

Proceedings 40th New Zealand Geothermal Workshop

14-16 November 2018
Taupō, New Zealand

OPTIMISING A ONE MILLION BLOCK GRID FOR A TVZ FLOW MODEL
M. Letourneur1, D. Dempsey1, J. O’Sullivan1, A. Croucher1, M. O’Sullivan1

1Department of Engineering Science, University of Auckland, Auckland, New-Zealand

martin.letourn@gmail.com

Keywords: Optimisation, unstructured grids, finite volume,
orthogonality, flow models, minimisation, objective function,
Waiwera.

ABSTRACT
The recently developed multiphase geothermal flow
simulator, Waiwera, is now able to handle unstructured
grids. However, to reduce errors related to the grid, certain
quality factors should be optimised. In applying the finite
volume method, Waiwera assumes that for each pair of
neighbouring tetrahedral cells the line connecting their
centroids is perfectly orthogonal to their shared interface.
Any deviation from orthogonality will introduce an error in
the flow simulation. Our work aims to optimize a given grid
so as to minimise departures from orthogonality as much as
possible. Our algorithm is written in Python. It uses the
MeshIO library to read and write various formats of mesh
files, and the SciPy library for optimisation algorithms. Our
approach is to minimise the sum of all deviations from
orthogonality within the mesh. The inputs are the node
coordinates and connectivity and any surface constraints
(e.g., model boundaries, faults). Then, our algorithm moves
the nodes around in space in an attempt to minimise
deviations from orthogonality.
Several challenges were addressed in developing the
optimisation algorithm. First, we require that some nodes
should be constrained to move only along boundaries
(model edges, topography, faults) so that geometric features
honoured by the original mesh are not altered. This reduces
a node’s degrees of freedom from 3 – the number of
coordinate directions - to (3 – n), where n is the number of
boundaries the node lies on. As a result, the algorithm can
handle plane and complex boundaries (including faults and
topography), intersections between planes and between a
plane and a complex surface.
Second, we aimed to minimise the running time of the
algorithm so that the approach is practical for full-sized
meshes (up to one million blocks). This included
implementing and passing analytical Jacobians to the
optimiser, and the use of multiprocessing to subdivide and
parallelise optimisation of mesh subsections. The mesh is
divided into m sets of disjoint (non-overlapping, non-
adjacent) node clusters, where 𝒎𝒎 is the number of parallel
processors, and each cluster contains 𝒌𝒌 nodes. The
coordinates of the 𝒌𝒌 nodes are optimised and updated before
a new set of 𝒎𝒎 disjoint clusters are chosen. Calibrating
tolerance parameters carefully, we are able to achieve
convergence of an optimal mesh in less than 10 iterations
(for a 104 node mesh we have achieved optimisation in just
over 90 seconds).
In this paper, we present the algorithm details, several test
cases, and a challenge mesh: a one million block grid of the
TVZ, with realistic topography, and approximate faults and
basement contact.

1. INTRODUCTION
Multiphase geothermal flow simulators such as TOUGH2
and Waiwera allow for simulations to be run on unstructured
grids. This allows the user to import tetrahedral grids, which
are able to capture with more precision complex geological
features, such as topographic surfaces, faults and lithological
contacts, than a structured hexahedral grid. To ensure
accuracy in the calculations, it is useful to optimize for some
quality factors of the grid. When Waiwera applies the finite
volume method it assumes that for any pair of neighbouring
tetrahedra the line connecting their centroids is orthogonal to
the shared face (Croucher and O’Sullivan, 2013). Therefore,
if the grid is not optimized in this respect, a divergence
between the calculated and theoretical flow directions will
occur (Figure 1).

Figure 1: Two cases of connection-interface
orthogonality in 2D. (top) A pair of blocks in which the
connector between centroids, line c1-c2, is orthogonal to
the shared interface, 2-3. (bottom) An instance of non-
orthogonality for the same interface. Optimisation
could improve the mesh by moving nodes 1 and 4 in the
bottom configuration to the positions in the top.

