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Abstract  
This paper uses a new approach of retro-analysis. Typically policy is informed by 

forward-looking analysis of potential for alternative energy technologies. But 

historical knowledge of energy and processing requirements and greenhouse effects 

is more reliable for engineering evaluation of biofuel production systems. This 

study calculates energy inputs and greenhouse gas emissions for the most efficient 

biomass feedstocks in New Zealand if the policy had been implemented to 

maximize liquid biofuel production in the year 2004/2005. The study uses existing 

processing technologies and agricultural statistics. Bioethanol production is 

calculated from putrescible wastes and starch crops, and biodiesel production from 

rapeseed, tallow, wood and waste paper. Each production system is further 

evaluated using measures of land use, energy input, crop production related to the 

energy product, plus relative measures of efficiency and renewability. The research 

findings are that maximum biofuel production in 2004/2005 would have provided 

only a few per cent of demand, and would not have reduced dependence on foreign 

imported oil or exposure to fuel price rise. Finally, we conclude that demand 

management and efficiency are more effective means of meeting policy objectives.    
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1. Introduction 

Biofuels have gained public interest for more than a decade as potential substitutes 

for gasoline and diesel fuel petroleum. Projections of future biofuel production have 

typically shown a positive outlook (Demirbas, 2008). The two main motivations for 

government support of biofuel development are climate change and transport fuel 

supply security. Policy in numerous countries has provided support for biofuel 

production, often from food crops. The results of these policies are currently a 

matter of discussion, but the policy to support biofuel does not seem to be subject to 

major policy reconsideration, despite questions of un-anticipated impacts on the 

agricultural sector, economics of food supply and the environment (Rathmann, et 

al, 2010).  

Our research question is whether retro-analysis could provide more clarity 

about policy options than forward scenarios. A retro-analysis explores the question, 

“What if a given policy were successfully in place, causing the desired effect at a 

particular point in the past?”.  Rather than developing future scenarios based on 

assumptions, we could use historical data from the past and calculate the 

implications of the policy. It is possible that looking in retrospect could provide 

clarity about policy decisions that future scenarios leave obscured. In this paper, we 

gathered the complete statistical data for New Zealand agriculture food production 

and crop wastes for the year 2004/2005.  We then calculated the possible biofuel 

production for a range of biomass feedstocks and waste streams, and the associated 

reduction in fossil fuel demand as well as the land use and environmental 

implications.   

 New Zealand oil consumption was approximately 151,000 barrels per day in 

2004, 80% of which was used in the transportation sector (BP, 2005). The 
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transportation of goods and mobility of citizens was entirely dependent on 

petroleum-based fuels. The global supply of oil was known to be finite in 2004 

(Campbell, 1992), but demand was anticipated to continue to increase continuously 

through 2030 (IEA, 2004). The concept of peak oil was completely absent from 

New Zealand government policy documents and parliamentary debate in 2004 

(MED, 2007), although a shortfall in supply compared to demand in the world oil 

supply would cause price increases and negative impacts on New Zealand’s 

petroleum-intensive export and tourism-dominated economy over the next five 

years (Hirsch et al., 2005). The government was a signatory to the Kyoto Protocol 

and there was much discussion of reduction of green house gas emissions by 

substituting renewable energy or hydrogen for fossil fuels. In order to be able to 

adapt to changes in the available fuel supply, mitigation options must be initiated 

more than a decade in advance of a fuel supply issue arising (SEF, 2005). Given 

that there was very little concern of an oil supply price rise or supply constraint 

within the next decade at that point in time, it could seem reasonable that full 

utilization of biofuels by 2004 would provide a mitigation measure. Imagining how 

the past decade would have been different if full development of the country’s 

potential biofuel supply was achieved in 2004, should provide useful insight into 

the concept that biofuels improve resilience or reduce green house gas emissions.    

 
1.1 Analysis of Biofuel Energy Balance and Impacts  

Biomass is often considered as a sustainable feedstock for fuels. An economic 

analysis for biofuel supply in New Zealand is difficult to assess by applying 

overseas experience as biofuel production from food crops in other countries is 

supported by government subsidies (Saunders et al., 2009). Our approach was to 

focus on technical and energetic analysis. A famous study by Pementel and Patzek 
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of Stanford University USA (2005), reports that it takes more energy to make a litre 

of ethanol than is provided by the fuel.  On the other hand, a study by the USDA 

reported a positive energy return for ethanol from corn of 1.34 which includes 

credit for energy in by-products and does not include some inputs like irrigation 

pumping energy which is required in some US locations (Shapouri et al., 2002). It 

is clear that a general analysis of a hypothetical biofuel production system could 

have different results, depending on the calculation methodology and consideration 

of associated processes and inputs.  

We previously conducted a study to assess the energy risk to essential 

transportation activity systems, and found that potential indigenous production of 

renewable fuels would not mitigate the exposure to oil price or fuel security if 

world oil supply were to plateau and decline (Dantas et al., 2007). The objective of 

this work was to provide understanding of the different aspects of support for 

biofuels in the government’s energy policy by carrying out quantitative analysis. 

