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Abstract 

This thesis describes the use of a multi-amplitude minimum shift keying 

(MAMSK) signal in various types of wireless communication system.  A 

MAMSK signal is a bandwidth efficient modulation scheme obtained by 

superimposing 𝑀 minimum shift keying (MSK) signals with unequal 

amplitudes. The overall phase of a MAMSK signal is controlled by the 

phase of the largest component MSK signal which allows the use of a low-

complexity differential detector. A closed form expression for the average 

bit error rate (BER) for coherent detection of an MAMSK in AWGN is 

derived and is shown to achieve the same BER as that of square 

constellation quadrature amplitude modulation (QAM) with the same 

average transmit power. 

We describe the design and implementation of a STBC-based MIMO 

radio system in conjunction with MAMSK modulation. The proposed 

system provides high capacity data transmission by carrying information not 

only in the phases but also in the amplitude. Despite using a simple 

MAMSK differential receiver the system achieves performance within 1 dB 

of coherent detection. The existing MSK modems in conjunction with STBC 

could easily be modified to construct the proposed system. 

The MAMSK modulation scheme is extended to a multiuser relaying 

network where two nodes cooperate in a half-duplex environment to achieve 

diversity gain. The cooperative scheme is based on superposition 

modulation using a decode-and-forward (DF) strategy. In the proposed 

scheme, each node simultaneously transmits its own and the relayed signals 

by superimposing one on the other. A MAMSK signal is an excellent choice 

for this type of cooperative communication due its being obtained by a 
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superposition technique. The proposed system exploits the overall phase of a 

MAMSK signal which allows differential detection and as a result it 

provides the lowest decoding complexity and memory requirements among 

the existing superposition based cooperation schemes. The performance of 

the system is evaluated by simulation, where it is shown that the MAMSK 

cooperative system outperforms a conventional DF scheme in terms of both 

power and bandwidth efficiency. 
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Chapter 1 

1 Introduction 

In recent years, the use of wireless and mobile technologies has become 

increasingly important to both individuals and organisations. This is because 

of lower costs, better mobility, increasing availability and elimination of 

wires. However, demand for the available shared radio frequency spectrum 

continues to grow. The increasing congestion in the spectrum has inspired 

research to find more efficient signalling techniques using the same 

bandwidth. 

Multi-amplitude minimum shift keying (MAMSK) is a bandwidth 

efficient modulation [1, 2] scheme that doubles the data rate of conventional 

minimum shift keying (MSK). Superimposing two MSK signals with 

different amplitudes provides the same throughput as 16-level quadrature 

amplitude modulation (16-QAM) but with the advantage of having 

continuous phase and sharper spectral sidelobe roll-off. Despite slightly 

wider main spectral lobe, MAMSK provides an efficient alternative to the 

currently used QAM formats. 

Furthermore, significant improvement in spectral efficiency achieved by 

deploying multiple antennas at both ends of the communication link [3, 4]. 

Specifically, these works show that the achievable spectral efficiency 

increases linearly with increasing numbers of antennas. Space-time block 
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codes (STBCs) use both spatial and temporal diversity and are used in 

systems with multiple transmit and receive antennas. In [5] it has been 

shown that multiple input multiple output (MIMO) systems with STBCs can 

improve the performance of the communication link without consuming 

more bandwidth and/or power. The thesis concentrates on the design and 

implementation of an Alamouti STBC [6] in conjunction with a MAMSK 

modulation scheme. This is with the intention of combining the benefits of 

MAMSK signals and wireless MIMO systems to achieve high data rate 

wireless links. The idea is then further developed to include cooperative 

communications through the use of virtual MIMO systems. 

The rest of the chapter is organised as follows. In the next section, we 

provide a short overview of a communication system utilising single 

antennas at both ends of the link. The mathematical modelling and 

characterisation of the communication channels are discussed, focusing on 

two different types of channels: the additive white Gaussian noise (AWGN) 

channel and the Rayleigh flat fading channel. We then move on to more 

advanced systems, which are equipped with multiple transmit and receive 

antennas or which form a virtual MIMO system through relaying nodes. The 

chapter concludes with a description of the thesis contributions and an 

outline of the thesis. 

1.1 Overview of Digital Communication systems  

The fundamental components of any digital wireless communication system 

[7, 8] are the modulator, channel, demodulator, amplifiers and antennas as 

illustrated in Figure 1-1. The simplest of all configurations is the point-to-

point link [9]. It consists of two connected nodes and in its most basic form, 

contains a single antenna at each end of the link. 

 The information to be transmitted can be from either an analogue or a 

digital source. In a digital communication system, the source messages are 

converted into a stream of discrete (usually binary) numbers [7]. Digital 
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modulation schemes translate the sequence of binary digits into signal 

waveforms that are appropriate for transmission. In general, wireless 

communication is a passband transmission and up-conversion to a higher 

frequency band is required [8]. The primary purpose of the up-convertor is 

to shift the intermediate frequency (IF) or baseband signal to a higher 

frequency sinusoidal carrier signal. At the transmitter, the last stage of the 

operation is to amplify the radio frequency (RF) signal and transmit it from 

the antenna. 

Digital

Modulator

Up 

Converter

High-power

Amplifier
Antenna

Transmission

Channel

Antenna
Down 

Convertor

Digital

Demodulator

Low-noise

Amplifier

Transmitted

Data

Received

Data  

Figure 1-1 Basic model of a digital communication system 

The channel is the only element of the model that is independent of the 

other communication subsystems [10]. Channel attributes,  such as fading 

and dispersion play a significant part in designing digital transmission 

schemes [8]. The transmitted RF signal propagates though the channel in 

multiple directions over different paths. These signals suffer different 

attenuations and path delays [8, 11]. In consequence, the received signal is 

the superposition of multiple versions of the transmitted signal which arrive 

at the receiver’s antenna at slightly different times [11-13]. The resulting 

multipath fading may cause intersymbol interference, amplitude fluctuations 

and phase variations of the received signal. All of these factors degrade 

system reliability and performance [11, 12, 14]. 
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At the receiving end of a digital communication system, ideally the 

reverse signal processing happens. The first step is to amplify the received 

weak signal to a much higher level [8, 9]. The amplified RF signal is then 

down-converted to baseband for further processing. As a final step, the 

digital demodulator block processes the channel corrupted received signal in 

order to reconstruct the original transmitted data sequence with as few errors 

as possible. 

1.2 Communication Channels 

Channel characteristics play an important role in studying, selecting, and 

designing transmission schemes. The design and performance analysis of 

systems is usually based on a statistical model of the channel rather than a 

specific physical channel. The most common form of signal degradation is 

additive noise, which is generated at the front end of the receiver [7-10, 13]. 

Another form of signal degradation is multipath fading, which is a result of 

propagation effects such as reflection, refraction and scattering [8, 11, 12, 

14]. Such signal distortion is characterised as a non-additive signal 

disturbance. Both additive and non-additive signal distortions are usually 

characterised as random phenomena and described in statistical terms. In 

this section, we discuss two important channel models, the AWGN channel 

and the Rayleigh flat fading channel. 
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1.2.1 Additive White Gaussian Noise Channel 

The AWGN channel as shown in Figure 1-2 is the simplest model for a 

communication channel [7].  

Channel

)(tr)(ts

)(tn

+

 

Figure 1-2 A model of AWGN channel 

Under this model, the transmitted signal, 𝑠(𝑡) is corrupted only by additive 

white Gaussian noise, 𝑛(𝑡). This implies that fading does not exist and the 

modulated signals propagate without any amplitude loss and/or phase 

distortion. Therefore, the received signal, 𝑟(𝑡) is simplified to the form, 

𝑟(𝑡) = 𝑠(𝑡) +  𝑛(𝑡), (1.1) 

where 𝑛(𝑡) is the white noise, represented as a zero mean, stationary 

Gaussian random process with a constant power spectral density [8, 15, 16]. 

1.2.2 Frequency-Flat Fading Channel  

Flat or frequency non-selective fading is the term used when the signal 

bandwidth, 𝐵𝑠 is much smaller than the channel coherence bandwidth, 𝐵𝑐. 

The later is the bandwidth over which the channel transfer function remains 

virtually constant. If a wireless channel has a constant gain and linear phase 

response, then all frequencies of the transmitted signal will experience the 

same fading [8, 12]. In a flat fading channel, the strength of the received 

signal changes with time, due to the variation of the gain of the channel 
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caused by multipath. On the other hand, the spectral characteristics of the 

transmitted signal are preserved at the receiver. 

Typically, signals that undergo non-selective fading are narrowband 

where each channel is modelled by a complex Gaussian random variable 

with mean zero. Based on the central limit theorem the envelope of the 

random Gaussian channel will follow the statistical characteristics of a 

Rayleigh distribution [17]. Rayleigh fading is a useful model in situations 

where there is no line of sight (LOS) path between transmitter and receiver. 

There are several methods [18-21] available to generate the Rayleigh fading 

process for simulation purposes. The well known Jakes’ model [18] based 

on summing sinusoids is widely used to realise Rayleigh fading 

characteristics. Figure 1-3 illustrates the mathematical representation of a 

flat fading channel with a single multiplicative channel coefficient [7, 8]. 

Channel

)(tr)(ts

)(tn

+×

)(th
 

Figure 1-3 Flat fading channel with additive noise  

Based on this model, the received baseband signal, 𝑟(𝑡) over a Rayleigh flat 

fading channel can be represented as [14, 15, 22], 

𝑟(𝑡) = ℎ(𝑡) 𝑠(𝑡) +  𝑛(𝑡), (1.2) 

where ℎ(𝑡) is a zero-mean complex Gaussian random process which is 

assumed to be constant during one symbol duration and to change from 

symbol to symbol, 𝑠(𝑡) is the transmitted signal and 𝑛(𝑡) is additive white 

Gaussian noise. 
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In addition to multipath effects and thermal noise the received signal can 

experience another phenomenon, known as a Doppler shift in frequency 

[23]. The change in frequency of the multipath waves is due to the relative 

motion between the transmitter and the receiver.  Furthermore, a time-

varying Doppler shift on different multipath components is observed if the 

surrounding objects are in motion. The effect of such time variations can be 

neglected if the surrounding objects move at a much lower speed than the 

mobile receiver. 

In [11, 23], the magnitude of the Doppler shift in frequency defined in 

terms of the speed of the mobile is given by, 

𝑓𝑑 =
𝑓𝑐  𝑣

𝑐
 cos 𝜃 (1.3) 

Where, 𝑓𝑐 is the carrier frequency, 𝑣 is the mobile speed, 𝑐 is the speed of 

light and 𝜃 is the arrival angle of the received signal with respect to the 

direction of the receiver’s motion. The rate of fading in a Rayleigh channel 

is often characterised by the value of the normalised Doppler frequency, 

𝑓𝑑𝑇, where 𝑓𝑑 represents the maximum Doppler shift arising from the 

motion of the mobile and 1/𝑇 is the symbol rate. For a slow fading channel 

the value of 𝑓𝑑𝑇 is considered to be ≤ 0.00001, whereas a value of 0.01 

indicates a very fast fading channel [24]. 

 Figure 1-4 illustrates simulated Rayleigh flat fading with a normalised 

Doppler frequency of 𝑓𝑑𝑇 =  0.001. Flat fading channels often experience 

deep fades of more than 20 dB as shown in Figure 1-4. The occasional deep 

fade can cause severe error propagation in wireless communication systems. 

In a slow fading environment, the fading process has a strong correlation, 

which means long bursts of errors. Conversely, for a fast fading channel, the 

fading process has a weak correlation. Throughout this thesis, we shall 

assume a quasi-static Rayleigh flat fading channel, where the channel 

coefficients are constant during each transmission block and vary 

independently from one block to another. Such channels are classified in [5] 

as slow fading. 
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Figure 1-4 Rayleigh fading channel with a normalised Doppler frequency of 0.001 

1.3 Multi-Input Multi-Output Systems 

A typical single user MIMO system equipped with M transmit antennas and 

N receive antennas is illustrated in Figure 1-5. MIMO systems [25, 26] have 

been employed to counter the effects of random fading and to achieve 

diversity gain. In most MIMO systems, multiple antennas are used to 

transmit and to receive several versions of the same signal over independent 

fading paths in order to increase the possibility that at least one of the 

received signals is not subject to deep fading. These independent paths are 

combined in some way such that the fading of the resultant signal is reduced 

[11] and hence the quality, data rate and capacity of the system [3, 12, 27] 

are improved. 
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Figure 1-5 Block Diagram of a MIMO communication link 

MIMO systems can be realised using various schemes such as space-time 

block codes (STBCs), space-time trellis codes (STTCs) and the Vertical Bell 

Laboratories Layered Space-Time (V-BLAST) architecture. In general, 

STBCs can be classified into two categories: Orthogonal STBCs (OSTBCs) 

and non-orthogonal STBCs (NOSTBCs). The advantage of OSTBCs is that 

the system can achieve maximum diversity gain with simple linear 

processing at the receiver. Their shortcoming is that they do not provide full 

rate, as the number of transmit antennas is increased. NOSTBCs offer an 

effective way to increase the data rate but at the cost of greater decoding 

complexity. 

In a space-time block coded MIMO system the channel is required to 

remain essentially constant over the duration of a STBC code word. STBCs 

are used to exploit diversity by generating and combining multiple versions 

of the same signal and mapping the transmitted symbols into a structured 

matrix code.  

Another possible approach to overcome the effect of multipath fading is 

to group multiple single antenna systems to create a virtual MIMO 

(VMIMO) system [28, 29]. This technique is often known as cooperative 

communication [30]. The idea of cooperation is attractive in wireless 

networks where nodes are constrained in size and power. Cooperative 

diversity as shown in Figure 1-6 can be realised with either a single relay or 
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multiple relays where each relaying node acts as a virtual antenna and 

cooperatively transmits data to a destination. The model, in its most basic 

form, consists of a single source, destination and relay node. This 

fundamental concept known as the relay channel, was first proposed by 

Meulen in [31] and later analysed in [32]. 

DestinationSource .

.

.

Relays

Relayed

Signals

Transmitted

Signals

 

Figure 1-6 Model of cooperative communications with multiple relay nodes 

 There are several cooperation strategies available for the relaying 

network shown in Figure 1-6. Two of the most significant schemes [33-35] 

are amplify-and-forward (AF) and decode-and-forward (DF). In AF 

cooperative diversity each relay node simply amplifies and forwards the 

received signal towards the destination. On the other hand, in a DF scheme, 

cooperative nodes decode the received signal, re-encode it, and then 

retransmit it to the destination. 

The above two cooperation strategies can outperform each other 

depending on the channel condition of the source-relay link and the relaying 

capabilities [36-38]. For example, the AF scheme is preferable in situations 

where the received signal power is weak (low SNR) at the relaying node 
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[39]. Moreover, the AF relaying strategy is of low complexity and the relay 

terminal does not require channel state information (CSI), however, it 

suffers from noise amplification. The advantage of DF over AF is more 

significant [40] if the source-relay channel quality is high. This is because 

the source-relay link noise effect is eliminated at the relay terminal and not 

forwarded to the destination. The major weaknesses associated with the DF 

strategy are high complexity and error propagation, due to incorrect 

decoding at the relay node [41]. 

 In general, the transmission protocol for both cooperative strategies 

requires two phases. In phase one, the source broadcasts its information to 

the relay nodes and the destination (solid lines in Figure 1-6). In the second 

phase, the relays process the received signal according to the cooperative 

strategy employed before forwarding it to the destination node (dotted lines 

in Figure 1-6). Finally, the destination receives multiple copies of the 

source’s signal with different magnitudes and phases. There are different 

methods available to combine signals received from multiple diversity 

branches. The optimal combining scheme maximises the overall signal to 

noise ratio and is known as maximum ratio combining [9, 11, 14]. 

1.4 Literature Review 

The idea of MAMSK modulation scheme can be traced back four decades, 

to when Simon [1] demonstrated that an offset quadrature amplitude shift 

keying (QASK) signal with half-cycle sinusoidal symbol shaping can be 

represented as an n-component version of a  minimum shift keying (MSK) 

signal. The spectral advantage of such signals over conventional offset 

QASK with rectangular pulses follows directly from the advantage of MSK 

over offset quadrature phase shift keying (QPSK). The result showed that a 

signal set obtained by summing two MSK signals with 6 dB difference in 

power is spectrally equivalent to an offset QASK signal set composed of 16 

signals. Two years later, in a laboratory environment Weber et al. [2] 

constructed a physical bandwidth compressive modem making use of 
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MAMSK signals. The entire system operated at 1 Mbits/s and achieved a 

measured bit error rate (BER) performance within 0.5 dB of the theoretical 

value for an AWGN channel. 

The effect of imperfect phase synchronisation on the coherent detection 

of MAMSK signals is analysed in [42], where it is shown that MAMSK 

schemes are less sensitive to imperfect carrier recovery than the 

corresponding quadrature amplitude modulation (QAM) schemes. The work 

of [7] pointed out that the phase change in a MAMSK modulated signal is 

determined by the phase of the MSK component with the larger amplitude. 

The work of [43] has exploited this property and proposed a differential 

MAMSK receiver based on the regeneration of the larger MSK signal 

component. The proposed receiver structure is relatively simple, does not 

require carrier phase recovery and requires an additional 1 dB of received 

signal power to achieve the BER performance of coherent detection. In [44], 

it has been shown that a MAMSK signal can outperform a QAM modulated 

signal when used with orthogonal frequency division multiplexing (OFDM) 

due to its low peak to average power ratio (PAR). 

 Transmit diversity in conjunction with continuous phase modulation 

(CPM) has attracted the attention of researchers [45-49]. To overcome the 

effect of multipath fading, an early transmit diversity scheme employing 

MSK signals with two-bit differential detection was proposed by Ogose  et 

al. [46]. The proposed system provides an improvement in BER 

performance over a fading channel but at the cost of increased bandwidth. 

More recently, the work of [49] employed simple delay diversity to present a 

space-time coded scheme using MSK. The performance of iterative non-

coherent decoding in a fast fading channel for a serial concatenated MSK 

modulated STBC is simulated and analysed in [50]. In a quasi-static fading 

channel, 4-state and 8-state STTC schemes with MSK have been presented 

in [51] for two transmit and N receive antennas. The proposed space-time 

MSK codes provide full rate, full diversity, high coding gain and are based 

on a technique similar to the [52, 53] super orthogonal STTCs. An MSK 

signal sampled at the symbol rate with a two transmit antenna STBC based 
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on the Alamouti STBC is investigated in [54]. The scheme takes advantage 

of the block-wise differential encoding and guarantees a diversity order of 

two. 

To date, the majority of research on space-time coded signals is based on 

linear modulations such as QAM and QPSK. Moreover, there is a few 

papers (for example [47, 55-59]) on space-time coding that make use of 

CPM signals. Most of the STC-CPM schemes proposed in the literature 

employ coherent demodulation that requires expensive and complex 

receivers. In [58, 60-63] simplified and non-coherent detectors have been 

developed. The reduced complexity receiver [60] requires the number of 

receive antennas to be greater than or equal to the number of transmit 

antennas. In fact, as far as we are aware, there has been no research done on 

space-time coding with MAMSK or multi-amplitude CPM (MACPM) 

signals. The focus of this thesis is on design and implementation of STBCs 

in conjunction with a MAMSK modulation scheme (STBC-MAMSK). 

1.5 Thesis Contributions and Outline  

The electromagnetic radio spectrum is a natural resource, finite, very 

valuable and demand for spectrum appears virtually limitless. One approach 

to mitigating demand is the use of bandwidth efficient modulation schemes 

such as MSK. A MAMSK modulation scheme is a superposition of multi 

level (𝑀) MSK signals and thus its spectral efficiency is 𝑀 times that of an 

MSK signal [2, 44]. Furthermore, a MAMSK signal envelope never reaches 

zero [44] because the constituent signals have unequal but constant 

amplitude. This enables MAMSK modulated signals to utilize low cost and 

power efficient amplifiers operating in their nonlinear regions [64]  with 

only a small signal distortion. Of course, this is under the assumption that 

we generate and amplify each MSK component signal independently prior to 

summation [42, 65].  
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MAMSK modulation provides a remarkable number of benefits such as 

continuous phase, bandwidth efficient and sharper spectral sidelobe roll-off 

and there has not been much work done to explore all the properties of the 

MAMSK signals. The first contribution of the thesis is to reveal new 

characteristics of MAMSK modulation schemes and to analytically prove 

some simulation results that have been claimed by others [2, 7, 43]. A novel 

approach to analytically evaluate the bit error probability for coherent 

detection of a 𝑀-level MAMSK (𝑀-MAMSK) transmission through an 

AWGN is presented. The performance of the differential receiver proposed 

in [43] is simulated in MATLAB and compared to that of coherent 

detection. 

Recent wireless applications demand higher data rates, greater system 

capacity and low bit error rate. These strict requirements pose a great 

challenge to wireless system designers. The work of [3, 5] confirmed that a 

MIMO system can increase system capacity in proportion to the number of 

transmit and receive antennas employed. Combining MIMO systems with 

bandwidth efficient modulation schemes as an application of spatial 

diversity can transmit more data over the same allocated spectrum. The 

second contribution of the thesis is to design and develop STBC-based 

MIMO radio systems in conjunction with a 2-MAMSK modulation scheme 

to achieve high capacity data transmission and to improve bit error 

performance. 

Extending what we have discussed in the previous section, cooperative 

communication has been shown to provide the network with higher 

throughput, reduced energy requirements and extended coverage [32, 35, 66, 

67]. The final contribution of the thesis is to merge the benefits of MAMSK 

signals and virtual MIMO systems in a relaying wireless network with two 

users that communicate data packets to a common destination. Cooperative 

transmit diversity based on superposition modulation [68] is considered with 

the MAMSK signal. Furthermore, we focus on the DF relay strategy in a 

half-duplex environment. 
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The rest of the thesis is organised in the following manner. Chapter 2 

presents some relevant modulation schemes and their properties. The 

MAMSK modulator and the performance of the differential detector in an 

AWGN channel are described. The optimum maximum likelihood detector 

is described as well as some important performance measures in wireless 

communication systems. The chapter ends with a brief review of STBCs that 

have been developed for frequency-flat fading channels, in particular, the 

Alamouti scheme. The primary objective of this chapter is to provide the 

reader with all the necessary terminology and background materials that are 

used throughout the thesis. In chapter 3, we present characteristics of 

MAMSK signals, including a closed form expression for the minimum 

squared Euclidean distance of a 𝑀-level MAMSK signal, power spectral 

density of MAMSK, analysis of its phase tree and trellis, MAMSK signal 

trajectory and explicitly showing that the larger MSK signal is dominant in 

determining the overall phase of a MAMSK signal. Chapter 4 describes the 

design and implementation of an orthogonal STBC in conjunction with a 2-

MAMSK modulated signal. In chapter 5, a multiuser cooperation system 

based on superposition modulation utilizing DF transmission strategy is 

presented. The thesis is concluded in Chapter 6, with a summary of the main 

results and a list of suggestions for further research. 
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Chapter 2 

2 Background

2.1 Basic Modulation Schemes 

Modulation schemes use a sequence of digital symbols to vary parameters 

such as amplitude, phase or frequency of a high frequency sinusoidal carrier 

signal. The choice of modulation is crucial to the design of wireless 

communication systems. Each type has its own advantages and 

disadvantages depending on many factors such as system complexity, 

available power and bandwidth resources. In general, all digital modulation 

schemes may be classified into two main categories: constant envelope and 

non-constant envelope. 

 There are three major schemes of carrier modulation as shown in Figure 

2-1. One scheme conveys the information in carrier amplitude variations and 

is known as amplitude shift keying (ASK). The other two carry the 

information in carrier phase or frequency variations and are known as phase 

shift keying (PSK) and frequency shift keying (FSK), respectively. Using 

these basic ideas as a foundation, a variety of modulation schemes can be 

derived from their combinations. As an example, QPSK is generated by 

combining two binary PSK (BPSK) signals with orthogonal carriers. More 

advanced digital modulation schemes include MSK, CPM, QAM, MAMSK 

and so forth. 
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Figure 2-1 Basic binary carrier modulation schemes 

In many digital transmitters, it is desirable to operate power amplifiers at 

or near saturation to achieve maximum power efficiency. Signals with 

constant envelope and continuous phase are well suited to this type of 

wireless application. Multilevel amplitude modulation techniques such as 

𝑀-ary QAM (M-QAM) offer higher transmission rates for a given signal 

bandwidth. The penalty paid for this improvement is the requirement to use 

less efficient and more expensive linear amplifiers. In the next sections, we 

briefly review some modulation schemes which are relevant to the thesis. 

For more detailed information on modulation schemes and their 

characteristics, see references [7, 8, 11].  

2.2 Quaternary Phase Shift Keying 

In QPSK, the input binary data stream is split into in-phase (𝐼) and 

quadrature (𝑄) components. These are then independently modulated onto 



18 

 

two orthogonal basis functions. The bit rate in either the 𝐼 or the 𝑄 channel 

is equal to one-half of the input data rate. As a result, phase changes over 

intervals of 2𝑇𝑏, where 𝑇𝑏 is the duration of each bit. Accordingly, a 

maximum phase transition of ±𝜋 radians can occur, such phase transitions 

causes the signal envelope to go to zero momentarily. The nonlinear 

behaviour of power amplifiers can distort such signals, which leads to 

undesirable spectral regrowth. 

 QPSK is a special case of 𝑀-ary PSK (𝑀-PSK) with 𝑀 = 4, and we can 

define its signal set for 𝑖 = 1, 2, 3, 4 as 

𝑠𝑖(𝑡) =  √
2𝐸

𝑇
 cos (2𝜋𝑓𝑐𝑡 + (2𝑖 − 1)

𝜋

4
) , 0 ≤ 𝑡 ≤ 𝑇 (2.1) 

here, 𝐸 is the signal energy per symbol interval, 𝑇 is the duration of a 

symbol and 𝑓𝑐 is the signal carrier frequency. From this it can be seen that 

the phase of the carrier takes on one of four equally spaced values from the 

set {𝜋 4⁄ , 3𝜋 4⁄ , 5𝜋 4⁄ , 7𝜋 4⁄ }, where each value from the set corresponds 

to a unique pair of information bits. Normally, the carrier frequency is 

chosen as an integer multiple of the symbol rate, as 𝑓𝑐 = 
𝑘
𝑇⁄ , where 𝑘 is an 

integer. 

