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Introduction 
Computers are everywhere. We all need to learn how to use them, and many of us use 
them every day. But how do they work? How do they think? And how can people make 
them go faster and better? Computer Science is a fascinating subject that explores these 
very questions. The easy and fun activities in this book, designed for children of a range 
of ages, introduce you to some of the building blocks of how computers work—without 
the children using a computer at all!  

This book can be effectively used in enrichment and extension programmes, or even in 
the regular classroom. You don’t have to be a computer expert to enjoy learning these 
principles with your children. The book contains a range of activities, with background 
information explained simply. Answers to all problems are provided, and each activity 
ends with a ‘what’s it all about?’ section that explains the relevance of the activities. 

Many of the activities are mathematically based, e.g. exploring binary numbers, mapping 
and graphs, patterns and sorting problems, and cryptography. Others link in well with the 
technology curriculum, and the knowledge and understanding of how computers work. 
The children are actively involved in communication, problem solving, creativity, and 
thinking skills in a meaningful context. 

This book was written by three Computer Science lecturers and two school teachers, and 
is based on our experience in classrooms. We have found that many important concepts 
can be taught without using a computer—in fact, sometimes the computer is just a 
distraction from learning. So unplug your computer, and get ready to learn what 
Computer Science is really about! 

 

 

 

This book is available for free download for personal and educational use thanks to 
a generous grant by Google, Inc. It is distributed under a Creative Commons 
Attribution-NonCommercial-NoDerivs licence, which means that you are free to 
copy, distribute, and display the book provided you make no changes to the content 
(including the attribution to the authors and these license terms); you may not use 
this book for commercial purposes, and you may not alter, transform, or build upon 
this work. We encourage the use of this material in educational settings, and you are 
welcome to print your own copy of the book and distribute worksheets from it to 
students. We welcome enquiries and suggestions, which should be directed to the 
authors (see www.unplugged.canterbury.ac.nz). 

This book is being translated into several other languages. Please check the web site 
for information about the availability of translations. 
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Part I 
Data: the raw material—

Representing information
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Data: The Raw Material 
How can we store information in computers? 

The word computer comes from the Latin computare, which means to calculate or add 
together, but computers today are more than just giant calculators. They can be a library, 
help us to write, find information for us, play music and even show movies. So how do 
they store all this information? Believe it or not, the computer uses only two things: zero 
and one! 

What is the difference between data and information? 

Data is the raw material, the numbers that computers work with. A computer converts its 
data into information (words, numbers and pictures) that you and I can understand.  

How can numbers, letters, words and pictures be converted into zeros and 
ones?  

In this section we will learn about binary numbers, how computers draw pictures, how 
fax machines work, what is the most efficient way to store lots of data, how we can 
prevent errors from happening and how we measure the amount of information we are 
trying to store. 
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Activity 1 
Count the Dots—Binary Numbers 

Summary 
Data in computers is stored and transmitted as a series of zeros and ones. How can we 
represent words and numbers using just these two symbols? 

Curriculum Links  
 Mathematics: Number Level 2 and up. Exploring numbers in other bases. 

Representing numbers in base two. 
 Mathematics: Algebra Level 2 and up. Continue a sequential pattern, and describe a 

rule for this pattern. Patterns and relationships in powers of two. 

Skills 
 Counting  
 Matching  
 Sequencing 

Ages  
 7 and up 

Materials 
 You will need to make a set of five binary cards (see page 6) for the demonstration. 

A4 cards with smiley face sticker dots work well. 
Each child will need: 

 A set of five cards. 
Copy Photocopy Master: Binary numbers (page 6) onto card and cut out. 

 Worksheet Activity: Binary numbers (page 5) 
There are optional extension activities, for which each child will need: 

 Worksheet Activity: Working with binary (page 7) 
 Worksheet Activity: Sending secret messages (page 8) 
 Worksheet Activity: Fax machines and modems (page 9) 
 Worksheet Activity: Counting higher than 31 (page 10) 
 Worksheet Activity: More on binary numbers (page 11) 
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Binary Numbers 
Introduction 
Before giving out the worksheet on page 5, it can be helpful to demonstrate the principles 
to the whole group. 

For this activity, you will need a set of five cards, as shown below, with dots on one side 
and nothing on the other. Choose five children to hold the demonstration cards at the 
front of the class. The cards should be in the following order: 

 

Discussion 
What do you notice about the number of dots on the cards? (Each card has twice as many 
as the card to its right.) 

How many dots would the next card have if we carried on to the left? (32) The next…? 

We can use these cards to make numbers by turning some of them face down and adding 
up the dots that are showing. Ask the children to make 6 (4-dot and 2-dot cards), then 15 
(8-, 4-, 2- and 1-dot cards), then 21 (16, 4 and 1)… 

Now try counting from zero onwards. 

The rest of the class needs to look closely at how the cards change to see if they can see a 
pattern in how the cards flip (each card flips half as often as the one to its right). You may 
like to try this with more than one group. 

When a binary number card is not showing, it is represented by a zero. When it is 
showing, it is represented by a one. This is the binary number system. 

 

Ask the children to make 01001. What number is this in decimal? (9) What would 17 be 
in binary? (10001) 

Try a few more until they understand the concept. 

There are five optional follow-up extension activities, to be used for reinforcement. The 
children should do as many of them as they can. 
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Worksheet Activity: Binary Numbers 

Learning how to count 
So, you thought you knew how to count? Well, here is a new way to do it! 

Did you know that computers use only zero and one? Everything that you see or 
hear on the computer—words, pictures, numbers, movies and even sound is 
stored using just those two numbers! These activities will teach you how to send 
secret messages to your friends using exactly the same method as a computer. 

Instructions 
Cut out the cards on your sheet and lay them out with the 16-dot card on the left 
as shown here: 

 

Make sure the cards are placed in exactly the same order. 

Now flip the cards so exactly 5 dots show—keep your cards in the same order! 

 

Find out how to get 3, 12, 19. Is there more than one way to get any number? 
What is the biggest number you can make? What is the smallest? Is there any 
number you can’t make between the smallest and biggest numbers? 

Extra for Experts: Try making the numbers 1, 2, 3, 4 in order. Can you work out a 
logical and reliable method of flipping the cards to increase any number by one? 
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Photocopy Master: Binary Numbers  
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Worksheet Activity: Working With Binary 
The binary system uses zero and one to represent whether a card is face up or 
not. 0 shows that a card is hidden, and 1 means that you can see the dots. For 
example: 

 

Can you work out what 10101 is? What about 11111? 

What day of the month were you born? Write it in binary. Find out what your 
friend’s birthdays are in binary.  

Try to work out these coded numbers: 

 

Extra for Experts: Using a set of rods of length 1, 2, 4, 8 and 16 units show how you 
can make any length up to 31 units. Or you could surprise an adult and show them 

how they only need a balance scale and a few weights to be able to weigh those heavy 
things like suitcases or boxes! 
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Worksheet Activity: Sending Secret Messages 
Tom is trapped on the top floor of a department store. It’s just before Christmas 
and he wants to get home with his presents. What can he do? He has tried 
calling, even yelling, but there is no one around. Across the street he can see 
some computer person still working away late into the night. How could he 
attract her attention? Tom looks around to see what he could use. Then he has a 
brilliant idea—he can use the Christmas tree lights to send her a message! He 
finds all the lights and plugs them in so he can turn them on and off. He uses a 
simple binary code, which he knows the woman across the street is sure to 
understand. Can you work it out? 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 

a b c d e f g h i j k l m 
14 15 16 17 18 19 20 21 22 23 24 25 26 

n o p q r s t u v w x y z 
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Worksheet Activity: E-mail and Modems 
Computers connected to the internet through a modem also use the binary 
system to send messages. The only difference is that they use beeps. A high-
pitched beep is used for a one and a low-pitched beep is used for a zero. These 
tones go very fast—so fast, in fact, that all we can hear is a horrible continuous 
screeching sound. If you have never heard it, listen to a modem connecting to 
the Internet, or try calling a fax machine—fax machines also use modems to 
send information.  

 

Using the same code that Tom used in the department store, try sending an e-
mail message to your friend. Make it easy for yourself and your friend though—
you don’t have to be as fast as a real modem! 
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Worksheet Activity: Counting higher than 31 
Look at the binary cards again. If you were going to make the next card in the 
sequence, how many dots would it have? What about the next card after that? 
What is the rule that you are following to make your new cards? As you can see, 
only a few cards are needed to count up to very big numbers.  

If you look at the sequence carefully, you can find a very interesting relationship: 

1, 2, 4, 8, 16… 
Try adding: 1 + 2 + 4 = ?   What does it come to? 

Now try 1 + 2 + 4 + 8 = ? 

What happens if you add all the numbers up from the beginning?  

Have you ever heard of “let your fingers do the walking”? Well now you can let 
your fingers do the counting, but you can get much higher than ten—no, you 
don’t have to be an alien! If you use the binary system and let each finger on 
one hand represent one of the cards with dots you can count from 0–31. That’s 
32 numbers. (Don’t forget that zero is a number too!) 

Try counting in order using your fingers. If a finger is up it is a one, and if it is 
down it is a zero. 

You can actually get from 0–1023 if you use both hands! That’s 1024 numbers! 

If you had really bendy toes (now you would have to be an alien) you could get 
even higher. If one hand can be used to count 32 numbers, and two hands can 
count to 32 × 32 = 1024 numbers, what is the biggest number Miss Flexi-Toes 
can reach? 
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Worksheet Activity: More on Binary Numbers 
1. Another interesting property of binary numbers is what happens when a zero is 

put on the right hand side of the number. If we are working in base 10 (decimal), 
when you put a zero on the right hand side of the number, it is multiplied by 10. 
For example, 9 becomes 90, 30 becomes 300. 

But what happens when you put a 0 on the right of a binary number? Try this: 

 1001 → 10010 
 (9)  (?) 

Make up some others to test your hypothesis. What is the rule? Why do you 
think this happens? 

2. Each of the cards we have used so far represents a ‘bit’ on the computer (‘bit’ is 
short for ‘binary digit’). So our alphabet code we have used so far can be 
represented using just five cards, or ‘bits’. However a computer has to know 
whether letters are capitals or not, and also recognise digits, punctuation and 
special symbols such as $ or ~. 

Go and look at a keyboard and work out how many characters a computer has to 
represent. So how many bits does a computer need to store all the characters? 

