ,9 , (JE) and replacing 'Y by ,y-1, we 
similarly find that Ph' ,g' (JE) must be a Pickert-Moulton plane. D 

5.2. Proposition. If ,y( {Lo, L00 }) and {L~, L~} have no line in common, then 
Ph,g (IF) and Ph' ,g' (JE) must be Desarguesian. 

Proof. Suppose that ,y( {Lo, L 00 }) n {L~, L~} = 0. We distinguish three cases. 
When ,y-1((00')) E Lo U L00 , we can assume that ,y-1((00')) = (0), ,y-1(L~) = 

Lo,-1, ,y-1(L~) = Lo,o, and that ,y-1(A+UL~UL~) = {(x,y)I y 2:: O}U{(x,y)I y ~ 
-1} by using isomorphisms of types 2.1, 2.3, and 2.4. When ,y-1(( oo')) ft_ Lo U L 00 , 

we may further assume that ,y-1((00')) = (1, 0) and that ,y-1(L~) = Lo,o, We then 
distinguish two cases according to whether or not ,y-1 (L0 ) = L1 . When ,y-1(Lo) =J. 
L 1 , we may assume that ,y-1(Lo) = Li,-l· In both cases the region 'between' 
,y-1(L0 ) and ,y-1 (L~) contains B as in Lemma 4.4. Hence in all three cases the 
subgeometry induced on B is Desarguesian. So h must be an automorphism of IF 
and g(x) = h(x) for all x 2:: 0 by Lemma 4.4. Moreover, one even obtains that the 
subgeometry induced on BU {(x, y)I x 2:: 1, y ~ -1} is Desarguesian. 

A closer examination of the proof of Lemma 4.4 shows that the lines Lo,o, L1,1, 
Lm,m must intersect at (g- 1(-1),0) even form< 0. (One can find perspective 
triangles with vertices ( a, 0) E Lo,o, ( a, a+ 1) E L1,1, ( r_:l a+ r~l, r_:l m( a+ 1 )) E 

Lm,m where r > 1 and r < t;: if -1 < m < 0. Corresponding sides of these 
triangles intersect L00 at (oo), (rm), and (1 - r(l - m)).) We can therefore infer 
that g(m) = h(m) for all m E IF. Then h = g and Ph,g(IF) is Desarguesian by 
Theorem 3.9. Of course, Ph' ,g' (lE) must also be Desarguesian. D 

From Propositions 5.1 and 5.2 and Theorem 4.9 it now follows 

5.3. Theorem. If 'Y is an order-preserving isomorphism between semi-classical or­
dered projective planes that are not Pickert-Moulton planes, then 'Y maps the point 
(oo) onto (oo') and {Lo,L00 } onto {Lci,L~}. Furthermore, such an isomorphism is 
a composition of isomorphisms of types 2.1 to 2.4. 

5.4. Definition. We say that a pair of permutations (h, g) E rrU)(IF) is positive­
ly ( or negatively) afEnely equivalent to a pair of permutations ( h', g') E rrU) (JE) 
if and only if there are order-preserving isomorphisms </>, '1jJ from IF onto lE and 
a, b, c, d, a, b, c, J E IF, c, c =J. 0, aa > 0 (resp. aa < 0) such that 

h' ( </>( x)) = 'ljJ( ch( ax + b) + d) and 

g'(<f>(x)) = 'ljJ(cg(ax + b) + d) 

for all x E IF. In particular, h' and h, and g' and g are afEnely equivalent. 
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5.5 Theorem. Two semi-classical ordered projective planes Ph,g(IF) and Ph' ,g' (E) 
with (g, h) E rr<1)(IF) and (g', h') E rr< 1)(E) are isomorphic as ordered planes if and 
only if ( h', g') is positively afEnely equivalent to ( h, g) or (g, h) or negatively afEnely 
equivalent to (h-1, g-1 ) or (g-1, h-1 ). 

