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Many studies have shown the worked example effect, in which students who study
worked examples learn more than students involved in unsupported problem solving.
Sweller et al. [1] explain the worked example effect based on the Cognitive Load
Theory (CLT). They show that examples decrease the cognitive load on the learner's
working memory. Thereby, learning from worked examples is more helpful for no-
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Abstract: Learning from worked examples has been shown to be superior to
unsupported problem solving in numerous studies. Examples reduce the cogni-
tive load on the learner's working memory, thus helping the student to learn
faster or deal with more complex questions. Only recently researchers started
investigating the worked example effect in Intelligent Tutoring Systems (ITSs).
We conducted a study to investigate the effect of using worked examples in
combination with supported problem-solving in SQL-Tutor. We had three con-
ditions: Examples Only (EO), Problems Only (PO), and Alternating Exam-
ples/Problems (AEP). After completing a problem, students received a self-
explanation prompt that focused on the concepts used in the problem, to make
sure that students acquire conceptual knowledge. On the other hand, examples
were followed by self-explanation prompts that focused on procedural know-
ledge. The study showed that the AEP and PO conditions outperformed EO in
learning gain, while AEP outperformed PO in conceptual knowledge acquisi-
tion. Therefore, interleaving examples with supported problems is an optimal
choice compared to using examples or supported problems only in SQL-Tutor.
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Introduction and Related Work

vices who have to deal with an enormous amount of cognitive load.

There has been no agreement on how much assistance should be provided to stu-
dents during learning. Kirschner et al. [2] show that maximum assistance (e.g. exam-
ples) is more efficient than minimal assistance (e.g. unsupported problem-solving)
which has been corroborated by prior studies like [3]. Recently researchers focused on
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different example-based learning strategies. Van Gog et al. [4] investigate the differ-
ence between worked examples only (WE), worked examples/problem-solving pairs
(WE-PS), problem-solving/worked examples pairs (PS-WE) and problem-solving
only (PS) for novices. They found that the participants in the WE and WE-PS condi-
tions had higher performances in the post-test than PS and PS-WE. Furthermore, the
mental effort training and test rates in WE-PS and WE was lower than PS and PS-
WE. In a later study, Van Gog [5] used Modelling Examples (ME) in two conditions
PS-ME-PS-ME and ME-PS-ME-PS in the Frog Leap game. A modelling example is a
type of example in which an expert illustrates the solution in a video format [6]. After
these two sequences of training, students had to work on two tasks, of which the
second one was not similar to training tasks. There was no difference in learning per-
formance since the students learnt most after studying the second worked example.

Many prior studies addressed the advantages of example-based strategy against un-
supported problem-solving. Koedinger and Aleven [7] criticised those because of the
very different amounts of information provided to the two conditions (the unsup-
ported problem-solving condition received no feedback upon submitting solutions).
As the response to this criticism, Schwonke et al. [8] compared a standard cognitive
tutor (Geometry Tutor) to a new version which was enriched with faded worked ex-
amples. Both conditions had the same amount of learning, but the faded example
condition led to significantly reduced learning time.

Worked examples are beneficial in ITSs, especially for novices because they do
not have adequate prior knowledge to solve problems, and examples can help them
obtain the needed information. Therefore, it could be assumed that using a combina-
tion of examples and problem-solving might lead to a better result.

Using examples decreases the working memory load. If the freed working memory
loads with germane load, learning will improve. One way to increase the germane
load is to involve students in self-explanation (e.g. [9]). Self-Explanation (SE) is a
metacognitive process in which students give explanations after studying learning
materials [10]. Researchers have found evidence that students who generate explana-
tions themselves learn more than students who receive explanations [11].

Few students self-explain spontaneously, and therefore SE prompts can be used to
encourage students to explain examples to themselves. SE prompts can be of different
nature, according to the knowledge they focus on. For instance, Hausmann et al. [12]
compared justification-based prompts (e.g. “what principle is being applied in this
step?”’) and meta-cognitive prompts (e.g. “what new information does each step pro-
vide for you?”’) with a new type called step-focused prompts (e.g. “what does this step
mean to you?”). They found that students in the step-focused and justification condi-
tions learnt more from studying examples than students in the meta-cognitive prompts
condition. In another study, Chi and VVanLehn [13] categorised SE as either procedur-
al explanation (e.g. answer to "Why was this step done"), or derivation SE (e.g. an-
swer to "where did this step come from?").