Most computers today use a representation called ASCII (American Standard 
Code for Information Interchange), which is based on using this number of bits 
per character, but some non-English speaking countries have to use longer 
codes. 
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What’s it all about? 
Computers today use the binary system to represent information. It is called binary 
because only two different digits are used. It is also known as base two (humans normally 
use base 10). Each zero or one is called a bit (binary digit). A bit is usually represented in 
a computer’s main memory by a transistor that is switched on or off, or a capacitor that is 
charged or discharged. 

  

When data must be transmitted over a telephone line or radio link, high and low-pitched 
tones are used for the ones and zeros. On magnetic disks (floppy disks and hard disks) 
and tapes, bits are represented by the direction of a magnetic field on a coated surface, 
either North-South or South-North.  

 

Audio CDs, CD-ROMs and DVDs store bits optically—the part of the surface 
corresponding to a bit either does or does not reflect light. 

 

One bit on its own can’t represent much, so they are usually grouped together in groups 
of eight, which can represent numbers from 0 to 255. A group of eight bits is called a 
byte.  

The speed of a computer depends on the number of bits it can process at once. For 
example, a 32-bit computer can process 32-bit numbers in one operation, while a 16-bit 
computer must break 32-bit numbers down into smaller pieces, making it slower. 

Ultimately bits and bytes are all that a computer uses to store and transmit numbers, text, 
and all other information. In some of the later activities we will see how other kinds of 
information can be represented on a computer. 
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Solutions and hints 
Binary Numbers (page 5) 

3 requires cards 2 and 1 
12 requires cards 8 and 4 
19 requires cards 16, 2 and 1 

There is only one way to make any number. 

The biggest number you can make is 31. The smallest is 0. You can make every number 
in between, and each has a unique representation. 

Experts: To increase any number by one, flip all the cards from right to left until you 
turn one face up. 

Working with binary (page 7) 

10101 = 21, 11111 = 31 

Sending Secret Messages (page 8) 

Coded message: HELP IM TRAPPED 

Counting higher than 31 (page 10) 

If you add the numbers up from the beginning the sum will always be one less than the 
next number in the sequence. 

Miss Flexi-toes can count 1024 × 1024 = 1,048,576 numbers—from 0 to 1,048,575! 

More on Binary Numbers (page 11) 

When you put a zero on the right hand side of a binary number the number doubles. 

All of the places containing a one are now worth twice their previous value, and so the 
total number doubles. (In base 10 adding a zero to the right multiplies it by 10.) 

A computer needs 7 bits to store all the characters. This allows for up to 128 characters. 
Usually the 7 bits are stored in an 8-bit byte, with one bit wasted. 
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Activity 2 
Colour by Numbers—Image Representation 

Summary 
Computers store drawings, photographs and other pictures using only numbers. The 
following activity demonstrates how they can do this. 

Curriculum Links 
 Mathematics: Geometry Level 2 and up. Exploring Shape and Space. 

Skills  
 Counting 
 Graphing 

Ages 
 7 and up 

Materials 
 OHP transparency made from OHP Master: Colour by numbers (page 16) 

Each child will need: 
 Worksheet Activity: Kid Fax (page 17) 
 Worksheet Activity: Make your own picture (page 18) 
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Colour by Numbers 
Introduction 

Discussion Questions 
1. What do facsimile (fax) machines do? 

2. In what situations would computers need to store pictures? (A drawing program, a 
game with graphics, or a multi-media system.) 

3. How can computers store pictures when they can only use numbers?  

(You may like to arrange for the children to send and/or receive faxes as a preparation for 
this activity) 

Demonstration using OHP transparency 

  

Computer screens are divided up into a grid of small dots called pixels (picture elements). 

In a black and white picture, each pixel is either black or white. 

The letter “a” has been magnified above to show the pixels. When a computer stores a 
picture, all that it needs to store is which dots are black and which are white. 

1, 3, 1 
4, 1 
1, 4 
0, 1, 3, 1 
0, 1, 3, 1 
1, 4 

 

The picture above shows us how a picture can be represented by numbers. The first line 
consists of one white pixel, then three black, then one white. Thus the first line is 
represented as 1, 3, 1. 

The first number always relates to the number of white pixels. If the first pixel is black 
the line will begin with a zero. 

The worksheet on page 17 gives some pictures that the children can decode using the 
method just demonstrated. 
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OHP Master: Colour by numbers 

   

 A letter “a” from a computer screen and a magnified view showing the pixels 
that make up the image 

 

1, 3, 1 
4, 1 
1, 4 
0, 1, 3, 1 
0, 1, 3, 1 
1, 4 

 
 The same image coded using numbers 

      

      

      

      

      

      

 
 Blank grid (for teaching purposes) 
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Worksheet Activity: Kid Fax 
The first picture is the easiest and the last one is the most complex. It is easy to 
make mistakes and therefore a good idea to use a pencil to colour with and have 
a rubber handy! 

4, 11 
4, 9, 2, 1 
4, 9, 2, 1 
4, 11 
4, 9 
4, 9 
5, 7 
0, 17 
1, 15 

 

6, 5, 2, 3 
4, 2, 5, 2, 3, 1 
3, 1, 9, 1, 2, 1 
3, 1, 9, 1, 1, 1 
2, 1, 11, 1 
2, 1, 10, 2 
2, 1, 9, 1, 1, 1 
2, 1, 8, 1, 2, 1 
2, 1, 7, 1, 3, 1 
1, 1, 1, 1, 4, 2, 3, 1 
0, 1, 2, 1, 2, 2, 5, 1 
0, 1, 3, 2, 5, 2 
1, 3, 2, 5 

 
6, 2, 2, 2 
5, 1, 2, 2, 2, 1 
6, 6 
4, 2, 6, 2 
3, 1, 10, 1 
2, 1, 12, 1 
2, 1, 3, 1, 4, 1, 3, 1 
1, 2, 12, 2 
0, 1, 16, 1 
0, 1, 6, 1, 2, 1, 6, 1 
0, 1, 7, 2, 7, 1 
1, 1, 14, 1 
2, 1, 12, 1 
2, 1, 5, 2, 5, 1 
3, 1, 10, 1 
4, 2, 6, 2 
6, 6 
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Worksheet Activity: Make Your Own Picture 
Now that you know how numbers can represent pictures, why not try making 
your own coded picture for a friend? Draw your picture on the top grid, and 
when you’ve finished, write the code numbers beside the bottom grid. Cut along 
the dotted line and give the bottom grid to a friend to colour in. (Note: you don’t 
have to use the whole grid if you don’t want to—just leave some blank lines at 
the bottom if your picture doesn’t take up the whole grid.) 
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Worksheet Activity: Make Your Own Picture 
Extra for Experts: If you want to produce coloured images you can use a 
number to represent the colour (e.g. 0 is black, 1 is red, 2 is green etc.) Two 
numbers are now used to represent a run of pixels: the first gives the length of 
the run as before, and the second specifies the colour. Try making a coloured 
picture for a friend. Don’t forget to let your friend know which number stands for 
which colour! 
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Variations and Extensions 
1. Try drawing with a sheet of tracing paper on top of the grid, so that the final image 

can be viewed without the grid. The image will be clearer. 

2. Instead of colouring the grid the children could use squares of sticky paper, or place 
objects, on a larger grid.  

Discussion Point 
There is usually a limit to the length of a run of pixels because the length is being 
represented as a binary number. How would you represent a run of twelve black pixels if 
you could only use numbers up to seven? (A good way is to code a run of seven black 
pixels, followed by a run of zero white, then a run of five black.) 
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What’s it all about? 
A fax machine is really just a simple computer that scans a black and white page into 
about 1000 × 2000 pixels, which are sent using a modem to another fax machine, which 
prints the pixels out on a page. Often fax images have large blocks of white (e.g. margins) 
or black pixels (e.g. a horizontal line). Colour pictures also have a lot of repetition in 
them. To save on the amount of storage space needed to keep such images programmers 
can use a variety of compression techniques. The method used in this activity is called 
‘run-length coding’, and is an effective way to compress images. If we didn't compress 
images it would take much longer to transmit pictures and require much more storage 
space. This would make it infeasible to send faxes or put photos on a web page. For 
example, fax images are generally compressed to about a seventh of their original size. 
Without compression they would take seven times as long to transmit! 

Photographs and pictures are often compressed to a tenth or even a hundredth of their 
original size (using a different technique). This allows many more images to be stored on 
a disk, and it means that viewing them over the web will take a fraction of the time. 

A programmer can choose which compression technique best suits the images he or she is 
transmitting. 
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Solutions and hints 
Answers to Kid Fax Worksheet 
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Activity 3 
You Can Say That Again! —Text Compression 

Summary 
Since computers only have a limited amount of space to hold information, they need to 
represent information as efficiently as possible. This is called compression. By coding 
data before it is stored, and decoding it when it is retrieved, the computer can store more 
data, or send it faster through the Internet. 

Curriculum Links 
 English: Recognising patterns in words and text. 
 Technology: Technological knowledge and understanding. How computers work. 

Skills   
 Copying written text 

Ages  
 9 and up 

Materials 
 OHP transparency made from OHP Master: You can say that again! (page 25) 

Each child will need: 
 Worksheet Activity: You can say that again! (page 26) 
 Worksheet Activity: Extras for experts (page 27) 
 Worksheet Activity: Short and sweet (page 28) 
 Worksheet Activity: Extras for real experts (page 29)  
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You can say that again! 
Introduction  
Computers have to store and transmit a lot of data. So that they don’t have to use up too 
much storage space, or take too long to send information through a modem connection, 
they compress the text a bit like this.  

Demonstration and Discussion  
Show “The Rain” OHP (page 25). Look for the patterns of letters in this poem. Can you 
find groups of 2 or more letters that are repeated, or even whole words or phrases? 
(Replace these with boxes as shown in the diagram below.) 
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OHP Master: You Can Say That Again! 

 
The Rain  

Pitter patter  
Pitter patter  
Listen to the rain  
Pitter patter  
Pitter patter  
On the window pane
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Worksheet Activity: You can say that again! 
Many of the words and letters are missing in this poem. Can you fill in the 
missing letters and words to complete it correctly? You will find these in the box 
that the arrow is pointing to. 