Equation (2.1) equivalently can be written as 

𝑠𝑖(𝑡) = √𝐸 cos ((2𝑖 − 1)
𝜋

4
)  𝜙1(𝑡) + √𝐸 sin ((2𝑖 − 1)

𝜋

4
)  𝜙2(𝑡) (2.2) 

where, 𝜙1(𝑡) and 𝜙2(𝑡) are orthonormal basis functions, defined over the 

interval 0 ≤ 𝑡 ≤ 𝑇 as 

𝜙1(𝑡) =  √
2

𝑇
 cos 2𝜋𝑓𝑐𝑡  (2.3) 
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𝜙2(𝑡) = −√
2

𝑇
 sin 2𝜋𝑓𝑐𝑡 (2.4) 

The message signals with respect to the coordinate axes, 𝜙1(𝑡) and 𝜙2(𝑡) 

can be expressed as a two-dimensional vector given by, 

𝒔𝑖 = (√𝐸 cos [(2𝑖 − 1)
𝜋

4
],   √𝐸  sin [(2𝑖 − 1)

𝜋

4
]) ,       𝑖 = 1,2,3,4 (2.5) 

In this representation, a QPSK signal can be depicted using a two-

dimensional signal space diagram with four points as shown in Figure 2-2. It 

should be noted that different QPSK signal sets can be obtained by simply 

rotating the constellation points [69].  

 

Figure 2-2 QPSK signal constellation with Gray coding 

Offset QPSK (OQPSK) is a modified form of QPSK, where the I and Q 

channels are offset from each other by half a symbol period, so at any 

transition, only one of them changes, and therefore the maximum phase 
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transition allowed is ± 𝜋/2 radians. This modification to QPSK prevents the 

signal envelope from passing through the origin which makes it less 

susceptible to distortion in nonlinear amplifiers. 

2.3 Minimum Shift Keying  

Minimum shift keying [70] is a continuous phase modulation scheme with 

constant envelope signal and excellent spectral roll-off characteristics [71-

73]. It can be derived from offset QPSK [71, 74] by shaping the pulses with 

half sinusoidal waveforms, or can be derived as a special case of continuous 

phase frequency shift keying (CPFSK) [75, 76]. In this section, we review 

both methods of obtaining MSK signals. 

2.3.1 Generating MSK Signals From OQPSK 

In the OQPSK modulation scheme, the staggered data streams of the 𝐼 and 𝑄 

channels are directly modulated onto two orthogonal carriers. To obtain an 

MSK signal, each 𝐼 or 𝑄 bit is weighted with a half cycle cosine pulse 

shaping function, 𝐴 cos (
𝜋𝑡

2𝑇
). The outcome is then modulated onto one of 

the two orthogonal carriers, sin(2𝜋𝑓𝑐𝑡) and cos(2𝜋𝑓𝑐𝑡). MSK signals can 

mathematically be expressed as [8, 71] 

𝑠(𝑡) = √
2𝐸

𝑇
(𝑎𝐼(𝑡) cos (

𝜋𝑡

2𝑇
) cos 2𝜋𝑓𝑐𝑡 + 𝑎𝑄(𝑡) sin (

𝜋𝑡

2𝑇
) sin 2𝜋𝑓𝑐𝑡), (2.6) 

where, 𝐸 is the energy per information bit, 𝑇 is the bit period of the data 

streams,  𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) encode the even and odd information respectively 

with a sequence of square pulses of duration 2𝑇 and 𝑓𝑐 is the carrier 

frequency. 

In the 𝑘𝑡ℎ bit period of 𝑇 seconds, 𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) take the values  ±1. 

Consequently, MSK signals can also be expressed in the form [8], 
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𝑠(𝑡) = √
2𝐸

𝑇
cos [2𝜋 (𝑓𝑐 + 𝑑𝑘

1

4𝑇
) 𝑡 + 𝛷𝑘] , 𝑘𝑇 ≤ 𝑡 ≤ (𝑘 + 1)𝑇 (2.7) 

where 𝑑𝑘 is −1 if 𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) have the same sign and +1 otherwise [8], 

or equivalently 𝑑𝑘 = −𝑎𝐼(𝑡) 𝑎𝑄(𝑡). In [8] also shown that, 𝛷𝑘 = 0 or 𝜋 

corresponding to 𝑎𝐼(𝑡) = 1 or −1, or equally 

𝛷𝑘 = 
𝜋

2
(1 − 𝑎𝐼(𝑡)). (2.8) 

From Equation (2.7), it can be noted that the signal is binary FSK signal 

with the two frequencies (𝑓𝑐 +
1

4𝑇
 and 𝑓𝑐 −

1

4𝑇
) and with a symbol period of 

2𝑇, where each symbol is 2 bits. Also, both 𝑑𝑘 and 𝛷𝑘 are continuous over a 

bit duration of 𝑇 seconds, since 𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) are constant over 𝑇 seconds. 

2.3.2 Generating MSK Signals From CPFSK 

Alternatively, MSK signals can be derived as a special case of continuous 

phase frequency shift keying (CPFSK) [72, 75],  defined over the interval 

𝑘𝑇 ≤ 𝑡 ≤ (𝑘 + 1)𝑇 as 

𝑠(𝑡) = √
2𝐸

𝑇
cos (2𝜋𝑓𝑐𝑡 +

𝜋ℎ𝑑𝑘(𝑡 − 𝑘𝑇)

𝑇
+ 𝜋ℎ∑𝑑𝑖

𝑘−1

𝑖=0

 ). (2.9) 

This can be simplified to the form, 

𝑠(𝑡) = √
2𝐸

𝑇
cos [2𝜋𝑓𝑐𝑡 + ℎ𝑑𝑘

𝜋𝑡

𝑇
+ 𝛷𝑘] , 𝑘𝑇 ≤ 𝑡 ≤ (𝑘 + 1)𝑇 (2.10) 

where, 𝐸 is the energy per information bit, 𝑇 is the bit period of the data 

streams, 𝑓𝑐 is the carrier frequency, 𝑑𝑘 is the input data with the values of 

±1 transmitted at rate 𝑅 = 1/𝑇 and ℎ is the modulation index. The term 𝛷𝑘 



22 

 

represents the excess phase which is constant in the bit interval, and defined 

as [7, 8, 11],  

𝛷𝑘 =  𝜋ℎ (∑𝑑𝑖 − 𝑘𝑑𝑘

𝑘−1

𝑖=0

). (2.11) 

In MSK, the frequency separation between the two tones 𝑓𝑐 +
1

4𝑇
 and 

𝑓𝑐 −
1

4𝑇
 is Δ𝑓 =  1 2𝑇⁄ . This is the minimum frequency spacing that allows 

two FSK signals to be coherently orthogonal and corresponds to ℎ = 0.5, 

thus the modulated signal becomes, 

𝑠(𝑡) = √
2𝐸

𝑇
cos [2𝜋𝑓𝑐𝑡 + 𝑑𝑘

𝜋𝑡

2𝑇
+ 𝛷𝑘] ,      𝑘𝑇 ≤ 𝑡 ≤ (𝑘 + 1)𝑇 (2.12) 

It is exactly what we had before. The MSK signal formed in this case is also 

known as fast frequency shift keying (FFSK) [77-80]. 

2.3.3 MSK Modulator 

In this subsection, we discuss the I-Q implementation of MSK. The MSK 

modulator [81, 82] shown in Figure 2-3 is only one among several possible 

configurations. The offset QPSK realisation of MSK suggested here is a 

direct implementation of Equation (2.6). After the serial to parallel 

conversion, the input data stream, 𝑎(𝑡) is split into an even bit stream, 𝑎𝐼(𝑡) 

and an odd bit stream, 𝑎𝑄(𝑡), taking values from the set {−1,+1}. 

 As in offset QPSK, 𝑎𝑄(𝑡) is delayed by 𝑇 relative to 𝑎𝐼(𝑡) and the 

duration of each bit of the sequences is extended from the original duration 

of 𝑇, to 2𝑇 seconds. Each bit of the two data streams is converted into a 

signal amplitude of +𝐴 and a signal amplitude of −𝐴 corresponding to +1 

and −1, respectively. Typically, the amplitude, 𝐴 is expressed in terms of bit 

energy, 𝐸 and bit duration, 𝑇,  and is given by, 𝐴 = √(2𝐸 ⁄ 𝑇). 
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The two local oscillators generate cos(2𝜋𝑓𝑐𝑡) and cos (
𝜋𝑡

2𝑇
), which are 

transformed to sin(2𝜋𝑓𝑐𝑡) and sin (
𝜋𝑡

2𝑇
) respectively by the 𝜋/2 phase 

shifters. The mixers multiply the two orthogonal carriers with the half cycle 

sinusoidal shaped 𝐼 and 𝑄 waveforms. Finally, the summer adds the outputs 

of the two mixers together to produce an MSK signal. 
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Figure 2-3 Block diagram of MSK modulator 

2.4 Multi-Amplitude Minimum Shift Keying 

As described in the previous sections, MSK is a bandwidth efficient 

modulation scheme that has properties such as, continuous phase, sharp 

spectral sidelobe roll-off and constant envelope. The same properties hold 

for multi level (𝑀) multi-amplitude minimum shift keying (M-MAMSK) 

except that it has a non-constant envelope but with the advantage of 

increased spectral efficiency. According to [1, 2, 42-44, 83] M-MAMSK 

signals can be generated by the superposition of MSK component signals. In 

[84], it is proposed that an M-MAMSK signal can also be represented in 

term of orthogonal frequency division multiplexing (OFDM). In the 

following subsections, we discuss these two representations of M-MAMSK 

signals. 
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2.4.1 Generating M-MAMSK Signal From MSK 

M-MAMSK is a generalisation of conventional MSK in which the signal 

amplitude is allowed to vary over a set of 𝑀 > 2 amplitude values while the 

phase is constrained to be continuous. M-MAMSK signals may be formed 

as the superposition of multiple MSK signals with different amplitudes. For 

M-MAMSK signals there is no requirement for the MSK constituent signals 

to be orthogonal, in fact, they are co-phased [44]. In addition, the amplitudes 

of the MSK components are not equal and this prevents the phase track 

backing to the previous one. 

For example, a two level MAMSK (i.e. 2-MAMSK1) signal is obtained 

by summing two MSK signals with different amplitudes (6 dB difference in 

power) and can be expressed as 

𝑠2−𝑀𝐴𝑀𝑆𝐾(𝑡) =  𝑠𝑀𝑆𝐾 1(𝑡)  +  𝑠𝑀𝑆𝐾 2(𝑡) (2.13) 

Using the results from the previous sections, we may define a two level 

MAMSK signal as 

𝑠(𝑡, 𝛼, 𝛽) = 𝐴 𝑠𝑀𝑆𝐾(𝑡, 𝛼) + 2𝐴 𝑠𝑀𝑆𝐾(𝑡, 𝛽) 

 = 𝐴 cos(2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼)) + 2𝐴 cos(2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽)) 

(2.14) 

where, 𝑠𝑀𝑆𝐾(𝑡, 𝛼) is the MSK component with the smaller amplitude, 

 𝑠𝑀𝑆𝐾(𝑡, 𝛽) is the MSK component with the larger amplitude, 𝑓𝑐 is the signal 

carrier frequency,  and 𝐴 is the amplitude which is defined in [43, 73] as 

𝐴 = √
2𝐸

5𝑇
, (2.15) 

here, 𝐸 is the average signal energy per symbol interval, 𝑇 is the duration of 

a symbol interval and the sequences 𝛼 and 𝛽 represent input data with 

                                                 
1 A 2-MAMSK signal is usually referred to in the literature as “Multi-Amplitude Minimum 

Shift Keying”, or MAMSK for short. 
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values ±1. 𝜙(𝑡, 𝛼) and 𝜙(𝑡, 𝛽) are the information carrying parts of the 

MSK signal phases and may be expressed as 

𝜙(𝑡, 𝛼) =
𝜋

2
∑ 𝛼𝑘 + 

𝜋

2𝑇
𝛼𝑛

𝑛−1

𝑘=−∞

(𝑡 − 𝑛𝑇), 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (2.16) 

𝜙(𝑡, 𝛽) =
𝜋

2
∑ 𝛽𝑘 + 

𝜋

2𝑇
𝛽𝑛

𝑛−1

𝑘=−∞

(𝑡 − 𝑛𝑇), 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (2.17) 

To find the value of 𝐴, recall that energy of a signal of amplitude, 𝐴  is 

equal to 

𝐸 =
𝑇

2
 𝐴2 (2.18) 

Now, consider that the amplitude of the larger MSK component is twice that 

of the MSK component with the smaller amplitude, then 𝐸 becomes 

𝐸 =
𝑇

2
(𝐴2 + (2𝐴)2) =

5𝐴2𝑇

2
 (2.19) 

Rearranging to solve for 𝐴 and we obtain 

𝐴 = √
2𝐸

5𝑇
. (2.20) 

As a generalisation, an MAMSK signal with 𝑀 > 2 component MSK 

signals (i.e. M-MAMSK2) is defined in [64] as 

𝑠𝑀−𝑀𝐴𝑀𝑆𝐾(𝑡, 𝛼1, 𝛼2, … , 𝛼𝑀 ) =
1

∑ 22(𝑖−1)
𝑀

𝑖=1

  ∑𝑠(𝑡, 𝛼𝑖)

𝑀

𝑖=1

 (2.21) 

                                                 
2 Several authors use the notation N-MSK in place of M-MAMSK.   
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where, 𝑠(𝑡, 𝛼𝑖) is the 𝑖𝑡ℎ MSK component of the M-MAMSK signal, given 

by, 

𝑠(𝑡, 𝛼𝑖) = 2(𝑖−1)(√
2𝐸

𝑇
cos(2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑖))), (2.22) 

and 𝜙(𝑡, 𝛼𝑖) is the phase of the  𝑖𝑡ℎ MSK component signal, expressed as 

𝜙(𝑡, 𝛼𝑖) =
𝜋

2
∑ 𝛼𝑖𝑘 + 

𝜋

2𝑇
𝛼𝑖𝑛

𝑛−1

𝑘=−∞

(𝑡 − 𝑛𝑇), 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (2.23) 

The sequences {𝛼𝑖} for 𝑖 = 1, 2, 3, … ,𝑀 are statistically independent, binary 

valued sequences that take values from the set {+1, −1} and all other terms 

are defined as before. 

From Equation (2.22), we observe that each MSK component in the sum 

has a constant envelope. A number of authors [42, 64, 65, 85] point out that 

this aspect allows an efficient high-power M-MAMSK signal with 𝑀 ≥ 2 to 

be obtained by combining 𝑀 nonlinearly amplified MSK signals. An 

attractive feature of this is that despite being a non-constant envelope 

modulation, it can be used in systems with efficient nonlinear power 

amplifiers. This is useful in cases where power resources are limited. 

2.4.2 Representation of M-MAMSK Signal in Terms of OFDM 

M-MAMSK signals can also be represented in term of OFDM [84]. The 𝑛𝑡ℎ 

symbol interval of the complex signal of baseband M-MAMSK can be 

expressed as 

𝑠𝑀−𝑀𝐴𝑀𝑆𝐾(𝑡) = ∑𝐶𝑘(𝑡) ∙

𝑁

𝑘=1

𝑒𝑗
2𝜋𝑘𝑡
𝑁𝑇 , 0 < 𝑡 < 𝑁𝑇 (2.24) 
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where, 𝑘 is the index of the sub-carrier, 𝑁 is the total number of the sub-

carriers, 𝑇 is the time duration of every symbol and 𝐶𝑘(𝑡) is the M-MAMSK 

modulated information symbol in the 𝑘𝑡ℎ sub-carrier, defined as 

𝐶𝑘(𝑡) =∑𝐴𝑖 ∙

𝑀

𝑖=1

𝑒𝑗𝜃𝑖𝑘+ 𝑗𝛼𝑖𝑘
𝜋𝑡
2𝑁𝑇 (2.25) 

here, 𝛼𝑖𝑘 is the input binary data sequences with values of ±1, 𝜃𝑖𝑘 is the 

phase state and 𝐴𝑖 is the amplitude of the 𝑖 th component inside the M-

MAMSK signal. 

As an example, if we consider a 2-MAMSK signal (i.e. 𝑀 =  2), then the 

transmitted signal, 𝑠2−𝑀𝐴𝑀𝑆𝐾(𝑡) can be written in the form, 

𝑠2−𝑀𝐴𝑀𝑆𝐾(𝑡) = ∑(𝐴1𝑒
𝑗𝜃1𝑘+ 𝑗𝛼1𝑘

𝜋𝑡
2𝑁𝑇 + 𝐴2𝑒

𝑗𝜃2𝑘+ 𝑗𝛼2𝑘
𝜋𝑡
2𝑁𝑇) ∙

𝑁

𝑘=1

𝑒𝑗
2𝜋𝑘𝑡
𝑁𝑇  (2.26) 

From the above equation, we can see that when the constituent signals have 

unequal amplitudes (when 𝐴1 ≠ 𝐴2), the 2-MAMSK signal never reaches 

zero signal energy. This should improve the performance of the signal as it 

is less sensitive to nonlinear power amplifiers [44]. From this result one can 

conclude that a MAMSK modulated signal is both power and bandwidth 

efficient. Hence, it is an appealing modulation scheme for systems with 

limited power and bandwidth resources.  

 

2.5  2-MAMSK Modulator 

A simplified block diagram of a 2-MAMSK modulator is illustrated in 

Figure 2-4. 
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Figure 2-4 Block diagram of a 2-MAMSK modulator 

Let us define the terms and explain the operation of each block briefly. 𝛼, is 

the information sequence that is carried by the MSK constituent with smaller 

amplitude. 𝛽, is the information sequence that is carried by the MSK 

constituent with larger amplitude. Both 𝛼 and 𝛽 are independent and 

identically distributed binary random variables, each taking values from the 

set {−1, +1}. 

The MSK Modulator block (described in section 2.3) takes the input 

sequence and generates a continuous phase modulated signal based on 

minimum shift keying and its output in general given by, 

𝑠𝑀𝑆𝐾(𝑡, 𝐼) = 𝐴 cos(2𝜋𝑓𝑐𝑡 +  𝜙(𝑡, 𝐼)) (2.27) 

where 𝐴 is the amplitude,  𝐼 is the input sequence and  𝜙(𝑡, 𝐼) is the 

information carrying part of the MSK signal phase and expressed 

mathematically as 

𝜙(𝑡, 𝐼) =
𝜋

2
∑  𝐼𝑘 + 

𝜋

2 𝑇 
𝐼𝑛

𝑛−1

𝑘=−∞

(𝑡 − 𝑛𝑇), 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (2.28) 

where 𝑇 is the duration of one symbol interval. 
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To get a better understanding of the above equation, let us plot the MSK 

signal phase for a given input data sequence, 

𝐼 = {−1,−1,+1,+1,+1, +1,−1} 

The MSK signal phase for the above information sequence is shown in 

Figure 2-5. 

 

Figure 2-5 MSK signal phase for some particular information sequence 

The phase values at the time instants 𝑡 = 𝑛𝑇 are represented in the figure 

as small circles. From the above figure, we observe that the MSK signal 

phase is a piecewise linear function of time and the input data sequence. 

Clearly, we can see that the MSK signal phase change within the symbol 

interval depends on the input data, 𝐼. 𝐼𝑛 = +1, causes the MSK signal phase 

to increase by 𝜋 ⁄ 2 while 𝐼𝑛 = −1, causes the phase to decrease by −𝜋 ⁄

2, over a of 𝑇-sec interval. 
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From these observations, we can define the difference in phase, 𝛥𝜙 

between symbol intervals as, 

𝛥𝜙 =  𝜙((𝑛 + 1)𝑇, 𝐼)  − 𝜙(𝑛𝑇, 𝐼)  =
𝜋

2
𝐼𝑛  (2.29) 

The above result is important because it allows symbol-by-symbol 

differential detection of an MSK signal [86, 87], which is significantly less 

complex to implement than coherent detection. In [43], this idea is extended 

to differential detection of MAMSK signal, as we shall see later on in the 

chapter. 

Now using the above results, the output of the MSK 1 and MSK 2 

modulator blocks as a function of time and the data sequences, 𝛼 and 𝛽 can 

be defined in the form, 

𝑠𝑀𝑆𝐾 1(𝑡, 𝛼) =  𝐴 cos(2𝜋𝑓𝑐𝑡 +  𝜙(𝑡, 𝛼)) , 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (2.30) 

𝑠𝑀𝑆𝐾 2(𝑡, 𝛽) =  2𝐴 cos(2𝜋𝑓𝑐𝑡 +  𝜙(𝑡, 𝛽)) , 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (2.31) 

where 𝑠𝑀𝑆𝐾 1(𝑡, 𝛼) is the MSK component with the smaller amplitude and 

𝑠𝑀𝑆𝐾 2(𝑡, 𝛽) is the MSK component with the larger amplitude. 𝜙(𝑡, 𝛼) and 

𝜙(𝑡, 𝛽) are information carrying phase functions, which are defined in 

Equations (2.16) and (2.17), respectively. 

It can be noted from the above equations that the amplitude of the larger 

MSK constituent is twice that of the smaller MSK constituent. As illustrated 

in Figure 2-4, a 2-MAMSK modulated signal is a superposition of the two 

MSK components. The output of the 2-MAMSK modulator defined over the 

interval 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 can be written as 

𝑠(𝑡, 𝛼, 𝛽) = 𝑠𝑀𝑆𝐾 1(𝑡, 𝛼) + 𝑠𝑀𝑆𝐾 2(𝑡, 𝛽) 

 = 𝐴 cos(2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼)) + 2𝐴 cos(2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽)) 

(2.32) 
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Figure 2-6 illustrates a 2-MAMSK modulated signal with carrier 

frequency of 2 Hz3 , for the information sequences, 

𝛼 = {+1,+1,−1,−1,+1,−1,−1,−1} 

 𝛽 = {−1,+1, −1,+1,+1,−1, +1,−1} 

 

Figure 2-6 A 2-MAMSK signal at fc =2 Hz 

From Figure 2-6, we observe that 𝛽𝑛 = +1 causes higher frequency 

transmission while 𝛽𝑛 = −1 causes lower frequency transmission. For the 

time intervals where 𝛽𝑛 = 𝛼𝑛 the signal amplitude is constant, but there are 

amplitude changes in intervals when  𝛽𝑛 ≠ 𝛼𝑛. As shown in the above 

figure, the signal amplitudes states are specified by an amplitude level from 

the set of amplitudes {±1, ±3}. The amplitude level of ±1 corresponds to 

the case when the two MSK signals are out of phase with each other by 𝜋 

                                                 
3 The carrier frequency of 2 Hz is not realistic; it is used here only for demonstration 

purposes. 
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and an amplitude level of ±3 occurs when both MSK signals are in phase 

with each other. Based on these results, the smaller MSK constituent is 

constrained such that at the start and end of each symbol interval, it is either 

in phase or out of phase by 𝜋 radians with the larger MSK component. 

2.6 The Maximum Likelihood Detector 

The function of a demodulator is to estimate the transmitted information bits 

from the corrupted received signal. The process of demodulation can be 

accomplished in several ways.  In this section, we discuss a maximum 

likelihood (ML) detector which is robust and makes an optimum decision 

assuming a signalling waveform transmitted through the AWGN channel. 

The ML detector is the receiver that selects the most likely signal sent, given 

the received signal 𝑟(𝑡) that it has observed. Consequently, the ML detector 

yields optimum BER performance [88, 89] among all detection methods, but 

its exponential complexity is the highest [90]. This is due to the fact that the 

ML algorithm is performed through an exhaustive search over all possible 

candidate vector symbols. 

Assuming equally likely transmission of all symbols, that is if 

𝑃(𝒔𝑖) =
1

𝑀
, ∀ 𝑖 = 1, 2, … ,𝑀. (2.33) 

Then assuming Gaussian noise, the optimum decision rule based on the ML 

criterion is obtained by calculating [7, 72], for each 𝑖 

𝐷(𝒓,  𝒔𝑖) = ∫[𝑟(𝑡) − 𝑠𝑖(𝑡)]
2

𝑇

0

 𝑑𝑡 (2.34) 

where 𝐷(𝒓, 𝒔𝑖), 𝑖 = 1, 2, … ,𝑀 is the Euclidean distance metric. Now, 

expanding Equation (2.34), we get 



33 

 

𝐷(𝒓, 𝒔𝑖) = ∫𝑟2(𝑡)

𝑇

0

 𝑑𝑡 + ∫ 𝑠𝑖
2(𝑡)

𝑇

0

 𝑑𝑡 − 2∫ 𝑟(𝑡) 𝑠𝑖(𝑡)

𝑇

0

 𝑑𝑡 (2.35) 

We can see that the first term of the right hand side of Equation (2.35) is 

constant with respect to 𝑖, and, thus it may be omitted from the computation 

of the metrics. The receiver needs only to form the correlation metrics (last 

term of Equation (2.35)) and subtract it from the second term, which is the 

energy of 𝑠𝑖(𝑡). It is also to be noted that if all transmitted signals have 

equal energy, only the correlation between the received signal, 𝑟(𝑡) and each 

of the 𝑀 possible signalling waveforms needs to be performed. A detector 

based on these calculations is called a correlation receiver [7, 72]. In chapter 

3, the optimum bit error probability for M-MAMSK transmission through an 

AWGN channel is derived from these concepts. 

2.7 2-MAMSK Phase and Complex Envelope 

In this section, we provide analytical derivations of the phase and complex 

envelope of a 2-MAMSK signal. These two terms are essential for 

implementing and describing the 2-MAMSK differential detector proposed 

in [43]. From trigonometric identities, we have  

cos(𝐴 +  𝐵)  =  cos 𝐴 cos 𝐵 −  sin 𝐴 sin 𝐵 (2.36) 

Applying this identity to Equation (2.32), we obtain 

𝑠(𝑡, 𝛼, 𝛽) = 𝐴[cos(2𝜋𝑓𝑐𝑡) cos(𝜙(𝑡, 𝛼)) − sin(2𝜋𝑓𝑐𝑡) sin(𝜙(𝑡, 𝛼)) +  

 2 cos(2𝜋𝑓𝑐𝑡) cos(𝜙(𝑡, 𝛽))−2sin(2𝜋𝑓𝑐𝑡) sin(𝜙(𝑡, 𝛽))] 

(2.37) 

Factoring and simplifying the above expression yields, 
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𝑠(𝑡, 𝛼, 𝛽)  =  𝐴 cos(2𝜋𝑓𝑐𝑡) [ cos(𝜙(𝑡, 𝛼)) +  2 cos(𝜙(𝑡, 𝛽)) ] 

− 𝐴 sin(2𝜋𝑓𝑐𝑡) [ sin( 𝜙(𝑡, 𝛼)) +  2 sin(𝜙(𝑡, 𝛽)) ] 

(2.38) 

We may then depict these 𝐼 and 𝑄 components as in Figure 2-7. 

ρ

ϕ

I - Channel

Q
 -

 C
h
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Figure 2-7 I and Q representation of 2-MAMSK signal 

From the above figure, we can establish the following: 

a) The phase of the signal is given by 

𝜙 = tan−1 (
 𝑄 

𝐼
) (2.39) 

b) The magnitude (envelope) of the signal is given by 

𝜌 =  √𝐼2 + 𝑄2 (2.40) 

Now, using the above relations with 𝐼 = [ cos(𝜙(𝑡, 𝛼)) +  2 cos(𝜙(𝑡, 𝛽))] 

and 𝑄 = [ sin( 𝜙(𝑡, 𝛼)) +  2 sin(𝜙(𝑡, 𝛽))], we can define the overall phase 

of a 2-MAMSK signal as 

Q  – Channel 

I  – Channel 
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𝜙(𝑡, 𝛼, 𝛽) = tan−1 [

sin𝜙(𝑡, 𝛼) + 2 sin𝜙(𝑡, 𝛽)
  

cos 𝜙(𝑡, 𝛼)+2 cos𝜙(𝑡, 𝛽)
] (2.41) 

Note that the factor of “2”, in the above equation, is dominant in 

determining the overall phase of a 2-MAMSK signal. In the next chapter, we 

will show this explicitly and extend it to M-MAMSK for  𝑀 > 2. 