The analysis includes possible feedstock sources, research of known production 

processes, and quantification of the biofuel supply potential for fossil fuel 

substitution. To obtain consistent results, this study used the basic energy input and 

output analysis methodology for each feedstock. This simple approach offers a 

clear and comprehensive picture of the flows of energy and materials through the 

whole production system and gives an objective basis for comparison. We treat the 

production system as a sequence of sub-systems that exchange inputs and outputs. 

This method clearly shows whether more energy is contained in biofuels than the 

energy used in the production. The percentage of green house gas reduction 

(%GHG) from substitution of a given biofuel for either gasoline or diesel was 

calculated using the carbon content of each input component.   
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We were also interested in how much fossil fuel is used to produce a 

renewable fuel, as this fossil input would be at the same shortage risk as all other 

fossil fuelled activities. By using a portion of the biofuel production where 

appropriate in the processing we can quantify the rate of potential renewability of a 

given biofuel delivered to consumers. We explored two concepts of the 

renewability, the ratio of renewable to fossil energy inputs, and the percentage of 

the biofuel output that was produced with renewable energy inputs.  

Finally, we recognise that unlike imported oil, renewable biofuels require 

dedicated use of productive agricultural land. The energy return on land (EROL) 

was calculated for each of the crop feedstocks. The particular economics of 

producing biofuel in New Zealand is only known for ethanol from milk whey, as 

this process is currently carried out by the dairy processing corporation, Fonterra. 

As the economic feasibility assessment would be highly speculative, even in 

retrospect, this project focused instead on technical feasibility, energy balance, 

GHG impacts and renewability. 

In general, the results showed a wide variability of energy balance and 

renewability for different feedstocks. Several biomass resources were identified as 

possible feedstock for liquid fuels.  However, even with all of the most promising 

biofuels put into production through waste and crop conversion, the amount of fuel 

and the timing of production were not found to be sufficient to replace a significant 

fraction of fossil fuel.  Thus, even if the New Zealand government had a policy to 

fully develop biofuels from all viable sources in 2004, the country’s economy 

would not have been insulated from the dramatic rise in world oil price which has 

occurred since 2006.  
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2. Methods 

Crops and waste streams from government statics in 2004 for all New Zealand 

agriculture were examined as possible feedstocks for biofuel. The reasoning is that 

farmers were currently growing crops profitably in certain locations with certain 

conditions, so these are the resources that would be diverted to biofuels. Quantities 

of farm inputs, including agrochemicals and fuels for farm machinery, were 

accounted for as were land requirements. Biofuel processing energy requirements 

and yields were taken from published commercial and research references. The 

results were analysed with the conventional Energy Return on Investment (EROI) 

measure used internationally. In addition three new indexes to assess sustainability 

were proposed.  Green house gas (GHG) balance was calculated for each potential 

feedstock. The potential of various biofuels to substitute for fossil fuels was 

examined in the New Zealand context.   

Study boundaries include all the processing from agricultural production of 

feedstock to biofuel manufacture referenced to the energy content (MJ). Local 

transportation energy was not included as it would depend on particular locations of 

processing plants and agricultural production, which cannot be known at this point 

in time. However, we can assume that the existing farm fuel demand would be 

roughly similar whether the crop was going to the biofuel plant rather than the 

canned food factory as there are very few cities in New Zealand where processing 

is done. The transport energy for imported fossil fuel was accounted for in the 

green house gas analysis. Energy inputs, excluding solar energy, were taken into 

account in each process step, distinguishing renewable and non-renewable energy.  
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The characteristics of each feedstock require a specific processing route, and 

the technologies are currently at different stages of development.  Starch feedstock 

such as maize, wheat, barley, oats and potatoes can be processed via yeast 

fermentation followed by distillation and molecular sieve. The common 

esterification process is used for biodiesel production from rapeseed and tallow. 

Lignocellulosic waste is being investigated for bioethanol production by 

Saccharification and Co-Fermentation (SSCF) (Wooley et al., 1999; Ballesteros et 

al., 2004). The Fischer-Trospsch process is used for biodiesel production from 

wood and paper wastes (Spath and Dayton, 2003). SSCF and Fischer-Tropsch 

processes for biofuels are currently at the research stage so the results for these 

fuels should be taken as indicative only.   

The biofuel energy flow analysis was considered differently for crop and for 

waste feedstock. For crops grown specifically for biofuel, energy and embodied 

energy inputs for farming were included as well as conversion processing. 

Agricultural inputs include fertilizers (N, P, K), insecticides, herbicides, fungicides, 

and growth regulators. Farming energy inputs are associated with mechanisation, 

that is, consumption of fuel by agricultural implements and vehicles for soil 

preparation, planting, weeding, soil amendment and harvesting. Most crops require 

some post-harvest processing such as drying, threshing or cool store for fruit to 

prevent spoilage. For waste feedstock, the agricultural inputs and crop processing 

energy inputs were not counted in the energy balance because they were already 

invested to produce the food or fibre product. The conversion from biomass 

feedstock to liquid fuel product has energy inputs mainly for the fermentation and 

distillation processes. The energy inputs for processing and conversion were based 

on published reports for each feedstock. 
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Greenhouse gas emissions are accounted for fossil fuels consumed. Gases 

taken into account are CO2, N2O and CH4. Balances are made for the fuel after 

ideal combustion as in an engine or boiler. The amount of global GHG emissions 

during gasoline refining and through combustion is taken as 86.5 g eq CO2/MJ of 

gasoline (PWC, 2002). The amount of global GHG emissions during diesel refining 

and through complete combustion is assumed to be 80 g eq CO2/MJ of diesel 

(PWC, 2002). For biofuel, we use a neutral GHG balance between growth and use 

since CO2, the main GHG emitted during the combustion step in the engine, had 

initially been absorbed by the plant from the atmosphere.  