c1

c2

I2 3

1

2

4

T1

T2

θ2

c1

c2

I1

1

2
3

4

T1

T2

θ1

mailto:author_email@email.com

Proceedings 40th New Zealand Geothermal Workshop

14-16 November 2018
Taupō, New Zealand

Unstructured meshing software such as GMSH already
apply an optimisation after triangulating the mesh. These
software optimize the grid with respect to the aspect ratio
(angles, sides, length ratio) but not with respect to
connection-interface orthogonality. This is because grids
built by this software are intended for use within a simulator
that applies the finite element method (Geuzaine and
Remacle, 2009). Requirements are different for the finite
volume method. Therefore, it was necessary to develop our
own optimisation algorithm. Similar problems have been
solved in the past for finite element grid optimisation (Pain
et al., 2001) and tetrahedral grid smoothing (Escobar et al.,
2003). The main strategy used is the minimisation of an
objective function. Although our quality factors are
different, we can apply a similar optimisation approach in
our algorithm.

2. METHODS
In this section, we describe the main features of our
optimisation algorithm. We will first present the general
components found in most optimisation problems. Then, we
will focus on the profiling methods specific to our problem.

2.1 Formulating the optimisation problem
2.1.1 Objective function

Our approach to optimisation is to minimise the deviation
from orthogonality for all connections in the grid. To
achieve this, we investigated a class of quality metrics call
p-norms:

𝑓𝑓 = �� |𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖|𝑝𝑝
𝑖𝑖

�

1
𝑝𝑝

.

These allow us to vary the relative weight of the poorest
connections, directing the optimisation algorithm to focus on
these, e.g.:

lim
𝑝𝑝→∞

𝑓𝑓 = max(|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|) .

Our findings suggested that 𝑝𝑝 = 1 was optimal in terms of
overall grid quality and algorithm running time. The same
conclusions were drawn in the work of Escobar et al.
(2003). Therefore the objective function was reduced to the
simple sum of all deviations.

To compute the deviation, we take the cross product of two
vectors, 𝐮𝐮 and 𝐯𝐯, defining edges of a triangular interface,
which yields the interface normal, 𝐧𝐧 (Figure 2). We then
take the dot product of the normal and a vector, 𝐰𝐰,
connecting the two block centroids (Figure 2), which gives
the cosine of the angular deviation, 𝜙𝜙, from orthogonality
𝜀𝜀 = 𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯). Finally, the deviation is computed 1 − |𝜀𝜀|,
which is zero (a minimum) for an orthogonal connection.

2.1.2 Degrees of freedom

In Figure 3, we can see how the degrees of freedom in
displacing a node varies with its position in the mesh:

• Node 6, lies within the volume of our model, and is not
on an internal surface. It can move freely in 𝑥𝑥 and 𝑦𝑦
directions (and 𝑧𝑧 if this was a 3D mesh). It has a degree
of freedom of two which means that both its
coordinates can be modified during optimisation

• Node 5, lies on an external boundary. In this case, the
node can only displace in the 𝑦𝑦 direction, otherwise the
model domain would change. It has a degree of
freedom of one.

• Nodes 1-4 are fixed during the optimisation, they have
0 degrees of freedom.

In 3D, a node on a boundary surface will have one of its
coordinates fixed depending on the value of the other two.
Thus, one task of our algorithm is to determine mathematical
expressions linking the dependent coordinates to the free
ones for arbitrary surfaces. For nodes on plane surfaces, we
use an equation of the form: 𝑑𝑑𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐𝑧𝑧 + 𝑑𝑑 = 0, where

𝑑𝑑, 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 are determined by points on the plane.

The intersection of two planes gives a line whose equation
can also be easily accessed by solving the equation system
formed by the two plane equations.

Although many models are exclusively bounded by plane
surfaces, others can include complex surfaces such as a
topographic upper layer. Degree of freedom reduction on
such surfaces is more complex to describe. Our approach is
to describe the complex surface using 2D splines, as these
ensure both a continuous surface and continuous derivatives

Figure 2: System of two neighbouring tetrahedra. The
centroids of the tetrahedron (1235) and (1234) are
respectively c1 and c2.

n
c1

c2

1

2

3

φ

u
v

w

5

4

Figure 3: 2D triangular mesh showing in red the degree
of freedom of each node as well as its possible direction
of displacement.

Y

X

V=2

V=1

V=0 V=0

V=0 V=0

2

3 4

5

6

Proceedings 40th New Zealand Geothermal Workshop

14-16 November 2018
Taupō, New Zealand

at spline boundaries. A 2D example of curve fitting using
splines is showed in Figure 4.