McLaren and Isotani [14] compared examples only, alternating worked examples
with tutored problem solving, and pure problem solving with the ITS. They conducted
a study using the Stoichiometry Tutor and modelling examples. The examples were
combined with SE prompts in order to involve students in thinking deeper about the



examples; the authors refer to such examples as interactive examples [14]. There was
no difference in the post-test performance between the conditions, but the group that
learnt from examples only had a significantly lower learning time. However, the ex-
amples were followed by SE prompts while the problems were not. The authors indi-
cate that this result is interesting at least in some domains, under some conditions.

Our study continues the previous research on comparing learning from worked ex-
amples versus supported problem solving; similar to [14], we also investigate learning
from Examples Only (EO), Problems Only (PO), and Alternating Examples/Problems
(AEP). Since SE is a very effective strategy, we introduced SE prompts not only after
examples (as in [14]), but also after problem solving. Our hypothesis is that students
in the AEP condition will learn more than the other two groups, and students in the
PO condition will learn more than the students in the EO condition (AEP > PO > EO).
We also hypothesized that the EO participants would spend less time than the other
two groups, as similar findings resulted from prior studies.

We describe our approach in Section 2. Section 3 presents the results of the study,
while the conclusions and the directions of future work are presented in Section 4.

2 Study Design and Procedure

The studies discussed in the previous section were conducted in well-defined domains
with well-defined tasks. We wanted to study learning from examples in a different
context: defining queries in the Structured Query Language (SQL), which is a well-
defined domain with ill-defined tasks [15]. Our study was conducted with SQL-Tutor,
which is a constraint-based tutor [16] developed and maintained by the Intelligent
Computer Tutoring Group (ICTG). SQL-Tutor complements classroom instruction;
we assume that students learnt about SQL in lectures, and the system provides nu-
merous practice opportunities. For this study, we developed three versions of SQL-
Tutor in which students work with different combinations of examples and problems.
In all the three conditions, students were presented with pairs of isomorphic examples
and/or problems. That is, students who were in the EO and PO conditions worked
with example-example and problem-problem pairs respectively. The students in AEP
group interacted with example-problem pairs. There were 10 pairs in all conditions.

We designed 20 problems with ten different levels of complexity, based on the CD
collection database, which is one of the databases available in SQL-Tutor. For a prob-
lem, SQL-Tutor provides the problem text only. A worked example consists of the
problem text, the SQL statement that is the solution and an explanation.

In order to reinforce learning further, we provided SE prompts both after worked
examples and after problems. We developed two types of SE prompts. Previous re-
search [8, 17] showed that worked examples increase conceptual knowledge more
than problem solving; therefore we provided Procedural-focused Self Explanation (P-
SE) prompts after examples to make sure that students pay additional attention to
procedural knowledge. P-SE prompts therefore complement learning from examples.
On the other hand, working with the ITS is strongly focused on procedural knowledge
[17] and therefore after solving problems, students were given Conceptual-focused



Self-Explanation (C-SE) prompts in order to ensure that students reflect on the con-
cepts covered in the problem they just completed and acquire conceptual knowledge
in that way. Both types of prompts require students to select an answer from a list of
options. Figure 1 shows a screenshot of SQL-Tutor when the student has completed a

problem, and was then given an SE prompt. In
incorrect, and the system provided a correction

SAL=TUTOR | History |Log Ou

this situation the student’s answer was

Fig. 1. A C-SE prompt after

What is the role of the IN predicate?
C4) It allows you to specify tables.

v ©B) IN allows you to specify multiple values in the
WHERE clause

@) IN allows you to define attributes in the WHERE
clause.

) None of the above

MNo, we carnot define attributes in the WHERE clause, IN
allows us to specify a condition in WHERE

a problem is solved

Figure 2 shows a screenshot of a P-SE prompt which was provided after the stu-
dent read an example. In this specific case, the student gave a correct answer which

was confirmed by the system.