 
3. Biomass Data and Conversion Technology Models 
 
The energy footprint approach for a wide range of possible feedstock crops and 

waste was conducted using New Zealand data from 2005 agricultural production, 

and 2004 fertilizer, inputs, and all other farm-related energy consumption. Relevant 

data from US and European sources was used to model the possible conversion 

processes. 

Fertilisers in various forms are used throughout New Zealand on pasture, 

crops and orchards. The rate of fertilizer application in New Zealand varies 

between regions and territorial authorities. This is the direct result of different soil 

types, geography and land use practices around New Zealand. Among these 

agrochemical products, lime is the most common fertilizer applied to New Zealand 

soils. Fertilizers are manufactured by the chemical industry and require a significant 

amount of non-renewable energy. Given applied rates, fertilizers in New Zealand 

are an essential input for farming in terms of energy. Data from the New Zealand 

statistics website (StatsNZ, 2002) was used for agrichemical use. It provides 
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amounts of fertilizers applied by regions, making no differentiation between each 

crop. Global values of application rate for each fertilizer and each crop were 

calculated by taking into account the regional specificity and the crop 

characteristics. These figures were obtained by taking the average of all regional 

application rates, weighted by crop area for each crop.  

Pesticide, herbicide and fungicide use in New Zealand have been surveyed by 

the Ministry of Agriculture and Forestry (Holland and Rahman, 1999). In this field, 

it is important to have up-dated data, because these products can require, like 

fertilizers, large amounts of energy to manufacture them. The energy required and 

GHG emissions for manufacturing the agrochemicals come from international 

green house gas LCA analysis by the Food and Agriculture Organization of the 

United Nations (FAOSTAT, 2006). Fossil fuel inputs for farming were taken from 

a range of references for corn (Shapouri, 2001), wheat and rapeseed (PWC, 2002), 

and for corn, potatoes, barley and oats (CNCPP, 2006). 

Crop yields for New Zealand in 2005, which are the result of the 2004 inputs, 

in tonnes per unit land area and the land area in production for each crop were taken 

from MAF data (Holland and Rahman, 1999). All data concerning farming crops 

given in a per-tonne basis were converted to a per-hectare basis using the current 

yield in New Zealand (FAOSTAT, 2006). All data concerning tallow for biodiesel 

conversion come from commercial production in New Zealand as reported by Judd 

in a report for the Energy Efficiency and Conservation Authority (EECA) (Judd, 

2002a; Judd, 2002b).  

Nearly 30,000 MJ of wood waste is currently used in New Zealand in the wood 

and pulp production industry for process heat and power generation. In addition, 

waste wood chips, logs and bark are used for boiler fuel and domestic heating 

(StatsNZ, 2007).  We don’t know how much, if any, of the current uses for wood 
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waste would be diverted to liquid fuel production, so have used wood waste 

availability as surveyed by Judd (2002a).  

Energy required for converting a biomass feedstock into a biofuel was taken 

from an international report for all crops used for bioethanol production (S&T, 

2004). The Energy required for industrial conversion process for rapeseed comes 

from the FAOSTAT report (2006). Energy inputs for SSCF and Fischer-Tropsch 

process were sourced from Emert and Katzen (1981) and Judd (2002a) respectively. 

The agricultural waste stream in New Zealand was evaluated for production of 

methane biogas from anaerobic digestion, which would then be a feedstock for the 

F-T liquid fuel process (Thiele, 2005). Bioethanol production from enzymatic 

processes was taken from an American study (Emert and Katzen, 1981). GHG 

emissions and primary energy required for all conventional fuels (natural gas, oil, 

coal) come from the United Nations analysis (PWC, 2002). The transportation step 

from the oil fields in the exporter countries to the refinery in New Zealand was 

taken into account.  

 
4. Analysis  
 
It is well understood that if costs outweigh benefits, then the development is not 

profitable, but can be possible with financial subsidies. In the case of biofuel 

development, the most obvious cost-benefit relationship is between the energy 

investment in production and the energy product. This is expressed as the EROI as 

shown in Eq. 1 below. We propose three other cost-benefit analyses to explore the 

different motivations for biofuel development.   

 
4.1 Energy Returned On Investment (EROI):  

𝐸𝑅𝑂𝐼 = 𝑁𝑒𝑡 𝐵𝑖𝑜𝑓𝑢𝑒𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐸𝑛𝑒𝑟𝑔𝑦
𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐼𝑛𝑝𝑢𝑡 𝐸𝑛𝑒𝑟𝑔𝑦  [MJ]

[MJ]    (1) 
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EROI measures the ratio of the net renewable energy product to the total primary 

energy inputs, irrespective of whether they are renewable and non-renewable. If the 

EROI is greater than one, then the process can produce more energy than it 

requires. Solar energy is excluded from the input primary energy.  