Our algorithm is also able to handle the case of a plane
intersecting a complex surface, such as might occur at the
surface expression of a fault. When a complex interface
intersects a plane it yields a curve that lies on the plane. This
curve can be described using splines in the coordinate
system (𝑤𝑤, 𝑑𝑑) which is specific to the plane. The simplest
case is if the plane is either vertical or horizontal, in which
case the coordinate system (𝑤𝑤, 𝑑𝑑) becomes respectively
(𝑥𝑥, 𝑧𝑧)or (𝑦𝑦, 𝑧𝑧) and (𝑥𝑥,𝑦𝑦), in that case no projections are
needed to transform from one coordinate basis to another
and the curve resulting from the intersection can be
described in our (𝑥𝑥,𝑦𝑦, 𝑧𝑧) space. In other cases, a more
complex projection is required to transform from (𝑤𝑤, 𝑑𝑑) to
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) coordinates.

Figure 5 shows a more complex example, considering an
inclined plane, P(𝑥𝑥,𝑦𝑦, 𝑧𝑧):𝑦𝑦 – 𝑧𝑧 = 0, and a complex surface
CS(𝑥𝑥,𝑦𝑦, 𝑧𝑧). The intersection, represented by the red nodes,
is the curve I which is expressed with respect to the space
(𝑤𝑤, 𝑑𝑑) specific to the plane P (Figure 5). In this case, the
axes 𝑤𝑤 and 𝑑𝑑 are coincident. The axis 𝑤𝑤, on the other hand,
has a more complex relationship with the (𝑥𝑥,𝑦𝑦, 𝑧𝑧) space.
Using the dip of the plane 𝜃𝜃, we can express 𝑤𝑤 as:

𝑤𝑤 = 𝑦𝑦 cos(𝜃𝜃) + 𝑧𝑧 sin(𝜃𝜃).

In that case any nodes on I(𝑤𝑤, 𝑥𝑥) will have a degree of
freedom of 1. Any displacement along 𝑥𝑥 will give a new
value of 𝑤𝑤. This value of 𝑤𝑤 can then be translated into the
corresponding values of 𝑦𝑦 and 𝑧𝑧 using both the equation of P

and the relation of 𝑤𝑤 with respect to 𝑦𝑦 and 𝑧𝑧.

2.1.3 Optimisation algorithm

As our goal in optimising the mesh was to minimise an
objective function of orthogonality deviations we elected to
use the function minimize from the SciPy python library.
This function offers various minimisation methods. We
decided to use the Sequential Least Square Programming
algorithm because it enables the user to provide the Jacobian
of the objective function as well as constraints on the
variables. The algorithm is also capable of approximating
the Jacobian using the finite difference method to obtain the

partial derivatives of the function.

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

≈ lim
ℎ→0

𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥 − ℎ)
2ℎ

However, using this method greatly increases the number of
calls to the objective function. For small problems this is not
an issue but when the number of variable gets higher (i.e.
when working with larger meshes) then the running time
increases exponentially (Figure 6).

One way to address this problem is to provide the analytical
expression of the Jacobian to the minimisation algorithm.

Let’s take a variable, 𝑑𝑑𝑖𝑖 of our system which is a free
coordinate of the node 𝑑𝑑𝑖𝑖. The objective function 𝑓𝑓 is the
sum of the deviations, 1 − |𝜀𝜀|. Note that all deviations are
independent to each other. Then, the partial derivative of
𝑓𝑓with respect to 𝑑𝑑𝑖𝑖is:

𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑𝑖𝑖

= �
𝜕𝜕𝑓𝑓

𝜕𝜕1 − |𝜀𝜀|𝑗𝑗
𝜕𝜕1 − |𝜀𝜀𝑗𝑗|
𝜕𝜕𝑑𝑑𝑖𝑖𝑗𝑗

.

Where 𝜕𝜕𝜕𝜕
𝜕𝜕1−|𝜀𝜀|𝑗𝑗

= 1, since all deviations have the same

weight.

Then, we can write that:

𝜕𝜕1 − |𝜀𝜀𝑗𝑗|
𝜕𝜕𝑑𝑑𝑖𝑖

=
𝜕𝜕1− |𝜀𝜀𝑗𝑗|
𝜕𝜕𝜀𝜀𝑗𝑗

𝜕𝜕𝜀𝜀𝑗𝑗
𝜕𝜕𝑑𝑑𝑖𝑖

.