SEL-TUTOR | History |Log Ou

wWhich  option i equivalent to  artist.lname  in
('Gabriel','Davis'y?

/@ &) tartist.Iname = 'Gabriel' OR artist.Iname = 'Davis')

CB) MNOT (artist.lname = 'Gabriel' OR artist.Iname =
'Davis")

C ) (artist. Iname = 'Gabriel' AND artist. Iname = 'Davis')

D) NOT (artist.Iname = 'Gabriel' AND artist.Iname =
'Davis')

Great!! That's exactly like using OR operator,

Fig. 2. A screenshot of a P-SE after an example



The participants were 34 students enrolled in the Relational Database Systems
course at the University of Canterbury. They learned about SQL in lectures before-
hand, and needed to practice in the lab. The students did not receive any inducements
for participating in the study, but we told them that working with our system may help
them learn SQL. We informed them that they would see ten pairs of problems, and
that the tasks in each pair are similar. When students know that the tasks in each pair
are isomorphic, they may use them more efficiently.

The students were randomly allocated to one of the conditions, giving sample sizes
of 12 in PO, 11 in AEP and 11 in EO. First, the students took a pre-test for 10 mi-
nutes. Once the students logged in, SQL-Tutor randomly allocated them to one of the
conditions (EO, PO, or AEP). The students then had 90 minutes to work with the
system. They could choose to take the post-test at any time during the learning phase
to finish the experiment.

The pre-test had five questions, three of which were multiple-choice questions and
two were problem-solving questions. The first and the second multiple-choice ques-
tions measured conceptual knowledge students had, while the third question measured
procedural knowledge. For the fourth and the fifth questions, students had to write a
query to answer the question. These two questions measured procedural knowledge
and the problem-solving skill of the students. The post-test was similar to the pre-test
with one extra question about the difficulty of the tasks. We asked students to answer
this question: "How difficult was it for you to complete the tasks in this study?" Stu-
dents rated the complexity of the tasks on the Likert scale from 1 to 5 (simple to diffi-
cult). The maximum score on both tests was 11.

3 Results

The basic statistics about the study are presented in Table 1. There was no significant
difference between the pre-test performances of the three groups. ANOVA revealed a
significant difference between the post-test results (p = .02). The Tukey post-hoc test
showed that the performance of the EO group was significantly lower than the AEP
group (p = .02) and marginally significantly lower than the PO group (p = .09), thus
confirming our hypothesis. The students in all three conditions improved significantly
between the pre- and the post-test, as shown by the paired t-test reported in the Im-
provement row of Table 1. Correlations between the pre- and post-test scores are also
reported in Table 1, but only the PO condition had a significant correlation (r = .69).

There was also a significant difference between the mean learning times of the
three groups (p < .01). The Tukey post-hoc test revealed that the EO group spent sig-
nificantly shorter time than students in the AEP group and the PO group (both p <
.01). The EO group participants were free to work with the system for the whole ses-
sion, but spent much less time than the other two groups. This shows that the EO
condition did not engage students like AEP and PO did. One potential explanation for
this is that students overestimated their learning based on worked examples, and fi-
nished the tasks in a very short time.



There was a marginally significant difference between the three groups in the
number of examples/problems they attempted (p = .05). The Tukey post-hoc test re-
vealed that the EO group attempted more tasks than PO (p =.1) and the AEP group
(p=.07).

The three groups also differed significantly in the normalised learning gain® (p =
.01). The Tukey post-hoc test revealed that the EO group learnt significantly less than
students in the AEP group (p = .02) and the PO group (p = .03). When we analysed
normalised learning gains on the problem-solving questions in the pre/post-tests
(questions 4 and 5), we found a significant difference between the groups (p = .01).
As we expected, the students in the PO and AEP conditions performed significantly
better than the students in the EO condition on problem-solving questions (Tukey
post-hoc test: EO and PO p = .01, EO and AEP p=.04), because students in the EO
condition were not given any problem-solving tasks during the learning phase.