 

Now choose a simple poem or nursery rhyme and design your own puzzle. Make 
sure your arrows always point to an earlier part of the text. Your poem should be 
able to be decoded from left to right and from top to bottom in the same way we 
read. 

Challenge: See how few of the original words you need to keep! 

Here are some suggestions: Three Blind Mice, Mary Mary Quite Contrary, Hickory 
Dickory Dock—or try some Dr Seuss books! 

Hint: Try to avoid overcrowding of arrows. Leave a lot of space around letters 
and words as you write them so that you have room for the boxes within boxes 
and the arrows pointing to them.  

It is easier to design the puzzle if you write out the poem first and then decide 
where the boxes need to be.
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Worksheet Activity: Extra for Experts 
How would you solve this puzzle? 

Ban--- 

Sometimes missing text points to part of itself. In this case it can be decoded 
correctly if the letters are copied from left to right. Then each letter is available 
to be copied before it is needed. This is useful in computers if there is a long run 
of a particular character or pattern. 

Try drawing some of your own. 

On computers the boxes and arrows are represented by numbers. For example,  

Banana 
can be written as Ban(2,3). “2” means count back two characters to find the 
starting point for copying, 

Ban--- 
and “3” means copy three consecutive characters: 

Bana-- 

Banan- 

Banana- 
As two numbers are used to code these words, usually only groups of two or 
more letters are worth compressing, otherwise there is no saving of space. In 
fact the size of the file could go up if two numbers are used to code one letter. 

 

Make up some words of your own written in the way a computer would if they were 
compressed. Can your friends decode them? 
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Worksheet Activity: Short and Sweet 
How many words do you really need here? 

Pretend you are a computer trying to fit as much into your disk as possible. Cross 
out all the groups of two or more letters that have already occurred. These are 
no longer needed as they could be replaced by a pointer. Your goal is to get as 
many letters crossed out as possible. 
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Worksheet Activity: Extra for Real Experts 
Ready for some really tough compression? 

The following story was run through a computer program, which found that there 
are at least 1,633 letters that can be crossed out. How many can you find? 
Remember, only groups of two or more repeated characters can be eliminated. 
Good luck! 

nce upon a time, long, long ago, three little pigs set out to make their fortunes. The first 
little pig wasn’t very clever, and decided to build his house out of straw, because it was 

cheap. The second little pig wasn’t very clever either, and decided to build his house out of 
sticks, for the “natural” look that was so very much in fashion, even in those days. The third 
little pig was much smarter than his two brothers, and bought a load of bricks in a nearby 
town, with which to construct a sturdy but comfortable country home. 

Not long after his housewarming party, the first little pig was curled up in a chair reading a 
book, when there came a knock at the door. It was the big bad wolf, naturally. 

“Little pig, little pig, let me come in!” cried the wolf. 

“Not by the hair on my chinny-chin-chin!” squealed the first little pig. 

“Then I’ll huff, and I’ll puff, and I’ll blow your house down!” roared the wolf, and he did huff, 
and he did puff, and the house soon collapsed. The first little pig ran as fast as he could to 
the house of sticks, and was soon safe inside. But it wasn’t long before the wolf came calling 
again. 

“Little pig, little pig, let me come in!” cried the wolf. 

“Not by the hair on my chinny-chin-chin!” squealed the second little pig. 

“Then I’ll huff, and I’ll puff, and I’ll blow your house down!” roared the wolf, and he did huff, 
and he did puff, and the house was soon so much firewood. The two terrified little pigs ran all 
the way to their brother’s brick house, but the wolf was hot on their heels, and soon he was 
on the doorstep. 

“Little pig, little pig, let me come in!” cried the wolf. 

“Not by the hair on my chinny-chin-chin!” squealed the third little pig. 

“Then I’ll huff, and I’ll puff, and I’ll blow your house down!” roared the wolf, and he huffed, 
and he puffed, and he huffed some more, but of course, the house was built of brick, and the 
wolf was soon out of breath. Then he had an idea. The chimney! He clambered up a handy oak 
tree onto the roof, only to find that there was no chimney, because the third little pig, being 
conscious of the environment, had installed electric heating. In his frustration, the wolf 
slipped and fell off the roof, breaking his left leg, and severely injuring his pride. As he 
limped away, the pigs laughed, and remarked how much more sensible it was to live in the city, 
where the only wolves were in the zoo. And so that is what they did, and of course they all 
lived happily ever after. 

O



30  Photocopiable for classroom use only. 
© 2005 Computer Science Unplugged (www.unplugged.canterbury.ac.nz) 

What’s it all about? 
The storage capacity of computers is growing at an unbelievable rate—in the last 25 
years, the amount of storage provided on a typical computer has grown about a 
millionfold—but we still find more to put into our computers. Computers can store whole 
books or even libraries, and now music and movies too, if only they have the room. Large 
files are also a problem on the Internet, because they take a long time to download. We 
also try to make computers smaller—even a cellphone or wristwatch can be expected to 
store lots of information! 

There is a solution to this problem, however. Instead of buying more storage space, or a 
faster modem, we can compress the data so that it takes up less space. This process of 
compressing and decompressing the data is normally done automatically by the computer. 
All we might notice is that the disk holds more, or that web pages display faster, but the 
computer is actually doing more processing. 

Many methods of compression have been invented. The method used in this activity, with 
the principle of pointing to earlier occurrences of chunks of text, is often referred to as 
‘Ziv-Lempel coding,’ or ‘LZ coding’, invented by two Israeli professors in the 1970s. It 
can be used for any language and can easily halve the size of the data being compressed. 
It is sometimes referred to as ‘zip’ on personal computers, and is also used for ‘GIF’ 
images, as well as high-speed modems. In the case of modems, it reduces the amount of 
data that needs to be transmitted over the phone line, so it goes much faster. 

Some other methods are based on the idea that letters that are used more often should 
have shorter codes than the others. Morse code used this idea. 

Solutions and hints 
You can say that again! (page 26) 

Pease porridge hot, 
Pease porridge cold, 
Pease porridge in the pot, 
Nine days old. 
 
Some like it hot, 
Some like it cold, 
Some like it in the pot, 
Nine days old. 
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Activity 4 
Card Flip Magic—Error Detection & Correction 

Summary 
When data is stored on a disk or transmitted from one computer to another, we usually 
assume that it doesn’t get changed in the process.  But sometimes things go wrong and 
the data is changed accidentally.  This activity uses a magic trick to show how to detect 
when data has been corrupted, and to correct it. 

Curriculum Links 
 Mathematics: Number Level 3 and up. Exploring computation and estimation. 
 Algebra Level 3 and up. Exploring patterns and relationships. 

Skills 
 Counting 
 Recognition of odd and even numbers 

Ages 
 9 years and up 

Materials 
 A set of 36 “fridge magnet” cards, coloured on one side only 
 A metal board (a whiteboard works well) for the demonstration. 

Each pair of children will need: 
 36 identical cards, coloured on one side only. 
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The “Magic Trick” 
Demonstration 
Here’s your chance to be a magician! 

You will need a pile of identical, two-sided cards. (To make your own cut up a large sheet 
of card that is coloured on one side only). For the demonstration it is easiest to use flat 
magnetic cards that have a different colour on each side—fridge magnets are ideal. 

1. Choose a child to lay out the cards in a 5 × 5 square, with a random mixture 
of sides showing. 

 

Casually add another row and column, “just to make it a bit harder”. 

 

These cards are the key to the trick. You must choose the extra cards to ensure that there 
is an even number of coloured cards in each row and column. 

2. Get a child to flip over one card only while you cover your eyes. The row and 
column containing the changed card will now have an odd number of 
coloured cards, and this will identify the changed card. 

Can the children guess how the trick is done? 
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Teach the trick to the children: 
1. Working in pairs, the children lay out their cards 5 × 5. 

2. How many coloured cards are there in each row and column?  Is it an odd or even 
number? Remember, 0 is an even number. 

3. Now add a sixth card to each row, making sure the number of coloured cards 
is always even. This extra card is called a “parity” card. 

4. Add a sixth row of cards along the bottom, to make the number of cards in 
each column an even number. 

5. Now flip a card. What do you notice about the row and column?  ( They will 
have an odd number of coloured cards.)  Parity cards are used to show you 
when a mistake has been made.  

6. Now take turns to perform the ‘trick’. 

Extension Activities: 
1. Try using other objects. Anything that has two ‘states’ is suitable. For example, you could 

use playing cards, coins (heads or tails) or cards with 0 or 1 printed on them (to relate to 
the binary system). 

2. What happens if two, or more, cards are flipped? (It is not always possible to know 
exactly which two cards were flipped, although it is possible to tell that something has 
been changed. You can usually narrow it down to one of two pairs of cards. With 4 flips it 
is possible that all the parity bits will be correct afterwards, and so the error could go 
undetected.) 

3. Another interesting exercise is to consider the lower right-hand card. If you choose it to 
be the correct one for the column above, then will it be correct for the row to its left? (The 
answer is yes, always.) 

4. In this card exercise we have used even parity—using an even number of coloured cards. 
Can we do it with odd parity? (This is possible, but the lower right-hand card only works 
out the same for its row and column if the numbers of rows and columns are both even or 
both odd. For example, a 5 × 9 layout will work fine, or a 4 × 6, but a 3 × 4 layout won’t.) 
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A Real-Life Example for Experts! 
This same checking technique is used with book codes. Published books have a 
ten-digit code usually found on the back cover. The tenth digit is a check digit, 
just like the parity bits in the exercise. 

This means that if you order a book using its ISBN (International Standard Book 
Number), the publisher can check that you haven’t made a mistake. They simply 
look at the checksum. That way you don’t end up waiting for the wrong book! 

Here’s how to work out the checksum: 

Multiply the first digit by ten, the second by nine, the third by eight, and so on, 
down to the ninth digit multiplied by two.  Each of these values is then added 
together. 

For example, the ISBN 0-13-911991-4 gives a value 

  (0 × 10) + (1 × 9) + (3 × 8) + (9 × 7) + (1 × 6)  
 + (1 × 5) + (9 × 4) + (9 × 3) + (1 × 2) 
 = 172 

Then divide your answer by eleven. What is the remainder? 

 172 ÷ 11 = 15 remainder 7 

If the remainder is zero, then the checksum is zero, otherwise subtract the 
remainder from 11 to get the checksum. 

 11 – 7 = 4 

Look back. Is this the last digit of the ISBN? Yes! 

