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ABSTRACT 
The recently developed multiphase geothermal flow 
simulator, Waiwera, is now able to handle unstructured 
grids. However, to reduce errors related to the grid, certain 
quality factors should be optimised. In applying the finite 
volume method, Waiwera assumes that for each pair of 
neighbouring tetrahedral cells the line connecting their 
centroids is perfectly orthogonal to their shared interface. 
Any deviation from orthogonality will introduce an error in 
the flow simulation. Our work aims to optimize a given grid 
so as to minimise departures from orthogonality as much as 
possible. Our algorithm is written in Python. It uses the 
MeshIO library to read and write various formats of mesh 
files, and the SciPy library for optimisation algorithms. Our 
approach is to minimise the sum of all deviations from 
orthogonality within the mesh. The inputs are the node 
coordinates and connectivity and any surface constraints 
(e.g., model boundaries, faults). Then, our algorithm moves 
the nodes around in space in an attempt to minimise 
deviations from orthogonality. 
Several challenges were addressed in developing the 
optimisation algorithm. First, we require that some nodes 
should be constrained to move only along boundaries 
(model edges, topography, faults) so that geometric features 
honoured by the original mesh are not altered. This reduces 
a node’s degrees of freedom from 3 – the number of 
coordinate directions - to (3 – n), where n is the number of 
boundaries the node lies on. As a result, the algorithm can 
handle plane and complex boundaries (including faults and 
topography), intersections between planes and between a 
plane and a complex surface. 
Second, we aimed to minimise the running time of the 
algorithm so that the approach is practical for full-sized 
meshes (up to one million blocks). This included 
implementing and passing analytical Jacobians to the 
optimiser, and the use of multiprocessing to subdivide and 
parallelise optimisation of mesh subsections. The mesh is 
divided into m sets of disjoint (non-overlapping, non-
adjacent) node clusters, where 𝒎𝒎 is the number of parallel 
processors, and each cluster contains 𝒌𝒌 nodes. The 
coordinates of the 𝒌𝒌 nodes are optimised and updated before 
a new set of 𝒎𝒎 disjoint clusters are chosen. Calibrating 
tolerance parameters carefully, we are able to achieve 
convergence of an optimal mesh in less than 10 iterations 
(for a 104 node mesh we have achieved optimisation in just 
over 90 seconds). 
In this paper, we present the algorithm details, several test 
cases, and a challenge mesh: a one million block grid of the 
TVZ, with realistic topography, and approximate faults and 
basement contact. 
 

1. INTRODUCTION  
Multiphase geothermal flow simulators such as TOUGH2 
and Waiwera allow for simulations to be run on unstructured 
grids. This allows the user to import tetrahedral grids, which 
are able to capture with more precision complex geological 
features, such as topographic surfaces, faults and lithological 
contacts, than a structured hexahedral grid. To ensure 
accuracy in the calculations, it is useful to optimize for some 
quality factors of the grid. When Waiwera applies the finite 
volume method it assumes that for any pair of neighbouring 
tetrahedra the line connecting their centroids is orthogonal to 
the shared face (Croucher and O’Sullivan, 2013). Therefore, 
if the grid is not optimized in this respect, a divergence 
between the calculated and theoretical flow directions will 
occur (Figure 1). 

 

 

Figure 1: Two cases of connection-interface 
orthogonality in 2D. (top) A pair of blocks in which the 
connector between centroids, line c1-c2, is orthogonal to 
the shared interface, 2-3. (bottom) An instance of non-
orthogonality for the same interface. Optimisation 
could improve the mesh by moving nodes 1 and 4 in the 
bottom configuration to the positions in the top. 

c1 

c2 

I2 3 

1 

2 

4 

T1 

T2 

θ2 

c1 

c2 

I1 

1 

2 
3 

4 

T1 

T2 

θ1 

mailto:author_email@email.com


 

 
Proceedings 40th New Zealand Geothermal Workshop 

14-16 November 2018 
Taupō, New Zealand 

Unstructured meshing software such as GMSH already 
apply an optimisation after triangulating the mesh. These 
software optimize the grid with respect to the aspect ratio 
(angles, sides, length ratio) but not with respect to 
connection-interface orthogonality. This is because grids 
built by this software are intended for use within a simulator 
that applies the finite element method (Geuzaine and 
Remacle, 2009). Requirements are different for the finite 
volume method. Therefore, it was necessary to develop our 
own optimisation algorithm. Similar problems have been 
solved in the past for finite element grid optimisation (Pain 
et al., 2001) and tetrahedral grid smoothing (Escobar et al., 
2003). The main strategy used is the minimisation of an 
objective function. Although our quality factors are 
different, we can apply a similar optimisation approach in 
our algorithm. 