Proof. Suppose that (h',g') is positively affinely equivalent to (h,g) or (g,h) or 
negatively affinely equivalent to (h-1, g-1 ) or (g-1 , h-1 ). Then a suitable composi­
tion of isomorphisms of types 2.1 - 2.4 yields an order-preserving isomorphism from 
Ph,g(IF) to Ph,, 9,(E). For example, (h',g') being negatively affinely equivalent to 
( h-1, g-1 ) implies that there are order-preserving isomorphisms </>, 'ljJ from IF onto 
E and a, b, c, d, a, b, c, d E lF, c, c # 0, aa < 0 such that 

h'(ef>(x)) = 'ljJ(ch-1(ax + b) + d) and g'(ef>(x)) = 'l/;(cg- 1(ax + b) + d) 

for all x E lF. Note that c and d, and similarly c and J, are determined by the 
condition that O and 1 are fixed. Define 11 to be the isomorphism of type 2.3 with 
n = h(-1) < 0. Let 12 be the isomorphism of type 2.1 with a1 = ::a, a2 = i, 
a3 = - !:,a, a 4 = -l, Finally, let 13 be the isomorphism of type 2.2 induced by ef>. 
Then 1 = 1312,1 is an isomorphism from Ph,g(lF) to Ph' ,g' (E). 

Conversely, assume that Ph,g(IF) is isomorphic to Ph, ,g' (E). If Ph,g(IF) is not a 
Pickert-Moulton plane, then each order-preserving isomorphism I from Ph,g(IF) to 
Ph' ,g' (E) is a composition of isomorphisms of types 2.1 to 2.4 by Theorem 5.3. It 
readily follows that ( h', g') is positively affinely equivalent to ( h, g) or (g, h) if I is 
a composition of isomorphisms of types 2.1, 2.2 or 2.1, 2.2, 2.4 respectively, where 

· 2.4 actually occurs in the latter case. ( h', g1
) is negatively affinely equivalent to 

(h-1 , g-1 ) or (g-1 , h-1 ) if I is a composition of isomorphisms of types 2.1, 2.2, 
2.3 or 2.1, 2.2, 2.3, 2.4 respectively, where 2.3 occurs in both cases and where 2.4 
actually occurs in the latter case. 

When Ph,g(IF) is a Pickert-Moulton plane, then the plane Ph, ,g' (E) also is a 
Pickert-Moulton plane. Up to isomorphisms of types 2.1 - 2.4 one obtains an 
isomorphism from Pµ,q,id(lF) to Pµ,q,,ia(E). Now, by [8, Theo'rem 1], two such planes 
are isomorphic if and only if there is an order-preserving isomorphism a from IF 
to E such that q' = a(q) or q' = a(q)-1 . This implies that (µq,, id) is positively 
affinely equivalent to (µq, id) or negatively affinely equivalent to (µq, id) respectively. 
Hence ( h', g') is positively affinely equivalent to ( h, g) or (g, h) or negatively affinely 
equivalent to ( h-1, g-1 ) or (g- 1 , h-1 ). D 

5.6. Corollary. A semi-classical ordered projective plane Ph,g(IF) with (g, h) E 
II(l) (JF) that is not a Pickert-Moulton plane admits a non-trivial collineation if and 
only if there are order-preserving automorphisms</>, 'ljJ of IF and a, b, c, d, a, b, c, J E IF, 
a, c, a, c # 0, such that one of the following holds: 

(i) h(ef>(x)) = 'l/;(ch(ax + b) + d) and g(ef>(x)) = 'l/;(cg(ax + b) + d) for all x E IF 
with aa > O; 

(ii) h(ef>(x)) = 'l/;(cg(ax + b) + d) and g(ef>(x)) = 'l/;(ch(ax + b) + d) for all x E IF 
with aa > O; 
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(iii) h(cp(x)) = 'ljJ(ch-1(ax + b) + d) and g(cp(x)) = 'ljJ(cg-1(ax + b) + d) for all 
x E lF with aa < O; 

(iv) h(cp(x)) = 'ljJ(cg-1(ax + b) + d) and g(<f>(x)) = 'ljJ(ch-1(ax + b) + d) for all 
x E lF with aa < 0. 

Choosing g and h suitably, that is, none of the conditions (i) - (iv) in the above 
corollary are satisfied except for the trivial identity in (i) where </> = 'ljJ = id and 
a = c = a = c = 1, b = d = b = d = 0, one obtains projective planes that admit 
no other collineation than the identity. Of course, whether or not this can be done 
depends on the field. For lF = JR explicit examples of such planes were constructed 
in [11, 4.3]; see also [12] for the classification of these planes over JR according to 
the dimension of their collineation groups. 
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