If the last digit of the ISBN wasn’t a four, then we would know that a mistake 
had been made. 

It is possible to come up with a checksum of the value of 10, which would 
require more than one digit.  When this happens, the character X is used. 

 

 A barcode (UPC) from a box of Weet-Bix™ 

Another example of the use of a check digit is the bar codes on grocery items. 
This uses a different formula. If a bar code is misread the final digit should be 
different from its calculated value. When this happens the scanner beeps and the 
checkout operator re-scans the code.
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Check that book! 
Detective Blockbuster 

Book Tracking Service, Inc. 

 
We find and check ISBN checksums for a small fee. 

Join our agency—look in your classroom or library for real ISBN 
codes. 

Are their checksums correct? 
Sometimes errors are made. 

Some of the common errors are: 

 a digit has its value changed; 
 two adjacent digits are swapped with each other; 
 a digit is inserted in the number; and  
 a digit is removed from the number 

Can you find a book with the letter X for a checksum of 10? It shouldn’t be too 
hard to find—one in every 11 should have it. 

What sort of errors might occur that wouldn’t be detected? Can you change a 
digit and still get the correct checksum? What if two digits are swapped (a 
common typing error)? 
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What’s it all about? 
Imagine you are depositing $10 cash into your bank account. The teller types in the 
amount of the deposit, and it is sent to a central computer. But suppose some interference 
occurs on the line while the amount is being sent, and the code for $10 is changed to 
$1,000. No problem if you are the customer, but clearly a problem for the bank! 

It is important to detect errors in transmitted data. So a receiving computer needs to check 
that the data coming to it has not been corrupted by some sort of electrical interference on 
the line. Sometimes the original data can be sent again when an error has been 
transmitted, but there are some situations when this is not feasible, for example if a disk 
or tape has been corrupted by exposure to magnetic or electrical radiation, by heat or by 
physical damage. If data is received from a deep space probe, it would be very tedious to 
wait for retransmission if an error had occurred! (It takes just over half an hour to get a 
radio signal from Jupiter when it is at its closest to Earth!) 

We need to be able to recognize when the data has been corrupted (error detection) and 
to be able to reconstruct the original data (error correction). 

The same technique as was used in the “card flip” game is used on computers. By putting 
the bits into imaginary rows and columns, and adding parity bits to each row and column, 
we can not only detect if an error has occurred, but where it has occurred. The offending 
bit is changed back, and so we have performed error correction. 

Of course computers often use more complex error control systems that are 
able to detect and correct multiple errors. The hard disk in a computer has a 
large amount of its space allocated to correcting errors so that it will work 
reliably even if parts of the disk fail. The systems used for this 
are closely related to the parity scheme. 

And to finish, a joke that is better appreciated after doing this 
activity: 

Q: What do you call this:  “Pieces of nine, pieces of 
nine”? 

A: A parroty error. 

 

Solutions and hints 
Errors that would not be detected are those where one digit increases and another 
decreases. Then the sum might still be the same. 
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Activity 5 
Twenty Guesses—Information Theory 

Summary 
How much information is there in a 1000-page book? Is there more information in a 
1000-page telephone book, or in a ream of 1000 sheets of blank paper, or in Tolkien’s 
Lord of the Rings? If we can measure this, we can estimate how much space is needed to 
store the information. For example, can you still read the following sentence? 

Ths sntnce hs th vwls mssng. 

You probably can, because there is not much ‘information’ in the vowels. This activity 
introduces a way of measuring information content. 

Curriculum links 
 Mathematics: Number Level 3 and up. Exploring number: Greater than, less than, 

ranges.  
 Algebra Level 3 and up. Patterns and sequences 
 English 

Skills 
 Comparing numbers and working with ranges of numbers 
 Deduction 
 Asking questions 

Ages 
 10 and up 

Materials 
 No materials are required for the first activity 

There is an extension activity, for which each child will need: 
 Worksheet Activity: Decision trees (page 40) 
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Twenty Guesses 
Discussion 

1. Discuss with the children what they think information is. 

2. How could we measure how much information there would be in a book? Is the number 
of pages or number of words important? Can one book have more information than 
another? What if it is a very boring book, or a particularly interesting one? Would 400 
pages of a book containing the phrase “blah, blah, blah” have more or less information 
than, say, the telephone directory? 

Explain that computer scientists measure information by how surprising a message (or 
book!) is. Telling you something that you know already—for example, when a friend who 
always walks to school says “I walked to school today”—doesn’t give you any 
information, because it isn’t surprising. If your friend said instead, “I got a ride to school 
in a helicopter today,” that would be surprising, and would therefore tell us a lot of 
information. 

How can the surprise value of a message be measured? 

One way is to see how hard it is to guess the information. If your friend says, “Guess how 
I got to school today,” and they had walked, you would probably guess right first time. It 
might take a few more guesses before you got to a helicopter, and even more if they had 
travelled by spaceship. 

The amount of information that messages contain is measured by how easy or hard they 
are to guess. The following game gives us some idea of this. 
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Twenty Questions Activity 
This is an adapted game of 20 questions. Children may ask questions of a chosen child, 
who may only answer yes or no until the answer has been guessed. Any question may be 
asked, provided that the answer is strictly ‘yes’ or ‘no’. 

Suggestions:  
I am thinking of: 

 a number between 1 and 100 
 a number between 1 and 1000 
 a number between 1 and 1,000,000. 
 any whole number 
 a sequence of 6 numbers in a pattern (appropriate to the group). Guess in order from 

first to last. (e.g. 2, 4, 6, 8, 10) 

Count the number of questions that were asked. This is a measure of the value of the 
“information”. 

Follow-up Discussion 
What strategies did you use? Which were the best ones?  

Point out that it takes just 7 guesses to find a number between 1 and 100 if you halve the 
range each time. For example: 

Is it less than 50? Yes. 
Is it less than 25? No. 
Is it less than 37? No. 
Is it less than 43? Yes. 
Is it less than 40? No. 
Is it less than 41? No. 
It must be 42! Yes! 

Interestingly if the range is increased to 1000 it doesn’t take 10 times the effort—just 
three more questions are needed. Every time the range doubles you just need one more 
question to find the answer.  

A good follow up would be to let the children play Mastermind. 

Extension: How much information is there in a message? 
Computer scientists don’t just use guessing with numbers—they can also guess which 
letter is more likely to be next in a word or sentence. 

Try the guessing game with a short sentence of 4–6 words. The letters must be guessed in 
the correct order, from first to last. Get someone to write down the letters as they are 
found and keep a record of how many guesses it takes to find each letter. Any questions 
with a yes/no answer can be used. Examples would be, “It it a t?” “Is it a vowel?” “Does 
it come before m in the alphabet?” A space between words also counts as a “letter” and 
must be guessed. Take turns and see if you can discover which parts of messages are 
easiest to find out.
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Worksheet Activity: Decision Trees 
If you already know the strategy for asking the questions, you can transmit a 
message without having to ask anything. 

Here is a chart called a ‘decision tree’ for guessing a number between 0 and 7: 

 

 

What are the yes/no decisions needed to ‘guess’ the number 5? 

How many yes/no decisions do you need to make to work out any number? 

Now look at something very fascinating. Underneath the numbers 0, 1, 2, 3… in 
the final row of the tree write the number in binary (see Activity 1).  

Look closely at the tree. If no=0 and yes=1, what do you see? 

In the number guessing game we try to choose questions so that the sequence 
of answers works out to represent the number in exactly this way. 

Design your own decision tree for guessing numbers between 0 and 15. 

Extra for experts: What kind of tree would you use to guess someone’s age?  
What about a tree to guess which letter is next in a sentence? 
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What’s it all about? 
A celebrated American mathematician (and juggler, and 
unicyclist) called Claude Shannon did a lot of experiments with 
this game. He measured the amount of information in bits—
each yes/no answer is equivalent to a 1/0 bit. He found that 
the amount of “information” contained in a message depends 
on what you already know. Sometimes we can ask a question 
that eliminates the need to ask a lot of other questions. In this 
case the information content of the message is low. For 
example, the information in a single toss of a coin is 
normally one bit: heads or tails. But if the coin happens to be 
a biased one that turns up heads nine times out of ten, then the 
information is no longer one bit—believe it or not, it’s less. How 
can you find out what a coin toss was with less than one yes/no 
question? Simple—just use questions like “are the next two coin 
tosses both heads?” For a sequence of tosses with the biased coin, 
the answer to this will be “yes” about 80%, of the time. On the 20% 
of occasions where the answer is “no,” you will have to ask two 
further questions. But on average you will be asking less than one 
question per coin toss! 

Shannon called the information content of a message “entropy”. Entropy depends not 
only on the number of possible outcomes—in the case of a coin toss, two—but also on 
the probability of it happening. Improbable events, or surprising information, need a lot 
more questions to guess the message because they tell us more information we didn’t 
already know—just like the situation of taking a helicopter to school. 

The entropy of a message is very important to computer scientists. You cannot compress 
a message to occupy less space than its entropy, and the best compression systems are 
equivalent to a guessing game. Since a computer program is making the ‘guesses’, the list 
of questions can be reproduced later, so as long as the answers (bits) are stored, we can 
reconstruct the information! The best compression systems can reduce text files to about a 
quarter of their original size—a big saving on storage space! 

The guessing method can also be used to build a computer interface that predicts what the 
user is going to type next! This can be very useful for physically disabled people who 
find it difficult to type. The computer suggests what it thinks they are likely to type next, 
and they just indicate what they want. A good system needs an average of only two 
yes/no answers per character, and can be of great assistance to someone who has 
difficulty making the fine movements needed to control a mouse or keyboard. This sort of 
system is also used in a different form to ‘type’ text on some cellphones. 
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Solutions and hints 
The answer to a single yes/no question corresponds to exactly one bit of information—
whether it is a simple question like “Is it more than 50?” or a more complex one like “Is it 
between 20 and 60?” 

In the number-guessing game, if the questions are chosen in a certain way, the sequence 
of answers is just the binary representation of the number. Three is 011 in binary and is 
represented by the answers “No, yes, yes” in the decision tree, which is the same if we 
write no for 0 and yes for 1. 

A tree you would use for someone’s age might be biased towards smaller numbers. 

The decision about the letters in a sentence might depend upon what the previous letter 
was. 