Next, we substitute the previous values of 𝐼 and 𝑄 into Equation (2.40) to 

obtain an expression for a 2-MAMSK signal envelope, 

𝜌( 𝑡, 𝛼, 𝛽) =  √

{[cos(𝜙(𝑡, 𝛼)) + 2 cos(𝜙(𝑡, 𝛽))]
2

 

       + [sin(𝜙(𝑡, 𝛼)) + 2 sin(𝜙(𝑡, 𝛽))]
2
}

 (2.42) 

Expanding Equation (2.42), we get 

𝜌(𝑡, 𝛼, 𝛽) =

√
  
  
  
  
   {cos2(𝜙(𝑡, 𝛼)) + 4 cos(𝜙(𝑡, 𝛼)) cos(𝜙(𝑡, 𝛽))      

 + 4 cos2(𝜙(𝑡, 𝛽)) + sin2(𝜙(𝑡, 𝛼))                        

   + 4 sin(𝜙(𝑡, 𝛼)) sin(𝜙(𝑡, 𝛽)) + 4 sin2(𝜙(𝑡, 𝛽))}

 

=

√
  
  
  
  
  {sin2(𝜙(𝑡, 𝛼)) + cos2(𝜙(𝑡, 𝛼))} +  4 {sin2(𝜙(𝑡, 𝛽))

+ cos2(𝜙(𝑡, 𝛽))} + 4 {cos(𝜙(𝑡, 𝛼)) cos(𝜙(𝑡, 𝛽)) 

                                             + sin(𝜙(𝑡, 𝛼)) sin(𝜙(𝑡, 𝛽))}

 

(2.43) 

In order to simplify the above expression, we recall the trigonometric 

identities 

 sin2𝐴 +  cos2𝐴 = 1 (2.44) 

 cos(𝐴 −  𝐵) =  cos 𝐴 cos 𝐵 +  sin 𝐴 sin 𝐵 (2.45) 
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With these relationships, Equation (2.43) simplifies to 

𝜌(𝑡, 𝛼, 𝛽 ) = √5 + 4 cos[𝜙(𝑡, 𝛽) − 𝜙(𝑡, 𝛼)], (2.46) 

where, 𝜌( 𝑡, 𝛼, 𝛽) is the baseband representation of a 2-MAMSK signal 

envelope. The terms 𝜙(𝑡, 𝛼) and 𝜙(𝑡, 𝛽) are defined as in section 2.4.1. For 

example, a 2-MAMSK signal phase and envelope generated by the 

information sequences 𝛼 = {−1,+1,+1,+1,+1,+1,+1,−1} and 

𝛽 = {−1,−1,+1,+1, +1,−1,−1,+1}, are illustrated in Figure 2-8. 

 

Figure 2-8 2-MAMSK signal phase and envelope for a given α and β 
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The overall 2-MAMSK signal phase shown in Figure 2-8 is a piecewise 

function of time and the input data sequences 𝛼 and 𝛽. For the symbol 

intervals where 𝛼𝑛 = 𝛽𝑛, it can be seen that the 2-MAMSK signal phase is 

a piecewise linear function (see time intervals 2𝑇 − 5𝑇 in Figure 2-8). For 

the time intervals where 𝛼𝑛 ≠ 𝛽𝑛 it is a curved function (see time intervals 

5𝑇 −  7𝑇 in Figure 2-8). However, from Figure 2-8, we can see that the 2-

MAMSK signal phase change within the symbol interval depends only on 

the input data sequence, 𝛽, which is carried by the larger MSK constituent. 

The phase of the smaller MSK component causes the “curvy” behaviour of 

the overall 2-MAMSK signal phase when 𝛼𝑛 and 𝛽𝑛 have opposite signs. 

Based on this observation, the phase variation of a 2-MAMSK signal 

within one symbol interval depends primarily on the data transmitted by the 

MSK constituent with the larger amplitude. For example, 𝛽𝑛 = +1, causes 

the overall phase to increase by +𝜋 2⁄ , while 𝛽𝑛 = −1 , causes the overall 

phase to decrease by −𝜋 2⁄ . Thus, the phase difference, 𝛥𝜙(𝑛𝑇, 𝛼, 𝛽) of the 

2-MAMSK signal may be expressed as 

𝛥𝜙(𝑛𝑇, 𝛼, 𝛽) =
𝜋

2
𝛽𝑛.  (2.47) 

The above equation is useful as it allows differential detection of the 

information sequence carried by the larger MSK component from the 2-

MAMSK signal, as we shall see in the next section.  

Furthermore, from Figure 2-8, we observe that the 2-MAMSK signal 

envelope is constant for the time intervals where 𝛼𝑛 = 𝛽𝑛; otherwise it 

changes from 1 to 3 as a sinusoidal function of time. From this observation, 

the data carried by the MSK component with the smaller amplitude can be 

recovered from the 2-MAMSK signal envelope. We will discuss this in 

more detail in the next section. Here, we have briefly summarised some 

aspects of a 2-MAMSK signal phase and envelope in order to present the 2-

MAMSK differential detector. In chapter 3, we provide a more rigorous 

discussion and show a more in-depth analysis of these elements.  
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2.8 2-MAMSK Differential Detector 

In this section a symbol by symbol differential detection for a 2-MAMSK 

signal is presented. The receiver structure [43] is illustrated in Figure 2-9.  
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Figure 2-9 Block diagram of the differential detector 

The first operation performed in the above receiver is to amplify the 

received 2-MAMSK signal by an automatic gain control (AGC) circuit in 

order to adjust the received signal power to an appropriate level.  After 

amplification, the signal is down-converted to an IF or baseband signal and 

sampled 𝑁 times per interval. The sampled baseband 2-MAMSK signal at 

this point has 𝑁 samples per symbol duration. 

 Before discussing the rest of the receiver, we need point out that the 2-

MAMSK differential receiver is based on the following two properties: 
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a) The 2-MAMSK signal is generated by superimposing two MSK 

signals with unequal amplitudes. In particular the amplitude of the 

lager MSK signal is twice that of the smaller one. 

b) The phase difference between symbol intervals of the received 2-

MAMSK signal depends primarily on the input data sequence, 𝛽, 

which is carried by the MSK constituent with the larger amplitude. 

For now, we use it as a observation from simulation [7, 43], we will 

show the derivation of this observation  in chapter 3. 

If the above two properties hold, then the overall phase of the 2-MAMSK 

signal will always follow the phase of the MSK constituent with the larger 

amplitude. As a result, we can extract the information sequence, 𝛽 from the 

phase of the received 2-MAMSK signal. 

The baseband implementation of the differential receiver presented in 

Figure 2-9 is divided into three stages. The first stage begins with 

downsampling the received baseband signal to one sample per symbol. 

Specifically, samples are taken at the symbol rate (i.e. at the time instants 

𝑡 = 𝑛𝑇). The function of the phase detector block is to extract the overall 

phase from the downsampled received signal; this process is based on 

Equation (2.41). Then, we calculate the phase difference, 𝛥𝜙(𝑛𝑇, 𝛼, 𝛽) 

between symbol intervals by subtracting the phase value delayed by one 

symbol from the current value. The difference in phase is given by 

𝛥𝜙(𝑛𝑇, 𝛼, 𝛽) =  𝜙(𝑛𝑇, 𝛼, 𝛽)  − 𝜙((𝑛 − 1)𝑇, 𝛼, 𝛽)  (2.48) 

It is seen from Figure 2-8 that the phase difference, 𝛥𝜙(𝑛𝑇, 𝛼, 𝛽) always 

takes its value from the set {−𝜋 ⁄ 2, +𝜋 ⁄ 2  }. This corresponds to the 

values of  𝛽𝑛 equal to −1 and +1, respectively. The outcome is then passed 

to the hard limiter and the following decisions are made: 

𝛽̂𝑛 = {
+1          𝑖𝑓    𝛥𝜙(𝑛𝑇, 𝛼, 𝛽)    ≥  0

 
  −1          𝑖𝑓    𝛥𝜙(𝑛𝑇, 𝛼, 𝛽)    <  0  

 (2.49) 
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where 𝛽̂ is an estimate of the input data sequence, 𝛽. Thus, we have now 

recovered the information sequence carried by the larger MSK constituent. 

In fact, the process carried out in stage 1 is identical to the differential 

detector [87] used for conventional MSK signals. Consequently, the existing 

MSK differential receivers can be used to recover the information carried by 

the larger MSK component from the received 2-MAMSK signal. 

To recover the information sequence carried by the MSK constituent with 

the smaller amplitude, we perform the following procedures (stage 2 from 

Figure 2-9). 

  First, we use the estimated data sequence, 𝛽̂ as an input to the MSK modulator 

block to generate an MSK signal as described in section 2.3.3. The modulated 

MSK signal is amplified by a factor of 2 and sampled at the rate of 𝑁 samples per 

symbol interval.  This is with the intention of generating a locally MSK signal that 

would be approximately equivalent to the original transmitted MSK signal with 

the larger amplitude. Thus, we have  

  𝑠𝑀𝑆𝐾 2(𝑡, 𝛽̂) ≈  𝑠𝑀𝑆𝐾 2(𝑡, 𝛽), (2.50) 

where 𝑠𝑀𝑆𝐾 2(𝑡, 𝛽̂) is the locally generated MSK signal and 𝑠𝑀𝑆𝐾 2(𝑡, 𝛽) is 

the original MSK signal with the larger amplitude. 

 The responsibility of the Phase Adjustment block is to match the phase of the 

locally generated MSK signal to the received 2-MAMSK signal. To illustrate 

Phase Adjustment block operation, recall that the 2-MAMSK signal phase will 

always follow the phase of the larger MSK constituent. This result will allow us 

to make the following two statements: 

a) Provided that the locally generated MSK signal is exactly equal to the MSK 

constituent with larger amplitude, then under this condition, the phase 

difference between the symbol intervals of the received 2-MAMSK signal 

and the locally generated MSK signal is always zero. In other words, at the 

symbol transition times the phase value of the received 2-MAMSK signal 

should be equivalent to the phase value of the locally generated MSK signal. 
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b) On the rare occasions when an error has been made and the locally generated 

MSK signal is not equal to the larger MSK component. Then at the symbol 

transition times the phase value of the received 2-MAMSK signal differs 

from the phase value of the locally generated MSK signal by 𝜋 radians. 

Accordingly, the phase adjustment block calculates the difference 

between the phase of the received 2-MAMSK signal and the locally 

generated MSK signal at the symbol transition times (𝑡 = 𝑛𝑇). 

Subsequently, makes a decision based on the value of the calculated phase 

difference. If the outcome is not zero then it shifts the phase of the locally 

generated MSK signal by the calculated phase difference (𝜋 radians), 

otherwise do nothing. This is to ensure that the received 2-MAMSK signal 

and the locally generated MSK signal are always in phase with each other.  

Now, the adjusted MSK signal is subtracted from the received signal in 

order to obtain the MSK component with the smaller amplitude as 

𝑠𝑀𝑆𝐾 1(𝑡, 𝛼) = 𝑟(𝑡, 𝛼, 𝛽) −  𝑠𝑀𝑆𝐾 2(𝑡, 𝛽̂) 

= 𝑠𝑀𝑆𝐾 1(𝑡, 𝛼) + 𝑠𝑀𝑆𝐾 2(𝑡, 𝛽) + 𝑛(𝑡) − 𝑠𝑀𝑆𝐾 2(𝑡, 𝛽̂) 
(2.51) 

where 𝑛(𝑡) is the AWGN and all other terms are defined as before. From 

Equation (2.51), we observe that the received 2-MAMSK signal is reduced 

to the form of a conventional MSK signal. In fact it is a form of interference 

cancellation. Therefore, stage 3 is performed in a similar manner to stage 1 

to recover the data sequence transmitted by the smaller MSK constituent. 

Thus, with this differential receiver we have successfully recovered the input 

data sequences, 𝛼 and 𝛽 from the received 2-MAMSK signal. Note that we 

have never explicitly used the envelope of the received 2-MAMSK signal to 

detect the information sequences 𝛼 and/or 𝛽. 

As described above, we have demonstrated that both information 

sequences 𝛼 and 𝛽 can be recovered from the received 2-MAMSK signal 

using two parallel differential MSK detectors. Consequently, construction of 
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the 2-MAMSK differential receiver can be implemented with existing MSK 

modems as shown in Figure 2-10. 

MSK

Differential Receiver

MSK

Differential Receiver

MSK

Modulator

α

β



-2

Received

signal

 

Figure 2-10 A simpler representation of the 2-MAMSK differential receiver  

The envelope of the received signal can be explicitly used to provide an 

alternative approach to recover the information sequence, 𝛼 from the 

received 2-MAMSK signal. In order to recover the information sequences 𝛼 

and 𝛽, it is necessary to obtain both the phase and envelope of the received 

2-MAMSK signal. Figure 2-11 illustrates the block diagram of the 

differential phase and envelope detector. As shown in Figure 2-11, the non-

coherent 2-MAMSK demodulator requires two stages to complete the 

process of detection. At the end of this section, we present the bit error 

probability performance of both the 2-MAMSK differential and non-

coherent receivers.  
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Figure 2-11 Block diagram of a non-coherent 2-MAMSK detector 

From Figures 2-9 and 2-11, we observe that the first stage for both the 

differential and non-coherent receivers is identical. This means for the case 

of non-coherent detection, the process of recovering the information 

sequence, 𝛽 transmitted by the larger MSK constituent is carried out in the 

same manner as in the case of the differential detector described earlier. 

However, the detection of the information sequence, 𝛼 which is transmitted 

by the smaller MSK constituent, is based on the following observation: 

a) The envelope of the received 2-MAMSK signal is constant between 

the symbol intervals if 𝛽𝑛 = 𝛼𝑛 (see time intervals 2𝑇 − 5𝑇 from 

Figure 2-8). 

b) The envelope of the received 2-MAMSK signal varies between the 

symbol intervals if 𝛽𝑛 ≠ 𝛼𝑛 (see time intervals 5𝑇 − 7𝑇 from Figure 

2-8). 

The Envelope Detector block extracts the envelope, 𝜌(𝑡, 𝛼, 𝛽) from the 

received 2-MAMSK signal according to Equation (2.46). The difference in 



44 

 

envelope amplitudes, 𝛥𝜌(𝑛𝑇, 𝛼, 𝛽) between the symbol intervals is 

calculated by subtracting the envelope value delayed by one symbol from 

the current value. The difference in envelope values is the output of the 

summer given by, 

𝛥𝜌(𝑛𝑇, 𝛼, 𝛽) = 𝜌(𝑛𝑇, 𝛼, 𝛽)  − 𝜌((𝑛 − 1)𝑇, 𝛼, 𝛽). (2.52) 

From Figure 2-8, we observe that the difference in envelope values, Δρ  

is zero if  𝛽𝑛 = 𝛼𝑛 (i.e. the envelope does not change between these symbol 

intervals. For these symbol intervals we will simply end up with an MSK 

signal. This makes sense as MSK signals have constant envelope properties. 

For the cases where 𝛽𝑛 ≠ 𝛼𝑛, the difference in envelope values at the time 

instants 𝑡 = 𝑁𝑇 is either −2 or 2. Accordingly, the calculated envelope 

difference, Δρ is then passed to the switch block and the switch selects its 

output based on the following conditions: 

𝛼̂𝑛 = {
   𝛽̂𝑛          𝑖𝑓    𝛥𝜌(𝑛𝑇, 𝛼, 𝛽)   ≅  0

 
  −𝛽̂𝑛          𝑖𝑓    𝛥𝜌(𝑛𝑇, 𝛼, 𝛽)    ≠  0  

 (2.53) 

where 𝛽̂ is an estimate of the input data sequence, 𝛽 and 𝛼̂ is an estimate of 

the input data sequence, 𝛼. In consequence, we have recovered the 

information sequences that are transmitted by the smaller and larger MSK 

constituents non-coherently. 

As mentioned in chapter 1, 16-QAM offers the same data rate as a 2-

MAMSK scheme. For this reason, the performance of the above two 

receivers are compared to that of 16-QAM in terms of error rate. The BER 

for Gray coded 𝟏𝟔-QAM on an AWGN channel given in [7, 8] as 

𝑃𝑏 =
3

4
𝑄(√

4 𝐸𝑏
5 𝑁0

), (2.54) 

where, 𝐸𝑏/𝑁0 is the average SNR per bit and 𝑄(𝑥) is defined as 
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𝑄(𝑥) =
1

√2𝜋
  ∫ 𝑒

−𝑡2

2

∞

𝑥

 𝑑𝑡 (2.55) 

The probability of a bit error, 𝑃𝑏 for a 2-MAMSK signal and 16-QAM 

over an AWGN channel for multiple 𝐸𝑏 𝑁0⁄  is plotted in Figure 2-12. The 

BER curve for 16-QAM is obtained from Equation (2.54), whereas the BER 

curves for 2-MAMSK are the results of simulations. The simulations were 

stopped after detecting 200 errors and at least 10 × 108 symbols were 

transmitted. From Figure 2-12, we can see that at high SNR (𝑖. 𝑒.  𝐸𝑏 𝑁0⁄ ≥

 10 dB ), the differential receiver requires less than 1 dB of additional signal 

power per transmitted bit to achieve the same BER performance as 

theoretical 16-QAM. An additional 2 dB of average received signal power is 

required for the non-coherent 2-MAMSK receiver to achieve a comparable 

BER value. 

 

Figure 2-12 Probability of bit error for 2-MAMSK and 16-QAM in an AWGN 
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2.9 Space-Time Block Codes 

Space-time block coding is a technique widely used in systems with multiple 

transmit and/or receive antennas. STBCs are used to provide diversity gain 

in wireless fading channels. A STBC scheme uses a sequence of 𝜌 complex 

data symbols, {𝑠1, 𝑠2, … , 𝑠𝜌}  to generate a code matrix, 𝑺 of size 𝑀 × 𝜂, 

where 𝑀 is the number of transmit antennas and 𝜂 is the codeword block 

length. The matrix code, 𝑺 is a linear function of these symbols and 

transmits the columns of 𝑺 during 𝜂 consecutive time intervals across the 𝑀 

antennas. The matrix code, 𝑺 is defined in [91] as 

𝑺 =  ∑(𝑠𝑟𝑨𝑟 + 𝑠𝑟
∗𝑩𝑟)

𝜌

𝑟=1

 , (2.56) 

where 𝑠𝑟 represents the complex data symbols for 𝑟 ∈  {1, 2,⋯ , 𝜌}, 𝑨𝑟 and 

𝑩𝑟 are fixed real-valued elementary code matrices of dimension 𝑀 × 𝜂. 

A simple transmitter diversity scheme using two transmitter antennas was 

proposed by Alamouti in [6]. An extension to more than two transmitter 

antennas was presented in [5], where it was shown that the well-known 

Alamouti scheme is a special case of a STBC. The data rate, 𝑅 of the STBCs 

is defined as 

𝑅 =  
𝜌

𝜂
 symbols per time interval (2.57) 

where 𝜌 is the number of data symbols and 𝜂 is the number of time slots in a 

STBC codeword. 

2.9.1 The Alamouti Scheme 

The case when the number of transmit antenna, 𝑀 = 2 is a simple case of 

the above scheme and is known as the Alamouti code [6]. With  𝜌 =  𝜂 = 2 

the scheme achieves full diversity and hence full data rate of 𝑅 = 1. The 
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scheme works over two symbol periods where it is assumed that the channel 

gain is constant over this time. Over the first symbol period two different 

symbols 𝑠1 and 𝑠2 each with symbol energy 𝐸𝑠 2 ⁄  are transmitted 

simultaneously from antennas 1 and 2, respectively. Over the next symbol 

period symbol −𝑠2
∗ is transmitted from antenna 1 and symbol 𝑠1

∗  is 

transmitted from antenna 2, each with symbol energy 𝐸𝑠 2⁄ . Accordingly, 

the space-time matrix code, 𝑺 can be defined as 

𝑺 =  [
𝑠1 −𝑠2

∗

𝑠2 𝑠1
∗
], (2.58) 

where each row denotes the separate transmitters and the columns represent 

transmission over the two symbol periods. 

The Alamouti model for a 2 × 2 MIMO system is shown in Figure 2-13. 

h11

h12

h22

h21

Transmitter Receiver

 

Figure 2-13 Alamouti scheme with two transmit and two receiver antennas 

For a flat fading channel the channel gain matrix, 𝑯  is given by 

𝑯 = [
ℎ11 ℎ12

ℎ21 ℎ22

] (2.59) 
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The received signal, 𝑹 at the receiver then becomes, 

𝑹 = 𝑯 𝑺 + 𝑵, (2.60) 

where, 𝑵 is a complex AWGN noise matrix at the receiver defined as 

𝑵 = [

𝑛11 𝑛12

𝑛21 𝑛22
]. (2.61) 

Then, the received signal, 𝑹 can be written in the form, 

𝑹 = [

𝑟11 𝑟12

𝑟21 𝑟22
] = [

ℎ11 ℎ12

ℎ21 ℎ22

] [
𝑠1 −𝑠2

∗

𝑠2 𝑠1
∗
] + [

𝑛11 𝑛12

𝑛21 𝑛22
]. (2.62) 

Equation (2.62) can be rearranged to obtain the following: 

[
 
 
 
 
𝑟11

𝑟21

𝑟12
∗

𝑟22
∗ ]
 
 
 
 

=

[
 
 
 
 
ℎ11 ℎ12

ℎ21 ℎ22

ℎ12
∗ ℎ11

∗

ℎ22
∗ ℎ21

∗ ]
 
 
 
 

[

𝑠1

𝑠2
] +

[
 
 
 
 
𝑛11

𝑛21

𝑛12
∗

𝑛22
∗ ]
 
 
 
 

 (2.63) 

The above equation implies that the signals 𝑠1 and 𝑠2  are transmitted via 

two orthogonal paths and hence linear maximum likelihood detection can be 

used to detect the signals independently. Consequently, using the Alamouti 

code provides higher diversity gain and does not require complicated 

receiver detection. Tarokh et al [5] discovered that the Alamouti scheme can 

be generalised to, 𝑀 > 2 when the constellations are real, but if the 

constellations are complex the generalisation is only possible with a 

reduction in code rate. 
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Chapter 3 

3 Characteristics of MAMSK 

Signals 

3.1 Introduction 

Minimum shift keying (MSK) is an attractive modulation scheme for 

wireless communications due to its useful characteristics of constant 

envelope and fast spectral roll-off [71, 74, 76, 92]. Multi level (𝑀) multi-

amplitude minimum shift keying (M-MAMSK) is a generalisation of MSK 

where the signal amplitude is allowed to vary over a set of well-defined 

values. Throughout earlier chapters, we have demonstrated the potentials 

and advantages of M-MAMSK signals. However, there are few papers [1, 2, 

42-44, 83] discussing MAMSK signals and it has been characterised based 

on observations from simulation results. 

In this chapter, we analytically characterise M-MAMSK signals, where 

performance can be defined by its phase and envelope variations, power and 

spectral efficiencies and decoding error probability. The overall phase values 

of M-MAMSK signal at the symbol transition times are identical to those of 

MSK. This characteristic is important as it allows low-complexity 
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differential detection of MAMSK signals. The M-MAMSK signal phase can 

evolve from on state to another via a linear or non-linear path; the specific 

path depends on the input data sequences and the phase differences between 

the MSK components. For M-MAMSK there are 22𝑀 distinct trajectories in 

the signal space diagram with each being specified by 2𝑀 input data bit. The 

power spectral density of M-MAMSK is identical to that of MSK but for a 

given data rate it is 𝑀 times narrower. The theoretical bit error rate for M-

MAMSK in AWGN is derived. The results show that M-MAMSK provides 

almost identical bit error performance to square M-QAM. 

This chapter is organised as follows. After the definition of MAMSK, we 

analyse the overall phase of 2-MAMSK signal in great detail, then extend 

the idea to M-MAMSK for 𝑀 > 2. The signal space diagram, power 

spectral density and probability of bit error for M-MAMSK are discussed in 

the following sections. The last section summarises the main points.  

3.2 The Signal Description 

In this section, we briefly review a 2-MAMSK modulated signal in order to 

explore its characteristics. A 2-MAMSK signal, as described in detail in 

sections 2.4 and 2.5, is obtained by superposition of two MSK signals with 

different amplitudes and may be expressed as 

𝑠(𝑡, 𝛼, 𝛽) = 𝑠𝑀𝑆𝐾 1(𝑡, 𝛼) + 𝑠𝑀𝑆𝐾 2(𝑡, 𝛽) 

= √
  2𝐸  

5𝑇
(cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼)] + 2 cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽)]) 

(3.1) 

where, 𝑠𝑀𝑆𝐾 1(𝑡, 𝛼) is the MSK component with the smaller amplitude, 

 𝑠𝑀𝑆𝐾 2(𝑡, 𝛽) is that with the larger amplitude, 𝑓𝑐 is the carrier frequency, 𝐸 

is the average signal energy per symbol interval and 𝑇 is the duration of a 

symbol interval. The sequences 𝛼 and 𝛽 represent input data with values 

±1. 𝜙(𝑡, 𝛼) and 𝜙(𝑡, 𝛽) are the information carrying parts of the MSK 

signal phases. 
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3.3 Analysis of Phase Tree and Trellis 

The baseband representation of a 2-MAMSK signal can be expressed in 

polar form as a product of the signal envelope, 𝜌(𝑡, 𝛼, 𝛽) and the real part of 

the overall signal phase, 𝜙(𝑡, 𝛼, 𝛽) as  

𝑠(𝑡, 𝛼, 𝛽) = 𝜌(𝑡, 𝛼, 𝛽) cos(𝜙(𝑡, 𝛼, 𝛽)). (3.2) 

In chapter 2, we have shown that the signal envelope can be expressed as 

𝜌(𝑡, 𝛼, 𝛽) = √5 + 4 cos[𝜙(𝑡, 𝛽) − 𝜙(𝑡, 𝛼)], (3.3) 

and the overall 2-MAMSK signal phase is given by,  

𝜙(𝑡, 𝛼, 𝛽) = tan−1 [

sin𝜙(𝑡, 𝛼) + 2 sin𝜙(𝑡, 𝛽)
  

cos 𝜙(𝑡, 𝛼)+2 cos𝜙(𝑡, 𝛽)
] , 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (3.4) 

To demonstrate Equation (3.4), we sketch a set of phase 

trajectories, 𝜙(𝑡, 𝛼, 𝛽) generated by all possible values of the information 

sequences, 𝛼 and 𝛽. The set of phase trajectories beginning at time 𝑡 = 0 is 

shown in Figure 3-1. This phase diagram is called the phase tree. It can be 

noted that the phase tree for all possible combinations is continuous and 

grows with time. The phase values at the transition points in Figure 3-1 are 

represented by small black circles. 