2. METHODS 
In this section, we describe the main features of our 
optimisation algorithm. We will first present the general 
components found in most optimisation problems. Then, we 
will focus on the profiling methods specific to our problem.  

2.1 Formulating the optimisation problem 
2.1.1 Objective function 

Our approach to optimisation is to minimise the deviation 
from orthogonality for all connections in the grid. To 
achieve this, we investigated a class of quality metrics call 
p-norms: 

𝑓𝑓 = �� |𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖|𝑝𝑝
𝑖𝑖

�

1
𝑝𝑝

. 

These allow us to vary the relative weight of the poorest 
connections, directing the optimisation algorithm to focus on 
these, e.g.: 

lim
𝑝𝑝→∞

𝑓𝑓 = max(|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|) . 

Our findings suggested that 𝑝𝑝 = 1 was optimal in terms of 
overall grid quality and algorithm running time. The same 
conclusions were drawn in the work of Escobar et al. 
(2003). Therefore the objective function was reduced to the 
simple sum of all deviations. 

To compute the deviation, we take the cross product of two 
vectors, 𝐮𝐮 and 𝐯𝐯, defining edges of a triangular interface, 
which yields the interface normal, 𝐧𝐧 (Figure 2). We then 
take the dot product of the normal and a vector, 𝐰𝐰, 
connecting the two block centroids (Figure 2), which gives 
the cosine of the angular deviation, 𝜙𝜙, from orthogonality 
𝜀𝜀 = 𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯). Finally, the deviation is computed 1 − |𝜀𝜀|, 
which is zero (a minimum) for an orthogonal connection. 

2.1.2 Degrees of freedom 

In Figure 3, we can see how the degrees of freedom in 
displacing a node varies with its position in the mesh: 

• Node 6, lies within the volume of our model, and is not 
on an internal surface. It can move freely in 𝑥𝑥 and 𝑦𝑦 
directions (and 𝑧𝑧 if this was a 3D mesh). It has a degree 
of freedom of two which means that both its 
coordinates can be modified during optimisation 

• Node 5, lies on an external boundary. In this case, the 
node can only displace in the 𝑦𝑦 direction, otherwise the 
model domain would change. It has a degree of 
freedom of one. 

• Nodes 1-4 are fixed during the optimisation, they have 
0 degrees of freedom. 

In 3D, a node on a boundary surface will have one of its 
coordinates fixed depending on the value of the other two. 
Thus, one task of our algorithm is to determine mathematical 
expressions linking the dependent coordinates to the free 
ones for arbitrary surfaces. For nodes on plane surfaces, we 
use an equation of the form: 𝑑𝑑𝑥𝑥 + 𝑏𝑏𝑦𝑦 + 𝑐𝑐𝑧𝑧 + 𝑑𝑑 = 0, where 

𝑑𝑑, 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 are determined by points on the plane. 

The intersection of two planes gives a line whose equation 
can also be easily accessed by solving the equation system 
formed by the two plane equations. 

Although many models are exclusively bounded by plane 
surfaces, others can include complex surfaces such as a 
topographic upper layer. Degree of freedom reduction on 
such surfaces is more complex to describe. Our approach is 
to describe the complex surface using 2D splines, as these 
ensure both a continuous surface and continuous derivatives 

 

Figure 2: System of two neighbouring tetrahedra. The 
centroids of the tetrahedron (1235) and (1234) are 
respectively c1 and c2. 
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Figure 3: 2D triangular mesh showing in red the degree 
of freedom of each node as well as its possible direction 
of displacement. 
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at spline boundaries. A 2D example of curve fitting using 
splines is showed in Figure 4. 

