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Abstract 

 

The aims of this thesis were; firstly, to obtain economic values for radiata pine traits to 

produce appearance and structural lumber, and secondly to analyze the selection of efficient 

logs and profitable trees to substantiate the development of breeding objectives for solid wood 

quality. 

The thesis included three approaches to value wood attributes: hedonic models, partial 

regressions and stochastic frontiers. Hedonic models generated economic values for pruned 

and unpruned log traits to produce appearance grades. Values for small end diameter were 

0.33, 0.19 and 0.10 US $/mm, and for form 2.6, 1.4 and 0.63 US $ for the first, second and 

third log respectively. The value of mean internode length was 0.19 US $/cm. Branch size 

traits were non-significant to explain the log conversion return (p>0.05). 

The economic value of log traits to produce structural lumber with stiffness of 8, 10 and 12 

GPa was estimated with a partial regression. The values were 1.1, 29.7, 0.3 and -0.4 NZ $/m
3 

for small end diameter (cm), stiffness (GPa), basic density (kg/m
3
) and largest branch (mm) 

respectively. Small end diameter and stiffness explained 73% of the variation of log 

conversion return. The economic values for structural attributes were also derived from a 

Cobb Douglas stochastic frontier, resulting in 2.1 NZ $/cm for small end diameter and 15.8 

NZ $/GPa for stiffness. The change of values between approaches can be attributed to 

differences of model formulation. The stochastic frontier used aggregate volume of lumber 

with stiffness of 8 GPa or higher.  The partial regression used the economic value of every 

lumber product derived from the logs, making it more sensitive to changes in wood quality. 

Data envelopment analysis (DEA) used structural traits and their economic values to assess 

the technical and economic efficiency of logs to produce lumber with stiffness of 8, 10 and 12 

GPa. The most efficient logs had 1:4 ratios between stiffness and small end diameter, whereas 

logs that did not generate structural lumber had ratios closer to 1:8. Trait economic values 

from the partial regression analysis were used as attribute prices to estimate cost efficiency. 

Efficiency measures were significantly correlated with stiffness and log conversion return; 

however, they were non-significantly correlated with small end diameter and log prices. The 

technical efficiency of logs to produce structural lumber was also determined using a Cobb 

Douglas stochastic frontier which determined that the most efficient logs were characterized 

by a 1:5 ratio between stiffness and small end diameter.  
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Selection of trees for deployment was analyzed with a portfolio model, where risk was 

represented as the mean absolute deviation of tree returns due to the variability of volume, 

stiffness and resin defects. Under high variability (risk), the model selected structural trees 

with large stiffness and high return. These results suggest an opportunity for narrowing 

genetic variability (via clonal or family forestry) to make the returns from radiata pine 

structural grades lumber less risky.  

As variability decreased the portfolio model opted for trees that produced appearance and 

structural lumber. These trees had a stabilizing effect on their returns, as there were 

phenotypic tradeoffs between stiffness and volume under optimistic and pessimistic growing 

scenarios. These results showed the benefits of product diversification at the tree level.  

 



 iv 

 

Todas las teorías son legítimas y ninguna tiene importancia. Lo que importa es lo que 

se hace con ellas. 

Jorge Luis Borges 

 

 

 ―say it in words.‖ Don‘t be satisfied with a formal argument if you don‘t understand 

it. 

        

  Joan Robinson 
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1 General Introduction 

 

Breeding objectives define the direction of breeding programs by providing the characteristics 

to improve and their economic values, which depend on the production systems and the end 

products being targeted by the breeding strategy (Apiolaza 2000). A breeding objective 

defines the net genetic merit of individuals which considers the breeding value of the trait, 

and its economic weight due to one-unit change in the breeding value considering all other 

traits unchanged (Hazel 1943).  

Defining breeding objectives in forestry is not trivial; there are difficulties associated with the 

tradeoffs between objective traits, the complexity of the processing systems, the technical 

relationships between wood traits and volume and quality of end products, and the long 

rotation that generates uncertainty about the trees use (Apiolaza and Greaves 2001). On the 

other hand, when having clear objectives that integrate the economic value of growth and 

wood quality traits, the programs will be working according to the industry expectations of 

efficiency and competitiveness.    

Wood production based on radiata pine has achieved sustained improvements in production 

efficiency through the development of breeding programs which  have defined breeding 

objectives for multiple-trait selection in various breeds, emphasizing a combination of growth, 

form and wood properties such as basic density and stiffness (Cotterill and Jackson 1985; 

Carson 1987; Shelbourne et al. 1989; Shelboume et al. 1997; Shelbourne 1997; Watt et al. 

2000; Apiolaza and Garrick 2001; Jayawickrama 2001b, a; Kumar et al. 2002; Kumar 2004; 

Ivković et al. 2006). On the other hand, economic weights have received less study and their 

estimation has been based on a single approach such as bioeconomic models. 

Hazel (1943) demonstrated the incorporation of economic values into a breeding objective to 

calculate phenotypic selection indexes and estimate aggregate breeding values in livestock. 

When multiple traits are used to define the breeding objective, index selection has been shown 

to be more efficient than other forms of selection choosing genetically superior animals 

(Hazel 1943; Hazel and Terrill 1946). In this sense, economic values should be estimated for 

all attributes based on their contribution to increase the volume and the quality of final 

products. 

Bioeconomic models consider that the value of one trait corresponds to the change in 

profitability of a production system, due to a change in the trait (e.g., Borralho et al. 1993; 
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Greaves et al. 1997b; Apiolaza and Garrick 2001; Ivković et al. 2006). These models have 

been suitable to estimate economic weights in vertically integrated firms; however, their 

representativeness is limited to those systems. As a result, the issue of the distribution of an 

economic weight between forest and mill has not been well solved. On the other hand, the 

bioeconomic approach has been useful to assess the convenience of investing in breeding, 

since the model of a vertically integrated firm considers all stages of production, from the 

acquisition of logs to the retailing of the final product. 

Although bioeconomic models have showed plausible results, the economic theory offers 

more alternatives to value a product‘s traits. Thus, we have partial regressions which link logs 

traits with volume and value of products obtained at the mill. Partial coefficients derived from 

the model correspond to the economic weights (Talbert 1984; Cotterill and Jackson 1985; 

Ernst and Fahey 1986; Aubry et al. 1998). The major limitation of the method is the high cost 

of running a product recovery study; however, Ernst and Fahey (1986) and Aubry et al. 

(1998) assert that approaches derived from recovery studies give the best information to 

obtain economic weights. 

Economic weights can be addressed by using hedonic prices, which correspond to the implicit 

prices of traits and are revealed to economic agents from observed prices of differentiated 

products and the specific amounts of traits associated with them (Lancaster 1966; Rosen 

1974). In estimating economic weights of radiata pine wood traits, the main restriction for 

using hedonic models is that traits are not reflected in log prices. Some factors involved in this 

situation are monopsony power in log purchasing, information asymmetries on log quality 

between growers and processors, and the transaction costs involved in assessing logs quality. 

Signaling and screening are reported as solutions to these problems. In signaling, the part with 

higher information signals their preferences as a way to transfer information to the other part 

(Spence 1973). Sawmills have signaled their preferences on log diameter and form with 

differentiated prices. However, traits such as wood stiffness have been signaled in terms of 

restrictions; thus, logs are purchased as long as they fulfill a stiffness threshold. Screening 

consists in that the underinformed part induces the other part to reveal their preferences by 

providing a list of choices in such a way that the selected option depends on the private 

information of the informed part (Stiglitz 1975). 

Vertical integration has been also proposed as a solution of information problems; however, 

this solution could result in having monopolistic and monopsonic markets which has been 

shown to affect the economic surplus on log demand and lumber supply.   
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However, since those traits are observable, measurable and directly related to the quality and 

value of end products, an alternative approach of log value could be used in order to apply 

those models. Thus, Alzamora and Apiolaza (2010) used the conversion return instead of the 

log price to estimate a hedonic model to value pruned and unpruned log traits for radiata pine 

appearance grades. Bloomberg et al. (2002) also used this approach to study price differences 

of radiata pine logs in terms of traits in four regions in New Zealand.   

The production theory also offers a suitable framework to value wood traits. By this approach 

the traits would have a measurable physical contribution that can be modeled by production 

functions (e.g., Ladd and Martin 1976; Melton et al. 1994). A production function is a 

mathematical model of inputs that give the maximum output feasible to obtain, given the 

current technology. The economic value is estimated as the change in the marginal physical 

product of the attribute valued at the market price of the final good, which corresponds to the 

value of the marginal product (Beattie and Taylor 1985). In modeling a production function, 

the approach of the stochastic frontier allows generating a parametric production frontier as 

well as technical efficiency measures (Aigner et al. 1977; Meeusen and van den Broeck 1977; 

Coelli et al. 2005). By this method the input-output observations are converted to a frontier, 

accounting for technical inefficiency and random noise. 

Linear programming also provides algorithms to solve the problem of economic weights. The 

goal is to obtain shadow prices for the traits which represent the maximum willingness to pay 

for an extra unit of the trait. The explicit consideration of constraints and alternative 

production possibilities is the main advantages of this method which has been occasionally 

applied on animal and agricultural breeding to obtain economic weights (Ladd and Gibson 

1978; Jansen and Wilton 1984; Armstrong et al. 1990; Harris and Freeman 1993). Linear 

programming is also the base of methods that have been used to reveal the pattern of traits 

that distinguishes an optimal log to produce given lumber grade. Thus, Todoroki and Carson 

(2003) used Data envelopment analysis (DEA) to identify the most efficient logs to produce 

appearance grades looking for attributes that should be manipulated in tree breeding 

programs. DEA derives efficiency measures by comparing production units with optimal units 

generated by linear programming algorithms.   

The aim of this thesis is to perform alternatives approaches to value radiata pine traits for 

appearance and structural lumber as well as to show their potential role in selecting logs and 

trees under efficiency and profitability criteria. Regarding economic weights, chapter 2 

describes several methods that could be used to value wood attributes and chapter 3 presents a 
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hedonic model to value pruned and unpruned log traits (small-end diameter, form and 

internode length) for appearance grades, including Moulding & Better, Shop and Industrial 

Finger Joint. Models are also built at the tree level to explore the effect of selection as 

conducted by breeders. This chapter demonstrates that the log conversion return is a plausible 

measure of value when the log prices do not consistently reflect the value of traits. 

In keeping with economic weights, chapter 4 deals with a DEA efficiency analysis and a 

partial regression to obtain economic weights for structural logs traits. The main purpose of 

this chapter is to reveal the relative magnitude of traits that characterize the most efficient logs 

from a technical and economic point of view. Thus, economic weights derived from the 

partial regression are used as traits prices to perform the cost efficiency. In keeping with the 

production approach, the chapter 5 presents the estimation of economic weights for structural 

logs attributes by using a stochastic frontier. The technical relationship between structural 

lumber, log small end diameter, wood stiffness and largest branch was modeled by using a 

Cobb-Douglas function which allowed obtaining the model coefficients as well as measures 

of the logs productive efficiency. The economic weights correspond to the value of the 

marginal product of each trait. That analysis also generated productive efficiency measures to 

characterize the most efficient logs. Chapters 4 and 5 are compared in depth because they 

have the same theoretical platform, and they are performed with the same information.  

The chapter 6 contains an application of a portfolio selection to demonstrate that trees and 

silvicultural regimes can be approached as investment problems, and how the risk due to 

wood traits variability can affect decisions about the tree that should be targeted by radiate 

pine silviculture.  

Finally, chapter 7 has a general discussion whose focus are, i- the plausibility of the economic 

weights estimated in chapters 3, 4 and 5 as well as the feasibility of obtaining the economic 

weights distribution, between forest and mill, when performing a bioeconomic model, and ii- 

the potential role of both, traits and economic weights, to assess and select logs and trees for 

improving the production of wood quality. 
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2 Review: Production and hedonic approaches to 

estimate economic weights of radiata pine wood attributes 

 

2.1 Abstract  

This review presents two approaches to value wood attributes for the purpose of deriving 

economic breeding weights. The first one, dubbed a production approach, is based on deriving 

values from lumber production using bioeconomic models, partial regressions, linear 

programming and stochastic frontiers. The second approach is based on hedonic prices which 

derives the value of wood traits from log prices. Bioeconomic models are suitable for 

vertically integrated forest companies; however, bioeconomic modeling can be expensive to 

apply and commonly includes numerous assumptions that may limit their application.  Partial 

regressions produce results that are highly plausible but are also costly to obtain. Linear 

programming is appropriate when log processors face similar production constraints. 

Stochastic frontiers give consistent values and allow for characterization of the logs‘ technical 

efficiency, however, modeling production functions can be a highly complex activity. 

Hedonic prices are the most suitable method to value product characteristics; however, they 

require that market log prices reflect trait values of interest, which may not always occur. Log 

prices based on wood quality traits such as stiffness and internode length that better reflects 

the variable log resource is likely to enable improved estimation of economic weights. 

Keywords: economic weights, breeding objectives, wood attributes, Pinus radiata.  

2.2 Introduction 

Forest management and processing depend on multiple tree characteristics that influence the 

quantity and quality of end products. This situation is explicitly recognized by breeders who 

practice multivariate selection, aiming to maximize industry profit. The direction of the 

breeding efforts is embodied in a breeding objective: the enumeration of biological traits 

under selection and their relative economic weights.  

Ponzoni and Newman (1989) formalized the steps to define a breeding objective as i- 

identification of the sources and flows of income and cost, ii- identification of the biological 

traits that affect efficiency of production and iii- calculation of the economic weight for each 

objective trait. Although conceptually simple these steps are fraught with implementation 
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problems, mostly due to the complexity of the production systems and poorly described 

relationships between raw materials and final products  (Apiolaza and Garrick 2001). This 

review concerns itself only with Ponzoni‘s third step: eliciting values for each objective trait. 

Furthermore, although the methodologies presented in this review apply to any tree species, 

the bibliography on specific wood traits refers mostly to radiata pine (Pinus radiata D. Don) 

aiming to support successive chapters. 

Natural input-traits are commonly evaluated by their performance to generate specific goods 

or services. Many forest tree species are multipurpose and feed fiber, structural and 

appearance wood markets, with different wood trait requirements. For example, for radiata 

pine appearance wood is influenced by traits such as volume, internode length and resin 

defects. Structural wood is mostly determined by modulus of elasticity (stiffness), volume, 

branch size and wood density. Fiber production relates to basic density, fiber length and 

chemical composition (Zhang 1997; Walker and Nakada 1999; Tsehaye et al. 2000b; Tsehaye 

et al. 2000a; Xu 2002; Kumar 2004; Xu and Walker 2004; Tsuchikawa 2007). Most of these 

characteristics are heritable and amenable to breeding; a subset can also be tackled through 

silviculture. Either way there is a need for a hierarchy of traits to guide tree (and log) 

improvement to profitably meet consumers‘ requirements.  

Obtaining wood traits information from logs is not simple; logs are naturally heterogeneous, 

which creates problems for product differentiation and the definition of quality grades and 

standards. Fortunately, there have been significant advances to identify and measure wood 

properties such as stiffness from trees and logs (Harris and Andrews 1999; Walker and 

Nakada 1999; Lindström et al. 2002; Matheson et al. 2002; Lasserre et al. 2004; Lasserre et 

al. 2005; Lasserre et al. 2007; Waghorn et al. 2007a; Waghorn et al. 2007b). There are also 

methods to segregate pruned logs in order to minimize defects such as resin pockets on 

appearance lumber (e.g., Somerville 1997; Ridoutt et al. 1999; McConchie 2002; McConchie 

and Turner 2002). Near Infrared Spectroscopy (NIR) has become popular for quick screening 

properties that have a strong chemical basis (e.g., Raymond and Schimleck 2002; Schimleck 

et al. 2002; Tsuchikawa 2007). Nevertheless, information about the economic value of wood 

quality traits is a topic that has not been developed to an equal extent.   

Valuing input-traits has been conducted mainly on agriculture and animal production (Ladd 

and Martin 1976; Ladd and Suvannunt 1976; Ladd and Gibson 1978; Ethridge 1982; 

Brascamp et al. 1985; Stewart et al. 1990; Espinosa and Goodwin 1991; Amer and Fox 1992; 

Bowman and Ethridge 1992; Beckman and van Arendonk 1993; Amer et al. 1996; Goddard 
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1998; Dalton 2003). In forestry, this issue has been applied primarily to value breeding 

objective-traits and to build selection indices. (Borralho et al. 1993; Greaves et al. 1997b; 

Shelbourne 1997; Apiolaza and Garrick 2001; Ivković et al. 2006; Berlin et al. 2009). The 

economic weight of a trait is defined as the change in economic outcome of a production 

system caused by a change in the genetic value of the trait (Hazel 1943). These values have 

been habitually obtained using bioeconomic models. By this approach, the trait value 

corresponds to the change in profitability of a production system due to a change in the 

attribute (e.g., Apiolaza and Garrick 2001; Ivković et al. 2006).  

In addition to bioeconomic models economic theory offers other approaches to estimate 

values of input-traits without market prices. For example, the theory of revealed preferences 

developed by Samuelson  (1948, 1953) presents an appropriate framework to value wood 

attributes. This theory states the possibility of discerning consumer behavior on the basis of 

variable prices, revealing consumers‘ preferences by their purchasing habits. Approaches 

derived from this theory have also been useful to value non-market environmental resources 

(Adamowicz and Graham-Tomasi 1991; Freeman and Harrington 2001; Hassan et al. 2005).  

A general value approach derived from this theory is the productivity change, which has been 

applied to value non-market inputs that contribute to the production of commercially traded 

goods. This is an indirect approach because input-trait values are obtained through market 

prices of end-products (Freeman and Harrington 2001; Freeman 2003). There are several 

methods that may fall under this description, including bioeconomic models, partial 

regressions, linear programming and stochastic frontiers. Values derived from these methods 

are interpreted as the maximum willingness to pay for having an extra input-trait to produce 

lumber.  

The other approach is hedonic prices which basic premise is that the price of a marketed good 

is related to its characteristics (Griliches 1961; Lancaster 1966; Griliches 1971; Rosen 1974; 

Lucas 1975; Palmquist and Smith 2001).  This approach has been extensively applied to 

estimate non-market attributes; however, it requires that the value of the characteristic is 

reflected in the product price (Haab and McConnell 2003; Lambert and Wilson 2003; 

Lambert 2009).   

This chapter reviews alternative methods to derive economic values for log traits considering 

production and hedonic approaches. The advantages and limitations of the methodologies are 

discussed considering complexity, information requirements and economic plausibility.  
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2.3 Production approach 

Under a production perspective log attributes have the role of input-traits related to lumber 

production. Groen (2003) stated that ―The economic value of a trait expresses to what extent 

economic efficiency of production is improved at the moment of expression of one unit of 

genetic superiority for that trait‖. Therefore, having extra units of log traits generates 

quantitative and qualitative changes on lumber production, which can be monetarized 

following methodologies like bioeconomic models, partial regressions, linear programming 

and stochastic frontiers. 

2.3.1 Bioeconomic models (BM) 

These models are used to integrate biophysical and economic processes within a production 

structure. BM can be viewed as complementary to the concept of cost-benefit analysis (Amer 

et al. 1994; Amer et al. 1997; Conington et al. 2000; Jones et al. 2004). BM model the effects 

of input-traits changes on the profitability of a whole production system and are useful to 

understand the interactions between elements of complex systems.  

BM have been extensively used in animal breeding and they have been reported as being 

efficient tools to describe complex production systems (e.g., Dekkers 1991; Amer et al. 1994; 

Koots and Gibson 1998). One advantage of BM is that they consider genetic aspects, 

management decisions and economic factors to provide economic values in various traits. In 

addition, BM offer a framework to assess the impact of breeding decisions across the 

production chain; facilitating conducting sensibility analyses with several elements of the 

system (Amer et al. 1997; Jones et al. 2004). Nevertheless, most radiata pine BM have been 

applied to scenarios that consider a single grower and one processing system. Additionally, a 

large part of the model is based on assumptions (Borralho et al. 1993; Greaves et al. 1997a; 

Chambers and Borralho 1999; Apiolaza and Garrick 2001; Ivković et al. 2006; Berlin et al. 

2009). Using assumptions is a common exercise in economic evaluations, especially when 

dealing with complex production systems; however, they can reduce model plausibility.  

A more realistic production scenario for BM was proposed by Ivković et al. (2006) for the 

production of radiata pine structural lumber in Australia. This model included mean annual 

stem diameter increment, stem sweep, branch size, and modulus of elasticity. Economic 

weight estimates were based on the impact of improving a trait on overall profitability of three 

production systems: grower, sawmill, and integrated firm. Despite careful modeling there 

were economic weights with counter-intuitive values, such as the negative value for mean 
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annual diameter increment at the sawmill. Log diameter is intimately related to wood 

recovery during log processing; consequently, increasing this trait should be beneficial. In 

addition, there was no equivalence between trait values at the forest or the mill levels, and the 

corresponding value for the integrated system. Trait values should be congruent across BM 

production systems. Applying concepts derived from the residual-value appraisal to estimate 

stumpage, such as conversion return, and margin for profit and risk, would allow obtaining 

the expected trait signs as well as a congruent distribution of trait value between forest and 

mill (Davis and Johnson 1987). 

Profit functions are analogous to BM, although they are usually presented as a different 

method (Groen 2003). The main distinction is that a profit function refers to a single equation 

while BM comprise a set of equations (Borralho et al. 1993; Krupova et al. 2008). A single 

profit equation is not adequate to describe physical and economic interactions when the 

production system is complex. In contrast, BM are more flexible to capture such interactions. 

Profit equations have been extensively used to derive economic weights in animal breeding 

(Brascamp et al. 1985; Ponzoni 1986; Stewart et al. 1990; Beckman and van Arendonk 1993; 

Weller 1994). In forestry, Borralho et al. (1993) used profit equations to estimate economic 

weights for volume, basic density and pulp yield in a Eucalyptus globulus kraft pulp 

production system.  

Although BM are suitable to estimate economic weights, their modeling requirements are 

complex and costly; for this reason a substantial part of BM in forestry have been based on 

many assumptions. In addition, the yet unresolved distribution of an economic weight 

between forest and mill becomes relevant when independent growers make the decision to 

purchase genetically improved material. 

2.3.2 Partial regressions (PR) 

PR consider measuring wood attributes from logs or trees and recording volume and value of 

products obtained at the mill, with regressions linking log attributes to log recovery value, 

which corresponds to the conversion return or maximum willingness to pay for logs delivered 

to the sawmill (Davis and Johnson 1987). The partial coefficients estimated by the regressions 

correspond to the economic weights (Talbert 1984; Cotterill and Jackson 1985; Ernst and 

Fahey 1986; Aubry et al. 1998).  