Figure 4: 2D dataset of 5 nodes fitted using splines.

Discrete data

Fitted curve

Figure 5: 3D plot of a plane, P, in blue, a complex
surface, CS, in green and their intersection, I, as red
dots.

W(Y,Z): Y*cos(θ) + Z*sin(θ)

Y

X
Z

θ

P(X,Y,Z)

CS(X,Y,Z)

I(W,X)

Figure 6: Running times vs. mesh size when computing
the Jacobian either analytically (orange) or using the
finite difference method (blue markers).

Proceedings 40th New Zealand Geothermal Workshop

14-16 November 2018
Taupō, New Zealand

Where, 𝜕𝜕1−|𝜀𝜀𝑗𝑗|
𝜕𝜕𝜀𝜀𝑗𝑗

= �
−1, 𝜀𝜀𝑗𝑗 ≥ 0

1, 𝜀𝜀𝑗𝑗 < 0 .

Finally using the expression for 𝜀𝜀 we defined in Section
2.1.1, we can write that:

𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑𝑖𝑖

= �−𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑(𝜀𝜀𝑗𝑗)
𝜕𝜕(𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯))𝑗𝑗

𝜕𝜕𝑑𝑑𝑖𝑖𝑗𝑗

.

The partial derivative of 𝜀𝜀 with respect to 𝑑𝑑𝑖𝑖 depends on the
degree of freedom, 𝜈𝜈, of the node 𝑑𝑑𝑖𝑖. We can highlight this
dependency using the 3 following cases:

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑 𝑑𝑑. 𝜈𝜈 = 3: 𝑑𝑑𝑖𝑖 �

𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖

𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯�

𝜕𝜕𝜀𝜀
𝜕𝜕𝑑𝑑𝑖𝑖

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑖𝑖

𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑 𝑏𝑏. 𝜈𝜈 = 2: 𝑑𝑑𝑖𝑖 �
𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑖𝑖
𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖)

𝑧𝑧𝑖𝑖

𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯�

𝜕𝜕𝜀𝜀
𝜕𝜕𝑑𝑑𝑖𝑖

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜀𝜀
𝜕𝜕𝑦𝑦𝑖𝑖

𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑 𝑐𝑐. 𝜈𝜈 = 1: 𝑑𝑑𝑖𝑖 �
𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑖𝑖
𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑧𝑧𝑖𝑖(𝑥𝑥𝑖𝑖)

𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯�

𝜕𝜕𝜀𝜀
𝜕𝜕𝑑𝑑𝑖𝑖

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜀𝜀
𝜕𝜕𝑦𝑦𝑖𝑖

+
𝜕𝜕𝑧𝑧𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜀𝜀
𝜕𝜕𝑧𝑧𝑖𝑖

The vectors 𝐰𝐰,𝐮𝐮 and 𝐯𝐯 depends on the coordinates of the 5
nodes forming the system of two neighbouring tetrahedra.
Their partial derivatives with respect to each coordinates can
then be computed. It is possible to calculate the partial
derivatives of a coordinate with respect to another using the
relations between the coordinates we determined in Section
2.2.2.

2.1.4 Constraints

The next issue we tackled was determining if constraints
needed to be applied to the system to maintain a valid mesh
during optimisation. Indeed if a node crosses an interface
during the optimisation process then the blocks related to
that node will either be flipped or crossed. In that case the
mesh is corrupted and can no longer be used for flow
simulations. One way to avoid corruption is to control the
sign of the oriented volume of a block (He et al., 1997).

In the Figure 8, we show two theoretical solutions
originating from the optimisation process of an initial mesh.
In the first instance, optimisation results in node 6 being
repositioned within the boundary of the model and, thus,
there is no change to any signs of the triangles’ oriented
volumes. In the second instance, node 6 is moved through
the interface [2,3]. In that case, we can see that the triangles
(126),(156),(456),(463) are now overlapping the triangle
(236) rendering the mesh unusable for simulation. At the
same time, the sign of the oriented volume of those triangles
changed. Therefore, it would have been possible to avoid

this situation by checking at each iteration if the sign of the
oriented volumes were still equal to the initial sign. This can
easily be implemented in our algorithm since the minimising
function we use allows for constraint inputs on the variables.
Since the oriented volume 𝑉𝑉 of a given tetrahedron (1234)
(Figure 7) is given by the formula:

𝑉𝑉 =
𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯)

6

Then the constraints for a block (1234) would have the
following form, 𝑉𝑉0 being the initial oriented volume:

�𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯) < 0, 𝑑𝑑𝑓𝑓 𝑉𝑉0 < 0
𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯) > 0, 𝑑𝑑𝑓𝑓 𝑉𝑉0 > 0

Figure 7: Tetrahedron (1234), in red are the vectors
used to compute its oriented volume.