Our algorithm is also able to handle the case of a plane 
intersecting a complex surface, such as might occur at the 
surface expression of a fault. When a complex interface 
intersects a plane it yields a curve that lies on the plane. This 
curve can be described using splines in the coordinate 
system (𝑤𝑤, 𝑑𝑑) which is specific to the plane. The simplest 
case is if the plane is either vertical or horizontal, in which 
case the coordinate system (𝑤𝑤, 𝑑𝑑) becomes respectively 
(𝑥𝑥, 𝑧𝑧)or (𝑦𝑦, 𝑧𝑧) and (𝑥𝑥,𝑦𝑦), in that case no projections are 
needed to transform from one coordinate basis to another 
and the curve resulting from the intersection can be 
described in our (𝑥𝑥,𝑦𝑦, 𝑧𝑧) space. In other cases, a more 
complex projection is required to transform from (𝑤𝑤, 𝑑𝑑) to 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) coordinates. 

Figure 5 shows a more complex example, considering an 
inclined plane, P(𝑥𝑥,𝑦𝑦, 𝑧𝑧):𝑦𝑦 –  𝑧𝑧 =  0, and a complex surface 
CS(𝑥𝑥,𝑦𝑦, 𝑧𝑧). The intersection, represented by the red nodes, 
is the curve I which is expressed with respect to the space 
(𝑤𝑤, 𝑑𝑑) specific to the plane P (Figure 5). In this case, the 
axes 𝑤𝑤 and 𝑑𝑑 are coincident. The axis 𝑤𝑤, on the other hand, 
has a more complex relationship with the (𝑥𝑥,𝑦𝑦, 𝑧𝑧) space. 
Using the dip of the plane 𝜃𝜃, we can express 𝑤𝑤 as: 

𝑤𝑤 = 𝑦𝑦 cos(𝜃𝜃) +  𝑧𝑧 sin(𝜃𝜃). 

In that case any nodes on I(𝑤𝑤, 𝑥𝑥) will have a degree of 
freedom of 1. Any displacement along 𝑥𝑥 will give a new 
value of 𝑤𝑤. This value of 𝑤𝑤 can then be translated into the 
corresponding values of 𝑦𝑦 and 𝑧𝑧 using both the equation of P 

and the relation of 𝑤𝑤 with respect to 𝑦𝑦 and 𝑧𝑧. 

2.1.3 Optimisation algorithm 

As our goal in optimising the mesh was to minimise an 
objective function of orthogonality deviations we elected to 
use the function minimize from the SciPy python library. 
This function offers various minimisation methods. We 
decided to use the Sequential Least Square Programming 
algorithm because it enables the user to provide the Jacobian 
of the objective function as well as constraints on the 
variables. The algorithm is also capable of approximating 
the Jacobian using the finite difference method to obtain the 

partial derivatives of the function. 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

≈ lim
ℎ→0

𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥 − ℎ)
2ℎ  

However, using this method greatly increases the number of 
calls to the objective function. For small problems this is not 
an issue but when the number of variable gets higher (i.e. 
when working with larger meshes) then the running time 
increases exponentially (Figure 6). 

One way to address this problem is to provide the analytical 
expression of the Jacobian to the minimisation algorithm. 

Let’s take a variable, 𝑑𝑑𝑖𝑖 of our system which is a free 
coordinate of the node 𝑑𝑑𝑖𝑖. The objective function 𝑓𝑓 is the 
sum of the deviations, 1 − |𝜀𝜀|. Note that all deviations are 
independent to each other. Then, the partial derivative of 
𝑓𝑓with respect to 𝑑𝑑𝑖𝑖is: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑𝑖𝑖

= �
𝜕𝜕𝑓𝑓

𝜕𝜕1 − |𝜀𝜀|𝑗𝑗
𝜕𝜕1 − |𝜀𝜀𝑗𝑗|
𝜕𝜕𝑑𝑑𝑖𝑖𝑗𝑗

. 

Where 𝜕𝜕𝜕𝜕
𝜕𝜕1−|𝜀𝜀|𝑗𝑗

= 1, since all deviations have the same 

weight. 

Then, we can write that: 

𝜕𝜕1 − |𝜀𝜀𝑗𝑗|
𝜕𝜕𝑑𝑑𝑖𝑖

=
𝜕𝜕1− |𝜀𝜀𝑗𝑗|
𝜕𝜕𝜀𝜀𝑗𝑗

𝜕𝜕𝜀𝜀𝑗𝑗
𝜕𝜕𝑑𝑑𝑖𝑖

. 