Partial regressions are intimately related to the definition of breeding objective because their 

structure mimic Hazel‘s (Hazel 1943) model of total genetic superiority. Hazel defined the 
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aggregate genetic-economic value as a linear combination of additive genetic values of two or 

more attributes weighted by their economic relative values: 

avavavavH nn '...2211      (2.1) 

where H is aggregate or total genetic-economic value, v and a are vectors of economic 

weights and objective traits respectively. An economic weight represents the benefit of one 

unit improvement of the attribute  without altering the other traits present in the objective  

(Hazel 1943).   

The major limitation of PR is the high cost of sawing studies; however, approaches based on 

recovery studies provide the best information to obtain economic weights (Ernst and Fahey 

1986; Aubry et al. 1998). Trait values should express the benefits for improving the economic 

efficiency of production of end-products (Groen 2003). On the other hand, since economic 

weights could vary with milled products, grading systems and lumber prices, it is important to 

use plausible information to represent current and future production scenarios (Aubry et al. 

1998). 

There have also been other studies linking trees and logs attributes with the resulting volume 

and value recovery but that have not explicitly calculated economic weights for the attributes 

(e.g., Zhang 1997; Beauregard et al. 2002; McConchie and Turner 2002). 

2.3.3 Linear programming (LP)  

Linear programming also provides algorithms to solve the problem of economic weights. The 

goal is to obtain shadow prices for the traits which represent the maximum willingness to pay 

for an extra unit of the trait. Solving a linear programming problem implies to select actions in 

such a way as to obtain an optimal plan which maximizes the objective function and is 

feasible for satisfying the constraints (Sivarajasingam et al. 1984). Thus, the explicit 

consideration of constraints and alternative production possibilities is the main advantage of 

this method which has been occasionally applied on animal and agricultural breeding to 

obtain economic weights. 

In animal breeding, Ladd and Gibson (1978) applied LP to derive economic weights for 

livestock. These values are obtained by profit changes for having genetically superior strains 

of livestock.  Harris and Freeman  (1993) used LP to obtain economic values for yield traits 

and herd life from a farm system under different economic scenarios and production quotas. 

Similarly, Jansen and Wilton (1984) utilized LP to derive economic weights for livestock 
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selection. These authors contrasted the LP model performance with a profit equation. Thus, 

the explicit consideration of constraints and alternative production possibilities would be the 

main advantages of LP over the approach of profit equations. In the same way, Armstrong et 

al. (1990) utilized LP to compare feed intake, weaning weight and net returns for four 

breeding systems. Authors concluded that although the LP approach is more complex than 

profit equations, the former is more practical because it can deal with components of an entire 

beef production system.  

Regarding agricultural input-traits, Ladd and Martin (1976) used the LP framework of 

blending problems to estimate economic weights of corn. Two LP formulations are presented 

according to different production approaches. In addition, the study presented the dual 

formulation of each problem in order to clarify the concept of shadow price as economic 

value for input-traits.  

LP is also the base for methods that have been used to reveal the pattern of traits that 

distinguishes an optimal log to produce a desired lumber grade. Thus, Todoroki and Carson  

(2003) used data envelopment analysis (DEA) to identify the most efficient logs to produce 

appearance grades looking for attributes that could be manipulated in tree breeding programs. 

DEA derives efficiency measures by comparing production units with optimal units generated 

by linear programming algorithms (Coelli et al. 2005; Van Biesebroeck 2007).  

A possible LP formulation to estimate economic weights for log traits would consider a 

processor whose goal is to minimize log cost subject to satisfying demands of specific lumber 

products. The processors willingness to pay depends on the expected lumber recovery value, 

which varies with log quality. The log quality can be assessed by external and internal traits 

which allow segregation the logs in j groups. In keeping with this scenario, the formulation of 

the primal and dual LP problem is presented as follows: 
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The objective function of the primal problem corresponds to log cost minimization, where rj 

represents the willingness to pay for a log type j ($/m
3
), xj is volume of logs type j (m

3
), bji is 

the average value of the i-th log trait type j, and Cji is the requirement of the i-th trait in log 

type j. The restriction shows that the i-th trait contained in log type j multiplied by the volume 

of logs j must be greater or equal than a threshold Cij. Thus, the shadow price of the restriction 

λji is the log cost reduction for having a marginal decrease in the average of the i-th and would 

represent the economic value of the characteristic. There will be as many shadow prices as 

traits and logs considered in the model. Additional restrictions should be added to this 

formulation in order to represent a real production scenario. On the other hand, having too 

many constraints to describe the optimization problem would make the LP formulation 

excessively specific and unable to represent other production systems.  

2.3.4 Stochastic Frontier Functions (SF) 

Stochastic frontiers require modeling production functions which represent the inputs that 

give the maximum feasible output given current technology. Since wood traits have the role 

of inputs in lumber production, it is possible to find a technical relationship between lumber 

production and log characteristics.  

SF allow generating a parametric production frontier as well as technical efficiency measures. 

SF have been broadly used to measure productive efficiency since they were proposed by 

Aigner and Lovell (1977) and Meeusen and van den Broeck (1977). These functions convert 

the input-output observations to a frontier, accounting for technical inefficiency and random 

noise. 

Equation (2.2) presents a stochastic production frontier where Qi is lumber volume from the i-

th log and xi is the vector of attributes measured from i-th log and i= 1…n  .   

i i i iQ x `β v u                        (2.2) 

The symmetric random error vi, which accounts for statistical noise and can take positive or 

negative values, is assumed to be independently distributed N(0,σv
2
). The positive random 

error ui accounts for technical inefficiency. This error has similar properties to vi, except that ui 

has non-zero mean. Errors vi and ui are also assumed to be independent of each other.  

The distributional specifications of ui are commonly assumed to be half-normal or truncated-

normal, although, exponential and gamma distributions are also used. Truncated-normal and 

gamma distribution allow more flexibility in the distributional shape of ui; however, they are 
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more computationally demanding than the half-normal distribution (Coelli et al. 2005; Greene 

2000).  

SF models are usually fitted by maximum likelihood representing the error variance ratio by a 

parameter Gamma (γ = σu
2
/(σv

2
+σu

2
)) which varies between 0 and 1. Values close to 1 

indicate that the efficiency effect dominates the noise effect (Coelli et al. 2005).  

Most of the reported SF are one-output; however, it is possible to model multi-output models 

by using the stochastic ray approach which consists in transforming a firm outputs into a 

composite output vector. The estimation of the output mix vector is based on the Euclidean 

vector norm (Löthgren 1997). Niquidet and Nelson (2010) used Cobb-Douglas and Translog 

ray frontiers to model the production of both lumber and chips in sawmills in the interior of 

British Columbia.  

Usually Cobb-Douglas and Translog functional forms are recommended for SF modeling. 

The Cobb-Douglas model takes the form nβN

0 n 1Q β X   where Q is the total product and Xs 

are the production factors. The n exponents correspond to product elasticities, which indicate 

the percentage change of total product when an input is increased by one percent. The sum of 

product elasticities results in the scale elasticity (Coelli et al. 2005). The limitations of the 

Cobb-Douglas function are presenting constant product and substitution elasticities. The 

elasticity of substitution indicates in what grade an input can be replaced by another one 

holding the output constant (Varian 1992). A more flexible function is the transcendental 

logarithmic or Translog. This model permits the elasticity of substitution between inputs to 

vary; additionally, with this function the elasticity of scale can vary with output and factor 

proportions.  

The economic values of input-traits are derived from their contribution to the final production 

of goods (Varian 1992). The physical contribution of inputs is measured by the marginal 

product, which corresponds to total product change from a marginal increment of the input. 

The input value is represented by the value of the marginal product which, under competitive 

markets assumptions,  is obtained multiplying the marginal product of the input by the price 

of the end product (Beattie and Taylor 1985). 

Most applications of stochastic frontiers in forestry relate to the production of timber and pulp 

and have compared production systems in terms of their technical efficiency (e.g., Carter and 

Cubbage 1995; Munn and Palmquist 1997; Yin 2000; Siry and Newman 2001). However, 

Helvoigt and Adams (2009) reported that most stochastic frontiers applied to wood 
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production had problems meeting the properties of the production function, used insufficient 

factors of production and generated unexpected magnitudes of efficiency. That review 

suggested that modelers should consider and analyze the theoretical and statistical 

considerations that characterize a well-behaved stochastic frontier. 

The advantages of using SF to estimate economic weights include economic plausibility and 

the possibility of deriving values of traits from an efficiency point of view. However, traits 

with a counter-productive role such as branches or taper could not be included in a production 

SF because they are not proper inputs. On production theory, inputs are supposed to 

contribute to the production, which is known as the monotonicity condition (Henderson and 

Quandt 1980; Varian 1992). 

Finally, approaching logs as conventional production systems could generate problems with 

distinguishing statistical noise from the efficiency error. Nonetheless, the inefficiency of logs 

is mostly a variability issue and the focus of the analysis is on selecting the best logs rather 

than on identifying the error components.  

2.4 Hedonic models approach 

This approach is derived from Lancaster‘s consumer theory which states that utility is derived 

from the properties or characteristics of a good (Lancaster 1966; Lancaster 1971; Lancaster 

1991). Hedonic prices (HP) are defined as the implicit prices of traits and are revealed to 

economic agents from observed prices of differentiated products and the specific amounts of 

traits associated with them. Rosen (1974) and Palmquist (1984) showed that when 

characteristics are objectively measured and mapped to observed equilibrium market prices in 

a competitive economy, the marginal implicit value of traits can be derived from HP 

functions. Most applications of Rosen‘s model have dealt with differentiated consumer goods; 

however, Palmquist (1989) adapted Rosen‘s work to form a theoretical hedonic model for 

land as a production factor.  

Information of product attributes and market prices is required to build a hedonic model. HP 

also needs that attribute values are reflected in product prices. Haab and McConnell (2003) 

stated that HP models fall under the rubric of non-market valuation because goods and 

services occasionally have qualities that are not provided by the market. Actually, this 

requirement has been the boundary to apply HP to those agricultural inputs with 

characteristics that are not revealed in market prices (Lambert and Wilson 2003; Baker and 

Babcock 2008). 
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Several applications of HP have been used to estimate the relationships between prices and 

attributes in competitive markets (e.g., Butler 1982; Jones 1988; Brasington and Hite 2005; 

Ready and Abdalla 2005). Hedonic models have been applied to obtain marginal values of 

attributes of natural input-traits like agricultural products (Ladd and Martin 1976; Ladd and 

Suvannunt 1976; Ladd and Gibson 1978; Ethridge 1982; Espinosa and Goodwin 1991; 

Bowman and Ethridge 1992; Parker and Zilberman 1993). The study by Waugh (1929) 

concerning the value of vegetable quality is a key contribution to value input-traits. Following 

Waugh‘s arguments Ladd and Martin (1976) verified the hypothesis that the price paid for an 

input is equal to the sum of the hedonic prices of the input‘s attributes multiplied by the 

marginal yield of those characteristics.  

The application of HP models in forestry has dealt mainly with factors explaining stumpage 

price (Puttock et al. 1990), the value of  forest land  (Roos 1995, 1996; Hardie and Parks 

1997; Snyder et al. 2007) and the impact of environmental amenities on forest land prices  

(Munn and Rucker 1994; Bastian et al. 2002; Snyder et al. 2007). Concerning radiata pine 

traits, Bloomberg (2001) applied hedonic models to study price differences of logs in terms of 

attributes in four regions in New Zealand.  

Econometrics provides the framework to model HP functions. Suitable functional forms can 

be selected using statistical tools such as the Box-Cox transformation which also helps to 

reduce anomalies such as non-additivity, non-normality and heteroscedasticity (Box and Cox 

1964 cited by Sakia 1992). A common problem for HP modeling is collinearity between 

explanatory variables; only variables with a large weight for product value should be included 

in HP models (Butler 1982). Many critiques of HP relate to the economic rigor applied in the 

formulation of current hedonic models. Ekeland and Heckman (2002)  stressed the abuse of 

linearization strategies, which are applied to simplify estimations and to justify the application 

of instrumental variables that produce identification problems. However, econometricians are 

constantly developing procedures to fit well-behaved models, this can be observed in several 

works related to automobiles and housing (Atkinson and Halvorsen 1984; Palmquist 1984; 

Gilley and Pace 1995; Clapp 2004) 

In spite of the difficulties that have been previously mentioned; it is possible to use a hedonic 

approach to value wood attributes by using an alternative log economic value such as the 

conversion return (Davis and Johnson 1987) which reflects the value of logs in terms of the 

end products prices, which are assumed to be competitive. 
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2.5 Discussion  

2.5.1 Final evaluation 

All methodologies presented in this review are appropriate to estimate economic weights for 

log traits; however, each methodology has strengths and weaknesses depending on the 

analysis scenario. In addition, the best approach from a theoretical point of view could be too 

costly to implement. The following discussion considers compatibility with the problem, 

representativeness of results and economic plausibility; because methodologies should operate 

within the boundaries of economic theory. 

Bioeconomic models are suitable to estimate economic weights in vertically integrated firms. 

However, forest bioeconomic models have not deal with the issue of the distribution of an 

economic weight between forest and mill, which becomes relevant when the log producers are 

independent growers. Additionally, these models often consider the whole value chain, 

making attribute values highly dependent on other markets besides the lumber market. On the 

other hand, bioeconomic models are suitable to assess the convenience of doing breeding 

today, given that the results would be reaped in the long term. It is important to emphasize 

that tree breeders have been concerned about the value of wood attributes for a long time and 

that their work with bioeconomic models provides the current benchmark on economic 

weights for wood attributes.  

Linear programming presents economic plausibility since it is supported by the principles of 

Lagrange and Kuhn Tucker (Chiang 1984; Hillier and Lieberman 2001). However, the results 

are highly dependent on the production scenario; thus, linear programming results would be 

representative as long as other firms face similar production restrictions.  

Stochastic frontiers also satisfy all requirements to estimate plausible values for log traits. In 

addition, they also allow characterizing logs by their technical efficiency to produce lumber. 

However, this is a single product model which precludes its application to multi-product 

systems; in addition, this approach is complex due to the economic requirements involved in 

its estimation. 

Hedonic prices fulfill the suitability and plausibility criteria; however, they cannot be directly 

applied because log prices are not representative of log values. Logs, in common with many 

commodities, are priced considering basic characteristics that do not match the economic 

value of products that they generate (e.g., Lambert and Wilson 2003; Baker and Babcock 
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2008). Nevertheless, technology is creating tools that can reveal traits from trees and logs, 

making possible to perform forest transactions based on wood quality attributes such as 

stiffness. This should promote markets with more competitive logs prices that, in turn, would 

make easier obtaining wood traits economic weights by using the hedonic approaches.  

2.5.2 The role of forest appraisal in log values  

Logs prices are mainly derived from forests transactions which in turn, depend upon the 

volume and quality for specific wood products in the forest (Davis and Johnson 1987). If 

there is information on tree quality, logs should be priced according to quality standards 

determined by the market. In New Zealand the log market is strongly based on detailed forest 

inventory, and segregation and pricing follows log size and some quality features (Gordon 

2005; Manley 2005). However, the modest premiums paid for some quality characteristics, 

such as stiffness, may not reflect value recovery; hence the use of such log prices to estimate 

economic weights may result in underestimation of economic values.   

Many factors preclude the log market generating prices that consistently reflect the value of 

wood quality traits; however, transaction costs derived from identifying wood quality and 

power asymmetries between growers and processors are major influences on maintaining a 

log market mainly based on volume and form (Treolar 2005). On the other hand, technology 

has provided tools and protocols to segregate and classify logs based on wood quality. 

Sawmills apply these methods with a view to improving log processing. Additionally, there 

have been some transactions that consider traits beyond volume and form mostly dealing with 

high quality forests. These examples illustrate the feasibility of incorporating aspects of wood 

quality in forest appraisal in order to promote logs prices that reflect the value of forming 

wood quality at the forest.  

Growers can gain a better understanding of the quality of their forests by observing tree 

attributes such as volume, form and internode length on unpruned logs. Knowledge of the 

silvicultural regime also helps in the assessment of wood quality; for example, timings of 

pruning and thinning are predictors of pruned log quality (e.g., Knowles et al. 1987). The 

transaction could be finalized at this point, in which case standing tree quality and the relative 

power of the negotiating parties will be key elements in deciding the stumpage. A forest 

transaction could also use a sample of logs to estimate pruned log index (PLI), internode 

length indices and stiffness of unpruned logs for structural purposes, improving the accuracy 

of value estimates. This would imply using expertise that may not be available to growers, but 
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high quality forests would justify the costs to obtain the additional information. Under this 

scenario, it is possible to conjecture that in the long term there would be differentiated prices 

with quality thresholds, as well as non-differentiated values for logs with poor wood quality. 

This situation would act as an incentive to invest in silviculture and genetically improved 

material.  

2.5.3 Final remarks 

Some of the methodologies presented in this review, have been jointly applied. Munn and 

Palmquist (1997) applied stochastic frontier analysis to hedonic models to explain stumpage 

in cases of uncertainty by sellers and buyers. Smith et al. (1991) estimated the travel cost 

function for each recreationist as a technically efficient frontier. Fernandez-Castro and Smith 

(2002) showed the high theoretical consistency of Lancaster‘s characteristic model and 

hedonic prices with data envelopment analysis in order to assess decisions relating to multi-

attribute products selection. These applications illustrate the appropriateness of combining 

hedonic prices, linear programming and efficiency frontiers to obtain the economic value of 

attributes. 

This review encourages the use of alternative economic methods, i.e. beyond bioeconomic 

models, to determine the value of wood attributes for the purpose of estimating economic 

weights for tree breeding. The joint application of two or more methodologies to enrich the 

decision making process is also highlighted.Equation Chapter (Next) Section 1 
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3 A hedonic approach to value Pinus radiata log traits for 

appearance-grade lumber production 

 

This chapter was published as: Alzamora, R.M. and Apiolaza, L.A. 2010. Forest Science 

53(6):283-291. 

 

3.1 Abstract   

This study used a hedonic approach to estimate the economic value of radiata pine log 

attributes (small-end diameter, form and internode length) for appearance grade lumber, 

including Moulding & Better, Shop and Industrial Finger Joint. Models were also built at the 

tree level to investigate the effect of selection as conducted by breeders. A Chilean sawing 

study provided information on wood traits and log outturn for 156 logs divided into three 

classes: pruned butt log, second log and third log. The conversion return of logs, instead of 

log prices, was used as the measure of log economic value. The economic values of log small-

end diameter were 0.33, 0.19 and 0.10 US $/mm for the first, second and third log 

respectively. Concerning form, those values were 2.6, 1.4 and 0.63 US $ for a marginal 

improvement of this characteristic. The value of mean internode length was 0.19 US $/cm for 

second unpruned logs. Values for other internode length indices are also presented in this 

paper. Branch variables were not statistically significant in explaining the log recovery value. 

Finally, log recovery value was found to be elastic to the changes in small-end diameter and 

form, but inelastic to changes in the mean internode length.  

Key words: wood attributes; hedonic values; Pinus radiata; appearance lumber; breeding 

objectives.  

3.2 Introduction 

Log attributes, including volume and form, have a large influence on the yield and quality of 

lumber. Most attributes can be identified and measured, but their economic values are not 

well understood, nor are they frequently reported. For example, advances in the assessment of 

wood stiffness and resin defects of appearance products have contributed to improved log 

segregation practices (Ridoutt et al. 1999; Walker and Nakada 1999; Lindström et al. 2002; 

Lasserre et al. 2005; McConchie and Cown 2008). The economic value of wood 



 

 

20 

characteristics has received less study. However, knowing the value of wood traits is very 

important if growers are to improve the quality of the forest crop.  

Economic values are particularly important to tree breeders, as they require this information 

to define breeding objectives and to build selection indices. Commonly, bioeconomic models 

have been used to obtain those values, modeling the effects of trait changes on the 

profitability of a production system (Borralho et al. 1993; Apiolaza and Garrick 2001; Ivković 

et al. 2006). Other approaches used to obtain economic values of traits have been linear 

programming (Ladd and Gibson 1978), efficiency measures on production systems (e.g., 

Lambert and Wilson 2003; Todoroki and Carson 2003) and hedonic models (e.g., Bloomberg 

2001). 

Hedonic values are defined as the implicit prices of traits and they are revealed by observed 

prices of differentiated products and the specific amounts of traits associated with them 

(Lancaster 1966; Rosen 1974). In the case of agricultural commodities, hedonic models have 

been applied to determine the marginal value of quality traits (Ladd and Martin 1976; 

Ethridge 1982; Angel et al. 1990; Espinosa and Goodwin 1991; Bowman and Ethridge 1992; 

Parker and Zilberman 1993; Nerlove 1995; Carew 2000; Walburger 2002).   

When developing breeding objectives for specific wood attributes, comparable approaches to 

hedonic models have been occasionally applied under the name ‗value regressions‘. For 

instance, Ernst and Fahey (1986) stated that regressions of value on wood traits, coming from 

product recovery studies, would provide the way to estimate economic weights for tree 

breeders. Similar studies have been documented by Cotterill and Jackson (1985) and Aubry et 

al. (1998). Forest hedonic models have mostly been concerned with the impact of 

environmental amenities on land prices (Munn and Palmquist 1997; Bastian et al. 2002; 

Snyder et al. 2007) and also with factors that explain stumpage price (e.g., Puttock et al. 

1990). 

This paper presents an application of hedonic models to value log and tree wood attributes for 

appearance lumber of Pinus radiata D.Don in Chile. The log recovery value is used as 

response variable instead of log prices. Finally, the sensitivity of the log value to wood 

attribute changes is analyzed using an elasticity approach. 
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3.3 Materials and methods 

The data for this project came from a Chilean sawing study that included 156 radiata pine logs 

from three stands. At the time of sampling the stands were 19, 22 and 34 years old with Site 

Indices of 31, 28 and 27 m, respectively. These radiata pine stands are representative of the 

site quality available for clear wood production. The stands were thinned and pruned to 

different stocking intensities, but all of them targeted a 5 m long pruned log. Trees used in the 

current study, were chosen considering representativeness in the diameter distribution as well 

as stem quality to generate sawlogs. The log sample contained a minimum small-end diameter 

of 20 cm and most trees contained three 5 m logs. Table 1 summarizes quality information at 

the log level. 

 

Table 3.1  Average value of log descriptors segregated by log class. 