From Figure 3-1, we observe that the phase trajectories for a 2-MAMSK 

signal can be piecewise linear or nonlinear functions. The phase behaviour 

depends on the value of 𝛼, 𝛽 and the phase difference between the two MSK 

signals. For example, when 𝛼 = 𝛽 the phase follows the linear paths 

regardless of the phase difference between them. For 𝛼 ≠ 𝛽, the phase 

follows the nonlinear paths. However, the specific nonlinear path is 

determined by the phase difference between the two MSK signals; we will 

come back to this point later. The phase trajectory generated by the 

information sequences, 𝛼 = {+1,+1,+1,−1}    and    𝛽 = {+1,−1,−1,+1} 

for a 2-MAMSK is illustrated in Figure 3-2. 
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Figure 3-1 Phase tree for a 2-MAMSK signal 

 

Figure 3-2 Phase trajectory of 2-MAMSK for a given α and β 
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The set of phase values {𝜋, 𝜋, 0, 𝜋, 0} shown at the top of Figure 3-2 

represent the phase differences between the two MSK signals at the time 

instants 𝑡 = 𝑛𝑇. For demonstration purposes, we have set the initial phase 

difference at 𝑡 = 0 between the two MSK signals to be 𝜋 radians. This is to 

show that when 𝛼 = 𝛽 the overall phase selects the linear path regardless of 

the value of the phase difference. Since, the 2-MAMSK signal components 

are based on MSK modulation and during the first time interval 𝛼 = 𝛽 =

+1, then the phase of both MSK components ramp up linearly by 𝜋/2. 

Hence, the phase difference between them at the time instant 𝑡 = 𝑇 remains 

at 𝜋 radians. Then the overall phase of the 2-MAMSK signal selects the 

nonlinear path below the linear line.  

 In the next time interval, 𝛼 = −𝛽 =  +1, these values cause the phase of 

the larger MSK component to decrease linearly by 𝜋/2 and the phase of the 

smaller MSK component increase linearly by 𝜋/2. This adds an additional 𝜋 

radians onto the current phase difference of 𝜋 radians. Thus, the phase 

difference becomes zero at the time instant 𝑡 = 2𝑇, viewed modulo 2𝜋. 

Then the overall phase of the 2-MAMSK signal selects the nonlinear path 

above the linear line. For the remaining time intervals the process repeats.  

In the remaining part of this section, we explicitly show this process in 

addition to proving that the overall 2-MAMSK signal phase at the symbol 

transitions (i.e. at the time instants 𝑡 =  𝑛𝑇 ) will always equal the phase of 

the larger MSK signal. In other words, we need to prove 

𝜙(𝑛𝑇, 𝛼, 𝛽) =  𝜙(𝑛𝑇, 𝛽), (3.5) 

where, 𝜙(𝑛𝑇, 𝛼, 𝛽) and 𝜙(𝑛𝑇, 𝛽) are the phases of the 2-MAMSK and 

larger MSK signals respectively, sampled at the time instants 𝑡 = 𝑛𝑇. 

Proof: Let us start with the smaller MSK component. The phase of the 

smaller MSK signal defined in (2.16) may written as 

𝜙(𝑡, 𝛼) = 𝜃𝑛 + 
𝜋

2𝑇
𝛼𝑛(𝑡 − 𝑛𝑇), 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (3.6) 
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where the term 𝜃𝑛 can be expressed as 

𝜃𝑛 =
𝜋

2
∑ 𝛼𝑘

𝑛−1

𝑘=−∞

 (3.7) 

It can be noted from Equations (3.6) and (3.7) that 𝜃𝑛 represents the build 

up of all symbols up to time (𝑛 − 1)𝑇. Now we can expand equation (3.6) 

further as follow, to note that the phase of the carrier in the interval, 𝑛𝑇 ≤

𝑡 ≤ (𝑛 + 1)𝑇, is 

𝜙(𝑡, 𝛼)  =   
𝜋

2𝑇
𝛼𝑛𝑡 – 

𝑛𝜋

2
𝛼𝑛 + 𝜃𝑛 

= 
𝜋

2𝑇
𝛼𝑛𝑡 + 𝜃̃𝑛.  

(3.8) 

This shows that the phase, 𝜙(𝑡, 𝛼) of the signal increases or decreases 

linearly with time during each bit interval of 𝑇 seconds, where the term 𝜃̃𝑛 is 

phase of the carrier signal and defined as 

𝜃̃𝑛 = 𝜃𝑛 − 
𝑛𝜋

2
𝛼𝑛 (3.9) 

We now evaluate Equation (3.8) at the symbol transitions (terminals) to 

demonstrate the state transitions at the time instants 𝑡 = 𝑛𝑇. Now for,  𝑛𝑇 ≤

𝑡 ≤ (𝑛 + 1)𝑇, Equation (3.8) can be written as 

𝜙𝑛(𝑡, 𝛼) =  
𝜋

2𝑇
𝛼𝑛𝑡 + 𝜃̃𝑛, (3.10) 

and for, (𝑛 − 1)𝑇 ≤ 𝑡 ≤ 𝑛𝑇, Equation (3.8) can be expressed as 

𝜙(𝑛−1)(𝑡, 𝛼) =  
𝜋

2𝑇
𝛼(𝑛−1)𝑡 + 𝜃̃(𝑛−1) (3.11) 

Since, the phase must be continuous at the symbol transitions, we can 

establish a boundary condition at 𝑡 = 𝑛𝑇 that 
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𝜙(𝑛−1)(𝑛𝑇, 𝛼) =  𝜙𝑛(𝑛𝑇, 𝛼) (3.12) 

Thus, we have 

𝜋

2
𝛼(𝑛−1)𝑛 + 𝜃̃(𝑛−1) = 

𝜋

2
𝛼𝑛𝑛 + 𝜃̃𝑛 (3.13) 

Rearranging Equation (3.13) for 𝜃̃𝑛 we have 

𝜃̃𝑛 = 𝜃̃(𝑛−1) +  
𝑛𝜋

2
(𝛼(𝑛−1)  −  𝛼𝑛) (3.14) 

Since, 𝛼 is a sequence of information binary symbols taking values from the 

set {+1,−1}, then from Equation (3.14), we can observe two possible cases 

Case I: when 𝛼(𝑛−1) = 𝛼𝑛, then 

𝜃̃𝑛 = 𝜃̃(𝑛−1) (3.15) 

Case II: when 𝛼(𝑛−1) ≠ 𝛼𝑛, then 

𝜃̃𝑛 = 𝜃̃(𝑛−1) ± 𝑛𝜋  (3.16) 

Without the loss of generality, we set the initial phase of the carrier as 𝜃̃0 =

0 and then we get 

𝜃̃𝑛|mod2𝜋 = 0 or 𝜋 (3.17) 

Now imposing these results on Equation (3.8), then we have 

𝜙(𝑡) = ± 
𝜋

2𝑇
𝑡 +  0 or 𝜋 (3.18) 

The + sign corresponds to 𝛼𝑛 = +1 and the − sign corresponds to 𝛼𝑛 =

−1. Thus, we have a phase difference over one bit interval with respect to 

the phase of the carrier signal of + 𝜋 ⁄ 2 or − 𝜋/2 corresponding to 𝛼𝑛 =

 +1 and  𝛼𝑛 = −1 respectively. In other words, the phase of an MSK signal 

increases by + 𝜋/2 when we send +1 and decreases by − 𝜋/2 when we 
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send −1. When we view the phase given in Equation (3.18), modulo 2𝜋, say 

in the range – 𝜋 and 𝜋, then we can show that the phase can take only the 

two values of ± 𝜋/2 at odd multiples of 𝑇 (i.e. 𝑡 = (2𝑘 + 1)𝑇) and only the 

two values 0 and π at even multiples of 𝑇 (i.e. 𝑡 = 2𝑘𝑇). The result is 

summarised in Table 3-1. 

𝜃̃𝑛 𝜙(𝑇) 𝛼𝑛 

0 + 𝜋/2 +1 

0 − 𝜋/2 −1 

𝜋 + 𝜋/2 −1 

𝜋 − 𝜋/2 +1 

Table 3-1 Possible phase states of MSK signal in the range (−𝜋, 𝜋) 

Table 3-1 shows that the MSK signal phase may take one of four possible 

values depending on the values of 𝜃̃𝑛 and 𝜙(𝑇). For all possible cases 

shown in Table 3-1, we can see that the variation of the phase over the 

duration of an interval is ± 𝜋/2. A similar approach can be applied to 

describe the phase of the larger MSK signal, 𝜙(𝑡, 𝛽). Then the phase of the 

larger MSK signal is also ± 𝜋/2 at odd multiples of 𝑇 and 0 and π at even 

multiples of 𝑇. 

Now summarising and assuming that both 𝛼 and 𝛽 are related to two 

independent binary information sequences each taking values from the set 

{+1,−1}, we can conclude the following: 

Case I: When 𝑡 is an odd multiple of T 

At odd multiples of  𝑇, both 𝜙(𝑡, 𝛼) and 𝜙(𝑡, 𝛽) can have independently one 

of two possible values ± 𝜋/2, or equivalently 

𝜙(𝑡 , 𝛼) =  ±
𝜋

2
 (3.19) 
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𝜙(𝑡 , 𝛽) =  ±
𝜋

2
 (3.20) 

Case II: When 𝑡 is an even multiple of 𝑇 

At even multiples of  𝑇, both 𝜙(𝑡, 𝛼) and 𝜙(𝑡, 𝛽) can have independently 

one of two possible values 0 or 𝜋, or equivalently 

𝜙(𝑡, 𝛼) =  0 or  𝜋 (3.21) 

𝜙(𝑡, 𝛽) =  0 or  𝜋 (3.22) 

To evaluate all possible combination of 𝜙(𝑡, α) and 𝜙(𝑡, 𝛽) at the time 

instants 𝑡 = 𝑛𝑇, we need to split 𝑛 into even and odd portions. From the 

definition of odd and even numbers we have 

𝑛 = {
2𝑘,                  for even 𝑛

2𝑘 + 1, for odd 𝑛
 (3.23) 

where 𝑘 is an integer. All possible groupings of 𝜙(𝑛𝑇, 𝛼) and 𝜙(𝑛𝑇, 𝛽) are 

shown in Table 3-2. 

Time instants 𝑡 = 𝑛𝑇 𝜙(𝑡, 𝛼) 𝜙(𝑡, 𝛽) 

𝑡 = 2𝑘𝑇 0 0 

𝑡 = 2𝑘𝑇 0 𝜋 

𝑡 = 2𝑘𝑇 𝜋 0 

𝑡 = 2𝑘𝑇 𝜋 𝜋 

𝑡 = (2𝑘 + 1)𝑇 −
𝜋

2
 −

𝜋

2
 

𝑡 = (2𝑘 + 1)𝑇 −
𝜋

2
 +

𝜋

2
 

𝑡 = (2𝑘 + 1)𝑇 +
𝜋

2
 −

𝜋

2
 

𝑡 = (2𝑘 + 1)𝑇 +
𝜋

2
 +

𝜋

2
 

Table 3-2 All possible combination of 𝝓(𝒕, 𝜶) and 𝝓(𝒕, 𝜷) at 𝒕 = 𝒏𝑻 

http://www.basic-mathematics.com/integers.html
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To show that the overall phase of 2-MAMSK is equal to the phase of the 

larger MSK signal at the symbol transition points, we have to prove that 

equality holds in (3.5) for all possible combinations of 𝜙(𝑛𝑇, 𝛼) and 

𝜙(𝑛𝑇, 𝛽) shown in Table 3-2. Recall that the overall 2-MAMSK signal 

phase at the time instants 𝑡 = 𝑛𝑇 is given by 

𝜙(𝑛𝑇, 𝛼, 𝛽) = tan−1 [
sin𝜙(𝑛𝑇, 𝛼) + 2 sin𝜙(𝑛𝑇, 𝛽)

 
cos 𝜙(𝑛𝑇, 𝛼)+2 cos𝜙(𝑛𝑇, 𝛽)

] (3.24) 

Let   𝑦 = sin𝜙(𝑛𝑇, 𝛼) + 2 sin𝜙(𝑛𝑇, 𝛽)  and  𝑥 = cos𝜙(𝑛𝑇, 𝛼)+2 cos𝜙(𝑛𝑇, 𝛽). 

Then (3.24) gives 

𝜙(𝑛𝑇, 𝛼, 𝛽) = tan−1
𝑦

𝑥
. (3.25) 

When 𝐧 is even (i.e. 𝑛 = 2𝑘), we have 

𝑦 = sin(0 or 𝜋) + 2 sin(0 or 𝜋)     and   𝑥 = cos(0 or 𝜋)+2 cos(0 or 𝜋). 

Since, sin 0 = sin 𝜋 = 0, then 𝑦 = 0 for all possible combinations of even 

multiples of  𝑛, and also cos 0 = − cos 𝜋 = 1, then 𝑥 = ±1 + 2(±1), where 

the term +1 corresponds to cos 0 and the −1 term corresponds to cos 𝜋. 

Now from the definition of arctangent in the range of – 𝜋 and 𝜋 we have 

𝜙(2𝑘𝑇, 𝛼, 𝛽) = tan−1 (
 𝑦 

 𝑥 
) = {

0,         𝑦 = 0,   𝑥 > 0

𝜋, 𝑦 = 0,   𝑥 < 0
 (3.26) 

Equation (3.26) shows that the phase of the 2-MAMSK signal at even 

multiples of 𝑛 is either 0 or  𝜋 , depending on the sign of 𝑥. Consequently, 

the overall 2-MAMSK phase, 𝜙(2𝑘𝑇, 𝛼, 𝛽) at even multiples of 𝑛𝑇 is 0 

when 𝑥 is positive and 𝜋 when 𝑥 is negative. It is clear that the second term 

of 𝑥 is dominant in determining the sign, due to the fact that there is a factor 

of “2” associated with it. We know that the multiplier “2” corresponds to the 

amplitude of the larger MSK signal being twice the amplitude of the smaller 

MSK component. Thus, we have established that the 2-MAMSK phase at 

symbol transition times is equal to the phase of the larger MSK component 
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for even multiples of 𝑛. The remaining task is to show that Equation (3.5) is 

also true at odd multiples of 𝑛. 

When 𝐧 is odd (i.e. 𝑛 = 2𝑘 + 1), we have 

𝑦 = sin (±
𝜋

2
) + 2 sin (±

𝜋

2
)     and   𝑥 = cos (±

𝜋

2
)+2 cos (±

𝜋

2
). 

Since, cos
π

2
= cos −

𝜋

2
= 0, then 𝑥 = 0 for all possible combinations of odd 

multiples of 𝑛. Also sin
𝜋

2
= − sin −

𝜋

2
= 1, then we have 𝑦 = ±1 + 2(±1). 

Where, the term +1 corresponds to sin
𝜋

2
 and the −1 term corresponds to 

sin −
𝜋

2
. Now from the definition of arctangent in the range of – 𝜋 and 𝜋 we 

have 

𝜙((2𝑘 + 1)𝑇, 𝛼, 𝛽) = tan−1 (
 𝑦 

 𝑥 
) =

{
 
 

 
 +

𝜋

2
,         𝑥 = 0,   𝑦 > 0

−
𝜋

2
, 𝑥 = 0,   𝑦 < 0

 (3.27) 

Similar to the situation for even multiples of 𝑛𝑇, the overall 2-MAMSK 

phase value at odd multiples of 𝑛𝑇 is determined by the sign of the term 𝑦. 

Since, there is a multiplier of “2” coupled with the second term of 𝑦, then 

the sign of 𝑦 is always determined from the sign of the second term. This 

factor of “2” is associated with the larger MSK signal. From Equation 

(3.27), we can clearly see that the overall 2-MAMSK phase at odd multiples 

of  𝑛𝑇 always equals the phase of the larger MSK signal. 

 Instead of the above explanation, we could simply evaluate the 2-

MAMSK signal phase for all possible combinations of 𝜙(𝑛𝑇, 𝛼) and 

𝜙(𝑛𝑇, 𝛽) as shown in Table 3-3. Note, the values of 2-MAMSK signal 

phase, 𝜙(𝑛𝑇, 𝛼, 𝛽) shown in Table 3-3, were calculated based on Equation 

(3.24). From Table 3-3, we can see that the overall 2-MAMSK phase values 

at the time instants 𝑡 = 𝑛𝑇 are the same as the phase values of the larger 

MSK signal, for all combinations of 𝜙(𝑡, α) and 𝜙(𝑡, 𝛽). 
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Time instants 𝑡 = 𝑛𝑇 𝜙(𝑡, 𝛼) 𝜙(𝑡, 𝛽) 𝜙(𝑡, 𝛼, 𝛽) 

𝑡 = 2𝑘𝑇 0 0 0  

𝑡 = 2𝑘𝑇 0 𝜋 𝜋  

𝑡 = 2𝑘𝑇 𝜋 0 0  

𝑡 = 2𝑘𝑇 𝜋 𝜋 𝜋  

𝑡 = (2𝑘 + 1)𝑇 −
𝜋

2
 −

𝜋

2
 −

𝜋

2
 

𝑡 = (2𝑘 + 1)𝑇 −
𝜋

2
 +

𝜋

2
 +

𝜋

2
 

𝑡 = (2𝑘 + 1)𝑇 +
𝜋

2
 −

𝜋

2
 −

𝜋

2
 

𝑡 = (2𝑘 + 1)𝑇 +
𝜋

2
 +

𝜋

2
 +

𝜋

2
 

Table 3-3 Overall 2-MAMSK phase 𝝓(𝒕, 𝜶, 𝜷) at the time instants 𝒕 = 𝒏𝑻 

We have evaluated 2-MAMSK phase values at the ends of each bit period 

(at the time instants 𝑡 = 𝑛𝑇). The next step is to consider how the 2-

MAMSK phase changes over the time intervals (𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇). 

Based on Equation (3.8), the phase of the larger and smaller MSK signals 

over the duration of an interval with respect to the phase of the carrier signal 

is given in Table 3-4, for all possible value of 𝛼 and 𝛽. 

𝜙(𝑡, 𝛼) 𝛼  𝜙(𝑡, 𝛽) 𝛽 

−
𝜋

2𝑇
𝑡 + 0 −1  −

𝜋

2𝑇
𝑡 + 0 −1 

+
𝜋

2𝑇
𝑡 + 0 +1  +

𝜋

2𝑇
𝑡 + 0 +1 

−
𝜋

2𝑇
𝑡 + 𝜋 −1  −

𝜋

2𝑇
𝑡 + 𝜋 −1 

+
𝜋

2𝑇
𝑡 + 𝜋 +1  +

𝜋

2𝑇
𝑡 + 𝜋 +1 

a) Smaller MSK phase relative to 𝛼 b)  Larger MSK phase relative to 𝛽 

Table 3-4 Possible MSK signal phase variation with in a symbol interval 
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To establish how the 2-MAMSK phase evolves with time, we need to 

consider all possible combinations of 𝜙(𝑡, 𝛼) and 𝜙(𝑡, 𝛽) shown in Table 

3-4. For the case where 𝛼 = 𝛽, the initial carrier phase of the larger MSK 

signal is 0 and the initial carrier phase of the smaller MSK signal can be 0 or 

𝜋, we have 

𝜙(𝑛𝑡, 𝛼, 𝛽) = tan-1 [
sin (

𝜋
2 𝛼𝑡 + 0 or 𝜋)  +2 sin (

𝜋
2 𝛽𝑡)

cos (
𝜋
2 𝛼𝑡 + 0 or 𝜋)  +2 cos (

𝜋
2 𝛽𝑡)

] 

= tan-1 [
± sin (

𝜋
2
𝛼𝑡)  + 2 sin (

𝜋
2
𝛽𝑡)

±  cos (
𝜋
2 𝛼𝑡)  + 2 cos (

𝜋
2 𝛽𝑡)

] 

= tan-1 [
sin (

𝜋
2
𝛽𝑡)

cos (
𝜋
2 𝛽𝑡)

] 

=  
𝜋

2
𝛽𝑡. 

(3.28) 

For the case when 𝛼 = 𝛽, the initial carrier phase of the larger MSK signal 

is 𝜋 and the initial carrier phase of the smaller MSK signal can be 0 or 𝜋. 

We have 

𝜙(𝑛𝑡, 𝛼, 𝛽) = tan-1 [
sin (

𝜋
2 𝛼𝑡 + 0 or 𝜋)  + 2 sin (

𝜋
2 𝛽𝑡 + 𝜋)

cos (
𝜋
2 𝛼𝑡 + 0 or 𝜋)  + 2 cos (

𝜋
2 𝛽𝑡 + 𝜋)

] 

= tan-1 [
± sin (

𝜋
2 𝛼𝑡) –  2 sin (

𝜋
2 𝛽𝑡)

± cos (
𝜋
2 𝛼𝑡) –  2 cos (

𝜋
2 𝛽𝑡)

] 

= tan-1 [
- sin (

𝜋
2 𝛽𝑡)

- cos (
𝜋
2 𝛽𝑡)

] 

= tan-1 [
sin (

𝜋
2 𝛽𝑡 +  𝜋)

 cos (
𝜋
2 𝛽𝑡 +  𝜋)

] 

=  
𝜋

2
𝛽𝑡 + 𝜋 

(3.29) 
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From Equations (3.28) and (3.29), we can see that when 𝛼 = 𝛽 the 2-

MAMSK phase variation over one bit interval is exactly same as the phase 

variation of the larger MSK signal, regardless of the initial carrier phase of 

the smaller MSK signal. Thus, 2-MAMSK phase for the time intervals 𝛼 =

𝛽 linearly increases by +𝜋/2 for 𝛼 = 𝛽 =  +1 and linearly decreases by 

– 𝜋/2 for 𝛼 = 𝛽 = −1. This result is as expected because when 𝛼 = 𝛽 we 

get two MSK signal exactly on top of each other, hence the superimposed 

signal is also an MSK signal. 

For the case when 𝛼 ≠ 𝛽 and the initial carrier phase of both the larger 

and smaller MSK signals are 0. We have 

𝜙(𝑛𝑡, 𝛼, 𝛽) = tan-1 [
sin (

𝜋
2 𝛼𝑡)  + 2 sin (

𝜋
2 𝛽𝑡)

cos (
𝜋
2 𝛼𝑡)  + 2 cos (

𝜋
2 𝛽𝑡)

] (3.30) 

Since, 𝛼 ≠ 𝛽, cos−𝑥 = cos 𝑥 and both 𝛼 and 𝛽 taking values from the 

set {−1,+1}, then Equation (3.30) becomes 

𝜙(𝑛𝑡, 𝛼, 𝛽) = tan-1 [
 ± sin (

𝜋
2 𝑡)

 3 cos (
𝜋
2 𝑡)

] (3.31) 

Thus, we have 

𝜙(𝑛𝑡, 𝛼, 𝛽) = tan-1 [±
1

3
 tan (

𝜋𝑡

2
)], (3.32) 

where the + corresponds to the case when – 𝛼 = +𝛽 = +1 and the − corresponds to 

the case when −𝛼 = +𝛽 = −1. Hence, Equation (3.32) reduces to 

𝜙(𝑛𝑡, 𝛼, 𝛽) = tan-1 [
1

3
 𝛽 tan (

𝜋

2
𝑡)] (3.33) 

For the case when 𝛼 ≠ 𝛽 and the initial carrier phase of the larger and  

smaller MSK signals are 0 and 𝜋 respectively. We have 
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𝜙(𝑛𝑡, 𝛼, 𝛽) = tan-1 [
sin (

𝜋
2 𝛼𝑡 + 𝜋)  + 2 sin (

𝜋
2 𝛽𝑡)

cos (
𝜋
2 𝛼𝑡 + 𝜋)  + 2 cos (

𝜋
2 𝛽𝑡)

] 

= tan-1 [
−  sin (

𝜋
2 𝛼𝑡) + 2 sin (

𝜋
2 𝛽𝑡)

− cos (
𝜋
2 𝛼𝑡) + 2 cos (

𝜋
2 𝛽𝑡)

] 

= tan-1 [
 ±3 sin (

𝜋
2 𝑡)

       cos (
𝜋
2 𝑡)

] 

= tan-1 [±3  tan (
𝜋

2
𝑡)] 

= tan-1 [3𝛽 tan (
𝜋

2
𝑡)] 

(3.34) 

For the case when 𝛼 ≠ 𝛽 and initial carrier phase of the larger and 

smaller MSK signals are 𝜋 and 0 respectively. We have 

𝜙(𝑛𝑡, 𝛼, 𝛽) = tan-1 [
sin (

𝜋
2 𝛼𝑡)  + 2 sin (

𝜋
2 𝛽𝑡 + 𝜋)

cos (
𝜋
2 𝛼𝑡)  + 2 cos (

𝜋
2 𝛽𝑡 + 𝜋)

] 

= tan-1 [
 sin (

𝜋
2 𝛼𝑡) –  2 sin (

𝜋
2 𝛽𝑡)

 cos (
𝜋
2 𝛼𝑡) –  2 cos (

𝜋
2 𝛽𝑡)

] 

= tan-1 [
 ∓3 sin (

𝜋
2
𝑡)

   − cos (
𝜋
2 𝑡)

] 

= tan-1 [
 −3𝛽 sin (

𝜋
2 𝑡)

   − cos (
𝜋
2 𝑡)

] 

= tan-1 [
 3𝛽 sin (

𝜋
2 𝑡 + 𝜋)

    cos (
𝜋
2 𝑡 + 𝜋)

] 

= tan-1 [3𝛽 tan (
𝜋

2
𝑡 + 𝜋)] 

(3.35) 

For the case when 𝛼 ≠ 𝛽 and the initial carrier phase of both the larger 

and smaller MSK signals are 𝜋. We have 
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𝜙(𝑛𝑡, 𝛼, 𝛽) = tan-1 [
sin (

𝜋
2 𝛼𝑡 + 𝜋)  + 2 sin (

𝜋
2 𝛽𝑡 + 𝜋)

cos (
𝜋
2 𝛼𝑡 + 𝜋)  + 2 cos (

𝜋
2 𝛽𝑡 + 𝜋)

] 

= tan-1 [
−  sin (

𝜋
2 𝛼𝑡) –  2 sin (

𝜋
2 𝛽𝑡)

− cos (
𝜋
2 𝛼𝑡) –  2 cos (

𝜋
2 𝛽𝑡)

] 

= tan-1 [
 ∓ sin (

𝜋
2 𝑡)

   −3 cos (
𝜋
2 𝑡)

] 

= tan-1 [
 −𝛽 sin (

𝜋
2 𝑡)

   −3 cos (
𝜋
2 𝑡)

] 

= tan-1 [
 𝛽 sin (

𝜋
2 𝑡 + 𝜋)

  3  cos (
𝜋
2 𝑡 + 𝜋)

] 

= tan-1 [
1

3
𝛽 tan (

𝜋

2
𝑡 + 𝜋)] 

(3.36) 

From Equations (3.33), (3.34), (3.35) and (3.36), we can see that the 2-

MAMSK signal phase increases nonlinearly by + 𝜋/2 for  𝛽 =  +1, and 

decreases nonlinearly by − 𝜋/2 for 𝛽 =  −1. When these possible phase 

trajectories are plotted modulo 2𝜋, in the range (−𝜋, 𝜋), they collapse into 

a structure called a phase trellis as shown in Figure 3-3. From Figure 3-3, we 

observe that for every multiple of the bit time the phase can only take one of 

the two possible values, the values being 0 and 𝜋 for even multiples of 𝑡 =

2𝑘𝑇 and ± 𝜋/2   for odd multiples of 𝑡 = (2𝑘 + 1)𝑇.  