 

Figure 4: 2D dataset of 5 nodes fitted using splines. 
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Figure 5: 3D plot of a plane, P, in blue, a complex 
surface, CS, in green and their intersection, I, as red 
dots. 
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Figure 6: Running times vs. mesh size when computing 
the Jacobian either analytically (orange) or using the 
finite difference method (blue markers). 
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Where, 𝜕𝜕1−|𝜀𝜀𝑗𝑗|
𝜕𝜕𝜀𝜀𝑗𝑗

= �
−1, 𝜀𝜀𝑗𝑗 ≥ 0 

1, 𝜀𝜀𝑗𝑗 < 0 . 

Finally using the expression for 𝜀𝜀 we defined in Section 
2.1.1, we can write that: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑑𝑑𝑖𝑖

= �−𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑(𝜀𝜀𝑗𝑗)
𝜕𝜕(𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯))𝑗𝑗

𝜕𝜕𝑑𝑑𝑖𝑖𝑗𝑗

. 

The partial derivative of 𝜀𝜀 with respect to 𝑑𝑑𝑖𝑖 depends on the 
degree of freedom, 𝜈𝜈, of the node 𝑑𝑑𝑖𝑖. We can highlight this 
dependency using the 3 following cases: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑 𝑑𝑑.  𝜈𝜈 = 3: 𝑑𝑑𝑖𝑖 �

𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖

𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯�

𝜕𝜕𝜀𝜀
𝜕𝜕𝑑𝑑𝑖𝑖

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑖𝑖

𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑 𝑏𝑏.  𝜈𝜈 = 2: 𝑑𝑑𝑖𝑖 �
𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑖𝑖
𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖)

𝑧𝑧𝑖𝑖

𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯�

𝜕𝜕𝜀𝜀
𝜕𝜕𝑑𝑑𝑖𝑖

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜀𝜀
𝜕𝜕𝑦𝑦𝑖𝑖

𝑐𝑐𝑑𝑑𝑠𝑠𝑑𝑑 𝑐𝑐. 𝜈𝜈 = 1: 𝑑𝑑𝑖𝑖 �
𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑖𝑖
𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑧𝑧𝑖𝑖(𝑥𝑥𝑖𝑖)

 
𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯�

𝜕𝜕𝜀𝜀
𝜕𝜕𝑑𝑑𝑖𝑖

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜀𝜀
𝜕𝜕𝑦𝑦𝑖𝑖

+
𝜕𝜕𝑧𝑧𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝜀𝜀
𝜕𝜕𝑧𝑧𝑖𝑖

 

The vectors 𝐰𝐰,𝐮𝐮 and 𝐯𝐯 depends on the coordinates of the 5 
nodes forming the system of two neighbouring tetrahedra. 
Their partial derivatives with respect to each coordinates can 
then be computed. It is possible to calculate the partial 
derivatives of a coordinate with respect to another using the 
relations between the coordinates we determined in Section 
2.2.2. 

2.1.4 Constraints 

The next issue we tackled was determining if constraints 
needed to be applied to the system to maintain a valid mesh 
during optimisation. Indeed if a node crosses an interface 
during the optimisation process then the blocks related to 
that node will either be flipped or crossed. In that case the 
mesh is corrupted and can no longer be used for flow 
simulations. One way to avoid corruption is to control the 
sign of the oriented volume of a block (He et al., 1997). 

In the Figure 8, we show two theoretical solutions 
originating from the optimisation process of an initial mesh. 
In the first instance, optimisation results in node 6 being 
repositioned within the boundary of the model and, thus, 
there is no change to any signs of the triangles’ oriented 
volumes. In the second instance, node 6 is moved through 
the interface [2,3]. In that case, we can see that the triangles 
(126),(156),(456),(463) are now overlapping the triangle 
(236) rendering the mesh unusable for simulation. At the 
same time, the sign of the oriented volume of those triangles 
changed. Therefore, it would have been possible to avoid 

this situation by checking at each iteration if the sign of the 
oriented volumes were still equal to the initial sign. This can 
easily be implemented in our algorithm since the minimising 
function we use allows for constraint inputs on the variables. 
Since the oriented volume 𝑉𝑉 of a given tetrahedron (1234) 
(Figure 7) is given by the formula:  

𝑉𝑉 =  
𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯)

6
 

Then the constraints for a block (1234) would have the 
following form, 𝑉𝑉0 being the initial oriented volume: 

�𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯) < 0, 𝑑𝑑𝑓𝑓 𝑉𝑉0 < 0
𝐰𝐰 ⋅ (𝐮𝐮 × 𝐯𝐯) > 0, 𝑑𝑑𝑓𝑓 𝑉𝑉0 > 0 