Variable Pruned butt log Second log Third log 

Number of logs 54 57 45 

Log length (LL, cm) 505 505 410 

Small-end diameter (SED, mm) 385.15 358.60 335.09 

Log volume (VOL, m
3
) 0.73 0.55 0.43 

Form (FORM) 0.73 0.79 0.79 

Defect core diameter (DCD, mm) 240.69   

Pruned log index (PLI) 4.83   

Branch index (BI, mm)  44.95 50.46 

Largest branch (LB, mm)  56.64 66.55 

Base internode length (BIL, cm)  71.31 52.42 

Mean internode length (MIL, cm)  71.44 58.12 

Internode index base 80 cm (II80, %)  33.04 23.49 

Internode index base 60 cm (II60, %)  46.77 32.16 

3.3.1 Definition of tree and log variables 

SED, presented in Table 3.1, is the small-end diameter of the log. FORM corresponds to the 

relationship Cvol/Lvol, where Cvol is the common volume (m
3
) equivalent to the maximum 

cylinder contained in the log, and Lvol is the under bark log volume. SED and FORM are 

related to the recovery of solid wood during log processing. Branch index (BI) is the mean 

diameter of the four largest branches of the log, one per quadrant (North, East, West and 

South). Largest Branch (LB) is the diameter of the largest branch of the log. Defect core 
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diameter (DCD) corresponds to the diameter with defects after pruning. The prune log index 

(PLI) is an indicator that expresses the potential of a pruned log to produce long clear wood 

pieces, such as Moulding & Better (Park 1989). PLI is estimated by the following 

relationship: 

0.5 1.6PLI (D1.3 DCD) *(D1.3/DCD)*FORM    (3.1) 

where D1.3 is the diameter at 1.3 m of log. Usually, the DCD is known after processing the 

log; nevertheless, it can be previously estimated using PLI, or by statistical models that 

consider variables related to the silvicultural regime of the stand (Knowles et al. 1987).  

Internode length is an important characteristic in determining the outturn of Shop and Finger 

Joint grades. The mean internode length (MIL) is the sum of length (m) of internodes in 

branched section of the log divided by the number of internode lengths in branched section of 

the log (Watt et al. 2000). Internode index (IIb) is the sum of internode lengths greater than a 

given base (b) divided by the log length. This study considered bases of 60 and 80 cm. Further 

details relating to the above traits are described in the literature by Park (1989), Grace and 

Carson (1993), Carson and Inglis (1988) and Jayawickrama et al. (1997). The base internode 

length (BIL) corresponds to the minimum internode length that is contained in 50 percent of 

the log length. Meneses and Guzman (2003) developed this index for unpruned logs based on 

the Internode index (IIb). Thus, BIL represents that minimum internode length (b) that 

generates an IIb equal to 0.5.  

IIb, MIL and BIL give complementary information about internode length. MIL describes the 

average internode length of a log, tree or stand while IIb provides an indication of variability 

but it is usually estimated for specific internode lengths, which limits the possibilities of 

processing to a limited set of products. BIL is more flexible and is associated to the length of 

clear pieces that could be obtained from the logs, which is useful for matching stands of 

varying internode length to product requirements (Meneses and Guzmán 2003). 

The variables included in the models correspond to log traits that are important in the 

recovery of radiata pine appearance grades (e.g., Zhang 1997; Beauregard et al. 2002; Young 

et al. 2004). In addition, these attributes have been proposed as breeding-objectives to 

produce solid wood due their influence on log value recovery (e.g., Shelboume et al. 1997; 

Shelbourne 1997; Ivković et al. 2006). 
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Table 3.2 Descriptive statistics of lumber volume (m
3
) by product. 

Pruned butt log 

Moulding 

& Better 

(m
3
) 

3rd Clr 

(m
3
) 

Shop 1 

(m
3
) 

Shop 2 

(m
3
) 

Shop 3 

(m
3
) 

Finger 

Joint 

Blocks 

(m
3
) 

Finger 

Out 

(m
3
) 

Average  0.179 0.002 0.036 0.045 0.070 0.020 0.022 

Maximum 0.613 0.052 0.135 0.191 0.167 0.111 0.063 

Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Standard deviation 0.147 0.009 0.041 0.046 0.038 0.029 0.024 

Second log        

Average  0.027 0.005 0.035 0.083 0.103 0.016 0.030 

Maximum 0.371 0.091 0.233 0.388 0.296 0.142 0.095 

Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Standard deviation 0.069 0.018 0.058 0.089 0.056 0.028 0.282 

Third log               

Average  0.001 0.001 0.014 0.137 0.086 0.032 0.026 

Maximum 0.025 0.037 0.221 0.413 0.267 0.123 0.065 

Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Standard deviation 0.005 0.006 0.043 0.11 0.059 0.033 0.020 

Tree               

Average  0.239 0.010 0.096 0.208 0.244 0.068 0.075 

Maximum 1.009 0.091 0.442 0.632 0.507 0.178 0.203 

Minimum 0.000 0.000 0.000 0.000 0.078 0.000 0.000 

Standard deviation 0.211 0.022 0.114 0.193 0.099 0.056 0.057 

3.3.2 Sawmill product evaluation 

Once the standing trees and logs were assessed in the field, the logs were processed at the 

mill. The aim of processing was to maximize the recovery of lumber in the Moulding & 

Better grades from the pruned logs and Shop grades from unpruned logs, as described by the 

Western Wood Products Association for the USA market (WWPA 1995). An additional low 

quality product called Finger Out was generated by the sawing study and included in the 

analysis. Lumber grade recovery for each log type is shown in Table 3.2. 

3.3.3 Model components 

Hedonic models (HM) disaggregate the price of a product into the value of its component 

traits to obtain the contributory value of each attribute (Rosen, 1974). 
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Logs are required by processors because they contain wood traits to produce specific lumber. 

In keeping with HM theory, the log is a differentiated product with attributes can be identified 

and measured and, therefore monetarized.   

We assume competitive markets, and the models developed by Ladd and Martin (1976) and 

Espinosa and Goodwin (1991) are used as a theoretical framework. We also consider a single 

product firm where specific log attributes, such as small-end diameter, form and internode 

length, are arguments in the appearance-grade lumber production function G(t).  

If the log processor is assumed to maximize profit subject to the production function G(t), the 

first order conditions of the profit maximization generate Equation (2) which represents a 

hedonic price function. Lumber production is a function of the log trait use, which is a 

function of the log use; thus, the differentiation of a compound function (function that 

operates on another function, often represented as nested functions, e.g. f(g(x))) is used to 

derive Equation(3.2). 

i

n
i

z

t 1 i

tG
p p* *

t z




 
       (3.2) 

where pz is the price paid for the input (log) and p is the price received for the product 

(appearance-grade lumber). Variable z corresponds to the quantity of the input log used in the 

production of lumber, ti is the amount of trait i provided by one unit of input z, 
z

ti




 is the 

marginal yield of trait ti in the production of lumber from input z, and 
it

G
p




* is the value of 

the marginal product of trait ti, which represents the marginal implicit price (hedonic price) 

paid for the trait ti because of its contribution to lumber production. Thus, Equation (3.2) 

states that the price paid for the input log is equal to the sum of the hedonic prices of the log 

traits multiplied by the marginal yield of those traits.  

Equation (3.2) may be simplified with the assumption that the marginal product of the trait ti 

and 
i

i T
z

t





 are constant. This simplification implies that each additional unit of input z 

contributes the same amount of the t-th trait to the function G(t). Thus, Equation (3.2) can be 

written as the following single linear hedonic price function:  

1
i

i

n

z t i

t

p * T


        (3.3) 
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These assumptions have been consistent with many natural commodity traits (Ladd and 

Martin 1976; Espinosa and Goodwin 1991). Nevertheless, this study is open to estimate 

nonlinear functional forms according to the model specification tests.   

Linking log prices with their attributes by regressions allows obtaining the parameters of 

Equation (3.2), which is the foundation of hedonic models.  

If attributes are not reflected in prices, but they are observable, measurable and directly 

related to the quality and value of final products, an alternative approach of value could be 

used in order to estimate the parameters of Equation(3.2). For example, log internode length is 

a trait intimately related to quality and prices of Shop products. Thus, longer internodes 

generate longer Shop pieces with higher prices. However, the log market does not explicitly 

value this characteristic in unpruned log prices. 

This study proposes the use of a log recovery value called conversion return (CR), which 

represents the theoretical maximum willingness to pay for logs in US $/m
3
 delivered to the 

sawmill (Davis and Johnson 1987). The suitability of product recovery studies to value wood 

traits for breeding purposes has been reported by other studies  (e.g., Ernst and Fahey 1986; 

Aubry et al. 1998). This indicator corresponds to the residual value of the log after processing, 

and it is estimated as follows:  

1

N

i i

i

CR p L PC


        (3.4) 

where pi is the price of  lumber type i, Li is the volume of lumber type i contained in one cubic 

meter of logs, and PC is the processing cost of one cubic meter of logs. Prices of lumber 

corresponding to the ―Industrials, Specialties, and other items‖ section in the Random Lengths 

Report (Random Lengths 2008), were directly provided by Random Lengths publications. 

These corresponded to the monthly prices series 1995-2008, which were expressed in 2008 

using the USA CPI (base 1982-1984:100). The average values of these series were used to 

estimate the CR. Table 3.3 presents prices and shipping costs of products, as well as log 

processing costs (Jean P. Lasserre, pers. comm., Forestal Mininco-Chile, March 20, 2008). 
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Table 3.3 Prices and shipping costs for products and processing costs for logs.  

Moulding 

& Better 

[US 

$/m
3
] 

3rd Clr 

[US 

$/m
3
] 

Shop 1 

[US 

$/m
3
] 

Shop 2 

[US 

$/m
3
] 

Shop 3 

[US 

$/m
3
] 

Finger 

Joint 

Blocks 

[US 

$/m
3
] 

Finger 

Out 

[US 

$/m
3
] 

Shipping 

cost 

[US 

$/m
3
] 

Log 

processing 

cost 

[US $/m
3
] 

584 394 373 328 266 367 257 60 70 

 

Explanatory variables were measured and estimated from logs and trees. The information at 

the log level includes SED, FORM, internode indices (MIL, BIL, II60, II80) and branch 

measures. However, our hypothesis was that branches would have only a minor influence on 

the quality and value of appearance products, because the knots are removed as part of the 

production process – i.e. a remanufacturing plant will use chop saws to remove all knots. 

Thus the size of knots has a much lower effect than the distribution of knots, which is 

considered by the internode index. In fact, the requirements for radiata pine appearance 

lumber relate only to the length of the clear piece (Kretschmann and Hernandez 2006). If 

there were specific stiffness or strength requirements, the situation would be different because 

in that case knots derived of branches would cause downgrade in lumber, as it happens with 

structural lumber (Chauhan 2006a).  

At the tree level, the explanatory variables were diameter at breast height (DBH) and 

internode length indices. Tree form, BI and products volume per tree were obtained by 

aggregating the logs for each tree, which meant rebuilding forty trees.  

The suitability of a linear functional form for the hedonic models was assessed by the Box-

Cox transformation (1964). The objective of this transformation is to identify an appropriate 

exponent lambda (λ) to obtain the best transformation to achieve data normality. The Box-

Cox transformation takes the following form: 

 
1

0

0

y
, if ;

y

log y , if .




 



 


 
 

     (3.5) 

The resulting functional form will depend on the value of λ. For instance, if λ is equal to one 

the transformation is linear. 

The hedonic model approach allows estimation of elasticities to assess the sensitivity of log 

value to changes in wood attributes. The changes in log value and attributes were expressed as 
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percentages of the average log value and average trait. The elasticity of log value () is the 

change in CR divided by the change in the attribute, multiplied by the level of the attribute 

divided by the level of CR. In this way, the elasticity depends on the attributes levels 

considered in its estimation. Elasticity of log value () is estimated as follows:  

CR

t

t

CR
ε i

i

i *



       (3.6) 

where it  is a trait in the hedonic model and CR is the conversion return of the log. If this 

elasticity is lower than one (inelastic), there will be a less than proportionate change in 

relative log value for any change in the wood trait. The opposite is true if the elasticity is 

greater than one (elastic), when the proportionate change in relative log value is greater than 

the change in the trait. Thus, it is desirable that the log attributes that contribute to log value, 

such as SED, FORM and internode length, have elasticity values greater than one.  

3.4 Results and discussion 

Hedonic models were fit at the log level and tree level, considering attributes of form, 

diameter, internode length and branches, as well as of silviculture. The hedonic value of a 

given attribute was calculated as the partial derivative of CR on that attribute. Models 

presented at the tree level aim to understand the effect of improving wood quality as done by 

tree breeders in the development of breeding objectives. Furthermore, there is rarely an 

opportunity in radiata pine to process 14 m of tree for the same end-product. This information 

could help to assess the effect of improvement at the tree-level on profitability at the log-

level. 

3.4.1 Log level models 

The conversion return averaged 114, 66 and 54 US $/m
3
 for first, second and third logs 

respectively. Log recovery values were consistent with the amount of highest priced lumber 

that they generated. Thus, the butt log presented the highest value due to its high volume of 

Moulding & Better products. However, higher differences in value between butt log and 

second log have been reported (e.g., Beauregard et al. 2002). The smaller difference obtained 

in this study was due to small piece size, large defect core size, and the associated low PLI 

(4.8). BI for the second log was 45 mm, lower than for the third log (50 mm). However, the 

largest branch was found in the second log (158 mm). Similar results were obtained by 
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Woollons et al. (2002) in a study for developing a branch model for New Zealand radiata 

pine. In addition, the author highlights the variability of branch size observed for this species. 

The high variability of radiata pine branching traits, within trees and among trees, was also 

reported by Bannister (1962).  

Branch size depends on initial spacing and site index (Tombleson et al. 1990). In addition, the 

combined effects of thinning and pruning, could increase branch sizes above the last pruned 

section (Jacobs 1938 cited by Shirley 1974). This situation could occur when wider spacing is 

left after thinning, especially in direct sawlog regimes (Chauhan 2006a).  

Branch data for second and third logs showed a weak (not significant) correlation between BI 

and MIL, of 0.02 and 0.16 for the second and third log respectively. Considering LB these 

correlations increased slightly. Our data set does not support the positive relationship between 

internode length and branch size reported by other studies (e.g., Burdon et al. 1992; Watt et al. 

2000). In contrast, Woollons et al. (2002) obtained a low correlation (around 0.1) between the 

size of the maximum branch and internode length. Nevertheless, our data showed a positive 

correlation between BI and SED, 0.53 and 0.47 for second and third log respectively.  

Longer internodes were observed in the second log, a result that agrees with the trend 

depicted by the model of Grace and Carson (1993) and with the results obtained by 

Tombleson et al. (1990).  

There were six hedonic models fitted at the log level: one for the first pruned log, four for the 

second unpruned log and one for the third unpruned log. The explanatory variables for the 

first log were FORM, SED and DCD. For the second log the variables were SED, FORM, BI 

and one internode measure at the time: MIL, BIL, II80 and II60. Finally, the third log model 

considered SED, FORM and BIL as independent variables.  

The functional form of the hedonic models was assessed by the Box-Cox transformation, 

obtaining λ=1 for all models and making a linear functional form suitable.  

Models were not found to be heteroskedastic using the White Test, at a significance level of 

0.01. The normality of the data was also tested using the Shapiro-Wilk test. Results indicated 

that there was no evidence to reject the null hypothesis of normally distributed data. 

Collinearity between explanatory variables was tested by the condition index (CI). This index 

is a measure of the relative amount of variance associated with an eigenvalue; consequently, a 

big CI indicates a high level of collinearity (Rawlings et al. 1998; Quinn and Keough 2002). 
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Table 3.4 indicates the presence of collinearity, especially with variables related to branches 

and internode length 

 

Table 3.4 Condition index (CI) to test collinearity in models at the log level. 

Variables Model 

Log 1 

Model  1 

Log 2 

Model  2 

Log 2 

Model  3 

Log 2 

Model  4 

Log 2 

Model 

Log 3 

 CI CI CI CI CI CI 

INTERCEPT 1.000 1.000 1.000 1.000 1.000 1.000 

SED 9.624 5.195 4.040 4.424 4.519 4.156 

F 19.713 7.541 7.320 7.968 7.021 9.742 

DCD 34.347      

BI  30.329 29.898 30.245 29.733  

MIL  12.400     

BIL   12.2881   35.524 

II60    12.338   

II80     12.154  

 

The first approach to reduce collinearity was to eliminate those variables with highest values 

of CI. However, collinearity persisted with the internode length variables, which presented a 

CI close to 27 in the unpruned log models. Instead, models were fitted centering the 

explanatory variables, expressing them as deviations from their mean values. Using this 

approach, the CI for explanatory variables was reduced to less than three, which would 

suggest no collinearity problems. This centering process does not affect residual standard 

deviations, goodness of fit, coefficient values or standard error of the interactions, but its main 

effect is that the coefficients are now interpretable based on a comparison to the mean of the 

data (Gelman and Hill 2007).  

Models were also tested with the Durbin-Watson statistic (d) to detect autocorrelation in the 

residuals. The statistic d was greater than 2 for all log models suggesting that there are no 

autocorrelation problems. 
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Table 3.5 Hedonic model results, first, second and third log. 

Models Parameter Estimate 
Standard 

Error 
R

2
-adj 

Pruned butt log    

 
DCD*

3
βFORM*

2
βSED*

1
ββCR 0 

 
 0.65 

Intercept  113.656
*** 

2.103  

SED  0.339
*** 

0.059  

FORM  257.900
***

 55.602  

DCD               -0.267
*** 

0.090  

Second log, model 1    

BI*
4

βMIL*
3

βFORM*
2

βSED*
1

ββCR 0    0.66 

Intercept 66.331
*** 

2.690  

SED 0.189
*** 

0.033  

FORM 145.515
*** 

36.191  

MIL               0.187
** 

0.080   

BI          -0.043 0.172  

Second log, model 2    

BI*
4

βBIL*
3

βFORM*
2

βSED*
1

ββCR 0    0.68 

Intercept 66.336
*** 

2.628  

SED 0.191
*** 

0.033  

FORM 142.491
*** 

35.376  

BIL               0.159
*** 

0.056  

BI          0.003 0.169  

Second log, model 3    

BI*
4

β
60

II*
3

βFORM*
2

βSED*
1

ββCR 0    0.65 

Intercept 66.299
*** 

2.716  

SED 0.200
*** 

0.034  

FORM  147.076
*** 

36.544  

II60             22.572
** 

10.833  

BI          -0.003 0.176  
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Second log, model 4    

BI*
4

β
80

II*
3

βFORM*
2

βSED*
1

ββCR 0    0.67 

Intercept 66.271
*** 

2.636  

SED 0.191
*** 

0.033  

FORM  149.179
*** 

35.486  

II80          27.518
*** 

9.887  

BI     -0.033 0.168  

Third log    

BIL*
3

βFORM*
2

βSED*
1

ββCR 0     0.38 

Intercept 54.159
*** 

2.109  

SED 0.099
*** 

0.025  

FORM           62.880
* 

32.166  

BIL            0.025             0.065  

* Significant at 0.1 level; ** significant at 0.05 level; *** significant at 0.01 level 

 

Table 3.5 presents the results of the final models. Given the linear functional form of the 

models, parameters correspond to the trait hedonic values. 

The model for the pruned butt log presented an R
2
-adj of 0.65 and all coefficients were 

significantly different from zero (p<0.01). As expected, FORM and SED had a positive 

contribution to log value, while DCD had a negative role. For this log, 50 percent of the CR 

variation was explained by SED (p<0.01), which supports the economic importance of log 

size. FORM and SED are inherent attributes of the logs, whereas DCD is a variable generated 

by silviculture. Despite this difference, DCD was considered in the model because it gives 

indirect information of the amount of knot-free wood, which is the objective product in the 

pruned log.  

The hedonic values of SED and DCD were 0.33 and -0.27 US $/mm respectively. These 

values would correspond to the marginal contribution to log recovery value for having an 

extra millimeter on SED and DCD, in which case they are expressed in US $/m
3
. The variable 

FORM is an index that ranges between 0 and 1, thus improving this index by 1 percent would 

result in an increment of 2.58 US $/m
3
 in the log conversion return.  

The models for second logs presented high values for R
2
-adj. (see Table 3.5). All parameters 

were statistically significant (p<0.05) and their signs were consistent across models. 

Additionally, the magnitude of the coefficients for internode indices followed the expected 

trend; the highest value is associated with II80 followed by II60. Similar results were obtained 
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by Beauregard et al. (2002) but their model considers DBH, BI and II60 as explanatory 

variables and the resulting goodness of fit was 0.9. The authors did not report the regression 

coefficients; nevertheless, they pointed out that trees with small branches presented better 

grade recovery than trees with big branches.  

In the second logs the hedonic values for FORM were consistent across models with values 

between 1.46 and 1.49 US $/m
3
. These values were lower than those observed in the first log. 

This result was expected, due to the higher economic value of the butt log. In fact, 65 percent 

of the tree value was contained in the first log.SED presented a consistent hedonic value 

around 0.19 US $/m
3
 across models, explaining 65 percent of variation of the CR (p<0.01).  

Regarding the economic value of internodes, the first model fitted MIL with a hedonic value 

of 0.19 US $/cm. The hedonic value for BIL was 0.16 US $/cm. Internode indices II60 and II80 

presented values corresponding to marginal contributions of 0.23 and 0.28 US $/m
3
 to the CR, 

respectively.  

Branch variables did not provide a significant (p<0.1) explanation of recovery value for 

second logs for appearance lumber. Table 3.5 shows the information corresponding to BI; 

models were also tried with LB, which was not significant (p<0.1).  

Concerning the third log, 32 percent of CR variation was explained by SED which supports 

the significant economic weight of this trait (p<0.01). Although, the goodness of fit was poor 

(R
2
-adj 0.38) the intercept and parameters associated with SED and FORM were significant 

(p<0.1) and the corresponding hedonic values were lower than those obtained for the second 

log. The parameter associated to BIL was not significant; however, its sign was consistent 

with expectations. Additionally, this log presented the highest variability of quality and value 

amongst logs, which could be influencing fit. 

3.4.2 Tree level models 

Two models are presented in order to explain tree value in terms of wood attributes. The 

functional form of these models was also linear, with λ=1 for the Box-Cox transformation. 

These models did not present heteroskedasticity problems; nevertheless, there was collinearity 

between explanatory variables, which was avoided by centering the variables. Concerning 

autocorrelation, the Durbin-Watson statistic (d) was close to 1.9 for both tree models; which 

would indicate a mild presence of autocorrelated residuals. 
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The average conversion return was 175 US $/tree. Models that explained CR at the tree level 

resulted in an improved fit compared to the models at the log level, with an R
2
-adj. of 0.92 for 

both models. Table 3.6 presents the results of the hedonic models at the tree level.  

 

Table 3.6 Hedonic models at the tree level 

Models 
Parameter 

Estimate 

Standard 

Error 
R

2
-adj 

Tree, model 1    

5110 MIL*
3

βFORM*
2

βDBH*
1

ββCR    0.92 

Intercept 175.445
*** 

5.786  

DBH 1.091
*** 

0.092  

FORM  381.197
** 

144.251  

MIL511   0.115 0.174  

DCD -0.011 0.159  

BI -0.115 0.366  

Tree, model 2    

20 BIL*
3

βFORM*
2

βDBH*
1

ββCR     0.92 

Intercept 175.44
***

 5.556  

DBH 1.049
*** 

0.092  

FORM  374.453
** 

138.323  

BIL2 0.213
* 

0.116  

DCD 0.054 0.158  

BI -0.078 0.350  

* Significant at 0.1 level; ** significant at 0.05 level; *** significant at 0.01 level 

 

The explanatory variables considered in these models were DBH, FORM, internode 

measures, DCD and BI. The pertinence of DBH and internode length for predicting 

appearance lumber quality from trees has been also reported by Gazo et al. (2000).  