1

2

3

4

w
u

v

Figure 8: (top) Initial 2D mesh. (middle) Optimisation
resulting in a mesh with improved orthogonality.
(bottom) Optimisation resulting in a corrupted mesh.

Y

X

V=2

V=1

V=0 V=0

V=0 V=0

2

3 4

5

6

1

Y

X

2

3 4

5 6

Y

X

1 2

3
4

5

6

Proceedings 40th New Zealand Geothermal Workshop

14-16 November 2018
Taupō, New Zealand

However, in our investigations so far, node displacements
have generally been small enough (compared to the size of
the blocks) that volume sign changes are rare. Moreover, the
implementation of those constraints is extremely expensive
in terms of optimisation running time. Therefore it was
decided to run the optimisation without applying any
constraints on our system.

2.2 Optimisation strategies

The main issue that was encountered in the early stages of
the algorithm’s development was the dramatic increase of
the running time with the increase of mesh size. Several
methods were tested to address this issue and make the
algorithm usable for reasonable grid sizes (up to 1 million
blocks).

2.2.1 Mesh clustering

The first strategy was division of the mesh into clusters of
nodes, which were optimised independently, holding the
other nodes fixed. Using this strategy, we found that it is
faster to optimize, say, 10 clusters of 100 nodes each than
directly optimizing an entire 1000 node mesh. In our
algorithm, different clustering strategies were tested.

The easiest, but least effective, strategy is random clustering
(Figure 9). The user gives the algorithm a desired cluster
size, 𝑠𝑠, and then the algorithm distributes the nodes
randomly into 𝑑𝑑 clusters of maximal size 𝑠𝑠.

The second approach was to target nodes with large
deviations from orthogonality. For example, in the system
shown in Figure 10, some nodes (yellow) are associated
with connections with small or no deviation. Thus, these
nodes would be ignored (fixed) during optimisation. The
remaining nodes are randomly distributed into 𝑑𝑑 clusters of
maximal size 𝑠𝑠. This algorithm does require a specified limit
at which a deviation is considered sufficiently bad for
optimisation to proceed. The advantage is that nodes that
would be unlikely to be displaced during optimisation can be
ignored, and computational effort can be concentrated on the
bad regions of the mesh.

2.2.2 Optimisation in parallel

We also investigated reductions in running time of the
algorithm through implementation of multiprocessing. The
basic approach is to optimize multiple clusters of the mesh
in parallel. For this to work, clusters could no longer be
randomly formed. For instance, if two clusters contain nodes
that are connected to each other, then their optimisations are
no longer independent. The key was to create groups of
disjoint clusters (the size of the groups depending on the
number of clusters the user wishes to optimize
simultaneously). Two clusters are considered disjoint if they
contain no neighbouring nodes.

Figure 9: Example of random clustering of a 2D
triangular mesh. The desired cluster size is 4.

Cluster #1

Cluster #2

Cluster #3

Figure 10: Example of clustering while targeting large
deviations. The red dots are the triangles’ centroids. The
lowest and highest deviations are represented.

c1

c2

c3

c4

Cluster #1

Cluster #2

Fixed nodes

c5

c6

c8

c7

c9

c10

Figure 11: Example of a disjoint clustering of a 2D
triangular mesh. The clusters 2 and 3 are disjoints.

Cluster #1

Cluster #2

Cluster #3

First round of parallel optimizations

Second round of parallel optimizations

Figure 12: Result of the first round of optimisation.
Clusters 2 and 3 are optimised without displacing the
nodes from cluster 1.