 

Figure 7: Tetrahedron (1234), in red are the vectors 
used to compute its oriented volume. 
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Figure 8: (top) Initial 2D mesh. (middle) Optimisation 
resulting in a mesh with improved orthogonality. 
(bottom) Optimisation resulting in a corrupted mesh.  
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However, in our investigations so far, node displacements 
have generally been small enough (compared to the size of 
the blocks) that volume sign changes are rare. Moreover, the 
implementation of those constraints is extremely expensive 
in terms of optimisation running time. Therefore it was 
decided to run the optimisation without applying any 
constraints on our system. 

2.2 Optimisation strategies 

The main issue that was encountered in the early stages of 
the algorithm’s development was the dramatic increase of 
the running time with the increase of mesh size. Several 
methods were tested to address this issue and make the 
algorithm usable for reasonable grid sizes (up to 1 million 
blocks). 

2.2.1 Mesh clustering 

The first strategy was division of the mesh into clusters of 
nodes, which were optimised independently, holding the 
other nodes fixed. Using this strategy, we found that it is 
faster to optimize, say, 10 clusters of 100 nodes each than 
directly optimizing an entire 1000 node mesh. In our 
algorithm, different clustering strategies were tested. 

The easiest, but least effective, strategy is random clustering 
(Figure 9). The user gives the algorithm a desired cluster 
size, 𝑠𝑠, and then the algorithm distributes the nodes 
randomly into 𝑑𝑑 clusters of maximal size 𝑠𝑠. 

The second approach was to target nodes with large 
deviations from orthogonality. For example, in the system 
shown in Figure 10, some nodes (yellow) are associated 
with connections with small or no deviation. Thus, these 
nodes would be ignored (fixed) during optimisation. The 
remaining nodes are randomly distributed into 𝑑𝑑 clusters of 
maximal size 𝑠𝑠. This algorithm does require a specified limit 
at which a deviation is considered sufficiently bad for 
optimisation to proceed. The advantage is that nodes that 
would be unlikely to be displaced during optimisation can be 
ignored, and computational effort can be concentrated on the 
bad regions of the mesh. 

2.2.2 Optimisation in parallel 

We also investigated reductions in running time of the 
algorithm through implementation of multiprocessing. The 
basic approach is to optimize multiple clusters of the mesh 
in parallel. For this to work, clusters could no longer be 
randomly formed. For instance, if two clusters contain nodes 
that are connected to each other, then their optimisations are 
no longer independent. The key was to create groups of 
disjoint clusters (the size of the groups depending on the 
number of clusters the user wishes to optimize 
simultaneously). Two clusters are considered disjoint if they 
contain no neighbouring nodes. 

 

Figure 9: Example of random clustering of a 2D 
triangular mesh. The desired cluster size is 4. 
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Figure 10: Example of clustering while targeting large 
deviations. The red dots are the triangles’ centroids. The 
lowest and highest deviations are represented. 
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Figure 11: Example of a disjoint clustering of a 2D 
triangular mesh. The clusters 2 and 3 are disjoints. 
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Figure 12: Result of the first round of optimisation. 
Clusters 2 and 3 are optimised without displacing the 
nodes from cluster 1. 
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Figure 11 shows the creation of three clusters such that 
clusters 2 and 3 are disjoints and can be optimized in 
parallel. Cluster 1 is not so it has to be optimized during a 
subsequent round of optimisation. 

The result of the first round of optimisation would give the 
result shown in Figure 12. The nodes from cluster 1 are left 
unchanged. Clusters 2 and 3 were optimized in parallel 
successfully. 

In the algorithm we build the clusters in two steps. First, we 
construct 𝑑𝑑 clusters of size 𝑠𝑠 using the KMeans function of 
the SciKit library. The K-means method aims at building 
clusters while minimising their inertia. In our case the inertia 
of a cluster is defined as the sum of the distance from a 
cluster’s node to the cluster’s centroid. Therefore the K-
means method will try to divide our mesh into clusters of 
neighbouring nodes. 

The second step of our clustering method is to distribute 
those clusters among 𝑚𝑚 subgroups of size 𝑘𝑘 where 𝑘𝑘 is the 
number of CPUs the user whishes to use. All clusters in one 
subgroup must abide to our definition of disjoint. 