Concerning internode measures, model 1 considered the mean internode length between 5 and 

11 m (MIL511). The second model included the base internode length of the second log as 

explanatory variable (BIL2).  

The economic values of attributes derived from model 1 were 1.09 US $/cm for DBH and 

3.81 US $ for FORM (the highest value for this variable). The value of MIL511 was not 

significant, although its magnitude and sign were as expected. In the same way, DCD and BI 
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were not significant to explain tree recovery value. In model 2, variables DBH and FORM 

had similar hedonic values to those generated by model 1. The parameter associated to BIL2 

was statistically significant (p<0.1) and higher than the corresponding value at the log level. 

This difference is due to the higher economic value of trees compared with the value of 

second logs. In contrast, DCD and BI were not significant and close to zero.  

Although the value of trees could be debatable, they were estimated to show the joint value of 

the logs that potentially could be processed for appearance products. This information could 

be useful for breeders, particularly to assess single-purpose versus multi-purpose breeding 

programs.  

3.4.3 Elasticity results 

The sensitiveness of CR to log attributes changes can be analyzed using elasticity. Despite of 

the similarity between the elasticity of CR and the attribute economic value, they are different 

concepts. The value of an attribute obtained by hedonic models corresponds to the marginal 

contribution of the trait to the CR and it is expressed in absolute values (US $/m
3
). The 

elasticity of the CR with respect to one log trait is the percentage change in CR caused by a 

one percent change in the trait. The changes in CR and attributes are expressed as percentages 

of the average CR and average attribute. Elasticity is dimensionless and its interpretation 

depends on the resulting value being greater, equal or lower than one.  

Table 3.7 presents the elasticities of the log recovery value estimated from two hedonic 

models. The first one corresponds to the model of the butt log, while the second one is model 

1 for the second log (see Table 3.5). Elasticity of log recovery value was estimated for SED, 

FORM, DCD and MIL. The elasticity values for the pruned butt log indicate that the CR was 

SED and FORM elastic, but DCD inelastic. Thus, CR would increase by 1.2 percent if SED 

experiments a change of 1 percent, while CR would increase by 1.7 percent for FORM. 

Concerning DCD, a change in this variable would cause a less than proportional change in 

CR. Given that this variable has a negative contribution to the log CR, having elasticity lower 

than one is advantageous. 

 

 

 

 



 

 

35 

Table 3.7 Elasticities for log conversion return on attributes SED, FORM, DCD and MIL. 

Models Mean attributes 

values 

Elasticity  (%) 

Pruned butt log model   

SED (mm) 385.148 1.149 

FORM  0.730 1.656 

DCD (mm) 240.685 -0.565 

Second log, model 1   

SED (mm) 358.596 1.027 

FORM 0.792 1.737 

MIL (cm) 70.786 0.201 

 

Concerning the second log, the CR resulted to be SED and FORM elastic, with similar 

elasticity values to the butt log. On the other hand, CR resulted to be MIL inelastic. Thus, the 

CR would increase just by 0.2 percent if the mean internode length increased by 1 percent.  

Elasticity values could be useful complementary information to implement wood attribute 

rankings in breeding programs. For instance, if a wood attribute has high economic value and 

its log value elasticity is higher than one, then this characteristic will reward breeding effort, 

as it happens with SED and FORM.  

3.5 Conclusions 

The objective of this study was to estimate the economic value of wood traits of radiata pine 

logs for producing appearance lumber (Moulding & Better, Shop and Industrial Finger Joint). 

We used hedonic models to ascertain the economic values of wood attributes on pruned butt 

logs, unpruned logs and trees. Finally, an elasticity analysis was used to understand the 

magnitude and the direction of the log recovery value response due to changes in wood 

attributes.  

The use of conversion return as response variable made it possible to capture and value 

marginal changes in wood traits. Thus, despite of its theoretical nature, conversion return is a 

plausible economic measure to assess wood traits at the log and tree level. Using conversion 

return, processors incorporate known information that is part of their decision making process 

when buying logs. However, we assumed that a single log CR is representative of the radiata 

pine solid timber industry which is debatable since there are differences on processing 



 

 

36 

technology and costs between mills. In spite of this assumption, we believe that the relative 

economic values of wood attributes will be consistent with those reported in this study. 

SED and FORM were the characteristics with the highest economic value for the production 

of appearance lumber, as well as generating the highest log value elasticities. This result is 

consistent with the priorities observed in many breeding programs. The value of internode 

length indices highlighted their significant contribution to the value of logs destined to 

appearance lumber.  

Branch variables did not contribute to explain the variation of CR for unpruned logs. These 

results supported the hypothesis asserted in this study. In this way, the wood quality of 

unpruned logs to produce appearance grades should be just focused on SED, FORM and 

internode length variables. In addition, appearance products have no requirements for stiffness 

and strength, a case in which knots generated by branches would negatively affect the log 

recovery value.  

BIL showed a good performance at explaining log and tree recovery values. Thus, it would be 

advantageous to incorporate this alternative index to the information derived from radiata pine 

unpruned logs. 

The elasticity analysis was useful to examine the responsiveness of log value to changes in 

wood characteristics. The elasticity of the conversion return, due to changes in log attributes 

could be complementary information for ranking trees in breeding programs.  

Equation Chapter (Next) Section 1 
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4 A DEA approach to assess the efficiency of radiata pine 

logs to produce New Zealand structural grades 

 

4.1 Abstract   

An efficiency analysis revealed the relative magnitude of wood traits that distinguishes 

efficient radiata pine logs to produce New Zealand structural grades. Technical and cost 

efficiencies were obtained by using data envelopment analysis (DEA). Wood trait prices used 

to perform the cost efficiency corresponded to economic weights derived from a partial 

regression. These values were 1.1, 29.7, 0.3 and -0.4 NZ $/m
3 

for small end diameter (cm), 

stiffness (GPa), basic density (kg/m
3
) and largest branch (mm) respectively. The most 

efficient logs were those with the highest difference between recovery value and price. There 

were positive and significant correlations between technical efficiency and wood stiffness 

(0.46, p<0.05) and between cost efficiency and log recovery value (0.85, p<0.05). The most 

efficient logs had a ratio of 1:4 between stiffness and small end diameter whereas logs that did 

not generate structural lumber presented ratios close to 1:8. This information will inform the 

development of breeding objectives, and help segregating and pricing logs by using traits 

patterns that result in efficient logs for the production of structural wood.  

Keywords: log efficiency, DEA, Pinus radiata, economic weights, structural lumber, breeding 

objectives. 

4.2 Introduction 

Lumber specifications present important challenges to breeders, who must focus on multiple 

attributes to achieve the quality thresholds required by consumers. For instance, improving 

wood stiffness has become imperative in New Zealand since the introduction of the standard 

NZS3622:2004, which demands verification of structural lumber properties. Consequently, in 

recent years the New Zealand radiata pine (Pinus radiata D. Don) breeding program has 

emphasized work on traits such as stiffness (Shelbourne 1997; Jayawickrama and Carson 

2000; Kumar et al. 2002). Furthermore, growers are also looking for combinations of genetic 

material and silvicultural regimes that improve the structural characteristics of logs according 

to market demands (Waghorn et al. 2007a). 
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Tree breeders are expected to increase wood quality, defined as the relative magnitude of log 

traits that generate high value lumber. Breeding could then be approached as a production 

system where the inputs are both wood traits and the relationships among them, while the 

outputs are logs that generate a high recovery value at the mill. Under this framework the 

relative contribution of traits would be a key element in assessing the productive efficiency of 

logs. A log would be an efficient unit of lumber production as long as its traits were able to 

generate a high recovery of the most valuable lumber. 

The efficiency of units of production, such as logs, can be estimated by using data 

envelopment analysis (DEA). This approach analyses the efficiency of a production unit in 

using and combining inputs to produce a given level of output (Farrell 1957; Charnes et al. 

1978; Färe et al. 1985; Xue and Harker 1999; Coelli et al. 2005). DEA has been usually 

applied to decision-making units such as firms to detect inefficiencies and reduce them by 

adjusting the use of inputs (e.g., Carter and Cubbage 1995; Chakraborty et al. 2002). 

Estimating the efficiency of logs to produce lumber may seem unusual, since it is not possible 

to have control over their use of inputs. Nevertheless, breeding and silviculture can be used to 

change the relative magnitude of wood traits by targeting the genetic material to be deployed, 

stocking and site selection (e.g., Jayawickrama 2001a; Lasserre et al. 2004; Waghorn et al. 

2007b). Furthermore, there are examples of using DEA to identify the most efficient logs to 

produce appearance grades looking for traits that could be manipulated in a radiata pine 

breeding program (e.g., Todoroki and Carson 2003). 

DEA generates measures of technical, allocative and cost efficiencies. Technical efficiency is 

concerned with producing the maximum output with the available inputs, or minimizing the 

use of inputs to achieve a given output level. Allocative efficiency deals with the optimal 

combination of inputs, given the input prices. Cost efficiency corresponds to the product of 

technical efficiency and allocative efficiency and it represents the total efficiency of a 

production system (Farrell 1957; Färe et al. 1985).  

Obtaining cost efficiency requires input prices; however, this information is not commonly 

available for wood traits. Instead, economic weights used by breeders to develop breeding 

objectives and to build selection indices can be used as plausible prices. The economic weight 

of an attribute is defined as the net increase in production system profit for each unit of 

improvement of the attribute (Hazel 1943). Economic weights would represent the implicit 

cost of traits when breeding efficient logs. Thus, based on efficiency criteria, breeders should 

produce logs that maximize the value of output with a given level of input. Accordingly, 
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breeding programs should target those logs that achieve the highest efficiency scores. The 

relative magnitude of traits in those logs could be useful information to improve silvicultural 

regimes as well as to design protocols for segregation and classification of logs. 

Bioeconomic models (BM) and partial regressions (PR) are two common approaches for the 

estimation of economic weights (e.g., Borralho et al. 1993; Greaves et al. 1997b; Aubry et al. 

1998; Apiolaza and Garrick 2001; Berlin et al. 2009). Bioeconomic models consider the value 

of a trait as the change in profitability of a forest production system due to a change in that 

trait. BM modeling requirements are complex and costly, for this reason a substantial part of 

the models has been based on large numbers of assumptions. On the other hand, BM offer a 

framework to assess the impact of breeding decisions across all the production chain, 

allowing analyze the sensitivity of several system elements (Amer et al. 1997; Jones et al. 

2004).  

Partial regressions link wood traits from logs with volume and value of products obtained at 

the mill. Partial coefficients derived from PR correspond to the economic weights (Talbert 

1984; Cotterill and Jackson 1985; Ernst and Fahey 1986; Aubry et al. 1998). The major 

limitation of PR is the high cost of running a product recovery study; however, Ernst and 

Fahey (1986) and Aubry et al. (1998) assert that approaches derived from recovery studies 

provide the best information to obtain economic weights. 

Economic weights can be also estimated by using hedonic prices (HP) which correspond to 

the implicit prices of traits and are revealed to economic agents from observed prices of 

differentiated products and the specific amounts of traits associated with them (Lancaster 

1966; Rosen 1974). In forestry, Alzamora and Apiolaza (2010) presented an HP approach to 

value pruned and unpruned log attributes for radiata pine appearance grades. 

This study provides estimates of log efficiency of wood traits usage to produce structural 

lumber. The application is performed by using an input-oriented DEA based on a sample of 

71 radiata pine logs. Economic weights derived from a partial regression are used as input 

prices to estimate cost efficiency. We hypothesize that there should be a high correlation 

between structural grades recovery and log technical efficiency; that logs with the highest cost 

efficiency should also present the highest value recovery; and that stiffness and efficiency will 

be highly correlated with log recovery value, but not with log prices.  
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4.3 Materials and methods 

4.3.1 Data set 

Data were provided by the New Zealand Wood Quality Initiative, as a sample of 71 (35 

second logs and 36 third logs) 5 m long unpruned logs from two forests: Compartment 8 at 

Crater Block in the Kaingaroa Timberlands estate (28 years) and Compartment 111/3 at 

Tarawera (26 years).  Table 4.1 presents a summary of log attributes. 

The attributes assessed in the study have been suggested as breeding objective traits to 

produce structural products from radiata pine (e.g., Shelbourne 1997;  Ivković et al. 2006). 

Log small end diameter (SED) is commonly used to classify and price logs. Taper (TP) is a 

measure of form that corresponds to the degree to which the tree stem (or log) decreases in 

diameter as a function of its height. Small end diameter (SED) and taper (TP) are intimately 

related to lumber recovery during log processing. Largest Branch (LBR) is the diameter of the 

largest branch of the log. Branches have a negative influence in the production of structural 

grades, where high branch angle and diameter reduce the quality of structural products (Grant 

et al. 1984; Xu 2002). Basic density (BD) is the amount of dry matter (at 12% moisture level) 

per unit of green volume, a trait highly related to strength, stiffness and hardness in 

outerwood. Wood stiffness (STF) corresponds to Young‘s modulus of elasticity, which 

describes the capacity of an object to be deformed elastically, but not permanently, when it 

receives a force (Chauhan 2006b). The acoustic measurements of logs to estimate STF were 

collected using a Director HM200 tool. 

In general terms, breeders have aimed at increasing small end diameter, basic density and 

stiffness, reducing taper and limiting the knot size (small largest branch). 

 

Table 4.1 Mean values and standard deviations (SD) of second and third log attributes. 

Variable 
Second  log Third log 

Mean SD Mean SD 

Small end diameter (SED) cm 44.91 8.41 39.77 7.71 

Stiffness (STF) GPa 7.97 1.47 7.97 1.26 

Basic density (BD) kg/m
3 

382.34 28.69 377.97 28.70 

Largest branch (LBR) mm 60.29 20.97 73.33 26.59 

Taper (TP) mm/m 8.25 3.20 10.06 3.16 
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The strategy to process the log sample was to cant saw, maximizing the recovery of 100x50 

mm structural lumber. Broken full-length boards were kept but short boards and 25 mm 

boards were excluded from the study. The resulting 1300 boards were machine stress graded 

twice. The stress grader captured all the grading information at 152 mm increments along the 

lumber with the first and last 700 mm of the lumber being ungraded. Lumber was identified as 

MSG6, MSG8, MSG10 and MSG12, where MSG stands for machine stress graded, and the 

number is the stiffness in GPa. 

4.3.2 Economic weights 

Economic weights were derived from a partial regression that considered log recovery value, 

or conversion return (Davis and Johnson 1987), as the response variable, and SED, TP, LBR, 

BD and STF as explanatory variables. Log recovery value (LRV) corresponds to the total 

value of lumber contained in one cubic meter of logs minus the total log processing cost:  

1

n

i i

i

LRV p L PC


      (4.1) 

where pi is the price of lumber type i, Li is the volume of lumber type i contained in one cubic 

meter of logs, and PC is the processing cost of one cubic meter of logs. The regression model 

to estimate the economic weights for the attributes is: 

1

n

i i

i

LRV t


     (4.2) 

where LRV is the log recovery value of the logs (NZ $/m
3
), ti is the total amount of trait i 

contained in one cubic meter of log and βi corresponds to the economic weight of trait i.  

Information to calculate LRV (Equation (4.1)) was obtained from New Zealand firms. The 

prices for 100x50 mm lumber were 2.5, 3.2 and 4.1 NZ $/linear m for MSG6, MSG8 and 

MSG10 respectively, while the processing cost was 180 NZ $/m
3
. Processing cost depends on 

log diameter but we are assuming that it does not vary significantly in this log sample. The 

price for MSG12 was estimated as 4.8 NZ $/linear m by assuming that the differential price 

between MSG8 and MSG10 would be the same as between MSG10 and MSG12. Reject 

products were priced at 1.3 NZ $/linear m. 

The functional form of Equation (4.2) was assessed using a Box-Cox transformation (Box and 

Cox 1964). The aim of this transformation is to identify a suitable exponent lambda (λ) to 
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obtain the best transformation to achieve data normality. The Box-Cox transformation takes 

the following form:  

 
1

0

0

y
, if ;

y

log y , if .




 



 


 
 

      (4.3) 

The resulting functional form of the model will depend on the value of λ. For instance, if λ is 

equal to one the transformation is linear. The fitted model used centered explanatory 

variables, expressing them as deviations from their mean values. Centering does not affect 

goodness of fit, residual standard deviations or coefficient values; however, the coefficients 

are now interpretable based on a comparison to the mean of the data (Gelman and Hill 2007). 

4.3.3 Efficiency analysis  

Data envelopment analysis (DEA) is a method to estimate non-parametric and deterministic 

efficiency frontiers in multi-product and multi-input systems. DEA involves the use of linear 

programming to build a non-parametric surface over the data; thus, efficiency measures are 

calculated relative to this surface or frontier (Coelli et al. 2005; Van Biesebroeck 2007). 

Input-oriented DEA estimates technical efficiency (TE), which determines how much inputs 

can be proportionally reduced in order to achieve the same output level. TE is represented by 

an input/output ratio constrained to be between zero and one, defining a frontier with the logs 

that present the lowest ratios. Logs located in the frontier obtain a TE score of one; less 

efficient logs, located below the frontier, obtain TE scores lower than one. 

There will be as many linear programming problems as logs are analyzed. For each problem, 

a fully efficient comparison point (TE = 1) is obtained by projecting the log on the frontier 

using a linear combination of the closest efficient logs. The proportional distance from the log 

to the fully efficient point on the frontier corresponds to that log‘s technical efficiency. 

Preliminary results from the partial regression analyses suggested focusing on three traits: 

SED, STF and BD. Without losing generality, the technical efficiency of log i to produce 

volume of structural grades MSG8, MSG10 and MSG12, using SED, STF and BD was 

formulated as follows:  

Minimize  ,  

    τ, k        

Subject to: 
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where the decision variables are τ, which represents TE, and the vector of constants k. The 

matrix of log traits contained the attributes, one row per log, while the matrix of log products 

contained the volume of structural grades, one row per log.  

The cost efficiency (CE) is derived from an optimization problem that generates the minimum 

cost of traits per log; logs for which their current cost equals the optimal cost generate the cost 

efficiency frontier. The CE of log i corresponds to the ratio between its projected cost in the 

frontier and its observed cost; when this ratio is 1, the log i is cost efficient. 

DEA also derives measures of allocative efficiency which represents the ability of a 

production unit in using the optimal set of inputs for a given set of input prices. Allocative 

efficiency is estimated as the ratio between cost efficiency and technical efficiency. Extending 

the interpretation of this concept to logs is difficult, as the allocative efficiency of logs is the 

result of natural processes and silvicultural actions rather than a deliberate decision by logs. 

Therefore, this study will not report allocative efficiency results. 

The efficiency analysis was run using the software DEAP version 2.1 (Coelli et al. 2005), 

which can run input-oriented and output-oriented DEA. In addition, DEAP allows the 

estimation of returns to scale of the logs. Our hypothesis was that logs would have constant 

returns to scale (CRS), which is plausible when production units are operating in an optimal 

scale (Coelli et al. 2005). Log production is controlled by the economic rotation age (Chang 

1998), and since the logs of this study are economically mature, we would be located in the 

economic stage of the production that includes the point of optimal scale.  
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DEA was also run considering structural lumber with stiffness of 8 GPa or higher (MSG8+) 

as a single generic product. That analysis would be suitable for growers because they want to 

achieve a profitable wood quality threshold, without considerations about particular structural 

grades.  

4.4 Results and discussion 

In the first section we present the effect of log attributes on recovery of structural grades and 

economic return and build a linear regression to explain recovery of MSG8+ products. This is 

followed by the estimation of economic weights using a partial regression. Finally DEA 

integrates the previous results to determine, from both technical and economic viewpoints, the 

relative mix of traits that characterizes an efficient log to produce structural grades MSG8, 

MSG10, MSG12 as well as MSG8+.  

4.4.1 Relationships between log traits and structural volume 

The correlations between log attributes agreed with results reported by Cotterill and Jackson 

(1985); Beauregard et al. (2002); Chauhan and Walker (2006) and Ivković et al. (2006). There 

was a negative and significant correlation between STF and SED (-0.49, p<0.05). The 

correlation between STF and BD was also significant (0.72, p<0.05); nevertheless, this 

association would be much weaker for young trees at the time of selecting for breeding (e.g., 

Chauhan and Walker 2006). The relationships between LBR and SED, as well as between 

LBR and STF were also in accordance with other published values (Grant et al. 1984; 

Tombleson et al. 1990; Watt et al. 2000; Jayawickrama 2001a; Xu 2002; Kumar 2004; 

Apiolaza 2009). Details of this information are presented in Table 4.2. 

 

Table 4.2 Pearson correlation coefficients between log attributes and lumber grade recovery.  

 SED STF BD MSG6 MSG8 MSG10 MSG8+ 

SED    0.73
* 

0.19 -0.07 0.05 

STF -0.49
*
       -0.66

* 
0.23

* 
0.59

* 
0.60

* 

BD -0.17 0.72
* 

 -0.37
* 

0.32
* 

0.52
* 

0.59
* 

LBR  0.43
* 

-0.49
* 

-0.14 0.56
*
 -0.07 -0.32

*
 -0.29

*
 

*Significant at 0.05 level 
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Significant correlations were found between second and third log attributes (p<0.05); 

however, second logs had higher SED, STF and BD, and lower LBR than third logs (results 

not presented). For instance, the maximum values of STF and LBR for second and third logs 

were 11.6 and 10.6 GPa, and 110 and 125 mm, respectively. These results are similar to those 

obtained by comparable logs recovery studies (e.g., Gazo et al. 2000; Beauregard et al. 2002; 

Xu and Walker 2004). 

Products with stiffness of 8 GPa or higher were generated in 86% of the second logs, and 83 

% of the third logs. MSG10 was generated in 66% of the second logs and 56% of the third 

logs whereas MSG12 was produced in 37% of second logs and 6% of the third logs. There 

was a high correlation between SED and MSG6 (0.73, p<0.05); nonetheless, the correlation 

between this product and STF was negative. MSG6 was positively correlated with LBR, 

which was also expected due to the positive relationship between SED and both, branch size 

and MSG6. However, when the lumber stiffness requirements increased, these correlations 

reversed their signs. Thus, the correlations of STF with both MSG8 and MSG10 were positive 

and significant (0.23 and 0.59 respectively, p<0.05). Consequently, MSG10 was negatively 

correlated with LBR. The correlations between log traits and MSG8+, i.e. lumber volume 

with STF of 8 GPa or higher, followed the same trend as for MSG10. 