Cluster #1

Cluster #2

Cluster #3

Next round of parallel optimizations

Proceedings 40th New Zealand Geothermal Workshop

14-16 November 2018
Taupō, New Zealand

Figure 11 shows the creation of three clusters such that
clusters 2 and 3 are disjoints and can be optimized in
parallel. Cluster 1 is not so it has to be optimized during a
subsequent round of optimisation.

The result of the first round of optimisation would give the
result shown in Figure 12. The nodes from cluster 1 are left
unchanged. Clusters 2 and 3 were optimized in parallel
successfully.

In the algorithm we build the clusters in two steps. First, we
construct 𝑑𝑑 clusters of size 𝑠𝑠 using the KMeans function of
the SciKit library. The K-means method aims at building
clusters while minimising their inertia. In our case the inertia
of a cluster is defined as the sum of the distance from a
cluster’s node to the cluster’s centroid. Therefore the K-
means method will try to divide our mesh into clusters of
neighbouring nodes.

The second step of our clustering method is to distribute
those clusters among 𝑚𝑚 subgroups of size 𝑘𝑘 where 𝑘𝑘 is the
number of CPUs the user whishes to use. All clusters in one
subgroup must abide to our definition of disjoint.

In practice we use a combination of targeting high
deviations nodes and disjoint clustering to be able to apply
multiprocessing while reducing the number of variables in
our system. That way we obtain the best possible running
times.

3. RESULTS AND PERFORMANCE
In this section, we demonstrate and benchmark the
optimisation algorithm on a range of small test problems.
We then apply the method to optimise a production-scale
problem: a million block grid of the Taupō Volcanic Zone
(TVZ).

3.1 Test problems

3.1.1 Simple 3D problem

The first mesh is a simple cube with 15 nodes, one on each
vertex, one on each faces, and one in the volume. In the
initial state, all face nodes are placed away from the centre
and the volume node is placed away from the centroid of the
cube. After optimisation, we should expect the nodes on
each face and in the volume to be located at their respective
centres.

Figure 13 shows that the optimised mesh has minimal
deviation from orthogonality. Furthermore, the boundaries
have not been deformed, indicating that the degree of
freedom reduction has been computed successfully (Figure
14).

3.1.2 Internal boundaries and complex topography

The second mesh is more complex (Figure 15). It has two
internal horizontal boundaries that act as lithological
contacts located respectively at a depth of 600m and 1800m.
The model also has a complex surface that represents
topography. In total the mesh comprises 650 nodes.

The mesh is optimized using the “disjoint/bad nodes”
clustering technique. Three optimisation runs are performed
for deviation thresholds of 0.4, 0.3 and 0.1. We can see in
the Figure 16 that the number of faces showing perfect
orthogonality has been increased by 20% after applying our
optimisation process.

Figure 13: Histogram showing the distribution of
deviations in the mesh. The initial state is in blue and
the optimized configuration is in orange.

0.98

0.84

0.70

0.56

0.42

0.28

0.14

Pr
op

or
tio

n
of

 fa
ce

s

Deviation from orthogonality

Figure 14: Two screenshots from Paraview. The blue
and red wireframes represent respectively the initial
and optimised states. The top one is a general view of
the cube; the bottom one is a section by the plane –x-
y=0.

Figure 15: Overview of the mesh in GMSH.

0 to -600m

-600 to
-1800m

-1800 to
-4000m

10 000m 10 000m

Proceedings 40th New Zealand Geothermal Workshop

14-16 November 2018
Taupō, New Zealand

In Figure 17, we plot the nodes lying on the topographic
surface, coloured blue or red representing respectively the
initial and final state of the system. All nodes remained on
the surface during optimisation process. Furthermore, nodes
along the edge of the surface remain on the curve defining
this edge. These results demonstrate optimisation
constrained to complex surfaces as well as the intersection
between planes and complex surfaces can be handled
correctly by the algorithm.

3.1.3 Sequential optimisation

Using the clustering strategy, it is possible to perform
successive optimisations on a mesh, targeting populations of
nodes with progressively smaller deviations each. We have
found that three successive runs with decreasing deviation
threshold yields the best results.

It is notable that different results can be obtained when
optimizing the same mesh using different clustering settings.
This highlights the existence of local minima for our
objective function.

After optimisation, there still remain a significant proportion
of non-optimal connections. This may indicate an inherent

limitation of tetrahedral elements to both capture geometric
complexity while achieving element orthogonality. In future
work, optimisation of unstructured hexahedral elements may
be necessary to ensure sufficient degrees of freedom.