Table 1. Basic statistics (* denotes the mean difference significant at the 0.05 level)

PO (12) AEP (11) EO (11) p
Pre-test (%) 41.67 (13.82) | 48.76 (13.19) | 44 (14.63) 48
Post-test (%) 72.73 (13.98) 77.69 (16.57) 58.68 (16.57) *.02
Improvement *p=.0, t=-9.8 *p=.0,t=-5.1 *p=.03, t=-2.4
Pre/post-test correlation *p=.01, r=.69 p=.49, r=.22 p=.43, r=.26
Learning time (min) 69.67 (11.16) 65.91 (14.53) 38.45 (16.14) *<.01
Number of attempted problems 14.58 (5.11) 14.09 (5.10) 18.63 (3.23) .05
Normalised learning gain .54 (.19) .55 (.31) .21 (.35) *.01
Problem solving gain .64 (.27) .58 (.42) .19 (.37) *.01
Conceptual knowledge gain .29 (.39) 77 (41) .54 (.47) *.03
Procedural knowledge gain .59 (.22) .48 (.42) .13 (.40) *.01
Perceived task difficulty 3.50 (.80) 3.27 (.90) 2.82 (.75)

We also analysed the students’ conceptual and procedural knowledge separately.
Questions 1 and 2 in the tests measured conceptual knowledge, while the remaining
three questions focused on procedural knowledge. There was a significant difference
on both conceptual and procedural normalised learning gain. The Tukey post-hoc test
reveals that the AEP group learned significantly more conceptual knowledge than the
PO group (p =.02). We think that examples helped the AEP students to acquire con-
ceptual knowledge. The students in the AEP condition acquired the most conceptual
knowledge since they saw both examples and C-SE prompts. That was the only sig-
nificant difference revealed by the Tukey post-hoc test. There was also a significant
difference in the procedural knowledge gain (p = .01); the Tukey post-hoc test re-
vealed a significant difference was between the PO and EO conditions (p=.01), and a
marginally significant difference (p=.06) between the AEP and EO conditions.

! Normalised learning gain= (Post test - Pre test) / (Max score - Pre test)



In the post-test we also asked students about the perceived task difficulty. The
Man-Whitney U test indicated that the PO group ranked the problems as more diffi-
cult in comparison to the ranking by the EO group; the difference is marginally signif-
icant (p=.053). This result was expected as problems impose more cognitive load on
the working memory than examples [1].

We calculated the effect size based on the normalised learning gain using Cohen's
d, reported in Table 2. The effect sizes for both the AEP and PO conditions are large
in comparison to the EO condition.

Table 2. The effect size on normalised learning gain between the groups

Conditions Effect size
AEP PO .04
AEP EO 1.01

PO EO 1.15

The participants received C-SE prompts after problems and P-SE after examples.
Therefore, the AEP group saw half of the C-SE prompts that PO students received,
and also half of the P-SE prompts that the EO participants were given. We also ana-
lysed the SE success rates for the three conditions, which are reported in Table 3. We
found no significant difference between AEP and PO in C-SE, and also no significant
difference in P-SE success rate for the students in EO and AEP.

Table 3. SE prompts analysis (* denotes the mean difference significant at the 0.05 level)

PO AEP EO p
C-SE success rate (%) 88.50 (7.5) 92.84 (10.36) N/A .26
P-SE success rate (%) N/A 77.69 (19.74) 71.36 (11.20) .37

The students in the PO and AEP groups could select the feedback level? when they
submitted their solutions, up to the complete solution (the highest level of feedback).
Therefore, the participants could transform a problem-solving task to a worked exam-
ple by asking for the complete solution. For that reason, we analysed help requests
submitted for the problems given to the PO and AEP conditions.

Table 4. Maximum hint level analysis

PO AEP
Second problem in pairs 1.08 (1.68) 1.54 (1.69) p=.51
First problem in pairs 1.33 (1.56)

Table 4 shows the mean number of problems for which the participants requested
complete solutions. Looking at the second problem in each pair (the first row of Table

2 SQL-Tutor offers six levels of feedback [16]



4), there was no significant difference in this respect between the PO and AEP condi-
tions. Moreover, we did not see a significant difference in the number of times the PO
students requested complete solutions for the first/second problem of each pair (p =
.39). This result shows the participants from the PO/AEP groups have not converted
their problems to worked examples.