However, the time varying phase between time intervals can take one of 

three possible paths labelled as A, B, and C in Figure 3-3. The path it takes 

depends on the input binary data sequences 𝛼 and 𝛽 and the initial phase. 

For example, when 𝛼 = 𝛽 = +1 and the initial phases of both the larger 

and the smaller MSK signals are 0, then the phase variation goes through the 

straight path, B. When −𝛼 = 𝛽 =  +1 and the initial carrier phase of the 

larger and smaller MSK signals are 0 and 𝜋 respectively, then it takes the 
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curvy path A. When −𝛼 = 𝛽 =  +1 and the initial carrier phase of both the 

larger and smaller MSK signals are 0, then it takes the curvy path C. 

 

Figure 3-3 Phase trellis of a 2-MAMSK signal in the range (–𝜋, 𝜋) 

Thus, we can conclude that the data sequence, 𝛽 is responsible to evolve 

the overall 2-MAMSK phase from one state to another, and the contribution 

of the data sequence 𝛼 is to add the “curvature” to the path it takes when it 

has opposite sign to 𝛽. As illustrated earlier, the linear path is due to that fact 

that both the larger and smaller MSK signals employ rectangular pulse 

shaping. The “curvy” path of the 2-MAMSK phase is because of its 

nonlinear behaviour as was shown in Equations (3.33), (3.34), (3.35) and 

(3.36).  

To clarify all these points, we plot the overall 2-MAMSK phase 

generated by all possible values of 𝛼,  𝛽 and the phase difference between 

the two MSK signals, denoted 𝜉, on the 𝑦 axis and time on the 𝑥 axis as 

shown in Figure 3-4. It can be noted that the 2-MAMSK phase is only 

plotted for the duration of one bit interval. From Figure 3-4, we observe that 
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the two nonlinear paths closer to the 𝑥 axis correspond to the case when 𝛼 ≠

𝛽 and the phase difference between the two MSK signals is zero. The other 

two nonlinear paths also correspond to the case when 𝛼 ≠ 𝛽 but when there 

is a phase difference of 𝜋 radians between the two MSK signals. The two 

linear paths always correspond to the case when 𝛼 = 𝛽 regardless of the 

phase difference between the two MSK signals. 

 

Figure 3-4 2-MAMSK phase trajectory for 0 ≤ 𝑡 < 𝑻 

Hence, we have an overall phase difference of a 2-MAMSK signal over 

one bit interval with respect to the initial phase of the carrier as 

Δ𝜙 = 𝜙((𝑛 + 1)𝑇, 𝛼, 𝛽) −  𝜙(𝑛𝑇, 𝛼, 𝛽)  =

{
 

 +
𝜋

2
, 𝛽 =  +1

−
𝜋

2
, 𝛽 =  −1

 (3.37) 



67 

 

Based on Equation (3.37), we can sketch an alternative diagram to the state 

trellis, which also demonstrates the state transitions at the time instants 𝑡 =

𝑛𝑇 and the phase variation between the terminals without explicitly showing 

the phase as function of time. Figure 3-5 shows the phase variation between 

terminals as a function of the data sequence 𝛽. 

 

Figure 3-5 Phase variation with respect to β 

The small black circles shown Figure 3-5 represent the terminal values of 

the 2-MAMSK phase at the time instants 𝑡 = 𝑛𝑇. This is a more compact 

version of 2-MAMSK phase as only possible phase values and their 

transitions are displayed in the diagram. In Figure 3-5, we can see that 

MAMSK signal have four possible states, namely {− 𝜋/2, 0, 𝜋/2, 𝜋}. The 

phase can progress from one state to another depending on the sign of the 

data sequence 𝛽. 

To demonstrate all the above, we plot the 2-MAMSK signal phase, 

𝜙(𝑡, 𝛼, 𝛽) alongside the two MSK signal phases, 𝜙(𝑡, 𝛼) and 𝜙(𝑡, 𝛽)  as 

shown in Figure 3-6. The phase trajectories shown in Figure 3-6 are 

generated by the data sequences 𝛼 = {−1,+1,+1,+1,+1,+1,+1,−1} and 

𝛽 = {−1,−1,+1,+1, +1,−1,−1,+1}. 
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Figure 3-6 2-MAMSK phase with the two MSK phases 

From the above figure, we can see that the phase trajectories of a 2-

MAMSK signal follow the phase of the MSK component with larger 

amplitude. In fact at the time instants 𝑡 = 𝑛𝑇, the larger MSK signal and the 

2-MAMSK signal have the same phase values at integer multiples of 𝜋/2.  

However, the 2-MAMSK signal phase has a “curvy” characteristics for the 

time intervals when  𝛽𝑛 ≠ 𝛼𝑛, while the phase of the larger MSK 

constituent is always linear. The only difference between the 2-MAMSK 

phase 𝜙(𝑡, 𝛼, 𝛽) and the larger MSK signal phase 𝜙(𝑡, 𝛽) is the nonlinear 

behaviour for the time intervals when 𝛼 ≠ 𝛽. Hence, the results shown in 

Figure 3-6 clearly agree with our analysis as discussed earlier. 
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3.4 M-MAMSK Signal Phase 

It is straightforward to extend the results from the previous section to M-

MAMSK for 𝑀 > 2. To demonstrate, we modify our previously defined 𝑥 

and 𝑦 as follows 

𝑥 =  ∑2𝑖−1 cos 𝜙(𝑡, 𝛼𝑖)

𝑀

𝑖=1

 (3.38) 

𝑦 =  ∑2𝑖−1 sin𝜙(𝑡, 𝛼𝑖)

𝑀

𝑖=1

 (3.39) 

where 𝜙(𝑡, 𝛼𝑖) is the phase of the 𝑖𝑡ℎ MSK component. 𝑥 and 𝑦 are the 

𝐼  and 𝑄 channels of the M-MAMSK signal, respectively. For more details 

regarding M-MAMSK see section 2.4.1.  

Provided that all components of M-MAMSK are based on conventional 

MSK, then for 𝑖 = 1, 2, … ,𝑀 we have 

𝜙(𝑡, 𝛼𝑖) = 0 or 𝜋 ,   for     𝑡 = 2𝑘𝑇 (3.40) 

𝜙(𝑡, 𝛼𝑖) = ±
𝜋

2
,   for     𝑡 = (2𝑘 + 1)𝑇 (3.41) 

Substituting Equations (3.40) and (3.41) into (3.38) and (3.39), gives 

𝑥 = ± 2𝑀−1 + ∑ ±(2𝑖−1)

𝑀−1

𝑖=1

, and      𝑦 = 0    for   𝑡 = 2𝑘𝑇 (3.42) 

𝑦 = ± 2𝑀−1 + ∑ ±(2𝑖−1)

𝑀−1

𝑖=1

, and      𝑥 = 0    for   𝑡 = (2𝑘 + 1)𝑇 (3.43) 

Next, it is easy to show that 
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(2𝑀−1) > ∑(2𝑖−1)

𝑀−1

𝑖=1

 (3.44) 

Equation (3.44) suggests that the amplitude level of “2𝑀−1” associated with 

the largest MSK component is greater than the sum of the amplitudes of the 

other (𝑀 − 1) MSK components. Accordingly, the multiplier of “2𝑀−1” is 

responsible for determining the signs of 𝑥 and 𝑦 at even and odd multiples 

of  𝑇, respectively.  

From the definition of arctangent described by Equations (3.26) and 

(3.27), we can establish the following: 

 For 𝑡 = 2𝑘𝑇, the M-MAMSK phase values are determined from the 

sign of 𝑥. 

 For 𝑡 = (2𝑘𝑇 + 1), the M-MAMSK phase values are determined 

from the sign of y. 

We can summarise the above discussion with the following relationships: 

The factor of “2𝑀−1”controls the signs of 𝑥 and 𝑦 and the signs of both 𝑥 

and 𝑦 are used to determine the values of overall M-MAMSK phase. 

Therefore, based on the above relationships, we conclude that the overall 

phase of M-MAMSK for 𝑀 ≥ 2 will always follows the phase of the MSK 

component with the largest amplitude value. The remaining (𝑀 − 1) MSK 

components cause the “curvy” behaviour. For convenience, the phase tree 

for a 3-MAMSK signal is illustrated in Figure 3-7. 

The phase tree for a 3-MAMSK signal is similar to that of 2-MAMSK but 

with more nonlinear paths. The increase in the number of nonlinear paths is 

because more combinations exist among 𝛼1, 𝛼2, 𝛼3 and the phase 

differences among the MSK components. Again, the linear paths correspond 

to the case when the information sequences carried by all MSK components 

have the same sign. The nonlinear paths occur when the information 

sequence carried by any of the MSK components has a different sign. 
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Figure 3-7 Phase tree for a 3-MAMSK signal 

By now, one can imagine the phase tree pattern for an arbitrary value of 

𝑀. In general, there exist (22(𝑀−1) − 2𝑀−1 + 1) paths, only one of them is 

linear, the others are not. However, the important outcome is that for 𝑀 ≥ 1, 

the overall M-MAMSK phase can take only the two values of ± 𝜋/2 at odd 

multiples of 𝑇 and only the two values 0 and 𝜋 at even multiples of 𝑇, 

viewed modulo 2𝜋 in the range – 𝜋 and 𝜋. Another point to consider, is that 

the M-MAMSK phase for 𝑀 ≥ 2 can evolve from one state to another via a 

linear or nonlinear path. As in the case of conventional MSK, over one bit 

interval the phase of an M-MAMSK increases by + 𝜋/2 when 𝛼𝑀 = +1 

and decreases by − 𝜋/2 when 𝛼𝑀 = −1. 𝛼𝑀 is the information sequence 

carried by the MSK component with highest amplitude value. 
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3.5 MAMSK Signal Space Diagram 

In the case of continuous phase signals, the phase of the carrier is time 

variant. Hence, modulation schemes with memory cannot be represented by 

discrete points in a signal space diagram as in the case of QAM. Instead, 

continuous phase signals are described by the various paths or trajectories 

from one phase state to another. Figure 3-8 illustrates the signal space 

diagram for a 2-MAMSK signal where the component signals have unequal 

amplitudes.  

The beginning and ending points of these phase trajectories are marked in 

the figure by symbol points (bold dots). It is noticed from Figure 3-8, that 

the 2-MAMSK signal never reaches zero signal energy. This is due to the 

amplitude of the larger MSK constituent being twice the amplitude of the 

smaller MSK constituent. Note that for 2-MAMSK, there are 4 arcs or 

trajectories in each quadrant of the signal space with each being specified by 

4 input data bits, as there are 24 = 16 distinct trajectories. 

 

Figure 3-8 Signal trajectory for a 2-MAMSK signal 



73 

 

To demonstrate the diagram, first we consider the time instants 𝑡 = 𝑛𝑇. 

In section 3.3, we have established that the two MSK components at 𝑡 = 𝑛𝑇 

are either in-phase or out of phase by 𝜋 radians. Or equally the phase 

difference, 𝜙(𝑛𝑇, 𝛽) − 𝜙(𝑛𝑇, 𝛼) is equal to 0 or 𝜋. Taking this into account 

and using Equation (3.3), we obtain the following values for a 2-MAMSK 

signal envelope.  

𝜌(𝑛𝑇, 𝛼, 𝛽) = √5 + 4 cos 0 = 3 (3.45) 

𝜌(𝑛𝑇, 𝛼, 𝛽) = √5 + 4 cos 𝜋 = 1 (3.46) 

The above envelope values suggest that the 2-MAMSK symbol points 

must land on a circle of radius 3 or 1, corresponding to the phase difference 

of 0 and 𝜋, respectively. Consequently, when the two MSK signals are in-

phase the start or end of each signalling interval is represented by one of the 

four symbol points shown on the outer circle. The remaining symbol points 

represent the case when there is a phase difference of 𝜋 between the two 

MSK components.  

It can be noted that at 𝑡 = 𝑛𝑇 the data sequence 𝛼 and/or 𝛽 was not taken 

into consideration. However, to be able to identify a specific arc in between 

the signalling intervals (i.e. 𝑛𝑇 < 𝑡 < (𝑛 + 1)𝑇). We need to consider these 

information sequences alongside the phase differences. Using Equation 

(3.18) and considering all possible combinations of 𝛼 and 𝛽 and the phase 

differences between the two MSK signals, denoted 𝜉. We can establish the 

following relationships between 𝜙(𝑡, 𝛼) and 𝜙(𝑡, 𝛽) as shown in Table 3-5. 

𝛼 = 𝛽 𝜉 = 0 ϕ (t, β ) = ϕ (t, α ) 

𝛼 = 𝛽 𝜉 = 𝜋 ϕ (t, β ) = ϕ (t, α ) + π 

𝛼 ≠ 𝛽 𝜉 = 0 ϕ (t, β ) = – ϕ (t, α ) 

𝛼 ≠ 𝛽 𝜉 = 𝜋 ϕ (t, β ) = – ϕ (t, α ) + π 

Table 3-5 Relationships between 𝝓(𝒕, 𝜶) and 𝝓(𝒕, 𝜷)  
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Now substituting each row of Table 3-5 into Equation (3.1), yields the 

results as shown in Table 3-6.  

α = β ξ = 0 𝑠(𝑡) = 𝐴 {3 𝐼(𝑡) cos 2𝜋𝑓𝑐𝑡  − 3 𝑄(𝑡) sin 2𝜋𝑓𝑐𝑡}  

α = β ξ = π 𝑠(𝑡) = 𝐴 {   𝐼(𝑡) cos 2𝜋𝑓𝑐𝑡  −    𝑄(𝑡) sin 2𝜋𝑓𝑐𝑡}   

𝛼 ≠ 𝛽 𝜉 = 0 𝑠(𝑡) = 𝐴 {3 𝐼(𝑡) cos 2𝜋𝑓𝑐𝑡  −   𝑄(𝑡) sin 2𝜋𝑓𝑐𝑡}   

𝛼 ≠ 𝛽 𝜉 = 𝜋 𝑠(𝑡) = 𝐴 {   𝐼(𝑡) cos 2𝜋𝑓𝑐𝑡 − 3 𝑄(𝑡) sin 2𝜋𝑓𝑐𝑡}   

Table 3-6 Four possible signalling based on α,  β  and ξ 

Where 𝐼(𝑡) = cos𝜙(𝑡, 𝛽) and 𝑄(𝑡) = sin𝜙(𝑡, 𝛽) and 𝐴 is defined by 

Equation (2.20). Each row shown in Table 3-6 corresponds to one of the 

four arcs in the order: 

 Row 1 →  Outer circle 

 Row 2 →  Inner circle 

 Row 3 →  Horizontal ellipse 

 Row 4 →  Vertical ellipse 

To clarify these relationships, consider the following two examples.  

Example 1- Assume that at the start of a signalling interval, 𝛼𝑛 =  𝛽𝑛 and 

the phase difference between the two MSK signals is 𝜋 radians, ( 𝜉 = 𝜋 ). 

Then, the symbol point will evolve from one state to another via a circle of 

radius 1 (the inner circle shown in Figure 3-8). 

Example 2- This time assume that for any singling intervals where 𝛼𝑛 ≠

 𝛽𝑛 and 𝜉 = 0. Then the symbol points for these combinations evolve via an 

ellipse with the major axis of 3 along the 𝑥 axis and the minor axis of 1 

along the 𝑦 axis (Horizontal ellipse shown in Figure 3-8). 

In the remaining part of the section, we extend these results to M-

MAMSK for 𝑀 > 2. As discussed in the previous section, the 𝑀 MSK 
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components at the beginning and end of each symbol interval are either in-

phase or out of phase with each other by 𝜋 radians. Thus, there exist 2𝑀−1 

possible combinations of phase differences among the 𝑀 MSK components. 

This would result in 2𝑀−1 different amplitude levels. 

 To specify these amplitude levels, we consider the possible combinations 

of phase differences at the time instants 𝑡 = 𝑛𝑇. The highest amplitude level 

occurs when all 𝑀 MSK components are in-phase with each other. Under 

this condition, the highest amplitude value, denoted 𝐴ℎ, can be calculated by 

𝐴ℎ = ±∑2𝑖−1
𝑀

𝑖=1

= ±(2𝑀 −  1) (3.47) 

The lowest amplitude occurs when the (𝑀 − 1) MSK component are out of 

phase with the largest MSK component. The lowest amplitude value, 

denoted 𝐴𝑙, can be calculated as 

𝐴𝑙 = ±(2𝑀−1 − ∑ 2𝑖−1
𝑀−1

𝑖=1

) = ±1 (3.48) 

Other amplitude levels occur in between these two levels, depending on 

the phase differences. For example, if the (𝑀 − 2) MSK components are out 

of phase with the largest and smallest MSK components, then this would 

result in a amplitude level of  ±3 or equally,  

𝐴 = ±(1 + 2𝑀−1 − ∑ 2𝑖−1
𝑀−1

𝑖=2

) = ±3 (3.49) 

In a similar manner, if we consider all the possibilities then we would 

obtain different amplitude levels taking values from the set {±1, ±3, ±5,

⋯ ,  ±2𝑀 − 1}. These amplitude levels can be expressed as, 

𝐴 = ±(2𝑀−1 + ∑ 2𝑖−1
𝑀−1

𝑖=1

cos 𝜉𝑖), (3.50) 
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where, 𝐴 represents different amplitude levels which can be obtained from 

different phase combinations. 𝜉𝑖 is the phase difference between the 𝑖𝑡ℎ and 

the largest MSK components. 𝜉𝑖 = 0, if the 𝑖𝑡ℎ and largest MSK 

components are in phase and 𝜉𝑖 = 𝜋 if they are out of phase. 

The above results imply that the symbol points for M-MAMSK must land 

on circles of radius 1, 3, 5, ⋯ ,  2𝑀 − 1, with the centre of the circles at the 

origin. For the time intervals, where the information sequences transmitted 

by all MSK components are the same then the symbol points evolve via an 

arc of a circle its radius specified from the set {1, 3, 5, ⋯ ,  2𝑀 − 1}. For 

the time intervals, where at least one of the information sequences differ 

from the remaining (𝑀 − 1) data sequences then the symbol points evolve 

via an arc of an ellipse. The values for the major and minor axis of the 

ellipse also specified from the set {1, 3, 5, ⋯ ,  2𝑀 − 1}. To clarify, we plot 

a signal trajectory for a 3-MAMSK as shown in Figure 3-9. 

 

Figure 3-9 Signal trajectory for a 3-MAMSK signal 

For the case of 2-MAMSK, we had only two circles, because only two 

possible combinations of phase differences exist, since we only had 2 MSK 
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components. For a 3-MAMSK there are four circles because 2(3−1) = 4, 

possible combinations of phase differences exist among the three MSK 

components. In the case of a 2-MAMSK, each symbol point can only evolve 

via one ellipse which is due to there being only one possible situation where 

𝛼 ≠ 𝛽. For a 3-MAMSK each symbol can evolve via 3 ellipses, because 

there are 2(3−1) − 1 = 3 combinations exist among 𝛼𝑖 for 𝑖 = 1,2,3. 

However, the specific elliptical path is controlled by the phase difference 

among the MSK components.  

In summary, for 𝑀 ≥ 2 there exist 2(𝑀−1) different amplitude levels. 

Consequently, each symbol point can progress from one amplitude level 

to another via 2(𝑀−1) paths. From these paths, one is a circular path 

corresponding to the case where 𝛼𝑖 = 𝛼𝑀 for 𝑖 = 1, 2, 3, ⋯ , 𝑀 − 1. 

The remaining 2(𝑀−1) − 1 paths are elliptical paths and they occur where 

𝛼𝑖 ≠ 𝛼𝑀 for any 𝑖 ∈ {1, 2, 3, ⋯ , 𝑀 − 1}. These paths are controlled 

by the information sequences, 𝛼𝑖 and the phase differences between the 𝑀 

MSK components. The highest amplitude level of ±(2𝑀 −  1) occurs 

when the 𝑀 MSK components are in-phase with each other. The lowest 

amplitude value of ±1 corresponds to the case where the there is a phase 

difference of 𝜋 radians between the largest and remaining (𝑀 − 1) MSK 

components.  

3.6 Power Spectral Density of MAMSK 

We now compare the power spectral density (PSD) of the 2-MAMSK and 

16-QAM modulation schemes. We begin with the analysis of the 

autocorrelation function and its Fourier transform followed by the results 

obtained from simulations. Finally, we develop the idea for M-MAMSK 

when 𝑀 > 2. It has been established in [7, 8], that it is sufficient to 

determine the PSD of a bandpass signal from its complex baseband 

equivalent. Furthermore, they show that the PSD of the complex envelope 
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depends on the symbol pulse shaping. More specific, the PSD is equal to the 

energy spectral density of the pulse shape divided by the symbol duration.  

We use the results of Table 3-6 together with Equation (2.6) in order to 

obtain the symbol pulse shaping used for a 2-MAMSK signal. Based on 

these results, the complex baseband representation of a 2-MAMSK signal 

can be expressed as 

𝑠(𝑡) = 𝐴 [𝑎𝐼(𝑡) cos (
𝜋𝑡

2𝑇
) + 𝑗 𝑎𝑄(𝑡) sin (

𝜋𝑡

2𝑇
)] ,     𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (3.51) 

where 𝐴 is the amplitude defined in Equation (2.15), 𝑇 is the bit period. 

𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) map the information bits into the 2-MAMSK symbols, each 

taking values from the set {±1, ±3}. From Equation (3.51), it can be seen 

that 2-MAMSK signal can also be viewed as offset 16-QAM with half cycle 

sinusoidal pulse shaping. Equation (3.51) is valid, since 2-MAMSK phase 

can only increase or decrease by ± 𝜋/2 over one bit interval. For more 

details, see Sections 3.3 and 3.5. 

From Equation (3.51), we observe that the pulse shaping of a 2-MAMSK 

signal is exactly the same as that of MSK. This was expected, because 

superimposing two pulses of the same shape with different amplitudes also 

results in a pulse of the same shape but at a different amplitude level. 

Consequently, the spectral shape of 2-MAMSK is identical to that of 

conventional MSK. A common method of evaluating PSD is first to obtain 

an expression for the autocorrelation function, 𝑅(𝜏) of the transmitted signal 

and then take the Fourier transform of 𝑅(𝜏).  

The autocorrelation function of MSK (2-MAMSK) with half cycle 

sinusoidal pulse shaping is  given in [7, 16] as 

𝑅(𝜏) =
𝐴2 𝑇

𝜋
[𝜋 (1 −

|𝜏|

2𝑇
) . cos (𝜋

|𝜏|

2𝑇
) +  sin (𝜋

|𝜏|

2𝑇
)] (3.52) 

With the bit time duration and 𝐴 normalised to 1 (i.e. 𝑇 = 1 sec and 𝐴 = 1) 

the above equation is plotted in Figure 3-10. 
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Figure 3-10 MSK (2-MAMSK) autocorrelation function 

The power density spectrum of 2-MAMSK or MSK  [8, 76] is obtained 

by taking the Fourier transform of Equation (3.52) resulting in 

𝑆2−𝑀𝐴𝑀𝑆𝐾(𝑓) =
16 𝐴2 𝑇

𝜋2
[
cos(2𝜋𝑇𝑓)

1 − (4𝑇𝑓)2
]

2

 (3.53) 

The power spectral density of unfiltered 16-QAM [7, 8] is given by 

𝑆16−𝑄𝐴𝑀(𝑓) = 𝐴2 𝑇 [
sin(2 𝜋 𝑇 𝑓)

2 𝜋 𝑇𝑓
]

2

. (3.54) 

Note, for the case of 2-MAMSK and 16-QAM, 𝐴 is the average amplitude 

of the signal, but for MSK 𝐴 is the amplitude since it is a constant envelope 

modulation. 

Figure 3-11 shows the power spectral densities (PSDs) of 2-MAMSK and 

16-QAM which are obtained from Equations (3.53) and (3.54), respectively. 

Figure 3-12 shows the PSDs obtained from simulation results. Both graphs 

are plotted as a function of 𝑓 normalised to the data rate 𝑅 = 1/𝑇. 
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Figure 3-11 Power spectral density of 2-MAMSK Vs 16-QAM— Analytical 

 

Figure 3-12 PSDs of 2-MAMSK Vs 16-QAM obtained from simulations 
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From the above figures, it can be seen that the simulation results are 

consistent with the analytical results. Here, we briefly discuss the main 

differences between the two PSDs (for a comprehensive study, see [8]). We 

observe that for large 𝑓, the rate of roll-off of the 2-MAMSK spectrum is 

proportional to 𝑓−4, whereas the 16-QAM PSD falls off at a rate of 𝑓−2. The 

main lobe of the 2-MAMSK spectrum is 50% wider than that of 16-QAM. 

The first nulls of 16-QAM and 2-MAMSK occur at 𝑓 = 0.5 and . 75, 

respectively. More precisely, if we consider a frequency scale factor which 

depends on the number of bits per symbol, then the first nulls appear at 𝑓 =

0.25 and . 375 for 16-QAM and 2-MAMSK, respectively.  

The extension of 2-MAMSK to M-MAMSK for 𝑀 > 2, is now obvious. 

As discussed earlier, for any modulation scheme the evaluation of the PSD 

is dependent on the type of the pulse shaping used. Equation (3.51) still 

holds for M-MAMSK, where 𝑎𝐼(𝑡) =  ±1, ±3,⋯ , 2𝑀 − 1 and 𝑎𝑄(𝑡) =

±1, ±3,⋯ , 2𝑀 − 1. This suggests that the pulse shape did not change but 

there are more amplitude levels. Thus, for M-MAMSK we maintain the 

same pulse shaping as for MSK. Accordingly, the spectral shape of M-

MAMSK is identical to that of MSK but the magnitude of the PSD is 

determined from the average power of the M-MAMSK signal set. The PSD 

of M-MAMSK for 𝑀 ≥ 2 can be expressed as 

𝑆𝑀−𝑀𝐴𝑀𝑆𝐾(𝑓) =
16 𝐴𝑎𝑣

2  𝑇

𝜋2
[
cos(2𝜋𝑇𝑓)

1 − (4𝑇𝑓)2
]

2

, (3.55) 

where 𝐴𝑎𝑣 is the average amplitude of the M-MAMSK signal set. From 

Equation (3.55), we observe that the PSD magnitude for M-MASK is the 

same as that shown in Figure 3-11, if its average amplitude is equal to the 

amplitude of MSK signal. However, for a fixed data rate its spectral shape is 

𝑀 times narrower than that of MSK, because an M-MAMSK signal can 

encode 2𝑀 bits per symbol. Hence, when compared with MSK, M-MAMSK 

is exactly 𝑀 times as bandwidth efficient. 
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3.7 The Eye Diagram of MAMSK 

The eye diagram is another useful tool used for qualitative analysis of 

digitally modulated signals. Independent eye diagrams can be generated, one 

for the in-phase channel and another for the quadrature channel. Figure 3-13 

illustrates undistorted eye diagram of a 2-MAMSK signal.  