In practice we use a combination of targeting high 
deviations nodes and disjoint clustering to be able to apply 
multiprocessing while reducing the number of variables in 
our system. That way we obtain the best possible running 
times. 

3. RESULTS AND PERFORMANCE 
In this section, we demonstrate and benchmark the 
optimisation algorithm on a range of small test problems. 
We then apply the method to optimise a production-scale 
problem: a million block grid of the Taupō Volcanic Zone 
(TVZ). 

3.1 Test problems 

3.1.1 Simple 3D problem 

The first mesh is a simple cube with 15 nodes, one on each 
vertex, one on each faces, and one in the volume. In the 
initial state, all face nodes are placed away from the centre 
and the volume node is placed away from the centroid of the 
cube. After optimisation, we should expect the nodes on 
each face and in the volume to be located at their respective 
centres.  

Figure 13 shows that the optimised mesh has minimal 
deviation from orthogonality. Furthermore, the boundaries 
have not been deformed, indicating that the degree of 
freedom reduction has been computed successfully (Figure 
14). 

 
3.1.2 Internal boundaries and complex topography 

The second mesh is more complex (Figure 15). It has two 
internal horizontal boundaries that act as lithological 
contacts located respectively at a depth of 600m and 1800m. 
The model also has a complex surface that represents 
topography. In total the mesh comprises 650 nodes. 

The mesh is optimized using the “disjoint/bad nodes” 
clustering technique. Three optimisation runs are performed 
for deviation thresholds of 0.4, 0.3 and 0.1. We can see in 
the Figure 16 that the number of faces showing perfect 
orthogonality has been increased by 20% after applying our 
optimisation process. 

 

Figure 13: Histogram showing the distribution of 
deviations in the mesh. The initial state is in blue and 
the optimized configuration is in orange. 
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Figure 14: Two screenshots from Paraview. The blue 
and red wireframes represent respectively the initial 
and optimised states. The top one is a general view of 
the cube; the bottom one is a section by the plane –x-
y=0. 

 

Figure 15: Overview of the mesh in GMSH.  
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In Figure 17, we plot the nodes lying on the topographic 
surface, coloured blue or red representing respectively the 
initial and final state of the system. All nodes remained on 
the surface during optimisation process. Furthermore, nodes 
along the edge of the surface remain on the curve defining 
this edge. These results demonstrate optimisation 
constrained to complex surfaces as well as the intersection 
between planes and complex surfaces can be handled 
correctly by the algorithm. 

3.1.3 Sequential optimisation 

Using the clustering strategy, it is possible to perform 
successive optimisations on a mesh, targeting populations of 
nodes with progressively smaller deviations each. We have 
found that three successive runs with decreasing deviation 
threshold yields the best results.  

It is notable that different results can be obtained when 
optimizing the same mesh using different clustering settings. 
This highlights the existence of local minima for our 
objective function. 

After optimisation, there still remain a significant proportion 
of non-optimal connections. This may indicate an inherent 

limitation of tetrahedral elements to both capture geometric 
complexity while achieving element orthogonality. In future 
work, optimisation of unstructured hexahedral elements may 
be necessary to ensure sufficient degrees of freedom. 

To improve our chances at finding a global minimum, we 
have explored the use of genetic algorithms. This works by 
generating 𝑁𝑁 child meshes whose nodes are randomly 
perturbed from a common parent. Then optimisation 
proceeds for all children and only the best result is kept, to 
generate further children. However, in our tests, this strategy 
did not sufficiently improve the objective function to justify 
the additional computational expense. A more efficient way 
to improve quality of the minimum was the sequential 
optimisation discussed earlier. 

3.2 Performance tests 

A series of meshes with the same geometry but different 
numbers of nodes were created to assess performance and 
scaling. The geometry of the meshes is similar to the one 
described in Section 3.1.2 with the exception that the 
topographic surface was replaced by a horizontal plane at 
𝑧𝑧 =  0. The original meshes were constructed using GMSH. 

3.2.1 Multiprocessing 

In this test we ran some optimisation on a 6871 nodes mesh, 
using a cluster size of 1% of the mesh size and a number of 
processors ranging from 1 to 6. 