Figure 3 depicts the relationship between the normalised learning gain and the
learning time. Each data point on this graph represents the mean normalised learning
gain of all students who completed their sessions by the specific time. For example,
there were three participants from the EO condition who completed their session with
SQL-Tutor 22 minutes into the study, and their normalised learning gains were 0.07,
0.11 and 0.14. The corresponding mean normalised learning gain at 22 minutes is
therefore 0.11 (this corresponds to the third data point for the EO group). Although
the fitted curve is an estimate only, this graph can be used for predicting normalised
learning gains for longer learning sessions. The figure shows that the learning gains of
the AEP and PO conditions are much higher than those of the EO group. In our study,
the participants spent less than 90 minutes learning; the graph shows that the PO con-
dition has the highest predicted learning gain over longer sessions.
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Fig. 3. Learning gain mean growth in time

4 Discussion and Conclusions

Our hypothesis was that the AEP condition would learn more than the PO and EO
conditions, and PO would be superior to EO. Our analyses showed that the EO
condition learnt significantly less than students in the other two conditions. All
students had the same amount of time to work with the system, but the EO condition
participants spent a significantly shorter time on reviewing examples. As stated
previously, a possible explanation is that the participants could not accurately assess



their knowledge after reading examples, even with the addition of scafolded self-
explanation. As worked examples do not engage students like problems do, it is
necessary to use some additional techniques to engage students to reason deeply about
examples. This corroborates our previous finding that students who studied examples
learnt less than students who solved problems.

Our results are in contrast with the findings presented in [14]. There are three
main differences between the two studies. First, in our study the participants were
given self-explanation prompts after problems, not only after worked examples (as in
[14]). Moreover, we designed SE prompts to complement problem solving and exam-
ples. We provided procedural SE prompts after examples, as examples have been
shown to reinforce conceptual knowledge more than procedural knowledge. We also
provided conceptual SE prompts after problem solving to reinforce the acquisition of
conceptual knowledge. Therefore, both types of SE prompts were designed so to
complement the type of learning provided by the main activity (problem solving or
learning from examples). The second difference is in the instructional domain used in
each study. The instructional task in the McLaren and Isotani’s study was simpler,
consisting of simple algebraic equations and basic chemistry concepts, while in our
study the participants were solving ill-defined design tasks. Thirdly, our constraint-
based tutor provided feedback on demand while the Stoichiometry tutor used in [14]
provided immediate feedback.

Why are worked examples not as effective as supported problem solving?
Worked examples alone do not engage students as much as problem solving, and over
time some students become less motivated to put enough effort into learning. Moreo-
ver, supported problem solving in contrast with unsupported problems avoid im-
passes, and is thus less frustrating and more effective. Examples may also induce an
illusion of understanding after a certain number of tasks. For instance, students may
think they have already learnt the example while they have not; consequently, they
pass over the example very fast without spending enough time to process it which
causes shallow learning. One potential approach to scaffold learning from worked
examples is to provide support for self-assessment like in [18].

We found no significant difference between PO and AEP in the normalised learn-
ing gain and learning time. However, the AEP group acquired significantly more
conceptual knowledge than the PO group. Consequently, the best instructional condi-
tion in our study was AEP, and our hypotheses were confirmed. The AEP participants
learnt from the worked examples (the first task in each pair); when they were pre-
sented with isomorphic problems, they were already primed and did not have to deal
with many unfamiliar details like students in the PO group.

Our study showed that learning from alternating examples with problems is supe-
rior to learning from problems or examples only, when the sequence of prob-
lems/examples is fixed. The results suggest that instead of just providing problem-
solving opportunities, 1TSs may provide worked examples followed by isomorphic
problem solving. We recently conducted an eye-tracking study to investigate how
students process examples. Based on the results of that study, our future research will
focus on adding adaptivity to learning from worked examples in ITSs.
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