 

Part II 
Putting Computers to Work—

Algorithms
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Putting Computers to Work 
Computers operate by following a list of instructions set for them. These instructions 
enable them to sort, find and send information. To do these things as quickly as possible, 
you need good methods for finding things in large collections of data, and for sending 
information through networks. 

An algorithm is a set of instructions for completing a task. The idea of an algorithm is 
central to computer science. Algorithms are how we get computers to solve problems. 
Some algorithms are faster than others, and many of the algorithms that have been 
discovered have made it possible to solve problems that previously took an infeasible 
length of time—for example, finding millions of digits in pi, or all pages that contain your 
name on the World-Wide Web, or finding out the best way to pack parcels into a 
container, or finding out whether or not very large (100-digit) numbers are prime. 

The word “algorithm” is derived from the name of Mohammed ibn Musa Al-
Khowarizmi—Mohammed, son of Moses, from Khowarizm—who joined an academic 
centre known as the House of Wisdom in Baghdad around 800AD. His works transmitted 
the Hindu art of reckoning to the Arabs, and thence to Europe. When they were translated 
into Latin in 1120AD, the first words were “Dixit Algorismi”—“thus said Algorismi”.
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Activity 6 
Battleships—Searching Algorithms 

Summary  
Computers are often required to find information in large collections of data. They need 
to develop quick and efficient ways of doing this. This activity demonstrates three 
different search methods: linear searching, binary searching and hashing. 

Curriculum Links 
 Mathematics: Number Level 3 and up. Exploring numbers: Greater than, less than 

and equal to 
 Geometry Level 3 and up. Exploring shape and space: Co-ordinates 

Skills  
 Logical reasoning 

Ages  
 9 years and up 

Materials  
Each child will need: 

 Copy of battleships games 
 1A, 1B for game 1 
 2A, 2B for game 2 
 3A, 3B for game 3 

 You may also need a few copies of the supplementary game sheets, 1A', 1B', 2A', 
2B', 3A', 3B'. 
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Battleships 
Introductory Activity 

1. Choose about 15 children to line up at the front of the classroom. Give each child a card 
with a number on it (in random order). Keep the numbers hidden from the rest of the 
class. 

2. Give another child a container with four or five sweets in it. Their job is to find a given 
number. They can “pay” to look at a particular card. If they find the correct number 
before using all their sweets, they get to keep the rest. 

3. Repeat if you wish to. 

4. Now shuffle the cards and give them out again. This time, have the children sort 
themselves into ascending order. The searching process is repeated.  

If the numbers are sorted, a sensible strategy is to use just one “payment” to eliminate 
half the children by having the middle child reveal their card. By repeating this process 
they should be able to find the number using only three sweets. The increased efficiency 
will be obvious. 

Activity 
The children can get a feel for how a computer searches by playing the battleship game. 
As they play the game, get them to think about the strategies they are using to locate the 
ships. 
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Battleships—A Linear Searching Game 

Read the following instructions to the children 
1. Organise yourselves into pairs. One of you has sheet 1A, the other sheet 1B. Don’t show 

your sheet to your partner! 

2. Both of you circle one battleship on the top line of your game sheet and tell your partner 
its number. 

3. Now take turns to guess where your partner’s ship is. (You say the letter name of a ship 
and your partner tells you the number of the ship at that letter.) 

4. How many shots does it take to locate your partner’s ship? This is your score for the 
game. 

(Sheets 1A' and 1B' are extras provided for children who would like to play more games 
or who “inadvertently” see their partner’s sheet. Sheets 2A', 2B' and 3A', 3B' are for the 
later games.) 

Follow Up Discussion 
1. What were the scores? 

2. What would be the minimum and maximum scores possible? (They are 1 and 26 
respectively, assuming that the children don’t shoot at the same ship twice. This method 
is called ‘linear search’, because it involves going through all the positions, one by one.)
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Battleships—A Binary Searching Game 

Instructions 
The instructions for this version of the game are the same as for the previous game but the 
numbers on the ships are now in ascending order. Explain this to the children before they 
start. 

1. Organise yourselves into pairs. One of you has sheet 2A, the other sheet 2B. Don’t show 
your sheet to your partner! 

2. Both of you circle one battleship on the top line of your game sheet and tell your partner 
its number. 

3. Now take turns to guess where your partner’s ship is. (You say the letter name of a ship 
and your partner tells you the number of the ship at that letter.)  

4. How many shots does it take to locate your partner’s ship? This is your score for the 
game. 

Follow Up Discussion 
1. What were the scores? 

2. What strategy did the low scorers use? 

3. Which ship should you choose first? (The one in the middle tells you which half of the 
line the chosen ship must be in.) Which location would you choose next? (Again the best 
strategy is always to choose the middle ship of the section that must have the selected 
ship.) 

4. If this strategy is applied how many shots will it take to find a ship? (Five at most). 

This method is called ‘binary search’, because it divides the problem into two parts.
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Battleships—A Search Game using Hashing 

Instructions 
1. Each take a sheet as in the previous games and tell your partner the number of your 

chosen ship. 

2. In this game you can find out which column (0 to 9) the ship is in. You simply add 
together the digits of the ship’s number. The last digit of the sum is the column the ship is 
in. For example, to locate a ship numbered 2345, add the digits 2+3+4+5, giving 14. The 
last digit of the sum is 4, so that ship must be in column 4. Once you know the column 
you need to guess which of the ships in that column is the desired one. This technique is 
called ‘hashing’, because the digits are being squashed up (“hashed”) together. 

3. Now play the game using this new searching strategy. You may like to play more than 
one game using the same sheet—just choose from different columns. 

(Note that, unlike the other games, the spare sheets 3A' and 3B' must be used as a pair, 
because the pattern of ships in columns must correspond.) 

Follow Up Discussion 
1. Collect and discuss scores as before. 

2. Which ships are very quick to find? (The ones that are alone in their column.) Which 
ships may be harder to find? (The ones whose columns contain lots of other ships.) 

3. Which of the three searching processes is fastest? Why? 

What are the advantages of each of the three different ways of searching? (The second 
strategy is faster than the first, but the first one doesn’t require the ships to be sorted into 
order. The third strategy is usually faster than the other two, but it is possible, by chance, 
for it to be very slow. In the worst case, if all the ships end up in the same column, it is 
just as slow as the first strategy.) 
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Extension Activities 
1. Have the children make up their own games using the three formats. For the second game 

they must put the numbers in ascending order. Ask how they might make the Hashing 
Game very hard. (The hardest game is when all the ships are in the same column.) How 
could you make it as easy as possible? (You should try to get the same number of ships 
into each column.)  

2. What would happen if the ship being sought wasn’t there? (In the Linear Search game it 
would take 26 shots to show this. In the Binary Search game you would need five shots to 
prove this. When using the Hash System it would depend on how many ships appeared in 
the relevant column.) 

3. Using the Binary Search strategy how many shots would be required if there were a 
hundred locations (about six shots), a thousand locations (about nine), or a million (about 
nineteen)? (Notice that the number of shots increases very slowly compared to the 
number of ships. One extra shot is required each time the size doubles, so it is 
proportional to the logarithm of the number of ships.) 
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What’s it all about? 
Computers store a lot of information, and they need to be able to sift through it quickly. 
One of the biggest search problems in the world is faced by Internet search engines, 
which must search billions of web pages in a fraction of a second. The data that a 
computer is asked to look up, such as a word, a bar code number or an author’s name, is 
called a search key. 

Computers can process information very quickly, and you might think that to find 
something they should just start at the beginning of their storage and keep looking until 
the desired information is found. This is what we did in the Linear Searching Game. But 
this method is very slow—even for computers. For example, suppose a supermarket has 
10,000 different products on its shelves. When a bar code is scanned at a checkout, the 
computer must look through up to 10,000 numbers to find the product name and price. 
Even if it takes only one thousandth of a second to check each code, ten seconds would 
be needed to go through the whole list. Imagine how long it would take to check out the 
groceries for a family! 

A better strategy is binary search. In this method, the numbers are sorted into order. 
Checking the middle item of the list will identify which half the search key is in. The 
process is repeated until the item is found. Returning to the supermarket example, the 
10,000 items can now be searched with fourteen probes, which might take two 
hundredths of a second—hardly noticeable. 

A third strategy for finding data is called hashing. Here the search key is manipulated to 
indicate exactly where to find the information. For example, if the search key is a 
telephone number, you could add up all the digits in the number and take the remainder 
when divided by 11. In this respect, a hash key is a little like the check digits discussed in 
Activity 4—a small piece of data whose value depends on the other data being processed. 
Usually the computer will find what it is looking for straight away. There is a small 
chance that several keys end up in the same location in which case the computer will need 
to search through them until it finds the one it is seeking.  

Computer programmers usually use some version of the hashing strategy for searching, 
unless it is important to keep the data in order, or unless an occasional slow response is 
unacceptable. 
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Activity 7 
Lightest and Heaviest—Sorting Algorithms 

Summary 
Computers are often used to put lists into some sort of order, for example names into 
alphabetical order, appointments or e-mail by date, or items in numerical order. Sorting 
lists helps us find things quickly, and also makes extreme values easy to see. If you sort 
the marks for a class test into numeric order, the lowest and highest marks become 
obvious. 

If you use the wrong method, it can take a long time to sort a large list into order, even on 
a fast computer. Fortunately, several fast methods are known for sorting. In this activity 
children will discover different methods for sorting, and see how a clever method can 
perform the task much more quickly than a simple one. 

Curriculum links 
 Mathematics: Measurement Level 2 and up. Carrying out practical weighing tasks. 

Skills 
 Using balance scales 
 Ordering  
 Comparing 

Ages  
 8 and up 

Materials 
Each group of children will need: 

 Sets of 8 containers of the same size but different weights (e.g. milk cartons or film 
canisters filled with sand) 

 Balance scales 
 Worksheet Activity: Sorting weights (page 66) 
 Worksheet Activity: Divide and conquer (page 67) 
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Lightest and Heaviest 
Discussion 
Computers often have to sort lists of things into order. Brainstorm all the places where 
putting things into order is important. What would happen if these things were not in 
order? 

Computers usually only compare two values at once. The activity on the next page uses 
this restriction to give children an idea of what this is like. 

Activity 
1. Divide the children into groups. 