The high significance of the correlations between structural volume and log traits supported 

building models to explain the recovery of MSG8+. Different intercepts and slopes for second 

and third logs were tested using dummy variables, which were not significant (p>0.05); thus, 

all logs were considered as a single population. The functional form of the model was 

evaluated with a Box-Cox transformation that resulted in a lambda of 0.5; thus, the response 

variable was transformed using square root. There were no significant collinearity or 

heteroskedasticity issues.  

The model had moderate goodness of fit (R
2
-adj 0.57) (see Table 4.3). The coefficients for 

SED, STF and BD were significant (p<0.05); however, the coefficient for LBR was not 

significantly different from zero. Branching has shown to have a negative effect on the 

recovery of structural grades (e.g., Grant et al. 1984;  Xu 2002) and was expected to display a 

significant effect on MSG8+. 
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Table 4.3 Model to explain volume of MSG8+ in terms of log traits.  

 Coefficients Standard error P 

Intercept 0.332
* 

0.014 <0.05 

SED 0.008
*
 0.002 <0.05 

STF 0.074
*
 0.020 <0.05 

LBR      -0.001 0.001 >0.05 

BD       0.002
*
 0.001 <0.05 

TP       0.007 0.005 >0.05 

R
2
-adj 0.57   

    *Significant at 0.05 level  

4.4.2 Log recovery value and economic weights 

LRV averaged 111 and 95 NZ $/m
3
 for second and third logs respectively, and the average for 

all logs was 103 NZ $/m
3
. The highest LRV coincided with the highest STF for second and 

third logs; however, these logs did not have the largest SED. In fact, the logs with the highest 

LRV and STF had SED smaller than 41 cm. Product MSG10 volume showed the highest 

correlation with LRV (0.79, p<0.05). A high correlation was also found between LRV and 

STF (0.85, p<0.05), as well as BD (0.69, p<0.05). Correlations between LRV and LBR (-0.43, 

p<0.05), as well as SED (-0.29, p<0.05) were also significant, but moderate. Similar results 

had been documented by Cotterill and Jackson (1985) and Beauregard et al. (2002).  

In spite of the importance of STF to explain quality and value of logs for structural purposes, 

it is not included in the current classification to price logs in New Zealand. Unpruned log 

prices are basically defined in terms of SED and LBR (MAF 2009a) and do not consistently 

represent the value of structural lumber contained in logs. As a result, 5% of those logs with 

the highest price (NZ $ 86/m
3
) had negative LRV. As STF is not included in formal pricing 

criteria, there is a wide range of STF for any given log price, which is particularly evident for 

those logs with the highest price (86 and 82 NZ $/m
3
). That situation is illustrated in Figure 

4.1 which shows the relationships between log prices and traits not included in the log pricing 

criteria, such as STF and BD. There was a large overlap of STF across log prices and an even 

more dramatic trend is observed for BD, where there was almost complete overlap across 

price classes. 
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Figure 4.1 Relationship between wood stiffness and basic density with log prices. 

 

Log prices should reveal the processors willingness to pay for structural wood quality which 

has been shown to be strongly correlated with STF; however, this concept has not been 

internalized in the log market. This lack of price incentives for growers could generate a 

market biased towards low quality logs, homologous to the problem pointed out by Akerlof 

(1970), where information asymmetries would damage no just growers but also processors. 

This study is based on log prices reported by MAF (MAF 2009a), which do not consider a 

price for stiffness. However, there are unpublished transactions where a premium is paid for 

stiffness. For example, some sawmills in the New Zealand‘s North Island only buy structural 

logs that meet a threshold of acoustic measures. 

Table 4.4 presents the regression of log recovery value on log traits, where the Box-Cox 

evaluation suggested a linear functional form. This model also fitted centered predictors, 

expressing them as deviations from their mean values (Gelman and Hill 2007). All variables 

presented the expected behavior in relation to log recovery value, with the exception of taper 

that displayed a positive rather than a negative coefficient. Coefficients associated with SED, 

STF and LBR were significant (p<0.05) and the goodness of fit was high (R
2
-Adj 0.75). BD 

did not provide a significant explanation of log recovery value (p<0.05). SED and STF were 

the most important predictors, accounting for 73 % of the LRV variation. 
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Table 4.4 Regression of log recovery value on log traits; regression coefficients are also the 

economic weights.  

Variable Coefficients  Standard Error P 

Intercept 102.966
* 

3.247 <0.05 

SED                             1.056
* 

0.479 <0.05 

STF                           29.681
* 

4.657 <0.05 

BD                             0.330
 

0.184 >0.05 

TP                             2.256
* 

1.099 <0.05 

LBR                            -0.362
*
 0.176 <0.05 

R
2
-adj 0.75   

    *Significant at 0.05 level  

 

Given the linearity of the model, the regression coefficients correspond to the economic 

weights. Economic weights derived from a partial regression rely on the linearity of profit 

increase due to changes on wood attributes; however, traits such as STF are non-linearly 

related with profit as they depend on a categorical price structure (Burdon 1990; Apiolaza and 

Garrick 2001; Apiolaza and Greaves 2001). However, a log generates a mix of products and 

increasing a log wood quality attribute redistributes lumber grades, changing total value 

linearly with the attribute change. 

The economic value of SED was 1.1 NZ $/cm, which represents the marginal contribution of 

SED to LRV. Having an extra GPa of stiffness would increase the log recovery value by 29.7 

NZ $. The value of LBR was negative; thus, an extra millimeter of LBR would decrease LRV 

by 0.4 NZ $. In contrast, Alzamora and Apiolaza (2010) reported that LBR was not relevant 

to explain the economic value of unpruned logs for appearance timber. Furthermore, these 

authors reported an economic value for SED three times higher than the value obtained in this 

study. These divergences would be due to the different requirements for appearance and 

structural products: there are no STF requirements for appearance products; in contrast, STF 

is a key quality trait for structural lumber (Evans and Ilic 2001). In addition, SED has a direct 

relationship with the recovery of appearance grades; but it has shown to be negatively 

correlated with the recovery of structural lumber. 
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4.4.3 DEA and wood traits performance on the most efficient logs 

The efficiency analysis considered SED, STF and BD as inputs to produce structural grades. 

The products corresponded to lumber with stiffness of 8 GPa or higher, which left 60 logs for 

the analyses. An 8 GPa threshold is commonly used to distinguish structural wood quality of 

radiata pine (Chauhan 2006b).  

Considering MSG8, MSG10 and MSG12 products, the mean technical efficiencies were 0.70 

and 0.54 for second and third logs respectively. A technical efficiency of 0.7 implies that the 

log could reduce the use of traits by 30% and still achieve the same output. Cost efficiency, 

which represents the total economic efficiency, was 0.65 for second logs, and 0.46 for third 

logs. This means that the cost of traits per output unit could be reduced by 35% when using 

fully technically and allocative efficient logs. 

Although it is not possible to improve logs efficiency by reducing attributes; instead, we could 

derive information about the wood traits patterns that characterize those most efficient logs. 

Thus, there would be a different approach to better define the wood quality standards that 

should be targeted by breeding programs.  

Considering all logs, the highest correlation between TE and a single product was with 

MSG10 (0.72, p<0.05); in contrast, the associations between TE and MSG6 as well as non-

structural products were negative and significant (p<0.05). TE was directly correlated with 

STF (0.46, p<0.05); however, there was not significant correlation with SED. By comparison, 

Todoroki and Carson (2003) reported an output-oriented model to assess the efficiency of 

radiata pine logs to produce appearance grades. As a result, in their work log volume was 

highly correlated with technical efficiency. 

While volume is determinant in the quality of logs for appearance purposes, STF has been 

shown as the most relevant trait to produce structural lumber (e.g., Dickson and Walker 

1997a; Evans and Ilic 2001; Apiolaza 2009). As a result, the most technically efficient logs 

had SED smaller than 41 cm, but their STF were greater than 8 GPa (see Table 4.5 Achieving 

structural production goals with smaller SED implies that the rotation age could be reduced.  

A high and significant correlation was found between LRV and TE (0.80, p<0.05), which was 

expected due to the direct relationship between LRV and STF. The total economic efficiency 

(CE) was highly correlated with LRV (0.85, p<0.05); nevertheless, the correlations between 

CE and log prices were poor and non-significant (0.23, p>0.05). Moreover, TE was highly 

correlated with CE (0.97, p<0.05). 
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Figure 4.2 illustrates the efficiency for second and third logs. Results are presented in 

ascending CE order for illustration purposes only. There was a high variability between logs 

for TE and CE; in addition, some logs showed significant differences between TE and CE. 

The latter was frequent in logs with SED greater than 40 cm and MSG8+ lower than 15% of 

log volume. Those logs were inefficient because they had a very low MSG8+ in comparison 

with the magnitude and cost of their traits.   
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Figure 4.2. Technical efficiency (TE) and cost efficiency (CE) by log. 

 

Second logs presented a higher overall efficiency than third logs; however, trees of 

exceptional high quality had second and third logs with similar patterns of wood attributes. 

This resulted in some third logs performing better than the average of second logs. Xu and 

Walker (2004) obtained similar trends when studying the longitudinal STF profile in radiata 

pine trees. 

DEA was also performed considering the aggregate of MSG8+ as a single product. The 

average efficiencies for second and third logs were respectively 0.56 and 0.43 for TE and 0.46 

and 0.34 for CE. These values are lower than those obtained with three separate products; 

however, the TE and CE trends for logs were similar to those showed in Figure 4.1. 

Similarly to three-product DEA there were also high and significant correlations between 

LRV and TE (0.83) and between LRV and CE (0.88). Only one log scored 1 for TE and CE 

when aggregating MSG8+ products.  
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A high and significant correlation was found between TE and MSG8+ (0.96, p<0.05); a 

similar trend was observed for total efficiency (CE). STF was directly correlated with TE 

(0.59, p<0.05); however, the correlation between TE and SED was non-significant. There was 

also a high correlation between TE and CE (0.93, p<0.05). 

 In general, analyzing MSG8+ as an aggregate or as three separate products resulted in 

constant returns to scale (CRS). However, there were 4 logs that had decreasing returns to 

scale when working with separate products. In spite of this we run DEA models considering 

CRS because this was the general trend and it also let us to properly compare single-product 

to multi-product scenarios. In addition, output-oriented and input-oriented DEA provide 

comparable results on technical efficiency when using constant return to scale (Coelli et al. 

2005). Thus, the most technically efficient logs in input minimization are also the most 

technically efficient logs in output maximization.  

 

Table 4.5  Traits and LRV of the most efficient logs to produce MSG8, MSG10 and MSG12 

Log 

Class 

SED 

(cm) 

STF 

(GPa) 

BD 

(kg/m
3
) 

LRV 

(NZ $/m
3
)  

Log Price 

(NZ $/m
3
) 

Ratio 

 STF:SED 

2
nd

 a 36.4 9.5 383 210.8 82 0.26 

3
rd

 a 50.6 8.1 386 151.4 68 0.16 

2
nd

 b 40.8 11.6 432 234.0 86 0.28 

3
rd

 b 36.2 10.6 423 195.8 82 0.29 

2
nd

 39.7 10.0 406 201.5 82 0.25 

3
dr

 31.7 9.0 379 193.2 82 0.28 

 

Table 4.5 shows trait values for the six logs that scored 1 on TE and CE in the multi-product 

analysis (log numbers indicate class—second or third log—while letters denote logs that 

come from the same tree). The most profitable log was a second log that had the highest STF 

(11.6 GPa), the second highest BD, the highest percentage of MSG12 product, and the highest 

difference between LRV (234 NZ $/m
3
) and price (86 NZ $/m

3
). This log was characterized 

by a STF to SED ratio greater than 1:4 whereas the mean ratio for the 60 logs was 1:5. In 

contrast, 80% of the logs that did not generate structural lumber presented a STF:SED ratio of 

1:8. This suggests that any increase in SED should occur along an increase of STF, with a 

STF:SED ratio 1:5 or greater in order to maximize log profitability. The correlation between 

STF:SED ratio and LRV was significant (0.63, p<0.05). In addition, modeling LRV in terms 
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of basic density, largest branch and the STF:SED ratio, presented an R
2
-adj of 0.61 and all 

coefficients were significantly different from zero (p<0.05). We used the arcsin 

transformation to convert the ratio into a variable that was nearly normal (Greene 2000). 

4.5 Conclusions:  

STF, SED and LBR had a significant contribution to explain the recovery value of logs to 

produce structural lumber grades. The magnitude and sign of the economic weights agreed 

with our expectations. As the structural quality requirements increased STF became the most 

relevant log attribute to explain structural volume and log value recovery for structural grades. 

Our results do not support the assumption that published log prices consistently reflect the 

value of structural lumber contained in the logs. There was a wide range of STF included in 

any given log-price class; in addition, efficiency measures and structural volume had a poor 

correlation with log prices. 

 In general, logs were efficient in combining traits given their economic weights; however, 

most logs could reduce their use of traits and achieve the same output level or, conversely, 

achieve higher outputs with their current trait usage.  

The efficiency approach has shown that, when analyzing wood production in a multi-trait and 

multi-product context, there are interactions between growth and wood quality traits that 

result in profitable wood production. Understanding these interactions would be useful to 

improve silvicultural decisions (such as stocking and rotation age) which have been mostly 

driven by individual attributes rather than by a combination of them. 

Technical and cost efficiency were highly correlated with STF and log recovery value. In 

addition, DEA allowed deriving information about the relative mix of traits that distinguishes 

the most efficient logs. A STF to SED ratio of 1:4 characterized the most efficient and 

profitable logs. Both STF and SED are inputs in the production of structural lumber and their 

complementarity ratio is useful information to support an efficient approach for breeding and 

selection purposes. Furthermore, this type of indicator could be useful as a fast log quality 

screening procedure. 

Our results on the influence of STF on recovery of volume and value of structural grades, as 

well as the plausibility of the STF:SED ratio as an indicator of log quality, suggest that STF 

should be formally included in the segregation and pricing of logs to incentivize a market with 

high quality logs for structural purposes. Equation Chapter (Next) Section 1 
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5 Using a stochastic frontier to estimate economic weights 

for radiata pine structural attributes 

 

5.1 Abstract  

We modeled the technical relationships between volume of Pinus radiata structural lumber 

(with stiffness greater than 8 GPa) and log attributes using a stochastic frontier approach. The 

production frontiers were Cobb Douglas and Translog functions, while the log attributes were 

small end diameter (SED), wood stiffness (STF) and largest branch (LBR); however, LBR 

was a non-significant trait (p>0.05). The economic values of the attributes were represented 

by their values of marginal product (VMP). The mean VMP was 2.11 NZ $/cm for SED and 

15.75 NZ $/GPa for STF. The coefficients for the Cobb Douglas frontier were statistically 

significant and the model met the monotonicity assumption; however, it did not meet the 

concavity assumption. The Translog frontier coefficients were non-significant (p>0.05). 

Technical efficiency results derived from the stochastic frontier allowed to identify the best 

logs to produce structural grades with stiffness of 8 GPa or higher. Those logs were 

characterized by a ratio of 1:5 between STF and SED.  

Keywords: wood traits, Pinus radiata, structural lumber, breeding objectives, technical 

efficiency. 

5.2 Introduction 

Wood quality results from physical and chemical characteristics that enable it to meet the 

requirements for different end products (Mitchell 1961). Accordingly, demand for logs 

depends on a set of wood attributes to target particular lumber grades. Tree breeding is 

constantly targeting the improvement of attributes to satisfy processing requirements. Under 

this scenario, wood attributes could be considered as inputs for lumber production and tree 

breeding as an option to obtain them.  

Wood attributes do not have market prices; however, it is possible to derive their economic 

values from the lumber market. This approach is based on Samuelson‘s (1948, 1953) theory 

of revealed preferences, which states the possibility of discerning consumer behavior on the 

basis of variable prices, revealing consumers‘ preferences by their purchasing habits.  
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Obtaining economic values of wood attributes has been predominantly done by tree breeders. 

They require this information to define economic breeding objectives, which are in turn used 

to build selection indices (Hazel 1943). Common approaches to estimate those values are 

bioeconomic models and partial regressions. Bioeconomic models consider the value of an 

attribute as the change in profitability of a forest production system, due to a change in the 

wood trait (Borralho et al. 1993; Apiolaza and Garrick 2001; Ivković et al. 2006). Partial 

regressions link the attributes of logs and trees with the value of end-products obtained at the 

mill; after that, the economic values are obtained from the partial derivatives of the regression 

with respect to the attributes (Cotterill and Jackson 1985; Ernst and Fahey 1986; Aubry et al. 

1998). Other methods to derive economic values of attributes are linear programming (Ladd 

and Gibson 1978; Sivarajasingam et al. 1984) and hedonic models (Bloomberg et al. 2002; 

Alzamora and Apiolaza 2010). These two approaches are derived from Lancaster's 

characteristics model (1966; 1991) which is, in turn, founded on the theory of revealed 

preferences. 

It is possible under revealed preferences to obtain economic values for wood traits by using 

production functions. A production function represents the maximum output attainable from 

each input level given the current state of technology (Varian 1992). The production approach 

has been used to determine indirect use values of natural resources and environmental 

services, where the environmental variable enters the production function along with other 

factors to produce a marketed good (e.g., Acharya 2000; Freeman 2003; Núñez et al. 2006). 

The economic value is then estimated as the change in the marginal physical product of the 

environmental variable valued at the market price of the good, which corresponds to the value 

of the marginal product (Beattie and Taylor 1985). This methodology is  known as change in 

productivity or the production function method (Freeman and Harrington 2001; Freeman 

2003).  

Modelers have usually assumed that producers optimize their decisions, and have used 

production functions with a deterministic component and random noise. However, most 

production processes present inefficiencies that can be represented by assuming a distribution 

of technical inefficiency in addition to the random noise (Coelli et al. 2005). The stochastic 

production frontier is a method to model parametric production frontiers aiming to derive 

measures of productive or technical efficiency (Aigner et al. 1977; Meeusen and van den 

Broeck 1977).  
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Analysis of the stochastic frontier allows estimating the marginal product of inputs, which are 

then multiplied by end-products prices in order to obtain the value of the marginal product 

(VMP). VMP is a measure of the income supplied by the last unit of a productive input 

employed (Beattie and Taylor 1985). The advantages of deriving log attributes values using a 

stochastic frontier are i- its economic plausibility (since the valuation of inputs is based on the 

neoclassical model of the firm) and ii- the explicit consideration of inefficiencies, which 

allows the characterization of logs by their technical performance to generate specific lumber 

grades.  Stochastic frontier applications in forestry have mainly focused on obtaining 

technical efficiency of lumber and pulp production, as well as on harvesting and sawmilling 

systems (e.g., Carter and Cubbage 1994; Carter and Cubbage 1995; Yin 2000; Helvoigt and 

Adams 2009).  

Data envelopment analysis (DEA) is a non-parametric and deterministic frontier that has also 

been used in forestry to study the efficiency of production systems. For example, Todoroki 

and Carson (2003) used DEA to identify efficient radiata pine logs for appearance lumber, 

looking for the traits that should be targeted by breeding programs. The main advantage of 

DEA over the stochastic frontier is that the former does not impose any assumptions on the 

functional form of the frontier (Coelli et al. 2005; Van Biesebroeck 2007); on the other hand, 

DEA precludes the estimation of production measures, such as the marginal product. 

Furthermore, as DEA is a deterministic frontier, all the distance to the frontier is assumed to 

be due to inefficiency (Coelli et al. 2005; Van Biesebroeck 2007). 

This paper applies a stochastic frontier approach to value radiata pine logs attributes obtained 

from a sawing study for structural purposes. Cobb-Douglas and Translog frontier functions 

are used to model lumber production in terms of log small end diameter, log wood stiffness 

and largest branch. The economic values of attributes correspond to values of the marginal 

product derived from the stochastic frontier. In addition, efficiency results are used to identify 

the relative participation of attributes that distinguish the most efficient logs to produce 

structural lumber. Finally we discuss the difficulties of extending production efficiency theory 

to logs, which are natural and heterogeneous lumber producers. 

5.3 Materials and Methods 

The New Zealand Wood Quality Initiative provided data from a sawing study with a sample 

of 71 (35 second logs and 36 third logs) 5 m long unpruned logs. Logs were sourced from two 
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forests: Compartment 8 at Crater Block in the Kaingaroa Timberlands estate (28 years) and 

Compartment 111/3 at Tarawera (26 years). Table 5.1 presents a summary of log attributes. 

 

Table 5.1 Descriptive statistics by log class. 

Variable  Second log (N = 35) Third log (N = 36) 

Mean Small end diameter (SED) Cm 44.91 39.77 

Maximum SED Cm 62.50 53.90 

Minimum SED Cm 32.00 23.30 

Standard deviation Cm 8.42 7.71 

Mean  Stiffness (STF) GPa 7.97 7.97 

Maximum STF GPa 11.59 10.60 

Minimum STF GPa 5.63 5.40 

Standard deviation GPa 1.47 1.26 

Mean  Largest branch (LBR) Cm 6.03 7.33 

Maximum LBR Cm 11.00 3.50 

Minimum LBR Cm 2.50 12.50 

Standard deviation Cm 2.10 2.66 

 

The log attributes assessed in the study have been identified as breeding objective-traits to 

produce structural lumber grades from radiata pine (e.g., Shelbourne 1997; Kumar 2004; 

Ivković et al. 2006). Log small end diameter (SED) is often used to classify and price logs. 

Largest Branch (LBR) corresponds to the diameter of the largest branch of the log. Branches 

tend to have a negative influence on the recovery of structural lumber grades from logs (Grant 

et al. 1984; Xu 2002). Wood stiffness (STF) corresponds to Young‘s modulus of elasticity 

assessed using a Director HM200 tool. SED, STF and LBR also explain the value recovery of 

structural grades from radiata pine unpruned logs (Alzamora and Apiolaza 2009). 

The objective of the sawing study was to maximize the recovery of New Zealand structural 

grades. Table 5.2 presents details of the log outturn, where MSG means machine stress grade 

and the number corresponds to lumber stiffness in GPa. 
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Table 5.2 Descriptive statistics of lumber grades volume (m
3
) per log. 

 MSG6 MSG8 MSG10 MSG12 Reject 

Second log      

Mean value 0.221 0.078 0.064 0.021 0.056 

Maximum value 0.630 0.218 0.227 0.149 0.614 

Minimum value 0.020 0.000 0.000 0.000 0.000 

Standard deviation 0.167 0.066 0.061 0.037 0.112 

Third log      

Mean value 0.190 0.065 0.038 0.003 0.040 

Maximum value 0.515 0.223 0.198 0.093 0.361 

Minimum value 0.000 0.000 0.000 0.000 0.000 

Standard deviation 0.129 0.054 0.047 0.016 0.076 

 

5.3.1 Stochastic production frontier modeling   

Modeling production functions requires information on inputs and outputs. In this study the 

output is an aggregate product, log volume of structural lumber with stiffness of 8 GPa or 

higher (MSG8+), while the inputs are small end diameter (SED), stiffness (STF) and largest 

branch. The latter is included in its inverse form (LBR
-1

) because it has a negative influence 

on recovery of structural grades (Xu 2002). 

