Contaminant run-off from impervious surfaces such as carparks and roofs

Daniel Wicke, Tom Cochrane, Aisling O'Sullivan

Hydrological and Ecological Engineering Research Group

University of Canterbury

Dept. of Civil and Natural Resources Engineering

Christchurch, New Zealand

Methods

Results

Contaminant build-up and wash-off
Surface comparison
Wind effects
Roof runoff

Introduction - Background

- Urban waterways often improve aesthetics of cities,
 but also act as stormwater drainage channels
- Pollutants accumulating on impervious surfaces are washed off and discharged into waterways

- → Levels in runoff well above guidelines relevant for aquatic ecosystems
- Main sources: traffic (e.g. brake dust, tire wear)
 metal roofs (e.g. galvanized iron, copper)
- Models useful to predict contaminant loads but need input parameters

for accurate pollutant build-up and wash-off

- Difficult to obtain this data from real runoff samples
 - Variability of natural rainfall events
 - Time consuming and costly

Methods

Results

Contaminant build-up and wash-off
Surface comparison
Wind effects
Roof runoff

Methods - Boards

• thin boards (75 cm x 75 cm, height: 3 cm) filled with different materials commonly used for impervious surfaces:

- concrete
- smooth asphalt (3 mm max grain size)
- coarse asphalt (14 mm max grain size)

Methods - Boards

 Assessment of surface roughness using laser scanner

Smooth asphalt (max. 3 mm):

Coarse asphalt (max. 14 mm):

Concrete:

Methods – Board exposure

- Boards placed at different locations within the catchment for desired timeframe depending on research question, e.g.:
 - Comparison of different surfaces regarding contaminant wash-off
 - Contaminant build-up over time (determination of build-up functions)
 - Spatial variability of contaminant accumulation
 - Contaminant transport before rain event (e.g. wind-blown effects)

Methods – Rainfall Simulator

- Two Veerjet 80100 nozzles simulating natural rain
- Adjustable rain intensity
- Feed water adjusted to pH=6 (unbuffered) to simulate rain

- Runoff samples analyzed immediately for pH, color, conductivity, and turbidity
- Heavy metal concentrations and TSS analyzed in lab

Methods

Results

Contaminant build-up and wash-off

Surface comparison
Wind effects
Roof runoff

Results – Heavy metal concentrations

- Most contaminants washed off after 10-15 minutes (First-flush)
- High heavy-metal concentrations in first flush

→ Exceedance of relevant guidelines in Australia and New Zealand

(90% ANZECC guidelines) up to:

Zinc: 80-fold

Copper: 45-fold

Lead: 2-fold

ANZECC guideline values (90%)				
Zn	15 μg L ⁻¹			
Cu	1.8 μg L ⁻¹			
Pb	5.6 μg L ⁻¹			

Results – Contaminant build-up

- Total Yields (mg m⁻²) determined from wash-off curves
- Build-up approaches maximum between 6 and 13 days
- Saturation function (as in SWMM) used to determine build-up coefficients:

$$B = \frac{B_{max} \cdot t}{A + t}$$

Results – Wash-off

- Wash-off functions determined from runoff concentration profiles
- first order decay relationship employed to represent wash-off characteristics:

$$W = C_1 \cdot q \cdot B$$

W - Wash-off load [mg h⁻¹]

C₁ – Wash-off coefficient

q – runoff rate [mm h⁻¹]

B – remaining amount of pollutant [mg]

		Wash-c	off Total	Coppe	r (aspha	ılt)	
	1.2	•	2 days		4 days		
[/Y	1.0	•	6 days	_	— modelle	ed	
<u>"</u>	0.8 +						
Joff	0.6						
Washoff [mg/h]	0.4						
_	0.2						
	0.0						
	0	10	20	30	40	50	60
	Washoff time [min]						

	Concrete			Asphalt		
Contaminant	Build-up		Wash- off	Build-up		Wash- off
	B _{max}	Α	C_1	B _{max}	Α	C ₁
	mg/m ²	[d]		mg/m ²	[d]	
TSS	353	5.4	0.24	165	3.9	0.27
Total zinc	1.0	5.4	0.32	5.2	4.8	0.32
Total copper	0.25	3.2	0.20	0.27	2.4	0.34
Total lead	0.04	1.7	0.29	0.04	3.6	0.33

Coefficients can be used for modeling purposes, e.g. in SWMM

Methods

Results

Contaminant build-up and wash-off
Surface comparison
Wind effects
Roof runoff

Results – asphalt vs. concrete

- High pH in runoff from concrete
 → hydroxides produced during cement binding
 (still present after 9 months and several wash-offs)
- Lower TSS concentrations and turbidity for asphalt runoff
 → some particles held back in pores

Results – asphalt vs. concrete

- Different runoff-characteristics for concrete and asphalt
- Only little difference between two asphalt types (coarse / smooth)
- Particulate contaminants held back in asphalt pores released in dissolved form

Methods

Results

Contaminant build-up and wash-off Surface comparison

Wind effects

Roof runoff

Wind-blown contaminants

Yields / day	Smooth Asphalt					
[mg/m²/d]	Used	Unused	%			
TSS	38.9	19.9	51			
Total zinc	0.60	0.30	50			
Total copper	0.026	0.016	62			
Total lead	0.005	0.003	60			

- Contaminants distributed by wind over carpark area (at least 50m)
- possible influence from further sources (e.g. nearby road)

Wind-blown contaminants

 Neutral surface (corrugated plastics) used to accumulate contaminants at different heights and distances from road (Creyke road)

→ Particulate metals transported on top of roofs, 50m from road

Methods

Results

Contaminant build-up and wash-off
Surface comparison
Wind effects

Roof runoff

Roof runoff

 High zinc concentrations over long time range (several hours)

 Copper concentrations almost as high as zinc concentrations due to copper guttering

Outlook

- Development of GIS-based model to predict contaminant concentrations entering the Okeover Stream during individual storm events
 - → which are critical areas (higher concentrations) regarding storm runoff
 - → locations for possible treatment systems
 - →incorporate treatment efficiencies

Conclusions

- Method very useful for investigation of stormwater related contaminant transport processes in urban catchments
 - Controlled conditions (e.g. rain intensity, # antecedent dry days, rain pH)
 - Boards can be placed at various locations of interest in urban catchments
 - Different surface types
- High first flush concentrations in runoff from carpark-exposed boards for Zn and Cu, quick decline within 10-15 min
- Build-up of contaminants approaches maximum after 6-13 days at carpark
- Determination of build-up and wash-off coefficients for modeling purposes
- Contaminants transported by wind over carpark area and on roof tops
- Roof runoff can have high concentrations (exceeding ANZECC guidelines >10 fold) over several hours

Acknowledgements

Heavy metal analysis (ICP-MS)

Digestion of samples

Sampling and analysis

Asphalt supply

Making of concrete boards

- Sally Gaw & Rob Stainthorpe
- Joseph Good
- Ingrid Cooper & William Jacobson
- Fulton Hogan
- Tim Perigo

Questions?

SWMM – Stormwater Management Model developed by US EPA

Case Study:

Modeling of contaminant concentrations in discharge pipe of carpark

Previous 6-hour storm event modeled, for which results of 2 composite

samples of carpark runoff were available:

First flush (first hour)

Post first flush (hour 1-6)

Build-up and wash-off coefficients as

determined by board study

 Modeled curved compared to results of run-off samples

SWMM - Results

Good agreement of sample concentrations with modeled curves