 
4.2  Fossil Energy Fraction (B/F):  

𝐵 𝐹⁄ = 𝐵𝑖𝑜𝑓𝑢𝑒𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐸𝑛𝑒𝑟𝑔𝑦
𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐹𝑜𝑠𝑠𝑖𝑙 𝐸𝑛𝑒𝑟𝑔𝑦  [MJ]

[MJ]
                                                   (2)    

The fossil energy fraction, B/F, is the ratio of the energy in the biofuel product to 

the fossil fuel inputs. If B/F is less than one, then more fossil energy has been 

invested than has been gained in biofuel. The production of biofuel is unproductive 

in this case as resources are used for no gain. If B/F is greater than one, the 

conversion process consumes less fossil energy than the biofuel produced and there 

has been an energetic gain on the fossil investment. However, one should realize 

that this does not mean that atmospheric carbon emissions have necessarily been 

reduced as the fossil fuel has been burned, releasing fossil CO2 in the process.  

With a B/F near unity, there is clearly no benefit to pursuing biofuel production, 

with respect to carbon emissions, as the same carbon would be released by using 

the fossil fuel for transport as for making then using the biofuel. 

4.3  Renewability (Ren):  

Re𝑛 =
𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 − 𝐹𝑜𝑠𝑠𝑖𝑙 𝐼𝑛𝑝𝑢𝑡

𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡
 %                                  (3) 

 

The renewability examines the fossil investment compared to the biofuel 

production. A biofuel may be considered renewable to some degree if Ren is 

positive. In a process relying entirely on fossil input energy, with an EROI near 
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one, the process would have Ren near 0% and the biofuel produced is not 

renewable. In this case, the biofuel is not a fossil energy substitute. By definition, 

non-renewable energy sources have negative values of Ren, with increasing 

negative values as life cycle energy efficiency decreases. For example if a fuel 

shows a Ren of –22%, it means that non-renewable energy required to produce this 

fuel is 22% greater than its final energy content.  On the other hand, if organic 

agriculture and non-fossil energy, such as wood chip fuel for process heat were 

used, then the Ren could be quite large and the biofuel would be more renewable. 

Note that for a biofuel to be truly renewable, there would have to be no fossil 

inputs. This would be a Ren of 100%. 

 
4.4  Energy Returned On Land (EROL):  

𝐸𝑅𝑂𝐿 =
𝐵𝑖𝑜𝑓𝑢𝑒𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 − 𝐹𝑜𝑠𝑠𝑖𝑙 𝐸𝑛𝑒𝑟𝑔𝑦

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑎𝑛𝑑 𝐴𝑟𝑒𝑎
[MJ ha⁄ ]               (4) 

The EROL highlights the net energy, defined by the difference between biofuel 

energy and non-renewable energy required in production, on a hectare-basis, taking 

into account the yield of each crop. This indicator is useful for considering how 

much land is required for biofuel production. 

 

5. Results 
 
Bioethanol from crops, bioethanol from wastes, and biodiesel are discussed 

separately in section 5.1, 5.2 and 5.3. Then, in section 5.4, a number of scenarios 

are considered, and a comparison with current fuel consumption is provided. 

Results were obtained by an interactive Matlab programme which was developed to 

allow exploration of any number of combinations of agricultural choices and waste 

use. The Matlab programme calculates the following values: 
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- The biofuel production for the portion of feedstock converted 

- The non-renewable energy required 

- All policy indicators defined in Section 4 

- GHG emissions (g/MJ biofuel).  

 
5.1 Bioethanol production from crops 
 
The first biofuel examined was ethanol from food crops.  Crops with suitable sugar 

and starch content grown in New Zealand include corn, wheat, oats and potatoes. 

Sugar cane is not a possible crop in New Zealand. Table 1 summarizes the different 

values for bioethanol production from crops.  

 
Table 1: Indicators for bioethanol production from crops 
 

Feedstock EROI B/F Ren 
EROL 

 

GHG 
emissions 

 

% GHG 
reduction  
compared 

with gasoline 
Corn 1.56 1.68 0.40 29.26 37.77 56.34 

Wheat 1.22 1.28 0.22 10.56 44.91 48.08 
Barley 1.09 1.15 0.13 6.45 56.16 35.08 
Oats 0.92 0.97 -0.04 -0.88 74.17 14.25 

Potatoes 1.13 1.20 0.17 13.71 42.32 51.08 
 

All starch crops, except oats, have fossil energy fraction EROI and B/F, greater than 

1. The most efficient crops for biofuel production are corn and wheat with values of 

EROI of 1.56 and 1.22 respectively. For reference, this compares to EROI of 

gasoline fuel from petroleum of at least 10, even for the most energy intensive 

conventional oil fields (Dale et al, 2011). For corn, EROI is high in relation with 

other figures from international reports. Shapouri (2001) gives a value of EROI = 

1.24 is given for corn ethanol in the USA. The difference is due to the hypotheses 

made (taking into account the means of transportation, the distribution step, 

different allocation choices, and current data). For example, authors use a value of 
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corn yield that amounts 7.7 t/ha whereas the 2004 New Zealand corn yield was 10.8 

t/ha.  

The fossil energy fraction, B/F that takes into account only non-renewable 

energies used in the process, was found to be 1.68 and 1.28 for corn and wheat 

respectively. This indicates energy efficient bioethanol production from corn and 

wheat in New Zealand is possible on the basis of energy inputs, but neglecting 

water and other issues. For corn and wheat, Ren was 0.40 and 0.22 respectively. 