To improve our chances at finding a global minimum, we
have explored the use of genetic algorithms. This works by
generating 𝑁𝑁 child meshes whose nodes are randomly
perturbed from a common parent. Then optimisation
proceeds for all children and only the best result is kept, to
generate further children. However, in our tests, this strategy
did not sufficiently improve the objective function to justify
the additional computational expense. A more efficient way
to improve quality of the minimum was the sequential
optimisation discussed earlier.

3.2 Performance tests

A series of meshes with the same geometry but different
numbers of nodes were created to assess performance and
scaling. The geometry of the meshes is similar to the one
described in Section 3.1.2 with the exception that the
topographic surface was replaced by a horizontal plane at
𝑧𝑧 = 0. The original meshes were constructed using GMSH.

3.2.1 Multiprocessing

In this test we ran some optimisation on a 6871 nodes mesh,
using a cluster size of 1% of the mesh size and a number of
processors ranging from 1 to 6.

In Figure 18, we plot the speed up between running on 1
processor and 𝑑𝑑 processors. We can observe that doubling
the number of processors does not lead to doubling the
speed up, the multiprocessing seems less effective in our
case. Because of the necessity of having disjoint clusters the
number of iteration is not exactly divided by two when the
number of processors is doubled. Indeed it is harder for the
algorithm to produce groups of 4 disjoints 𝑠𝑠-sized clusters
(needed to optimise on 4 CPUs) than groups of 2 (needed to
optimise on 2 CPUs). This could be a reason behind the loss
in speed up when using multiprocessing.

Figure 16: Histogram showing the evolution of the
distribution of deviations in the mesh through successive
optimization processes. The deviation limits used are, in
order, 0.4, 0.3 and 0.1. In red is the most optimized state;

0.6

0.5

0.4

0.3

0.2

0.1

Pr
op

or
tio

n
of

 fa
ce

s

Deviation from orthogonality

Figure 17: 3D plot showing in green the topographic
surface of the mesh (approximated using 2D splines).
The blue and red dots are the nodes of the mesh lying on
this surface, respectively at the initial and final state.

Initial State
Optimized State

Topo

Figure 18: Plot showing the speed up with respect to the
number of processors used. The speed up is defined as
the ratio between the initial running time (with 1 CPU)
and the ‘new’ running time (with n CPUs).

Proceedings 40th New Zealand Geothermal Workshop

14-16 November 2018
Taupō, New Zealand

3.2.2 Mesh size

In this test, we have used multiprocessing on 3 CPU for each
runs and the same clustering logic we used in 3.2.1. The
mesh size ranges from a 100 to 100000 nodes. We can
observe in Figure 19, that the running time is not linearly
correlated to the mesh size; In fact the running time seems to
be increasing quasi-exponentially with respect to the number
of nodes in our system. We still obtain an optimisation of a
100000 nodes mesh in just under four hours which is
encouraging since we wanted this algorithm to be applicable
to full size grids.

3.2.3 Cluster size

Finally, we ran some optimisations on three models
(respectively 650, 1733 and 6871 nodes) while modifying
the cluster size used (Figure 20). We can observe that all
three meshes present the same behaviour. Decreasing cluster
size does not always result in a faster optimisation. Each
grid present an optimal run time for a cluster size between
0.5 and 1.5% of the mesh size. Extremely small cluster sizes
not yielding the best results arises because the amount of
time spent launching all the parallel processes is much larger
than the time solving the minimisation problem.

3.3 Optimisation of a full size TVZ like mesh

This final section demonstrates application of the
optimisation algorithm on an extremely large grid. We use a
grid containing more than one million blocks (Figure 21).
The 160km x 80km x 8km mesh covers the entire TVZ
region from the Lake Taupō to the Bay of Plenty coast. We
use Google Maps to build the real topographic surface of the
region for our mesh. The basement contact is also
approximated by 4 NE normal faults that delimit five blocks.

In Figure 22, we can see that the proportion of faces
presenting less than a 0.1 deviation from orthogonality has
been increased by 45%. In that case we can see that the first
two runs of optimisation did not lead to much improvement
within our grid. However, if the optimisation was to be run
directly for a deviation limit of 0.1 the quality gain would be
diminished.