 

Figure 3-13 Eye diagram of a 2-MAMSK signal 

The open part of the eye represents the time that we can safely sample the 

signal without error. Obviously, from the above eye diagram we can see that 

the ideal sampling period for a 2-MAMSK is 1, 3, 5, 7, ⋯ for the in-phase 

channel and 0, 2, 4, 6, 8, ⋯ for the quadrature channel. From Figure 3-13, 

we observe that each of the 𝐼 and 𝑄 channels have two amplitude levels with 

sinusoidal pulse shaping, which is consistent with the previous discussions. 

The eye diagram of M-MAMSK for 𝑀 > 2 has the same pattern of a 2-

MAMSK signal but with more amplitude levels (see section 3.5 for details). 
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3.8 Theoretical BER for M-MAMSK  

In this section, we evaluate the decoded error performance of a 2-MAMSK 

signal achieved with maximum likelihood sequence estimation (MLSE). 

Finally, we generalise the results to M-MAMSK for 𝑀 ≥ 2.  The optimum 

bit error probability derived here is only valid for the white Gaussian noise 

channel. Throughout this section for simplicity of notation, we write 𝑠(𝑡) in 

place of  𝑠𝑀−𝑀𝐴𝑀𝑆𝐾(𝑡, 𝛼1, 𝛼2, ⋯ , 𝛼𝑀). 

 In section 2.6, we have described the basics of maximum likelihood 

detection. Based on the results, we must determine the minimum Euclidean 

distance between paths through a trellis that separates at a node at 𝑡 = 0 and 

re-emerges at a later time. For phase varying signals the distance between 

them depends on the phase difference between the two signals. To illustrate 

this, assume that we have two signals 𝑠𝑖(𝑡) and 𝑠𝑗(𝑡) differing over 𝑁 

intervals. Thus, the Euclidean distance between them over an interval of 

length 𝑁𝑇, where 1/𝑇 is the symbol rate is can be defined as 

           𝑑𝑖𝑗
2 =  ∫ [𝑠𝑖(𝑡) − 𝑠𝑗(𝑡)]

2

𝑁𝑇

0

𝑑𝑡 

  =  ∫ 𝑠𝑖
2(𝑡)

𝑁𝑇

0

𝑑𝑡 + ∫ 𝑠𝑗
2(𝑡)

𝑁𝑇

0

𝑑𝑡 − 2∫ 𝑠𝑖(𝑡) 𝑠𝑗(𝑡)

𝑁𝑇

0

𝑑𝑡 

(3.56) 

Using Equation (3.1), we can define 𝑠𝑖(𝑡) and 𝑠𝑗(𝑡) as follows: 

𝑠𝑖(𝑡) = √
 2𝐸 

5𝑇
(cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑖)] + 2 cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽𝑖)]) (3.57) 

𝑠𝑗(𝑡) = √
 2𝐸 

5𝑇
(cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑗)] + 2 cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽𝑗)]) (3.58) 

where, 𝐸 is the average signal energy per symbol interval. 
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To avoid long and messy equations, we will work with each term of 

Equation (3.56) separately and then combine the outcomes for each term to 

obtain the final result. Let us start off by integrating the first term of the 

right hand side of (3.56), we have 

∫ 𝑠𝑖
2(𝑡)

𝑁𝑇

0

𝑑𝑡 =
2𝐸

5𝑇
∫ (cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑖)] 

𝑁𝑇

0

 

+ 2 cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽𝑖)])
2 𝑑𝑡  

(3.59) 

Now using the fact that 

∫cos2(2𝜋𝑥) 𝑑𝑥 =
𝑇

2

𝑇

0

 

Equation (3.59) can be simplified to 

∫ 𝑠𝑖
2(𝑡)

𝑁𝑇

0

𝑑𝑡 =
2𝐸

5𝑇
(
𝑁𝑇

2
+
4𝑁𝑇

2
) +

8𝐸

5𝑇

∙ (∫ cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑖)] cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽𝑖)]

𝑁𝑇

0

𝑑𝑡) 

(3.60) 

From trig relations we have that 

2 cos[𝐴 +  𝐵] cos[𝐴 +  𝐶] = cos[𝐵 − 𝐶] + cos[2𝐴 + 𝐵 +  𝐶] (3.61) 

Using the above identity Equation (3.60) becomes 

∫ 𝑠𝑖
2(𝑡)

𝑁𝑇

0

𝑑𝑡 = 𝑁𝐸 +
4𝐸

5𝑇
∫ cos[ 𝜙(𝑡, 𝛼𝑖) − 𝜙(𝑡, 𝛽𝑖)]

𝑁𝑇

0

 𝑑𝑡

+ 
4𝐸

5𝑇
∫ cos[4𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑖) + 𝜙(𝑡, 𝛽𝑖)] 𝑑𝑡

𝑁𝑇

0

 

(3.62) 

Assuming that  𝑓𝑐 ≫ 1 𝑇⁄ , Equation (3.62) can be simplified to 
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∫ 𝑠𝑖
2(𝑡)

𝑁𝑇

0

𝑑𝑡 = 𝑁𝐸 +
4𝐸

5𝑇
∫ cos[𝜙(𝑡, 𝛼𝑖) − 𝜙(𝑡, 𝛽𝑖)]

𝑁𝑇

0

 𝑑𝑡 + 𝑂 (1 𝑓𝑐
⁄ ) (3.63) 

where the term 𝑂 (1 𝑓𝑐
⁄ ) denotes a term of order  1 𝑓𝑐

⁄ , 𝜙(𝑡, 𝛼𝑖) and 𝜙(𝑡, 𝛽𝑖) 

are the phases corresponding to the carrier of  𝑠𝑖(𝑡). As the carrier frequency 

becomes large to a very good approximation the term 𝑂 (1 𝑓𝑐
⁄ ) approaches 

zero and we have 

∫ 𝑠𝑖
2(𝑡)

𝑁𝑇

0

𝑑𝑡 = 𝑁𝐸 + 
4𝐸

5𝑇
∫ cos[𝜙(𝑡, 𝛼𝑖) − 𝜙(𝑡, 𝛽𝑖)]

𝑁𝑇

0

 𝑑𝑡 (3.64) 

Now, we need to find an expression for the phase difference, 𝜙(𝑡, 𝛼𝑖) −

𝜙(𝑡, 𝛽𝑖), based on  Equation (3.10) , we have  

𝜙(𝑡,  𝛼𝑖) − 𝜙(𝑡,  𝛽𝑖) =  
𝜋

2𝑇
𝛼𝑖𝑡 − 

𝜋

2𝑇
𝛽𝑖𝑡 

=
𝜋

2𝑇
𝑡 (𝛼𝑖 − 𝛽𝑖) 

= 𝜙(𝑡,  𝛼𝑖 − 𝛽𝑖) 

(3.65) 

If we let  𝜻𝟏 =  𝛼𝑖 − 𝛽𝑖, Equation (3.64) become 

∫ 𝑠𝑖
2(𝑡)

𝑁𝑇

0

𝑑𝑡 = 𝑁𝐸 +
4𝐸

5𝑇
∫ cos[𝜙(𝑡,  𝜻𝟏)]

𝑁𝑇

0

 𝑑𝑡 (3.66) 

Since the sequences 𝛼 and 𝛽 represent two independent binary data symbols 

that take the values from the set {−1, +1}. Consequently, any element of 𝜻𝟏 

can take values from the set {−2, 0, +2}. A similar approach as used to 

integrate 𝑠𝑖
2(𝑡) over an integral of length 𝑁𝑇 can be applied to integrate the 

second term of (3.56), and thus we have 
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∫ 𝑠𝑗
2(𝑡)

𝑁𝑇

0

𝑑𝑡 = 𝑁𝐸 +
4𝐸

5𝑇
∫ cos[ 𝜙(𝑡,  𝜻𝟐)]

𝑁𝑇

0

 𝑑𝑡 

 

(3.67) 

where  𝜻𝟐 = 𝛼𝑗 − 𝛽𝑗 . Note that  𝜻𝟐 also takes values from the set  {−2, 0,

+2}.  

Finally, we need integrate the last term of Equation (3.56). Substituting 

Equations (3.57) and (3.58) into the last term of Equation (3.56) and after 

expanding and factoring we obtain, 

−2∫ 𝑠𝑖(𝑡) 𝑠𝑗(𝑡) 𝑑𝑡

𝑁𝑇

0

= −
2𝐸

5𝑇
𝑑𝑡 ∙ (∫  

+ 2∫ cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑖)] cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑗)]

𝑁𝑇

0

+ 4∫ cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑖)] cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽𝑗)]

𝑁𝑇

0

+ 4∫ cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽𝑖)] cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛼𝑗)]

𝑁𝑇

0

+ 8∫ cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽𝑖)] cos[2𝜋𝑓𝑐𝑡 + 𝜙(𝑡, 𝛽𝑗)]

𝑁𝑇

0

) 

(3.68) 

 

Using the identity defined by Equation (3.61) and ignoring all the 𝑂 (1 𝑓𝑐
⁄ ) 

terms we have 

 

 

−2∫ 𝑠𝑖(𝑡) 𝑠𝑗(𝑡) 𝑑𝑡

𝑁𝑇

0

= −
2𝐸

5𝑇
∙ (∫ cos[𝜙(𝑡, 𝛼𝑖) − 𝜙(𝑡, 𝛼𝑗)]

𝑁𝑇

0

𝑑𝑡  (3.69) 
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+∫ 2 cos[𝜙(𝑡, 𝛼𝑖) − 𝜙(𝑡, 𝛽𝑗)]

𝑁𝑇

0

𝑑𝑡

+ ∫ 2 cos[𝜙(𝑡, 𝛽𝑖) − 𝜙(𝑡, 𝛼𝑗)]

𝑁𝑇

0

𝑑𝑡

+ ∫ 4 cos[𝜙(𝑡, 𝛽𝑖) − 𝜙(𝑡, 𝛽𝑗)]

𝑁𝑇

0

𝑑𝑡) 

By noting that  𝜙(𝑡, 𝑥) − 𝜙(𝑡, 𝑦) = 𝜙(𝑡, 𝑥 −  𝑦) Equation (3.69) becomes 

−2∫ 𝑠𝑖(𝑡) 𝑠𝑗(𝑡) 𝑑𝑡

𝑁𝑇

0

= −
2𝐸

5𝑇
∙ (∫ cos[𝜙(𝑡,  𝛼𝑖 − 𝛼𝑗)]

𝑁𝑇

0

𝑑𝑡      

+  ∫ 2 cos[𝜙(𝑡,  𝛼𝑖 − 𝛽𝑗)]

𝑁𝑇

0

𝑑𝑡

+ ∫ 2 cos[𝜙(𝑡,  𝛽𝑖 − 𝛼𝑗)]

𝑁𝑇

0

𝑑𝑡

+ ∫ 4 cos[𝜙(𝑡,  𝛽𝑖 − 𝛽𝑗)]

𝑁𝑇

0

𝑑𝑡) 

(3.70) 

Now define       𝜻𝟑 =  𝛼𝑖 − 𝛼𝑗,           𝜻𝟒 =  𝛼𝑖 − 𝛽𝑗,          𝜻𝟓 =  𝛽𝑖 − 𝛼𝑗  and 

𝜻𝟔 =  𝛽𝑖 − 𝛽𝑗. Then the right hand side of (3.70) becomes 

= − 
2𝐸

5𝑇
∙ (∫ cos[𝜙(𝑡,  𝜻𝟑)]

𝑁𝑇

0

 𝑑𝑡 + ∫ 2 cos[𝜙(𝑡,  𝜻𝟒)]

𝑁𝑇

0

 𝑑𝑡 

+∫ 2 cos[𝜙(𝑡,  𝜻𝟓)]

𝑁𝑇

0

 𝑑𝑡 + ∫ 4 cos[𝜙(𝑡,  𝜻𝟔)]

𝑁𝑇

0

 𝑑𝑡) 

(3.71) 

where any element  𝜻𝒙 (for 𝑥 =  3, 4, 5, 6) can take values from the set {−2, 0, +2}, 

except that  𝜻𝟔 ≠  0. 

 Now collecting all the terms and considering that 𝑑𝑖𝑗
2  on the interval 

[0, 𝑁𝑇]  is 𝑁  times the value of 𝑑𝑖𝑗
2  on the interval [0, 𝑇]. Then we have 
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the final expression for the average squared Euclidean distance between the 

two signals, 𝑠𝑖(𝑡) and 𝑠𝑗(𝑡) as  

𝑑𝑖𝑗
2 = 

2𝑁𝐸

5𝑇
∙ (∫5

𝑇

0

 𝑑𝑡 + 2∫ cos[𝜙(𝑡,  𝜻𝟏)]

𝑇

0

 𝑑𝑡 

+ 2∫ cos[𝜙(𝑡,  𝜻𝟐)]

𝑇

0

 𝑑𝑡 − ∫ cos[𝜙(𝑡,  𝜻𝟑)]

𝑇

0

 𝑑𝑡 

− 2∫ cos[𝜙(𝑡,  𝜻𝟒)]

𝑇

0

 𝑑𝑡 − 2∫ cos[𝜙(𝑡,  𝜻𝟓)] 

𝑇

0

𝑑𝑡 

− 4∫ cos[𝜙(𝑡,  𝜻𝟔)]

𝑇

0

 𝑑𝑡) 

(3.72) 

Hence, the Euclidean distance is related to the phase difference between the 

paths in the phase trellis. The pairwise error probability in the case that we 

detect signal 𝑠𝑗(𝑡) when signal 𝑠𝑖(𝑡) has been sent is given by 

𝑃𝑏 = 𝑄(√
 𝑑𝑖𝑗
2  

2 𝑁0
 ), (3.73) 

where 𝑁0 is the noise power spectral density and 𝑑𝑖𝑗
2  is the average squared 

Euclidean distance over 𝑁 symbols intervals. In general, it is desirable to 

normalise the distance 𝑑𝑖𝑗
2  and express it in terms of the bit energy, 𝐸𝑏. The 

normalised Euclidean distance is given by 

𝛿𝑖𝑗
2 =

 𝑑𝑖𝑗
2

2 𝐸𝑏
 , (3.74) 

where 𝐸𝑏 is the average energy ber bit. 

Provided that 𝐸 = 𝑘 𝐸𝑏, where, 𝑘 is the number of bits in the symbol 

interval. For a 2-MAMSK signal 𝑘 can be expressed as 
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𝑘 = (log2𝑀 + log2𝑀) = 2 log2𝑀 (3.75) 

Using these results, we can define the squared and normalised average 

Euclidean distance, 𝛿𝑖𝑗
2  as 

𝛿𝑖𝑗
2 =

2𝑁 log2𝑀

5𝑇
∙ (∫5

𝑇

0

𝑑𝑡 + 2∫ cos[𝜙(𝑡,  𝜻𝟏)]

𝑇

0

 𝑑𝑡  

+2∫ cos[𝜙(𝑡,  𝜻𝟐)] 

𝑇

0

𝑑𝑡 − ∫ cos[𝜙(𝑡,  𝜻𝟑)] 

𝑇

0

𝑑𝑡 

− 2∫ cos[𝜙(𝑡,  𝜻𝟒)] 

𝑇

0

𝑑𝑡 − 2∫ cos[𝜙(𝑡,  𝜻𝟓)] 

𝑇

0

𝑑𝑡

− 4∫ cos[𝜙(𝑡,  𝜻𝟔)] 

𝑇

0

𝑑𝑡), 

(3.76) 

where  𝜻𝒙 for 𝑥 =  1, 2, … 6 can take values from the set {−2, 0, +2}. 

For high signal-to-noise ratio, the bit error rate performance for a 

coherent receiver may be approximated by [7, 72, 92] 

𝑃𝑏 ≈ 𝑄(√
𝐸𝑏 

 𝑁0
 𝛿min
2   ), (3.77) 

where, 𝛿min
  is the lowest of 𝛿𝑖𝑗 between any two different set of data sequences, 

(𝛼𝑖, 𝛽𝑖) and (𝛼𝑗 , 𝛽𝑗) and defined as 

𝛿min
2 = min

𝑖,𝑗
𝑖≠𝑗

{𝛿𝑖𝑗
2 } 

(3.78) 

The phase tree is an important diagram and is used to calculate and find 

the properties of 𝛿min
2  for CPM signals. Figure 3-1 shows a phase tree for a 

2-MAMSK signal over the interval [0, 4𝑇]. To calculate 𝛿min
2  for an 

observation of length 𝑁 symbol intervals, all pairs of phase trajectories in 

the phase tree over 𝑁 symbol intervals must be inserted into Equation (3.76). 
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The pair of phase trajectories having the root node at time 𝑡 =  0 must not 

coincide, which means that 𝛽𝑖  ≠  𝛽𝑗. On the other hand, there is no 

restriction on the binary data sequences 𝛼𝑖 and 𝛼𝑗. This is because the 

overall 2-MAMSK phase, 𝜙(𝑡, 𝛼, 𝛽) is controlled by the information 

sequence carried by the larger MSK component. It is worth noting that the 

sequences  𝛼𝑖 and  𝛼𝑗 control the “curvy” behaviour of the phase trajectories 

shown in Figure 3-1. For more details on 2-MAMSK phase see section 3.3. 

 A pair of phase trajectories merge at a certain time if they coincide for all 

time after that. Employing this approach to the trajectories of Figure 3-1 it is 

seen that if a pair of sequences 

 

 𝛽𝑖 = ⋯ ,+1, −1,  𝛽1,  𝛽2, …   ,  𝛽𝑗 = ⋯ ,−1, +1,  𝛽1,  𝛽2, … 

   𝛼𝑖 and  𝛼𝑗 can take any value from the set {−1, +1} 

is chosen, the two phase trajectories coincide for all 𝑡 ≥ 2𝑇. The sequences 

𝛽𝑖 and  𝛽𝑗 can be exchanged with each other, and the resulting 𝛿𝑖𝑗
2  will be 

the same. Furthermore, since the cosine function is symmetric 

( cos−𝑥 =  cos 𝑥 ) then the difference sequences, 𝜻𝒙 can always be chosen 

to be positive. Taking into account the above considerations, the 

corresponding value of the difference sequences  𝜻𝒙 for all possible values of 

 𝛼𝑖 , 𝛼𝑗 , 𝛽𝑖  and  𝛽𝑗 are summarised as 

βi βj αj αi ζ1  ζ2 ζ3 ζ4 ζ5 ζ6 

1 -1 -1 -1 2 0 0 0 2 2 

1 -1 1 1 0 2 0 2 0 2 

1 -1 -1 1 0 0 2 2 2 2 

1 -1 1 -1 2 2 2 0 0 2 

Table 3-7 The corresponding difference sequences 

Since, 𝛽𝑖  ≠  𝛽𝑗  for all possible cases then 𝜻𝟔 ≠  0, but  𝜻𝒙 for 𝑥 =

 1, 2, 3, 4, 5 can take any value from the set {0, +2}. It can be noted that 
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when the value is −2 it is converted to 2 and the resulting  𝜻𝒙 will be the 

same because the cosine is an even function. Row 4 shown in Table 3-7, 

gives the minimum normalised squared Euclidean distance. This 

corresponds to the case when  𝛼𝑖 =  𝛽𝑗 and  𝛼𝑗 =  𝛽𝑖. This result is logical, 

because that is the case where the larger and smaller MSK components for 

both signals 𝑠𝑖(𝑡) and 𝑠𝑗(𝑡) are out of phase with each other. Thus the 

superimposed signals are destructive and the resulting signal is in its lowest 

energy state for both paths 𝑖 and 𝑗. This represents the inner circle shown in 

Figure 3-8.  

As mentioned earlier, the two phase trajectories merge after the second 

symbol (i.e. 𝑁 =  2). Now the normalised squared Euclidean distance for 

this event is easily calculated from Equation (3.76) and provides an upper 

bound on 𝛿min
2 , this upper bound for 𝑀 =  2 and 𝑁 =  2 is given by 

𝑑𝐵
2 = 

4

5 
∙  (5 + 

2 sinπ 

𝜋
 +  

2 sinπ 

𝜋
  −   

 sinπ 

𝜋
−  2 –  2 – 

4 sinπ 

𝜋
) 

=
4

5 
 

(3.79) 

For comparison, the upper bound 𝑑𝐵
2   for an MSK signal is 2. The above 

expression for the upper bound 𝑑𝐵
2  was obtained from Equation (3.76) in 

this way. If the difference sequence 𝜻𝒙 = 2 then the phase separation is 𝜋 

and if 𝜻𝒙 = 0 then the phase separation is 0 or equally 

Δ𝜙 =  {
   𝜋        𝑖𝑓     𝜻𝒙 = 2 

 0       𝑖𝑓     𝜻𝒙 = 0
 (3.80) 

where Δ𝜙 is the phase separation over a symbol interval. Thus, all the terms 

in Equation (3.76) correspond to two possible phase separations based on 

the value of  𝜻𝒙. We could have two possible cases as given below 

 

Case I: when  𝜻𝒙 = 𝟎 
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∫cos[0 ∙ 𝑡 ] 𝑑𝑡 = 1 (3.81) 

Case II: when  𝜻𝒙 = 𝟐 

∫cos[ 𝜋 ∙ 𝑡 ] 𝑑𝑡 =
sinπ 

𝜋
 (3.82) 

Thus, at large SNR the probability of bit error rate performance of 2-

MAMSK signal with a coherent receiver may be approximated by 

𝑃𝑏 ≈ 𝑄(√
 4 𝐸𝑏 

 5 𝑁0
  ) (3.83) 

The bit error rate evaluated from the above expression and one obtained by 

simulation is shown in Figure 3-14. 

 

Figure 3-14 Probability of bit error for MAMSK signals 
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In the remaining part of this section, we will extend the result to M-

MAMSK for 𝑀 > 2. For the case of 2-MAMSK, we have established that 

the minimum normalised squared Euclidean distance occur when the two 

MSK components are out of with each other by 𝜋 radians. For M-MAMSK 

this corresponds to the case when there is a phase difference of 𝜋 radians 

between the largest MSK and the remaining (𝑀 − 1) MSK components. 

Using Equation (2.21), the minimum amplitude can be expressed as 

𝐴𝑚𝑖𝑛 =
√(2𝐸 𝑇⁄ )

√∑ 22(𝑖−1)
𝑀

𝑖=1

 (2𝑀−1 + ∑ 2𝑖−1
𝑀−1

𝑖=1

 cos 𝜉𝑖).  (3.84) 

Given that 𝜉𝑖 = 𝜋  for  𝑖 = 1, 2,⋯ ,𝑀 − 1, then Equation (3.84) becomes 

𝐴min =
√(2𝐸 𝑇⁄ )

√∑ 22(𝑖−1)
𝑀

𝑖=1

 (2𝑀−1 − ∑ 2𝑖−1
𝑀−1

𝑖=1

) 

=
√(2𝐸 𝑇⁄ )

√∑ 22(𝑖−1)
𝑀

𝑖=1

 (   2𝑀−1 − [2𝑀−1 − 1]∫  ) 

(3.85) 

From the geometric series formula we have 

∑22(𝑖−1)
𝑀

𝑖=1

=
1

3
(4𝑀 −  1) (3.86) 

Substituting (3.86) into (3.85) and simplifying, we obtain an expression for 

the minimum amplitude as 

𝐴min = √
6 ∙ 𝐸

𝑇 ∙ (4𝑀 − 1)
 , (3.87) 

where 𝐸 is the average signal energy and 𝑇 is the duration of one symbol. 
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 As mentioned earlier, the minimum squared Euclidean distance is 

determined from the energy of the signal with the lowest amplitude. The 

minimum energy of an M-MAMSK signal defined in terms of its average 

energy can be calculated as 

𝐸min =
𝑇

2
𝐴min
2  

= (
𝑇

2
) ∙

6 ∙ 𝐸

𝑇 ∙ (4𝑀 − 1)
=

3 ∙ 𝐸

(4𝑀 − 1)
 

(3.88) 

To find the minimum squared Euclidean distance between the two signals 

𝑠𝑖(𝑡) and 𝑠𝑗(𝑡), consider the geometric representation of the signal as shown 

in Figure 3-15.  

14
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


M

E

14

3

M

E

At t = 0, both signals have 

a common starting point
0

)(tsi

)(ts j

ijd

 

Figure 3-15 Geometric representation of signals 

It is clear from Figure 3-15 that the minimum squared Euclidean distance 

between the two signals 𝑠𝑖(𝑡) and 𝑠𝑗(𝑡) can be defined as  

𝑑min
2 =  4 𝐸min = 

12 ∙ 𝐸

(4𝑀 − 1)
 (3.89) 

where 𝐸 is the average energy per symbol and with 𝐸 = 𝑀𝐸𝑏, Equation 

(3.89) becomes 
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𝑑min
2 = 

12 𝑀 𝐸𝑏
(4𝑀 − 1)

 (3.90) 

The normalised minimum squared Euclidean distance for M-MAMSK can 

be expressed as 

𝛿min
2 = 

𝑑min
2

2𝐸𝑏
= 

6𝑀

(4𝑀 − 1)
 (3.91) 

Accordingly, at large SNR the probability of bit error rate of M-MAMSK for 𝑀 ≥

1 with a coherent receiver may be approximated by 

𝑃𝑏 ≈ 𝑄(√𝛿min
2

𝐸𝑏 

𝑁0
  ) ≈ 𝑄(√

6𝑀

(4𝑀 − 1)
∙
𝐸𝑏 

𝑁0
  ) (3.92) 

where 𝑀 is number of MSK components to be summed. In contrast, an 

expression for the bit error rate of Gray coded square QAM is given in [93] 

as 

𝑃𝑏 ≈
4

log2𝑀
∙ (1 −

1

√𝑀
 )∑𝑄((2𝑖 − 1)√

3 log2𝑀

(𝑀 − 1)
∙  
𝐸𝑏
𝑁0
)

√𝑀
2

𝑖=1

 (3.93) 

where 𝑀 is the modulation order and defined as 𝑀 = 2𝑘 where 𝑘 is the 

number of bits per symbol.  