2. Each group will need a copy of the activity sheet on page 66, and its own weights and 
scales. 

3. Have the children do the activity, then discuss the result. 



66  Photocopiable for classroom use only. 
© 2005 Computer Science Unplugged (www.unplugged.canterbury.ac.nz) 

Worksheet Activity: Sorting Weights 
Aim: To find the best method of sorting a group of unknown weights into order. 

You will need: Sand or water, 8 identical containers, a set of balance scales 

What to do: 

1. Fill each container with a different amount of sand or water. Seal tightly. 

2. Mix them up so that you no longer know the order of the weights. 

3. Find the lightest weight. What is the easiest way of doing this? 

Note: You are only allowed to use the scales to find out how heavy each 
container is. Only two weights can be compared at a time. 

4. Choose 3 weights at random and sort them into order from lightest to 
heaviest using only the scales. How did you do this? What is the minimum 
number of comparisons you can make? Why? 

5. Now sort all of the objects into order from lightest to heaviest.  

When you think you have finished, check your ordering by re-weighing each pair 
of objects standing together. 

Selection Sort 

One method a computer might use is called selection sort. This is how selection 
sort works. First find the lightest weight in the set and put it to one side. Next, 
find the lightest of the weights that are left, and remove it. Repeat this until all 
the weights have been removed.  

 

Count how many comparisons you made.  

Extra for Experts: Show how you can calculate mathematically how many 
comparisons you need to make to sort 8 objects into order. What about 9 objects? 20? 
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Worksheet Activity: Divide and Conquer 

Quicksort 

Quicksort is a lot faster than selection sort, particularly for larger lists. In fact, it 
is one of the best methods known. This is how quicksort works.  

Choose one of the objects at random, and place it on one side of the balance 
scales. 

Now compare each of the remaining objects with it. Put those that are lighter on 
the left, the chosen object in the middle, and the heavier ones on the right. (By 
chance you may end up with many more objects on one side than on the other.) 

Choose one of the groups and repeat this procedure. Do the same for the other 
group. Remember to keep the one you know in the centre. 

Keep repeating this procedure on the remaining groups until no group has more 
than one object in it. Once all the groups have been divided down to single 
objects, the objects will be in order from lightest to heaviest. 

 

How many comparisons did this process take? 

You should find that quicksort is a more efficient method than selection sort 
unless you happen to have chosen the lightest or heaviest weight to begin with. 
If you were lucky enough to have chosen the middle weight, you should have 
taken only 14 comparisons, compared with the 28 for selection sort. At any rate 
the quicksort method will never be any worse than selection sort and may be 
much better! 

Extra for Experts: If quicksort accidentally always chose the lightest object, how 
many comparisons would it use?
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Variations and extensions 
Many different methods for sorting have been invented. You could try sorting your 
weights using these: 

Insertion sort works by removing each object from an unsorted group and inserting it into 
its correct position in a growing list (see picture below). With each insertion the group of 
unsorted objects shrinks and the sorted list grows, until eventually the whole list is sorted. 
Card players often use this method to sort a hand into order. 

 

Bubble sort involves going through the list again and again, swapping any objects side-
by-side that are in the wrong order. The list is sorted when no swaps occur during a pass 
through the list. This method is not very efficient, but some people find it easier to 
understand than the others. 

 

Mergesort is another method that uses ‘divide and conquer’ to sort a list of items. First, 
the list is divided at random into two lists of equal size (or nearly equal if there are an odd 
number of items). Each of the two half-size lists is sorted, and the two lists are merged 
together. Merging two sorted lists is easy—you repeatedly remove the smaller of the two 
items at the front of the two lists. In the figure below, the 40 and 60-gram weights are at 
the front of the lists, so the next item to add is the 40-gram weight. How do you sort the 
smaller lists? Simple—just use mergesort! Eventually, all the lists will be cut down into 
individual items, so you don’t need to worry about knowing when to stop. 
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What’s it all about? 
Information is much easier to find in a sorted list. Telephone directories, dictionaries and 
book indexes all use alphabetical order, and life would be far more difficult if they didn’t. 
If a list of numbers (such as a list of expenses) is sorted into order, the extreme cases are 
easy to see because they are at the beginning and end of the list. Duplicates are also easy 
to find, because they end up together. 

Computers spend a lot of their time sorting things into order, so computer scientists have 
to find fast and efficient ways of doing this. Some of the slower methods such as insertion 
sort, selection sort and bubble sort can be useful in special situations, but the fast ones 
such as quicksort are usually used. 

Quicksort uses a concept called recursion. This means you keep dividing a list into 
smaller parts, and then performing the same kind of sort on each of the parts. This 
particular approach is called divide and conquer. The list is divided repeatedly until it is 
small enough to conquer. For quicksort, the lists are divided until they contain only one 
item. It is trivial to sort one item into order! Although this seems very involved, in 
practice it is dramatically faster than other methods. 
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Solutions and hints 
4. The best way to find the lightest weight is to go through each object in turn, keeping track 

of the lightest one so far. That is, compare two objects, and keep the lighter one. Now 
compare that with another, keeping the lighter from the comparison. Repeat until all the 
objects have been used. 

5. Compare the weights on the balance scales. This can easily be done with three 
comparisons, and sometimes just two will suffice—if the children realize that the 
comparison operator is transitive (that is, if A is lighter than B and B is lighter than C, 
then A must be lighter than C). 

Experts: 
Here is a short cut for adding up the number of comparisons that selection sort makes.  

To find the minimum of two objects you need one comparison, three needs two, four 
needs three, and so on. To sort eight objects using selection sort takes 7 comparisons to 
find the first one, six to find the next, five to find the next and so on. That gives us: 

7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 comparisons. 

n objects will take 1 + 2 + 3 + 4 +… + n – 1 comparisons to sort.  

Adding up these numbers is easy if we regroup them.  

For example, to add up the numbers 1 + 2 + 3 + … + 20, regroup them as 

(1 + 20) + (2 + 19) + (3 + 18) + (4 + 17) + (5 + 16) + 

(6 + 15) + (7 + 14) + (8 + 13) + (9 + 12) + (10 + 11) 

= 21 × 10 

= 210 

In general, the sum 1 + 2 + 3 + 4 … + n – 1 = n(n – 1)/2. 
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Activity 8 
Beat the Clock—Sorting Networks 

Summary 
Even though computers are fast, there is a limit to how quickly they can solve problems. 
One way to speed things up is to use several computers to solve different parts of a 
problem. In this activity we use sorting networks which do several sorting comparisons at 
the same time. 

Curriculum Links 
 Mathematics: Number level 2 and up. Exploring number: Greater than, less than 

Skills 
 Comparing 
 Ordering 
 Developing algorithms 
 Co-operative problem solving 

Ages 
 7 years and up 

Materials 
This is an outdoor group activity. 

 Chalk 
 Two sets of six cards. 

Copy Photocopy Master: Sorting networks (page 73) onto card and cut out 
 Stopwatch 
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Sorting Networks 
Prior to the activity use chalk to mark out this network on a court. 

 

Instructions for Children 

This activity will show you how computers sort random numbers into order using 
a thing called a sorting network. 

1. Organise yourselves into groups of six. Only one team uses the network at a 
time. 

2. Each team member takes a numbered card.  

3. Each member stands in a square on the left hand (IN) side of the court. Your 
numbers should be in jumbled order. 

4. You move along the lines marked, and when you reach a circle you must wait 
for someone else to arrive. 

5. When another team member arrives in your circle compare your cards. The 
person with the smaller number takes the exit to their left. If you have the higher 
number on your card take the right exit. 

6. Are you in the right order when you get to the other end of the court? 

If a team makes an error the children must start again. Check that you have 
understood the operation of a node (circle) in the network, where the smaller 
value goes left and the other goes right. For example: 
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Photocopy Master: Sorting networks 

1  2 
   

3  4 
   

5  6 
   
   

156  221 
   

289  314 
   

422  499 
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Variations 
1. When the children are familiar with the activity use a stopwatch to time how long each 

team takes to get through the network. 

2. Use cards with larger numbers (e.g. the three-digit ones in the photocopy master). 

3. Make up cards with even larger numbers that will take some effort to compare, or use 
words and compare them alphabetically. 

Extension Activities 
1. What happens if the smaller one goes right instead of left and vice versa? (The numbers 

will be sorted in reverse order.) 

Does it work if the network is used backwards? (It will not necessarily work, and the 
children should be able to find an example of an input that 
comes out in the wrong order.) 

2. Try to design smaller or larger networks. For example, here is 
a network that sorts just three numbers. The children should 
try to come up with this on their own. 

3. Below are two different networks that will sort four inputs. Which is the faster? (The 
second one is. Whereas the first requires all comparisons to be done serially, one after the 
other, the second has some being performed at the same time. The first network is an 
example of serial processing, whereas the second uses parallel processing to run faster.) 

  

4. Try to make a larger sorting network. 

5. Networks can also be used to find the minimum or 
maximum value of the inputs. For example, here is a 
network with eight inputs, and the single output will 
contain the minimum of the inputs (the other values 
will be left at the dead ends in the network).  

6. What processes from everyday life can or can’t be 
accelerated using parallelism? For example, cooking a 
meal would be a lot slower using only one cooking 
element, because the items would have to be cooked 
one after another. What jobs can be completed faster 
by employing more people? What jobs can’t?
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What’s it all about? 
As we use computers more and more we want them to process information as quickly as 
possible. 

One way to increase the speed of a computer is to write programs that use fewer 
computational steps (as shown in Activities 6 and 7). 

Another way to solve problems faster is to have several computers work on different parts 
of the same task at the same time. For example, in the six-number sorting network, 
although a total of 12 comparisons are used to sort the numbers, up to three comparisons 
are performed simultaneously. This means that the time required will be that needed for 
just 5 comparison steps. This parallel network sorts the list more than twice as quickly as 
a system that can only perform one comparison at a time. 

Not all tasks can be completed faster by using parallel computation. As an analogy, 
imagine one person digging a ditch ten metres long. If ten people each dug one metre of 
the ditch the task would be completed much faster. However, the same strategy could not 
be applied to a ditch ten metres deep—the second metre is not accessible until the first 
metre has been dug. Computer Scientists are still actively trying to find the best ways to 
break problems up so that they can be solved by computers working in parallel. 
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Activity 9 
The Muddy City—Minimal Spanning Trees 

Summary 
Our society is linked by many networks: telephone networks, utility supply networks, 
computer networks, and road networks. For a particular network there is usually some 
choice about where the roads, cables, or radio links can be placed. We need to find ways 
of efficiently linking objects in a network. 