We used a stochastic frontier approach to model the production function between log lumber 

and log attributes, converting the input-output observations to a frontier, and accounting for 

technical inefficiency and random noise (Coelli et al. 2005). Most efficiency studies have 

targeted production systems where the factors of production are labor, land, capital and raw 

materials; however, in this study we consider that the log is the production unit and that the 

inputs are log attributes. 

Equation (5.1) presents a production stochastic frontier where Qi is lumber volume from the 

i
th

 log and xi is the vector of j attributes in the i
th

 log.   

'

i i i iQ x v u    i= 1,…,n    (5.1) 

The symmetric random error vi accounts for statistical noise and can take positive or negative 

values, following an independent and identical distribution N(0,σv
2
). The random error ui is a 

non-negative variable which accounts for technical inefficiency, ui is commonly assumed to 

be independent and identically distributed N(0,σu
2
); in addition, vi and ui are assumed to be 

independent of each other.  
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The distributional specifications of ui are assumed to be half-normal, truncated-normal, 

exponential and gamma distributions are also used. However, truncated-normal and gamma 

distribution have shown to be more flexible to represent the distribution of ui (Coelli et al. 

2005; Greene 2000).  

Stochastic frontiers are often fitted using ordinary least squares (OLS), corrected ordinary 

least squares or maximum likelihood (ML). This study used the software FRONTIER version 

4.1-c to model the stochastic frontier. FRONTIER initially obtains OLS estimates for the 

parameters, which are then used as starting values for a maximum likelihood (ML) estimation. 

The ML estimates are used to calculate the efficiency parameter gamma (γ), which is 

σu
2
/(σv

2
+σu

2
). Gamma varies between 0 and 1, where values close to 1 indicate that the 

efficiency effect dominates the noise effect and, consequently, the deviations from the 

stochastic frontier would be mainly due to productive inefficiencies (Coelli et al. 2005). 

We used Cobb-Douglas and Translog functional forms for the production function, and the 

distributional specifications of ui were assumed to be truncated-normal. The Cobb-Douglas 

function is frequently used to model technical relationships between outputs and inputs and 

takes the following form: 

km

0 k 1 kQ X
      k = 1,...,m  (5.2) 

where Q is the total product and Xk are factors of production. The k corresponds to product 

elasticities, which indicate the percentage change on total product for a one percent change of 

input k. The sum of product elasticities results on the scale elasticity (Coelli et al. 2005). The 

Cobb-Douglas function assumes that the product elasticities are constant and that the 

elasticity of substitution is one. The elasticity of substitution indicates in which grade an input 

can be replaced by another one holding the output constant (Varian 1992; Greene 2000).  

The Translog, or transcendental logarithmic, is a more flexible production model, permitting 

variable elasticity of substitution between inputs; and varying elasticity of scale with output 

and input proportions. Nevertheless, the generality of the Translog functional form has 

adverse effects, such as this model is neither monotonic or globally convex as is the Cobb-

Douglas (Weaver 1983; Fried et al. 2008). The Translog presents the following functional 

form: 

1 2
m m m

0 k k kl k lk=1 k=1 l=1
ln Q β β ln X β ln X ln X       (5.3) 
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where Q is the total product, Xk are production factors and k correspond to the model 

coefficients. 

5.3.2 Derivation of economic weights 

The economic values of the attributes are estimated as the change in the profit per log for an 

extra unit of the attribute at the mill. Let us consider that the structural lumber production 

from log i can be represented by a short-term production function of the type presented in 

Equation (5.4): 

 1 2i mQ Q L,K ,T ,T ,...,T     i=1,…,n   (5.4) 

where Qi is the volume of structural lumber (MSG8+) from log i for which L and K are labor 

and capital respectively, and Tj are log traits with j=1,...,m. Further assume that:  

 L and K do not change for a marginal increase of the input-traits per log.  

 The marginal physical product of all input-traits is positive.  

 The mill that processes the log is a competitive lumber price-taker.  

Under those conditions, the profit achieved from the log i would be represented by Equation 

(5.5): 

 1 2i mP Q L,K ,T ,T ,...,T          (5.5) 

where πi corresponds to profit per log, and P represents the net price of lumber (MSG8+) 

discounting processing costs, in order to obtain a value that reflects the maximum willingness 

to pay for an extra unit of the attribute at the mill. The P value corresponds to the log 

conversion return or log recovery value (Davis and Johnson 1987). Accordingly, the first 

order conditions for profit maximization are:  

 1 2 mi

j j

Q L,K ,T ,T ,...,T
P

T T

 


 
    (5.6) 

From Equation (5.6) the profit increase due to a marginal change on the trait is represented by 

the product between the marginal product of Tj and the lumber price, which corresponds to the 

value of the marginal product (VMP) of the attribute. The estimation of the economic values 

of wood attributes is based on the estimation of the VPM of SED, STF and LBR
-1

.  
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Lumber prices and processing costs were obtained from New Zealand firms. The price for 

100x50 mm MSG8 lumber was 3.2 NZ $/linear m, while the cost for processing one cubic 

meter of logs was 180 NZ $. All these values were transformed to values per cubic meter of 

end-product in order to obtain P (Equation (5.6)). 

5.4 Results and discussion  

The response variable for the production function was the volume of lumber with stiffness of 

8 GPa or higher (MSG8+), a threshold often applied to structural lumber (Chauhan 2006b). 

Sixty out of the 71 logs met the MSG8+ criterion; satisfying the basic assumption of 

essentiality, whereas the existence of inputs implies the existence of output (Coelli et al. 

2005). 

A linear model was used for exploratory data analysis, showing that there were no significant 

collinearity problems and that all predictors but LBR
-1

 were significant (p<0.05). Differences 

for intercept and slope between second and third logs were tested using dummy variables, 

which were not significant (p<0.05); accordingly, production modeling considered second and 

third logs as a single sample. The coefficients of the Translog production function were non-

significant (p>0.05) and no further analyses were conducted for this functional form.  

Table 5.3 presents the parameter estimates for the Cobb-Douglas production frontier, where 

all coefficients are exponents of explanatory variables. The coefficients for SED and STF 

were significant (p<0.05) and with signs according to expectations; however, the inverse of 

LBR was not significant (p>0.05).  

 

Table 5.3 Parameter estimates for the Cobb Douglas production frontier.  

Cobb Douglas frontier Coefficients Standard error P 

 1
32108  LBRlnβSTFlnβSEDlnββ)MSGln(  

Log β0 -16.0756 0.3293 <0.05 

β1 2.0784 0.0497 <0.05 

β2 3.3806 0.1340 <0.05 

β3 0.0017 0.0099 >0.05 

 



 

 

61 

The Cobb Douglas model satisfied the monotonicity condition, which implies that additional 

units of an input will not decrease output, as shown by the positive marginal products of 

inputs. The monotonicity property is particularly important for assessing technical efficiency 

because otherwise there would not be reasonable interpretation of the results (Henningsen and 

Henning 2009). There was a significant correlation between observed and predicted values of 

MSG8+ with the Cobb Douglas frontier (0.65, p<0.05).  

However, the Cobb Douglas model did not meet the quasi-concavity assumption, as the sum 

of the coefficients was greater than 1. For a continuously differentiable production function, 

quasi-concavity implies that all marginal products are non-increasing, which is known as the 

law of diminishing marginal productivity (Beattie and Taylor 1985; Varian 1992; Coelli et al. 

2005). Since the assumption of quasi-concavity was not met and the coefficients of the Cobb 

Douglas model were higher than 1; the production of logs capable of producing structural 

(MSG8+) sawn timber would be in a stage of increasing marginal productivity that, from the 

production theory point of view, is not efficient (Beattie and Taylor 1985; Varian 1992). 

Increasing returns to scale (coefficients greater than 1) is plausible for log SED. A sawmill 

will only purchase logs within a feasible range of diameters, determined by the sawmill 

design. Within that range, larger SED logs will yield higher production levels, and since log 

volume increases as the square of diameter, it is reasonable to expect a coefficient greater than 

1 for that variable. 

Finally, this analysis refers only to a short run profit function—the data are on only one mill, 

and the only factor of production that is variable is quality of the log input. In this case, 

increasing returns to scale may be a plausible result. 

Lumber production was SED and STF elastic, as the product elasticities for the traits were 

greater than 1. In consequence, a simultaneous increase in SED and STF would increase the 

production of structural lumber more than proportionally. Product elasticities showed a high 

sensitiveness of log structural volume (MSG8+) to stiffness, corroborating the relevance of 

this attribute to produce radiata pine structural lumber. 
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Figure 5.1. Marginal products for SED and STF derived from the Cobb-Douglas model. 

 

Figure 5.1 illustrates the relationships between log traits (SED and STF) and their marginal 

products. The difference on magnitude of marginal products between the traits supports the 

superiority of STF to explain the yield of structural grades, which has been reported by 

comparables studies (Ivković et al. 2006; Alzamora and Apiolaza 2009). This figure also 

depicts the variability of the marginal products of the attributes between logs. There was a 

non-significant correlation between SED and marginal products (p>0.05); in addition, logs 

with SED smaller than 40 cm achieved the highest marginal products. There was a positive 

and significant correlation between STF and marginal products (0.52, p<0.05).  

 

Table 5.4 Economic value of the marginal product of SED and STF. 

Value of the marginal product (VMP) 
SED  

 (NZ $/cm) 

STF 

  (NZ $/GPa) 

Mean value for all logs 2.11 15.75 

Evaluated in the mean value of SED and STF  1.78 14.76 

Value in the most efficient log 2.91 16.69 

Mean value in second logs 2.47 18.89 

Mean value in third logs 1.74 12.59 

 

Table 5.4 shows the economic values of wood attributes obtained from the marginal product 

(VMP) for each attribute. The first row presents the mean value of VMP, whereas the second 

row shows the VMP evaluated in the mean value of the attributes. The third row depicts the 
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VMP for the log with the highest technical efficiency (TE equal 1). All values represent log 

profit increase for an extra unit of the attribute.  

Table 5.4 also presents the average VMP of the attributes for second and third logs. As we 

see, the VMP of attributes were greater for second logs than for thirds logs, which was 

expected as second logs tend to present higher wood quality to produce structural grades (Xu 

and Walker 2004). 

The Cobb-Douglas generated plausible economic values of SED and STF for the production 

of structural grades. However, the value of LBR
-1

 was not significant, which does not support 

the negative effect reported by Ivković et al. (2006) using a bioeconomic model.  

The economic value for SED was similar to figures reported by other studies; however, the 

economic value of stiffness was smaller than the value estimated by Alzamora and Apiolaza 

(2009) when using a partial regression to estimate economic weights of structural attributes 

from unpruned logs. The differences between those values can be explained by the nature of 

each methodology. The stochastic frontier is a production function that provides physical 

outputs; in contrast, partial regressions relate the economic value of logs to their attributes. In 

addition, we approached the stochastic frontier as a single product modeling system which 

corresponded to the log volume of structural lumber with STF of 8 GPa or higher. On the 

other hand, partial regression used the economic value of every lumber product derived from 

the logs; hence, it is more sensitive than stochastic frontier to changes in wood quality. 

The existence of inefficiency in the Cobb Douglas frontier was tested using a likelihood-ratio 

test that rejected the null hypothesis (p<0.05) of γ = 0. The model presented a γ around 0.9, 

which indicated that the inefficiency effect dominated the noise effect (Coelli et al. 2005).  

The natural heterogeneity of logs made difficult to use stochastic frontiers to explain the 

productive inefficiency of logs. There is a much larger component of inefficiency associated 

to natural log variability than when studying conventional production systems such as firms, 

making the interpretation difficult. As a counterexample, Yin (2000) reported a technical 

efficiency above 99% when using a stochastic frontier to assess the efficiency of wood pulp 

producers. The author suggested that the lack of variation due to the homogeneous nature of 

the pulp production process could account for those results.  

The mean technical efficiency (TE) of logs was 0.54, while the most efficient log presented an 

efficiency score of 1. A TE score lower than one implies that, potentially, the log would be 

able to generate more output with the same available inputs.  
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Log efficiency was highly correlated with MSG8+ volume (0.67, p<0.05).  

Table 5.5  shows a description of the logs with the highest technical efficiency scores. The log 

conversion return (CR) of these logs was much larger than log prices, a common situation for 

logs with TE greater than 0.6. 

 

Table 5.5 Traits and economic values of the most efficient logs to produce MSG8+. 

 

 

Table 5.5 belonged to different trees and had STF to SED ratios that ranged between 1:4 and 

1:6, with a mean value of 1:5. There was a significant correlation between STF and TE (0.62, 

p<0.05). The most efficient logs presented a STF greater than 7.5 GPa; furthermore, the most 

efficient log (TE = 1) had the highest STF, the largest CR, and the highest STF:SED ratio. 

In general, logs presented low efficiency represented by the inefficiency component of the 

composite error. The technical efficiency of the logs was highly correlated with stiffness; 

however, this was not observed with SED. Alzamora and Apiolaza (2009) reported 

comparable TE results in a single product DEA analysis for the same aggregate product 

(MSG8+). DEA and the stochastic frontier are expected to generate comparable results on TE, 

as long as the inefficiency effects prevail over statistical noise (Coelli et al. 2005), which has 

been supported by this study. 

On the other hand, TE results obtained with the stochastic frontier were different to those 

obtained by Alzamora and Apiolaza (2009) when running a multiproduct DEA that included 

lumber grades of 8, 10 and 12 GPa. In this case, the most efficient logs were characterized by 

a STF:SED ratio of 1:4, whereas in applying a stochastic frontier that ratio was lower (1:5). 

This implies that when using one aggregate product the TE standards would be lower than for 

a mix of products. On the other hand, since the lumber production per log is only known after 

Log  

Class 

TE 

 

SED 

(cm) 

STF 

(GPa) 

LBR 

(cm) 

CR 

(NZ /m
3
) 

Log Price 

(NZ /m
3
) 

Ratio  

STF:SED 

3
rd

 0.99 50.6 8.04 7.0 151.43 68 0.16 

3
rd

 1.00 31.7 8.98 5.0 193.22 82 0.28 

2
nd

 0.94 43.8 7.53 11.0 145.55 68 0.17 

2
nd

  0.93 40.9 7.99 5.0 133.16 86 0.20 

2
nd

  0.92 48.3 8.05 5.0 152.75 86 0.17 
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processing, it is plausible to think that the processor plans production according to a minimum 

wood quality threshold, such as MSG8+, rather than particular lumber grades.   

5.5 Conclusions 

Using a stochastic production frontier allowed modeling technical relationships between 

lumber production and log attributes, as well as obtaining the productive efficiency of logs.  

The Cobb Douglas model met the monotonicity assumption but it did not meet the concavity 

assumption, which indicates that the economic values for SED and STF were estimated in a 

non-optimal production stage. 

This study supports the superiority of STF over SED to value logs for structural purposes. The 

economic value for SED was comparable to other studies; nevertheless the value of STF was 

smaller than the one estimated by other methods. This difference was likely due to the 

stochastic frontier considering a single product, which limits its application to specific wood 

quality thresholds. The stochastic frontier would be a plausible approach to derive economic 

values of attributes in scenarios where the production is planed accordingly to a single wood 

quality threshold, such as MSG8+.  

Efficiency measures were useful to characterize the most efficient logs, which presented a 

STF:SED ratio of 1:5. The efficiency analysis could be a useful tool to assess log quality with 

breeding purposes.  

Technical efficiency results were comparable to those obtained by using a single product 

DEA (Alzamora and Apiolaza 2009). However, by including three lumber grades instead of 

one aggregate product, DEA generated a TE ranking based on a higher wood quality standard 

than the stochastic production frontier. As a result, the most efficient logs in DEA obtained an 

STF:SED ratio of 1:4, whereas for the stochastic production frontier that ratio was 1:5.  

This work could be improved upon by including several sawmills to better represent the 

production of lumber including inputs such as capital, technology and labor. 

Equation Chapter (Next) Section 1 
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6 Portfolio selection of radiata pine appearance and 

structural trees under variable expression of traits 

 

6.1 Abstract  

This study used portfolio theory to analyze the tradeoffs between returns and wood traits 

variability of Pinus radiata. We considered three groups of trees grown to produce 

appearance lumber, structural lumber, or both. Risk was based on the variability of tree 

returns in scenarios of changing volume, wood stiffness and presence of resin defects. The 

return of structural trees was highly variable with a mean of 3.11 NZ $/stem/year, followed by 

appearance-structural trees (3.48 NZ $/stem/year). In contrast, appearance trees had the 

lowest returns (1.99 NZ $/stem/year) and variability. The portfolio model selected structural 

trees in high-risk scenarios, but as the risk decreased selection was apportioned between 

structural and appearance-structural trees. The model selected only appearance trees for high-

risk aversion. The analysis also considered silvicultural regimes. In this case, the appearance-

structural regime was selected under high variability. As risk decreased the appearance grades 

regime was also selected. The structural regime was rarely selected due to the variability of 

stiffness between trees. Using material genetically improved for stiffness could increase the 

expected value and reduce variability for structural purposes, making the structural regime 

more appealing.  

Keywords:  Portfolio selection, wood quality, Pinus radiata, breeding objectives, economic 

weights.  

6.2 Introduction 

Quantity and quality of radiata pine (Pinus radiata D.Don) appearance and structural lumber 

are highly dependent on several tree traits. Tree volume has the highest economic weight to 

produce appearance grades (Todoroki and Carson 2003; Alzamora and Apiolaza 2010), but 

recovery of clear pieces can be reduced by resin defects (e.g., McConchie and Turner 2002; 

Woollons et al. 2008). Volume and wood stiffness are the most important traits for structural 

lumber production (Evans and Ilic 2001; Jayawickrama 2001a; Kumar 2004; Xu and Walker 

2004; Lindstrom et al. 2005; Ivković et al. 2006; Matheson et al. 2008). Volume relates to 
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total lumber recovery, while stiffness—the resistance of a material to deflection—affects 

structural grade recovery (Evans and Ilic 2001; Xu and Walker 2004; Chauhan 2006a).  

The performance of trees depends on their genetic makeup (genotype), the environment where 

they are growing (which includes site and silviculture) and the interaction between genotype 

and environment. Several studies have shown variability for volume, stiffness and resin 

defects of radiata pine growing in different sites, silviculture and genetic material (e.g., 

Jayawickrama 2001a; McConchie and Turner 2002; Kumar 2004; Lasserre et al. 2004; Watt 

et al. 2005; Waghorn et al. 2007b; Woollons et al. 2008; Apiolaza 2009). 

Radiata pine requires a minimum annual rainfall of 600 mm, with best development on sites 

with at least 750 mm (e.g., Hunter and Gibson 1984; Turner et al. 2001). Water use efficiency 

is a major determinant of growth under water-limited conditions (e.g., Nambiar 1995; Korol 

et al. 1999); water deficit also affects most wood properties. Trees have lower stiffness and 

higher propensity to develop resin problems when growing in low rainfall sites (e.g., Cown 

1973; Tsehaye 1985; Walford 1985). Wind also affects wood properties, particularly in low 

stocking stands and trees growing in forest margins, where stem deflections induce reduced 

stiffness, compression wood and resin pockets (Telewski and Jaffe 1986; Zobel and Van 

Buijtenen 1989; Dunham and Cameron 2000; Moore and Quine 2000; Pruyn et al. 2000; 

Bascuñán et al. 2006).  

Silvicultural decisions, such as stocking, affect volume and wood properties. Stocking reflects 

the extent to which trees use a site, affecting wood properties through impacts on growth rate, 

crown development and the availability of water and soil nutrients (Daniels et al. 1979; Zobel 

and Van Buijtenen 1989; Lasserre et al. 2004; Waghorn et al. 2007a). Increasing initial 

stoking decreases tree volume; however, average wood stiffness increases because the 

proportion of corewood (which has low stiffness) is reduced (e.g., Zhang et al. 2002; Lasserre 

et al. 2004; Lasserre et al. 2005; Watt et al. 2005). High stocking stands have fewer resin 

problems, probably due to better protection from wind as well as reduced water stress (Cown 

1973; Woollons et al. 2008; Watt et al. 2009). 

A further complication is the presence of genotype by environment interaction (GxE), which 

refers to changes of the relative performance of genotypes according to the environment 

where they are growing (Burdon 1977). In radiata pine most GxE studies deal with growth 

traits like stem diameter. For example, Johnson and Burdon (1990) found significant family x 

site interaction between pumice and clay sites in New Zealand while Matheson and Wu 

(2005) reported a high GxE for stem diameter and other traits on ten testing sites in Australia. 
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GxE information for wood properties is limited and mostly focused on basic density (e.g., 

Kumar 2004; Gapare et al. 2009). 

Trait variability generates risk in decisions such as which clones (or families) should be 

deployed in a set of sites and silvicultural conditions to produce specific products. This 

problem is analogous to investment decisions in financial markets, where there are risks and 

returns across a set of correlated assets. Portfolio theory provides a framework to analyze 

return and risk for trees with values depending on variable traits.  

Markowitz (1952) formulated portfolio selection as a quadratic programming problem, with 

the objective of either maximizing expected return for a given level of risk or minimizing risk 

for a given level of return. Risk was represented as the variance of the portfolio return. The 

solutions are a set of holdings (a portfolio), and an efficient frontier that defines the portfolios 

that have maximal expected return given an upper bound for the variance, or a minimal 

variance given a lower bound for the return.  

Alternative models have been proposed to reduce numerical problems related to quadratic 

programming, including linear formulations (Sharpe 1971; Byrne and Lee 1997; Ruszczy ski 

and Vanderbei 2003; Stone 2009). Modeling risk as the mean absolute-deviation of the 

returns (MAD) is a popular linear approach, which is equivalent to the quadratic model when 

the returns are normally distributed (Konno and Yamazaki 1991). MAD and variance are 

comparable risk measures from a mathematical point of view although they are different in 

numerical terms (Konno and Koshizuka 2005). MAD models can be readily solved using 

linear programming, avoiding non-convexity problems sometimes present in nonlinear 

programming. In addition, there is no need to estimate the covariance matrix to set up the 

MAD model avoiding the difficulties of working with a non-singular covariance matrix 

(Byrne and Lee 1997). 

Portfolio theory has been used in animal and crop breeding to select genetic material (e.g, 

Smith and Hammond 1987; Galligan et al. 1991; Shapcott 1992; Nash and Rogers 1996; 

Barkley and Peterson 2008; Nalley et al. 2009). In forestry the main applications have been at 

the forest level in land investment (e.g., Mills Jr and Hoover 1982; Zinkhan 1988; Heikkinen 

2002; Clutter et al. 2005). 