The 2, 3 and 4-MAMSK signals are spectrally equivalent to 16, 64 and 

256-QAM signals, respectively. In general, the transmission rate of square 

QAM system is comparable to that of M-MAMSK scheme or equally  

M−MAMSK = 4M − QAM (3.94) 

where  𝑀  is the number of MSK components.  
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For the above reasons, the error performance of M-MAMSK modulation 

scheme is compared to 4M-QAM. For 𝑀 = 2, 3 and  4, the probability of 

bit error evaluated from Equations (3.92) and (3.93) are shown in Figure 

3-16. From Figure 3-16, we observe that at high SNR there is a difference of 

around 0.1 dB between the BER curves of M-MAMSK and 4M-QAM, for 

𝑀 = 2, 3 and  4. This result also holds for any 𝑀 ≥ 4, for the sake of 

clarity, the BER curves for higher 𝑀 values are not shown in Figure 3-16. 

Based on our analysis, we can conclude that ideally for 𝑀 ≥ 1 M-MAMSK 

and 4M-QAM (square QAM) have identical BER performance for the same 

average energy. It can be noted that Equation (3.92) can be used as an 

alternative to estimate the theoretical BER of M-QAM, where M can be 

written as 4𝑛, for 𝑛 = 1, 2, 3,⋯.  

 

Figure 3-16  Theoretical BER of M-MAMSK Vs 4𝑀-QAM 
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3.9 Summary 

In this chapter, we have characterised M-MAMSK signals for 𝑀 ≥ 2. The 

phase trellis of M-MAMSK is identical to that of MSK. However, the time 

varying phase between time intervals evolves via either straight or curved 

paths according to the input binary data sequences and the phase differences 

between the 𝑀 MSK components. The information sequence carried by the 

largest MSK component controls the overall phase of M-MAMSK, whereas 

any of the other information sequences causes the curvature when it has 

opposite sign to the binary data sequence carried by the MSK component 

with highest amplitude.  

The signal space diagram of M-MAMSK is represented by various circles 

and ellipses. Each circle represents an amplitude level defined from the set 

{±1,±3,⋯ , ±2𝑀 − 1}. Hence, each symbol point can evolve from one 

level to another though 2𝑀−1 trajectories. Only one of these trajectories is 

circular, the others are elliptical arcs. The highest amplitude level occurs 

when there is a phase difference of 0 among the 𝑀 MSK components. A 

phase difference of 𝜋 radians between the largest MSK component and the 

remaining (𝑀 − 1) MSK components causes the lowest amplitude level. 

The power spectral density of M-MAMSK was derived and compared to 

that of M-QAM. The comparison was in favour of M-MAMSK in terms of 

spectral sidelobe roll-off rate, whereas the main lobe of the M-MAMSK 

spectrum is 1.5 times that of M-QAM. This is not a serious drawback for M-

MAMSK as 99% of the signal power falls within the main lobe and it has 

the same throughput as square QAM. Finally, the error probability 

expression of M-MAMSK in AWGN was derived and compared to that of 

QAM system having a square constellation of size 𝑀 = 4𝑛 for  𝑛 =

1, 2, 3,⋯. The results show that both schemes achieve almost identical BER 

performance for the same average-transmit power. The theoretical BER 

expression for an M-MAMSK can be used as an alternative to approximate 

the error performance of Gray coded square QAM over an AWGN channel.  
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Chapter 4 

4 Space-Time Block Codes With 

Differentially Detected 

Multi-Amplitude Minimum Shift 

Keying 

4.1 Introduction 

 

Continuous phase signals are useful modulation schemes for wireless 

transmission because of their characteristics of constant envelope and fast 

spectral roll-off [63]. Minimum shift keying (MSK) is a continuous phase 

modulation (CPM) scheme, which has a modulation index of 1/2. A 2-level 

multi-amplitude minimum shift keying (2-MAMSK) signal retains many of 

the characteristics of CPM signals and has the potential to increase the data 

rate of an existing MSK system by a factor of two. Furthermore, we have 

established that the phase values of a 2-MAMSK signal at the symbol 

transition times are identical to that of MSK. This allows differential 
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detection of the 2-MAMSK signal. Differential detectors are attractive in 

wireless communications due to their low complexity and robustness to 

carrier phase variations [86, 87]. 

Multipath fading causes the received signal power to fluctuate [11] and 

hence degrades system reliability and performance [12, 14]. Diversity 

techniques [25, 26, 47, 56] have been deployed to combat the effect of 

multipath fading and improve performance. Space-time block codes 

(STBCs) are techniques widely used in systems with multiple transmit 

and/or receive antennas to achieve diversity gain in wireless fading 

channels. In space-time block coded systems digital symbols from different 

antennas are encoded into redundant copies and usually are sent over 

different time slots. One form of STBC is the so-called orthogonal STBC 

(OSTBC). These achieve full diversity gain and allow simple linear 

decoding at the receiver. Orthogonal STBCs suffer from loss of throughput 

as the number of transmit antennas is increased. The Alamouti code [6] is a 

special case of orthogonal STBCs with two transmit antennas that achieves 

full data rate. 

In this chapter, we propose the design and implementation of orthogonal 

space-time block coded systems utilising 2-MAMSK signals (OSTBC 2-

MAMSK). The 2-MAMSK signal used in this chapter is modelled as a 

superposition of two constant envelop MSK signals with different 

amplitudes. This allows us to amplify each of the two constant-envelope 

MSK signals individually with a nonlinear amplifier prior to addition. A 

second and most important reason is that a simple and inexpensive 

differentially 2-MAMSK demodulator proposed by Javornik and Kandus 

[43] can be used to detect the transmitted binary data sequence. 

The nonlinearity and inherent memory of CPM makes the design of 

space-time coded CPM (STC-CPM) complicated. To overcome the 

complexity of the nonlinearity introduced in the phase of the CPM signal a 

sampling approach as in [54] is used. Hence, the 2-MAMSK signal becomes 

an offset 16-QAM and thus the implementation of orthogonal STBCs 
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becomes possible. Despite the fact that 2-MAMSK is a non-constant 

envelope scheme, the proposed system provides a high-capacity data 

network and retains most of the benefits of CPM signals. It provides the 

same throughput as STBC 16-QAM. Compared with STC MSK [49, 54], 

our scheme has twice the bandwidth efficiency by carrying information not 

only on the phases but also on the amplitudes. Simulation results show that 

the OSTBC 2-MAMSK can provide the same probability of bit error rate 

(BER) as 16-QAM with maximal ratio combining (16-QAM MRC). The 

proposed system has advantage of using a differential receiver rather than 

the complex maximum likelihood detection (MLD) used for 16-QAM MRC 

[14, 94]. 

 The rest of the chapter is organised as follows. In the next section, we 

present the structure of the OSTBC 2-MAMSK transmitter. Primarily, we 

focus on the Alamouti STBC [6] with two transmit antennas as well as the 

orthogonal STBC [5, 95] for three transmit antennas with a rate of 3/4. The 

channel model assumed and the components of the 2-MAMSK receiver are 

described in the following sections, respectively. The chapter concludes with 

simulation results and a short summary. 

4.2 OSTBC 2-MAMSK Transmitter 

The design of the OSTBC 2-MAMSK transmitter is performed in several 

stages. A simplified block diagram of the proposed transmitter is illustrated 

in Figure 4-1. The first stage of operation (2-MAMSK modulator) is 

described in details in section 2.5. Here, we review the key elements that 

need to be covered in order to describe the proposed transmitter. The input 

data sequence, 𝑑𝑘 with values ±1 is converted into two parallel streams. 

This is achieved using a serial to parallel converter. Each of the two parallel 

streams is destined to an MSK modulator. For our referencing, the upper 

parallel stream is labelled as 𝛼 and the lower stream is labelled as 𝛽. 

Accordingly, the data sequence, 𝛼 is the input to the MSK modulator with 

the smaller amplitude and the data sequence, 𝛽 is the input to the MSK 
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modulator with the larger amplitude. Both 𝛼 and 𝛽 represent two 

independent binary information sequences that take values from the set {−1,

+1}. Under this condition, we can assume that the outputs of the two MSK 

modulators are identical but independent of each other.  
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Figure 4-1 Block diagram of the OSTBC 2-MAMSK transmitter 

The two MSK Modulator blocks take the two independent binary 

information sequences 𝛼 and 𝛽 as their input. The output of each modulator 

block is an MSK signal with continuous phase, constant envelope and a 

modulation index of ℎ = 1/2. For detailed discussions, see sections 2.2, 

2.3.1 and 2.3.3. We denote the output of MSK 1 Modulator as 𝑠𝑀𝑆𝐾 1(𝑡) and 

the output of the MSK 2 Modulator after the amplification as  𝑠𝑀𝑆𝐾 2(𝑡). 

Using Equation (2.6), the complex baseband MSK signals, 𝑠𝑀𝑆𝐾 1(𝑡) and 

𝑠𝑀𝑆𝐾 2(𝑡) as function of time can be expressed as 

 𝑠𝑀𝑆𝐾 1(𝑡) = ±cos (
𝜋𝑡

2𝑇
)  ±  𝑗 sin (

𝜋𝑡

2𝑇
) , 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (4.1) 
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 𝑠𝑀𝑆𝐾 2(𝑡) = ± 2  cos (
𝜋𝑡

2𝑇
)  ±  𝑗 2 sin (

𝜋𝑡

2𝑇
) , 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (4.2) 

where 𝑇 is the bit period of the data streams, 𝑠𝑀𝑆𝐾 1(𝑡) is the MSK 

component with the smaller amplitude and 𝑠𝑀𝑆𝐾 2(𝑡) is that with the larger 

amplitude. It can be noted that the amplitude of the larger MSK signal is 

twice that of the smaller MSK. 

From Figure 4-1, we observe that the outputs of the two MSK modulators 

are summed to give the complex 2-MAMSK signal, denoted 𝑠2−𝑀𝐴𝑀𝑆𝐾. 

Subsequently, we may describe a 2-MAMSK signal as a superposition of 

two MSK signals with unequal amplitudes and defined over the interval 

𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 as  

𝑠2−𝑀𝐴𝑀𝑆𝐾(𝑡) ≜  𝑠𝑀𝑆𝐾 1(𝑡)  +  𝑠𝑀𝑆𝐾 2(𝑡) (4.3) 

By substituting Equations (4.1) and (4.2) into (4.3), we obtain an expression 

for the complex baseband representation of a 2-MAMAK signal as 

𝑠2−𝑀𝐴𝑀𝑆𝐾(𝑡) = [± cos (
𝜋𝑡

2𝑇
) ±  𝑗 sin (

𝜋𝑡

2𝑇
)]

+ [±2 cos (
𝜋𝑡

2𝑇
) ±  𝑗 2sin (

𝜋𝑡

2𝑇
)] 

= (±1 ± 2) cos (
𝜋𝑡

2𝑇
) +  𝑗 (±1 ± 2)sin (

𝜋𝑡

2𝑇
) 

= 𝑎𝐼(𝑡) cos (
𝜋𝑡

2𝑇
) + 𝑗 𝑎𝑄(𝑡) sin (

𝜋𝑡

2𝑇
) 

(4.4) 

where 𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) encode the information bits into the 2-MAMSK 

symbols, each taking values independently from the set {±1, ±3}. In 

section 3.5, we have shown that the values of 𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) depend on the 

phase difference between the two MSK signals and the information 

sequences 𝛼 and 𝛽. Using the results of Table 3-6, we can define 𝑎𝐼(𝑡) and 

𝑎𝑄(𝑡) in terms of 𝛼, 𝛽 and the phase difference as 
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𝑎𝐼(𝑡) = 2𝛽 + 𝛽 cos(𝜉)  (4.5) 

𝑎𝑄(𝑡) = 2𝛽 + 𝛼 cos(𝜉) (4.6) 

where 𝜉 is the phase difference between the two MSK signals, which takes 

on values of 0 or 𝜋 at the symbol transition times. 

The in-phase and quadrature pulse shaping, denoted as 𝑝(𝑡) and 𝑞(𝑡), can 

be written as  

𝑝(𝑡) =  cos (
𝜋𝑡

2𝑇
) , 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (4.7) 

𝑞(𝑡) = 𝑝(𝑡 − 𝑇) = sin (
𝜋𝑡

2𝑇
) , 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇 (4.8) 

Now, the complex baseband 2-MAMSK signal, denoted 𝑠(𝑡) can be written 

in the form 

𝑠(𝑡) = 𝑎𝐼(𝑡) ∙ 𝑝(𝑡) +  𝑗 𝑎𝑄(𝑡) ∙ 𝑞(𝑡) (4.9) 

where 𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) are the equivalent in-phase and quadrature data 

terms, which are defined by Equations (4.5) and (4.6), respectively. The 

terms 𝑝(𝑡) and 𝑞(𝑡) represent the in-phase and quadrature symbol 

weightings, respectively. 

From Equations (4.7) and (4.8) and (4.9), we observe that the equivalent 

in-phase data term, 𝑎𝐼(𝑡), which takes on values from the set {±1, ±3}, can 

only change value at the zero crossing of 𝑝(𝑡). Similarly, the quadrature data 

term, 𝑎𝑄(𝑡), can only change value at the zero crossing of 𝑞(𝑡). Since the 

quadrature symbol weighting 𝑞(𝑡) is delayed by 𝑇 second (half a symbol 

period) with respect to 𝑝(𝑡), the 2-MAMSK signal of (4.9) can be viewed as 

an offset 16-QAM signal with a half-cycle sinusoidal symbol pulse shape. 

 Also note that the input binary information sequences 𝛼 and 𝛽 are of rate 

1/𝑇, whereas the equivalent data pulses in both the in-phase and the 

quadrature channels are of duration 2𝑇. Clearly, the 2-MAMSK modulator 
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presented here could easily be generalised to M-MAMSK for 𝑀 ≥ 2. In 

particular, the 𝑖𝑡ℎ component for 𝑖 = 2, 3,⋯ ,𝑀 would have an amplitude 

which is 2𝑖−1 times that of the first component. For more details on 2-

MAMSK and M-MAMSK, see sections 2.4 and 2.5 along with chapter 3. 

The next operation performed in the OSTBC 2-MAMSK transmitter 

shown in Figure 4-1 is sampling the 2-MAMSK signal at the symbol 

transition points (i.e. at the time instants 𝑡 = 𝑛𝑇). In other words, the 2-

MAMSK signal of (4.9) sampled at the rate of  1/𝑇 samples per second. 

Thus, the 2-MAMSK signal becomes a 𝜋 2⁄  shifted (offset) 16-QAM and as 

a result, we would obtain 16 unique symbols as shown in Figure 4-2. It can 

be noted that each symbol contains 4 bits and these points can be Gray 

coded.  

 

Figure 4-2 Signal constellation for 2-MAMSK sampled at a rate 1 𝑇⁄  

The constellation points can be conveniently expressed in terms of 𝑎𝐼(𝑡) 

and 𝑎𝑄(𝑡). The resulting symbol set 𝑠𝑖 can be written in the form, 

𝑠𝑖 = 𝑎𝐼(𝑡) + 𝑗 𝑎𝑄(𝑡) (4.10) 
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The data terms 𝑎𝐼(𝑡) and 𝑎𝑄(𝑡) are constant over a duration of 𝑇 seconds, 

since the phase difference, 𝜉 and the sequences 𝛼 and 𝛽 are constant over 𝑇 

seconds. Hence, we can define the sampled complex 2-MAMSK symbols as 

𝑠𝑖 = {±1,±3} + 𝑗 {±1,±3}, for 𝑖 = 1, 2, 3,⋯ , 24  (4.11) 

The complex 2-MAMSK symbols from the output of the sampler are then 

space-time block encoded. At first, we consider the Alamouti STBC [6] with 

two transmit antennas. The Orthogonal Space-Time Block Encoder for the 

case of the Alamouti scheme has the transmission code matrix, 𝑺 

𝑺 =  [
𝑠1 −𝑠2

∗

𝑠2 𝑠1
∗
]  (4.12) 

where the rows represents the two transmit antennas and the columns 

represent the two time slots. In the first time interval 𝑠1 is transmitted from 

one transmit antenna and simultaneously, 𝑠2 from the other. During the 

second time instant the conjugate values of −𝑠2 and 𝑠1 are transmitted from 

antenna one and two, respectively. The symbols 𝑠1 and 𝑠2 are selected from 

the constellation alphabet given by (4.11). Note also that each symbol has 

only half the total transmitted power. Hence, the columns of 𝑺 have unit 

length and are orthogonal to each other. 

As a generalisation to more than two transmit antennas, we consider the 

matrix code proposed in [95] for three transmit antennas 

𝑺 =  [

𝑠1 −𝑠2
∗ 𝑠3

∗

𝑠2 𝑠1
∗ 0

𝑠3 0 −𝑠1
∗

0

𝑠3
∗

−𝑠2
∗

] (4.13) 

This transmission code matrix has a rate of 3/4 because it requires 4 time 

slots to transmit 3 symbols. The output of the sampler 𝑠1, 𝑠2 and 𝑠3 are the 

input symbols to the OSTBC encoder block and its output is given by (4.13). 

The matrix index (𝑖, 𝑙) indicates the symbol transmitted from the 𝑖𝑡ℎ 

antenna in the 𝑙𝑡ℎ time slot. The value of 𝑖 can range from 1 to 𝑁𝑡, the 
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number of transmit antennas. The value of 𝑙 can range from 1 to the 

codeword block length. As before, the columns of 𝑺 have unit length and are 

orthogonal to each other. The technique can be easily modified to 

accommodate any orthogonal STBC design. The matrix code for higher 

numbers of transmit antennas are given in [23].  

4.3  Channel Model 

The channel model considered is a quasi-static Rayleigh fading with perfect 

channel state information (CSI) at the receiver. We assume the channel gains 

remain constant over the transmission of a codeword block and vary 

independently from one codeword block to another. The multiple input 

multiple output (MIMO) channel is denoted by the matrix, 𝑯 with 

coefficients ℎ𝑗𝑖 that represent the channel fading coefficient from the 𝑖𝑡ℎ 

transmit antenna to the 𝑗𝑡ℎ receive antenna. The parameters ℎ𝑗𝑖 are zero 

mean Gaussian random variables of unit variance. For a multipath 

environment, the MIMO channel can be described by a complex matrix, 𝑯 

𝑯 =

[
 
 
 
 
ℎ11 ⋯ ℎ1𝑁𝑡

⋮ ⋱ ⋮

ℎ𝑁𝑟1 ⋯ ℎ𝑁𝑟𝑁𝑡]
 
 
 
 

 (4.14) 

of dimension 𝑁𝑟 × 𝑁𝑡, where 𝑁𝑡 and 𝑁𝑟 are the numbers of transmit and 

receive antennas, respectively. 

There will be an additional noise due to the receiver’s front end. The 

noise is assumed to be additive white Gaussian noise (AWGN) with mean 

zero and variance 𝜎𝑛
2.  For detailed discussions on the channel 

characteristics, refer to section 1.2. 



107 

 

4.4 OSTBC 2-MAMSK Differential Receiver 

Figure 4-3 illustrates a simplified block diagram of the proposed OSTBC 2-

MAMSK differential receiver. As shown, the proposed receiver consists of 

two subsystems: the OSTBC combiner and the 2-MAMSK differential 

detection. Consequently, the recovery of the transmitted data sequence, 𝑑𝑘 is 

a two step process. The first step involves the decoding of the OSTBC 

signals. This is followed by the differential detection of the 2-MAMSK 

signals.  
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2ŝ

1̂s3ŝ
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Figure 4-3 Block diagram of the OSTBC 2-MAMSK differential receiver 

The OSTBC 2-MAMSK signals of (4.12) and (4.13) are transmitted over 

a MIMO channel of size 𝑁𝑟 × 𝑁𝑡. As discussed in the previous section, the 

received signal is a combination of transmitted signals multiplied by the 

channel gains, ℎ𝑗𝑖 and degraded by noise at the receiver. At first, we 

consider, a multiple input single output (MISO) system with two transmit 

antennas and one receive antenna (2 × 1 MISO system). Then we provide a 
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more general solution that can be applied to accommodate any number of 

receive antennas for  𝑗 =  1, ⋯ , 𝑁𝑟.  

 For a 2 × 1 MISO system, the received signal during the first time slot, 

denoted  𝑟11, can be written as 

𝑟11 = ℎ11 𝑠1 + ℎ12 𝑠2 + 𝑛11 (4.15) 

Similarly, the received signal during the second time slot, denoted 𝑟12, can 

be expressed as 

𝑟12 = −ℎ11𝑠2
∗ + ℎ12 𝑠1

∗ + 𝑛12 (4.16) 

where 𝑛11 and 𝑛12 are complex Gaussian noise and (∙)∗ denotes complex 

conjugate. The coefficients ℎ11 and ℎ12 are the channel gains, which are 

assumed to remain constant over two time slots.  

The OSTBC combiner block combines the received signals of (4.15) and 

(4.16) with the CSI to estimate the soft information of the encoded symbols. 

To obtain an estimate of 𝑠1, the combiner multiplies the conjugates of ℎ11 

and ℎ12 by 𝑟11 and 𝑟12, respectively. Then neglecting the noise terms, we 

have 

ℎ11
∗ 𝑟11 = |ℎ11| 𝑠1

2
+ ℎ11

∗ ℎ12 𝑠2 (4.17) 

ℎ12
∗ 𝑟12 = −ℎ12

∗ ℎ11𝑠2
∗ + |ℎ12|

2 𝑠1
∗ (4.18) 

By taking the conjugate of Equation (4.18) and adding the outcome to 

Equation (4.17), we obtain an estimate for 𝑠1 as 

𝑠̂1 =
ℎ11
∗ 𝑟11 + ℎ12 𝑟12

∗

|ℎ11|2 + |ℎ12|2
 (4.19) 

where 𝑠̂1 is a soft estimate of 𝑠1. Similarly, we multiply 𝑟11 and 𝑟12 by 

conjugates of ℎ12 and ℎ11, respectively and we obtain an estimate for 𝑠2 as 
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𝑠̂2 =
ℎ12
∗ 𝑟11 − ℎ12 𝑟12

∗

|ℎ11|2 + |ℎ12|2
 (4.20) 

where 𝑠̂2 is a soft estimate of 𝑠2. Note that the receiver is assumed to have 

knowledge of the channel experienced by the signal. 

Now, we provide a more general solution for the proposed system. The 

received signal, 𝑹  can be written in matrix form as  

𝑹 = 𝑯𝑺 + 𝑵, (4.21) 

where 𝑹 is of dimension 𝑁𝑟 × 𝜂 with 𝑟𝑗𝑙 denoting the received signal on the  

𝑗𝑡ℎ receive antenna during the 𝑙𝑡ℎ time slot, 𝑯 is the MIMO channel matrix 

defined by Equation (4.14) and 𝑵 is a complex AWGN matrix at the 

receiver of size 𝑁𝑟 × 𝜂, with 𝑛𝑗𝑙  denoting a random noise variable generated 

by the 𝑗𝑡ℎ receive antenna during the 𝑙𝑡ℎ time slot. 

The OSTBC combiner shown in Figure 4-3 takes the received signal of 

(4.21) as its input and outputs an estimate of the transmitted symbols 

[
 
 
 
 
𝑠̂1

⋮

𝑠̂𝑘]
 
 
 
 

=
1

|𝐻|2
∑

[
 
 
 
 
ℎ𝑗1
∗  𝑟𝑗1 + ℎ𝑗2 𝑟𝑗2

∗ − ℎ𝑗3 𝑟𝑗3 
∗

ℎ𝑗2
∗  𝑟𝑗1 − ℎ𝑗1 𝑟𝑗2

∗ − ℎ𝑗3 𝑟𝑗4 
∗

ℎ𝑗3
∗  𝑟𝑗1 + ℎ𝑗1 𝑟𝑗3

∗ + ℎ𝑗2 𝑟𝑗4 
∗
]
 
 
 
 𝑁𝑟

𝑗=1

 (4.22) 

where 𝑠̂𝑘 is the estimated 𝑘𝑡ℎ symbol in the code matrix, 𝑺 and ℎ𝑗𝑖 

represents the channel gain from the 𝑖𝑡ℎ transmit antenna and the 𝑗𝑡ℎ receive 

antenna. The value of 𝑖 can range from 1 to the number of transmit antennas, 

𝑁𝑡, and the value of  𝑗 can range from 1 to the number of receive antennas, 

𝑁𝑟. 𝑟𝑗𝑙 represents the 𝑙𝑡ℎ symbol at the 𝑗𝑡ℎ receive antenna per codeword 

block. The value of 𝑙 can range from 1 to the codeword block length, 𝜂. |𝐻|2 

is the sum of the channel gains defined as 

|𝐻|2 =∑∑|ℎ𝑗𝑖|
2

𝑁𝑟

𝑗=1

𝑁𝑡

𝑖=1

. (4.23) 
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The soft estimates of the data symbols are fed to the 2-MAMSK 

differential detector, which is the second stage of the detection process. The 

operation of the 2-MAMSK differential detector is discussed in detail in 

section 2.8 and reference [43]. Hence, we only briefly describe the key 

elements that are essential to retrieve the original binary data stream.  In 

chapter 3, we have shown 𝛽 = +1 causes the 2-MAMSK signal phase to 

increase by 𝜋/2 and 𝛽 = −1 causes the phase to decrease by −𝜋/2, over a 

𝑇-sec interval. Using this result, a symbol-by-symbol differential MSK 

detector [86, 87] is used to estimate the information sequence carried by the 

larger MSK signal, denoted 𝛽̂.  

The estimated data sequence, 𝛽̂ is used to regenerate the original 

transmitted MSK signal with the larger amplitude. The regenerated MSK 

signal is subtracted from the soft estimates in order to obtain the smaller 

MSK signal. At the point, the 2-MAMSK signal is reduced to conventional 

MSK and hence differential MSK detection [86, 87] is used to retrieve the 

information sequence carried by the smaller MSK signal, denoted 𝛼̂. Finally, 

a parallel to serial convertor is used to form an estimate of the transmitted 

data sequence, denoted 𝑑̂𝑘.  

4.5 Simulation Results 

The proposed system provides the same throughput as systems utilising 16-

QAM signals. To evaluate the decoding BER performance, we have 

compared the proposed OSTBC 2-MAMSK system with the well-known 

MRC 16-QAM system for various diversity orders. More specific, for our 

system we consider the following transmit and receive antenna 

configurations: two transmit antennas, one receive antenna (2 × 1 MISO), 

two transmit antennas, two receive antennas (2 × 2 MIMO) and three 

transmit antennas, two receive antennas (3× 2 MIMO).  