In terms of running time, the first two rounds of optimisation
took 2.5 hours, while the final took 16h. Thus, it is
reasonable to expect optimisation of production-sized
meshes in less than 24 hours. Furthermore, mesh
optimisation needs only be performed once, after which any
number of flow simulations can be performed.

4. CONCLUSIONS
We present a parallelised optimisation algorithm that can
improve grid block orthogonality in a one million block
mesh in less than 24 hours. Our algorithm respects and
preserves various complex geometries, including plane
boundaries, complex surfaces and boundary intersections.
We have investigated how algorithm performance is
improved for several optimisation parameters. In the future,
we will improve the algorithm by introducing new types of
geometric constraints, including intersection between two
complex surfaces and arbitrarily oriented planes. We will
also perform flow simulations to quantify the improved
accuracy due to mesh optimisation.

Figure 19: Running time vs. mesh size.

Figure 20: Running time vs. cluster size, for several mesh
sizes of meshes (650, 1733, 6871 nodes).

Figure 21: Overview of the TVZ mesh in Paraview. The
coloring is used only to distinguish the different region of
the mesh. The close up shows a better view of the
structure around the faults.

SSE NNW

Lake Taupo Kaimanawa
Forest Park

Figure 22: Histogram showing mesh deviations change
after successive optimization passes. The deviation limits
used are, in order, 0.4, 0.3 and 0.1. In red is the most
optimized state; in blue the initial state.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Pr
op

or
tio

n
of

 fa
ce

s

Optimisation result of a 174669 node mesh

0.6 0.8 1.00.40.20.0
Deviation from orthogonality

0.0

Proceedings 40th New Zealand Geothermal Workshop

14-16 November 2018
Taupō, New Zealand

REFERENCES
Croucher, A. E., and M. J. O’Sullivan. Approaches to local

grid refinement in TOUGH2 models. Proceedings of
the 35th New Zealand Geothermal Workshop, Rotorua,
(2013).

Escobar, J. M., E. Rodrıguez, R. Montenegro, G. Montero,
and J. M. González-Yuste. Simultaneous Untangling
and Smoothing of Tetrahedral Meshes. Computer
Methods in Applied Mechanics and Engineering 192,
2775–2787 (2003).

Geuzaine, C., and J.-F. Remacle. Gmsh: A 3-D Finite
Element Mesh Generator with Built-in Pre- and Post-
Processing Facilities. International Journal for
Numerical Methods in Engineering 79, 1309–1331
(2009).

He, B., O. Ghattas, and J. F. Antaki. Computational
Strategies for Shape Optimization of Time–dependent
Navier–Stokes Flows. Engineering Design Research
Center, TR-CMU-CML-97-102, Carnegie Mellon
Univ, (1997).

Pain, C.C., A. P. Umpleby, C. R. E. de Oliveira, and A. J. H.
Goddard. Tetrahedral mesh optimisation and
adaptivity for steady-state and transient finite element
calculations. Computer Methods in Applied
Mechanics and Engineering 190, 3771-3796 (2001).

	2018 NZGW Main Menu
	2018 NZGW Programme
	Author Index
	Sponsors
	OPTIMISING A ONE MILLION BLOCK GRID FOR A TVZ FLOW MODEL
	M. Letourneur1, D. Dempsey1, J. O’Sullivan1, A. Croucher1, M. O’Sullivan1
	ABSTRACT
	The recently developed multiphase geothermal flow simulator, Waiwera, is now able to handle unstructured grids. However, to reduce errors related to the grid, certain quality factors should be optimised. In applying the finite volume method, Waiwera a...
	Several challenges were addressed in developing the optimisation algorithm. First, we require that some nodes should be constrained to move only along boundaries (model edges, topography, faults) so that geometric features honoured by the original mes...
	Second, we aimed to minimise the running time of the algorithm so that the approach is practical for full-sized meshes (up to one million blocks). This included implementing and passing analytical Jacobians to the optimiser, and the use of multiproces...
	In this paper, we present the algorithm details, several test cases, and a challenge mesh: a one million block grid of the TVZ, with realistic topography, and approximate faults and basement contact.
	1. Introduction
	2. METHODS
	2.1 Formulating the optimisation problem

	3. results and performance
	4. CONCLUSIONS
	REFERENCES