For corn and wheat, GHG emissions amount to a reduction of 56% and 48% 

respectively over burning petrol. Potato crops can be also considered an efficient 

feedstock for bioethanol production, with a Ren of 17% and a reduction of GHG 

emissions of 51%. Other starch crops, namely barley and oats have lower ratios B/F 

and EROI, with Ren of -0.04 for oats. A GHG emission reduction of 14% in 

relation to gasoline use is the sole positive aspect for the oat crop. Oats and barley 

have low renewable energy return on fossil investment. Therefore, it would be 

pointless to attempt biofuel production from these grains in New Zealand, even if 

the could be grown at low economic cost.    

EROL is high for crops with significant yield, e.g. EROL = 29,200 MJ/ha/year 

for a corn yield of 10.8 t/ha. This means that 29,200 MJ of net energy per hectare of 

crop cultivated can be produced per year. Potato crops have lower EROI and B/F 

than wheat and have an EROL of 13,710 MJ/ha/year. It is the high yield for 

potatoes (44.2 t/ha) that accounts for this value.  

Energy balances show that industrial biofuel production processes require a 

range of primary energy input as a fraction of biofuel energy produced from 60% 

(for potatoes) to 85% (for corn). Agricultural inputs range from 5% (corn) to 19% 

(oats). Primary fuel energy for farming ranges from 10% (corn) to 30% (potatoes). 

The greatest energy input requirement for bioethanol is processing energy, 
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primarily distillation. Sustainable practices for farming could be focused on 

minimising fertilizer use, as it requires a great amount of manufacturing energy. 

The use of more efficient machinery for farming can also decrease the fossil fuel 

investment.    

GHG emissions follow the same patterns for each crop as the energy 

intensity. The industrial conversion process, including fermentation and distillation, 

contributes to a range from 57% (oats) to 81% (corn) of GHG emissions. N2O 

emitted during nitrogen fertilizer application is not negligible with a range from 3% 

(wheat) to 25% (oats). GHG emissions due to fossil fuel use for farming ranges 

from 1% (cereal crops) to 8% (potatoes).  The conversion processes and N2O 

emitted are responsible, on average, for 72% and 13% of GHG emissions, 

respectively, in the bioethanol production operation. Fossil fuel use for farming is 

not the main contributor to GHG emissions, fertilizer is. 

Figures 1 and 2 show flow diagrams for bioethanol production from corn and 

wheat respectively. These representations allow a quick comparison of different 

processes. For example, wheat requires 4-times more input for farming than corn. 

Therefore, its renewability is lower than corn. In addition, the industrial conversion 

process for wheat requires 11% more energy than corn and the losses are 30% 

greater than for the corn biofuel process. The whole process for corn is thus more 

efficient than the one for wheat.  
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Figure 1: Bioethanol production from corn per year  
    
 

 
 Figure 2: Bioethanol production from wheat per year 
 
 
 
 



 17 

5.2 Results for bioethanol production from wastes 
 
Wood waste has traditionally been used for energy in New Zealand. Whey, a 

byproduct of milk processing is currently converted into ethanol. We also examined 

waste from Kiwi fruit processing. Table 2 summarizes the different indicators 

calculated for each waste feedstock. 

 

Table 2: Indicators for bioethanol production from putrescible wastes. 

Feedstock EROI B/F Ren 

GHG 
emissions 

 

% GHG 
reduction  
in comparison 
with gasoline use 

Paper Waste 2.15 3.45 0.71 20.5 76.3 
Straw 3.36 5.64 0.82 12.2 85.9 
Kiwi waste 0.56 1.79 0.44 39.6 54.2 
Whey 0.75 2.32 0.57 39.6 54.2 
Wood waste 1.92 3.06 0.67 23.2 73.2 

 
 

Waste with low water content, paper and straw, have the best EROI as they do not 

require de-watering energy input. With Ren of 71% for paper and 82% for straw, 

they appear to be candidates for bioethanol production if the technical feasibility at 

a large scale of the SSCF process could have been deployed in 2004. Values of Ren 

are higher than for crops since only energy required for the process is taken into 

account, reasoning that inputs for the non-waste portion of the crop does not 

contribute to the biofuel product. Whey and wood waste have Ren of 57% and 67% 

respectively, and their use could provide reduction of GHG emissions of 54% for 

whey and 73% for wood waste. Kiwi fruit waste has a less favorable Ren of 44% 

due to high drying energy input, and GHG emission reduction of 54%. High 

lignocellulosic content feedstock offers the best opportunities for future bioethanol 

production. For waste feedstock, EROL has not been calculated because the land 

productivity is for the primary food product. 
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Figures 3 and 4 show representative flow diagrams for bioethanol 

production from straw and wood waste respectively. Although the processes can be 

considered efficient from an energetic point of view, losses during processing are 

significant. They are greater than those for fossil fuel refining. On the other hand, 

waste straw or wood must be handled, transported and disposed of, which may 

represent an avoided energy input if the waste is used for fuel.  

High lignocellulosic content improves the renewability of the process but all 

the renewable energetic potential of the feedstock has not been exploited by the 

conversion process. This may have fewer consequences since it does not affect the 

depletion of non-renewable resources.  