The average probability of bit error rate for square M-QAM with MRC 

over Rayleigh fading channels is given in [14, 94] as 
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𝑃𝑏

= 
2

𝜋√𝑀 log2 √𝑀

× ∑ ∑ {(−1)
(
𝑖2𝑘−1

√𝑀 
)
(2𝑘−1 − [

𝑖2𝑘−1

√𝑀
+
1

2
])

(1−2−𝑘)√𝑀−1

𝑖=0

log2√𝑀  

𝑘=1

× ∫ ∏(
1

1 − 𝑠𝛾𝑙
) (−

(2𝑖 + 1)2 3/[2(𝑀 − 1)] 

sin2 𝜃
)𝑑𝜃

𝐿

𝑙=1

𝜋/2 

0

} 

(4.24) 

 

where  𝑀 is the modulation order and defined as  𝑀 = 2𝑘, where 𝑘 is the 

number of bits per symbol. 𝐿 represents number of diversity branches, 𝛾𝑙 =

𝐸𝑏/𝑁0 is the average SNR per bit per branch and 𝑠 is a complex dummy 

variable. Note that the term (1 − 𝑠𝛾𝑙)
−1 is the moment generating function 

(MGF) of Rayleigh fading and the expression only involves the integration 

with respect to 𝜃 over the integral of [0,   𝜋/2].  

The BER curves for OSTBC 2-MAMSK versus MRC 16-QAM in 

Rayleigh fading channel with diversity orders of 𝐿 = 2, 4 and 6 are shown 

in Figure 4-4. For the case of MRC 16-QAM, Equation (4.24) is used to 

evaluate the average bit error probability, 𝑃𝑏 whereas the BER curves 

obtained for OSTBC 2-MAMSK are the results of simulations. At each 

SNR, the simulations were stopped after detecting 500 errors and at least 

10 × 108 symbols were transmitted. For reference, the error rates of 2-

MAMSK and 16-QAM in a Rayleigh fading channel without diversity (𝐿 =

1) is also plotted on the same figure. For both the transmit and receive 

diversity, the total power is normalised across all the diversity branches, i.e. 

the 𝐸𝑏/𝑁0 parameter is scaled by a factor of 𝐿 = 2, 4 and 6. Otherwise, the 

2-MAMSK transmit diversity would have a 3 dB disadvantage when 

compared to MRC receive diversity. 

From Figure 4-4, we observe that the 2 × 1, 2 × 2 and 3 × 2 systems 

provide the same diversity orders as the MRC systems with one transmit 
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antenna and two, four and six receive antennas, respectively. The resulting 

simulation results show that at high SNR, the proposed receiver requires 

only around 1 dB of additional signal power per transmitted bit to achieve 

the same BER performance as theoretical 16-QAM with MRC. The 1 dB 

penalty is due to using the differential receiver rather than the complex 

maximum likelihood detection (MLD) used for MRC 16-QAM [14, 94]. If 

we use coherent detection of 2-MAMSK then the performance should be 

identical for both systems. However, differential detection is attractive for 

practical application due to its simplicity. 

 

Figure 4-4 Average 𝑷𝒃 for 16-QAM and 2-MAMSK in Rayleigh Fading with 

various diversity orders, 16-QAM are theoretical curves of [14, 94], L= total 

diveristy 
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4.6 Summary 

In this chapter, we have presented an orthogonal STBC MIMO system using 

2-MAMSK signals. The proposed system provides high-capacity data 

transmission by carrying information not only in the phases but also in the 

amplitudes. The performance of the system is compared to that of SIMO 

MRC systems utilising 16-QAM signals. The system is simulated in a quasi-

static Rayleigh flat fading channel for various transmit and receive antenna 

configurations. Simulation results show that the proposed differential 

receiver achieves performance within 1 dB of the coherent detection used 

for MRC 16-QAM system. The advantage is that the proposed system has 

low complexity and can be implemented using the existing orthogonal 

STBCs in conjunction with MSK modems. 
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Chapter 5 

5 Cooperative Diversity Using  

Multi-Amplitude Minimum Shift 

Keying 

5.1 Introduction 

One of the most powerful techniques to mitigate the effects of multipath 

fading is diversity. The idea of diversity is to transmit and receive the same 

data over independent fading paths. As we have discussed previously, one 

possible way to achieve diversity is to deploy multiple antennas at one or 

both ends of the communication link. However, in some wireless networks it 

may not be practical or feasible to deploy multiple antennas, (e.g. wireless 

sensor networks). This is because low powered wireless and mobile devices 

are small in size and have limited processing power, memory and battery 

life. In these situations, a technique known as cooperative diversity [28-30, 

66, 67] or cooperative communication may be used to achieve transmit 

diversity and to extend coverage. Throughout this chapter, we shall call 

wireless and mobile devices nodes. 
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In general, cooperative or relay assisted communication can be achieved 

using two main strategies: decode-and-forward (DF) [35, 66, 67] and 

amplify-and-forward (AF) [67]. In the first scheme, the relaying node(s) 

decode and re-encode the source’s message and then transmit it to the 

destination. In the second case, the relay(s) simply amplify and forward the 

source’s signal towards the destination. Each node’s time slot may thus be 

considered as two sub-slots: one is for transmitting its own message and the 

other for relaying data. As discussed in chapter 1, each relaying protocol has 

its own advantages and disadvantages depending on the channel condition of 

the source-relay link and the relaying capabilities [36-38].  

As mentioned, in the classical strategies each node only uses half the 

length of its available time slot to communicate new information which 

causes it to exhibit low bandwidth efficiency. To compensate for this, 

Larsson and Vojcic [68] proposed a new cooperative transmission scheme 

based on DF, which increases the throughput by using superposition 

modulation. In the work of [68] both the source and the relaying node 

employ binary phase shift keying (BPSK) modulation and the superimposed 

signal results in a 4 level pulse amplitude modulation (4-PAM). The idea has 

been extended to higher order modulation schemes [96-101] and resulted in 

further spectral efficiency. The performance of the superposition based 

cooperative diversity is analysed in [98, 99, 102-104].  

In this chapter, we consider the relay channel [31] employing 

superposition modulation cooperative transmit diversity [68] utilising a 2- 

level multi-amplitude minimum shift keying (2-MAMSK) signal. 

Furthermore, we restrict our consideration to the DF strategy in a half-

duplex environment, where a node cannot transmit and receive data packets 

simultaneously. The proposed cooperative diversity system employing 2-

MAMSK (CD 2-MAMSK) has the lowest detection complexity among the 

proposed cooperative diversity with superposition modulation (CD-SM) 

schemes [68, 96-101, 105]. This is because the proposed system at the 

destination node uses the differential 2-MAMSK detector [43] rather than 
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the iterative maximum a posteriori (MAP) detection used for CD-SM 

schemes [68, 96-101, 104, 105]. 

Moreover, the transmitting node exploits the overall 2-MAMSK phase to 

differentially decode the relaying signal without knowledge of its own 

information which was transmitted two time slots ago. Consequently, the 

proposed CD 2-MAMSK achieves the same results as those presented in 

[68, 96-101, 105], but with one less operation and lower memory 

requirements. As mentioned, the point of using cooperative diversity is to 

provide wireless nodes, which are constrained in size, memory and 

processing capability, with diversity gains. Thus, MAMSK signal is an 

excellent choice for this type of cooperative communication since it provides 

the same diversity gain with less memory and lower computational 

complexity.  

The rest of the chapter is organised as follows. In the next section, we 

describe the system model of the CD 2-MAMSK scheme. The transmission 

protocol and the detection process are described in the following section. 

Simulation results and a short summary are presented in the last two 

sections. 

5.2 System Model 

We consider a wireless relay network, which consists of three nodes labelled 

“A”, “B” and “D”. As illustrated in Figure 5-1, the system operates in half-

duplex mode, such that only node A or B can transmit or receive in each 

interval. The nodes A and B are paired as partners and communicate data 

packets {𝐴𝑘, 𝐵𝑘} to a common destination D by taking turns. They 

collaborate in transmitting their data by acting as relays for each other. A 

transmitting node plays the roles of the source and relay simultaneously by 

superimposing its own “local” signal and the partner’s “relay” signal onto a 

common signal.  In contrast, in more conventional strategies [35, 66, 67] a 

node can either be a source or a relay at any given time.  
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Figure 5-1 Channel model for the proposed CD 2-MAMAK scheme 

In this chapter, we consider the DF relaying scheme, which requires the 

transmitting node to successfully decode the partner’s message and then re-

encode it before retransmitting. Once the message is successfully re-

encoded, the transmitting node assigns a portion of its power to the relay 

signal and the remaining power for the local signal. The portion of the power 

dedicated to the relay signal, known as the superposition ratio, is crucial [68, 

98, 99] in this superposition diversity scheme. This is because an insufficient 

or excessive amount of power allocation may reduce the cooperation success 

rate. We come back to this point later. Finally, the node transmits the 

algebraic superposition of the two signals. For our system, we assume that 

both transmitting nodes A and B are only capable of modulating information 

sequences using minimum shift keying (MSK) scheme. Therefore, the 

superimposed two MSK-modulated signals results in a 2-level multi-

amplitude minimum shift keying signal, which carries both the local and 

relay information. 

5.3 Cooperative 2-MAMSK Transmission Protocol 

Assume that {𝐴𝑘} and {𝐵𝑘} for 𝑘 = 1, 2, ⋯ , 𝑁 are two independent binary 

information sequences of length 𝑁, to be transmitted by the nodes A and B 

to a common destination D. To demonstrate the scheme, let us assume that 
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data transmission initiates at node A (node B is similar). In the first time 

slot, node A modulates the data packet 𝐴1 into 𝑠𝐴1 and transmits 𝑠𝐴1 to both 

B and D. In the second time slot, node B decodes packet 𝐴1 which was 

received from node A in the previous time slot. Unlike a conventional DF 

scheme, instead of forwarding only the re-encoded version of 𝐴1, node B 

transmits a superposition of its own signal 𝑠𝐵2 with power 1 − 𝛾2 and the 

remodulated version of 𝑠𝐴1 with power 𝛾2, where 𝛾 is the superposition 

ratio. During the third time slot, node A transmits the local signal 𝑠𝐴3 with 

power 1 − 𝛾2 and the relay signal 𝑠𝐵2 with power 𝛾2. This process is 

repeated until the transmission is complete. For more information, refer to 

the timing diagram shown in Figure 5-2. Note that the total emitted power is 

normalised to 1 in all cases. 

Time Slot 1 Slot 2 Slot 3 ⋯ Slot 2N-1 Slot 2N 

Transmission 

at node A 
𝑠𝐴1  

√1 − 𝛾2 𝑠𝐴3

+ √𝛾2𝑠𝐵2 
⋯ 

√1 − 𝛾2 𝑠𝐴(2𝑁−1)

+ √𝛾2 𝑠𝐵(2𝑁−2) 
 

Transmission 

at node B 
 

√1 − 𝛾2𝑠𝐵2

+ √𝛾2𝑠𝐴1 
 ⋯  

√1 − 𝛾2 𝑠𝐵2𝑁

+ √𝛾2 𝑠𝐴(2𝑁−1) 

Reception at 

node D 
𝑠𝐴1 

√1 − 𝛾2 𝑠𝐵2

+ √𝛾2𝑠𝐴1 

√1 − 𝛾2 𝑠𝐴3

+ √𝛾2𝑠𝐵2 
⋯ 

√1 − 𝛾2 𝑠𝐴(2𝑁−1)

+ √𝛾2 𝑠𝐵(2𝑁−2) 

√1 − 𝛾2 𝑠𝐵2𝑁

+ √𝛾2 𝑠𝐴(2𝑁−1) 

Figure 5-2 Transmission protocol of the cooperative 2-MAMSK system 

Note that for the superposition scheme each data packet is modulated 

twice: once locally at the originating node and again as a relayed packet at 

the partner node. In this work, we assume that the message block is encoded 

with the same scheme at both the source and relay nodes. Assuming that the 

system is in continuous operation and neglecting the effect of the initial 

transmission, the transmitted superimposed signal, during 𝑘𝑡ℎ time slot can 

be written as 
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𝑠𝑘 = √1 − 𝛾2 𝑠𝑖𝑘 + √𝛾2 𝑠𝑗(𝑘−1) (5.1) 

where 𝑘  is the  𝑘𝑡ℎ  time slot, 𝑠𝑖𝑘 is the local signal and 𝑠𝑗(𝑘−1) is the relay 

signal, for  𝑖 and  𝑗 ∈  {𝐴, 𝐵}.  

In our cooperative scheme both the local and the relay data packets are 

MSK modulated and we select the superposition ratio of 𝛾 = √0.2. Then, 

the transmitted superimposed signal becomes a 2-MAMSK signal with two 

different amplitudes. More specific, the amplitude of the local signal is twice 

that of the relay signal. That means that a node uses 80% of its power for its 

own signal and the remaining 20% for the signal which is relaying. Hence, 

the signal transmitted in each time slot is obtained by superimposing two 

MSK signals with a 6 dB difference in power. The constellation diagram for 

one possible combination of the local and the relay signals is illustrated in 

Figure 5-3a, whereas the signal trajectory for all possible combinations of 

𝑠𝑖𝑘 and 𝑠𝑗(𝑘−1) , 𝑖, 𝑗 ∈ {𝐴, 𝐵} is shown in Figure 5-3b. 

2

21 

 

a)  One possible combination      b)   All possible combinations 

Figure 5-3 Signal trajectory for the cooperative superposition modulation 

The circle of larger radius shown in Figure 5-3a represents the local signal 

and the smaller circle represents the relayed signal. The bold points shown 
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in Figure 5-3a and 5-3b represent the symbol transition times. From Figure 

5-3, we observe that if the local and the relayed signal are in phase with each 

other at the symbol transition times, the transmitted 2-MAMSK signal 

would have an amplitude value of (√1 − 𝛾2 + √𝛾2) and if there is a phase 

difference of 𝜋 between the two signals, the 2-MAMSK signal would have 

an amplitude level of (√1 − 𝛾2 − √𝛾2). In relating this to the 2-MAMSK 

modulator described in section 2.5, the local signal can be treated as the 

MSK component with the larger amplitude and the relayed signal can be 

treated as the MSK component with the smaller amplitude. For more details 

on 2-MAMSK signals, refer to chapter 3 and in particular section 3.5.  

5.4 Signal Reception and Detection 

In this section, we describe the detection of the data packets 𝐴𝑘  and 𝐵𝑘 at 

each node. As illustrated in Figure 5-1, the protocol of the superposition 

scheme is divided into two phases. During phase I, node A is the transmitter 

and B and D are the receivers. In phase II, B is the transmitter and the other 

two are receivers. Based on this protocol, the received signal in phase I, at 

the destination and node B respectively can be expressed as 

𝑟𝐷𝑘 = ℎ𝐴𝐷 (√1 − 𝛾2 𝑠𝐴𝑘 + √𝛾2 𝑠𝐵(𝑘−1)) + 𝑛𝐷𝑘 (5.2) 

𝑟𝐵𝑘 = ℎ𝐴𝐵 (√1 − 𝛾2 𝑠𝐴𝑘 + √𝛾2 𝑠𝐵(𝑘−1)) + 𝑛𝐵𝑘 (5.3) 

Assuming that the decoding of 𝑠𝐴𝑘 at node B was successful, the received 

signal in phase II, at the destination and node A respectively can be written  

𝑟𝐷𝑘+1 = ℎ𝐵𝐷 (√1 − 𝛾2 𝑠𝐵(𝑘+1) + √𝛾2 𝑠𝐴𝑘) + 𝑛𝐷𝑘+1 (5.4) 

𝑟𝐴𝑘+1 = ℎ𝐵𝐷 (√1 − 𝛾2 𝑠𝐵(𝑘+1) + √𝛾2 𝑠𝐴𝑘) + 𝑛𝐴𝑘+1 (5.5) 
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where 𝑠  denotes transmitted signals, ℎ stands for the channel gain, and 𝑛 is 

the AWGN. The subscripts “𝐴”, “𝐵”, “𝐷” indicate the nodes where signals 

are transmitted or received. The additional subscript (∙)(∙𝑘) stands for “time 

slot 𝑘”. Note that the resulting 2-MAMSK signals of (5.2)-(5.5) are 

combinations of the local (larger MSK) and the relay (smaller MSK) signals 

multiplied by their respective channel gains and degraded by noise at the 

receiver. 

As mentioned earlier, each node decodes its partner’s message from the 

signal which was received, in the previous time slot. Now, assume that at 

time slot 𝑘 + 1, node B wants to decode A’s message  𝐴𝑘 received in the 𝑘𝑡ℎ 

time slot. The received 2-MAMSK signal of (5.3) is used by node B to 

retrieve 𝐴𝑘. From Equation (5.3), we observe that A’s message during 𝑘𝑡ℎ 

time slot is carried by the MSK component with the larger amplitude. In 

chapter 3, we established that the 2-MAMSK signal phase variation within a 

symbol interval depend primarily on the data sequence carried by the phase 

of the MSK component with the larger amplitude. In other words, the 

overall phase of a 2-MAMSK signal follows the phase of the larger MSK 

component. Thus, node B can exploit this property to differentially decode 

the information packet 𝐴𝑘 from the received 2-MAMSK signal  𝑟𝐵𝑘. The 

receiver structure to decode 𝐴𝑘 at B is shown in Figure 5-4. 
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Figure 5-4 Receiver structure for decoding 𝑨𝒌 at node B 

The receiver shown in Figure 5-4 is differential and discussed in detail in 

section 2.8 and reference [87], thus we omit further discussion here. 

However, its operation is based on differentiating between the current phase 

value of the received 2-MAMSK signal and the one delayed by a symbol 



122 

 

interval. A decision is made based on the calculated difference value. The 

complexity of the above receiver is low as it does not require carrier phase 

recovery and there is no need to subtract √𝛾2 𝑠𝐵(𝑘−1) from 𝑟𝐵𝑘, but instead 

it exploits the overall phase of the received 2-MAMSK signal. Thus, node B 

decodes 𝐴𝑘 directly from the superimposed received signal without 

knowledge of its previously transmitted information. 

 In contrast, in the cooperative superposition schemes presented in the 

literature [68, 96-101, 105], assuming that during the 𝑘𝑡ℎ interval, node B 

receives the superposition data 𝐴𝑘 + 𝐵𝑘−1 from A.  At time slot 𝑘 + 1, node 

B retrieves the information packet 𝐴𝑘 by subtracting its own information 

𝐵𝑘−1 transmitted two times slots previously from the received superimposed 

data 𝐴𝑘 + 𝐵𝑘−1. As a result, the detection of the A’s message at node B 

requires knowledge of its own data packets from the previous slots in 

addition to the received signals. The detection of the B’s message at node A 

is analogous. This requires additional memory to store previously 

transmitted information as well as an extra operation of subtraction. 

Therefore, in this respect the 2-MAMSK scheme can be considered as the 

best choice for the cooperative diversity based on superposition modulation, 

as the detection process of the partner’s message requires significantly less 

computation and memory compared to those proposed in the literature.  

In the same manner as for node B, in time slot 𝑘 + 2, node A can decode 

the information digits from the received 2-MAMSK signal 𝑟𝐴𝑘+1 by 

employing the receiver shown in Figure 5-4. Hence, each node treats its 

partner’s signal received in the previous time slot as the MSK component 

with larger amplitude and in the current time slot retransmits it as the MSK 

component with smaller amplitude. Finally, at destination node D, from both 

phases the receiver has two versions of 𝑠𝐴𝑘 from Equation (5.2) and (5.4) 

and thus the diversity order is 2, assuming in phase I, node B decoded A’s 

message successfully. The 2-MAMSK differential decoder [43] discussed in 

section 2.8 is used at the destination node to decode the information 

sequences {𝐴𝑘 , 𝐵𝑘} from the received 2-MAMSK signals. The proposed 
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schemes in the literature, at node D employ iterative MAP detectors to 

decode 𝐴𝑘 and 𝐵𝑘. Again the 2-MAMSK differential detector is of much 

lower complexity than MAP decoders. As a result, the overall decoding 

complexity of our scheme is significantly less than those presented in the 

literature [68, 96-101, 105]. 

Superposition based cooperative diversity system operation reduces to 

that of a non-cooperative scheme if data packets originating at node A are 

not received correctly at node B. This is also true if node A fails to 

successfully decode B’s packets. In this case, a transmitting node modulates 

only its own information bits and transmits the resulting signal with full 

power. In other words, a node transmits an MSK signal rather than the 2-

MAMSK signal described by Equation (5.1). A transmitting node can use 

flag bits to indicate whether its partner’s data packet is decoded successfully 

or not. This requires the use of a cyclic redundancy check (CRC) to detect 

decoding errors. The diversity order at the destination node is reduced to one 

if any of the transmitting nodes are unable to send an acknowledgment of 

success. However, the detection process is the same during success or failure 

since the phase trellis of 2-MAMSK is identical to that of MSK. 

5.5 Simulation Results  

In this section, we present the bit error probability of our scheme to 

demonstrate its gain over the non-cooperative system. The probabilities of 

bit error with no cooperation and with cooperative transmit diversity at the 

destination nodes are shown in Figure 5-5. For the cooperative case two 

different values of superposition ratios are used (i.e. 𝛾2 = 0.2 and 𝛾2 =

0.4). In all simulations, the channels ℎ𝐴𝐵 , ℎ𝐴𝐷 , ℎ𝐵𝐴 and ℎ𝐵𝐷 are Rayleigh 

random variables with unit variance. In our model, we have assumed that 

both transmitting nodes A and B can decode each other’s information 

without error. Therefore, cooperative transmission is always used and hence 

a diversity order of 2 is always achieved.  
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From Figure 5-5, we observe that a power allocation of 𝛾2 = 0.2 

provides lower decoding error than the value of 𝛾2 = 0.4. In fact, the 

superposition ratio of  𝛾2 = 0.2  gives the best performance for our system.  

This result is consistent with the finding of [106] where it is shown that the 

minimum distance between signal points 𝑑min
2  is maximised when the power 

of the larger MSK component is four times that of the smaller MSK 

component. Using our analytical approach as in section 3.8, it is easy to 

show that 𝑑min
2  is maximised for  𝛾2 = 0.2. Note also that choosing 𝛾2 =

0.5 causes the scheme to breakdown as the MSK signals then have equal 

amplitude and the resulting 2-MAMSK signal reaches zero signal energy 

when the two MSK signals are out of phase by 𝜋 with each other. Similarly, 

selecting 𝛾2 = 0 we would only be transmitting an MSK signal and hence, 

we must select 0 < 𝛾2 < 0.5. For comparison, for the schemes presented in 

the literature [68, 100] the optimum value of 𝛾2  is  0.15.  
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Figure 5-5 Probability of error for the cooperative system, L= total diversity 
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5.6 Summary 

In this chapter, we have developed a scheme to use 2-MAMSK signals in a 

cooperative diversity system based on superposition modulation with DF 

strategy in a half-duplex environment. The spectral efficiency of the 

proposed system is twice higher than that of a classical DF scheme, as it 

superimposes both the local and the relayed signals onto a common signal. 

Simulation results show that our system can significantly outperform a non-

cooperative system. The proposed cooperative system exploits the overall 

phase of a 2-MAMSK signal which allows differential detection and as a 

result it provides the lowest decoding complexity and memory requirements 

among the existing superposition based cooperation schemes. The optimum 

power allocation to be assigned to the partner’s signal is 20 percent of the 

total power. 
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Chapter 6 

6 Conclusions 

In this thesis, a form of modulation referred to as multi-amplitude minimum 

shift keying (MAMSK) is analysed in term of its phase variation, spectral 

and error probability performance. We have explicitly shown that the phase 

values of a MAMSK signal at the symbol transition times are identical to 

that of minimum shift keying (MSK). Unlike MSK, the phase evolution with 

time is either linear or nonlinear, and thus, paths in the phase trellis are 

straight or curved lines with a slope of ±𝜋/2𝑇. The overall phase change in 

a MAMSK signal is determined by the phase of the largest MSK component 

and the nonlinear behaviour is caused by the remaining MSK components. 

This characteristic is very useful as it allows low-complexity differential 

detection of an MAMSK signal. The spectral shape of MAMSK is identical 

to that of MSK, but for a fixed data rate, the MAMSK power spectrum is 𝑀 

times narrower because it encodes 2𝑀 bits per symbol. The theoretical bit 

error rate (BER) performance analysis of the optimal maximum likelihood 

receiver for MAMSK in AWGN channel is presented. The results of our 

analysis show that the theoretical BER of MAMSK is essentially identical to 

that of square quadrature amplitude modulation (QAM) for the same average 

transmit power. 
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The design and implementation of a space-time block coded (STBC) 

MIMO system using MAMSK signal is described. The STBC MAMSK 

system achieves high throughput as it uses both the phase and amplitude to 

encode the information bits. The proposed system combines the benefits of 

both orthogonal space-time block coding and differential detection. As a 

result, the proposed system is attractive for practical applications due to its 

simple linear decoding, low complexity receiver and robustness to carrier 

phase variation. The system is simulated in a quasi-static Rayleigh fading 

channel for various transmit and receive antenna configurations. Simulation 

results show that the system achieves a diversity order of 𝑁𝑡 × 𝑁𝑟 where 𝑁𝑡 

and 𝑁𝑟 are the number of transmit and receive antennas, respectively. The 

proposed MAMSK differential receiver achieves performance within 1 dB 

of coherent detection and can be constructed from the existing orthogonal 

STBC combiners and MSK modems.  

A MAMSK signal is adapted into a multiuser cooperative diversity based 

on superposition modulation with a DF strategy. In the proposed cooperative 

scheme, two nodes collaborate with each other to transmit their information 

to a common destination. We have shown that the overall phase of MAMSK 

can be well-exploited at each transmitting node, where a node can 

differentially extract the partner’s data packets directly from the received 

MAMSK signal without the knowledge of its previously stored packets. 

Moreover, the destination node retrieves the data from both nodes using the 

low-complexity MAMSK differential detector. As a result, the cooperative 

MAMSK system provides the lowest decoding complexity and memory 

requirements among the existing cooperation schemes based on 

superposition. A significant improvement in the decoding error probability 

of the proposed scheme compared to that of a non-cooperative system is 

shown. The spectral efficiency is doubled compared to that of a classical DF 

scheme, since each node transmits its own data and the partner’s data 

simultaneously. A node allocates a fraction of its power to the relayed signal 

and the remaining power for its own signal; the optimum power allocation 

for our scheme is one-fifth of the total transmitted power. 
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6.1 Future work 

In this section, we suggest possible future directions for research based on 

the work presented in this thesis. Such research directions include, but are 

not limited to: 

 The analysis of MAMSK characteristics accomplished in chapter 3 

can be extended to multi-amplitude continuous modulation 

(MACPM). 

 The performance of the differential MAMSK detector is evaluated 

only by simulation results; hence a closed-form expression of the 

error probability is of interest. The BER analysis of differential 

MSK detection [86, 87] can be adapted into differential MAMSK 

detection. 

 Designing non-orthogonal STBC-based or perhaps STTC-based 

MIMO system using MAMSK or MACPM signals via the method 

described here. 

 A quasi-static Rayleigh flat fading channel is assumed throughout 

this thesis. The work should be extended to examine the effects of 

different fading environments. 

 In this thesis, MAMSK signal was examined based on the simplest 

case of cooperative communication. However, we have 

demonstrated its potential in superposition based cooperative 

diversity. For this reason, the MAMSK cooperative scheme should 

be extended to a bigger relaying system with more nodes. 

 The performance of the MAMSK cooperative system was based on 

simulation results; hence an analytical result is of interest to fully 

understand the superiority of the system. 
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