This study uses a MAD portfolio approach to analyze three sets of trees for i- returns from 

appearance and structural lumber production and ii- risks due to the variability of volume, 

stiffness and resin defects under different site and silviculture scenarios. Tree characteristics 
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are based on two sawing studies while the risk scenarios are derived from the natural variation 

of growing conditions for radiata pine. We assume that individual trees can be deployed using 

clonal forestry as the output of a breeding program. 

6.3 Materials and methods 

This research relies on two sawing studies: a Chilean study for appearance grades (Alzamora 

and Apiolaza 2010) and a New Zealand study for structural grades. The Chilean study 

included 156 logs from three stands that were 20, 23 and 34 years old with site indices 31, 34 

and 28 m respectively. The stands were thinned and pruned at different stocking intensities, 

but all of them targeted a 5 m long pruned log. The New Zealand study included 18 stems 

from each of two forests that were 28 and 26 years old, producing 72 structural 5 m long 

second and third logs. Table 6.1 shows summary statistics for appearance and structural logs.  

Small end diameter (SED) is commonly used to classify and price logs. FORM corresponds to 

the relationship Cvol/Lvol, where Cvol is the common volume (m
3
) equivalent to the 

maximum cylinder contained in the log, and Lvol is the real log volume. LBR is the diameter 

of the largest branch of the log. Wood stiffness (STF), or modulus of elasticity, was estimated 

from acoustics assessments performed with a Director HM200. 

 

Table 6.1 Average value of log descriptors for appearance and structural grades. 

Production objective: Appearance grades Structural grades 

Variable 1
st
  Log 2

nd
 Log 3

rd  
Log 2

nd
 Log 3

rd  
Log 

Number of logs 54 57 45 35 36 

Log length (LL, cm) 505 505 410 500 500 

Small end diameter (SED, cm) 38.52 35.86 33.51 44.91 39.77 

Log volume (VOL, m
3
) 0.73 0.55 0.43 0.89 0.73 

Form (FORM) 0.73 0.79 0.79 0.82 0.79 

Largest branch (LBR, mm)  56.64 66.55 60.29 73.33 

Defect cylinder diameter (DCD, mm) 240.69     

Pruned log index (PLI) 4.83     

Stiffness (STF, GPa)    7.97 7.97 

 

In the Chilean study, the pruned butt log, and second and third unpruned logs were processed 

to obtain appearance products (W.W.P.A 1989). The objective was to maximize the 

production of Mouldings & Better from the pruned logs and Shop grades from unpruned logs. 
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The structural sawing study considered second and third unpruned logs and the goal was to 

produce New Zealand structural grades MSG6, MSG8, MSG10 and MSG12 where MSG 

means machine stress grade and the number corresponds to the stiffness in GPa. 

None of the sawing studies used clonal material; however, for the purposes of this study it 

was assumed that the trees represented variation of a deployment population. The 

characteristics of each genotype (tree) could then be used in operational plantations through 

clonal deployment. 

6.3.1 Completing trees for appearance and structural grades 

The Chilean and New Zealand datasets did not include information for all logs of a tree, 

making necessary to estimate the volume of the rest of the tree up to 10 cm stem. Trees for 

appearance grades had log outturns for first pruned log, and second and third unpruned logs. 

The volume of the upper logs was recovered by using Ormond‘s model (1983) to determine 

tree height at 10 cm of stem diameter and then Bruce‘s taper model (1968) to obtain stem 

diameters at different heights. Using those diameters volume was estimated using Smalian‘s 

formula. 

Trees for structural grades had information of log outturn for second and third unpruned logs, 

making necessary to estimate volume and log outturn for the first log and volume for the 

upper logs. Commercial heights, stem diameters and log volumes were estimated in the same 

way as for appearance grades. The first log outturn assumed stiffness similar to the second 

and third logs and following a vertical stiffness trend consistent with Xu and Walker (2004). 

The first log was also modeled as a pruned log for appearance grades while maintaining the 

same volume and traits of the structural trees. This allowed generating a synthetic third tree 

(appearance-structural) with a pruned first log and two upper unpruned logs for structural 

purposes. The outturn of first log was modeled using only Chilean logs with PLI higher than 

6, to account for New Zealand‘s longer rotations and lower stockings (Maclaren 1993). Table 

6.2 shows a summary of the three types of trees included in this study. 
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Table 6.2 Descriptive statistics of lumber volume (m
3
) per tree   

Mean values of trees  Appearance trees Appearance-structural Structural 

DBH cm 50.36 61.03 61.03 

Total height m 33.31 40.03 40.03 

Defect core diameter        mm 246.33 281.37  

Log pruned index (PLI)  5.28 6.71  

Volume log 1 m
3 

0.78 1.08 1.08 

Volume log 2 m
3
 0.59 0.90 0.90 

Volume log 3 m
3
 0.42 0.72 0.72 

Volume logs 4,5,6 m
3
 0.55 1.17 1.17 

Pulp volume m
3
 0.22 0.25 0.25 

6.3.2 Economic return of trees  

The return of the butt, second and third logs corresponds to the conversion return (CR) which 

represents the maximum willingness to pay for logs at the mill (Davis and Johnson 1987). CR 

corresponds to the total value of lumber in one cubic meter of logs minus the log processing 

cost: 

1

n

i i

i

CR p L PC


     (6.1) 

where pi is the price of lumber type i, Li is the volume of lumber type i contained in one cubic 

meter of logs, and PC is the processing cost of one cubic meter of logs. This value can be 

used when log prices do not consistently reflect the value of the wood attributes (Alzamora 

and Apiolaza 2010). We assumed that the quality of upper sawlogs and pulplogs is well 

represented by the market prices (MAF 2009).  

 

Table 6.3 Prices and shipping costs for products and processing costs for logs. 

Moulding 

& Better 

[NZ 

$/m
3
] 

3rd Clr 

[NZ 

$/m
3
] 

Shop 1 

[NZ 

$/m
3
] 

Shop 2 

[NZ 

$/m
3
] 

Shop 3 

[NZ 

$/m
3
] 

Finger 

Joint 

Blocks 

[NZ 

$/m
3
] 

Finger 

Out 

[NZ 

$/m
3
] 

Shipping 

cost 

[NZ 

$/m
3
] 

Log 

processing 

cost 

[NZ $/m
3
] 

812 548 518 456 370 510 357 83 97 

 

Table 6.3 presents prices and shipping costs of products, as well as processing costs used to 

estimate log CR for appearance products. Information to estimate the conversion return of 
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structural logs was provided by the Wood Quality Initiative (WQI) and New Zealand 

sawmills. Prices for 100x50 mm lumber were 2.5, 3.2, 4.1, 4.8 NZ$/linear m for MSG6, 

MSG8, MSG10 and MSG12 respectively, while the processing cost was 180 NZ$/m
3
. 

6.4 Portfolio analysis  

The portfolio model maximizes the expected return from investing in a set of trees. The model 

uses the mean-absolute deviation of the tree returns (MAD) as the risk measure (Konno 1990; 

Konno and Yamazaki 1991; Konno and Koshizuka 2005). For this application, MAD is based 

on different scenarios of variability on volume, stiffness and resin defects. The portfolio 

model is as follows.  

   Max:    
1 n S

ij jj i
R x

S
    

Subject to: 

1n S

i ij ij j ij i
Dev R R x Dev

S

 
    

 
      i in scenario  (6.2) 

1 S

ii
Dev Risk

S
        (6.3) 

1
n

jj
x          (6.4) 

where Rij is the return of the j-th tree in the i-th scenario with j=1,...,n and i=1,…S; the 

variable xj is the fraction of the portfolio invested in the j-th tree; and, S is the total number of 

scenarios. Equation (6.2) shows that the mean absolute deviation, represented by the term 

1n S

ij ijj i
R R

S

 
 

 
  and weighted by xj, is bounded to the deviations in each scenario. The 

average of the deviations across scenarios (average MAD) is limited to be the maximum risk 

that decision makers will want to face (left side Equation (6.3)). Constraint (6.4) shows that a 

weighted sum of investments in the portfolio must be equal to 1.  

The portfolio model was modified to also analyze the selection of silvicultural regimes. In this 

case, the objective function maximizes the expected weighted return from investing in three 

silvicultural regimes, while constrains are formulated in terms of the mean absolute deviations 

of tree returns in each silvicultural regime. The average of deviations across trees and 
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silvicultural regimes are limited to a maximum level of risk, which is varied to obtain an 

efficient frontier. 

Tree returns were annual equivalent values (NZ $/stem/year) from a cash flow including costs 

of establishment, silviculture and harvesting with a discount rate of 10%. Silviculture and 

harvesting costs were provided by New Zealand companies.  

The efficient frontier is obtained by varying the level of risk, solving the linear problem, 

identifying the maximum return portfolio and plotting the return of the portfolios versus risk. 

All models were run using AMPL with the CPLEX solver. Annual equivalent values changed 

by varying volume, stiffness and resin defects following several scenarios.  

6.4.1 Risk scenarios due to trait variability 

In addition to the base condition there were three positive and one negative scenarios 

generated by changing tree volume, stiffness and resin defects. Changing SED for the first log 

and extending that change to other logs using a linear regression resulted in updated log 

volumes, later aggregated to obtain the new tree volume. The effect of changing stiffness on 

product distribution was obtained by randomly choosing a log with the new required stiffness 

from our data set and applying that log‘s outturn. The effect of resin defects was modeled 

from a Chilean resin study that included 30 radiata pine trees with different levels of resin 

bleeding (Meneses and Guzmán 2003). Stems and logs were visually assessed for resin and 

classified in three levels: low, moderate and high resin. Logs were processed and the boards 

were graded twice for appearance products; the first time using regular commercial grading 

and the second time ignoring resin defects. The impact of resin was estimated as the board 

downgrading between the two assessments. These outturn downgrades were predicted using 

SED and resin levels for our appearance logs.  

The first positive scenario increased log SED by 10% with a corresponding increase in tree 

volume. The second scenario increased STF of the first, second and third logs by 10%. The 

most optimistic scenario increased both volume and stiffness (first log SED is increased by 

25%, and 25% increase of STF for first, second and third). In addition we assumed that 

stiffness had no effect on the value of appearance grades, and that resin problems did not 

affect the value of structural products. The pessimistic scenario decreased volume (by 

reducing first log SED by 25%) and STF by 25%, and introduced resin problems. In 

summary, we assumed that the most undesirable events for appearance trees were to decrease 
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volume and to suffer resin defects, while for structural trees the worst conditions were lower 

volume and stiffness. 

6.5 Results and discussion 

In the first section we present the economic returns of the three groups of trees, the 

relationships between returns and tree attributes, as well as the return tradeoffs between 

volume and stiffness when allocating a tree to produce appearance and structural grades. Later 

we introduce the tree selection made by the portfolio model, the efficiency frontier and the 

trends observed when selecting silvicultural regimes.  

6.5.1 Economic returns from trees  

In the base scenario appearance trees presented a mean value of NZ $ 273/stem and NZ $ 

79/m
3
, appearance-structural trees had a mean value of NZ $ 394/stem and NZ $ 94/m

3
, while 

structural trees showed a mean value of NZ $ 307/stem and NZ $ 79/m
3
.  

 

Table 6.4 Pearson correlation coefficients between tree attributes and tree value 

Tree category Diameter at breast high 

(DBH) 

Stiffness  (STF) 

Appearance   

NZ $/tree 0.95
* 

 

NZ $/m
3
 tree 0.78

* 
 

Appearance-structural    

NZ $/tree   0.67
*
 0.17 

NZ $/m
3
 tree -0.18 0.82

*
 

Structural    

NZ $/tree 0.52
*
 0.24 

NZ $/m
3
 tree -0.20 0.82

*
 

*Significant at 0.05 level. 

 

Table 6.4 shows the correlations between DBH and tree values, and stiffness and tree values 

for the three types of trees. DBH had the highest correlation with tree value across of all trees; 

in contrast, the correlations between DBH and value per cubic meter of appearance-structural 

and structural trees were not significant (p>0.05). Wood stiffness was highly correlated with 

value per cubic meter of tree; however, the correlation was not significant when using the 

whole tree value. These results can be explained by i-the negative correlation between 
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stiffness and volume and, ii- the weight of structural logs in tree value, which have been 

discussed in other studies (e.g., Lasserre et al. 2004; Xu and Walker 2004).  

In both, appearance-structural and structural trees, the structural logs had the highest value per 

tree which explains the high correlation between STF and the value per cubic meter of tree. 

However, since STF is negatively correlated with volume, the correlation between DBH and 

the value per cubic meter of tree was negative, although non-significant. The value 

contribution of non-structural logs, which are priced by volume, would be precluding the 

significance of that correlation. 

Table 6.5 shows the economic returns for the three groups of trees (NZ $/stem/year) across of 

five scenarios of variability on volume, stiffness and resin defects. Each scenario has two 

columns representing average gross return (1) and discounting silviculture and harvesting 

costs (2). The table also shows the average value of MAD—the absolute value of the 

difference between the mean tree return—across five scenarios and the tree return in an 

individual scenario. MAD relates to risk, so a high variability or risk will be reflected in a 

high MAD. 

 

Table 6.5 Descriptive statistics (in NZ $/stem/year) for average gross tree returns (1) and 

discounting silviculture and harvesting costs (2) under five scenarios. 

Tree groups Current scenario Volume increase STF  increase Bad  scenario Good  scenario 

Appearance (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

Mean  value 1.85 0.59 2.55 1.02 1.85 0.59 0.23 -0.62 3.49 1.59 

Maximum value 3.64 1.88 4.87 2.76 3.64 1.88 0.89 0.12 6.64 3.92 

Minimum value 0.93 -0.30 1.29 -0.16 0.93 -0.30 -0.55 -1.44 1.81 0.04 

MAD 0.14 0.07 0.56 0.39 0.14 0.07 1.77 1.25 1.50 0.95 

Appearance-structural (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

Mean value 2.87 1.22 3.51 1.66 3.75 2.26 0.63 -0.46 6.67 4.62 

Maximum value 4.67 2.58 5.55 3.21 5.44 3.77 1.36 -0.05 10.07 7.67 

Minimum value 0.82 -0.15 0.90 -0.17 2.06 0.07 -0.02 -0.71 2.92 1.88 

MAD 0.61 0.64 0.25 0.30 0.49 0.57 2.86 2.32 3.18 2.76 

Structural (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

Mean value 2.23 0.76 2.79 1.06 3.23 1.75 0.53 -0.44 6.72 4.57 

Maximum value 4.38 2.94 5.43 3.76 5.54 3.59 1.10 -0.08 10.38 8.31 

Minimum value 0.19 -1.76 0.26 -1.97 1.17 -0.07 0.00 -1.18 2.92 0.93 

MAD 0.86 0.78 0.34 0.49 0.24 0.27 2.57 1.98 3.62 3.03 
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In the base scenario, appearance-structural trees had the highest mean gross return whereas 

appearance trees had the lowest. The mean gross returns of structural trees achieved values 

between the two previous groups. Return and risk had their lowest value for appearance trees 

while structural trees had the highest MAD, however appearance-structural trees had the 

highest returns. Nevertheless, the returns of appearance-structural and structural trees were 

similar with non-significant differences in the base scenario (p>0.05).  

Trends observed in the base scenario were maintained across all scenarios; however, returns 

from structural trees were slightly superior to those from appearance-structural trees in the 

optimistic scenario. This was expected because a simultaneous increase of volume and 

stiffness implied that every log of the structural trees increased its value while for the 

appearance-structural trees only the first log increased its value due to extra volume. In 

general, trees that produced appearance lumber had a proportionally higher value increase 

when increasing volume than when improving stiffness. In contrast, those trees that generated 

structural grades had their highest value increase when increasing stiffness.  

Appearance-structural trees had the highest net return of trees across of all scenarios; in 

contrast, appearance trees had the lowest returns and risks. Appearance-structural and 

structural trees had similar gross returns; however, the latter presented the highest variability 

making them the riskiest assets.  

There were value tradeoffs when allocating trees to produce appearance and structural grades. 

Table 6.6 presents the value increase (%) of logs and trees, when increasing volume or 

stiffness while maintaining the other traits unchanged.  

The PLI of appearance-structural trees increased from 6.7 to 7.0 and the log value increased 

by 17% when increasing tree volume. The second and third structural logs increased by 22 

and 23%, respectively, and the tree value increased by 19%. However, these values are lower 

than those achieved by trees with a single production goal. Similarly, when increasing 

stiffness by 10%, structural trees achieved the highest values; however, those logs and tress 

that produce appearance grades did not change their values. The economic benefits of 

increasing stiffness have been stressed by Dickson and Walker (1997b; 1997a) when showing 

the reward of increasing corewood stiffness of radiata pine trees.  
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Table 6.6 Value increase on logs and trees due to volume and stiffness increase 

 Appearance Appearance-structural Structural 

Volume increase     

Butt log 31% 17% 21% 

Second log 32% 22% 22% 

Third log 31% 23% 23% 

Tree 29% 19% 22% 

Stiffness increase     

Butt log 0% 0% 71% 

Second log 0% 58% 58% 

Third log 0% 81% 81% 

Tree 0% 32% 52% 

 

Appearance-structural trees displayed intermediate positions when increasing volume or 

stiffness, because these trees produce logs for both appearance and structural grades, and have 

proportionally lower value increases compared to trees with a single production goal. The 

intermediate position of these trees is also explained by the tradeoff between stiffness and 

growth (Lasserre et al. 2004; Watt et al. 2005; Waghorn et al. 2007b). Increasing volume 

decreases average wood stiffness because there is a larger proportion of corewood. The 

increase of value for unpruned logs is proportionally lower than that for butt logs, because 

their value is more dependent on stiffness than on volume. On the other hand, this tradeoff 

would tend to match the values of the butt log for appearance grades and the unpruned logs 

for structural purposes. This effect could be advantageous from a portfolio perspective, since 

it favors assets with high return and low variability.  

6.5.2 Portfolio analysis 

6.5.2.1 Portfolio selection of trees 

There were eleven trees in the general solution for the five scenarios of gross tree returns 

described in Table 5: 55% appearance, 27% appearance-structural and 18% structural. Under 

high levels of risk (MAD >2.9) the model selected only structural trees. As risk decreased so 

did the mean gross return, and the model selected an increasing number of appearance-

structural trees. The solution considered only appearance-structural trees for MAD between 

1.3-0.95. The model apportioned the investment between appearance and appearance-

structural trees for MAD lower than 0.9. 
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We incorporated extra scenarios, aiming to capture more variability, by assuming that a 

randomly selected 30% of the trees stayed in the base scenario. This proportion was 

randomized a hundred times per alternative scenario, resulting in 400 extra scenarios of 

variability per group of trees. These scenarios were integrated in the portfolio model, resulting 

in a solution that included six appearance, two appearance-structural and two structural trees. 

Despite the additional variability, the selections were similar those for only 5 scenarios. The 

model selected a structural tree for high variability, but as the risk decreased appearance-

structural and an additional structural trees were selected. Appearance-structural trees were 

selected in a small range of risk; in contrast, appearance trees were chosen across of a broad 

range of risk (MAD between 1 and 0.28).    

For returns discounting silvicultural and harvesting costs both 5 and 400 scenarios generated 

similar trends. There were twelve trees in the solution: 66% appearance (8, 22, 23, 25, 28, 30, 

31, 34), 17% appearance-structural (48 and 55) and 17% structural (81 and 86). Figure 6.1 

presents the trend for selected trees under changing risk. The model selected only one 

structural tree (86) for MAD between 5 and 1.8. Further decreasing MAD and returns, the 

model diversified by including another structural and some appearance-structural trees. The 

model apportioned the investment into three types of trees as MAD decreasing from 1.5 to 1.0 

and selected only appearance trees for MAD lower than 1. This suggests that, under the 

assumed circumstances, appearance trees would be the best option for risk adverse decision 

makers. 
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Figure 6.1 Trees selected for different levels of risk. The solutions include appearance (8, 22, 

23, 25, 28, 30, 31, 34), appearance-structural (48 and 55) and structural (81 and 86) trees 

 

Table 6.7 presents basic characteristics for five trees included in the solution. There were 

eight appearance trees in the solution, but we only present the tree with the highest 

participation in order to simplify the discussion. Structural trees presented the lowest DBH 

and the highest stiffness. In addition, their second and third logs had the highest ratio between 

stiffness and small end diameter (higher than 1:4), which would suggest high productive 

efficiency for structural lumber. Identical results were reported by Alzamora and Apiolaza 

(2009) when using a non-parametric efficiency analysis to characterize the most efficient logs 

to produce New Zealand structural grades; furthermore, structural logs from trees 81 and 86 

were included in the group of most efficient logs. 
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Table 6.7 Characteristics of the five trees selected in the portfolio analysis. 

Structural 

trees 

Tree 

DBH 

(cm) 

butt log 

SED 

(cm) 

2
nd

  log 

SED 

(cm) 

3
rd

 log 

SED 

(cm) 

1
st
 log 

STF 

(GPa) 

2
nd

 log 

STF 

(GPa) 

3
rd 

log 

STF 

(GPa) 

2
nd

 log  

STF/SED 

3
rd

 log 

STF/SED 

Tree 86 55.3 44.4 40.8 36.2 9.91 11.6 10.6 0.28 0.29 

Tree 81 56.5 41.8 36.4 31.7 7.11 9.5 8.5 0.26 0.28 

Appearance-

structural 

trees 

Tree 

DBH 

(cm) 

butt log 

SED 

(cm) 

2
nd

  log 

SED 

(cm) 

3
rd

 log 

SED 

(cm) 

1
st
 log 

 PLI  

2
nd

 log 

STF 

(GPa) 

3
rd 

log 

STF 

(GPa) 

2
nd

 log 

STF/SED 

3
rd

 log 

STF/SED 

Tree 55 56.7 48.2 43.3 39.8 6.7 9.1 8.9 0.21 0.22 

Tree 48 75.9 60.4 56.3 50.6 7.3 7.9 8.0 0.14 0.16 

Appearance 

trees 

Tree 

DBH 

(cm) 

butt log 

SED 

(cm) 

2
nd

  log 

SED 

(cm) 

3
rd

 log 

SED 

(cm) 

1
st
 log  

PLI 

2
nd

 log 

MIL 

(cm) 

3
rd 

log 

MIL 

(cm) 

2
nd

 log 

BIL  

(cm) 

3
rd 

log BIL  

(cm) 

Tree 34 58.0 46.5 43.5 38.9 6.3 189 83 179 112 

 

Appearance-structural trees had high quality butt logs, represented by their SED and PLI; 

however, their unpruned logs had lower quality, with a low STF:SED ratio by comparison 

with structural trees. This suggests that those trees were selected mostly due to the quality and 

value of their butt log. Although most second and third logs had STF greater than 8 GPa, their 

STF:SED ratios were lower than for structural trees. The strength of appearance-structural 

would be mainly based on the first pruned log and its traits. Appearance trees had DBH 

greater that 56 cm, a PLI greater than 5, and a medium internode length (MIL) greater than 35 

cm. Internode length is a significant variable to explain the value of unpruned logs to produce 

appearance grades (Alzamora and Apiolaza 2010).  