Curriculum Links 
 Mathematics: Geometry Level 2/3 and up. Exploring shape and space: Finding the 

shortest paths around a map 

Ages 
 9 and up 

Skills  
 Problem solving 

Materials 
Each child will need: 

 Workshop Activity: The muddy city problem (page 78) 
 Counters or squares of cardboard (approximately 40 per child) 
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The Muddy City 
Introduction 
This activity will show you how computers are used to find the best solutions for real-life 
problems such as how to link power lines between houses. Have the children use the 
worksheet on page 78, which explains the ‘Muddy City’ problem. 

Follow-up discussion 
Share the solutions the children have found. What strategies did they use?  

One good strategy to find the best solution is to start with an empty map, and gradually 
add counters until all of the houses are linked, adding the paths in increasing order of 
length, but not linking houses that are already linked. Different solutions are found if you 
change the order in which paths of the same length are added. Two possible solutions are 
shown below. 

  

Another strategy is to start with all of the paths paved, and then remove paths you don’t 
need. This takes much more effort, however. 

Where would you find networks in real life? 

Computer scientists call the representations of these networks “graphs”. Real networks 
can be represented by a graph to solve problems such as designing the best network of 
roads between local cities, or aeroplane flights around the country.  

There are also many other algorithms that can be applied to graphs, such as finding the 
shortest distance between two points, or the shortest route that visits all the points. 
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Worksheet Activity: The Muddy City Problem 
Once upon a time there was a city that had no roads. Getting around the city 
was particularly difficult after rainstorms because the ground became very 
muddy—cars got stuck in the mud and people got their boots dirty. The mayor of 
the city decided that some of the streets must be paved, but didn’t want to 
spend more money than necessary because the city also wanted to build a 
swimming pool. The mayor therefore specified two conditions: 

1. Enough streets must be paved so that it is possible for everyone to travel 
from their house to anyone else’s house only along paved roads, and  

2. The paving should cost as little as possible. 

Here is the layout of the city. The number of paving stones between each house 
represents the cost of paving that route. Find the best route that connects all the 
houses, but uses as few counters (paving stones) as possible. 

What strategies did you use to solve the problem? 
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Variations and extensions 
Here is another way of representing the cities and roads: 

 

The houses are represented by circles, the muddy roads by lines, and the length of a road 
is given by the number beside the line. 

Computer scientists and mathematicians often use this sort of diagram to represent these 
problems. They call it a graph. This may be confusing at first because “graph” is 
sometimes used in statistics to mean a chart displaying numerical data, such as a bar 
graph, but the graphs that computer scientists use are not related to these. The lengths do 
not have to be drawn to scale. 

Make up some of your own muddy city problems and try them out on your friends.  

Can you find out a rule to describe how many roads or connections are needed for a best 
solution? Does it depend on how many houses there are in the city? 
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What’s it all about? 

Suppose you are designing how a utility such as electricity, gas, or water should be 
delivered to a new community. A network of wires or pipes is needed to connect all the 
houses to the utility company. Every house needs to be connected into the network at 
some point, but the route taken by the utility to get to the house doesn’t really matter, just 
so long as a route exists. 

The task of designing a network with a minimal total length is called the minimal 
spanning tree problem. 

Minimal spanning trees aren’t only useful in gas and power networks; they also help us 
solve problems in computer networks, telephone networks, oil pipelines, and airline 
routes. However, when deciding the best routes for people to travel, you do have to take 
into account how convenient the trip will be for the traveller as well as how much it will 
cost. No-one wants to spend hours in an aeroplane taking the long way round to a new 
country just because it is cheaper. The muddy city algorithm may not be much use for 
these networks, because it simply minimizes the total length of the roads or flight paths.  

Minimal spanning trees are also useful as one of the steps for solving other problems on 
graphs, such as the “travelling salesperson problem” which tries to find the shortest route 
that visits every point in the network. 

There are efficient algorithms (methods) for solving minimal spanning tree problems. A 
simple method that gives an optimal solution is to start with no connections, and add 
them in increasing order of size, only adding connections that join up part of the network 
that wasn’t previously connected. This is called Kruskal’s algorithm after J.B. Kruskal, 
who published it in 1956. 

For many problems on graphs, including the “travelling salesperson problem”, computer 
scientists are yet to find fast enough methods that find the best possible solution. 

Solutions and hints 
Variations and extensions (page 79) 

How many roads or connections are needed if there are n houses in the city? It turns out 
that an optimal solution will always have exactly n–1 connections in it, as this is always 
sufficient to link up the n houses, and adding one more would create unnecessary 
alternative routes between houses.
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Activity 10 
The Orange Game—Routing and Deadlock in 
Networks 

 

Summary 
When you have a lot of people using one resource (such as cars using roads, or messages 
getting through the Internet), there is the possibility of “deadlock”. A way of working co-
operatively is needed to avoid this happening. 

Curriculum Links 
 Mathematics: Developing logic and reasoning 

Skills 
 Co-operative problem solving 
 Logical reasoning 

Ages 
 9 years and up 

Materials 
Each child will need: 

 Two oranges or tennis balls 
 Name tag or sticker 
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The Orange Game 
Introduction 
This is a co-operative problem solving game. The aim is for each person to end up 
holding the oranges labelled with their own letter. 

1. Groups of five or more children sit in a circle. 

2. The children are labelled with a letter of the alphabet (using name tags or stickers). There 
are two oranges with each child’s letter on them, except for one child, who only has one 
corresponding orange to ensure that there is always an empty hand. 

3. Distribute the oranges randomly to the children in the circle. Each child has two oranges, 
except for one child who has only one. (No child should have an orange with their letter 
on it.) 

4. The children pass the oranges around until each child gets the oranges labelled with their 
letter of the alphabet. You must follow two rules: 

a) Only one orange may be held in a hand. 

b) An orange can only be passed to an empty hand of an immediate neighbour in the 
circle. (A child can pass either of their two oranges to their neighbour.) 

Children will quickly find that if they are “greedy” (hold onto their own oranges as soon 
as they get them) then the group might not be able to attain its goal. It may be necessary 
to emphasize that individuals don’t “win” the game, but that the puzzle is solved when 
everyone has their oranges. 

Follow up Discussion 
What strategies did the children use to solve the problem? 

Where in real life have you experienced deadlock? (Some examples might be a traffic 
jam, getting players around bases in baseball, or trying to get a lot of people through a 
doorway at once.) 

Extension Activities 
Try the activity with a smaller or larger circle. 

• Have the children come up with new rules. 

• Carry out the activity without any talking. 

• Try different configurations such as sitting in a 
line, or having more than two neighbours for 
some children. Some suggestions are shown here. 
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What’s it all about? 
Routing and deadlock are problems in many networks, such as road systems, telephone 
and computer systems. Engineers spend a lot of time figuring out how to solve these 
problems—and how to design networks that make the problems easier to solve. 

Routing, congestion and deadlock can present frustrating problems in many different 
networks. Just think of your favourite rush-hour traffic! It has happened several times in 
New York City that the traffic in the streets has become so congested that it deadlocks: 
no-one can move their car! Sometimes when the computers are “down” in businesses 
(such as banks) the problem is caused by a communication network deadlock. Designing 
networks so that routing is easy and efficient and congestion is minimized is a difficult 
problem faced by many kinds of engineers. 

Sometimes more than one person wants the same data at the same time. If a piece of data 
(such as a customer’s bank balance) is being updated, it is important to “lock” it during 
the update. If it is not locked, someone else could update it at the same time and the 
balance might be recorded incorrectly. However, if this locking is interfered with by the 
locking of another item, deadlock may occur. 

One of the most exciting developments in computer design is the advent of parallel 
computing, where hundreds or thousands of PC-like processors are combined (in a 
network) to form a single powerful computer. Many problems like the Orange Game 
must be played on these networks continuously (but much faster!) in order for these 
parallel computers to work. 



 

Part III 
Telling Computers What To Do—

Representing Procedures
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Telling Computers What To Do 
Computers follow instructions—millions of instructions every second. To tell a computer 
what to do, all you have to do is give it the right instructions. But that’s not as easy as it 
sounds!  

When we are given instructions we use common sense to interpret what is meant. If 
someone says “go through that door,” they don’t mean to actually smash through the 
door—they mean go through the doorway, if necessary opening the door first! Computers 
are different. Indeed, when they are attached to mobile robots you need to be careful to 
take safety precautions to avoid them causing damage and danger by interpreting 
instructions literally—like trying to go through doors. Dealing with something that obeys 
instructions exactly, without “thinking,” takes some getting used to. 

The two activities in this section give us some idea of what it is like to communicate to 
literal-minded machines using a fixed set of instructions.  

The first will teach us about a “machine” that computers use to recognise words, numbers 
or strings of symbols that the computer can work with. These “machines” are called 
finite-state automata. 

The second activity introduces us to how we can communicate with computers. A good 
programmer has to learn how to tell the computer what to do using a fixed set of 
instructions that are interpreted literally. The list of instructions is the program. There are 
lots of different programming languages a programmer can choose to write these 
instructions in, but we will be using a simple language that can be used without a 
computer.  
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Activity 11 
Treasure Hunt—Finite-State Automata 

Summary  
Computer programs often need to process a sequence of symbols such as letters or words 
in a document, or even the text of another computer program. Computer scientists often 
use a finite-state automaton to do this. A finite-state automaton (FSA) follows a set of 
instructions to see if the computer will recognise the word or string of symbols. We will 
be working with something equivalent to a FSA—treasure maps! 

Curriculum Links 
 Mathematics: Developing logic and reasoning—using words and symbols to describe 

and continue patterns 
 Social Studies 
 English 

Skills  
 Simple map reading  
 Recognising patterns  
 Logic  
 Following instructions 

Ages  
 9 and up 

Materials  
You will need: 

 One set of island cards (the instructions must be kept hidden from those trying to 
draw the map!) 
Copy Photocopy Master: Island cards (page 92 onwards) and cut out. 
Fold along the dotted line and glue, so that the front of the card has  the name of the 
island, and the back has the instructions. 