 

 
Figure 3: Annual straw bioethanol production.         
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Figure 4: Annual wood waste bioethanol production.  
 
 
 
5.3  Results for biodiesel production  

Tallow and rapeseed are well known feedstocks for biodiesel that are currently 

produced in New Zealand. Again, wood waste is a known energy resource in New 

Zealand, and this analysis used international research into gasification and F-T 

processing to bio-diesel. Table 3 summarizes the different indicators for each 

biodiesel feedstock.  

Energy ratios EROI and B/F are greater for biodiesel processes than 

bioethanol production. Results concerning rapeseed, currently used mainly in 

Europe for biodiesel production, confirm the role that this crop can play as a 

transport fuel. When energy required for farming is taken into account, the rapeseed 

Ren is 53%. Waste resources considered have a good potential with a Ren of 72% 
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for tallow and 86% for wood and paper. Concerning GHG emissions, we find a 

reduction of 85% and 82% for tallow and rapeseed respectively and 89% for wood 

waste and paper.  

 

Table 3: Indicators for biodiesel production  

Feedstock EROI B/F Ren 
GHG emissions 

 

% GHG 
reduction in 

comparison with 
diesel  

Tallow 3.58 3.60 0.72 12.1 84.9 
Rapeseed 2.13 2.14 0.53 14.4 82.0 

Wood 7.21 7.28 0.86 8.9 88.8 
Paper 7.21 7.28 0.86 8.9 88.8 

 
 
 
5.4   Retro-Analysis Scenarios  

Two scenarios for retro-analysis of the most promising biomass feedstocks and 

processes were studied. The most promising crops for biofuel production in New 

Zealand are corn, wheat, barley and potatoes.  For both scenarios we assume that all 

current land area of each crop and all current available waste feedstock are used for 

biofuel processing. Although this hypothesis is unrealistic, it can be relevant to 

study an upper-limit case as a reference. The results are compared to 2004 New 

Zealand consumption of petrol, 113×109 MJ, and diesel, 102.5×109 MJ (Dang, 

2005). In the first scenario, all paper and wood waste feedstock were be used for 

biodiesel conversion, and in the second scenario the lignocellulose resources were 

used for bioethanol conversion. It should be noted that other solid fuels, most likely 

coal, would need to be used to replace the wood waste currently used for boilers 

and power generation.  

Table 4 gives the maximum bioethanol production that could have been 

realised in 2004/2005 if all of the food production for these crops had been diverted 



 21 

to ethanol production. The largest crop yield was barley, but due to the lower 

ethanol yield, the net energy production is lower than for corn. Frozen sweet corn is 

a major export product for New Zealand with markets in over 30 countries, and 

about 75% of the crop (25,000 tonnes) exported earning $50 million NZD (HortNZ, 

2010).  

It is interesting to look at the impact on the national balance of payments for 

2004. The energy density of petrol (gasoline) is 36 MJ/liter, so the net corn ethanol 

energy would have replaced 13 million liters of petrol. The price of petrol rose 

sharply from $1.00/lit in 2003 to $1.50/lit in 2005, with the 2004 average price at 

$1.15/lit, of which $0.52 was taxes and levies. The avoided cost of imported 

finished unleaded petrol in 2004 which would have been provided by corn ethanol 

would have amounted to around $8.2 million NZD. The lost export earnings due to 

production of ethanol from corn would have been $50 million NZD, thus causing a 

negative $41.8 million NZD impact on the balance of payments. The agricultural 

industry would have needed a very large subsidy in order to go into the domestic 

biofuel business instead of the export food business.  

 

Table 4.  Retro-potential bioethanol production from the best crops in 2004. 

Scenario 1 
Bioethanol energy  

(×106 MJ) 
Fossil energy input  

(×106 MJ) 
Net energy 
 (×106 MJ) 

Corn 1170 701 469 
Wheat 1907 1495 412 
Barley 2565 2242 323 

Potatoes 930 775 155 

Total 6572 5213 1359 

 
 

 % of 2004 petrol consumption 1.2% 
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Table 5 gives the ethanol production from the best agricultural wastes. The 

combined ethanol production from food crops and agriculture wastes would have 

provided less than 4% of the petrol demand for the year. Table 6 gives the biodiesel 

production in the first scenario where all of the good food and oil crops for 

producing biodiesel plus the waste wood and waste paper are processed to 

biodiesel. These resources amount to just over 8% of the diesel consumption in 

2004. 

 
 
Table 5. Bioethanol production from best agricultural waste in 2004. 

Scenario 1 
Bioethanol energy  

(×106 MJ) 
Fossil energy input  

(×106 MJ) 
Net energy 
 (×106 MJ) 

Straw 3054 541 2513 
Kiwi 26 15 11 
Whey 342 192 150 

Total 3422 748 2674 

  % of 2004 petrol consumption 2.4% 
 

Table 6. Biodiesel production per year (Scenario 1) 

Scenario 1 
Biodiesel energy  

(×106 MJ) 
Fossil energy input  

(×106 MJ) 
Net energy 
 (×106 MJ) 

Tallow 4267 1184 3083 
Rapeseed 74 35 39 

Wood 6185 849 5336 
Paper 3 0.4 2.6 

Total 10529 2068 8461 

  % of 2004 diesel consumption 8.3% 
 
 

The second scenario maximizes ethanol production by using the waste wood 

and paper together with the other wastes and food crops.  Table 7 gives the waste 

and wood ethanol production, which amounts to 8.6% of New Zealand’s 2004 

petrol demand. Together with the 1.2% from food crops, the maximum ethanol 
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scenario would still not quite provide 10% of petrol demand. Of course, using the 

wood waste for ethanol rather than diesel would reduce the biodiesel production as 

shown tin Table 8 which totals the biodiesel from the rapeseed (canola) crop and 

the rendered fat from meat processing. The biodiesel production in the second 

scenario would provide 3.1% of the country’s diesel demand.  