Figure 6.2 depicts the efficiency frontier derived from the selected trees. The points 

correspond to the portfolios that have the highest possible expected return for a given level of 

risk. There was a wide range of risk with constant return, corresponding to a single structural 

tree (86) selected. This result clearly illustrates the tradeoff between return and risk: the high 

returns from this tree compensated the variability (MAD 3.64) for a wide-range of risk.  

The high expected returns and variability from structural trees suggest that using genetically 

improved material (such as clones) for stiffness could be a good investment to reduce the risk 

of variable returns. The advantages of radiata pine clonal forestry has been discussed by 

Burdon (2001), Sorensson (2002), and Burdon and Aimers-Halliday (2003). 
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Figure 6.2 Portfolio efficiency frontier for the selected trees 

6.5.2.2 Portfolio selection of silvicultural regimes 

The portfolio model generated different results for 5 or 405 scenarios of trait variability when 

analyzing the risk-return tradeoff between groups of trees. Using 405 scenarios and allowing 

for a high variability of returns (MAD>1.5), the model selected the regime to produce both 

appearance and structural lumber. As the risk declined the model also selected the structural 

regime but in a very narrow range of risk (MAD: 1.38-1.3). The model apportioned between 

appearance-structural and appearance regimes for MAD lower than 1.3; however, only the 

appearance regime was selected for risk aversion criteria (MAD<0.7). The portfolio model 

did not select the structural regime when using only the first five variability scenarios. 

Instead, the model selected an appearance and structural grades regime for high risk and an 

appearance regime for low risk (MAD<1).   

6.6 Conclusions 

Trees from three silvicultural regimes were approached as an invest problem with a tradeoff 

between returns and risk. This analysis permitted selecting and characterizing the most robust 

trees from an investment point of view.  

Producing appearance and structural grades from one tree had a stabilizing effect on returns, 

as there are phenotypic tradeoffs between stiffness and volume under optimistic and 
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pessimistic growing scenarios. These trees had a lower variability than structural trees; 

although both groups of trees had similar returns.  

The regime for appearance-structural trees was selected across a wide range of risk when 

modeling a portfolio to select silvicultural regimes. This showed the benefits of product 

diversification at the tree level.  

Trees to produce appearance grades had the lowest values for return and risk; as a result they 

were selected under high risk aversion.  

The high returns and variability displayed by structural trees suggests an opportunity for 

narrowing genetic variability (via clonal or family forestry) to make the returns from radiata 

pine structural grades lumber less risky. 

This risk approach could be improved by adding information of product prices, discount rates 

and production costs to better represent the risk involved in the forestry business. 

Equation Chapter (Next) Section 1 
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7 General Discussion 

 

7.1 Introduction 

This thesis focuses on the problem of valuing wood traits and showing their role defining 

wood quality of radiata pine to produce appearance and structural lumber. The discussion 

firstly addresses the plausibility of the economic weights derived from the hedonic, partial 

regression and stochastic frontier models introduced in chapters 3, 4 and 5. These approaches 

were based on log conversion return which is derived from the residual-value appraisal to 

obtain the purchaser willingness to pay for stumpage (Davis and Johnson 1987). 

Log conversion return can be also applied to integrated bioeconomic models, making possible 

to analyze the distribution of trait value between industry layers. This proposal is discussed 

using a hypothetical bioeconomic model. Finally the discussion deals with the role of both, 

traits and economic weights to assess and select logs and trees for improving structural wood 

quality. Efficiency analyses based on data envelopment analysis and stochastic frontier 

allowed characterizing the wood traits profile in efficient logs (chapters 4 and 5). Chapter 6 

presents an application of portfolio selection to illustrate that trees and silvicultural regimes 

for deployment can be approached as investment problems. This approach treated variability 

of wood traits as a risk that affects the decisions about the trees should be targeted for 

appearance and structural purposes. 

7.2 Economic weights derived from hedonic and production approaches 

Hedonic models are commonly used to value the traits of a product (Lancaster 1966; Rosen 

1974; Lucas 1975; Espinosa and Goodwin 1991; Ekeland et al. 2002). The approach requires 

that every trait is observable, measurable and directly related to the quality and price of the 

product. The main impediment to use hedonic models to value log traits is that published 

radiata pine log prices do not consistently reflect the value of wood traits (Treolar 2005; 

Alzamora and Apiolaza 2010). Nevertheless, the hedonic approach performed in chapter 3 

demonstrated the plausibility of using conversion return as a surrogate log price to value 

pruned and unpruned log traits for appearance lumber grades. Economic weights for log small 

end diameter, form, and internode length were statistically significant and plausible. Branch 

size was non-significant (p>0.05) as the size of knots has a smaller effect on value than their 



 

 

84 

distribution (considered by internode index). In fact, the requirements for radiata pine 

appearance lumber relate only to the length of the clear piece (Kretschmann and Hernandez 

2006). Results from chapter 3 suggest using mean internode length (MIL) in tandem with base 

internode length (BIL) when selecting for internode length, as these indices produce 

complementary information for the production of Shop grades (Meneses and Guzmán 2003). 

Economic weights can be obtained as coefficients of a partial regression that links logs wood 

traits with the value of lumber obtained at the mill (e.g., Cotterill and Jackson 1985; Ernst and 

Fahey 1986; Aubry et al. 1998). Applying this method to value structural traits resulted in a 

well behaved linear model. Economic weights for small end diameter, stiffness and largest 

branch were statistically and economically plausible as well as comparable with other studies 

(e.g., Cotterill and Jackson 1985; Beauregard et al. 2002; Ivković et al. 2006). Small end 

diameter and stiffness were the most valuable traits, accounting for 73% of the log value 

variation. The value of the largest branch was negative (-0.4 NZ $/mm) as branch size has a 

negative effect on the recovery of structural grades (Grant et al. 1984; Xu 2002).  

Economic values for structural traits were also estimated by using a stochastic frontier. The 

advantages of deriving log traits values with this approach were i- its economic plausibility, 

since traits were valued as the value of the marginal product, and ii- that allowed 

characterizing logs by their technical efficiency to produce structural lumber. Stochastic 

frontier involved modeling the technical relationship between lumber volume with stiffness of 

8 GPa or higher and small end diameter, stiffness and largest branch. This choice assumes 

that, in making decisions, growers and processors plan their production in terms of a 

minimum quality threshold rather than of particular mix of grades. In this thesis stochastic 

frontiers emerged as plausible options to estimate economic weights of wood traits by 

modeling production functions, and to obtain measures of technical efficiency. 

The Cobb-Douglas frontier met the assumption of monotonicity and coefficients associated 

with small end diameter and stiffness were significant (p<0.05). However, the effect of largest 

branch was non-significant, and the model did not meet the assumption of concavity, 

presenting increasing returns to scale. 

The economic value for small end diameter was similar to that obtained from the partial 

regression; however, the value of stiffness was lower which could be due to the stochastic 

frontier being based on a single product (Aigner et al. 1977; Meeusen and van den Broeck 

1977; Coelli et al. 2005). In contrast, the partial regression considered the volume and value 

of three lumber grades whose prices are defined by stiffness.  
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Previous analyses showed that the relative value of log traits changes depending on end 

products. The value for small end diameter was greater in unpruned logs for appearance 

lumber than in logs for structural lumber. In addition, largest branch was not significant to 

value unpruned logs for appearance purposes, while it was negative and significant to explain 

the value of structural logs. These divergences are explained by the different requirements for 

appearance and structural lumber. A large log diameter is an advantage for appearance 

purposes due to its direct relationship with the recovery of appearance grades; in contrast, for 

structural lumber that trait has shown a negative phenotypic correlation with stiffness 

(Chuang and Wang 2001; Lasserre et al. 2004; Ivković et al. 2006; Waghorn et al. 2007b) 

which has been supported by this study. There are no particular stiffness requisites for 

appearance lumber, although the trait influences dimensional stability and dry lumber 

recovery, which were not considered in this thesis. Stiffness is the most important trait for 

solid lumber applications (Dickson and Walker 1997b; Evans and Ilic 2001; Kumar 2004; 

Chauhan and Walker 2006) 

7.3 Distribution of economic value between forest and mill: bioeconomic 

models as stumpage transactions 

Chapters 3, 4 and 5 showed the convenience of using concepts derived from the stumpage 

residual-value appraisal, such as the conversion return, to value log traits. These concepts can 

also be used in integrated bioeconomic models, with the advantage of obtaining the 

distribution of economic value between forest and mill.  

Bioeconomic models have been usually approached at the integrated firm level, which does 

not necessarily represent the production systems targeted by a breeding program. For 

instance, most forest growers in New Zealand are independent producers (MAF 2009b), 

making important to show the distribution of economic value between forest and mill. 

However, most reported bioeconomic models do not analyze this issue (Greaves et al. 1997b; 

Apiolaza and Garrick 2001; Berlin et al. 2009), although there are some examples of 

economic weights for structural traits at the forest, mill and integrated company levels 

(Ivković et al. 2006). Despite the apparent plausibility of the model, there was not equivalence 

between the values at the forest and mill levels, and the corresponding value for the integrated 

system. 

Since an bioeconomic model mimics the stumpage transaction between grower and processor, 

we can apply residual-value appraisal to value wood traits and to analyze their distribution 
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between forest and mill (Davis and Johnson 1987). This approach implies using extra 

information to better represent the forest buyer perspective.  

Table 1 illustrates the distribution of the value of volume in a hypothetical bioeconomic 

model described in Table 2. It is assumed that the mean annual increment (MAI) is increased 

by 1% from a baseline of 25 m
3
/ha/year. Values in Table 1 are discounted and display 

sawlogs priced by logs prices and conversion return. As a result, the value of volume for the 

integrated company obtained by either prices or conversion return is 18.8 US $/m
3
; in 

addition, the sum of value at the forest and at the mill in both cases is also 18.8 US$/m
3
. 

Nevertheless, the distribution of value between forest and mill changes depending on the log 

valuation scenario. When using log prices the distribution of the value of volume between 

forest and mill is ~1:2 (6.2 versus 12.6 US$/m
3
) whereas using conversion return the 

distribution turns out to be ~3:1 (14.6 versus 4.2 US$/m
3
).  

 

Table 7.1 Value of volume for a generic integrated company using log pricing by log prices 

and conversion return. 

Integrated Company                Log prices Conversion return 

Discounted incomes [US$/ha] 

Base 

25 m
3
/ha/year 

+1 %  MAI 

25.25 m
3
/ha/year 

Base 

25 m
3
/ha/year 

+1 %  MAI 

25.25 

m
3
/ha/year 

Pulp logs 421.2 425.4 421.2 425.4 

Sawlogs 2682.0 2724.5 2932.6 3045.3 

Moulding & better 2541.7 2591.2 2541.7 2591.2 

Shop 1 1347.7 1376.9 1347.7 1376.9 

Shop 2 1415.8 1449.0 1415.8 1449.0 

Shop 3 1790.8 1824.8 1790.8 1824.8 

Finger-joint 1787.2 1830.1 1787.2 1830.1 

Others 206.3 208.4 206.3 208.4 

TOTAL 12192.8 12430.4 12443.4 12751.3 

Discounted costs  [US$/ha]    

Establishment 950.0 950.0 950.0 950.0 

Annual 350.0 350.0 350.0 350.0 

Silviculture 200.0 200.0 200.0 200.0 

Harvest 694.6 694.6 694.6 694.6 

Transport 390.7 398.5 390.7 398.5 

Sawlogs 2682.0 2724.5 2932.6 3045.3 

Sawing costs 4642.0 4688.4 4642.0 4688.4 

TOTAL 9909.3 10006.0 10159.9 10326.8 

Net Present Value (NPV) 2283.5 2424.4 2283.5 2424.4 

NPV difference 140.9 US$/ha 140.9 US$/ha 

Attribute difference 7.5 m
3
/ha 7.5 m

3
/ha 

Attribute value 18.8 US$/m
3
 18.8 US$/m

3
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Forest Log prices Return of Conversion 

Discounted incomes [US$/ha] Base +1 %  MAI Base +1 %  MAI 

Pulp logs 421.2 425.4 421.2 425.4 

Sawlogs 2682.0 2724.5 1847.3 1952.2 

Total 3103.3 3149.9 2268.6 2377.7 

Discounted costs  [US$/ha]    

Establishment 950.0 950.0 950.0 950.0 

Annual 350.0 350.0 350.0 350.0 

Silviculture 200.0 200.0 200.0 200.0 

TOTAL 1500.0 1500.0 1500.0 1500.0 

Net Present Value (NPV) 1603.3 1649.9 768.6 877.7 

NPV difference 46.7 US$/ha 109.1 US$/ha 

 Attribute difference 7.5 m
3
/ha 7.5 m

3
/ha 

Attribute value 6.2 US$/m
3
 14.6 US$/m

3
 

Sawmill Log prices Return of Conversion 

Discounted incomes [US$/ha] Base +1 %  MAI Base +1 %  MAI 

Moulding & better 2541.7 2591.2 2541.7 2591.2 

Shop 1 1347.7 1376.9 1347.7 1376.9 

Shop 2 1415.8 1449.0 1415.8 1449.0 

Shop 3 1790.8 1824.8 1790.8 1824.8 

Finger-joint 1787.2 1830.1 1787.2 1830.1 

Others 206.3 208.4 206.3 208.4 

TOTAL 9089.5 9280.5 9089.5 9280.5 

Discounted costs  [US$/ha]    

Saw logs 2682.0 2724.5 7574.6 7733.7 

Harvest 694.6 694.6 694.6 694.6 

Transport 390.7 398.5 390.7 398.5 

Sawing 4642.0 4688.4 4642.0 4688.4 

TOTAL 8409.3 8506.0 5727.3 5781.5 

Conversion return (CR)  3362.3 3499.0 

Margin for profit and risk  1514.9 1546.7 

Profit ratio   20% 20% 

Net Present Value (NPV) 680.2 774.5 1514.9 1546.7 

NPV difference 94.3 US$/ha 31.8 US$/ha 

Attribute difference 7.50 m
3
/ha 7.5 m

3
/ha 

Attribute value 12.6 US/$m
3
 4.2 US$/m

3
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Table 7.2  Assumptions and economic information for the distribution of trait value between 

forest and mill when using a bioeconomic model. 

Assumptions   

Mean Annual Increment (MAI) 25 m
3
/ha/year 

MAI+1% 25.25 m
3
/ha/year 

Rotation 30 years 

Total volume (MAI+1%) 757.5 m
3
/ha 

Sawn volume (proportion total volume) 60 % 

Prices   

Moulding & better 616 US$/m
3
 

Shop 1 402 US$/m
3
 

Shop 2 366 US$/m
3
 

Shop 3 248 US$/m
3
 

Finger-joint 385 US$/m
3
 

Others sawn products 80 US$/m
3
 

Pulp logs 49 US$/m
3
 

Pruned logs 140 US$/m
3
 

Un-pruned logs 80 US$/m
3
 

Rate discount 10 % 

Processing & Shipping  180 US$/m
3
 

 

The exercise includes a margin for profit and risk for the buyer, which is a common practice 

at mills. This value represents the return that the log buyer obtains as a compensation for non-

profitable sales, or as a reward for the time and effort involved in the transaction. In 

estimating that margin there was a profit ratio of 20%. This ratio depends on log market 

conditions and as the market becomes more competitive both profit ratio and margin decrease. 

In United States the profit ratio used to range between 11 to 13%  (Davis and Johnson 1987). 

This example showed that we can better represent the business structure of the sawmill in a 

bioeconomic model by including the conversion return and the margin for profit and risk. In 

turn this makes possible to analyze the distribution of economic value between industry 

layers, as well as of the factors influencing it.  

7.4 Efficiency and economic weights to support wood quality improvement 

Structural traits and their economic weights were used to assess the technical and economic 

efficiencies of logs. Multi-product efficiency analysis was performed in chapter 4 using data 

envelopment analysis (DEA). This analysis included small end diameter, stiffness and basic 

density. 

As a result, a set of fully efficient logs to produce lumber with stiffness of 8, 10 and 12 GPa 

were shown to have common features such as the highest stiffness and the largest conversion. 
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Those logs were also characterized by a ratio of 1:4 or higher, between stiffness (GPa) and 

small end diameter (cm). Technical efficiency was significantly correlated with stiffness 

(0.46, p<0.05) and total efficiency with log conversion return (0.85, p<0.05); however, there 

was a poor correlation between log prices and efficiency. Chapter 3 already mentioned the 

limitations of log prices to reflect the value of wood traits, which is a common problem with 

commodities‘ traits (e.g., Lambert and Wilson 2003; Treolar 2005; Baker and Babcock 2008).  

DEA offered a suitable framework to assess the efficiency of logs. This analysis could be 

improved by including logs processing options, as done by Todoroki and Carson (2003) using 

DEA and log sawing optimization to identify the best attributes for appearance lumber grades. 

The stochastic frontier fitted in chapter 5 also generated the technical efficiency of logs to 

produce lumber with stiffness of 8 GPa or higher. In general, the results were comparable to 

those obtained by using a multi-product DEA; however, the most technically efficient logs 

derived from the stochastic frontier showed a lower wood quality standard than those selected 

by DEA. The most efficient logs derived from DEA were characterized by presenting a 1:4 

ratio between stiffness and small end diameter; whereas with the stochastic frontier that ratio 

was 1:5. Therefore, when considering one aggregate product both the quality standards and 

the technical efficiency were lower. Running DEA with the same aggregate product resulted 

on efficiency results that were comparables to those from the stochastic frontier. DEA and the 

stochastic frontier are expected to give equivalent results when the systems have a high 

inefficiency, which was supported by the composite error of the stochastic frontier (Coelli et 

al. 2005). 

These analyses have a much larger component of inefficiency, associated to natural log 

variability, than when studying classical production systems such as firms. Nevertheless, this 

would not invalidate the contribution of efficiency approaches in selecting logs for wood 

quality purposes. Both tree breeding and efficiency analyses offer the possibility of selecting 

in alternative contexts of variability: one grounded on genetics and the other one based on 

economic fundamentals of production. 

This thesis approached the economic value of wood traits and the production efficiency from 

the demand side; however, it would be interesting to apply these methods from the supply 

side to analyse growers‘ production costs when improving wood attributes. Bioeconomic 

models have valued wood traits from the growers‘ side; nevertheless, those models have not 

been based on classical production functions but mainly on assumptions and expert opinions. 

In estimating a wood production function that represents the growers‘ technology, time should 
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be introduced as an input due its influence on volume, wood quality traits and opportunity 

costs. Accordingly, this approach would allow estimating a plausible measure of the marginal 

cost that growers have to face when producing an extra unit of wood attributes. 

7.5 Deploying genetically superior material 

Chapter 6 explored the situation when forest growers have access to a clonal or family 

portfolio of material bred for specific end-uses (appearance, structural or intermediate), and 

face the choice of what to deploy under variable environmental and management scenarios. A 

portfolio selection model approached trees, from three silvicultural regimes, as investment 

problems with a tradeoff between returns and risk. This analysis permitted selecting and 

characterizing the most robust trees from an investment point of view.  

Commonly, portfolio selection theory has approached risk in terms of prices due to their high 

influence on return. However, since this thesis focussed on wood traits, the portfolio model 

assessed the influence of traits variability in tree selection, maintaining product prices and 

production costs.  

The portfolio model maximized tree return subject to a risk constrain, which was formulated 

in terms of the variability of volume, stiffness and resin defects. The risk was linearity 

approached using the mean absolute value (MAD) of the returns, which has been shown to be 

as efficient as the variance with the advantage of being readily solved using linear 

programming algorithms (Konno and Yamazaki 1991; Byrne and Lee 1997; Konno and 

Koshizuka 2005). 

Producing appearance and structural grades from one tree had a stabilizing effect on returns, 

as there were phenotypic tradeoffs between stiffness and volume under optimistic and 

pessimistic growing scenarios. The financial robustness of these trees showed the benefits of 

product diversification at the tree level. In addition, when running a portfolio model for 

silvicultural regimes, the regime for appearance-structural trees was selected in a wide range 

of risk which supported the financial advantage of forming trees with two production goals. 

Trees for structural lumber had similar returns to those producing both appearance and 

structural grades; however, the former presented higher variability of returns. The financial 

performance displayed by structural trees suggested an opportunity for narrowing genetic 

variability (via clonal or family forestry) to make the returns from radiata pine structural 
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grades lumber less risky. Trees to produce appearance grades had the lowest return and risk; 

as a result they were selected for high risk aversion.  

The characteristics of the selected trees supported the results from previous chapters. Volume 

was the most important trait when producing appearance grades, whereas stiffness had the 

highest influence on the returns from structural trees. 

While silviculture would be able to generate better trees for appearance lumber; clonal 

forestry would be a better option to increase return and reduce variability from trees targeting 

structural wood quality.  

The portfolio model could be improved by adding risk constrains that reflected the variability 

of economic variables such as lumber prices, discount rates and production costs with a view 

to better representing the risk involved in the forestry business. 
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8 General Conclusions 

 

The main conclusions from this thesis were: 

 The conversion return was a suitable measure to value logs and derive economic 

weights of wood traits. Conversion return, in combination with the margin for profit 

and risk, permitted the analysis of the distribution of economic value between forest 

and mill when using an integrated bioeconomic model.   

 

 Log small end diameter and form were the traits with the highest economic value for 

the production of appearance lumber, followed by the value of internode length in 

unpruned logs destined to Shop grades. Branch sizes did not have a significant effect 

on value.  

 

 Log small end diameter, stiffness and largest branch were the most valuable traits to 

produce structural lumber. Wood stiffness and small end diameter explained more 

than 70% of the variation of log conversion return. 

 

 This thesis supported the relevance of stiffness to value structural logs with an 

economic value of 29 NZ $/Gpa and a high correlation between stiffness and log 

conversion return (0.85, p<0.05).  

 

 Efficient logs to produce structural lumber with stiffness of 8, 10 and 12 GPa were 

characterized by a 1:4 ratio between stiffness (GPa) and small end diameter (cm).  

 

 The efficiency of logs to produce structural lumber grades was significantly correlated 

with stiffness and with conversion return; in contrast, the correlation between 

efficiency and log small end diameter was non-significant (p<0.05).  
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 On average radiata pine trees to produce structural lumber were very profitable; 

however, their returns were also highly variable due to the high variability of stiffness. 

This suggested an opportunity for narrowing genetic variability (via clonal or family 

forestry) to make the returns from radiata pine structural grades lumber less risky. 

 

 Radiata pine trees that produced both appearance and structural lumber had a 

stabilizing effect on returns, as there were phenotypic tradeoffs between stiffness and 

volume under optimistic and pessimistic growing scenarios. These trees were 

preferred when selecting individuals that optimized the tradeoff between return and 

risk.    
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