Each child will need: 
 Worksheet Activity: Find your way to the riches on Treasure Island (page 91) 
 Pen or pencil 

There are optional extension activities, for which each child will need: 
 Worksheet Activity: Treasure islands (page 97) 
 Worksheet Activity: The mysterious coin game (page 98) 
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Treasure Island 
Introduction 
Your goal is to find Treasure Island. Friendly pirate ships sail along a fixed set of routes 
between the islands in this part of the world, offering rides to travellers. Each island has 
two departing ships, A and B, which you can choose to travel on. You need to find the 
best route to Treasure Island. At each island you arrive at you may ask for either ship A 
or B (not both). The person at the island will tell you where your ship will take you to 
next, but the pirates don’t have a map of all the islands available. Use your map to keep 
track of where you are going and which ship you have travelled on. 

Demonstration 
(Note: This is a different map from the actual activity.) 

Using an OHP or board, draw a diagram of three islands as shown here: 

 

Copy the three cards on the next two pages, and have one child hold each card. Note that 
the routes on these cards are different from those in the main activity. 

Starting at Pirates’ Island ask for ship A. The child should direct you to Shipwreck Bay. 
Mark the route in on the map. At Shipwreck Bay ask for ship A again. You will be 
directed back to Pirates’ island. Mark this on the map. This time ask for ship B. Mark this 
on the map. This route goes to Dead Man’s Island, at which stage you will be stuck! 

Your final map should look like this: 

 

A 

A 

B 
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Cards for demonstration activity 

 

  

A → 
 

A → 
 

B → 
 

B →
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Cards for demonstration activity 

 

 

No ships sail from 
Dead Man’s Island! 
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Activity 
Choose 7 children to be “islands”. The children will hold cards identifying their island, 
with the secret instructions on the back. Position them randomly around the room or 
playground. The rest of the children are given the blank map and have to navigate a route 
from Pirates’ Island to Treasure Island, marking it carefully on their maps. (It is a good 
idea to send the children off one at a time so they cannot hear the routes in advance.) 

Fast Finishers: Try to find more than one route. 

The complete map looks like this: 

 

Follow-up discussion 
What is the quickest route? What would be a very slow route? Some routes may involve 
loops. Can you find an example of this? (For example, BBBABAB and BBBABBABAB 
both get to Treasure Island.) 
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Worksheet Activity: 
Find your way to the riches on Treasure Island 
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Photocopy Master: Island cards (1/4) 
 

  
A → 

 
A → 

 

B →  B →
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Photocopy Master: Island cards (2/4) 
 

  

A → 
 

A →  

B →  B →
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Photocopy Master: Island cards (3/4) 
 

  

A →  A → 
 

B →  B →  
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Photocopy Master: Island cards (4/4) 
 

 

Congratulations! 
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Finite-State Automata 
Another way of drawing a map is like this: 

 

The islands are shown as numbered circles, and the final island (with the treasure) has a 
double circle. What routes can we travel around to get to the final island? 

Note: Map (a) will finish at the double circle (island 2) only if the sequence has an odd 
number of As (for example, AB, BABAA, or AAABABA). 

Map (b) only gets to the double circle with an alternating sequence of As and Bs (AB, 
ABAB, ABABAB, ...).  

Map (c) requires that the sequence contains at least one B (the only sequences not suitable 
are A, AA, AAA, AAAA, ...). 
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Worksheet Activity: Treasure Islands 
Can you hide your buried treasure well? How hard can you make it to find the 
treasure? It’s time to make your own map! 

1. Here is a more complicated version of the same idea of representing a map. This 
map is the same as for the previous exercise. Computer Scientists use this quick 
and easy way of designing routes for their patterns. 

 

Draw your own basic plan like this so you can clearly see the routes your Pirate 
ships will travel and then make up your own blank maps and island cards. What 
is the most efficient sequence of routes to reach your Treasure Island? 

2. How well can your friends follow your map? Give them a sequence of As and Bs, 
and see if they can reach the correct island. 

You can make up a variety of games and puzzles based on this idea of finite-
state automata. 

3. Here is a way of constructing sentences by choosing random paths through the 
map and noting the words that are encountered. 

 

Now try the same idea for yourself. Perhaps you could even make up a funny 
story! 
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Worksheet Activity: The Mysterious Coin Game 
Some friends downloaded a game from the Internet in which a robot flipped a 
coin and they had to guess whether it would turn up heads or tails. At first the 
game looked very easy. At least they would have a 50/50 chance of winning—or 
so they thought! After a while though they started to get suspicious. There 
seemed to be a pattern in the coin tosses. Was the game rigged? Surely not! 
They decided to investigate. Joe wrote down the results of their next attempts at 
the game and this is what they found: (h = heads, t = tails) 

h h t h h t h h h t t h h h h t t h t t t h h h h h t h h h 
t t t h h h t t t h h h h h h t t h t t t t t h t t h t t t 
h h h t t h h h t h h h h h h h h h t t h h h t t t t h h h 
h h t t t t t t t 

Can you find a predictable pattern? 

There is a very simple ‘map’ that will describe the sequence of coin tosses. See if 
you can figure it out. (Hint: it has just 4 ‘islands’) 
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What’s it all about? 

Finite-state automata are used in Computer Science to help a computer process a 
sequence of characters or events. 

A simple example is when you dial up a telephone number and you get a message that 
says “Press 1 for this … Press 2 for that … Press 3 to talk to a human operator.” Your key 
presses are inputs for a finite state automaton at the other end of the phone. The dialogue 
can be quite simple, or very complex. Sometimes you are taken round in circles because 
there is a peculiar loop in the finite-state automaton. If this occurs, it is an error in the 
design of the system—and it can be extremely frustrating for the caller! 

Another example is when you get cash from a bank cash machine. The program in the 
machine’s computer leads you through a sequence of events. Inside the program all the 
possible sequences are kept as a finite-state automaton. Every key you press takes the 
automaton to another state. Some of the states have instructions for the computer on 
them, like “dispense $100 of cash” or “print a statement” or “eject the cash card”. 

Some computer programs really do deal with English sentences using maps like the one 
on page 97. They can both generate sentences themselves, and process sentences that the 
user types in. In the 1960s a computer scientist wrote a famous program called “Eliza” 
(after Eliza Dolittle) that had conversations with people. The program pretended to be a 
psychotherapist, and came out with leading questions like “Tell me about your family” 
and “Do go on.” Although it didn’t “understand” anything, it was sufficiently plausible—
and its human users were sufficiently gullible—that some people really did think they 
were talking to a human psychotherapist. 

Although computers are not really very good at understanding natural language, they can 
readily process artificial languages. One important type of artificial language is the 
programming language. Computers use finite-state automata to read in programs and 
translate them into the form of elementary computer instructions, which can then be 
“executed” directly by the computer.  
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Solutions and hints 
The Mysterious Coin Game (page 98) 

The mysterious coin game uses the following map to toss coins: 

 

If you follow it, you will see that the first two coin tosses of each three have the same 
outcome.
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Activity 12 
Marching Orders—Programming Languages 

Summary 
Computers are usually programmed using a “language,” which is a limited vocabulary of 
instructions that can be obeyed. One of the most frustrating things about programming is 
that computers always obey the instructions to the letter, even if they produce a crazy 
result. This activity gives children some experience with this aspect of programming. 

Curriculum Links 
 English: Interpersonal Listening Level 3 

Skills  
 Giving and following instructions. 

Ages 
 7 years and up 

Materials 
You will need: 

 Cards with pictures such as the ones shown on the next page.  
Each child will need: 

 Pencil, paper and ruler 
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Marching Orders 
Introduction 
Discuss whether it would be good if people followed instructions exactly. For example, 
what would happen if you pointed to a closed door and said, “Go through that door”? 

Computers work by following lists of instructions, and they do exactly what the 
instructions say—even if they don’t make sense! 

Demonstration Example 
See if the children can draw the picture from these instructions. 

1. Draw a dot in the centre of your page. 

2. Starting at the top left-hand corner of the page rule a straight line through the dot 
finishing at the bottom right hand corner. 

3. Starting at the bottom left-hand corner of the page rule a line through the dot, finishing at 
the top right hand corner. 

4. Write your name in the triangle in the centre of the left-hand side of the page. 

 

The result should look something like this: 
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Activities 
Choose a child and give them an image (such as the examples on page 102). The child 
describes the picture for the class to reproduce. The children can ask questions to clarify 
the instructions. The object is to see how quickly and accurately the exercise can be 
completed. 

Repeat the exercise, but this time the children are not allowed to ask questions. It is best 
to use a simpler image for this exercise, as the children can get lost very quickly. 

Now try the exercise with the instructing child hidden behind a screen, without allowing 
any questions, so that the only communication is in the form of instructions. 

Point out that this form of communication is most like the one that computer 
programmers experience when writing programs. They give a set of instructions to the 
computer, and don’t find out the effect of the instructions until afterwards. 

Have the children draw a picture and write down their own instructions. Try them out in 
pairs or as a whole class. 

Variations 
1. Write instructions to construct a paper dart. 

2. Write instructions on how to get to a mystery location around the school using such 
instructions as “Go forward x metres”, “turn left” (90 degrees), and “turn right” (90 
degrees). 

Children should test and refine their instructions until they have the desired effect. 

3. Blind Game. Blindfold a child and have the other children direct them around the room. 
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What’s it all about? 
Computers operate by following a list of instructions, called a program, that has been 
written to carry out a particular task. Programs are written in languages that have been 
specially designed, with a limited set of instructions, to tell computers what to do. Some 
languages are more suitable for some purposes than others. 

Regardless of what language they use, programmers must become adept at specifying 
exactly what they want the computer to do. Unlike human beings, a computer will carry 
out instructions to the letter even if they are patently ridiculous. 

It is important that programs are well written. A small error can cause a 
lot of problems. Imagine the consequences of an error in the program of a 
computer in a space shuttle launch, a nuclear power plant, or the signals on 
a train track! Errors are commonly called “bugs” in honour (so it is 
said) of a moth that was once removed (“debugged”) from an electrical 
relay in an early 1940s electronic calculating machine. 

The more complex the program, the more errors there are likely to be. This became a 
major issue when the USA was working on the Strategic Defence Initiative (“Star Wars”) 
program, a computer controlled system that was intended to form an impenetrable 
defence against nuclear attack. Some computer scientists claimed that it could never work 
because of the complexity and inherent unreliability of the software required. Software 
needs to be tested carefully to find as many bugs as possible, and it wouldn’t be feasible 
to test this system since one would have to fire missiles at the United States to be sure 
that it worked! 