 

 
Table 7.  Bioethanol production from waste per year (Scenario 2). 

Scenario 2 
Bioethanol energy 

(×106 MJ) 
Fossil energy input 

 (×106 MJ) 
Net energy 
(×106 MJ) 

Paper 2353 683 1670 
Straw 3054 541 2513 
Kiwi 26 14.7 11 
Whey 342 192 150 
Wood 8044 2631 5413 

Total 13819 4062 9757 
  % of 2004 petrol consumption 8.6% 

 
 
Table 8. Biodiesel production per year (Scenario 2). 

Scenario 2 
Biodiesel energy  

(×106 MJ) 
Fossil energy input 

 (×106 MJ) 
Net energy 
 (×106 MJ) 

Tallow 4267 1184 3083 
Rapeseed 74 35 39 

Total 4341 1219 3122 
  % of 2004 diesel consumption 3.1% 

 

 
6. Discussion 

Biofuel production could be possible for certain feedstock sources in New Zealand. 

The retro-analysis gives a good understanding of why, despite high public and 

policy interest, biofuels have not become a major fuel through market forces. The 

export value of the best ethanol feedstock, corn, was more than three times greater 

than the domestic value of the transport fuel product. In 2008 the Labour 
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government instituted a biofuel obligation for the country’s one refinery to source 

and blend an increasing percentage to 2.5% ethanol into the petrol supply by 2012. 

An election in the same year brought in a National party government, which 

eliminated the biofuel obligation as one of the first policy actions. The National 

government discussed the possibility of a tax incentive for producers of biodiesel. 

However at the end of 2012 no subsidy scheme has been enacted for biodiesel, 

although the sale of biodiesel is exempt from the excise tax which is 50.5 cents per 

litre on the 2012 petrol pump price of $2.20 per litre. The state owned enterprise, 

Solid Energy, has built a biodiesel plant which uses oilseed rape grown in the South 

Island. The company estimates that there is sufficient production of the crop to 

produce 4 million liters of biodiesel per year.1  Using an energy density of 35 

MJ/lit, this would represent about 0.1 x106 MJ, a much smaller quantity than our 

retro-analysis for 2004 using all of the canola oil crop.  

The main policy driver for biofuel in New Zealand remains reduction of 

CO2 emissions from transport. New Zealand does not have the historical policy 

driver of becoming free from “dependence on foreign oil” as has been the case in 

the USA since the 1973 OPEC oil embargo.2 This retro-study showed that GHG 

emissions are reduced to some degree in relation to using conventional fossil fuel as 

long as the EROI is substantially greater than one. However, it must be emphasized 

that none of the biofuel systems studied has a renewability of 100%. This means 

that the biofuel production, whatever the process, requires some fossil fuel inputs.  

The retro-analysis method in this paper sheds light on the future possibility of 

biofuel use in New Zealand. The year chosen for the analysis was 2004, just as the 

price of oil on the world market was beginning a price move from the range of $30 

                                                 
1 http://www.biodiesel-nz.co.nz  Accessed Dec 1012 
2 U.S. President Richard Nixon announced Project Independence on Nov 7, 1973. 

http://www.biodiesel-nz.co.nz/
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per barrel to a record high price of $145.29 on July 3, 2008 on the NYMEX 

exchange. The global atmospheric CO2 concentration grew by 2.29% in 2003, and 

by 1.56% in 2004. The Mona Loa monitoring station reported the CO2 

concentration of 377.5 ppm in 2004, while in October 2012 the reading was 391.0 

ppm (NOAA, 2012). The idea is that if we can get a realistic picture of the possible 

realizable benefits which would have been provided by aggressive biofuel policy in 

the past, it could provide some perspective for the potential costs and benefits of 

biofuel development in the future.  

When we consider current consumption of fossil fuel, we can see that even 

the unrealistic case of use of 100% of all crop and waste stocks still amounts to a 

low contribution to addressing the serious issues of high transport fuel demand, 

high transport fuel cost, and growing GHG emissions. The two scenarios, taking 

into account the whole capacity available of each feedstock, show that the 

possibility of a substitution of biofuels for fossil fuels is not realistic.  

The fact that potential biofuel production is small does not mean that 

industrial development will not occur. Economic development of energy resources 

is possible for smaller resources if the economics and technology are applicable. 