In Figure 18, we plot the speed up between running on 1 
processor and 𝑑𝑑 processors. We can observe that doubling 
the number of processors does not lead to doubling the 
speed up, the multiprocessing seems less effective in our 
case. Because of the necessity of having disjoint clusters the 
number of iteration is not exactly divided by two when the 
number of processors is doubled. Indeed it is harder for the 
algorithm to produce groups of 4 disjoints 𝑠𝑠-sized clusters 
(needed to optimise on 4 CPUs) than groups of 2 (needed to 
optimise on 2 CPUs). This could be a reason behind the loss 
in speed up when using multiprocessing. 

  

 

Figure 16: Histogram showing the evolution of the 
distribution of deviations in the mesh through successive 
optimization processes. The deviation limits used are, in 
order, 0.4, 0.3 and 0.1. In red is the most optimized state; 
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Figure 17: 3D plot showing in green the topographic 
surface of the mesh (approximated using 2D splines). 
The blue and red dots are the nodes of the mesh lying on 
this surface, respectively at the initial and final state. 
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Figure 18: Plot showing the speed up with respect to the 
number of processors used. The speed up is defined as 
the ratio between the initial running time (with 1 CPU) 
and the ‘new’ running time (with n CPUs). 
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3.2.2 Mesh size 

In this test, we have used multiprocessing on 3 CPU for each 
runs and the same clustering logic we used in 3.2.1. The 
mesh size ranges from a 100 to 100000 nodes. We can 
observe in Figure 19, that the running time is not linearly 
correlated to the mesh size; In fact the running time seems to 
be increasing quasi-exponentially with respect to the number 
of nodes in our system. We still obtain an optimisation of a 
100000 nodes mesh in just under four hours which is 
encouraging since we wanted this algorithm to be applicable 
to full size grids. 

3.2.3 Cluster size 

Finally, we ran some optimisations on three models 
(respectively 650, 1733 and 6871 nodes) while modifying 
the cluster size used (Figure 20). We can observe that all 
three meshes present the same behaviour. Decreasing cluster 
size does not always result in a faster optimisation. Each 
grid present an optimal run time for a cluster size between 
0.5 and 1.5% of the mesh size. Extremely small cluster sizes 
not yielding the best results arises because the amount of 
time spent launching all the parallel processes is much larger 
than the time solving the minimisation problem. 

3.3 Optimisation of a full size TVZ like mesh 

This final section demonstrates application of the 
optimisation algorithm on an extremely large grid. We use a 
grid containing more than one million blocks (Figure 21). 
The 160km x 80km x 8km mesh covers the entire TVZ 
region from the Lake Taupō to the Bay of Plenty coast. We 
use Google Maps to build the real topographic surface of the 
region for our mesh. The basement contact is also 
approximated by 4 NE normal faults that delimit five blocks. 

In Figure 22, we can see that the proportion of faces 
presenting less than a 0.1 deviation from orthogonality has 
been increased by 45%. In that case we can see that the first 
two runs of optimisation did not lead to much improvement 
within our grid. However, if the optimisation was to be run 
directly for a deviation limit of 0.1 the quality gain would be 
diminished. 

In terms of running time, the first two rounds of optimisation 
took 2.5 hours, while the final took 16h. Thus, it is 
reasonable to expect optimisation of production-sized 
meshes in less than 24 hours. Furthermore, mesh 
optimisation needs only be performed once, after which any 
number of flow simulations can be performed.  

4. CONCLUSIONS 
We present a parallelised optimisation algorithm that can 
improve grid block orthogonality in a one million block 
mesh in less than 24 hours. Our algorithm respects and 
preserves various complex geometries, including plane 
boundaries, complex surfaces and boundary intersections. 
We have investigated how algorithm performance is 
improved for several optimisation parameters. In the future, 
we will improve the algorithm by introducing new types of 
geometric constraints, including intersection between two 
complex surfaces and arbitrarily oriented planes. We will 
also perform flow simulations to quantify the improved 
accuracy due to mesh optimisation. 

 

Figure 19: Running time vs. mesh size. 

 

Figure 20: Running time vs. cluster size, for several mesh 
sizes of meshes (650, 1733, 6871 nodes). 

 

Figure 21: Overview of the TVZ mesh in Paraview. The 
coloring is used only to distinguish the different region of 
the mesh. The close up shows a better view of the 
structure around the faults. 
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Figure 22: Histogram showing mesh deviations change 
after successive optimization passes. The deviation limits 
used are, in order, 0.4, 0.3 and 0.1. In red is the most 
optimized state; in blue the initial state. 
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