Indeed if a new oil field in New Zealand were discovered that could supply 1% of 

New Zealand oil supply, it might be developed depending on a range of factors, and 

the producers could make a profit if production costs were not too high. Our 

analysis does not consider the wider issues of viability of a business venture to 

convert some biomass resource into liquid fuel.  Rather our analysis sheds light on 

some of the claims commonly associated with biofuel which influence policy 

direction. Firstly, biofuel does not reduce market dependence on imported oil, nor 

does it increase resilience to oil shocks for B/F values around unity as is the case 

for corn. As long as the production of the feedstock is fossil energy intensive, the 
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whole biofuel supply chain is exposed to import fuel disruptions and price shocks.  

Secondly, bio-derived liquid fuel is not a 100% renewable fuel unless the Ren value 

is 100%, which would not currently be the case for any of the possible fuels 

studied.  Thirdly, biofuel is not carbon-neutral or GHG-free as long as excess 

nitrogen fertilizer and fossil fuel is used in the agriculture and processing.   

Finally, consider that the Ministry for Economic Development (MED) 

estimates that a 7% petrol and diesel fuel demand reduction can be achieved by 

correct vehicle tire pressure, reduced highway travel speed and carpooling 

(Colegrave te al., 2004). The reduced carbon emissions from fuel demand reduction 

would not require consumption of fossil fuel to achieve. Demand reduction would  

require minimal land use, very small capital investment in production plant, and no 

loss of export earnings from food crops. We also have some questions about the 

logistics of harvesting, storage, processing and dispensing of agriculturally-derived 

biofuels in a small country like New Zealand. Crops are harvested, and processing 

wastes accumulated around one time of the year, while demand is continuous. We 

anticipate there would be additional costs and resources needed to store the biomass 

feedstocks without letting them ferment until they are needed for processing. 

Alternatively, if the biofuel plant were made large enough to process the feedstocks 

all at one time, that would leave plant idle and probably result in serious cost issues.  

There appear to be a range of lower-cost, more effective demand-side alternatives 

to deal with reduced imported oil supply or reduce GHG emissions.  However, new 

policy communication capability will need to be developed in order for presidents 

or prim ministers to call for demand side management with the same fervor that 

they call for development of biofuels.  One suggestion we have for future work in 

this area is to change the perception of demand side management from one of 

austerity and economic decline into one of transition and adaptation driven by 
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freedom and prosperity. Ours is not the first study to conclude that it is not even 

remotely possible to “substitute” renewable or alternative energy resources or 

technology platforms to meet the established fossil fuel energy demand. The future 

work which is usually suggested by authors is that more research is needed to 

improve the alternative energy technology. We propose that it is obvious that what 

is needed is demand reduction. What is not so obvious is that this demand reduction 

needs innovation on an even broader scale that alternative energy. The innovations 

needed are technical but are also social and market-based. Thus we propose a new 

field of engineering which we have termed Transition Engineering which will 

deliver the changes in the embedded fossil fuel systems to meet the most urgent 

targets of fossil fuel use reduction and climate change mitigation. Development of 

the engineering measurement, analysis and design tools for Transition Engineering 

is the focus of our current and future work to inform and support energy policy.  

 

7. Conclusions 

The motivation for this research project was to evaluate the potential role of 

indigenous biofuel production as an adaptive measure for reducing green house gas 

emissions or reducing exposure to risk of shortages of imported fossil fuel. The 

approach was to collect agricultural data on possible biofuel feedstock sources 

grown in New Zealand at a particular date in the past, then to model the candidate 

production processes for each material using real data.  International sources were 

used for process modelling.   

The standard energy balance indicator, EROI, was calculated for each 

feedstock-process route combination. We proposed two new indicators of the 

renewability of the fuel product by considering the fossil fuel input. We also 
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calculated an energy return on land use, EROL, for New Zealand crop data.  

Finally, we calculated the cumulative total of biofuel production capacity if all of 

the feedstock resources were converted to biofuel production.  We did not consider 

economic viability or water use. 

We can conclude from this study that biofuel from high EROI feedstock 

using proven conversion processes is possible in New Zealand. The analysis 

showed that food crops such as corn, wheat and potatoes could be used now to 

make ethanol, and that tallow and rapeseed could be used to manufacture biodiesel.  

More speculative processes include wood, paper and straw for ethanol and wood 

and paper for biodiesel production. The EROI was less than one for oats and barley, 

which would preclude these crops as candidate biofuel sources. The biofuel supply 

chain with the highest EROI is, not surprisingly, the rapeseed biodiesel using 

current production methods used in Europe and elsewhere.   

From the renewability analysis we conclude that production of biofuel 

should not be considered to produce wholly renewable or sustainable fuels.  Given 

the fossil fuel inputs as a fraction of biofuel product, we conclude that producing 

indigenous biofuel does not reduce New Zealand’s dependency on imported fossil 

fuels.  The farming and biofuel production process would be exposed to the same 

risk of disruption from imported fuel shortages as all other transport activities. 

Looking at the greenhouse gas analysis, biofuels should not be considered as 

carbon-neutral unless the processing energy is all from non-fossil resources. This 

implies that more research and development work would be needed to develop 

fossil-free biofuels if they are to be considered for carbon credits or other incentives  

In the future, research, devoted to the whole transportation system, 

including demand management and improved efficiency would appear to have 

potential for great benefit.  Importing one unit of fossil fuel to produce 1.3 units of 
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ethanol or 2.3 units of biodiesel does not reduce GHG emissions as cost effectively 

and sustainably as reducing the demand for one unit of fossil fuel directly though 

better transport system design. 
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